Sample records for apollo moon mission

  1. Apollo: Expeditions to the Moon

    NSDL National Science Digital Library

    1975-07-30

    This is an electronic version of an historical NASA (National Aeronautics and Space Administration) publication, written by members of the Apollo program, containing information about the history and accomplishments of NASA's Apollo space program. Beginning with pre-space years and the first man in flight from the USSR, this publication looks into the beginnings of the Apollo space program and the space race between the United States and USSR in the 1950s and 60s. The generation and goals of the Apollo program are covered, as well as the programs that made Apollo possible (Gemini, Mercury, the Saturn V Booster). Details about the development of the spacecraft cover the Lunar Module concept, the beginnings of mission control, selecting astronauts for the Apollo program, problems that occurred, and the historic landing of Apollo 11. Also covered is the Apollo 13 crisis, the contributions Apollo discoveries made to our understanding of the Moon and Solar System, and the legacy of the Apollo program. There is a timeline of key events for Apollo as well as a mission profile highlighting the objectives and goals for the missions.

  2. The Apollo missions.

    NASA Technical Reports Server (NTRS)

    Scherer, L. R.

    1971-01-01

    The Apollo 11 and 12 lunar landings are briefly reviewed together with the problems experienced with Apollo 13. As a result of the first two landing missions it became known that parts of the moon are at least four and one-half billion years old. If the moon was once part of the earth, it must have split off very early in its history. Starting with Apollo 16, changes in hardware will result in very significant improvements and capabilities. The landed payload will be increased by over 100%.

  3. Apollo Manned Missions

    NSDL National Science Digital Library

    This site, produced by the Kennedy Space Center, presents the complete history of the Apollo Program, a series of missions which ultimately resulted in manned landings on the Moon. It features sections on mission goals, spacecraft, and summaries of both manned and unmanned missions. Mission summaries describe each flight crew, the conduct of each flight and landing, and accounts of experiments that were conducted and samples taken.

  4. Apollo 11 Mission Commemorated

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-07-01

    On 24 July 1969, 4 days after Apollo 11 Mission Commander Neil Armstrong and Lunar Module Eagle Pilot Eugene “Buzz” Aldrin had become the first people to walk on the Moon, they and Apollo 11 Command Module Pilot Michael Collins peered through a window of the Mobile Quarantine Facility on board the U.S.S. Hornet following splashdown of the command module in the central Pacific as U.S. President Richard Nixon told them, “This is the greatest week in the history of the world since the creation.” Forty years later, the Apollo 11 crew and other Apollo-era astronauts gathered at several events in Washington, D. C., to commemorate and reflect on the Apollo program, that mission, and the future of manned spaceflight. “I don’t know what the greatest week in history is,” Aldrin told Eos. “But it was certainly a pioneering opening the door. With the door open when we touched down on the Moon, that was what enabled humans to put many more footprints on the surface of the Moon.”

  5. Apollo to the Moon

    NSDL National Science Digital Library

    Apollo to the Moon is a display at the National Air & Space Museum of the Smithsonian, dedicated to telling the history of human exploration of the moon by the United States. The Web site places the history of space travel within the context of the political environment, including the Cold War. The Space Race with Russia and the beginning of NASA are also discussed in detail, along with the rationale behind Kennedy's decision to pursue human space exploration. Finally, the Web site discusses the information learned from expeditions to the moon and the changing goals for space exploration.

  6. Apollo 15 mission report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A detailed discussion is presented of the Apollo 15 mission, which conducted exploration of the moon over longer periods, greater ranges, and with more instruments of scientific data acquisition than previous missions. The topics include trajectory, lunar surface science, inflight science and photography, command and service module performance, lunar module performance, lunar surface operational equipment, pilot's report, biomedical evaluation, mission support performance, assessment of mission objectives, launch phase summary, anomaly summary, and vehicle and equipment descriptions. The capability of transporting larger payloads and extending time on the moon were demonstrated. The ground-controlled TV camera allowed greater real-time participation by earth-bound personnel. The crew operated more as scientists and relied more on ground support team for systems monitoring. The modified pressure garment and portable life support system provided better mobility and extended EVA time. The lunar roving vehicle and the lunar communications relay unit were also demonstrated.

  7. How Apollo Flew to the Moon

    NASA Astrophysics Data System (ADS)

    Watkins, Nick

    2009-10-01

    Eos readers who were even young children in the summer of 1969 probably will remember the first Moon landing vividly. If, like myself, they went on to develop a lifelong interest in manned spaceflight, they will have read many accounts in the intervening years, as diverse as Norman Mailer's, Andrew Chaikin's, and the first-person reminiscences of NASA astronaut Michael Collins. The prospect of another book about the Moon landing at first may seem uninspiring, and I confess this was my original reaction to the prospect of reading this book. Additionally, in the intervening 40 years since Apollo 11, there have been some superb films including For All Mankind (1989) and In the Shadow of the Moon (2006). The Internet has brought new possibilities for space documentation. The best known Web site on the Apollo missions is the Apollo Lunar Surface Journal, which now is hosted by NASA at http://www.hq.nasa.gov/alsj/. The Web site includes commentary from all of the surviving Moon walkers. Scottish space enthusiast W. David Woods created the companion Apollo Flight Journal, found at http://history.nasa.gov/afj//, which focuses on how the missions actually got to the Moon and back. Now Woods has distilled the information into the book How Apollo Flew to the Moon.

  8. Integration of Apollo Lunar Sample Data into Google Moon

    NASA Technical Reports Server (NTRS)

    Dawson, Melissa D.; Todd, Nancy S.; Lofgren, Gary

    2010-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is a continuation of the Apollo 15 Google Moon Add-On project, which provides a scientific and educational tool for the study of the Moon and its geologic features. The main goal of this project is to provide a user-friendly interface for an interactive and educational outreach and learning tool for the Apollo missions. Specifically, this project?s focus is the dissemination of information about the lunar samples collected during the Apollo missions by providing any additional information needed to enhance the Apollo mission data on Google Moon. Apollo missions 15 and 16 were chosen to be completed first due to the availability of digitized lunar sample photographs and the amount of media associated with these missions. The user will be able to learn about the lunar samples collected in these Apollo missions, as well as see videos, pictures, and 360 degree panoramas of the lunar surface depicting the lunar samples in their natural state, following collection and during processing at NASA. Once completed, these interactive data layers will be submitted for inclusion into the Apollo 15 and 16 missions on Google Moon.

  9. Apollo Expeditions to the Moon

    NASA Technical Reports Server (NTRS)

    Cortright, E. M. (editor)

    1975-01-01

    The Apollo program is described from the planning stages through Apollo 17. The organization of the program is discussed along with the development of the spacecraft and related technology. The objectives and accomplishments of each mission are emphasized along with personal accounts of the major figures involved. Other topics discussed include: ground support systems and astronaut selection.

  10. Apollo astronaut supports return to the Moon

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-12-01

    Nearly 40 years after the Apollo 17 Moon launch on 7 December 1972, former NASA astronaut Harrison Schmitt said there is “no question” that the Moon is still worth going to, “whether you think about the science of the Moon or the resources of the Moon, or its relationship to accelerating our progress toward Mars.” Schmitt, a geologist and the lunar module pilot for that final Apollo mission, was speaking at a 6 December news briefing about lunar science at the AGU Fall Meeting. “By going back to the Moon, you accelerate your ability to go anywhere else,” Schmitt said, because of the ability to gain experience on a solar system body just a 3-day journey from Earth; test new hardware and navigation and communication techniques; and utilize lunar resources such as water, hydrogen, methane, and helium-3. He said lunar missions also would be a way “to develop new generations of people who know how to work in deep space. The people who know how to work [there] are my age, if not older, and we need young people to get that kind of experience.” Schmitt, 77, said that a particularly interesting single location to explore would be the Aitken Basin at the Moon's south pole, where a crater may have reached into the Moon's upper mantle. He also said a longer duration exploration program might be able to explore multiple sites.

  11. Apollo 16 Onboard Photograph: Back Side of the Moon

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This view of the back side of the Moon was captured by the Apollo 16 mission crew. The sixth manned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission Commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 continued the broad-scale geological, geochemical, and geophysical mapping of the Moon's crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used. The mission ended on April 27, 1972.

  12. Apollo 14 mission to Fra Mauro

    NASA Astrophysics Data System (ADS)

    Beasley, Brian D.

    1991-04-01

    The 1971 Apollo 14 Mission to Fra Mauro, a lunar highland area, is highlighted in this video. The mission's primary goal was the collection of lunar rocks and soil samples and lunar exploration. The soil and rock sampling was for the geochronological determination of the Moon's evolution and its comparison with that of Earth. A remote data collection station was assembled on the Moon and left for continuous data collection and surface monitoring experiments. The Apollo 14 astronauts were Alan B. Shepard, Edgar D. Mitchell, and Stuart A. Rossa. Astronauts Shepard and Mitchell landed on the Moon (February 5, 1971) and performed the sampling, the EVA, and deployment of the lunar experiments. There is film-footage of the lunar surface, of the command module's approach to both the Moon and the Earth, Moon and Earth spacecraft launching and landing, in-orbit command- and lunar-module docking, and of Mission Control.

  13. Apollo 16 mission report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Information is provided on the operational and engineering aspects of the Apollo 16 mission. Customary units of measurement are used in those sections of the report pertaining to spacecraft systems and trajectories. The International System of Units is used in sections pertaining to science activities.

  14. See What the Astronauts Saw Check out photographs of Apollo missions to the

    E-print Network

    See What the Astronauts Saw Check out photographs of Apollo missions to the Moon throughout the 1st rock within the wall near the bronze Moon model. It was retrieved by Apollo 15 astronauts. · What does

  15. Correction to “Apollo 11 Mission Commemorated”

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-08-01

    In the 28 July 2009 issue of Eos (90(30), 258), a date was incorrect in the news item entitled “Apollo 11 Mission Commemorated.” NASA astronaut Eugene Cernan was referring to the 1970s, not the 1960s, in talking about his expectation of when humans would be back on the Moon. Eos regrets this error.

  16. Working on the moon: The Apollo experience

    SciTech Connect

    Jones, E.M.

    1989-01-01

    The successful completion of any scientific or engineering project on the Moon will depend, in part, on human ability to do useful work under lunar conditions. In making informed decisions about such things as the use of humans rather than robots for specific tasks, the scheduling of valuable human time, and the design and selection of equipment and tools, good use can be made of the existing experience base. During the six completed landing missions, Apollo lunar surface crews conducted 160 astronaut-hours of extra-vehicular activities (EVAs) and also spent a similar sum of waking hours working in the cramped confines of the Lunar Module. The first three missions were primarily proof-tests of flight hardware and procedures. The ability to land equipment and consumables was very modest but, despite stay times of no more than 32 hours, the crews of Apollos 11, 12, and 14 were able to test their mobility and their capability of doing useful work outside the spacecraft. For the last three missions, thanks to LM modifications which enabled landings with significant amounts of cargo, stay times more than doubled to three days. The crews were able to use Lunar Rovers to conduct extensive local exploration and to travel up to 10 kilometers away from their immediate landing sites. During these final missions, the astronauts spent enough time doing work of sufficient complexity that their experience should be of use in the formulation early-stage lunar base operating plans. 2 refs.

  17. Apollo Lunar Sample Integration into Google Moon: A New Approach to Digitization

    NASA Technical Reports Server (NTRS)

    Dawson, Melissa D.; Todd, nancy S.; Lofgren, Gary E.

    2011-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is part of a larger, LASER-funded 4-year lunar rock photo restoration project by NASA s Acquisition and Curation Office [1]. The objective of this project is to enhance the Apollo mission data already available on Google Moon with information about the lunar samples collected during the Apollo missions. To this end, we have combined rock sample data from various sources, including Curation databases, mission documentation and lunar sample catalogs, with newly available digital photography of rock samples to create a user-friendly, interactive tool for learning about the Apollo Moon samples

  18. Apollo 11 (launch, on moon, in orbit)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Apollo 11 Command and Service Modules are shown in a photo taken from the Lunar Module while in orbit around the Moon. Photograph published in Winds of Change, 75th Anniversary NASA publication (page 98), by James Schultz.

  19. Cameras on the moon with Apollos 15 and 16.

    NASA Technical Reports Server (NTRS)

    Page, T.

    1972-01-01

    Description of the cameras used for photography and television by Apollo 15 and 16 missions, covering a hand-held Hasselblad camera for black and white panoramic views at locations visited by the astronauts, a special stereoscopic camera designed by astronomer Tom Gold, a 16-mm movie camera used on the Apollo 15 and 16 Rovers, and several TV cameras. Details are given on the far-UV camera/spectrograph of the Apollo 16 mission. An electronographic camera converts UV light to electrons which are ejected by a KBr layer at the focus of an f/1 Schmidt camera and darken photographic films much more efficiently than far-UV. The astronomical activity of the Apollo 16 astronauts on the moon, using this equipment, is discussed.

  20. APOLLO OVER THE MOON A View From Orbit

    E-print Network

    Rathbun, Julie A.

    . The Apollo metric camera system was flown to acquire photographic data with high accuracy to aid the effort, panoramic, and other camera views of the Moon will inspire further interest in Apollo photographs. Through#12;s Near ride #12;APOLLO OVER THE MOON A View From Orbit #12;#12;NASA SP-362 APOLLO OVER THE MOO

  1. Apollo experience report: Mission planning for Apollo entry

    NASA Technical Reports Server (NTRS)

    Graves, C. A.; Harpold, J. C.

    1972-01-01

    The problems encountered and the experience gained in the entry mission plans, flight software, trajectory-monitoring procedures, and backup trajectory-control techniques of the Apollo Program should provide a foundation upon which future spacecraft programs can be developed. Descriptions of these entry activities are presented. Also, to provide additional background information needed for discussion of the Apollo entry experience, descriptions of the entry targeting for the Apollo 11 mission and the postflight analysis of the Apollo 10 mission are presented.

  2. Moon manned mission scenarios

    Microsoft Academic Search

    G. de Angelis; R. K. Tripathi; J. W. Wilson; M. S. Clowdsley; J. E. Nealy; F. F. Badavi

    2004-01-01

    An analysis is performed on the radiation environment found around and on the surface of the Moon, and applied to different possible lunar mission scenarios. An optimization technique has been used to obtain mission scenarios minimizing the astronaut radiation exposure and at the same time controlling the effect of shielding, in terms of mass addition and material choice, as a

  3. Managing the Moon Program: Lessons Learned from Project Apollo

    NASA Technical Reports Server (NTRS)

    1999-01-01

    There have been many detailed historical studies of the process of deciding on and executing the Apollo lunar landing during the 1960s and early 1970s. From the announcement of President John F Kennedy on May 25, 1961, of his decision to land an American on the Moon by the end of the decade, through the first lunar landing on July 20, 1969, on to the last of six successful Moon landings with Apollo 17 in December 1972, NASA carried out Project Apollo with enthusiasm and aplomb. While there have been many studies recounting the history of Apollo, at the time of the 30th anniversary of the first lunar landing by Apollo 11, it seems appropriate to revisit the process of large-scale technological management as it related to the lunar mission. Consequently, the NASA History Office has chosen to publish this monograph containing the recollections of key partcipants in the management process. The collective oral history presented here was recorded in 1989 at the Johnson Space Center's Gilruth Recreation Center in Houston, Texas. It includes the recollections of key participants in Apollo's administration, addressing issues such as communication between field centers, the prioritization of technological goals, and the delegation of responsibility. The following people participated: George E. Muller, Owen W. Morris, Maxime A. Faget, Robert R. Gilruth, Christopher C. Kraft, and Howard W. (Bill) Tindall. The valuable perspectives of these individuals deepen and expand our understanding of this important historical event. This is the 14th in a series of special studies prepared by the NASA History Office. The Monographs in Aerospace History series is designed to provide a wide variety of investigations relative to the history of aeronautics and space. These publications are intended to be tightly focused in terms of subject, relatively short in length, and reproduced in an inexpensive format to allow timely and broad dissemination to researchers in aerospace history.

  4. Apollo scientific exploration of the moon

    NASA Technical Reports Server (NTRS)

    Compton, W. D.

    1987-01-01

    The fundamental dichotomy of space exploration, unmanned versus manned projects, is discussed from an historical perspective. The integration of science into Apollo operations is examined with attention given to landing sites, extending the missions, and crew selection. A Science Working Group composed of scientists and Manned Spacecraft Center flight planners was formed in an attempt to produce the most scientific information possible within those operational limits that were considered absolutely inviolable.

  5. The Moon 35 years after Apollo: What's left to learn?

    Microsoft Academic Search

    Clive R. Neal

    2009-01-01

    With the cancellation of the Apollo program after Apollo 17 returned from the Moon in 1972, the focus of NASA switched to other areas of the Solar System. Study of the Moon did continue through analysis of the returned samples and remotely sensed data sets (both orbital and surface), as well as through Earth-based telescopic studies. In the 1990s, new

  6. Apollo Soyuz Mission: 5-Day Report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Apollo Soyuz Test Project mission objectives and technical investigations are summarized. Topics discussed include: spacecraft and crew systems performance; joint flight activities; scientific and applications experiments; in-flight demonstrations; biomedical considerations; and mission support performance.

  7. MoonNEXT: A European Mission to the Moon

    NASA Astrophysics Data System (ADS)

    Carpenter, J. D.; Koschny, D.; Crawford, I.; Falcke, H.; Kempf, S.; Lognonne, P.; Ricci, C.; Houdou, B.; Pradier, A.

    2008-09-01

    MoonNEXT is a mission currently being studied, under the direction of the European Space Agency, whose launch is foreseen between 2015 and 2018. MoonNEXT is intended to prepare the way for future exploration activities on the Moon, while addressing key science questions. Exploration Objectives The primary goal for the MoonNEXT mission is to demonstrate autonomous soft precision landing with hazard avoidance; a key capability for future exploration missions. The nominal landing site is at the South Pole of the Moon, at the edge of the Aitken basin and in the region of Shackleton crater, which has been identified as an optimal location for a future human outpost by the NASA lunar architecture team [1]. This landing site selection ensures a valuable contribution by MoonNEXT to the Global Exploration Strategy [2]. MoonNEXT will also prepare for future lunar exploration activities by characterising the environment at the lunar surface. The potentially hazardous radiation environment will me monitored while a dedicated instrument package will investigate the levitation and mobility of lunar dust. Experience on Apollo demonstrated the potentially hazardous effects of dust for surface operations and human activities and so an understanding of these processes is important for the future. Life sciences investigations will be carried out into the effects of the lunar environment (including radiation, gravity and illumination conditions) on a man made ecosystem analogous to future life support systems. In doing so MoonNEXT will demonstrate the first extraterrestrial man made ecosystem and develop valuable expertise for future missions. Geological and geochemical investigations will explore the possibilities for In Situ Resource Utilisation (ISRU), which will be essential for long term human habitation on the Moon and is of particular importance at the proposed landing site, given its potential as a future habitat location. Science Objectives In addition to providing extensive preparation and technology demonstration for future exploration activities MoonNEXT will advance our understanding of the origin, structure and evolution of the Moon. These advances in understanding will come about through a range of geophysical and geochemical investigations. MoonNEXT will also assess the value of the lunar surface as a future site for performing science from the Moon, using radio astronomy as an example. The scientific objectives are: • To study the geophysics of the Moon, in particular the origin, differentiation, internal structure and early geological evolution of the Moon. • To obtain in-situ geochemical data from, within the Aitken Basin, where material from the lower crust and possibly the upper mantle may be found. • To investigate the nature of volatiles implanted into the lunar regolith at the South Pole and identify their species. • To study the environment at the lunar South pole, in particular to measure the radiation environment, the dust flux due to impact ejecta and micrometeoroids, and a possibly the magnetic field. • To study the effect of the lunar environment on biological systems. • To further our understanding of the ULF/VLF background radiation of the universe. • Investigate the electromagnetic environment of the moon at radio wavelengths with the potential to perform astronomical radio observations. Various mission scenarios are currently under study, incorporating options for a lander-only configuration or a lander with the possible addition of a rover. The working experimental payload includes cameras, broad band and short period seismometers, a radiation monitor, instruments to measure dust transport and micrometeoroid fluxes, instruments to provide elemental and mineralogical analyses of surface rocks, a mole for subsurface heat flow and regolith properties measurements, a radio antenna and a package containing a self sustaining biological system to observe the effects of the lunar environment. The addition of a rover, if shown to be feasible, would provide mobility for geochemical measurements, which

  8. Apollo experience report: Guidance and control systems. Mission control programmer for unmanned missions AS-202, Apollo 4, and Apollo 6

    NASA Technical Reports Server (NTRS)

    Holloway, G. F.

    1975-01-01

    An unmanned test flight program required to evaluate the command module heat shield and the structural integrity of the command and service module/Saturn launch vehicle is described. The mission control programer was developed to provide the unmanned interface between the guidance and navigation computer and the other spacecraft systems for mission event sequencing and real-time ground control during missions AS-202, Apollo 4, and Apollo 6. The development of this unmanned programer is traced from the initial concept through the flight test phase. Detailed discussions of hardware development problems are given with the resulting solutions. The mission control programer functioned correctly without any flight anomalies for all missions. The Apollo 4 mission control programer was reused for the Apollo 6 flight, thus being one of the first subsystems to be reflown on an Apollo space flight.

  9. Robotic missions for the moon

    NASA Technical Reports Server (NTRS)

    Bourke, R. D.; Burke, J. D.

    1990-01-01

    In the course of the exploration and settlement of the moon, robotic missions will precede and accompany humans. These robotic missions are defined respectively as precursors and adjuncts. Their contribution is twofold: to generate information about the lunar environment (and system performance in that environment), and to emplace elements of infrastructure for subsequent use. This paper describes information that may be gathered by robotic missions and infrastructure elements that may be deployed by them during an early lunar program phase.

  10. Apollo 16 view of moon taken with Fairchild metric mapping camera in orbit

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A newly-analyzed photograph of the southwest quadrant of the Moon with an overlay indicating where the launch vehicle stages from two Apollo missions, 13 and 14, hit the lunar surface. This is the first time two S-IVB stage impact points have been located in a single photo. The S-IVB stage is the thrid stage of the Saturn V launch vehicle. The Riphaeus Mountains run northward between the two impact points. The fresh, raised-rim crater at center left is Euclides; and the largest crater near the horizon at upper left is Landberg. The mare area at lower right is the Known Sea. The photograph was taken by the Apollo 16 Fairchild metric mapping camera in lunar orbit, at a 40-degree north oblique angle. The picture was taken during the Apollo 16 Command/Service Module's 59th revolution of the Moon, at an altitude of 124 kilometers. The Sun elevation was 18 degrees.

  11. How the Apollo Program Changed the Geology of the Moon

    ERIC Educational Resources Information Center

    Smith, J. V.; Steele, I. M.

    1973-01-01

    Evaluates the effect of the Apollo program on the geology of the Moon to determine further study problems. Concludes that the National Aeronautics and Space Administration can provide excellent justification for its extension since human beings have the possibility of using the rocks in ways not currently conceived. (CC)

  12. Apollo 17 mission 5-day report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A five day report of the Apollo 17 mission is presented. The subjects discussed are: (1) sequence of events, (2) extravehicular activities, (3) first, second, and third lunar surface extravehicular activity, (4) transearth extravehicular activity, (5) lunar surface experiments conducted, (6) orbital science activities, (7) spacecraft reentry and recovery.

  13. Moon geophysics and Lunar environemental monitoring: Apollo data reprocessing and perspectives with the MoonTwin project.

    NASA Astrophysics Data System (ADS)

    Lognonné, P.; Regnier, P.; Apollo Team

    2007-12-01

    The formation of the Moon is probably results from a large impact between a Mars-sized planet and the Earth. The size of the Moon's core, the thickness of the crust and the structure of the lunar mantle are among the few parameters able to constrain this impact, along with the depth and vigor of the magma ocean that appeared on the young moon, after re-accretion around Earth's orbit. These parameters are therefore crucial to understand how our planet was affected by the impact, from both the energetic and volatile budget point of view, and how a body like the moon evolves. The reprocessing of the data recorded by the 4 ALSEP stations (Apollo 12, 14, 15 and 16), which were the first and, to date, the only successful geophysical stations in Planetary sciences, have shed new light on the interior of the Moon and in the determination of the parameters listed above. Very large uncertainties however remain. A first example is in the crustal thickness. The seismic crustal thickness estimates vary from 58 km to 30±5 km near the Apollo 12 landing site. When the lateral variations are taken into account, a mean crustal thickness beneath the Apollo stations of 34±5 km is found. Comparable uncertainties are found in the deep structure of the Moon, which is not directly constrained by seismology. Interior structure models obtained from joint inversion of the density, moment of inertia, Love number (k2) and using the seismic data apriori for the upper mantle and middle mantle show that a wide range of acceptable core models with 1%-2% lunar mass fit the data.These two extreme examples of lunar interior structure show that large uncertainties remain. Most are related to the lack of goo geophysical data. The Apollo seismometers had limited performance, especially in terms of frequency bandwidth and limited coverage of th network. Only two heat flow measurements were made by Apollo and all geodetic beacons are close to the equator; Other are related to the large lateral variations, already detected in the crustal thickness, and probably also existing in the lunar mantle. Consequently,most of the geophysical methods developed during the last two decades (e.g. long period body waves inversions, free oscillations inversions, receiver function analysis, etc) cannot be used on the Moo data. The deployment of a new network of geophysical stations on the Moon is therefore the aim of several projects in USA and Europe. We focus here on the MoonTwin project. The goal of the MoonTwin is to deploy 2 landers on the Moon, including one near the south pole, and is proposed as the NEXT mission of the ESA AURORA program. These landers will first perform severa technology demonstrations necessary to future MSR missions including a precision soft landing. After landing, science of the Moon and from the Moon will be performed.In addition to the geophysical objectives described above, which can be accomplished by seismometry, geodetic, heat flow measurements and magnetometry, other objectives more related to exploration and Science on the Moon will be covered: the first one will be to better understand and monitor the potential hazard lunar seismic events pose to a permanent habitat on the Moon, the rate of micrometeoroides impacts and the level of radiation. The second one will be to perform a first pilot experiment of radio-astronomy on the Moon, by using the benefit of the polar station, which will be regularly in occultation from the Earth radio-astronomical noise.

  14. Moon Exploration from "apollo" Magnetic and Gravity Field Data

    NASA Astrophysics Data System (ADS)

    Kharitonov, Andrey

    Recently, the great value is given to various researches of the Moon, as nearest nature satellite of the Earth, because there is preparation for forthcoming starts on the Moon of the American, European, Russian, Chinese, Indian new Orbiters and Landers. Designing of International Lu-nar bases is planned also. Therefore, in the near future the series of the questions connected with placing of International Lunar bases which coordinates substantially should to be connected with heterogeneity of the internal structure of the Moon can become especially interesting. If in the Moon it will be possible to find large congestions of water ice and those chemical elements which stocks in the Earth are limited this area of the Moon can become perspective for Inter-national Lunar bases. To solve a question of research of the deep structure of the Moon in the locations of International Lunar bases, competently, without excessive expenses for start new various under the form of the Lunar orbit of automatic space vehicles (polar, equatorial, inclined to the rotation axis) and their altitude of flight, which also not always were connected with investigation programs of measured fields (video observation, radio-frequency sounding, mag-netic, gravity), is possible if already from the available information of space vehicles APOLLO, SMART1, KAGUYA, LCROSS, LRO, CHANDRAYAAN-1, CHANG'E-1 it will be possible to analyse simultaneously some various fields, at different altitudes of measuring over the surface (20-300 km) of the Moon. The experimental data of the radial component magnetic field and gravity field the Moon measured at different altitudes, in its equatorial part have been analysed for the research of the deep structure of the Moon. This data has been received as a result of start of space vehicles -APOLLO-15 and APOLLO-16 (USA), and also the Russian space vehicles "LUNOHOD". Authors had been used the data of a magnetic field of the Moon at flight altitude 160, 100, 75, 30, 0 km. All orbits of APOLLO-15 space vehicle at flight altitude from 160 to 75 km have been executed near to Moon equator, in the latitude direction round the Moon, in a strip in width about 250 km, in the range from 15 degrees of the northern latitude to 15 degrees of the southern latitude. For calculations of deep parameters according to the Moon magnetic field as much as possible high flight altitude (h=160 km), average flight altitude (h=100 km), the minimum flight altitude (h=75 km) APOLLO-15 space vehicle have been used. The data about the Moon magnetic field at 30 km flight altitude has been pre-sented by one pass APOLLO-16. The depths of several magnetic and density borders into the Moon which allow to make some assumptions of possible structure of rocks of the Moon were defined. The activity is executed at support of Russian Foundation of Basic Researh, grant 10-05-00343-a.

  15. Optical, properties of Apollo 11 moon samples

    Microsoft Academic Search

    B. O'Leary; Frank Briggs

    1970-01-01

    Lunar powder samples returned by Apollo 11 are remarkably similar in their optical properties to those measured for an area of several square kilometers surrounding Tran- quillity base, suggesting a ubiquitous covering of the same material in the region. However, there are minor exceptions to the close match: the powder sample shows large polarizations and a larger opposition effect than

  16. In This Decade, Mission to the Moon.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The development and accomplishments of the National Aeronautics and Space Administration (NASA) from its inception in 1958 to the final preparations for the Apollo 11 mission in 1969 are traced in this brochure. A brief account of the successes of projects Mercury, Gemini, and Apollo is presented and many color photographs and drawings of the…

  17. Review of measurements of dust movements on the Moon during Apollo

    NASA Astrophysics Data System (ADS)

    O'Brien, Brian J.

    2011-11-01

    This is the first review of 3 Apollo experiments, which made the only direct measurements of dust on the lunar surface: (i) minimalist matchbox-sized 270 g Dust Detector Experiments (DDEs) of Apollo 11, 12, 14 and 15, produced 30 million Lunar Day measurements 21 July 1969-30 September, 1977; (ii) Thermal Degradation Samples (TDS) of Apollo 14, sprinkled with dust, photographed, taken back to Earth into quarantine and lost; and (iii) the 7.5 kg Lunar Ejecta and Meteoroids (LEAM) experiment of Apollo 17, whose original tapes and plots are lost. LEAM, designed to measure rare impacts of cosmic dust, registered scores of events each lunation most frequently around sunrise and sunset. LEAM data are accepted as caused by heavily-charged particles of lunar dust at speeds of <100 m/s, stimulating theoretical models of transporting lunar dust and adding significant motivation for returning to the Moon. New analyses here show some raw data are sporadic bursts of 1, 2, 3 or more events within time bubbles smaller than 0.6 s, not predicted by theoretical dust models but consistent with noise bits caused by electromagnetic interference (EMI) from switching of large currents in the Apollo 17 Lunar Surface Experiment Package (ALSEP), as occurred in pre-flight LEAM-acceptance tests. On the Moon switching is most common around sunrise and sunset in a dozen heavy-duty heaters essential for operational survival during 350 h of lunar night temperatures of minus 170 °C. Another four otherwise unexplained features of LEAM data are consistent with the "noise bits" hypothesis. Discoveries with DDE and TDS reported in 1970 and 1971, though overlooked, and extensive DDE discoveries in 2009 revealed strengths of adhesive and cohesive forces of lunar dust. Rocket exhaust gases during Lunar Module (LM) ascent caused dust and debris to (i) contaminate instruments 17 m distant (Apollo 11) as expected, and (ii) unexpectedly cleanse Apollo hardware 130 m (Apollo 12) and 180 m (Apollo 14) from LM. TDS photos uniquely document in situ cohesion of dust particles and their adhesion to 12 different test surfaces. This review finds the entire TDS experiment was contaminated, being inside the aura of outgassing from astronaut Alan Shepard's spacesuit, and applies an unprecedented caveat to all TDS discoveries. Published and further analyses of Apollo DDE, TDS and LEAM measurements can provide evidence-based guidance to theoretical analyses and to management and mitigation of major problems from sticky dust, and thus help optimise future lunar and asteroid missions, manned and robotic.

  18. 20LRO Sees Apollo 11 on the Moon! The LRO satellite recently imaged the Apollo 11 landing area on the surface of

    E-print Network

    20LRO Sees Apollo 11 on the Moon! The LRO satellite recently imaged the Apollo 11 landing area meters long (1/4 the Apollo 11 module) and there are no such shadows in the image, other than the Apollo, which is why it was selected by Apollo-11 astronauts for a landing site. Space Math http

  19. Apollo and the geology of the moon /Twenty-eighth William Smith Lecture/

    NASA Technical Reports Server (NTRS)

    Schmitt, H. H.

    1975-01-01

    Lunar geology evidence is examined for clues to the origin and evolution of the moon and earth. Seven evolutionary episodes, the last covering three billion years to the present day, are constructed for the moon. Parallel episodes in the earth's evolution are masked by the dynamic continuing evolution of the earth over a 4.5 billion year span, in contrast to the moon's quiescence and inability to retain fluids. Comparisons are drawn between the geochemistry and tectonics of the lunar basaltic maria and the earth's ocean basins. Lunar maria rocks differ strikingly in chemical composition from meteoritic matter and solar material. Inundation of frontside lunar maria basins by vast oceans of dark basalt mark the last of the major internally generated evolutionary episodes, and is attributed to consequences of meltdown of the lunar mantle and crust by radioisotope decay from below. Data are drawn primarily from Apollo missions 11-17, supplemented by other sources.

  20. Celebrate Apollo: Exploring the Moon, Discovering Earth We came all this way to explore the moon, and the most important thing is that we

    E-print Network

    Celebrate Apollo: Exploring the Moon, Discovering Earth We came all this way to explore the moon, and the most important thing is that we discovered the Earth. -- William Anders, Apollo 8 Astronaut The Apollo Program afforded the world the first views of our fragile planet. It was during the Apollo Program

  1. Moon manned missions radiation safety analysis

    Microsoft Academic Search

    R. K. Tripathi; J. W. Wilson; G. de Anlelis; F. F. Badavi

    2004-01-01

    An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to obtain mission scenarios minimizing the astronaut radiation exposure and at the same time controlling the effect of shielding, in terms of mass addition and material choice, as a mission

  2. Launch of the Apollo 17 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The 363-feet tall Apollo 17 (Spacecraft 114/Lunar Module 12/Saturn 512) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center, Florida, at 12:33 a.m., December 17, 1972. Apollo 17, the final lunar landing mission, was the first nighttime liftoff of the Saturn V launch vehicle. Flame from the five F-1 engines of the Apollo/Saturn first (S-1C) stage illuminates the nighttime scene.

  3. CATALOG O F APOLLO LUNAR SURFACE GEOLOGICAL SAMPLIHG

    E-print Network

    Rathbun, Julie A.

    CATALOG O F APOLLO LUNAR SURFACE GEOLOGICAL SAMPLIHG TOOLS AND CONTAINERS Ju$ith Haley Allton carriers D. Containersused to package rocks, soils and other samples on the moon Apollo Lunar Sample AND CONTAINERSWITHWEIGHT SUMMARIESFOR EACH APOLLO MISSION Apollo 11 Apollo 12 Apollo 14 #12;Inventory of tools

  4. Endocrine, electrolyte, and fluid volume changes associated with Apollo missions

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Alexander, W. C.; Johnson, P. C.

    1975-01-01

    The endocrine and metabolic results obtained before and after the Apollo missions and the results of the limited in-flight sampling are summarized and discussed. The studies were designed to evaluate the biochemical changes in the returning Apollo crewmembers, and the areas studied included balance of fluids and electrolytes, regulation of calcium metabolism, adaptation to the environment, and regulation of metabolic processes.

  5. Moon and Mars Analog Mission Activities for Mauna Kea 2012

    NASA Astrophysics Data System (ADS)

    Graham, L. D.; Morris, R. V.; Graff, T. G.; Yingst, R. A.; ten Kate, I. L.; Glavin, D. P.; Hedlund, M.; Malespin, C. A.; Mumm, E.

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were recently completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Initial science operations were planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred as the analog mission progressed. We report here on the preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering and science trades and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as “ Apollo Valley.”

  6. Plans and objectives of the remaining Apollo missions.

    NASA Technical Reports Server (NTRS)

    Scherer, L. R.

    1972-01-01

    The three remaining Apollo missions will have significantly increased scientific capabilities. These result from increased payload, more time on the surface, improved range, and more sophisticated experiments on the surface and in orbit. Landing sites for the last three missions will be carefully selected to maximize the total scientific return.

  7. Apollo 12 Glass Spherule Ages and the Meteoroid Bombardment History of the Moon

    Microsoft Academic Search

    J. Levine; T. A. Becker; R. A. Muller; P. R. Renne

    2004-01-01

    With 5 g of soil collected by the Apollo 12 astronauts, we are continuing our study of the meteoroid bombardment history of the Moon and the inner solar system. The Moon, by virtue of its lack of water and air, preserves evidence of ancient meteoroid impacts that would quickly be eroded away or otherwise obscured on Earth. We use the

  8. 19The Mass of the Moon On July 19, 1969 the Apollo-11

    E-print Network

    19The Mass of the Moon On July 19, 1969 the Apollo-11 Command Service Module and LEM entered lunar orbit. The orbit period was 2.0 hours, at a distance of 1,737 km from the lunar center. Believe it or not, you can use these two pieces of information to determine the mass of the moon. Here's how it

  9. Apollo 16 Launch

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The sixth marned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 continued the broad-scale geological, geochemical, and geophysical mapping of the Moon's crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph. It photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle was also used. The mission ended on April 27, 1972.

  10. Apollo 14 mission food preparation unit leakage

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A bubble of water collected on the delivery probe of the food preparation unit after hot water was dispensed by the Apollo 14 crew. Postflight tests showed that dimensional interference between the cylinder and the piston at hot water temperatures produced the apparent leak by causing erratic and slow stroke time of the valve assembly.

  11. Apollo 15 impact melts, the age of Imbrium, and the Earth-Moon impact cataclysm

    NASA Technical Reports Server (NTRS)

    Ryder, Graham; Dalrymple, G. Brent

    1992-01-01

    The early impact history of the lunar surface is of critical importance in understanding the evolution of both the primitive Moon and the Earth, as well as the corresponding populations of planetesimals in Earth-crossing orbits. Two endmember hypotheses call for greatly dissimilar impact dynamics. One is a heavy continuous (declining) bombardment from about 4.5 Ga to 3.85 Ga. The other is that an intense but brief bombardment at about 3.85 +/- Ga was responsible for producing the visible lunar landforms and for the common 3.8-3.9 Ga ages of highland rocks. The Apennine Front, the main topographic ring of the Imbrium Basin, was sampled on the Apollo 15 mission. The Apollo 15 impact melts show a diversity of chemical compositions, indicating their origin in at least several different impact events. The few attempts at dating them have generally not produced convincing ages, despite their importance. Thus, we chose to investigate the ages of melt rock samples from the Apennine Front, because of their stratigraphic importance yet lack of previous age definition.

  12. Lunar interior as seen by seismology: from Apollo to future missions

    NASA Astrophysics Data System (ADS)

    Lognonne, Philippe; Kobayashi, Naoki; Garcia, Raphael; Weber, Renee; Johnson, Catherine; Gagnepain-Beyneix, Jeannine

    2012-07-01

    About 40 years ago, the Apollo missions deployed a network of 4 passive seismometers on the Moon, at landing sites 12, 14, 15 and 16. A seismometer was also deployed on Apollo 11 and a gravimeter on Apollo 17 landing sites. Although this network stopped its operation in 1977, the analysis of the data is surprisingly still ongoing and has led to the determination of major radial features in the lunar interior, including the recent discovery of core phases in 2011 by Weber et al and Garcia et all, 2011. We review in this presentation the general results of these seismic analyses, from the subsurface near the landing sites to the core. Special focus is given to the crustal structure, both in term of thickness and lateral variation and to the core structure, in term of radius, core state, temperature and composition. We also discuss the existence of possible discontinuities in the mantle, proposed by some early seismic models but challenged by others and interpreted as the possible limit of an early magma ocean. We finally present the perspectives of future missions, first with the SELENE2 mission, which is expected to deploy a new generation of very broad band seismometer followed by other projects proposed either in Europe or the USA. By using the expected sensitivity of the seismometers considered for these mission, we conclude by presenting the potential challenges, science objectives and discoveries of this future step in the seismic exploration of our satellite.

  13. Apollo 15 mission main parachute failure

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The failure of one of the three main parachutes of the Apollo 15 spacecraft was investigated by studying malfunctions in the forward heat shield, broken riser, and firing the fuel expelled from the command module reaction control system. It is concluded that the most probable cause was the burning of raw fuel being expelled during the latter portion of depletion firing. Recommended corrective actions are included.

  14. NASA's Lunar Polar Ice Prospector, RESOLVE: Mission Rehearsal in Apollo Valley

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Picard, Martin; Quinn, Jacqueline; Sanders, Gerald B.; Colaprete, Anthony; Elphic, Richard C.

    2012-01-01

    After the completion of the Apollo Program, space agencies didn't visit the moon for many years. But then in the 90's, the Clementine and Lunar Prospector missions returned and showed evidence of water ice at the poles. Then in 2009 the Lunar Crater Observation and Sensing Satellite indisputably showed that the Cabeus crater contained water ice and other useful volatiles. Furthermore, instruments aboard the Lunar Reconnaissance Orbiter (LRO) show evidence that the water ice may also be present in areas that receive several days of continuous sunlight each month. However, before we can factor this resource into our mission designs, we must understand the distribution and quantity of ice or other volatiles at the poles and whether it can be reasonably harvested for use as propellant or mission consumables. NASA, in partnership with the Canadian Space Agency (CSA), has been developing a payload to answer these questions. The payload is named RESOLVE. RESOLVE is on a development path that will deliver a tested flight design by the end of 2014. The team has developed a Design Reference Mission using LRO data that has RESOLVE landing near Cabeus Crater in May of2016. One of the toughest obstacles for RESOLVE's solar powered mission is its tight timeline. RESOLVE must be able to complete its objectives in the 5-7 days of available sunlight. The RESOLVE team must be able to work around obstacles to the mission timeline in real time. They can't afford to take a day off to replan as other planetary missions have done. To insure that this mission can be executed as planned, a prototype version of RESOLVE was developed this year and tested at a lunar analog site on Hawaii, known as Apollo Valley, which was once used to train the Apollo astronauts. The RESOLVE team planned the mission with the same type of orbital imagery that would be available from LRO. The simulation team prepositioned a Lander in Apollo Valley with RESOLVE on top mounted on its CSA rover. Then the mission simulation began as the operations team's consoles came alive with data and images. They executed the mission just like the real mission with lunar communications delays and limited bandwidth and a realistic remote mission control room. This paper will describe the RESOLVE payload in detail and describe the results of the mission simulation in Hawaii.

  15. SELENE: The Moon-Orbiting Observatory Mission

    Microsoft Academic Search

    H. Mizutani; M. Kato; S. Sasaki; Y. Iijima; K. Tanaka; Y. Takizawa

    2004-01-01

    The Moon-orbiting SELENE (Selenological and Engineering Explorer) mission is prepared in Japan for lunar science and technology development. The launch target has been changed from 2005 to 2006 because of the launch failure of H2A rocket in 2003. The spacecraft consists of a main orbiting satellite at about 100 km altitude in the polar orbit and two sub-satellites in the

  16. 20LRO Sees Apollo 11 Lander on the Moon! The NASA, Lunar Reconnaissance Orbiter (LRO) satellite recently imaged the

    E-print Network

    Christian, Eric

    was cast by the Lunar Landing Module which is about 3.5 meters tall. Using A) trigonometry, or a B) scaled20LRO Sees Apollo 11 Lander on the Moon! The NASA, Lunar Reconnaissance Orbiter (LRO) satellite recently imaged the Apollo 11 landing area on the surface of the moon. The above (172 pixels wide x 171

  17. Moon manned missions radiation safety analysis

    NASA Astrophysics Data System (ADS)

    Tripathi, R. K.; Wilson, J. W.; de Anlelis, G.; Badavi, F. F.

    An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to obtain mission scenarios minimizing the astronaut radiation exposure and at the same time controlling the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The optimization process has been realized through minimization of mass along all phases of a mission scenario, in terms of time frame (dates, transfer time length and trajectory, radiation environment), equipment (vehicles, in terms of shape, volume, onboard material choice, size and structure), location (if in space, on the surface, inside or outside a certain habitats), crew characteristics (number, gender, age, tasks) and performance required (spacecraft and habitat volumes), radiation exposure annual and career limit constraint (from NCRP 132), and implementation of the ALARA principle (shelter from the occurrence of Solar Particle Events). On the lunar surface the most important contribution to radiation exposure is given by background Galactic Cosmic Rays (GCR) particles, mostly protons, alpha particles, and some heavy ions, and by locally induced particles, mostly neutrons, created by the interaction between GCR and surface material and emerging from below the surface due to backscattering processes. In this environment manned habitats are to host future crews involved in the construction and/or in the utilization of moon based infrastructure. Three different kinds of lunar missions are considered in the analysis, Moon Base Construction Phase, during which astronauts are on the surface just to build an outpost for future resident crews, Moon Base Outpost Phase, during which astronaut crews are resident but continuing exploration and installation activities, and Moon Base Routine Phase, with long-term shifting resident crews. In each scenario various kinds of habitats, from very simple shelters to more complex bases, are considered in full detail (e.g., shape, thickness, materials, etc) with considerations of various shielding strategies. In this first analysis all the shape considered are cylindrical or composed of combination of cylinders. Moreover, a radiation safety analysis of more future possible habitats like lava tubes has been also performed.

  18. MoonRise: A US Robotic Sample-Return Mission to Address Solar System Wide Processes

    NASA Astrophysics Data System (ADS)

    Jolliff, Bradley; Warren, P. H.; Shearer, C. K.; Alkalai, L.; Papanastassiou, D. A.; Huertas, A.; MoonRise Team

    2010-10-01

    The MoonRise lunar sample-return mission is currently funded to perform a Phase A Concept Study as part of NASA's New Frontiers Program. Exploration of the great (d = 2500 km) South Pole-Aitken basin has been assigned high priority in several NRC reports. MoonRise would be the first US robotic sample-return mission from another planetary surface. Key strengths of the MoonRise mission include: 1. Most importantly, MoonRise will sample the SPA basin's interior on the Moon's southern far side, instead of the same small region near the center of the near side as all previous (Apollo and Luna) sampling missions. Science objectives for the SPA sample-return mission fall into three main categories: (1) testing the impact cataclysm hypothesis, with its profound implications for the evolution of the Solar System and for life on the Earth at 3.9 Ga; (2) constraining basin-scale impact processes; and (3) constraining how the Moon's interior varies laterally on a global scale, and with depth on a scale of many tens of kilometers; and thus how the lunar crust formed and evolved. 2. MoonRise will greatly enhance scientific return by using a sieving mechanism to concentrate small rock fragments. As an example, for rocks ? mm in size (minimum dimension) and a target regolith of approximately average grain-size distribution, the acquisition yield will be improved by a factor of 50. 3. MoonRise will obtain a total of at least one kilogram of lunar material, including 100 g of bulk, unsieved soil for comparison with remote sensing data. 4. MoonRise will exploit data from LRO, Kaguya, Chandrayaan-1, and other recent remote-sensing missions, in particular LRO's Narrow Angle Camera (NAC), to ensure a safe landing by avoidance of areas with abundant boulders, potentially hazardous craters, and/or high slopes mapped from high resolution stereo images.

  19. Apollo 17

    NASA Technical Reports Server (NTRS)

    Garrett, David

    1972-01-01

    This is the Press Kit that was given to the various media outlets that were interested in covering the Apollo 17 mission. It includes information about the moon, lunar science, concentrating on the planned mission. The kit includes information about the flight, and the trajectory, planned orbit insertion maneuvers, the extravehicular mission events, a comparison with the Apollo 16, a map of the lunar surface, and the surface activity, information about the Taurus-Littrow landing site, the planned science experiments, the power source for the experiment package and diagrams of some of the instrumentation that was used to perform the experiments.

  20. Apollo 17 petrology and experimental determination of differentiation sequences in model moon compositions

    NASA Technical Reports Server (NTRS)

    Hodges, F. N.; Kushiro, I.

    1974-01-01

    Experimental studies of model moon compositions are discussed, taking into account questions related to the differentiation of the outer layer of the moon. Phase relations for a series of proposed lunar compositions have been determined and a petrographic and electron microprobe study was conducted on four Apollo 17 samples. Two of the samples consist of high-titanium mare basalts, one includes crushed anorthosite and gabbro, and another contains blue-gray breccia.

  1. Chandrayaan-1 mission to the Moon

    NASA Astrophysics Data System (ADS)

    Goswami, Jitendra Nath; Annadurai, Mylswamy

    2008-12-01

    Chandrayaan-1 is the first Indian planetary exploration mission that will perform remote sensing observation of the Moon to further our understanding about its origin and evolution. Hyper-spectral studies in the 0.4- 3?m region using three different imaging spectrometers, coupled with a low energy X-ray spectrometer, a sub-keV atom analyzer, a 3D terrain mapping camera and a laser ranging instrument will provide data on mineralogical and chemical composition and topography of the lunar surface at high spatial resolution. A low energy gamma ray spectrometer and a miniature imaging radar will investigate volatile transport on lunar surface and possible presence of water ice in the polar region. A radiation dose monitor will provide an estimation of energetic particle flux en route to the Moon as well as in lunar orbit. An impact probe carrying a mass spectrometer will also be a part of the spacecraft. The 1 ton class spacecraft will be launched by using a variant of flight proven indigenous Polar Satellite Launch Vehicle (PSLV-XL). The spacecraft will be finally placed in a 100 km circular polar orbit around the Moon with a planned mission life of two years.

  2. Apollo 16 Splashdown

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 16 Command Module splashed down in the Pacific Ocean on April 27, 1972 after an 11-day moon exploration mission. The sixth manned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission Commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 continued the broad-scale geological, geochemical, and geophysical mapping of the Moon's crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used.

  3. Apollo 11 30th Anniversary

    NSDL National Science Digital Library

    On July 20, 1969, humans took their first steps on the moon. The Smithsonian National Air and Space Museum is honoring the 30th Anniversary of the Apollo 11 moon landing through this Website. The site is divided into three main sections: Anniversary Events, Exhibitions, and Apollo Online. The latter is a great source for information on the history and significance of the mission. Also through the Apollo Online link, users may send questions to Apollo 11 astronaut Buzz Aldrin or take an online tour of the landing at Dateline Moon: The Media and the Space Race Website.

  4. MSFC Skylab Apollo Telescope Mount experiment systems mission evaluation

    NASA Technical Reports Server (NTRS)

    White, A. F., Jr.

    1974-01-01

    A detailed evaluation is presented of the Skylab Apollo Telescope Mount experiments performance throughout the eight and one-half month Skylab Mission. Descriptions and the objectives of each instrument are included. The anomalies experienced, the causes, and corrective actions taken are discussed. Conclusions, based on evaluation of the performance of each instrument, are presented. Examples of the scientific data obtained, as well as a discussion of the quality and quantity of the data, are presented.

  5. Apollo

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Test subject sitting at the controls: Project LOLA or Lunar Orbit and Landing Approach was a simulator built at Langley to study problems related to landing on the lunar surface. It was a complex project that cost nearly $2 million dollars. James Hansen wrote: 'This simulator was designed to provide a pilot with a detailed visual encounter with the lunar surface; the machine consisted primarily of a cockpit, a closed-circuit TV system, and four large murals or scale models representing portions of the lunar surface as seen from various altitudes. The pilot in the cockpit moved along a track past these murals which would accustom him to the visual cues for controlling a spacecraft in the vicinity of the moon. Unfortunately, such a simulation--although great fun and quite aesthetic--was not helpful because flight in lunar orbit posed no special problems other than the rendezvous with the LEM, which the device did not simulate. Not long after the end of Apollo, the expensive machine was dismantled.' (p. 379) Ellis J. White further described this simulator in his paper , 'Discussion of Three Typical Langley Research Center Simulation Programs,' (Paper presented at the Eastern Simulation Council (EAI's Princeton Computation Center), Princeton, NJ, October 20, 1966.) 'A typical mission would start with the first cart positioned on model 1 for the translunar approach and orbit establishment. After starting the descent, the second cart is readied on model 2 and, at the proper time, when superposition occurs, the pilot's scene is switched from model 1 to model 2. then cart 1 is moved to and readied on model 3. The procedure continues until an altitude of 150 feet is obtained. The cabin of the LM vehicle has four windows which represent a 45 degree field of view. The projection screens in front of each window represent 65 degrees which allows limited head motion before the edges of the display can be seen. The lunar scene is presented to the pilot by rear projection on the screens with four Schmidt television projectors. The attitude orientation of the vehicle is represented by changing the lunar scene through the portholes determined by the scan pattern of four orthicons. The stars are front projected onto the upper three screens with a four-axis starfield generation (starball) mounted over the cabin and there is a separate starball for the low window.'

  6. Mission description. [major mission events and data collection periods during Apollo 17 lunar exploration

    NASA Technical Reports Server (NTRS)

    Baldwin, R. R.

    1973-01-01

    The accomplishments of the Apollo 17 flight are discussed. The scientific objectives included geological surveying and sampling of materials and surface features in a preselected area of the Taurus-Littrow region, deploying and activating surface experiments, and conducting inflight experiments and photographic tasks during lunar orbit and transearth coast. The individual Apollo 17 experiments and photographic tasks are presented in outline form. Charts are developed to show the major mission events and data collection periods correlated to Greenwich Mean Time and ground elapsed time. Maps of the lunar surface ground track envelope for the Apollo 17 orbiting spacecraft for revolutions one to seventy-five is shown.

  7. Juvenile water in the Moon's interior: new constraints from Apollo 15 lunar volcanic glasses

    NASA Astrophysics Data System (ADS)

    Hauri, E. H.; Saal, A. E.; van Orman, J. A.; Rutherford, M. J.

    2010-12-01

    The presence of magmatic water in lunar volcanic glasses (LVGs) [1] requires a re-evaluation of conventional wisdom that the Moon was thoroughly dehydrated following its formation via giant impact. The LVGs are the most primitive melts erupted on the surface of the Moon, and their post-eruptive degassing and thermal histories are exceedingly simple. The presence of water and chlorine in these magmas indicates the presence of a deep volatile-bearing mantle source within the Moon. New volatile abundance data were obtained for over 200 individual lunar glasses, contained in three samples recovered by the Apollo 15 mission (15426,32; 15426,138 and 15427) with eruption ages of 3.35 to 3.65 Ga; H2O and D/H ratios were measured by SIMS. Yellow-brown volcanic glasses contain the highest concentrations of H2O (up to 70 ppm) which is two times higher than our previous measurements, while green glasses contain smaller amounts of water (4 - 17 ppm H2O). D/H ratios range from +180‰ to +5400‰ and are inversely correlated with water contents. The presence of tritium in lunar samples [2] requires the presence of a cosmogenic component of volatile isotopes from interactions with solar and galactic cosmic rays [3]. After correction for cosmogenic contributions, our data exhibit a systematic negative correlation of ?D with water content. The systematic nature of the data correlation, and the heterogeneous H2O concentrations and D/H data, indicate that hydrogen isotopes were fractionated in these lunar magmas by kinetic degassing during eruption. The average ?D of the five highest-H2O glasses is +340‰ (+180‰/-240‰); this ?D range overlaps the range of carbonaceous chondrites and terrestrial water. Furthermore, it is very likely that the original pre-eruptive ?D value of these lunar magmas was significantly lower, and that kinetic D/H fractionation has resulted in preferential loss of H during magmatic degassing. As a result, we conclude that juvenile magmatic water in the lunar interior has a D/H ratio that is indistinguishable from terrestrial water. This study is the first to identify a planetary body with a hydrogen isotope composition that is the same as the Earth, and imply a common origin for the water contained in the interiors of the Earth and Moon. [1] Saal et al. (2008) Nature 454, 192-195. [2] Bochsler et al. (1971) LPSC v. 2, 1803-1812. [3] Merlivat et al. (1976) LPSC v. 7, 649-658.

  8. The impact history of the Moon: implications of new high-resolution U-Pb analyses of Apollo impact breccias

    NASA Astrophysics Data System (ADS)

    Snape, Joshua F.; Nemchin, Alexander A.; Thiessen, Fiona; Bellucci, Jeremy J.; Whitehouse, Martin J.

    2015-04-01

    Constraining the impact history of the Moon is a key priority, both for lunar science [1] and also for our understanding of how this fundamental geologic processes [2] has affected the evolution of planets in the inner solar system. The Apollo impact breccia samples provide the most direct way of dating impact events on the Moon. Numerous studies have dated samples from the Apollo landing sites by multiple different methods with varying degrees of precision [3]. This has led to an ongoing debates regarding the presence of a period of intense meteoritic bombardment (e.g. [4-8]). In this study we present high precision U-Pb analyses of Ca-phosphates in a variety of Apollo impact breccias. These data allow us to resolve the signatures of multiple different impact events in samples collected by the Apollo 12, 14 and 17 missions. In particular, the potential identification of three significant impact events between the period of ~3915-3940 Ma, is indicative of a high rate of meteorite impacts at this point in lunar history. A more fundamental problem with interpretations of Apollo breccia ages is that the samples originate from the lunar regolith and do not represent samples of actual bedrock exposures. As such, although improvements in analytical precision may allow us to continue identifying new impact signatures, the proposed links between these signatures and particular impact features remain highly speculative. This is a problem that will only be truly addressed with a more focused campaign of lunar exploration. Most importantly, this would include the acquisition of samples from below the lunar regolith, which could be confidently attributed to particular bedrock formations and provide a degree of geologic context that has been largely absent from studies of lunar geology to date. References: [1] National Research Council (2007) The scientific context for exploration of the Moon, National Academies Press. [2] Melosh H. J. (1989) Impact Cratering: A Geologic Process, Oxford University Press. [3] Stöffler D. et al. (2006) Rev. Min. Geochem., 60, 519-596. [4] Tera F. et al. (1974) EPSL, 22, 1-22. [5] Wetherill G. W. (1981) Multi-ring basins: Formation and evolution, 1-18, Pergamon Press. [6] Ryder G. (1990) Am. Geophy. Union, 71, 313-323. [7] Cohen B. A. et al. (2000) Science, 290, 1754-1756. [8] Baldwin R. B. (2006) Icarus, 184, 308-318.

  9. Apollo Lunar Sample Photographs: Digitizing the Moon Rock Collection

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary E.; Todd, Nancy S.; Runco, S. K.; Stefanov, W. L.

    2011-01-01

    The Acquisition and Curation Office at JSC has undertaken a 4-year data restoration project effort for the lunar science community funded by the LASER program (Lunar Advanced Science and Exploration Research) to digitize photographs of the Apollo lunar rock samples and create high resolution digital images. These sample photographs are not easily accessible outside of JSC, and currently exist only on degradable film in the Curation Data Storage Facility

  10. Log of Apollo 11.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The major events of the first manned moon landing mission, Apollo 11, are presented in chronological order from launch time until arrival of the astronauts aboard the U.S.S. Hornet. The log is descriptive, non-technical, and includes numerous color photographs of the astronauts on the moon. (PR)

  11. In Situ Biological Contamination Studies of the Moon: Implications for Planetary Protection and Life Detection Missions

    NASA Astrophysics Data System (ADS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.

    2010-12-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary COSPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  12. Paleocratering of the Moon: Review of post-Apollo data

    Microsoft Academic Search

    William K. Hartmann

    1972-01-01

    As a result of the dating of lunar samples, we are in a position to utilize the lunar surface as a recorder of environmental conditions in the Earth-Moon neighborhood in the past. Plots of crater density vs rock age at different lunar landing sites can be used to date unexplored lunar provinces. These plots also demonstrate evolution in the population

  13. MSFC Flight Mission Directive Apollo-Saturn 205 Mission

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The purpose of this directive is to provide, under one cover, coordinated direction for the AS-205 Space Vehicle Flight. Within this document, mission objectives are specified, vehicle configuration is described and referenced, flight trajectories, data acquisition requirements, instrumentation requirements, and detailed documentation requirements necessary to meet launch vehicle mission objectives are defined and/or referenced.

  14. Artists concept of Apollo 11 Astronaut Neil Armstrong on the moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A Grumman Aircraft Engineering Corporation artist's concept depicting mankind's first walk on another celestianl body. Here, Astronaut Neil Armstrong, Apollo 11 commander, is making his first step onto the surface of the moon. In the background is the Earth, some 240,000 miles away. Armstrong. They are continuing their postflight debriefings. The three astronauts will be released from quarantine on August 11, 1969. Donald K. Slayton (right), MSC Director of Flight Crew Operations; and Lloyd Reeder, training coordinator.

  15. APOLLO 17 : A symbol for the APOLLO program

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 17 : The astonauts intend, as a symbolic gesture, to return a piece of moon-rock to share with countries all around the world. From the film documentary 'APOLLO 17: On the shoulders of Giants'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APPOLO 17 : Sixth and last manned lunar landing mission in the APOLLO series with Eugene A. Cernan, Ronald E.Evans, and Harrison H. (Jack) Schmitt. Landed at Taurus-Littrow on Dec 11.,1972. Deployed camera and experiments; performed EVA with lunar roving vehicle. Returned lunar samples. Mission Duration 301hrs 51min 59sec

  16. KSC Launch Complex 34 during Apollo/Saturn Mission 202 pre-launch alert

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Scene at the Kennedy Space Center's Launch Complex 34 during an Apollo/Saturn Mission 202 pre-launch alert. The mission was a step toward qualifying the Apollo Command and Service modules and the uprated Saturn I launch vehicle for manned flight.

  17. In Situ Biological Contamination Studies of the Moon: Implications for Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.

  18. Estimates of the moon's geometry using lunar orbiter imagery and Apollo laser altimeter data

    NASA Technical Reports Server (NTRS)

    Jones, R. L.

    1973-01-01

    Selenographic coordinates for about 6000 lunar points identified on the Lunar Orbiter photographs are tabulated and have been combined with those lunar radii derived from the Apollo 15 laser altimeter data. These coordinates were used to derive that triaxial ellipsoid which best fits the moon's irregular surface. Fits were obtaind for different constraints on both the axial orientations and the displacement of the center of the ellipsoid. The semiaxes for the unconstrained ellipsoid were a = 1737.6 km, b = 1735.6 km, and c = 1735.0 km which correspond to a mean radius of about 1736.1 km. These axes were found to be nearly parallel to the moon's principal axes of inertia, and the origin was displaced about 2.0 km from the moon's center of gravity in a direction away from the earth and to the south of the lunar equator.

  19. Direct active measurements of movements of lunar dust: Rocket exhausts and natural effects contaminating and cleansing Apollo hardware on the Moon in 1969

    NASA Astrophysics Data System (ADS)

    O'Brien, Brian

    2009-05-01

    Dust is the Number 1 environmental hazard on the Moon, yet its movements and adhesive properties are little understood. Matchbox-sized, 270-gram Dust Detector Experiments (DDEs) measured contrasting effects triggered by rocket exhausts of Lunar Modules (LM) after deployment 17 m and 130 m from Apollo 11 and 12 LMs. Apollo 11 Lunar Seismometer was contaminated, overheated and terminated after 21 days operation. Apollo 12 hardware was splashed with collateral lunar dust during deployment. DDE horizontal solar cell was cleansed of nominally 0.3 mg cm-2 dust by 80% promptly at LM ascent and totally within 7 minutes. A vertical cell facing East was half-cleaned promptly then totally over hundreds of hours. Each cell cooled slightly. For the first time lunar electrostatic adhesive forces on smooth silicon were directly measured by comparison with lunar gravity. Analyses imply this adhesive force weakens as solar angle of incidence decreases. If valid, future lunar astronauts may have greater problems with dust adhesion in the middle half of the day than faced by Apollo missions in early morning. A sunproof shed may provide dust-free working environments on the Moon. Low-cost laboratory tests with DDEs and simulated lunar dust can use DDE benchmark lunar data quickly, optimising theoretical modelling and planning of future lunar expeditions, human and robotic.

  20. Forward Contamination of the Moon and Mars: Implications for Future Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2004-01-01

    NASA and ESA have outlined new visions for solar system exploration that will include a series of lunar robotic missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under COSPAR's current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft. Nonetheless, future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  1. Apollo 16 Launch

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The sixth manned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission Commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 mission continued the broad-scale geological, geochemical, and geophysical mapping of the Moon's crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used. The mission ended on April 27, 1972.

  2. Petrologic constraints on the origin of the Moon: Evidence from Apollo 14

    NASA Technical Reports Server (NTRS)

    Shervais, J. W.; Taylor, L. A.

    1984-01-01

    The Fra Mauro breccias at Apollo 14 contain distinctive suites of mare basalts and highland crustal rocks that contrast significantly with equivalent rocks from other Apollo sites. These contrasts imply lateral heterogeneity of the lunar crust and mantle on a regional scale. This heterogeneity may date back to the earliest stages of lunar accretion and differentiation. Current theories requiring a Moon-wide crust of Ferroan Anorthosite are based largely on samples from Apollo 16, where all but a few samples represent the FAN suite. However, at the nearside sites, FAN is either scarce (A-15) or virtually absent (A-12, A-14, A-17). It is suggested that the compositional variations could be accounted for by the acceleration of a large mass of material (e.g., 0.1 to 0.2 moon masses) late in the crystallization history of the magma ocean. Besides adding fresh, primordial material, this would remelt a large pocket of crust and mantle, thereby allowing a second distillation to occur in the resulting magma sea.

  3. Apollo 15 Logo

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This is the Apollo 15 Moon landing mission logo. Apollo 15 launched from Kennedy Space Center (KSC) on July 26, 1971 via a Saturn Five launch vehicle. Aboard was a crew of three astronauts including David R. Scott, Mission Commander; James B. Irwin, Lunar Module Pilot; and Alfred M. Worden, Command Module Pilot. It was the first mission designed to explore the Moon over longer periods, greater ranges, and with more instruments for the collection of scientific data than on previous missions. The mission included the introduction of a $40,000,000 lunar roving vehicle (LRV) that reached a top speed of 16 kph (10 mph) across the Moon's surface. The successful Apollo 15 lunar landing mission was the first in a series of three advanced missions planned for the Apollo program. The primary scientific objectives were to observe the lunar surface, survey and sample material and surface features in a preselected area of the Hadley-Apennine region, setup and activation of surface experiments and conduct in-flight experiments and photographic tasks from lunar orbit. Apollo 15 televised the first lunar liftoff and recorded a walk in deep space by Alfred Worden. Both the Saturn Five rocket and the LRV were developed at the Marshall Space Flight Center.

  4. Surface electrical properties experiment. [for Taurus-Littrow region of the moon on Apollo 17

    NASA Technical Reports Server (NTRS)

    Simmons, G.

    1974-01-01

    The Surface Electrical Properties Experiment (SEP) was flown to the moon in December 1972 on Apollo 17 and used to explore a portion of the Taurus-Littrow region. SEP used a relatively new technique, termed radio frequency interferometry (RFI). Electromagnetic waves were radiated from two orthogonal, horizontal electric dipole antennas on the surface of the moon at frequencies of 1, 2, 4, 8, 16, and 32 Mhz. The field strength of the EM waves was measured as a function of distance with a receiver mounted on the Lunar Roving Vehicle and using three orthogonal, electrically small, loops. The interference pattern produced by the waves that travelled above the moon's surface and those that travelled below the surface was recorded on magnetic tape. The tape was returned to earth for analysis and interpretation. Several reprints, preprints, and an initial draft of the first publication of the SEP results are included. These documents provide a rather complete account of the details of the theory of the RFI technique, of the terrestrial tests of the technique, and of the present state of our interpretation of the Apollo 17 data.

  5. Mission to the moon and Mars

    NASA Astrophysics Data System (ADS)

    Mark, Hans

    1991-08-01

    A scenario fulfilling the Space Exploration Initiative is described. This proposal involves using the moon as a way station for a manned voyage to Mars as well as a search for water on the moon. Attention is given to the scientific benefits to be gained from such activities and to the vehicles and instruments that may be used.

  6. Electromagnetic sounding of the moon using Apollo 16 and Lunokhod 2 surface magnetometer observations /preliminary results/

    NASA Technical Reports Server (NTRS)

    Vanian, L. L.; Vnutchokova, T. A.; Fainberg, E. B.; Eroschenko, E. A.; Dyal, P.; Parkin, C. W.; Daily, W. D.

    1977-01-01

    A technique of deep electromagnetic sounding of the moon using simultaneous magnetic-field measurements at two lunar surface sites is described. The method, used with the assumption that deep electrical conductivity is a function only of lunar radius, has the advantage of allowing calculation of the external driving field from two surface-site measurements only and therefore does not require data from a lunar orbiting satellite. A transient-response calculation is presented for the example of a magnetic-field discontinuity, measured simultaneously by Apollo 16 and Lunokhod 2 surface magnetometers.

  7. Electromagnetic Sounding of the Moon Using Apollo 16 and Lunokhod 2 Surface Magnetometer Observations (Preliminary Results)

    NASA Technical Reports Server (NTRS)

    Vanyan, L. L.; Vnutchokova, T. A.; Fainberg, E. B.; Eroschenko, E. A.; Dyal, P.; Parkin, C. W.; Parkin, C. W.

    1977-01-01

    A new technique of deep electromagnetic sounding of the Moon using simultaneous magnetic field measurements at two lunar surface sites is described. The method, used with the assumption that deep electrical conductivity is a function only of lunar radius, has the advantage of allowing calculation of the external driving field from two surface site measurements only, and therefore does not require data from a lunar orbiting satellite. A transient response calculation is presented for the example of a magnetic field discontinuity of February 13, 1973, measured simultaneously by Apollo 16 and Lunokhod 2 surface magnetometers.

  8. The Apollo Program and Lunar Science

    ERIC Educational Resources Information Center

    Kuiper, Gerard P.

    1973-01-01

    Discusses the history of the Vanguard project and the findings in Ranger records and Apollo missions, including lunar topography, gravity anomalies, figure, and chemistry. Presented are speculative remarks on the research of the origin of the Moon. (CC)

  9. Robotics and telepresence for moon missions

    NASA Technical Reports Server (NTRS)

    Sallaberger, Christian

    1994-01-01

    An integrated moon program has often been proposed as a logical next step for today's space efforts. In the context of preparing for the possibility of launching a moon program, the European Space Agency is currently conducting an internal study effort which is focusing on the assessment of key technologies. Current thinking has this moon program organized into four phases. Phase 1 will deal with lunar resource exploration. The goal would be to produce a complete chemical inventory of the moon, including oxygen, water, other volatiles, carbon, silicon, and other resources. Phase 2 will establish a permanent robotic presence on the moon via a number of landers and surface rovers. Phase 3 will extend the second phase and concentrate on the use and exploitation of local lunar resources. Phase 4 will be the establishment of a first human outpost. Some preliminary work such as the building of the outpost and the installation of scientific equipment will be done by unmanned systems before a human crew is sent to the moon.

  10. 22LRO Explores the Apollo 12 Landing Area on the Moon NASA's Lunar Reconnaissance Orbiter (LRO) from a lunar orbit of 21 kilometers (13

    E-print Network

    22LRO Explores the Apollo 12 Landing Area on the Moon NASA's Lunar Reconnaissance Orbiter (LRO of the Apollo 12 landing site. Images show the twists and turns of the paths made when the astronauts explored the lunar surface. One of the details that shows up is a bright L-shape in the Apollo 12 image. It marks

  11. Future lunar missions and investigation of dusty plasma processes on the Moon

    NASA Astrophysics Data System (ADS)

    Popel, Sergey I.; Zelenyi, Lev M.; Zelenyi

    2013-08-01

    From the Apollo era of exploration, it was discovered that sunlight was scattered at the terminators giving rise to ``horizon glow'' and ``streamers'' above the lunar surface. Subsequent investigations have shown that the sunlight was most likely scattered by electrostatically charged dust grains originating from the surface. A renaissance is being observed currently in investigations of the Moon. The Luna-Glob and Luna-Resource missions (the latter jointly with India) are being prepared in Russia. Some of these missions will include investigations of lunar dust. Here we discuss the future experimental investigations of lunar dust within the missions of Luna-Glob and Luna-Resource. We consider the dusty plasma system over the lunar surface and determine the maximum height of dust rise. We describe mechanisms of formation of the dusty plasma system over the Moon and its main properties, determine distributions of electrons and dust over the lunar surface, and show a possibility of rising dust particles over the surface of the illuminated part of the Moon in the entire range of lunar latitudes. Finally, we discuss the effect of condensation of micrometeoriod substance during the expansion of the impact plume and show that this effect is important from the viewpoint of explanation of dust particle rise to high altitudes in addition to the dusty plasma effects.

  12. Prime crew of Apollo/Saturn Mission 204 prepares for water egress training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The prime crew of the first manned Apollo space flight, Apollo/Saturn Mission 204, is suited up aboard the NASA Motor Vessel Retriever in preparation for Apolllo water egress training in the Gulf of Mexico. Left to right, are Astronauts Edward H. White II, senior pilot; Virgil I. Grissom, command pilot; and Roger B. Chaffee, pilot.

  13. Backup Crew of the first manned Apollo mission practice water egress

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Backup crew for Apollo/Saturn Mission 204, the first manned Apollo space flight, onboard the NASA Motor Vessel Retriever during water egress training activity in the Gulf of Mexico. Left to right, are Astronauts James A. McDivitt, Russell L. Schwickart, and David R. Scott.

  14. MMSR - a study for a Martian Moon Sample Return mission

    NASA Astrophysics Data System (ADS)

    Michel, P.; Agnolon, D.; Brucato, J.; Gondet, B.; Korablev, O.; Koschny, D.; Schmitz, N.; Willner, K.; Zacharov, A.

    2011-10-01

    We are entering into a new era of space exploration defined by sample return missions. The study of extraterrestrial samples in the laboratory has given us many insights to Solar System formation and evolution, but is hampered by having to rely on the arrival of meteorites - fairly random samples from asteroids, the Moon and Mars. There is now increased interest from the scientific community in the acquisition of samples from specific parent bodies; this is reflected by proposals for an increasing number of sample return missions within Solar System exploration programs. As part of the Mars Robotic Exploration Programme, the European Space Agency ESA is studying a mission to return a sample from one of the Martian Moons, either Phobos or Deimos. Part of the mission goal is to prepare technology needed for a sample return mission from Mars itself; but the mission should also have a strong scientific justification which is described here.

  15. Sedimentology of clastic rocks returned from the moon by Apollo 15.

    NASA Technical Reports Server (NTRS)

    Lindsay, J. F.

    1972-01-01

    A petrographic study of eleven samples of clastic rock returned from the moon by Apollo 15 suggests that two lithologies are present. The distinction between the two lithologies is based on the glass content of the rock matrices and the morphology of the detrital particles. Group I rocks have abundant, glass-rich, porous matrices and glass particles with morphologies comparable to those of glass particles in the lunar soil. The group I rocks were probably formed by welding or sintering of surficial soil deposits by impact-generated base surges of limited extent. Group II rocks have an essentially mineralic matrix and have an abundance of rounded mineral grains. Sample 15455 is the only Apollo 15 sample assigned to this group. In its general textural features, sample 15455 is comparable with the group II rocks from the Fra Mauro Formation at the Apollo 14 site. Textural features such as shock modification and rounding of mineral grains suggest that this sample is the product of a large-scale impact-generated base surge which possibly resulted from the Imbrian event.

  16. 2012 Moon Mars Analog Mission Activities on Mauna Kea, Hawai'i

    NASA Astrophysics Data System (ADS)

    Graham, Lee; Graff, Trevor G.; Aileen Yingst, R.; ten Kate, Inge L.; Russell, Patrick

    2015-05-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Four separate science investigations were integrated in a Martian analog environment with initial science operations planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred during the initial planning sessions and as the analog mission progressed. We review here the overall program of the investigation into the origin of the valley including preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering, and science trades and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as “Apollo Valley”.

  17. THE MOST REDUCED ROCK FROM THE MOON APOLLO 14 BASALT 14053: EXTREME REDUCTION ENTIRELY FROM A RE-HEATING EVENT.

    E-print Network

    Taylor, Lawrence A.

    THE MOST REDUCED ROCK FROM THE MOON ­ APOLLO 14 BASALT 14053: EXTREME REDUCTION ENTIRELY FROM A RE of the rocks were breccias. Only four rocks were believed to be basaltic: a) 14310, and its smaller-sized pair rocks that is addressed herein. Basalt 14053 is a fine-grained, holocrystalline, equigranular hi-Al mare

  18. Organic Analyses of Selected Areas of Surveyor III recovered on the Apollo 12 Mission

    Microsoft Academic Search

    Bernd R. Simoneit; A. L. Burlingame

    1971-01-01

    THE Apollo 12 astronauts recovered the television camera, the trenching scoop and a few smaller items from Surveyor III, which had been on the Moon for 31 months1. They noticed that the white surfaces of the spacecraft had become tan. The television camera remained in the Lunar Receiving Laboratory (LRL) during quarantine period and afterwards preliminary microscopic visual examinations and

  19. APOLLO 14 EVA View

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut Edgar D. Mitchell, lunar module pilot, photographed this sweeping view showing fellow Moon-explorer astronaut Alan B. Shepard Jr., mission commander, and the Apollo 14 Lunar Module (LM). A small cluster of rocks and a few prints made by the lunar overshoes of Mitchell are in the foreground. Mitchell was standing in the boulder field, located just north by northwest of the LM, when he took this picture during the second Apollo 14 extravehicular activity (EVA-2), on February 6, 1971. While astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit, Shepard and Mitchell descended in the LM to explore the Moon.

  20. The Clementine Mission science return at the Moon and Geographos

    NASA Technical Reports Server (NTRS)

    Vorderbruegge, R. W.; Davies, M. E.; Horan, D. M.; Lucey, P. G.; Pieters, C. M.; Mcewen, A. S.; Nozette, S.; Shoemaker, E. M.; Squyres, S. W.; Thomas, P. C.

    1993-01-01

    The Clementine Mission is being built and flown by the Naval Research Laboratory under the sponsorship of the Strategic Defense Initiative Organization of the United States Department of Defense in joint-cooperation with NASA, and will explore the Moon and the near-Earth asteroid (NEA) 1620 Geographos with lightweight sensors developed by the Lawrence Livermore National Laboratory. A NASA Science Team for this mission will be selected by way of a NRA in April 1993. The instrument suite includes imaging cameras that cover a spectral range from the near-ultraviolet to the mid-infrared, a laser ranger, and, potentially, a charged particle telescope. To be launched in early 1994, Clementine will be in lunar orbit from February through May 1994, at which time it will depart the Moon for a flyby of 1620 Geographos in August 1994. This mission represents an outstanding opportunity for scientists interested in the Moon and asteroids. It is anticipated that the data returned from this mission will permit: an assessment of global lunar crustal heterogeneity and a resolution of less than 1 km; an assessment of the lithologic heterogeneity of Geographos at a scale of 100 m or better; and an assessment of surface processes on Geographos on the order of 10 m. The basic mission of Clementine and some of the key scientific questions that will be addressed are described. Additional material on the Clementine mission, its data handling and processing, and its instrument suite is presented elsewhere.

  1. Activity Book. Celebrate Apollo 11.

    ERIC Educational Resources Information Center

    Barchert, Linda; And Others

    1994-01-01

    An activity book helps students learn about the 1969 Apollo 11 mission to the moon as they get a sense of the mission's impact on their lives. The activities enhance understanding of science, math, social studies, and language arts. A teacher's page offers information on books, magazines, computer materials, and special resources. (SM)

  2. Chariots for Apollo: A History of Manned Lunar Spacecraft

    NSDL National Science Digital Library

    Courtney Brooks

    1979-01-01

    This is an electronic version of an historical NASA (National Aeronautics and Space Administration) publication containing information about the history of manned lunar spacecraft up to the Apollo 11 mission which successfully landed on the Moon. This book goes through the beginning of our National Space Policy including issues such as funding, challenges, and planning of the Apollo missions. There are details about contracting for building spacecraft including the command module and lunar module, astronavigation, proposals, adjustments to dates and machinery, problems with certain aspects of the program, and progress throughout the Apollo missions. There is a summary of each mission up through Apollo 11 with the mission launch date, goals, and accomplishments.

  3. Apollo 14 mission report. Supplement 7: Inflight demonstrations

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Experiments performed on board the Apollo 14 are reviewed. These include a liquid transfer demonstration during the transearth coast, electrophoresis separation, a composite casting demonstration, and a heat flow and convection demonstration.

  4. In Situ Biological Contamination Studies of the Moon: Implications for Future Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there yet a planetary protection category for human missions. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  5. Moons

    NSDL National Science Digital Library

    This Topic in Depth features websites about the moons of the planets in our solar system. First, NASA presents its proposed mission to orbit Jupiter's three planet-sized moons: Callisto, Ganymede, and Europa (1). Users can view animations of the proposed orbiter and images of the three moons. The site offers an abundance of information on the technology, mission, fast facts, and news. Next, Cornell University provides the Athena scientist, Thomas J. Wdowiak's kid's column _Tommy Test Tubes_ (2). At this website, he educates children about the two moons of Mars by offering entertaining facts and remarkable images. The third site, provided by the educator Hiram Bertoch, offers introductory materials about the moons of Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto (3). Visitors can also find educational materials about asteroids, comets, and planets. Next, the Fourmilab supplies numerous views of the Earth's Moon's lunar formations (4). The website allows users to pan, zoom in and out, and select images based on coordinates, time, and size. The fifth site presents an article by the Discovery Channel about the latest analyses of the geologic landscapes of Saturn's moon, Titan (5). Users can learn about the differences and similarities between Titan's and Earth's atmosphere, environment, and geologic activity. Next, the NinePlanets.org website furnishes information on the distance, radius, mass, and discoverer of Uranus's numerous moons (6). Through an abundance of images and movies, users can learn many interesting facts about Uranus. The seventh site, developed by EOA Scientific Systems, supplies fascinating facts and images of Neptune and its moons (7). Students can learn how and when each of the eight moons was discovered. Lastly, NASA offers a wonderful tutorial on Pluto and its moon, Charon, for elementary school children (8). Students can discover why Pluto is sometimes called a double planet and where its moon may have originated.

  6. Moon: possible nature of the body that produced the imbrian basin, from the composition of apollo 14 samples.

    PubMed

    Ganapathy, R; Laul, J C; Morgan, J W; Anders, E

    1972-01-01

    Soils from the Apollo 14 site contain nearly three times as much meteoritic material as soils from the Apollo 11, Apollo 12, and Luna 16 sites. Part of this material consists of the ubiquitous micrometeorite component, of primitive (carbonaceous-chondrite-like) composition. The remainder, seen most conspicuously in coarse glass and norite fragments, has a decidedly fractionated composition, with volatile elements less than one-tenth as abundant as siderophiles. This material seems to be debris of the Cyprus-sized planetesimal that produced the Imbrian basin. Compositionally this planetesimal has no exact counterpart among known meteorite classes, though group IVA irons come close. It also resembles the initial composition of the earth as postulated by the two-component model. Apparently the Imbrian planetesimal was an Earth satellite swept up by the moon during tidal recession or capture, or an asteroid deflected by Mars into terrestrial space. PMID:17833980

  7. Is There Water on the Moon? NASA's LCROSS Mission

    NASA Technical Reports Server (NTRS)

    Noneman, Steven

    2007-01-01

    NASA is preparing for its return to the moon with the Lunar CRater Observation and Sensing Satellite (LCROSS) mission. This secondary payload spacecraft will travel with the Lunar Reconnaissance Orbiter (LRO) satellite to the Moon on the same Atlas-V 401 Centaur rocket launched from Cape Canaveral Air Force Station, Florida. The LCROSS mission will robotically seek to determine the presence of water ice at the Moon's South Pole. The 1000kg Secondary Payload budget is efficiently used to provide a highly modular and reconfigurable LCROSS Spacecraft with extensive heritage to accurately guide the expended Centaur into the crater. Upon separation, LCROSS flies through the impact plume, telemetering real-time images and characterizing water ice in the plume with infrared cameras and spectrometers. LCROSS then becomes a 700kg impactor itself, to provide a second opportunity to study the nature of the Lunar Regolith. LCROSS provides a critical ground-truth for Lunar Prospector and LRO neutron and radar maps, making it possible to assess the total lunar water inventory. This presentation contains a reference to video animation of the LCROSS mission that will be covered separately.

  8. LRO Camera Imaging of the Moon: Apollo 17 and other Sites for Ground Truth

    NASA Astrophysics Data System (ADS)

    Jolliff, B. L.; Wiseman, S. M.; Robinson, M. S.; Lawrence, S.; Denevi, B. W.; Bell, J. F.

    2009-12-01

    One of the fundamental goals of the Lunar Reconnaissance Orbiter (LRO) is the determination of mineralogic and compositional distributions and their relation to geologic features on the Moon’s surface. Through a combination of imaging with the LRO narrow-angle cameras and wide-angle camera (NAC, WAC), very fine-scale geologic features are resolved with better than meter-per-pixel resolution (NAC) and correlated to spectral variations mapped with the lower resolution, 7-band WAC (400-m/pix, ultraviolet bands centered at 321 and 360 nm; 100-m/pix, visible bands centered at 415, 566, 604, 643, and 689 nm). Keys to understanding spectral variations in terms of composition, and relationships between compositional variations and surface geology, are ground-truth sites where surface compositions and mineralogy, as well as geology and geologic history, are well known. The Apollo 17 site is especially useful because the site geology includes a range of features from high-Ti mare basalts to Serenitatis-Basin-related massifs containing basin impact-melt breccia and feldspathic highlands materials, and a regional black and orange pyroclastic deposit. Moreover, relative and absolute ages of these features are known. In addition to rock samples, astronauts collected well-documented soil samples at 22 different sample locations across this diverse area. Many of these sample sites can be located in the multispectral data using the co-registered NAC images. Digital elevation data are used to normalize illumination geometry and thus fully exploit the multispectral data and compare derived compositional parameters for different geologic units. Regolith characteristics that are known in detail from the Apollo 17 samples, such as maturity and petrography of mineral, glass, and lithic components, contribute to spectral variations and are considered in the assessment of spectral variability at the landing site. In this work, we focus on variations associated with the ilmenite content (a Ti-rich mineral) of the soils and with known compositional and mineralogic characteristics of different geomorphic units. Results will be compared to those derived from analysis of data from the Clementine UV-VIS camera and from the Hubble Space Telescope.

  9. Apollo experience report: Evolution of the rendezvous-maneuver plan for the lunar-landing missions

    NASA Technical Reports Server (NTRS)

    Alexander, J. D.; Becker, R. W.

    1973-01-01

    The evolution of the nominal rendezvous-maneuver plan for the lunar landing missions is presented along with a summary of the significant development for the lunar module abort and rescue plan. A general discussion of the rendezvous dispersion analysis that was conducted in support of both the nominal and contingency rendezvous planning is included. Emphasis is placed on the technical developments from the early 1960's through the Apollo 15 mission (July to August 1971), but pertinent organizational factors also are discussed briefly. Recommendations for rendezvous planning for future programs relative to Apollo experience also are included.

  10. The Origin of the Moon

    NSDL National Science Digital Library

    Most planetary scientists expected that lunar samples brought to back to Earth by the six Apollo missions would confirm one of three leading hypotheses of the Moon's origin. Instead, the samples left all three explanations unconfirmed, requiring the development of a new hypothesis for how the Moon formed. This video segment shows Apollo 15 astronauts collecting a type of rock (anorthosite) that is thought to represent the original crust of the Moon. This evidence helps explain the origins and relationship between Earth and Moon. The segment is three minutes fifty-seven seconds in length. A background essay and list of discussion questions are also provided.

  11. Moon Express: Lander Capabilities and Initial Payload and Mission

    NASA Astrophysics Data System (ADS)

    Spudis, P.; Richards, R.; Burns, J. O.

    2013-12-01

    Moon Express Inc. is developing a common lander design to support the commercial delivery of a wide variety of possible payloads to the lunar surface. Significant recent progress has been made on lander design and configuration and a straw man mission concept has been designed to return significant new scientific and resource utilization data from the first mission. The Moon Express lander is derived from designs tested at NASA Ames Research Center over the past decade. The MX-1 version is designed to deliver 26 kg of payload to the lunar surface, with no global restrictions on landing site. The MX-2 lander can carry a payload of 400 kg and can deliver an upper stage (designed for missions that require Earth-return, such as sample retrieval) or a robotic rover. The Moon Express lander is powered by a specially designed engine capable of being operated in either monoprop or biprop mode. The concept for the first mission is a visit to a regional pyroclastic deposit on the lunar near side. We have focused on the Rima Bode dark mantle deposits (east of crater Copernicus, around 13 N, 4 W). These deposits are mature, having been exposed to solar wind for at least 3 Ga, and have high Ti content, suggesting high concentrations of implanted hydrogen. Smooth areas near the vent suggest that the ash beds are several tens of meters thick. The projected payload includes an imaging system to document the geological setting of the landing area, an APX instrument to provide major element composition of the regolith and a neutron spectrometer to measure the bulk hydrogen composition of the regolith at the landing site. Additionally, inclusion of a next generation laser retroreflector would markedly improve measurements of lunar librations and thus, constrain the dimensions of both the liquid and solid inner cores of the Moon, as well as provide tests of General Relativity. Conops are simple, with measurements of the surface composition commencing immediately upon landing. APX chemical analysis and neutron measurements would be completed within an hour or so. If any propellant remains after landing and a 'hop' to another site was undertaken, we can repeat these analyses at the second site, adding confidence that we have obtained representative measurements. Thus, the scientific goals of the first Moon Express mission are satisfied early and easily in the mission profile. This mission scenario provides significant scientific accomplishment for very little investment in payload and operations. Although minimally configured, the payload has been chosen to provide the most critical ground truth parameters for mapping hydrogen concentrations across the entire lunar surface. As hydrogen is a key element to the development of the Moon, understanding its occurrences in both non-polar and polar environments is critical. This mission achieves significant new scientific accomplishment as well as taking the first steps towards lunar presence and permanence.

  12. Radish plant exposed to lunar material collected on the Apollo 12 mission

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The leaves of this radish plant were rubbed with lunar material colleted on the Apollo 12 lunar landing mission in experiments conducted in the Manned Spacecraft Center's Lunar Receiving Laboratory. The plant was exposed to the material 30 days before this photograph was made. Evidently no ill effects resulted from contact with the lunar soil.

  13. Geocoronal Lyman ? and Balmer ? Emissions Measured During the Apollo 16 Mission

    Microsoft Academic Search

    R. R. Meier; G. R. Carruthers; T. L. Page; A.-C. Levasseur-Regourd

    1977-01-01

    Observations of the geocoronal Lyman fl emission rate were made with an electrographic camera\\/spectrograph during the Apollo 16 mission. These data along with geocoronal Balmer a airglow measurements obtained simultaneously from the D2A spacecraft are found to agree, to within experimental error, with an optically thick geocoronal hydrogen model.

  14. Geocoronal Lyman beta and Balmer alpha emissions measured during the Apollo 16 mission

    Microsoft Academic Search

    R. R. Meier; G. R. Carruthers; T. L. Page; A.-C. Levasseur-Regourd

    1977-01-01

    Observations of the geocoronal Lyman beta emission rate were made with an electrographic camera\\/spectrograph during the Apollo 16 mission. These data along with geocoronal Balmer alpha airglow measurements obtained simultaneously from the D2A spacecraft are found to agree, to within experimental error, with an optically thick geocoronal hydrogen model.

  15. Modified camera selected for use on Apollo 12 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This modified camera, equipped to transmit color television, has been selected for use on the Apollo 12 lunar landing mission. Here, a Westinghouse engineer adjusts the camera before it is placed in a thermal vacuum chamber at Westinghouse Defense and Space Center in Washington, D.C., where the camera was developed and built.

  16. uring my teens, I watched the Apollo missions live on black-

    E-print Network

    Lockwood, Mike

    D uring my teens, I watched the Apollo missions live on black- and-white TV. That humans were of the Shuttle/ ISS vision. The arguments were about cost-effectiveness and astronaut safety (arguments thrown into new light by the recent safety record of the Shuttle). Now the same debate has arisen in relation

  17. Analogue Missions on Earth, a New Approach to Prepare Future Missions on the Moon

    NASA Astrophysics Data System (ADS)

    Lebeuf, Martin

    Human exploration of the Moon is a target by 2020 with an initial lunar outpost planned in polar regions. Current architectures maintain a capability for sorties to other latitudes for science activities. In the early stages of design of lunar outpost infrastructure and science activity planning, it has been recognized that analogue missions could play a major role in Moon mission design. Analogue missions, as high fidelity simulations of human and robotic surface operations, can help field scientists and engineers develop and test strategies as well as user requirements, as they provide opportunities to groundtruth measurements, and for the team to share understanding of key science needs and key engineering trades. These types of missions also provide direct training in planning science operations, and in team building and communication. The Canadian Space Agency's Exploration Core Program targets the development of technology infrastructure elements in key areas of science, technology and robotics in preparation for its role in the future exploration of the Moon and Mars. Within this Program, Analogue Missions specifically target the operations requirements and lessons learned that will reduce costs and lower the risk of planetary surface missions. Analogue missions are simulations of planetary surface operations that take place at analogue sites on Earth. A terrestrial analogue site resembles in some key way: eg. geomorphologically or geochemically, a surface environment of another planet. An analogue mission can, therefore, be defined as an integrated set of activities that represent (or simulate) entire mission designs or narrowly focus on specific aspects of planned or potential future planetary exploration missions. Within the CSA's Exploration Core Program, Analogue Missions facilitate the maturation of science instruments and mission concepts by integrating ongoing space instrument and technology development programs with science and analogue elements. As well as using analogue missions to meet agency programmatic needs, the Canadian Space Agency encourages scientists and engineers to make use of opportunities presented by analogue missions to further their own research objectives. Specific objectives of Analogue Missions are to (1) foster a multidisciplinary approach to planning, data acquisition, processing and interpretation, calibration of instruments, and telemetry during mission operations; (2) integrate new science with emerging technologies; and (3) develop an expertise on exploration architecture design from projects carried out at terrestrial analogue sites. Within Analogue Missions, teams develop planning tools, use mission-specific software and technology, and communicate results as well as lessons learned during tactical operations. The expertise gained through Analogue Missions will contribute to inform on all aspects of exploration architectures, including planetary mobility requirements and astronaut training.

  18. Saturn 5 launch vehicle flight evaluation report-AS-511 Apollo 16 mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A postflight analysis of the Apollo 16 mission is presented. The basic objective of the flight evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are deet determined, and recommendations are made for corrective actions. Summaries of launch operations and spacecraft performance are included. Significant events for all phases of the flight are provide in tabular form.

  19. Gravity Fields of the Moon Derived from GRAIL mission Data

    NASA Astrophysics Data System (ADS)

    Lemoine, Frank G.; Goossens, Sander; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2014-05-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft conducted the mapping of the gravity field of the Moon from March 1, 2012 to May 29, 2012, for the primary mission and from August 30, 2012 to December 14, 2012 for the extended mission. During both mission phases, the twin spacecraft acquired highly precise Ka-band range-rate (KBRR) intersatellite ranging data and Deep Space Network (DSN) data from altitudes of 3 to 94 km above the lunar surface. During the extended mission, the spacecraft orbits were maintained at a mean altitude of 23 km, compared to 50 km during the primary mission. In addition, from December 7 to December 14, 2012, data were acquired from a mean altitude of 11.5 km. With these data, we have derived solutions in spherical harmonics to degree 900, as well as local solutions over regions of interest such as Orientale. The new gravity solutions show improved correlations with LOLA-derived topography to very high degree and order and resolve many lunar features in the geopotential with a resolution of less than 15 km. We discuss the methods we used for the processing of the GRAIL data, and evaluate these solutions with respect to the derived power spectra, Bouguer anomalies, and fits with independent data (such as from the low-altitude phase of the Lunar Prospector mission). We also evaluate the prospects for development of solutions to degree 1080 with GRAIL data.

  20. APOLLO 17 : Time...Enemy of the Lunar Investigator

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 17 : There's just never enough time to do everything, especially on the moon From the film documentary 'APOLLO 17: On the shoulders of Giants'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APPOLO 17 : Sixth and last manned lunar landing mission in the APOLLO series with Eugene A. Cernan, Ronald E.Evans, and Harrison H. (Jack) Schmitt. Landed at Taurus-Littrow on Dec 11.,1972. Deployed camera and experiments; performed EVA with lunar roving vehicle. Returned lunar samples. Mission Duration 301hrs 51min 59sec

  1. Protolife on the Moon--A Neglected Mission

    NASA Astrophysics Data System (ADS)

    Green, J.

    Fumaroles contain the ingredients for protolife on the earth and on the moon. Early Precambrian lunar fumaroles in shadow probably produced H_2O, HCHO, CO_2, CO, C_2N_2, HC_3N, NH3, COS, CH_4, HCN, S-bearing fluids and other compounds. Fumarolic water could have been more abundant in the early Precambrian on the moon based in part on fugacity data for the Apollo fire fountain beads. Formaldehyde formed "in the spark" on the moon in shadow would not be decomposed. Volcanism by flow charging and/or freezing by charge separation of some fumarolic fluids can readily provide the "spark". Only nanocurrents need be invoked. In shadow on the moon, most fumarolic fluids could be preserved as ices for up to billions of years at 40 Kelvin. Realistically, these ices would be discontinuously interlaminated or admixed with ejecta. Early formed amphiphilic compounds (lipids) probably formed double membraned vesicles. Miller-type reactions could possibly provide hydroxy amino acids, sugars, purines and pyrimidines. Cooling of ammonium cyanide compounds with formaldehyde in lunar shadow is presumed to have created hydrogen cyanide and adenine. Fischer-Tropsch reactions in fumaroles could result in aromatic and basic amino acids and on clay produce ribose. Ribose and adenine react to form adenosine which in turn could combine with soluble polyphosphates found in fumaroles to yield adenosine triphosphate. RNA evolving through intermediate compounds can polymerize even in an ice matrix (Monnard, 2002) as would be expected in lunar shadow. In the laboratory, RNA attached to montmorillonite template particles can be encapsulated within enlarged lipid vesicles or protocells (Hanczyc et al, 2003). Clay associated with RNA enhances the enzymatic activity of RNA (Marco, 1999). On earth, the evolution of the Archaea was dependent on tungsto-enzymes; fumaroles on earth are enriched in tungsten. Fumaroles within a distance of meters, exhibit a wide range of temperatures, pH, Eh, periods of desiccation, condensing agents, clay types, and hydrolytic reactivity. In addition, thermodynamically viable reactions involving hydrogen sulfide and troilite can produce biofilms. If methyl thiols are involved, resulting products include the prebiotic agents of formic and acetic acids. All of these parameters would be enhanced by lunar conditions of (1) lower lunar gravity and (2) surface vacuum. Lower lunar gravity would result in a deeper nucleation of bubbles in a fumarolic system with a slower bubble rise rate enhancing probabilities of reactivities of metabolites. Surface vacuum would result in lower boiling points of prebiotic agents such as formic acid producing temperatures more favorable for the formation of protolife. Assuming volcanism, targets for the search for protolife are discussed.

  2. Jupiter Icy Moons Explorer: mission status after the Definition Phase

    NASA Astrophysics Data System (ADS)

    Titov, Dmitri; Barabash, Stas; Bruzzone, Lorenzo; Dougherty, Michele; Erd, Christian; Fletcher, Leigh; Gare, Philippe; Gladstone, Randall; Grasset, Olivier; Gurvits, Leonid; Hartogh, Paul; Hussmann, Hauke; Iess, Luciano; Jaumann, Ralf; Langevin, Yves; Palumbo, Pasquale; Piccioni, Giuseppe; Sarri, Giuseppe; Wahlund, Jan-Erik; Witasse, Olivier

    2015-04-01

    JUpiter ICy moons Explorer (JUICE), the ESA first large-class mission within the Cosmic Vision Program 2015-2025, was adopted in November 2014. The mission will perform detailed investigations of Jupiter and its system with particular emphasis on Ganymede as a planetary body and potential habitat. The overarching theme for JUICE is: The emergence of habitable worlds around gas giants. At Ganymede, the mission will characterize in detail the ocean layers; provide topographical, geological and compositional mapping of the surface; study the physical properties of the icy crusts; characterize the internal mass distribution, investigate the exosphere; study Ganymede's intrinsic magnetic field and its interactions with the Jovian magnetosphere. For Europa, the focus will be on the non-ice chemistry, understanding the formation of surface features and subsurface sounding of the icy crust over recently active regions. Callisto will be explored as a witness of the early solar system. JUICE will perform a multidisciplinary investigation of the Jupiter system as an archetype for gas giants. The circulation, meteorology, chemistry and structure of the Jovian atmosphere will be studied from the cloud tops to the thermosphere. The focus in Jupiter's magnetosphere will include an investigation of the three dimensional properties of the magnetodisc and in-depth study of the coupling processes within the magnetosphere, ionosphere and thermosphere. Aurora and radio emissions will be elucidated. JUICE will study the moons' interactions with the magnetosphere, gravitational coupling and long-term tidal evolution of the Galilean satellites. JUICE highly capable scientific payload includes 10 state-of-the-art instruments onboard the spacecraft plus one experiment that uses the spacecraft telecommunication system with ground-based radio telescopes. The remote sensing package includes a high-resolution multi-band visible imager (JANUS) and spectro-imaging capabilities from the ultraviolet to the sub-millimetre wavelengths (MAJIS, UVS, SWI). A geophysical package consists of a laser altimeter (GALA) and a radar sounder (RIME) for exploring the surface and subsurface of the moons, and a radio science experiment (3GM) to probe the atmospheres of Jupiter and its satellites and to perform measurements of the gravity fields. An in situ package comprises a powerful particle environment package (PEP), a magnetometer (J-MAG) and a radio and plasma wave instrument (RPWI), including electric fields sensors and a Langmuir probe. An experiment (PRIDE) using ground-based Very-Long-Baseline Interferometry (VLBI) will provide precise determination of the moons ephemerides. The mission scenario will include a Jovian tour with multiple flybys of Callisto and Ganymede, the phase with more than 20 degrees inclination orbits, and two Europa flybys. The Ganymede tour will include high (5000 km) and low (500 km) almost polar orbits around the moon. The mission scenario has evolved slightly during the definition phase, reassuring that the mission will still be able to fulfil all major science objectives. The talk will give an overview of the mission status at the end of the definition phase, focusing on the evolution of science performance and payload synergies in achieving the mission goals.

  3. Apollo 15-Lunar Module Falcon

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This is a photo of the Apollo 15 Lunar Module, Falcon, on the lunar surface. Apollo 15 launched from Kennedy Space Center (KSC) on July 26, 1971 via a Saturn V launch vehicle. Aboard was a crew of three astronauts including David R. Scott, Mission Commander; James B. Irwin, Lunar Module Pilot; and Alfred M. Worden, Command Module Pilot. The first mission designed to explore the Moon over longer periods, greater ranges and with more instruments for the collection of scientific data than on previous missions, the mission included the introduction of a $40,000,000 lunar roving vehicle (LRV) that reached a top speed of 16 kph (10 mph) across the Moon's surface. The successful Apollo 15 lunar landing mission was the first in a series of three advanced missions planned for the Apollo program. The primary scientific objectives were to observe the lunar surface, survey and sample material and surface features in a preselected area of the Hadley-Apennine region, setup and activation of surface experiments and conduct in-flight experiments and photographic tasks from lunar orbit. Apollo 15 televised the first lunar liftoff and recorded a walk in deep space by Alfred Worden. Both the Saturn V rocket and the LRV were developed at the Marshall Space Flight Center.

  4. Chandrayaan-2: India's First Soft-landing Mission to Moon

    NASA Astrophysics Data System (ADS)

    Mylswamy, Annadurai; Krishnan, A.; Alex, T. K.; Rama Murali, G. K.

    2012-07-01

    The first Indian planetary mission to moon, Chandrayaan-1, launched on 22nd October, 2008 with a suite of Indian and International payloads on board, collected very significant data over its mission duration of close to one year. Important new findings from this mission include, discovery of hydroxyl and water molecule in sunlit lunar surface region around the poles, exposure of large anorthositic blocks confirming the global lunar magma hypothesis, signature of sub surface ice layers in permanently shadowed regions near the lunar north pole, evidence for a new refractory rock type, mapping of reflected lunar neutral atoms and identification of mini-magnetosphere, possible signature of water molecule in lunar exosphere, preserved lava tube that may provide site for future human habitation and radiation dose en-route and around the moon. Chandrayaan-2:, The success of Chandrayaan-1 orbiter mission provided impetus to implement the second approved Indian mission to moon, Chandrayaan-2, with an Orbiter-Lander-Rover configuration. The enhanced capabilities will enable addressing some of the questions raised by the results obtained from the Chandrayaan-1 and other recent lunar missions and also to enhance our understanding of origin and evolution of the moon. The orbiter that will carry payloads to further probe the morphological, mineralogical and chemical properties of the lunar surface material through remote sensing observations in X-ray, visible, infra-red and microwave regions. The Lander-Rover system will enable in-depth studies of a specific lunar location and probe various physical properties of the moon. The Chandrayaan-2 mission will be collaboration between Indian Space Research Organization (ISRO) and the Federal Space Agency of Russia. ISRO will be responsible for the Launch Vehicle, the Orbiter and the Rover while the Lander will be provided by Russia. Initial work to realize the different elements of the mission is currently in progress in both countries. Mission Elements:, On board segment of Chandrayaan-2 mission consists of a lunar Orbiter and a lunar Lander-Rover. The orbiter for Chandrayaan-2 mission is similar to that of Chandrayaan-1 from structural and propulsion aspects. Based on a study of various mission management and trajectory options, such as, separation of the Lander-Rover module in Earth Parking Orbit (EPO) or in lunar transfer trajectory (LTT) or in lunar polar orbit (LPO), the option of separating of this module at LTT, after required midcourse corrections, was selected as this offers an optimum mass and overall mission management advantage. The orbiter propulsion system will be used to transfer Orbiter-Lander-Rover composite from EPO to LTT. On reaching LTT, the Lander-Rover module will be separated from the orbiter module. The Lander-Rover and Orbiter modules are configured with individual propulsion and housekeeping systems. The indigenously developed Geostationary Satellite Launch Vehicle GSLV (Mk-II) will be used for this mission. The most critical aspect of its feasibility was an accurate evaluation of the scope for taking a 3200kg lift off mass into EPO. A Lander-Rover mass of 1270kg (including the propellant for soft landing) will provide sufficient margin for such a lift off within the capability of flight proven GSLV (Mk-II) for the EPO. Mission Scenario: ,GSLV (Mk-II) will launch the Lunar Orbiter coupled to the Lunar Lander-Rover into EPO (170 x 16980 km) following which the Orbiter will boost the orbit from EPO to LTT where the two modules will be separated. Both of them will make their independent journey towards moon and reach lunar polar orbit independently. The orbiter module will be initially placed in a circular polar orbit (200km) and the Lander-Rover module descends towards the lunar surface. After landing, a motorized rover with robotic arm and scientific instruments would be released on to the lunar surface. Although the exact landing location is yet to be finalized, a high latitude location is preferred from scientific interest. Multiple communication links involving

  5. Training Space Surgeons for Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Pool, S. L.; McSwain, N.

    2004-01-01

    Over a period of 4 years, several working groups reviewed the provisions for medical care in low earth orbit and for future flights such as to the Moon and Mars. More than 60 medical experts representing a wide variety of clinical backgrounds participated in the working groups. They concluded that NASA medical training for long-duration missions, while critical to success, is currently aimed at short-term skill retention. They noted that several studies have shown that skills and knowledge deteriorate rapidly in the absence of adequate sustainment training. American Heart Association studies have shown that typically less than twenty-five percent of learned skills remain after 6 to 8 months. In addition to identifying the current training deficiencies, the working groups identified additional skill and knowledge sets required for missions to the Moon and Mars and curricula were developed to address inadequacies. Space medicine care providers may be categorized into 4 types based on health care responsibilities and level of education required. The first 2 types are currently recognized positions within the flight crew: crew medical officers and astronaut-physician. The crew medical officer (CMO), a non-medically trained astronaut crewmember, is given limited emergency medical technician-like training to provide medical care on orbit. Many of hidher duties are carried out under the direction of a ground-based flight surgeon in mission control. Second is the astronaut- physician whose primary focus is on mission specialist duties and training, and who has very limited ability to maintain medical proficiency. Two new categories are recommended to complete the 4 types of care providers primarily to address the needs of those who will travel to the Moon and Mars. Physician astronaut - a physician, who in addition to being a mission specialist, will be required to maintain and enhance hidher medical proficiency while serving as an astronaut. Space surgeon - a physician astronaut given special training to address the unique health care requirements envisioned for expeditions such as those to Mars.

  6. Chandrayaan-1: India's First Mission to the Moon

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil

    India's first lunar mission Chandrayaan-1 was launched on Oct. 22, 2008, using Indian Polar Satellite Launch Vehicle (PSLV-XL), and was inserted into lunar polar orbit on Nov. 8, 2008. The spacecraft was placed in the designated 100 km lunar polar orbit on Nov. 12, 2008, and the Moon Impact Probe (MIP) was released on Nov. 14, to land at a pre-determined location in the south pole. The MIP carried a mass spectrometer (CHACE), a radar altimeter and a visible camera. The battery of ten experiments on the Chandrayaan-1 orbiter included the Terrain Mapping stereo Camera (TMC), Hyper Spectral Imager (HYSI), Lunar Laser Ranging Instrument (LLRI), Low Energy (1-10 keV) X-ray spectrometer (C1XS, which also included Solar X-ray Monitor (SXM) working in the 2-10 keV energy range), High Energy (10-200 keV) X-ray/gamma-ray spectrometer (HEX), Miniature Synthetic Aperture Radar (Mini-SAR), Near-Infrared Spectrometer (SIR-2), Sub-keV Atom Reflecting Analyzer (SARA, which consist of 2 instruments: Chandrayaan Energetic Neutral Atom Analyzer (CENA) and Solar Wind monitor (SWIM)), Moon Mineral Mapper (MMM), and Radiation Dose Monitor (RADOM). All the experiments performed very well and a large amount of high quality data has been obtained until the end of August 2009, when mission was terminated due to communication loss. New findings and discoveries have been reported from observations made by experiments on the Chandrayaan-1. This talk will summarize the Chandrayaan-1 mission and its major scientific results. Chandrayaan-1 mission is a good example of an international cooperation and collaboration and marked the beginning of India's foray into planetary exploration.

  7. Radiation Effects and Protection for Moon and Mars Missions

    NASA Technical Reports Server (NTRS)

    Parnell, Thomas A.; Watts, John W., Jr.; Armstrong, Tony W.

    1998-01-01

    Manned and robotic missions to the Earth's moon and Mars are exposed to a continuous flux of Galactic Cosmic Rays (GCR) and occasional, but intense, fluxes of Solar Energetic Particles (SEP). These natural radiations impose hazards to manned exploration, but also present some constraints to the design of robotic missions. The hazards to interplanetary flight crews and their uncertainties have been studied recently by a National Research Council Committee (Space Studies Board 1996). Considering the present uncertainty estimates, thick spacecraft shielding would be needed for manned missions, some of which could be accomplished with onboard equipment and expendables. For manned and robotic missions, the effects of radiation on electronics, sensors, and controls require special consideration in spacecraft design. This paper describes the GCR and SEP particle fluxes, secondary particles behind shielding, uncertainties in radiobiological effects and their impact on manned spacecraft design, as well as the major effects on spacecraft equipment. The principal calculational tools and considerations to mitigate the radiation effects are discussed, and work in progress to reduce uncertainties is included.

  8. Photometric Recovery of Ortho-Images Derived from Apollo 15 Metric Camera Imagery

    Microsoft Academic Search

    Taemin Kim; Ara V. Nefian; Michael J. Broxton

    2009-01-01

    The topographical and photometric reconstruction of the moon from Apollo metric data has gained attention to support manned\\u000a mission planning since the NASA has been working on return to the moon in 2004. This paper focuses on photometric recovery\\u000a of the moon surface from Apollo orbital imagery. The statistical behavior of photons generates the scene radiance which follows\\u000a a continuous

  9. Contributions of the Clementine mission to our understanding of the processes and history of the Moon

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.; Lucey, Paul G.

    1993-01-01

    The Clementine mission will provide us with an abundance of information about lunar surface morphology, topography, and composition, and it will permit us to infer the history of the Moon and the processes that have shaped that history. This information can be used to address fundamental questions in lunar science and allow us to make significant advances towards deciphering the complex story of the Moon. The Clementine mission will also permit a first-order global assessment of the resources of the Moon and provide a strategic base of knowledge upon which future robotic and human missions to the Moon can build.

  10. The Effects of Lunar Dust on EVA Systems During the Apollo Missions

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2007-01-01

    Mission documents from the six Apollo missions that landed on the lunar surface have been studied in order to catalog the effects of lunar dust on Extra-Vehicular Activity (EVA) systems, primarily the Apollo surface space suit. It was found that the effects could be sorted into nine categories: vision obscuration, false instrument readings, dust coating and contamination, loss of traction, clogging of mechanisms, abrasion, thermal control problems, seal failures, and inhalation and irritation. Although simple dust mitigation measures were sufficient to mitigate some of the problems (i.e., loss of traction) it was found that these measures were ineffective to mitigate many of the more serious problems (i.e., clogging, abrasion, diminished heat rejection). The severity of the dust problems were consistently underestimated by ground tests, indicating a need to develop better simulation facilities and procedures.

  11. The Effects of Lunar Dust on EVA Systems During the Apollo Missions

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2005-01-01

    Mission documents from the six Apollo missions that landed on the lunar surface have been studied in order to catalog the effects of lunar dust on Extra-Vehicular Activity (EVA) systems, primarily the Apollo surface space suit. It was found that the effects could be sorted into nine categories: vision obscuration, false instrument readings, dust coating and contamination, loss of traction, clogging of mechanisms, abrasion, thermal control problems, seal failures, and inhalation and irritation. Although simple dust mitigation measures were sufficient to mitigate some of the problems (i.e., loss of traction) it was found that these measures were ineffective to mitigate many of the more serious problems (i.e., clogging, abrasion, diminished heat rejection). The severity of the dust problems were consistently underestimated by ground tests, indicating a need to develop better simulation facilities and procedures.

  12. Mars Moons Prospector Mission with CubeSats

    NASA Astrophysics Data System (ADS)

    Udrea, Bogdan; Nayak, Mikey; Allen, Brett; Bourke, Justin; Casariego, Gabriela; Gosselin, Steven; Hiester, Evan; Maier, Margaret; Melchert, Jeanmarie; Patel, Chitrang; Reis, Leslie; Smith, Gregory; Snow, Travis; Williams, Sarah; Franquiz, Francsico

    2015-04-01

    The preliminary design of a low-cost Discovery class mission for prospecting Mars moons Phobos and Deimos is undertaken as capstone senior design class in spacecraft design. The mission design is centred on a mothership that carries a dozen of 12U CubeSats, each of 22x22x34cm in size and 24kg in mass. The mothership is equipped with a set of instruments for the investigation of regolith samples, similar to those with identical functions on the Curiosity and the Mars 2020 rovers. The mothership also serves as a telecommunication hub with Earth. Six of the CubeSats have the role of touching down and picking up soil samples for delivery to the mothership for analysis and the six have the role of visually inspecting the moon at close proximity in visible and near and mid infrared light and deploying instruments on the surface of the moons. A suite of miniaturized instruments are investigated for deployment on the CubeSats. The CubeSats are designed to dock with the mothership to be refueled and they heavily leverage the design of the ARAPAIMA (www.eraucubesat.org) proximity operations 6U CubeSat currently in development at ERAU for the Air Force University Nanosatellite Program. The concept of operations envisions the launch of the mothership as a primary payload on a Mars transfer trajectory. After performing a Mars capture maneuver the mothership undertakes autonomous aerobraking to achieve a highly elliptic orbit with the apoapsis at Deimos altitude of 23,460km. Further maneuvering places the mothership in a relative orbit about Deimos from which the CubeSats are deployed. Once the investigation of Deimos is completed the mothership retrieves its CubeSats and maneuver to achieve a relative orbit about Phobos. An investigation similar to that of Deimos is performed. If the mass margins allow it then an extended mission will attempt to confirm the presence of a dust ring between Phobos and Deimos and conduct multi-point atmospheric investigations with supplemental 3U CubeSats.

  13. Saturn 5 launch vehicle flight evaluation report-AS-509 Apollo 14 mission

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A postflight analysis of the Apollo 14 flight is presented. The basic objective of the flight evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight failures are identified, their causes are determined and corrective actions are recommended. Summaries of launch operations and spacecraft performance are included. The significant events for all phases of the flight are analyzed.

  14. Crew of the first manned Apollo mission practice water egress procedures

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Prime crew for the first manned Apollo mission practice water egress procedures with full scale boilerplate model of their spacecraft. In the water at right is Astronaut Edward H. White (foreground) and Astronaut Roger B. Chaffee. In raft near the spacecraft is Astronaut Virgil I. Grissom. NASA swimmers are in the water to assist in the practice session that took place at Ellington AFB, near the Manned Spacecraft Center, Houston.

  15. Crew of the first manned Apollo mission practice water egress procedures

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Prime crew for the first manned Apollo mission relax in a life raft during water egress training in the Gulf of Mexico with a full scale boilerplate model of their spacecraft. Left to right, are Astronauts Roger B. Chaffee, pilot, Virgil I. Grissom, command pilot, and Edward H. White II (facing camera), senior pilot. In background is the 'Duchess', a yacht owned by La Porte businessman Paul Barkley and provided by him as a press boat for newsmen covering the training.

  16. Surveying the Newly Digitized Apollo Metric Images for Highland Fault Scarps on the Moon

    Microsoft Academic Search

    N. R. Williams; M. E. Pritchard; J. F. Bell; T. R. Watters; M. S. Robinson; S. Lawrence

    2009-01-01

    The presence and distribution of thrust faults on the Moon have major implications for lunar formation and thermal evolution. For example, thermal history models for the Moon imply that most of the lunar interior was initially hot. As the Moon cooled over time, some models predict global-scale thrust faults should form as stress builds from global thermal contraction. Large-scale thrust

  17. Recovered Apollo-Era Saturn V F-1 Engines Arrive at Cape Canaveral - Duration: 108 seconds.

    NASA Video Gallery

    Two F-1 engines that powered the first stage of the Saturn V rockets that lifted NASAâ??s Apollo missions to the moon were recovered from the Atlantic Ocean March 20, 2013 by Jeff Bezos, the founde...

  18. Apollo 8's Christmas Eve 1968 Message - Duration: 2 minutes, 2 seconds.

    NASA Video Gallery

    Apollo 8, the first manned mission to the moon, entered lunar orbit on Christmas Eve, Dec. 24, 1968. That evening, the astronauts--Commander Frank Borman, Command Module Pilot Jim Lovell, and Lunar...

  19. LAPIS - LAnder Package Impacting a Seismometer - A Proposal for a Semi-Hard Lander Mission to the Moon

    NASA Astrophysics Data System (ADS)

    Lange, C.

    2009-04-01

    With an increased interest on the moon within the last years, at least with several missions in orbit or under development (SELENE/Japan, Chang'e/China, Chandrayaan/India and others), there is a strong demand within the German science community to participate in this initiative, building-up a national competence regarding lunar exploration. For this purpose, a Phase-0 analysis for a small lunar semi-hard landing scenario has been performed at DLR to foster future lunar exploration missions. This study's scope was to work out a more detailed insight into the design drivers and challenges and their impact on mass and cost budgets for such a mission. LAPIS has been dedicated to the investigation of the seismic activities of the moon, additionally to some other geophysical in-situ measurements at the lunar surface. In fact, the current status of the knowledge and understanding of lunar seismic activities leads to a range of open questions which have not been answered so far by the various Apollo missions in the past and could now possibly be answered by the studied LAPIS mission. Among these are the properties of the lunar core, the origin of deep and shallow moonquakes and the occurrence of micro-meteoroids. Therefore, as proposed first for LAPIS on the LEO mission, a payload of a short period micro-seismometer, based on European and American predevelopments, has been suggested. A staged mission scenario will be described, using a 2-module spacecraft with a propulsion part and a landing part, the so called LAPIS-PROP and LAPIS-LAND. In this scenario, the LAPIS-PROP module will do the cruise, until the spacecraft reaches an altitude of 100 m above the moon, after which the landing module will separate and continue to the actual semi-hard landing, which is based on deformable structures. Further technical details, e.g. considering the subsystem technologies, have been addressed within the performed study. These especially critical and uniquely challenging issues, such as the structural damping of the landing impact, the communication subsystem and the thermal subsystem have been investigated to some extent and will be described further. The described study will analyze in a unique way the technology, which is necessary to realize such a rather unconventional mission scenario, which will furthermore to a great extent contribute to the current knowledge on seismic activities on the moon.

  20. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications

    NASA Technical Reports Server (NTRS)

    Korth, David; LeBlanc, Troy; Mishkin, Andrew; Lee, Young

    2006-01-01

    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  1. 18Apollo 17 -Launch from the Moon's Surface On December 14, 1972 at 10:54:37 p.m. GMT,

    E-print Network

    18Apollo 17 - Launch from the Moon's Surface On December 14, 1972 at 10:54:37 p.m. GMT, Astronauts). The launch was recorded by a camera left behind at the landing site in the Taurus-Litrow region. A sequence

  2. Apollo 15 Launch

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The fifth marned lunar landing mission, Apollo 15 (SA-510), carrying a crew of three astronauts: Mission commander David R. Scott, Lunar Module pilot James B. Irwin, and Command Module pilot Alfred M. Worden Jr., lifted off on July 26, 1971. Astronauts Scott and Irwin were the first to use a wheeled surface vehicle, the Lunar Roving Vehicle, or the Rover, which was designed and developed by the Marshall Space Flight Center, and built by the Boeing Company. Astronauts spent 13 days, nearly 67 hours, on the Moon's surface to inspect a wide variety of its geological features.

  3. NASA: Apollo 11 - 35 Years Later

    NSDL National Science Digital Library

    At this website, NASA commemorates the 35th anniversary of the Apollo 11 crew's landing on the moon. Using Macromedia Flash Player, the site recreates the mission's journey from the launch on July 16, 1969 to its splashdown on July 24th. Users can view fantastic videos of Neil Armstrong's first step, a tribute to the mission, and NASA's Vision for Space Exploration. Visitors can find links to the mission's audio recordings, news articles, and additional photo and video galleries.

  4. APOLLO 8: It's Christmas in zero gravity...

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Astronauts and ground control consider how Santa is going to gain access to the command module... From the film documentary 'APOLLO 8:'Debrief': part of a documentary series made in the early 70's on the APOLLO missions, and narrated by Burgess Meredith. (Actual date created is not known at this time) First manned Saturn V flight with Frank Borman, James A. Lovell, Jr.,and william A. Anders. First manned lunar orbit mission; provided a close-up look at the moon during 10 lunar orbits. Mission Duration 147hrs 0m 42s

  5. Apollo 14 mission report. Supplement 5: Descent propulsion system final flight evaluation

    NASA Technical Reports Server (NTRS)

    Avvenire, A. T.; Wood, S. C.

    1972-01-01

    The performance of the LM-8 descent propulsion system during the Apollo 14 mission was evaluated and found to be satisfactory. The average engine effective specific impulse was 0.1 second higher than predicted, but well within the predicted l sigma uncertainty. The engine performance corrected to standard inlet conditions for the FTP portion of the burn at 43 seconds after ignition was as follows: thrust, 9802, lbf; specific impulse, 304.1 sec; and propellant mixture ratio, 1603. These values are + or - 0.8, -0.06, and + or - 0.3 percent different respectively, from the values reported from engine acceptance tests and were within specification limits.

  6. Saturn 5 launch vehicle flight evaluation report, AS-510, Apollo 15 mission

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A postflight analysis of the Apollo 15 flight is presented. The performance of the launch vehicle, spacecraft, and lunar roving vehicle are discussed. The objective of the evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are determined, and recommendations are made for corrective actions. Summaries of launch operations and spacecraft performance are included. Significant events for all phases of the flight are tabulated.

  7. Mini-SAR: An Imaging Radar for the Chandrayaan-1 Mission to the Moon

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.; Bussey, Ben; Lichtenberg, Chris; Marinelli, Bill; Nozette, Stewart

    2005-01-01

    The debate on the presence of ice at the poles of the Moon continues. We will fly a small imaging radar on the Indian Chandrayaan mission to the Moon, to be launched in September, 2007. Mini-SAR will map the scattering properties of the lunar poles, determining the presence and extent of polar ice.

  8. Apollo 15 Crew Portrait

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This is the official three-member crew portrait of the Apollo 15 (SA-510). Pictured from left to right are: David R. Scott, Mission Commander; Alfred M. Worden Jr., Command Module pilot; and James B. Irwin, Lunar Module pilot. The fifth marned lunar landing mission, Apollo 15 (SA-510), lifted off on July 26, 1971. Astronauts Scott and Irwin were the first to use a wheeled surface vehicle, the Lunar Roving Vehicle (LRV), or the Rover, which was designed and developed by the Marshall Space Flight Center, and built by the Boeing Company. The astronauts spent 13 days, nearly 67 hours, on the Moon's surface to inspect a wide variety of its geological features.

  9. United States lunar mapping - A basis for and result of project Apollo

    Microsoft Academic Search

    J. H. St. Clair; R. W. Carder; L. A. Schimerman

    1979-01-01

    The lunar mapping program carried out by the United States Defense Mapping Agency is reviewed, emphasizing its role as both a basis for and a result of Project Apollo. Telescopic photography of the moon was given impetus by the announcement of the Apollo project, and the results of the Ranger and Lunar Orbiter missions supplied nearly complete photographic coverage of

  10. Geology of Earth's Moon

    NSDL National Science Digital Library

    First, researchers at the University of California, San Diego discuss the importance of studying earthquakes on the moon, also known as moonquakes, and the Apollo Lunar Seismic Experiment (1). Users can discover the problems scientists must deal with when collecting the moon's seismic data. The students at Case Western Reserve University created the second website to address three missions the Institute of Space and Astronautical Science (ISAS) has planned between now and 2010, including a mission to the moon (2). Visitors can learn about the Lunar-A probe that will be used to photograph the surface of the moon, "monitor moonquakes, measure temperature, and study the internal structure." Next, the Planetary Data Service (PDS) at the USGS offers users four datasets that they can use to create an image of a chosen area of the moon (3). Each dataset can be viewed as a basic clickable map; a clickable map where users can specify size, resolution, and projection; or an advanced version where visitors can select areas by center latitude and longitude. The fourth site, produced by Robert Wickman at the University of North Dakota, presents a map of the volcanoes on the moon and compares their characteristics with those on earth (4). Students can learn how the gravitational forces on the Moon affect the lava flows. Next, Professor Jeff Ryan at the University of South Florida at Tampa supplies fantastic images and descriptive text of the lunar rocks obtained by the Apollo missions (5). Visitors can find links to images of meteorites, terrestrial rocks, and Apollo landings as well. At the Science Channel website, students and educators can find a video clip discussing the geologic studies on the moon along with videos about planets (6). Users can learn about how studying moon rocks help scientists better understand the formation of the earth. Next, the Smithsonian National Air and Space Museum presents its research of "lunar topography, cratering and impacts basins, tectonics, lava flows, and regolith properties" (7). Visitors can find summaries of the characteristics of the moon and the main findings since the 1950s. Lastly, the USGS Astrogeology Research Program provides archived lunar images and data collected between 1965 and 1992 by Apollo, Lunar Orbiter, Galileo, and Zond 8 missions (8). While the data is a little old, students and educators can still find valuable materials about the moon's topography, chemical composition, and geology.

  11. The Nuclear Thermal Propulsion Stage (NTPS): A Key Space Asset for Human Exploration and Commercial Missions to the Moon

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Burke, Laura M.

    2014-01-01

    The nuclear thermal rocket (NTR) has frequently been discussed as a key space asset that can bridge the gap between a sustained human presence on the Moon and the eventual human exploration of Mars. Recently, a human mission to a near Earth asteroid (NEA) has also been included as a "deep space precursor" to an orbital mission of Mars before a landing is attempted. In his "post-Apollo" Integrated Space Program Plan (1970 to 1990), Wernher von Braun, proposed a reusable Nuclear Thermal Propulsion Stage (NTPS) to deliver cargo and crew to the Moon to establish a lunar base initially before sending human missions to Mars. The NTR was selected because it was a proven technology capable of generating both high thrust and high specific impulse (Isp approx. 900 s)-twice that of today's best chemical rockets. During the Rover and NERVA programs, 20 rocket reactors were designed, built and successfully ground tested. These tests demonstrated the (1) thrust levels; (2) high fuel temperatures; (3) sustained operation; (4) accumulated lifetime; and (5) restart capability needed for an affordable in-space transportation system. In NASA's Mars Design Reference Architecture (DRA) 5.0 study, the "Copernicus" crewed NTR Mars transfer vehicle used three 25 klbf "Pewee" engines-the smallest and highest performing engine tested in the Rover program. Smaller lunar transfer vehicles-consisting of a NTPS with three approx. 16.7 klbf "SNRE-class" engines, an in-line propellant tank, plus the payload-can be delivered to LEO using a 70 t to LEO upgraded SLS, and can support reusable cargo delivery and crewed lunar landing missions. The NTPS can play an important role in returning humans to the Moon to stay by providing an affordable in-space transportation system that can allow initial lunar outposts to evolve into settlements capable of supporting commercial activities. Over the next decade collaborative efforts between NASA and private industry could open up new exploration and commercial opportunities for both organizations. With efficient NTP, commercial habitation and crew delivery systems, a "mobile cislunar research station" can transport crews to small NEAs delivered to the E-ML2 point. Also possible are week-long "lunar tourism" missions that can carry passengers into lunar orbit for sightseeing (and plenty of picture taking), then return them to Earth orbit where they would re-enter and land using a small reusable lifting body based on NASA's HL-20 design. Mission descriptions, key vehicle features and operational characteristics are described and presented.

  12. PDS Lunar Data Node Restoration of Apollo In-Situ Surface Data

    NASA Technical Reports Server (NTRS)

    Williams, David R.; Hills, H. Kent; Guinness, Edward A.; Lowman, Paul D.; Taylor, Patrick T.

    2010-01-01

    The Apollo missions between 1969 and 1972 deployed scientific instruments on the Moon's surface which made in-situ measurements of the lunar environment. Apollo II had the short-term Early Apollo Surface Experiments Package (EASEP) and Apollos 12, 14, 15, 16, and 17 each set up an Apollo Lunar Surface Experiments Package (ALSEP). Each ALSEP package contained a different suite of instruments which took measurements and radioed the results back to Earth over periods from 5 to 7 years until they were turned off on 30 September 1977. To this day the ALSEP data remain the only long-term in-situ information on the Moon's surface environment. The Lunar Data Node (LDN) has been formed under the auspices of the Planetary Data System (PDS) Geosciences Node to put relevant, scientifically important Apollo data into accessible digital form for use by researchers and mission planners. We will report on progress made since last year and plans for future data restorations.

  13. Mineralogy of Apollo 15415 ?genesis rock' - Source of anorthosite on moon.

    NASA Technical Reports Server (NTRS)

    Steele, I. M.; Smith, J. V.

    1971-01-01

    Results of electron microprobe analyses of plagioclase points and pyroxene grains of Apollo 15415 ?genesis rock.' It is pointed out that no evidence of cumulate textures has yet appeared to support suggestions of extensive crystal-liquid differentiation producing an anorthositic crust or a lunar crust composed of a mixture of plagioclase-rich rock, basalts and minor ultramafic material, which require that plagioclase crystals float in a basaltic liquid. The plagioclase in 15415 does not show cumulate texture either. It is noted that it remains to be seen whether rock 15415 is correctly named the ?genesis rock.'

  14. View of Earth photographed by Apollo 15 on voyage to the Moon

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This view of Earth was photographed by the Apollo 15 crewmen as they sped toward the fourth lunar landing. The spacecraft was between 25,000 and 30,000 nautical miles from Earth when this photo was made. The United States (note Florida), Central America and part of Canada can be seen at the left side of the picture, with South America at lower center. Spain and the northwest part of Africa can be seen at right. The Bahama Banks, unique geological feature, can be seen (different shade of blue) east of Florida. Also note large North Atlantic storm front moving over Greenland in upper center.

  15. Seismometer reading viewed in ALSEP Room in Misson Control during Apollo 17

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The seismometer readings from the impact made by the Apollo 17 Saturn S-IVB stage when it struck the lunar surface are viewed in the ALSEP Room in the Misson Control Center at Houston by Dr. Maurice Ewing, professor of geophysics of the Universtiy of Texas at Galveston. The seismic tracings are from sensings made by seismometers of Apollo Lunar Surface Experiments Packages left on the Moon during earlier Apollo lunar landing missions.

  16. APOLLO 15: Commander Scott on those who gave all

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 15: A demonstration of a classic experiment. From the film documentary 'APOLLO 15: 'The mountains of the Moon'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLO 15: Fourth manned lunar landing with David R. Scott, Alfred M. Worden, and James B. Irwin. Landed at Hadley rilleon July 30, 1971;performed EVA with Lunar Roving Vehicle; deployed experiments. P& F Subsattelite spring-launched from SM in lunar orbit. Mission Duration 295 hrs 11 min 53sec

  17. LRO Camera Imaging of the Moon: Apollo 17 and other Sites for Ground Truth

    Microsoft Academic Search

    B. L. Jolliff; S. M. Wiseman; M. S. Robinson; S. Lawrence; B. W. Denevi; J. F. Bell

    2009-01-01

    One of the fundamental goals of the Lunar Reconnaissance Orbiter (LRO) is the determination of mineralogic and compositional distributions and their relation to geologic features on the Moon's surface. Through a combination of imaging with the LRO narrow-angle cameras and wide-angle camera (NAC, WAC), very fine-scale geologic features are resolved with better than meter-per-pixel resolution (NAC) and correlated to spectral

  18. South Pole-Aitken Sample Return Mission: Collecting Mare Basalts from the Far Side of the Moon

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Jolliff, B. L.; Lucey, P. G.

    2003-01-01

    We consider the probability that a sample mission to a site within the South Pole-Aitken Basin (SPA) would return basaltic material. A sample mission to the SPA would be the first opportunity to sample basalts from the far side of the Moon. The near side basalts are more abundant in terms of volume and area than their far-side counterparts (16:1), and the basalt deposits within SPA represent approx. 28% of the total basalt surface area on the far side. Sampling far-side basalts is of particular importance because as partial melts of the mantle, they could have derived from a mantle that is mineralogically and chemically different than determined for the nearside, as would be expected if the magma ocean solidified earlier on the far side. For example, evidence to support the existence of high-Th basalts like those that appear to be common on the nearside in the Procellarum KREEP Terrane has been found. Although SPA is the deepest basin on the Moon, it is not extensively filled with mare basalt, as might be expected if similar amounts of partial melting occurred in the mantle below SPA as for basins on the near side. These observations may mean that mantle beneath the far-side crust is lower in Th and other heat producing elements than the nearside. One proposed location for a sample-return landing site is 60 S, 160 W. This site was suggested to maximize the science return with respect to sampling crustal material and SPA impact melt, however, basaltic samples would undoubtedly occur there. On the basis of Apollo samples, we should expect that basaltic materials would be found in the vicinity of any landing site within SPA, even if located away from mare deposits. For example, the Apollo 16 mission landed in an ancient highlands region 250-300 km away from the nearest mare-highlands boundary yet it still contains a small component of basaltic samples (20 lithic fragments ranging is size from <1 to .01 cm). A soil sample from the floor of SPA will likely contain an assortment of basaltic fragments from surrounding regions. In terms both of selecting the best landing sites and understanding the geologic context for returned samples, it is important to understand the compositional distribution of basalts within SPA basin.

  19. Measurements of heavy solar wind and higher energy solar particles during the Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Walker, R. M.; Zinner, E.; Maurette, M.

    1973-01-01

    The lunar surface cosmic ray experiment, consisting of sets of mica, glass, plastic, and metal foil detectors, was successfully deployed on the Apollo 17 mission. One set of detectors was exposed directly to sunlight and another set was placed in shade. Preliminary scanning of the mica detectors shows the expected registration of heavy solar wind ions in the sample exposed directly to the sun. The initial results indicate a depletion of very-heavy solar wind ions. The effect is probably not real but is caused by scanning inefficiencies. Despite the lack of any pronounced solar activity, energetic heavy particles with energies extending to 1 MeV/nucleon were observed. Equal track densities of approximately 6000 tracks/cm sq 0.5 microns in length were measured in mica samples exposed in both sunlight and shade.

  20. Active moon: evidences from Chandrayaan-1 and the proposed Indian missions

    NASA Astrophysics Data System (ADS)

    Bhandari, Narendra; Srivastava, Neeraj

    2014-12-01

    Chandrayaan-1, the polar Lunar orbiter mission of Indian Space Research Organization, successfully carried out study of Moon's environment and surface processes for a period of about nine months during 2008-2009. The results obtained by the mission established (i) A tenuous but active hydrosphere (ii) Volcanically active and geologically dynamic Moon and (iii) Global melting of Moon's surface regions and formation of magma ocean early in the history of Moon. Chandrayaan-1 was equipped with a dozen instruments, including an impact probe, which housed three additional instruments. The results obtained by four instruments viz. Chandra's Altitudinal Composition Explorer, Moon Mineral Mapper (M3), Solar Wind Monitor and Synthetic Aperture Radar gave an insight into an active hydrosphere, with several complex processes operating between lunar surface and its environment. These inferences are based on identification of H, OH, H2O, CO2, Ar etc. in the lunar atmosphere. There are indications that several young (~2 to100 Ma) volcanic regions are present on the Moon as shown by integrated studies using Terrain Mapping Camera and M3 of Chandrayaan-1 and data from other contemporary missions i.e. Kaguya and Lunar Reconnaissance Orbiter. These data establish that Moon has a dynamic and probably still active interior, in contrast to the generally accepted concept of dormant and quiet Moon. Discovery of Mg spinel anorthosites and finding of kilometer sized crystalline anorthosite exposures by M3 support the formation of global magma ocean on Moon and differentiation early in its evolutionary history. Furthermore, X-ray Spectrometer data showed anorthositic terrain with composition, high in Al, poor in Ca and low in Mg, Fe and Ti in a nearside southern highland region. This mission provided excellent opportunity for multilateral international cooperation and collaboration in instrumentation and observation in which a dozen countries participated and contributed to the success of the mission. The Mars Orbiter Mission, for study of Martian atmosphere and ionosphere was launched on 5th November, 2013 and is already on its way to Mars. This will be followed by Chandrayaan-2, a well equipped Orbiter-Lander-Rover mission. This article summarises a few results obtained by Chandrayaan-1, which changed some of the concepts about Moon's evolutionary history.

  1. APOLLO 16 ASTRONAUTS JOHN YOUNG AND CHARLES DUKE EXAMINE FAR ULTRAVIOLET CAMERA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Apollo 16 Lunar Module Pilot Charles M. Duke, Jr., left and Mission Commander John W. Young examine Far Ultraviolet Camera they will take to the Moon in March. They will measure the universe's ultraviolet spectrum. They will be launched to the Moon no earlier than March 17, 1972, with Command Module Pilot Thomas K. Mattingly, II.

  2. NASA honors Apollo 13 astronaut Fred Haise Jr.

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA Administrator Charles Bolden (left) presents the Ambassador of Exploration Award (an encased moon rock) to Biloxi native and Apollo 13 astronaut Fred Haise Jr. (right) for his contributions to space exploration. During a Dec. 2 ceremony at Gorenflo elementary School in Biloxi, Miss., Bolden praised Haise for his overall space career and his performance on the Apollo 13 mission that was crippled two days after launch. Haise and fellow crewmembers nursed the spacecraft on a perilous trip back to Earth. 'The historic Apollo 13 mission was as dramatic as any Hollywood production,' Bolden said. 'When an explosion crippled his command module, Fred and his crewmates, Jim Lovell and Jack Swigert, guided their spacecraft around the moon and back to a successful splashdown in the Pacific Ocean - all while the world held its breath. While Fred didn't have the chance to walk on the moon, the cool courage and concentration in the face of crisis is among NASA's most enduring legacies.'

  3. (abstract) A Solar Electric Propulsion Mission to the Moon and Beyond!

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Pieters, C. M.; Konopliv, A.; Metzger, A.; Sercel, J.; Hickman, M.; Palac, D.; Sykes, M.

    1994-01-01

    The technological development of solar electric propulsion has advanced significantly over the last few years. Mission planners are now seriously studying which missions would benefit most from solar electric propulsion (SEP) and NASA's Solar System Exploration Division is contributing funding to ground and space qualification tests. In response to the impending release of NASA's Announcement of Opportunity for Discovery class planetary missions, we have undertaken a pre-Phase A study of a SEP mission to the Moon. This mission will not only return a wealth of new scientific data but will open up a whole new era of planetary exploration.

  4. Apollo 1 Fire

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Officially designated Apollo/Saturn 204, but more commonly known as Apollo 1, this close-up view of the interior of the Command Module shows the effects of the intense heat of the flash fire which killed the prime crew during a routine training exercise. While strapped into their seats inside the Command Module atop the giant Saturn V Moon rocket, a faulty electrical switch created a spark which ignited the pure oxygen environment. The speed and intensity of the fire quickly exhausted the oxygen supply inside the crew cabin. Unable to deploy the hatch due to its cumbersome design and lack of breathable oxygen, the crew lost consciousness and perished. They were: astronauts Virgil I. 'Gus' Grissom, (the second American to fly into space) Edward H. White II, (the first American to 'walk' in space) and Roger B. Chaffee, (a 'rookie' on his first space mission).

  5. Apollo 17 mission Report. Supplement 6: Calibration results for gamma ray spectrometer sodium iodide crystal

    NASA Technical Reports Server (NTRS)

    Dyer, C.; Trombka, J. I.

    1975-01-01

    A major difficulty in medium energy gamma-ray remote sensing spectroscopy and astronomy measurements was the high rate of unwanted background resulting from the following major sources: (1) prompt secondary gamma-rays produced by cosmic-ray interactions in satellite materials; (2) direct charged-particle counts; (3) radioactivity induced in the detector materials by cosmic-ray and trapped protons; (4) radioactivity induced in detector materials by the planetary (e.g., earth or moon) albedo neutron flux; (5) radioactivity induced in the detector materials by the interaction of secondary neutrons produced throughout the spacecraft by cosmic-ray and trapped proton interactions; (6) radioactivity induced in spacecraft materials by the mechanisms outlined in 3, 4, and 5; and (7) natural radioactivity in spacecraft and detector materials. The purpose of this experiment was to obtain information on effects 3, 4, and 5, and from this information start developing calculational methods for predicting the background induced in the crystal detector in order to correct the Apollo gamma-ray spectrometer data for this interference.

  6. Dual-frequency bistatic-radar investigations of the moon with Apollos 14 and 15.

    NASA Technical Reports Server (NTRS)

    Tyler, G. L.; Howard, H. T.

    1973-01-01

    Simultaneous 13- and 116-cm wavelength radio transmissions from the Apollo 14 and 15 spacecraft were received on the earth after reflection from the lunar surface. The received data were processed to obtain complete polarization and power spectra of the echo signal; the ellipticity, orientation, and magnitude of the deterministically polarized part were obtained as a function of frequency. The polarized parts of the echo spectra were then reduced according to the theory of quasi-specular scattering from a gently undulating surface. The unpolarized portions of the echo spectra were associated with a diffuse scattering mechanism. Within Mare Serenitatis and Oceanus Procellarum, the 13-cm data follow a classical Fresnel reflection curve corresponding to relative dielectric constant epsilon = 3.1 plus or minus 0.1. Over most of these same areas, the 116-cm data are consistent with this value of relative dielectric constant. In some areas, however, notably between Reiner and Hevelius, there are marked deviations from the reflectivities predicted for epsilon = 3.1. These results cannot be explained on the basis of simple models employing contiguous, semiinfinite, dielectric interfaces.

  7. Apollo 15 Onboard Photo: Earth's Crest Over the Lunar Horizon

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This view of the Earth's crest over the lunar horizon was taken during the Apollo 15 lunar landing mission. Apollo 15 launched from the Kennedy Space Center (KSC) on July 26, 1971 via a Saturn V launch vehicle. Aboard was a crew of three astronauts including David R. Scott, Mission Commander; James B. Irwin, Lunar Module Pilot; and Alfred M. Worden, Command Module Pilot. The first mission designed to explore the Moon over longer periods, greater ranges and with more instruments for the collection of scientific data than on previous missions, the mission included the introduction of a $40,000,000 lunar roving vehicle (LRV) that reached a top speed of 16 kph (10 mph) across the Moon's surface. The successful Apollo 15 lunar landing mission was the first in a series of three advanced missions planned for the Apollo program. The primary scientific objectives were to observe the lunar surface, survey and sample material and surface features in a preselected area of the Hadley-Apennine region, setup and activation of surface experiments and conduct in-flight experiments and photographic tasks from lunar orbit. Apollo 15 televised the first lunar liftoff and recorded a walk in deep space by Alfred Worden. Both the Saturn V rocket and the LRV were developed at the Marshall Space Flight Center.

  8. Apollo Seals: A Basis for the Crew Exploration Vehicle Seals

    NASA Technical Reports Server (NTRS)

    Finkbeiner, Joshua R.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Daniels, Christopher C.

    2006-01-01

    The National Aeronautics and Space Administration is currently designing the Crew Exploration Vehicle (CEV) as a replacement for the Space Shuttle for manned missions to the International Space Station, as a command module for returning astronauts to the moon, and as an earth reentry vehicle for the final leg of manned missions to the moon and Mars. The CEV resembles a scaled-up version of the heritage Apollo vehicle; however, the CEV seal requirements are different than those from Apollo because of its different mission requirements. A review is presented of some of the seals used on the Apollo spacecraft for the gap between the heat shield and backshell and for penetrations through the heat shield, docking hatches, windows, and the capsule pressure hull.

  9. Apollo Seals: A Basis for the Crew Exploration Vehicle Seals

    NASA Technical Reports Server (NTRS)

    Finkbeiner, Joshua R.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Daniels, Christopher C.

    2007-01-01

    The National Aeronautics and Space Administration is currently designing the Crew Exploration Vehicle (CEV) as a replacement for the Space Shuttle for manned missions to the International Space Station, as a command module for returning astronauts to the moon, and as an earth reentry vehicle for the final leg of manned missions to the moon and Mars. The CEV resembles a scaled-up version of the heritage Apollo vehicle; however, the CEV seal requirements are different than those from Apollo because of its different mission requirements. A review is presented of some of the seals used on the Apollo spacecraft for the gap between the heat shield and backshell and for penetrations through the heat shield, docking hatches, windows, and the capsule pressure hull.

  10. The Apollo 17 surface experiments.

    NASA Technical Reports Server (NTRS)

    Hinners, N. W.; Mason, P. V.

    1972-01-01

    Significant previous Apollo scientific results which influenced the selection of site for the Apollo 17 mission are reviewed. Apollo 17 assignments and equipment are characterized as an outgrowth of the preceding Apollo missions which is focused on the main problems of lunar form and origin. Details are given on the Apollo Lunar Surface Experiments Package (ALSEP) experiments, non-ALSEP experiments, the Lunar Seismic Profiling Experiment (LSPE), and the three periods of extravehicular activity (EVA) of Apollo 17.

  11. The Apollo 17 Lunar Surface Journal

    SciTech Connect

    Jones, E.M.

    1995-08-01

    The material included in the Apollo 17 Lunar Surface Journal has been assembled so that an uninitiated reader can understand, in some detail, what happened during Apollo 17 and why and what was learned, particularly about living and working on the Moon. At its heart, the Journal consists a corrected mission transcript which is interwoven with commentary by the crew and by Journal Editor -- commentary which, we hope, will make the rich detail of Apollo 17 accessible to a wide audience. To make the Journal even more accessible, this CD-ROM publication contains virtually all of the Apollo 17 audio, a significant fraction of the photographs and a selection of drawings, maps, video clips, and background documents.

  12. The Moon Orbiting Observatory, a low-cost mission for global lunar characterisation

    Microsoft Academic Search

    Giuseppe D Racca; Agustin Chicarro; Gordon Whitcomb

    1995-01-01

    The global characterisation of the lunar surface, together with investigations of the interior and the environment of our natural satellite represent the main scientific objectives of MORO, the European Moon ORbiting Observatory. MORO is being studied as a candidate mission for the next medium size (M3) project of ESA, in the framework of the Agency's Horizon 2000 scientific programme. The

  13. Thermal characteristics of the moon.

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.

    1972-01-01

    The papers describe earth-based and in situ surface measurements of the thermal characteristics of lunar-type materials. A geophysical interpretation of the thermal history of the moon is given. Microwave emission from the moon and radar mapping of lunar surface roughness are studied. Lunar thermal aspects from Surveyor data, lunar surface temperatures from Apollo 11 data, the development of an in situ thermal conductivity measurement for the lunar heat flow experiment, and the Apollo 15 lunar heat flow measurement are reviewed. Thermal properties of granulated materials, thermal property measurements on lunar material returned by Apollo 11 and 12 missions, and thermal characteristics of lunar surface roughness are discussed. Individual items are abstracted in this issue.

  14. Apollo 7 - Press Kit

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Contents include the following: General release. Mission objectives. Mission description. Flight plan. Alternate missions. Experiments. Abort model. Spacecraft structure system. The Saturn 1B launch vehicle. Flight sequence. Launch preparations. Mission control center-Houston. Manned space flight network. Photographic equipment. Apollo 7 crew. Apollo 7 test program.

  15. Stereo Reconstruction from Apollo 15 and 16 Metric Camera

    NASA Astrophysics Data System (ADS)

    Moratto, Z.; Nefian, A.; Kim, T.; Broxton, M.; Beyer, R.; Fong, T.

    2011-03-01

    We have produced digital terrain models and image mosaics that cover the nearside of the Moon at 40 m/px and 10 m/px respectively. These are produced from 2600 images from the Metric Camera aboard Apollo 15 and 16 missions processed by the Ames Stereo Pipeline.

  16. Stereo Reconstruction from Apollo 15 and 16 Metric Camera

    Microsoft Academic Search

    Z. Moratto; A. Nefian; T. Kim; M. Broxton; R. Beyer; T. Fong

    2011-01-01

    We have produced digital terrain models and image mosaics that cover the nearside of the Moon at 40 m\\/px and 10 m\\/px respectively. These are produced from 2600 images from the Metric Camera aboard Apollo 15 and 16 missions processed by the Ames Stereo Pipeline.

  17. Moon's Radiation Environment and Expected Performance of Solar Cells during Future Lunar Missions

    E-print Network

    Girish, T E

    2010-01-01

    Several lunar missions are planned ahead and there is an increasing demand for efficient photovoltaic power generation in the moon. The knowledge of solar cell operation in the lunar surface obtained during early seventies need to be updated considering current views on solar variability and emerging space solar cell technologies. In this paper some aspects of the solar cell performance expected under variable lunar radiation environment during future space missions to moon are addressed. We have calculated relative power expected from different types of solar cells under extreme solar proton irradiation conditions and high lunar daytime temperature. It is also estimated that 2-3 % of annual solar cell degradation is most probable during the future lunar missions. We have also discussed photovoltaic power generation in long term lunar bases emphasizing technological needs such as sunlight concentration, solar cell cooling and magnetic shielding of radiation for improving the efficiency of solar cells in the l...

  18. Astronaut John Young during final suiting operations for Apollo 10 mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut John W. Young, Apollo 10 command module pilot, jokes with Donald K. Slayton (standing left), Director of Flight Crew Operations, Manned Spacecraft Center, during Apollo 10 suiting up operations. On couch in background is Astronaut Eugene A. Cernan, lunar module pilot.

  19. The Dynamical Evolution of the Earth-Moon Progenitors. I. Motivation and Methodology

    Microsoft Academic Search

    J. J. Lissauer; E. Rivera; M. J. Duncan; H. F. Levison

    1999-01-01

    The Giant Impact Hypothesis was introduced in the mid-1970's after consideration of results from the Apollo Moon missions. This hypothesis best explains the similarity in elemental proportions in lunar and terrestrial rocks, the depletion of lunar volatiles, the lack of lunar iron, and the large angular momentum in the Earth-Moon system. Comparison between the radiometric ages of inclusions in the

  20. Radiation protection for human missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Simonsen, Lisa C.; Nealy, John E.

    1991-01-01

    Radiation protection assessments are performed for advanced Lunar and Mars manned missions. The Langley cosmic ray transport code and the nucleon transport code are used to quantify the transport and attenuation of galactic cosmic rays and solar proton flares through various shielding media. Galactic cosmic radiation at solar maximum and minimum, as well as various flare scenarios are considered. Propagation data for water, aluminum, liquid hydrogen, lithium hydride, lead, and lunar and Martian regolith (soil) are included. Shield thickness and shield mass estimates required to maintain incurred doses below 30 day and annual limits (as set for Space Station Freedom and used as a guide for space exploration) are determined for simple geometry transfer vehicles. On the surface of Mars, dose estimates are presented for crews with their only protection being the carbon dioxide atmosphere and for crews protected by shielding provided by Martian regolith for a candidate habitat.

  1. Cryogenic Fluid Management Technology for Moon and Mars Missions

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  2. Investigating at the Moon With new Eyes: The Lunar Reconnaissance Orbiter Mission Camera (LROC)

    NASA Astrophysics Data System (ADS)

    Hiesinger, H.; Robinson, M. S.; McEwen, A. S.; Turtle, E. P.; Eliason, E. M.; Jolliff, B. L.; Malin, M. C.; Thomas, P. C.

    The Lunar Reconnaissance Orbiter Mission Camera (LROC) H. Hiesinger (1,2), M.S. Robinson (3), A.S. McEwen (4), E.P. Turtle (4), E.M. Eliason (4), B.L. Jolliff (5), M.C. Malin (6), and P.C. Thomas (7) (1) Brown Univ., Dept. of Geological Sciences, Providence RI 02912, Harald_Hiesinger@brown.edu, (2) Westfaelische Wilhelms-University, (3) Northwestern Univ., (4) LPL, Univ. of Arizona, (5) Washington Univ., (6) Malin Space Science Systems, (7) Cornell Univ. The Lunar Reconnaissance Orbiter (LRO) mission is scheduled for launch in October 2008 as a first step to return humans to the Moon by 2018. The main goals of the Lunar Reconnaissance Orbiter Camera (LROC) are to: 1) assess meter and smaller- scale features for safety analyses for potential lunar landing sites near polar resources, and elsewhere on the Moon; and 2) acquire multi-temporal images of the poles to characterize the polar illumination environment (100 m scale), identifying regions of permanent shadow and permanent or near permanent illumination over a full lunar year. In addition, LROC will return six high-value datasets such as 1) meter-scale maps of regions of permanent or near permanent illumination of polar massifs; 2) high resolution topography through stereogrammetric and photometric stereo analyses for potential landing sites; 3) a global multispectral map in 7 wavelengths (300-680 nm) to characterize lunar resources, in particular ilmenite; 4) a global 100-m/pixel basemap with incidence angles (60-80 degree) favorable for morphologic interpretations; 5) images of a variety of geologic units at sub-meter resolution to investigate physical properties and regolith variability; and 6) meter-scale coverage overlapping with Apollo Panoramic images (1-2 m/pixel) to document the number of small impacts since 1971-1972, to estimate hazards for future surface operations. LROC consists of two narrow-angle cameras (NACs) which will provide 0.5-m scale panchromatic images over a 5-km swath, a wide-angle camera (WAC) to acquire images at about 100 m/pixel in seven color bands over a 100-km swath, and a common Sequence and Compressor System (SCS). Each NAC has a 700-mm-focal-length optic that images onto a 5000-pixel CCD line-array, providing a cross-track field-of-view (FOV) of 2.86 degree. The NAC readout noise is better than 100 e- , and the data are sampled at 12 bits. Its internal buffer holds 256 MB of uncompressed data, enough for a full-swath image 25-km long or a 2x2 binned image 100-km long. The WAC has two 6-mm- focal-length lenses imaging onto the same 1000 x 1000 pixel, electronically shuttered CCD area-array, one imaging in the visible/near IR, and the other in the UV. Each has a cross-track FOV of 90 degree. From the nominal 50-km orbit, the WAC will have a resolution of 100 m/pixel in the visible, and a swath width of ˜100 km. The seven-band color capability of the WAC is achieved by color filters mounted directly 1 over the detector, providing different sections of the CCD with different filters [1]. The readout noise is less than 40 e- , and, as with the NAC, pixel values are digitized to 12-bits and may be subsequently converted to 8-bit values. The total mass of the LROC system is about 12 kg; the total LROC power consumption averages at 22 W (30 W peak). Assuming a downlink with lossless compression, LRO will produce a total of 20 TeraBytes (TB) of raw data. Production of higher-level data products will result in a total of 70 TB for Planetary Data System (PDS) archiving, 100 times larger than any previous missions. [1] Malin et al., JGR, 106, 17651-17672, 2001. 2

  3. Gravity fields of the Moon derived from GRAIL Primary and Extended Mission Data

    NASA Astrophysics Data System (ADS)

    Lemoine, Frank G.; Goossens, Sander J.; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Caprette, Douglas; Chinn, Douglas S.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.

    2013-04-01

    The twin Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were launched in September 2011 on a Discovery-class NASA mission to study the gravitational field of the Moon. Extremely accurate range-rate observations between the two spacecraft at the Ka-band radio wavelength (KBRR) enable the determination of the gravity field of the Moon to very high degree since the data are acquired continuously, even when the spacecraft are not tracked from the Earth. The primary mapping mission for GRAIL commenced on March 1, 2012 and continued until May 29, 2012. During the primary mission, the altitude of the spacecraft was on average 55 km above lunar surface. This allowed the determination of a lunar gravity field model of degree and order 420 in spherical harmonics (equivalent to a spatial block-size resolution of 13 km) (Zuber et al., 2012). GRAIL's extended mission initiated on August 30, 2012, and was successfully completed on December 14, 2012. The average altitude during the extended mission was 23 km above lunar surface, half of the altitude during the primary mission, allowing gravity field models at even finer resolution. In this paper, we discuss the analysis of the primary and the extended mission data. With the primary mission data, we have developed solutions to 540x540 in spherical harmonics, and using the extended mission data through December 5, 2012, before the extremely low Orientale campaign, we have developed solutions to 720x720 in spherical harmonics. The solutions were developed using the supercomputers at NASA GSFC of the NASA Center for Climate Simulation (NCCS). The solution development methodology is described, including the precision force modeling, and inversion strategy. The solutions are evaluated using RMS of fit tests, calculation of the global and nearside vs. farside coherence with topography, and analysis of the derived Bouguer coefficients. In addition, we evaluate these new selenopotential models by applying them to Lunar Prospector and the Lunar Reconnaissance Orbiter.

  4. The SMART1 Mission: Photometric Studies of the Moon with the AMIE Camera

    Microsoft Academic Search

    Yu. G. Shkuratov; M. A. Kreslavsky; D. G. Stankevich; V. G. Kaydash; P. Pinet; V. V. Shevchenko; B. H. Foing; J.-L. Josset

    2003-01-01

    We describe the future SMART-1 European Space Mission whose objective is to study the lunar surface from a polar lunar orbit. In particular, it is anticipated that selected regions of the Moon will be photographed using the AMIE camera with a mean spatial resolution of about 100 m in three spectral channels (0.75, 0.92, and 0.96 mum) over a wide

  5. The SMART1 Mission: Photometric Studies of the Moon with the AMIE Camera

    Microsoft Academic Search

    Yu. G. Shkuratov; M. A. Kreslavsky; D. G. Stankevich; V. G. Kaydash; P. Pinet; V. V. Shevchenko; B. H. Foing; J.-L. Josset

    2003-01-01

    We describe the future SMART-1 European Space Mission whose objective is to study the lunar surface from a polar lunar orbit. In particular, it is anticipated that selected regions of the Moon will be photographed using the AMIE camera with a mean spatial resolution of about 100 m in three spectral channels (0.75, 0.92, and 0.96 µm) over a wide

  6. Diagnostic Imaging in the Medical Support of the Future Missions to the Moon

    NASA Technical Reports Server (NTRS)

    Sargsyan, Ashot E.; Jones, Jeffrey A.; Hamilton, Douglas R.; Dulchavsky, Scott A.; Duncan, J. Michael

    2007-01-01

    This viewgraph presentation is a course that reviews the diagnostic imaging techniques available for medical support on the future moon missions. The educational objectives of the course are to: 1) Update the audience on the curreultrasound imaging in space flight; 2) Discuss the unique aspects of conducting ultrasound imaging on ISS, interplanetary transit, ultrasound imaging on ISS, interplanetary transit, and lunar surface operations; and 3) Review preliminary data obtained in simulations of medical imaging in lunar surface operations.

  7. Characteristic analysis and design of near moon abort trajectory for manned lunar landing mission

    Microsoft Academic Search

    WenDe Huang; XiaoNing Xi; Wei Wang

    2010-01-01

    The safety of astronauts would be severely threatened if the lunar-landing spacecraft were under an emergency during the near\\u000a moon phase of flight, which was far from the Earth. For the problem of mission abort caused by the main engine (service propulsion\\u000a system, SPS) failure during lunar orbit insertion, firstly, the family of trajectories resulted from SPS premature shutdown\\u000a and

  8. Asteroid Moon Micro-imager Experiment (amie) For Smart1 Mission, Science Objectives and Devel Opment Status

    Microsoft Academic Search

    J.-L. Josset; D. Heather; S. Dunkin; F. Roussel; S. Beauvivre; D. Kraenhenbuehl; P. Plancke; Y. Lange-Vin; P. Pinet; S. Chevrel; P. Cerroni; M.-C. de Sanctis; A. Dillelis; Z. Sodnik; D. Koschny; A. Barucci; B. Hofmann; M. Josset; K. Muinonen; J. Pironnen; P. Ehrenfreud; Y. Shkuratov; V. Shevchenko

    2002-01-01

    The Asteroid Moon micro-Imager Experiment (AMIE), which will be on board the first ESA SMART-1 mission to the Moon (launch foreseen late 2002), is an imaging sys- tem with scientific, technical and public outreach oriented objectives. The science objectives are to imagine the Lunar South Pole (Aitken basin), permanent shadow areas (ice deposit), eternal light (crater rims), ancient Lunar Non-

  9. NASA honors Apollo 13 astronaut Fred Haise Jr.

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Apollo 13 astronaut and Biloxi native Fred Haise Jr. smiles during a Dec. 2 ceremony at Gorenflo Elementary School in Biloxi honoring his space career. During the ceremony, Haise was presented with NASA's Ambassador of Exploration Award (an encased moon rock). He subsequently presented the moon rock to Gorenflo officials for display at the school. Haise is best known as one of three astronauts who nursed a crippled Apollo 13 spacecraft back to Earth during a perilous 1970 mission. Although he was unable to walk on the moon as planned for that mission, Haise ended his astronaut career having logged 142 hours and 54 minutes in space. During the ceremony, he praised all those who contributed to the space program.

  10. High-resolution Gravity Field Models of the Moon Using GRAIL mission Data

    NASA Astrophysics Data System (ADS)

    Lemoine, Frank G.; Goossens, Sander; Sabaka, Terrence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2015-04-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission was designed to map the structure of the lunar interior from crust to core and to advance the understanding of the Moon's thermal evolution by producing a high-quality, high-resolution map of the gravitational field of the Moon. GRAIL consisted of two spacecraft, with Ka-band tracking between the two satellites as the single science instrument, with the addition of Earth-based tracking using the Deep Space Network. The science mission was divided into two phases: a primary mission from March 1, 2012 to May 29, 2012, and an extended mission from August 30, 2012 to December 14, 2012. The altitude varied from 3 km to 94 km above the lunar surface during both mission phases. Both the primary and the extended mission data have been processed into global models of the lunar gravity field at NASA/GSFC using the GEODYN software up to 1080 x 1080 in spherical harmonics. In addition to the high-resolution global models, local models have also been developed. Due to varying spacecraft altitude and ground track spacing, the actual resolution of the global models varies geographically. Information beyond the current resolution is still present in the data, as indicated by relatively higher fits in the last part of the extended mission, where the satellites achieved their lowest altitude above lunar surface. Local models of the lunar gravitational field at high resolution were thus estimated to accommodate this signal. Here, we present the current status of GRAIL gravity modeling at NASA/GSFC, for both global and local models. We discuss the methods we used for the processing of the GRAIL data, and evaluate these solutions with respect to the derived power spectra, Bouguer anomalies, and fits with independent data (such as from the low-altitude phase of the Lunar Prospector mission). We also evaluate the prospects for extending the resolution of our current models

  11. Of time and the moon.

    PubMed

    Wetherill, G W

    1971-07-30

    Considerable information concerning lunar chronology has been obtained by the study of rocks and soil returned by the Apollo 11 and Apollo 12 missions. It has been shown that at the time the moon, earth, and solar system were formed, approximately 4.6 approximately 10(9) years ago, a severe chemical fractionation took place, resulting in depletion of relatively volatile elements such as Rb and Pb from the sources of the lunar rocks studied. It is very likely that much of this material was lost to interplanetary space, although some of the loss may be associated with internal chemical differentiation of the moon. It has also been shown that igneous processes have enriched some regions of the moon in lithophile elements such as Rb, U, and Ba, very early in lunar history, within 100 million years of its formation. Subsequent igneous and metamorphic activity occurred over a long period of time; mare volcanism of the Apollo 11 and Apollo 12 sites occurred at distinctly different times, 3.6 approximately 10(9) and 3.3 approximately 10(9) years ago, respectively. Consequently, lunar magmatism and remanent magnetism cannot be explained in terms of a unique event, such as a close approach to the earth at a time of lunar capture. It is likely that these phenomena will require explanation in terms of internal lunar processes, operative to a considerable depth in the moon, over a long period of time. These data, together with the low present internal temperatures of the moon, inferred from measurements of lunar electrical conductivity, impose severe constraints on acceptable thermal histories of the moon. Progress is being made toward understanding lunar surface properties by use of the effects of particle bombardment of the lunar surface (solar wind, solar flare particles, galactic cosmic rays). It has been shown that the rate of micrometeorite erosion is very low (angstroms per year) and that lunar rocks and soil have been within approximately a meter of the lunar surface for hundreds of millions of years. Future work will require sampling distinctly different regions of the moon in order to provide data concerning other important lunar events, such as the time of formation of the highland regions and of the mare basins, and of the extent to which lunar volcanism has persisted subsequent to the first third of lunar history. This work will require a sufficient number of Apollo landings, and any further cancellation of Apollo missions will jeopardize this unique opportunity to study the development of a planetary body from its beginning. Such a study is fundamental to our understanding of the earth and other planets. PMID:17770436

  12. Apollo Program Image

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A rocket-powered research vehicle with a standup pilots compartment is used in handling qualities studies of lunar landing vehicles (Apollo Lunar Module) by the National Aeronautics and Space Administrations Langley Research Center, Hampton, Virginia. The Lunar Landing Research Facility, 250 feet high and 400 feet long, provides a controlled laboratory in which NASA scientists work with research pilots to explore and develop techniques for landing the rocket-powered Apollo Lunar Module on the Moons surface, where the gravity is only one-sixth as strong as on Earth. The vehicle operates within the confines of the overhead structure that provides travel of 360 feet down range, 500 feet cross range, and 180 feet vertically. The research vehicle is designed to give the pilot six degrees of freedom in simulated lunar landings. The standup pilots compartment atop the propulsion module provides controls for the thrust of the vehicles main rockets and a system of small maneuvering rockets. In research operations, as shown here, a vertical lifting force equal to five-sixth of the flight vehicles weight is applied by two vertical cables to oppose the pull of the Earths gravity and simulate low gravitational force at the Moons surface. The cables are attached to a servo-controlled hoist system in a dolly unit mounted under the traveling bridge. The hoist system is controlled automatically by load cells in each support strut. Data obtained through operation of the facility will supplement other scientific research at Langley in an extensive program support the Apollo mission.

  13. Reporters Interview Family of Apollo 11 Astronaut Neil Armstrong

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Newsmen talked with the wife and sons of Apollo 11 astronaut Neil A. Armstrong after the successful launch of Apollo 11 on its trajectory to the moon. The Apollo 11 mission, the first lunar landing mission, launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  14. The Apollo Lunar Sounder radar system

    NASA Technical Reports Server (NTRS)

    Porcello, L. J.; Zelenka, J. S.; Adams, G. F.; Jackson, P. L.; Jordan, R. L.; Phillips, R. J.; Brown, W. E., Jr.; Ward, S. H.

    1974-01-01

    The objectives of the Apollo 17 Lunar Sounder Experiment (ALSE) were to detect subsurface geologic structures, to generate a continuous lunar profile, and to image the moon at radar wavelengths. A three-wavelength synthetic-aperture radar (SAR) operating at 60, 20, and 2 m wavelengths was designed to attain these objectives. The design choices reflected a balance of scientific requirements versus Apollo mission and hardware constraints. The radar data from the lunar mission were recorded on photographic film in a conventional SAR format, and were returned to earth for processing. A combination of optical and digital processing and exploitation techniques was applied to the scientific interpretation of the data. Some preliminary results from the lunar mission have been obtained.

  15. A 660 D&O Gravitational Field of the Moon from the GRAIL Primary Mission

    NASA Astrophysics Data System (ADS)

    Yuan, Dah-Ning; Konopliv, Alex; Asmar, Sami; Park, Ryan; Williams, James; Watkins, Michael; Fahnestock, Eugene; Kruizinga, Gerhard; Paik, Meegyeong; Strekalov, Dmitry; Harvey, Nate; Zuber, Maria; Smith, David

    2013-04-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission has completed its primary three-month tour that resulted in a gravitational field of 660 degree-and-order or equivalent surface resolution of 8 km. The primary measurement for the gravity field is the inter-spacecraft K-Band Range Rate (KBRR) measurement derived from dual spacecraft one-way range. Direct Doppler tracking at X-band from the Deep Space Network for Ebb and Flow supplemented The KBRR. Advanced system calibrations and measurement timing have resulted in unprecedented data quality of better than 0.1 microns/sec. The gravity field solution shows an error spectrum with several orders of magnitude improvement for all wavelengths when compared to previous missions. Nearly uniform correlations with topography exist through higher harmonic degrees and are a good measure of field integrity. The results of the mission satisfy the scientific objectives of determining the structure of the lunar interior from crust to core and advancing the understanding of the thermal evolution of the Moon. They also directly address the mission's investigations that include mapping the structure of the crust and lithosphere, understanding the Moon's asymmetric thermal evolution, determining the subsurface structure of impact basins and the origin of mascons, ascertaining the temporal evolution of the crustal brecciation and magmatism, constrain deep interior structure from tides, and place limits on the size of a possible solid inner core.

  16. Apollo Soyuz

    NASA Technical Reports Server (NTRS)

    Froehlich, W.

    1978-01-01

    The mission, background, and spacecraft of the Apollo Soyuz Test Project are summarized. Scientific experiments onboard the spacecraft are reviewed, along with reentry procedures. A small biography of each of the five astronauts (U.S. and Russian) is also presented.

  17. Prospects in the orbital and rotational dynamics of the Moon with the advent of sub-centimeter lunar laser ranging

    Microsoft Academic Search

    S. M. Kopeikin; E. Pavlis; D. Pavlis; V. A. Brumberg; A. Escapa; J. Getino; A. Gusev; J. Müller; W.-T. Ni; N. Petrova

    2008-01-01

    Lunar laser ranging (LLR) measurements are crucial for advanced exploration of the laws of fundamental gravitational physics and geophysics as well as for future human and robotic missions to the Moon. The corner-cube reflectors (CCR) currently on the Moon require no power and still work perfectly since their installation during the project Apollo era. Current LLR technology allows us to

  18. Effect of photogrammetric reading error on slope-frequency distributions. [obtained from Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Wu, S. C.

    1973-01-01

    The effect of reading error on two hypothetical slope frequency distributions and two slope frequency distributions from actual lunar data in order to ensure that these errors do not cause excessive overestimates of algebraic standard deviations for the slope frequency distributions. The errors introduced are insignificant when the reading error is small and the slope length is large. A method for correcting the errors in slope frequency distributions is presented and applied to 11 distributions obtained from Apollo 15, 16, and 17 panoramic camera photographs and Apollo 16 metric camera photographs.

  19. ALSEP-MT-06 APOLLO LUNAR SURFACE

    E-print Network

    Rathbun, Julie A.

    ALSEP-MT-06 APOLLO LUNAR SURFACE EXPERIMENTS PACKAGE (ALSEP) APOLLO 16 ALSEP ARRAY D FLIGHT July 1971 A #12;ALSEP-MT-06 INTRODUCTION The Apollo 16 LWlar Surface Expe riments Package (ALSEP of the Moon consistent with the scientific objectives of the Apollo Program. The measur ement data

  20. Discoveries from Revisiting Apollo Direct Active Measurements of Lunar Dust

    NASA Astrophysics Data System (ADS)

    O'Brien, Brian

    2010-05-01

    New missions to the moon being developed by China, Japan, India, USA, Russia and Europe and possibilities of human missions about 2020 face the reality that 6 Apollo expeditions did not totally manage or mitigate effects of easily-mobilised and very "sticky" lunar dust on humans and hardware. Laboratory and theoretical modelling cannot reliably simulate the complex lunar environments that affect dynamical movements of lunar dust. The only direct active measurements of lunar dust during Apollo were made by matchbox-sized minimalist Dust Detector Experiments (DDEs) deployed to transmit some 30 million digital measurements from Apollo 11, 12, 14 and 15. These were misplaced or relatively ignored until 2009, when a self-funded suite of discoveries (O'Brien Geophys. Research Letters FIX 6 May 2099) revealed unexpected properties of lunar dust, such as the adhesive force being stronger as illumination increased. We give the first reports of contrasting effects, contamination or cleansing, from rocket exhausts of Apollo 11, 12, 14 and 15 Lunar Modules leaving the moon. We further strengthen the importance of collateral dust inadvertently splashed on Apollo hardware by human activities. Dust management designs and mission plans require optimum use of such in situ measurements, extended by laboratory simulations and theoretical modelling.

  1. Apollo 14 Astronaut Alan B. Shepard Conducting EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Apollo 14 mission commander Alan B. Shepard is seen here conducting extravehicular activity (EVA) related to the mission deployed scientific laboratory called Apollo Lunar Scientific Experiments Package (ALSEP). He is standing next to the central station of the ALSEP, which was deployed during the mission's first EVA. The Apollo 14, carrying a crew of three astronauts: Shepard; Command Module pilot Stuart A. Roosa, and Lunar Module pilot Edgar D. Mitchell, lifted off from launch complex 39A at KSC on January 31, 1971. It was the third manned lunar landing, the first manned landing in exploration of the lunar highlands, and it demonstrated pinpoint landing capability. The major goal of Apollo 14 was the scientific exploration of the Moon in the foothills of the rugged Fra Mauro region. The EVA of astronauts Shepard and Mitchell included setting up the ALSEP, and collecting a total of about 95 pounds (43 kilograms) of Moon rock and soil for a geological investigation back on the Earth. Apollo 14 safely returned to Earth on February 9, 1971.

  2. A potpourri of pristine moon rocks, including a VHK mare basalt and a unique, augite-rich Apollo 17 anorthosite

    NASA Technical Reports Server (NTRS)

    Warren, P. H.; Shirley, D. N.; Kallemeyn, G. W.

    1986-01-01

    The anorthosite fragment, 76504,18, the first of the Apollo 17's pristine anorthosites, was found to have: (1) a higher ratio of high-Ca pyroxine to low-Ca pyroxene, (2) higher Na in its plagioclase, (3) higher contents of incompatible elements, and (4) a higher Eu/Al ratio in comparison to ferroan anorthosites. With a parent melt having a negative Eu anomaly, 76504,18 closely resembles a typical mare basalt. This anorthosite was among the latest to be formed by plagioclase flotation above a primordial magmasphere; typical mare basalt regions accumulated at about the same time or even earlier. Another fragment 14181c, a very high potassium basalt, was studied and found to be similar to typical Apollo 14 mare basalt though it has a K/La ratio of 1050. It is suggested that this lithology formed after a normal Apollo 14 mare basaltic melt partially assimilated granite. New data for siderphile elements in Apollo 12 mare basalts indicate that only the lowest of earlier data are trustworthy as being free of laboratory contamination.

  3. Backup Crew of the first manned Apollo mission practice water egress

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Backup crew for the first manned Apollo space flight practice water egress procedures with full scale boilerplate model of their spacecraft. Training took place at Ellington AFB, near the Manned Spacecraft Center, Houston. Crew members are Astronauts David R. Scott (top of spacecraft); Russell L. Schweickart (upper right); and James McDivitt (standing in hatch).

  4. Guidance, navigation, and control systems performance analysis: Apollo 13 mission report

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The conclusions of the analyses of the inflight performance of the Apollo 13 spacecraft guidance, navigation, and control equipment are presented. The subjects discussed are: (1) the command module systems, (2) the lunar module inertial measurement unit, (3) the lunar module digital autopilot, (4) the lunar module abort guidance system, (5) lunar module optical alignment checks, and (6) spacecraft component separation procedures.

  5. Thin section of rock brought back to earth by Apollo 12 mission

    NASA Technical Reports Server (NTRS)

    1970-01-01

    An idea of the mineralogy and texture of a lunar sample can be achieved by use of color microphotos. This thin section is Apollo 12 lunar sample number 12057.27, under polarized light. The lavender minerals are pyrexene; the black mineral is ilmenite; the white and brown, feldspar; and the remainder, olivine.

  6. NanoSWARM - A nano-satellite mission to measure particles and fields around the Moon

    NASA Astrophysics Data System (ADS)

    Garrick-Bethell, Ian; Russell, Christopher; Pieters, Carle; Weiss, Benjamin; Halekas, Jasper; Poppe, Andrew; Larson, Davin; Lawrence, David; Elphic, Richard; Hayne, Paul; Blakely, Richard; Kim, Khan-Hyuk; Choi, Young-Jun; Jin, Ho; Hemingway, Doug; Nayak, Michael; Puig-Suari, Jordi; Jaroux, Belgacem; Warwick, Steven

    2015-04-01

    The NanoSWARM mission concept uses a fleet of cubesats around the Moon to address a number of open problems in planetary science: 1) The mechanisms of space weathering, 2) The origins of planetary magnetism, 3) The origins, distributions, and migration processes of surface water on airless bodies, and 4) The physics of small-scale magnetospheres. To accomplish these goals, NanoSWARM targets scientifically rich features on the Moon known as swirls. Swirls are high-albedo features correlated with strong magnetic fields and low surface-water. NanoSWARM cubesats will make the first near-surface (<500 m altitude) measurements of solar wind flux and magnetic fields at swirls. NanoSWARM cubesats will also perform low-altitude neutron measurements to provide key constraints on the distribution of polar hydrogen concentrations, which are important volatile sinks in the lunar water cycle. To release its cubesats, NanoSWARM uses a high-heritage mother ship in a low altitude, polar, circular orbit. NanoSWARM's results will have direct applications to the geophysics, volatile distribution, and plasma physics of numerous other bodies, in particular asteroids and the terrestrial planets. The technologies and methods used by NanoSWARM will enable many new cubesat missions in the next decade, and expand the cubesat paradigm into deep space. NanoSWARM will be proposed as a NASA Discovery mission in early 2015.

  7. Digitization and Reanalysis of Apollo Surface Traverses

    NASA Astrophysics Data System (ADS)

    Petro, N. E.; Bleacher, J. E.; Gaddis, L. R.; Garry, W. B.; Mest, S. C.; Abercromby, A. F.; Gernhardt, M. L.

    2011-03-01

    Apollo surface activities are the best documented events in history. The astronauts' work and the samples and measurements they collected have shaped our understanding of the Moon. We are digitizing and georeferencing data from all Apollo traverses.

  8. Rendezvous with Toutatis from the Moon: The Chang'e-2 mission

    NASA Astrophysics Data System (ADS)

    Huang, J.; Tang, X.; Meng, L.

    2014-07-01

    Chang'e-2 probe was the second lunar probe of China, with the main objectives to demonstrate some key features of the new lunar soft landing technology, and its applications to future exploration missions. After completing the planned mission successfully, Chang'e-2 flew away from the Moon and entered into the interplanetary space. Later, at a distance of 7 million km from the Earth, Chang'e-2 encountered asteroid (4179) Toutatis with a very close fly-by distance and obtained colorful images with a 3-m resolution. Given some surplus velocity increment as well as the promotion of autonomous flight ability and improvement of control, propulsion, and thermal systems in the initial design, Chang'e-2 had the capabilities necessary for escaping from the Moon. By taking advantage of the unique features of the Lagrangian point, the first close fly-by of asteroid Toutatis was realized despite the tight constraints of propellant allocation, spacecraft-Earth communication, and coordination of execution sequences. Chang'e-2 realized the Toutatis flyby with a km-level distance at closest approach. In the absence of direct measurement method, based on the principle of relative navigation and through the use of the sequence of target images, we calculated the rendezvous parameters such as relative distance and image resolution. With the help of these parameters, some fine and new scientific discoveries about the asteroid were obtained by techniques of optical measurements and image processing. Starting with an innovative design, followed by high-fidelity testing and demonstration, elaborative implementation, and optimal usage of residual propellant, Chang'e-2 has for the first time successfully explored the Moon, L2 point and an asteroid, while achieving the purpose of 'faster, better, cheaper'. What Chang'e-2 has accomplished was far beyond our expectations. *J. Huang is the chief designer (PI) of Chang'e-2 probe, planned Chang'e-2's multi-objective and multitasking exploration mission.

  9. Apollo 11 Astronaut Neil Armstrong Approaches Practice Helicopter

    NASA Technical Reports Server (NTRS)

    1969-01-01

    In preparation of the nation's first lunar landing mission, Apollo 11, crew members underwent training to practice activities they would be performing during the mission. In this photograph Neil Armstrong approaches the helicopter he flew to practice landing the Lunar Module (LM) on the Moon. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished

  10. APOLLO 17 : The Final Splashdown

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 17 returns safely to Earth, bringing to an end the APOLLO series of lunar missions From the film documentary 'APOLLO 17: On the shoulders of Giants'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APPOLO 17 : Sixth and last manned lunar landing mission in the APOLLO series with Eugene A. Cernan, Ronald E.Evans, and Harrison H. (Jack) Schmitt. Landed at Taurus-Littrow on Dec 11.,1972. Deployed camera and experiments; performed EVA with lunar roving vehicle. Returned lunar samples. Mission Duration 301hrs 51min 59sec

  11. Venus, Mars, and the ices on Mercury and the moon: astrobiological implications and proposed mission designs.

    PubMed

    Schulze-Makuch, Dirk; Dohm, James M; Fairén, Alberto G; Baker, Victor R; Fink, Wolfgang; Strom, Robert G

    2005-12-01

    Venus and Mars likely had liquid water bodies on their surface early in the Solar System history. The surfaces of Venus and Mars are presently not a suitable habitat for life, but reservoirs of liquid water remain in the atmosphere of Venus and the subsurface of Mars, and with it also the possibility of microbial life. Microbial organisms may have adapted to live in these ecological niches by the evolutionary force of directional selection. Missions to our neighboring planets should therefore be planned to explore these potentially life-containing refuges and return samples for analysis. Sample return missions should also include ice samples from Mercury and the Moon, which may contain information about the biogenic material that catalyzed the early evolution of life on Earth (or elsewhere). To obtain such information, science-driven exploration is necessary through varying degrees of mission operation autonomy. A hierarchical mission design is envisioned that includes spaceborne (orbital), atmosphere (airborne), surface (mobile such as rover and stationary such as lander or sensor), and subsurface (e.g., ground-penetrating radar, drilling, etc.) agents working in concert to allow for sufficient mission safety and redundancy, to perform extensive and challenging reconnaissance, and to lead to a thorough search for evidence of life and habitability. PMID:16379531

  12. Height-to-diameter ratios of moon rocks from analysis of Lunokhod-1 and -2 and Apollo 11-17 panoramas and LROC NAC images

    NASA Astrophysics Data System (ADS)

    Demidov, N. E.; Basilevsky, A. T.

    2014-09-01

    An analysis is performed of 91 panoramic photographs taken by Lunokhod-1 and -2, 17 panoramic images composed of photographs taken by Apollo 11-15 astronauts, and six LROC NAC photographs. The results are used to measure the height-to-visible-diameter ( h/ d) and height-to-maximum-diameter ( h/ D) ratios for lunar rocks at three highland and three mare sites on the Moon. The average h/ d and h/ D for the six sites are found to be indistinguishable at a significance level of 95%. Therefore, our estimates for the average h/ d = 0.6 ± 0.03 and h/ D = 0.54 ± 0.03 on the basis of 445 rocks are applicable for the entire Moon's surface. Rounding off, an h/ D ratio of ?0.5 is suggested for engineering models of the lunar surface. The ratios between the long, medium, and short axes of the lunar rocks are found to be similar to those obtained in high-velocity impact experiments for different materials. It is concluded, therefore, that the degree of penetration of the studied lunar rocks into the regolith is negligible, and micrometeorite abrasion and other factors do not dominate in the evolution of the shape of lunar rocks.

  13. Space Mission Concept for a Nuclear-Powered Airplane for Saturn's Moon Titan

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.

    2010-10-01

    Saturn's large moon Titan is one of the most interesting places in the solar system. It's the only moon with a significant atmosphere. With a temperature of around 90K, the methane in that atmosphere plays the same role that water does in Earth's atmosphere. Titan has methane clouds, methane rainfall, methane rivers, and methane lakes and seas as seen by the Cassini spacecraft. Future Titan exploration will require a more aggressive vehicle in order to follow up on Cassini's discoveries. I will present the motivation and design for a robotic `drone' aircraft mission to Titan: AVIATR, the Aerial Vehicle for In situ and Airborne Titan Reconnaissance. This platform makes sense because with 4 x Earth's air density and only 17 its gravity, flying at Titan is easier than any place else in the solar system. From AVIATR we could acquire images and near-infrared spectroscopy of the surface, search for waves in liquids, and measure winds and atmospheric properties directly, which would dramatically advance our understanding of this enigmatic, frigid moon.

  14. Lunar capture orbits, a method of constructing earth moon trajectories and the lunar GAS mission. [Get Away Specials

    NASA Technical Reports Server (NTRS)

    Belbruno, E. A.

    1987-01-01

    A method is described to construct trajectories from the earth to the moon which utilizes the existence of lunar capture orbits and the concept of 'stability boundary'. These orbits are ballistic and represent a new family of trajectories. They go into orbit about the moon from a suitable position about the earth with no required thrusting. This method is applied to a mission being studied at JPL called Lunar GAS (Get Away Special). Other applications are discussed.

  15. Briefing Topic: Geologic Tools for the Moon

    E-print Network

    Rathbun, Julie A.

    Briefing Topic: Geologic Tools for the Moon Review of Apollo David A. Kring 29 December 2009 #12 Apollo Lunar Sample Return Container 55 Small Tool Carrier 58 Large Tool Carrier 62 Crew Training on Apollo · Apollo 11 and 12 · 860 g (1.9 lb) · 41 cm hammer length · 16 cm head length · Apollo 14, 15, 16

  16. Cylindrical isomorphic mapping applied to invariant manifold dynamics for Earth-Moon Missions

    NASA Astrophysics Data System (ADS)

    Giancotti, Marco; Pontani, Mauro; Teofilatto, Paolo

    2014-11-01

    Several families of periodic orbits exist in the context of the circular restricted three-body problem. This work studies orbital motion of a spacecraft among these periodic orbits in the Earth-Moon system, using the planar circular restricted three-body problem model. A new cylindrical representation of the spacecraft phase space (i.e., position and velocity) is described, and allows representing periodic orbits and the related invariant manifolds. In the proximity of the libration points, the manifolds form a four-fold surface, if the cylindrical coordinates are employed. Orbits departing from the Earth and transiting toward the Moon correspond to the trajectories located inside this four-fold surface. The isomorphic mapping under consideration is also useful for describing the topology of the invariant manifolds, which exhibit a complex geometrical stretch-and-folding behavior as the associated trajectories reach increasing distances from the libration orbit. Moreover, the cylindrical representation reveals extremely useful for detecting periodic orbits around the primaries and the libration points, as well as the possible existence of heteroclinic connections. These are asymptotic trajectories that are ideally traveled at zero-propellant cost. This circumstance implies the possibility of performing concretely a variety of complex Earth-Moon missions, by combining different types of trajectory arcs belonging to the manifolds. This work studies also the possible application of manifold dynamics to defining a suitable, convenient end-of-life strategy for spacecraft placed in any of the unstable orbits. The final disposal orbit is an externally confined trajectory, never approaching the Earth or the Moon, and can be entered by means of a single velocity impulse (of modest magnitude) along the right unstable manifold that emanates from the Lyapunov orbit at L_2.

  17. ArcGIS Digitization of Apollo Surface Traverses

    NASA Technical Reports Server (NTRS)

    Petro, N. E.; Bleacher, J. E.; Gladdis, L. R.; Garry, W. B.; Lam, F.; Mest, S. C.

    2012-01-01

    The Apollo surface activities were documented in extraordinary detail, with every action performed by the astronauts while on the surface recorded either in photo, audio, film, or by written testimony [1]. The samples and in situ measurements the astronauts collected while on the lunar surface have shaped our understanding of the geologic history of the Moon, and the earliest history and evolution of the inner Solar System. As part of an ongoing LASERfunded effort, we are digitizing and georeferencing data from astronaut traverses and spatially associating them to available, co-registered remote sensing data. Here we introduce the products produced so far for Apollo 15, 16, and 17 missions.

  18. Space Radiation a Potential Show Stopper in Missions to Moon and Mars and beyond

    NASA Astrophysics Data System (ADS)

    Tripathi, Ram

    2007-04-01

    Exposure from the hazards of severe space radiation in deep space/ long duration missions is `the show stopper' for NASA's vision of missions to Moon, Mars and beyond. The key to the success of human exploration and development of space is protecting astronauts, habitat and electronics against the hazards of severe space radiation environment. Accurate risk assessments critically depend on the accuracy of the input information about the interaction of ions with materials, electronics and tissues. This is further augmented by nonexistence of in vivo or in vitro data or studies about continuous long duration exposure of radiation to tissues. Due to paucity of the huge amount of needed experimental input data about the interaction of radiation, it is imperative to develop reliable accurate models of nuclear reactions and structures that form the basic input ingredients. State-of-the-art nuclear cross sections models have been developed at the NASA Langley Research center. The vital role and importance of nuclear physics for space missions would be discussed and a few examples would be presented for space missions.

  19. Electromyographic analysis of skeletal muscle changes arising from 9 days of weightlessness in the Apollo-Soyuz space mission

    NASA Technical Reports Server (NTRS)

    Lafevers, E. V.; Nicogossian, A. E.; Hursta, W. N.

    1976-01-01

    Both integration and frequency analyses of the electromyograms from voluntary contractions were performed in one crewman of the Apollo-Soyuz Test Project mission. Of particular interest were changes in excitability, electrical efficiency, and fatigability. As a result of 9 days of weightlessness, muscle excitability was shown to increase; muscle electrical efficiency was found to decrease in calf muscles and to increase in arm muscles; and fatigability was found to increase significantly, as shown by spectral power shifts into lower frequencies. It was concluded from this study that skeletal muscles are affected by the disuse of weightlessness early in the period of weightlessness, antigravity muscles seem most affected by weightlessness, and exercise may abrogate the weightlessness effect. It was further concluded that electromyography is a sensitive tool for measuring spaceflight muscle effects.

  20. On Eagle's Wings: The Parkes Observatory's Support of the Apollo 11 Mission

    Microsoft Academic Search

    John M. Sarkissian

    2001-01-01

    At 12:56 p.m., on Monday 21 July 1969 (AEST), six hundred million people witnessed Neil Armstrong's historic first steps on the Moon through television pictures transmitted to Earth from the lunar module, Eagle. Three tracking stations were receiving the signals simultaneously. They were the CSIRO's Parkes Radio Telescope, the Honeysuckle Creek tracking station near Canberra, and NASA's Goldstone station in

  1. On Eagle's Wings: The Parkes Observatory's Support of the Apollo 11 Mission

    Microsoft Academic Search

    John M. Sarkissian

    At 12:56 p.m., on Monday 21 July 1969 (AEST), six hundred million people witnessed Neil Armstrong's historic first steps on the Moon through television pictures transmitted to Earth from the lunar module, Eagle. Three tracking stations were receiving the signals simultaneously. They were the CSIRO's Parkes Radio Telescope, the Honeysuckle Creek tracking station near Canberra, and NASA's Goldstone station in

  2. From Apollo Traverses to Future Exploration

    NASA Astrophysics Data System (ADS)

    Calzada, Mss Abigail; Voute, Sara; van Vynckt, Delphine; Foing, Bernard H.

    Historically, Apollo program is known as the first time that human could land in other space object, in this case Earth's moon, and come back safely to the Earth. It was the first time that humans had to adapt geological field work to extreme conditions in space. We can summarize the field work in a few steps: -Planning of the mission and field training of the astronauts. -Development of instrumental packages and reconnaissance of the area. -Geophysical measure-ments in situ and some sampling near the Lunar Module (LM). -Various EVA's of an average of six hours, from Apollo 15 with Lunar Rover Vehicle (LRV) support, collecting samples and taking measurements of various geophysical experiments. From now to future exploration we have to focus on apply all the knowledge we have from Apollo traverses and adapt it to the new technologies we are developing. The use of robotic rovers can save us hours of human EVA's in the way that we can predict the possible sites of interest before send human there. Also, the development of a field laboratory and habitat can provide us of the intruments necessary to do experiments without the need of a sample return mission. We validate these traverses in EuroMoonMars campaign.

  3. Flight Operations reunion for the Apollo 11 20th anniversary of the first manned lunar landing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The following major areas are presented: (1) the Apollo years; (2) official flight control manning list for Apollo 11; (3) original mission control emblem; (4) foundations of flight control; (5) Apollo-11 20th anniversary program and events; (6) Apollo 11 mission operations team certificate; (7) Apollo 11 mission summary (timeline); and (8) Apollo flight control team photographs and biographies.

  4. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At a media conference in the Apollo/Saturn V Center, former Apollo astronaut Edwin 'Buzz' Aldrin, who flew on Apollo 11, the launch to the moon, demonstrates a point in his comment for the press. Joining him in the conference are other Apollo astronauts Neil A. Armstrong (left), who also flew on Apollo 11 and was the first man to set foot on the moon; Gene Cernan (right), who flew on Apollo 10 and 17; and Walt Cunningham (back to camera), who flew on Apollo 7. In the background is Lisa Malone, chief of KSC's Media Services branch, who monitored the session. The four astronauts were at KSC for the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969.

  5. Apollo 13 lunar photography

    NASA Technical Reports Server (NTRS)

    Anderson, A. T.; Michlovitz, C. K.; Hug, K.

    1970-01-01

    A data users' note announces the availability of Apollo 13 pictorial data and aids the investigator in the selection of Apollo 13 photographs for study. This note provides guidance in the interpretation of the photographs. The note includes brief descriptions of the Apollo 13 mission objectives, photographic equipment, and photographic coverage and quality. The National Space Science Data Center (NSSDC) can provide all forms of the photographs described.

  6. JUICE: A European mission to Jupiter and its icy moons (Invited)

    NASA Astrophysics Data System (ADS)

    Dougherty, M. K.

    2013-12-01

    The recently selected European Space Agency mission JUICE (JUipter ICy moon Explorer), is planned for launch in 2022. Details of the mission will be described, including the payload, planned orbits and the resulting science. The focus of JUICE is to characterise the conditions that may have led to the emergence of habitable environments among the Jovian icy satellites, with special emphasis on the three ocean-bearing worlds, Ganymede, Europa, and Callisto. Ganymede is identified for detailed investigation since it provides a natural laboratory for analysis of the nature, evolution and potential habitability of icy worlds in general, but also because of the role it plays within the system of Galilean satellites, and its unique magnetic and plasma interactions with the surrounding Jovian environment. The mission will also focus on characterising the diversity of processes in the Jupiter system which may be required in order to provide a stable environment at Ganymede, Europa and Callisto on geologic time scales. Focused studies of Jupiter's atmosphere, and magnetosphere and their interaction with the Galilean satellites will further enhance our understanding of the evolution and dynamics of the Jovian system. JUICE spacecraft at Ganymede (courtesy Mike Carroll)

  7. Nuclear Thermal Rocket/vehicle design options for future NASA missions to the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; Corban, Robert R.; McGuire, Melissa L.; Beke, Erik G.

    1995-09-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a reference 240 t-class heavy lift launch vehicle (HLLV) and smaller 120 t HLLV option. Attractive performance characteristics and high-leverage technologies associated with both the engine and stage are identified, and supporting parametric sensitivity data is provided. The potential for commonality of engine and stage components to satisfy a broad range of lunar and Mars missions is also discussed.

  8. Neil Armstrong chats with attendees at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Former Apollo 11 astronaut Neil A. Armstrong talks with a former Apollo team member during an anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  9. Apollo 11 Astronaut Neil Armstrong Performs Ladder Practice

    NASA Technical Reports Server (NTRS)

    1969-01-01

    In preparation of the nation's first Lunar landing mission, Apollo 11 crew members underwent training activities to practice activities they would be performing during the mission. In this photograph, Neil Armstrong, donned in his space suit, practices getting back to the first rung of the ladder on the Lunar Module (LM). The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  10. MAJIS, the Moons And Jupiter Imaging Spectrometer, designed for the future ESA/JUICE mission

    NASA Astrophysics Data System (ADS)

    Piccioni, Giuseppe; Langevin, Yves; Filacchione, Gianrico; Poulet, Francois; Tosi, Federico; Eng, Pascal; Dumesnil, Cydalise; Zambelli, Massimo; Saggin, Bortolino; Fonti, Sergio; Grassi, Davide; Altieri, Francesca

    2014-05-01

    The Moons And Jupiter Imaging Spectrometer (MAJIS) is the VIS-IR spectral mapper selected for JUICE (Jupiter Icy Moon Explorer), the first Large-class mission in the ESA Cosmic Vision Programme. Scheduled for a launch in 2022, JUICE will perform a comprehensive exploration of the Jovian system thanks to several flybys of Callisto, Ganymede and Europa, before finally entering orbit around Ganymede. During these phases, MAJIS will acquire hyperspectral data necessary to unveil and map the surface composition of different geologic units of the satellites. Transfers between successive satellites' flybys shall be devoted to remote observations of Jupiter's atmosphere and auroras. MAJIS' instrument design relies on a 75 mm pupil, f/3.2 aperture TMA telescope matching two Czerny-Turner imaging spectrometers. A dichroic element is used to split the beam between the two spectral channels. The VIS-NIR spectral channel covers the 0.4-1.9 ?m range with a sampling of 2.3 nm/band. The IR channel works in the 1.5-5.7 ?m range with a 6.6 nm/band sampling. The entire optical structure is passively cooled at cryogenic temperature

  11. Field Trip to the Moon DVD - LRO/LCROSS Edition

    NSDL National Science Digital Library

    2009-03-10

    This special edition DVD--introducing NASA's LRO/LCROSS mission--captures the experience in a feature video created using NASA engineering models and scientific data. Viewers will experience what is like to travel through space to land on the Moon. Along the way, they'll discover some of the differences between the Earth and the Moon and what makes our planet unique and habitable. The DVD includes support media including segments on the LRO/LCROSS Mission, the Moon's formation, Apollo landing sites, future lunar landing animation, and Moon trivia questions. Educator Guide, Informal Educator Guide, Live Presenter Script, and other downloads are available at http://www.amnh.org/education/ftm. Length: 20:42 . The program is also offered at the American Museum of Natural History's Hayden Planetarium as a full-dome experience with a live presenter during the school year for school groups and visitors to take a virtual field trip to the Moon.

  12. The European Student Moon Orbiter and its Biological Lunar Experiment: A Unique Outreach Mission to the Moon

    Microsoft Academic Search

    J. Davidson; S. Bartlett; A. Carter; M. A. Cornwall; B. J. Dryer; C. D. Fernandes; S. K. Harrison; I. H. S. Janmohamed; J. P. Mason; V. Masteika; A. K. R. Morris; S. Otter; T. Tomkinson; P. T. Wilkinson

    2009-01-01

    The ESMO mission provides an ideal opportunity to increase public awareness of lunar missions and to train the current generation of space\\/planetary science students whilst also conducting novel science via the BioLEx scientific payload.

  13. On the Relationship between the Apollo 16 Ancient Regolith Breccias and Feldspathic Fragmental Breccias, and the Composition of the Prebasin Crust in the Central Highlands of the Moon

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.

    1996-01-01

    Two types of texturally and compositionally similar breccias that consist largely of fragmental debris from meteorite impacts occur at the Apollo 16 lunar site: Feldspathic fragmental breccias (FFBS) and ancient regolith breccias (ARBs). Both types of breccia are composed of a suite of mostly feldspathic components derived from the early crust of the Moon and mafic impact-melt breccias produced during the time of basin formation. The ARBs also contain components, such as agglutinates and glass spherules, indicating that the material of which they are composed occurred at the surface of the Moon as fine-grained regolith prior to lithification of the breccias. These components are absent from the FFBS, suggesting that the FFBs might be the protolith of the ARBS. However, several compositional differences exist between the two types of breccia, making any simple genetic relationship implausible. First, clasts of mafic impact-melt breccia occurring in the FFBs are of a different composition than those in the ARBS. Also the feldspathic "prebasin" components of the FFBs have a lower average Mg/Fe ratio than the corresponding components of the ARBS; the average composition of the plagiociase in the FFBs is more sodic than that of the ARBS; and there are differences in relative abundances of rare earth elements. The two breccia types also have different provenances: the FFBs occur primarily in ejecta from North Ray crater and presumably derive from the Descartes Formation, while the ARBs are restricted to the Cayley plains. Together these observations suggest that although some type of fragmental breccia may have been a precursor to the ARBS, the FFBs of North Ray crater are not a significant component of the ARBs and, by inference, the Cayley plains. The average compositions of the prebasin components of the two types of fragmental breccia are generally similar to the composition of the feldspathic lunar meteorites. With 30-31% Al203, however, they are slightly richer in plagiociase than the most feldspathic lunar meteorites (approximately 29% Al203), implying that the crust of the early central nearside of the Moon contained a higher abundance of highly feldspathic anorthosite than typical lunar highlands, as inferred from the lunar meteorites. The ancient regolith breccias, as well as the current surface regolith ofthe Cayley plains, are more mafic than (1) prebasin regoliths in the Central Highlands and (2) regions of highlands presently distant from nearside basins because they contain a high abundance (approximately 30%) of mafic impact-melt breccias produced during the time of basin formation that is absent from other regoliths.

  14. Nuclear Thermal Rocket/Stage Technology Options for NASA's Future Human Exploration Missions to the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; Corban, Robert R.; McGuire, Melissa L.; Beke, Erik G.

    1994-07-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners and designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (Isp ~ 850-1000 seconds) and engine thrust-to-weight ratio (~ 3-10), the NTR can also be configured as a ``dual mode'' system capable of generating stage electrical power. At present, NASA is examining a variety of mission applications for the NTR ranging from an expendable, ``single burn'' trans-lunar injection (TLI) stage for NASA's ``First Lunar Outpost'' (FLO) mission to all propulsive, ``multi-burn,'' spacecraft supporting a ``split cargo/piloted sprint'' Mars mission architecture. Two ``proven'' solid core NTR concepts are examined -one based on NERVA (Nuclear Engine for Rocket Vehicle Application)-derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide ``twisted ribbon'' fuel form developed by the Commonwealth of Independent States (CIS). Integrated systems and mission study results are used in designing ``aerobraked'' and ``all propulsive'' Mars vehicle concepts which are mass-, and volume-compatible with both a reference 240 metric tonne (t) heavy lift launch vehicle (HLLV) and a smaller 120 t HLLV option. For the ``aerobraked'' scenario, the 2010 piloted mission determines the size of the expendable trans-Mars injection (TMI) stage which is a growth version of the FLO TLI stage. An ``all-propulsive'' Moon/Mars mission architecture is also described which uses common ``modular'' engine and stage hardware consisting of: (1) clustered 15 thousand pounds force (klbf) NDR or CIS engines; (2) two ``standardized'' liquid hydrogen (LH2) tank sizes; and (3) ``dual mode'' NTR and refrigeration system technologies for long duration missions. The ``modular'' NTR approach can form the basis for a ``faster, safer, and cheaper'' space transportation system for tomorrow's piloted missions to the Moon and Mars.

  15. Passive seismic experiment. [Apollo 17 flight contributions to determining lunar structure by analyzing moonquake and meteoroid impact seismic signals

    NASA Technical Reports Server (NTRS)

    Latham, G. V.; Ewing, M.; Press, F.; Dorman, J.; Nakamura, Y.; Toksoz, N.; Lammlein, D.; Duennebier, F.; Dainty, A.

    1973-01-01

    The network of seismometers installed by the Apollo 17 and other Apollo missions is described. The effects of the impacts of lunar modules and S-4B stages on the lunar surfaces are discussed. The information concerning lunar composition which is obtained by analyzing the seismic signals generated by moonquakes and meteoroid impacts are analyzed. It is concluded that the seismic activity within the moon is extremely low compared to that with the earth. The moon is characterized by a rigid, dynamically inactive outer shell, approximately 1000 kilometers thick, surrounding a core that has markedly different elastic properties.

  16. The Inside of the Moon

    NASA Astrophysics Data System (ADS)

    Phillips, Roger J.

    2008-09-01

    Fundamental questions remain regarding the lunar interior, e.g.: Why did the Moon apparently cool so early? Why does the Moon have an asymmetric structure (nearside/farside)? What is the thickness of the lunar crust? How much of crustal variability is due to variable melting vs. impact redistribution? How big are impact basins and how deep did they excavate and thermally perturb the mantle? What was the temporal evolution of magmatism and brecciation? Did the mantle overturn subsequent to magma ocean solidification? How laterally heterogeneous is the lunar mantle? Does the Moon have a seismic discontinuity in the mantle? Does the Moon have a core? Does the Moon have a liquid outer core? Did the Moon have a core dynamo? Some of these questions will be at least partially answered in the next several years through new spacecraft investigations such as the GRAIL mission, which will map the lunar gravity field to unprecedented spatial resolution and accuracy. Furthermore, a long-lived, multi-station seismic network is also essential for understanding interior structure. Recent analyses of Apollo seismic data call into question the existence of the mantle discontinuity at 500-km depth, and the thickness of the lunar crust beneath the Apollo 12 and 14 landing sites now has multiple estimates. However, there is still a great deal that can be learned from existing lunar data sets. One productive approach would construct a set of self-consistent models that describe the coupled petrological-thermal evolution of the Moon. Such an investigation involves the high-level marriage of detailed petrological information from samples of the lunar crust and possibly mantle; of models that can predict accurately lunar solidi, liquidi, and equilibrium compositions; and of sophisticated thermal models that accurately incorporate the physics of melting and melt migration.

  17. Project Columbiad: Mission to the Moon. Book 1: Executive Summary. Volume 1: Mission trade studies and requirements. Volume 2: Subsystem trade studies and selection

    NASA Technical Reports Server (NTRS)

    Clarke, Michael; Denecke, Johan; Garber, Suzanne; Kader, Beth; Liu, Celia; Weintraub, Ben; Cazeau, Patrick; Goetz, John; Haughwout, James; Larson, Erik

    1992-01-01

    In response to the Report of the Advisory Committee on the future of the U.S. Space Program and a request from NASA's Exploration Office, the MIT Hunsaker Aerospace Corporation (HAC) conducted a feasibility study, known as Project Columbiad, on reestablishing human presence on the Moon before the year 2000. The mission criteria established were to transport a four person crew to the lunar surface at any latitude and back to Earth with a 14-28 day stay on the lunar surface. Safety followed by cost of the Columbiad Mission were the top level priorities of HAC. The resulting design has a precursor mission that emplaces the required surface payloads before the piloted mission arrives. Both the precursor and piloted missions require two National Launch System (NLS) launches. Both the precursor and piloted mission have an Earth orbit rendezvous (EOR) with a direct transit to the Moon post-EOR. The piloted mission returns to Earth via a direct transit. Included among the surface payloads preemplaced are a habitat, solar power plant (including fuel cells for the lunar night), lunar rover, and mechanisms used to cover the habitat with regolith (lunar soil) in order to protect the crew members from severe solar flare radiation.

  18. Apollo-Lunar Orbital Rendezvous Technique

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Apollo-Lunar Orbital Rendezvous Technique. The film shows artists rendition of the spacecrafts, boosters, and flight of the Apollo lunar missions. The Apollo spacecraft will consist of three modules: the manned Command Module; the Service Module, which contains propulsion systems; and the Lunar Excursion Module (LEM) to carry astronauts to the moon and back to the Command and Service Modules. The spacecraft will be launched via a three-stage Saturn booster. The first stage will provide 7.5 million pounds of thrust from five F-1 engines for liftoff and initial powered flight. The second stage will develop 1 million pounds of thrust from five J-2 engines to boost the spacecraft almost into Earth orbit. Immediately after ignition of the second stage, the Launch Escape System will be jettisoned. A single J-2 engine in the S4B stage will provide 200,000 pounds of thrust to place the spacecraft in an earth parking orbit. It also will be used to propel the spacecraft into a translunar trajectory, then it will separate from the Apollo Modules. Onboard propulsion systems will be used to insert the spacecraft into lunar orbit. Two astronauts will enter the LEM, which will separate from the command and service modules. The LEM will go into elliptical orbit and prepare for landing. The LEM will lift off of the Moon's surface to return to the Command and Service Modules, and most likely be left in lunar orbit. After leaving the Moon's orbit, and shortly before entering Earth's orbit, the Service Module will be ejected. The Command Module will be oriented for reentry into the Earth's atmosphere. A drogue parachute will deploy at approximately 50,000 feet, followed by the main parachute system for touchdown. [Entire movie available on DVD from CASI as Doc ID 20070030988. Contact help@sti.nasa.gov

  19. Remembering Apollo 11: The 30th Anniversary Data Archive CD-ROM

    NASA Technical Reports Server (NTRS)

    Cortright, Edgar M. (Editor)

    1999-01-01

    On July 20, 1969, the human race accomplished its single greatest technological achievement of all time when a human first set foot on another celestial body. Six hours after landing at 4:17 p.m. Eastern Standard Time (with less than thirty seconds of fuel remaining), Neil A. Armstrong took the "small step" into our greater future when he stepped off the Lunar Module, named Eagle, onto the surface of the Moon, from which he could look up and see Earth in the heavens as no one had done before him. He was shortly joined by Edwin "Buzz" Aldrin, and the two astronauts spent twenty-one hours on the lunar surface and returned forty-six pounds of lunar rocks. After their historic walks on the Moon, they successfully docked with Michael Collins, patiently orbiting the cold but no longer lifeless Moon alone in the Command module Columbia. This CR-ROM is intended as a collection of hard to find technical data and other interesting information about the Apollo 11 mission, as well as the apollo program in general. It includes basic overviews, such as a retrospective analysis, an annotated bibliography, and history of the lunar-orbit rendezvous concept. It also contains technical data, such as mission operations reports, press kits, and news references for all of the Apollo missions, the Apollo spacecraft, and the Saturn V launch vehicle. Rounding out this CD-ROM are extensive histories of the lunar Orbiter program (the robotic predecessor to Apollo, biographies of the Apollo astronauts and other key individuals, and interesting audio-visual materials, such as video and audio clips, photo galleries, and blueprint-like diagrams of the Apollo spacecraft.

  20. Apollo experience report: Protection of life and health

    NASA Technical Reports Server (NTRS)

    Wooley, B. C.

    1972-01-01

    The development, implementation, and effectiveness of the Apollo Lunar Quarantine Program and the Flight Crew Health Stabilization Program are discussed as part of the broad program required for the protection of the life and health of U.S. astronauts. Because the goal of the Apollo Program has been the safe transport of men to the moon and back to earth, protection of the astronauts and of the biosphere from potentially harmful lunar contaminants has been required. Also, to ensure mission success, the continuing good health of the astronauts before and during a mission has been necessary. Potential applications of specific aspects of the health and quarantine programs to possible manned missions to other planets are discussed.

  1. Borrow the Moon: The STFC Lunar Samples and Meteorites Loan Scheme

    ERIC Educational Resources Information Center

    Swift, Nick

    2013-01-01

    The Apollo missions brought back 382kg of Moon rock. The financial cost of getting these rocks was historically eye-watering so, understandably, NASA is choosy about who gets to play with them. Many go to scientists for laboratory investigation, but some have been set aside for loan to schools and the public. Luckily, the UK was allowed some,…

  2. Comments on the figure of the moon based on preliminary results from laser altimetry

    Microsoft Academic Search

    W. R. Wollenhaupt; W. L. Sjogren

    1972-01-01

    Range measurements from the orbiting spacecraft to the lunar surface were made during the Apollo 15 mission using a laser altimeter. The measurements were made in a plane inclined at approximately 26° with respect to the lunar equator. Analysis of measurements made during one complete lunar revolution indicates that the figure of the Moon is very complex. The lunar far

  3. Comments on the Figure of the Moon Based on Preliminary Results from Laser Altimetry

    Microsoft Academic Search

    W. R. Wollenhaupt; W. L. Sjogren

    1972-01-01

    Range measurements from the orbiting spacecraft to the lunar surface were made during the Apollo 15 mission using a laser altimeter. The measurements were made in a plane inclined at approximately 26° with respect to the lunar equator. Analysis of measurements made during one complete lunar revolution indicates that the figure of the Moon is very complex. The lunar far

  4. Apollo 11 Mission Report, Supplement 5: Performance of Lunar Module Reaction Control Systems

    NASA Technical Reports Server (NTRS)

    Blevins, D. R.; Jenkins, L. W.

    1971-01-01

    Spacecraft velocity data and crew reports indicated that RCS engine performance was nominal. It is estimated that the RCS engines accumulated a total of 1060 seconds on-time and 12,000 firings during the mission. The quad temperatures ranged from 132 to 232 F during the period when the heaters were active, within predicated ranges. The total propellant consumption from the RCS tanks was about 319 pounds, compared to a predicted value of 253 pounds. An additional 69 pounds of propellant were used from the ascent propulsion system tanks during interconnect feed operations associated with APS lift-off, following periods of rapid propellant usage. The only problems noted were two thrust chamber pressure switch failures on the quad one down-firing engine and on the quad 2 aft-firing engine. Engine performance was nominal on both engines, and the switch failures had no effect on the mission.

  5. Apollo 11 Astronauts Exit Launch Pad Elevator After Countdown Demonstration Test

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 crew members (left to right) Neil Armstrong, Edwin Aldrin, and Michael Collins, wearing space suits, leave the elevator after descending from the top of the launch tower. The three had just completed participation in the countdown demonstration test for the upcoming Apollo 11 mission. The Apollo 11 mission, the first lunar landing mission, launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  6. Restoration of the Apollo Heat Flow Experiments Metadata

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Stephens, M. K.; Taylor, P. T.; Williams, D. R.; Hills, H. K.; Nakamura, Y.

    2015-01-01

    Geothermal heat flow probes were deployed on the Apollo 15 and 17 missions as part of the Apollo Lunar Surface Experiments Package (ALSEP). At each landing site, the astronauts drilled 2 holes, 10-m apart, and installed a probe in each. The holes were 1- and 1.5-m deep at the Apollo 15 site and 2.5-m deep at the Apollo 17 sites. The probes monitored surface temperature and subsurface temperatures at different depths. At the Apollo 15 site, the monitoring continued from July 1971 to January 1977. At the Apollo 17 site, it did from December 1972 to September 1977. Based on the observations made through December 1974, Marcus Langseth, the principal investigator of the heat flow experiments (HFE), determined the thermal conductivity of the lunar regolith by mathematically modeling how the seasonal temperature fluctuation propagated down through the regolith. He also determined the temperature unaffected by diurnal and seasonal thermal waves of the regolith at different depths, which yielded the geothermal gradient. By multiplying the thermal gradient and the thermal conductivity, Langseth obtained the endogenic heat flow of the Moon as 21 mW/m(exp 2) at Site 15 and 16 mW/m(exp 2) at Site 17.

  7. Apollo: Learning from the past, for the future

    NASA Astrophysics Data System (ADS)

    Grabois, Michael R.

    2011-04-01

    This paper shares an interesting and unique case study of knowledge capture by the National Aeronautics and Space Administration (NASA), an ongoing project to recapture and make available the lessons learned from the Apollo lunar landing project so that those working on future projects do not have to "reinvent the wheel". NASA's new Constellation program, the successor to the Space Shuttle program, proposes a return to the Moon using a new generation of vehicles. The Orion Crew Vehicle and the Altair Lunar Lander will use hardware, practices, and techniques descended and derived from Apollo, Shuttle, and the International Space Station. However, the new generation of engineers and managers who will be working with Orion and Altair are largely from the decades following Apollo, and are likely not well aware of what was developed in the 1960s. In 2006, a project at NASA's Johnson Space Center was started to find pertinent Apollo-era documentation and gather it, format it, and present it using modern tools for today's engineers and managers. This "Apollo Mission Familiarization for Constellation Personnel" project is accessible via the web from any NASA center for those interested in learning answers to the question "how did we do this during Apollo?"

  8. Improvement in the Recovery Accuracy of the Lunar Gravity Field Based on the Future Moon-ILRS Spacecraft Gravity Mission

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Hsu, Houtse; Zhong, Min; Yun, Meijuan

    2015-07-01

    This study mostly concentrates on the sensitivity analysis regarding the future dedicated Moon-ILRS spacecraft gravity mission. Firstly, the new single and combined analytical error models for the cumulative lunar geoid height impacted by the major error sources comprising the inter-spacecraft range-rate of the interferometric laser ranging system (ILRS), the spacecraft orbital position tracked by the deep space network (DSN) and the non-conservative force of the drag-free control system (DFCS) are developed on the basis of the spacecraft-to-spacecraft tracking in the low-low mode (SST-LL) from the future twin Moon-ILRS spacecraft. Secondly, the correctness of the new single and combined analytical error models is proved according to the compliance of the cumulative lunar geoid height errors among the inter-spacecraft range-rate, orbital position and non-conservative force. Finally, in comparison with the past gravity recovery and interior laboratory (GRAIL) program, the preferred design for the future Moon-ILRS mission is achieved in this paper. We recommend that the future twin Moon-ILRS formation-flying spacecraft had better adopt the new-type space-borne instruments involving the ILRS and DFCS. We demonstrate the compatible accuracy indexes of the key sensors (e.g., 10-9 m/s in the inter-spacecraft range-rate, 1 m in the orbital position and 3 × 10-13 m/s2 in the non-conservative force) and the optimal orbital parameters (e.g., 25-km orbital altitude, 100-km inter-spacecraft range and 1-s sampling interval) in the future Moon-ILRS twin-spacecraft mission.

  9. Apollo Program

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Construction of Model 1 used in the LOLA simulator. This was a twenty-foot sphere which simulated for the astronauts what the surface of the moon would look like from 200 miles up. Project LOLA or Lunar Orbit and Landing Approach was a simulator built at Langley to study problems related to landing on the lunar surface. It was a complex project that cost nearly $2 million dollars. James Hansen wrote: 'This simulator was designed to provide a pilot with a detailed visual encounter with the lunar surface; the machine consisted primarily of a cockpit, a closed-circuit TV system, and four large murals or scale models representing portions of the lunar surface as seen from various altitudes. The pilot in the cockpit moved along a track past these murals which would accustom him to the visual cues for controlling a spacecraft in the vicinity of the moon. Unfortunately, such a simulation--although great fun and quite aesthetic--was not helpful because flight in lunar orbit posed no special problems other than the rendezvous with the LEM, which the device did not simulate. Not long after the end of Apollo, the expensive machine was dismantled.' (p. 379) Ellis J. White wrote in his paper 'Discussion of Three Typical Langley Research Center Simulation Programs,' 'Model 1 is a 20-foot-diameter sphere mounted on a rotating base and is scaled 1 in. = 9 miles. Models 2,3, and 4 are approximately 15x40 feet scaled sections of model 1. Model 4 is a scaled-up section of the Crater Alphonsus and the scale is 1 in. = 200 feet. All models are in full relief except the sphere.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 379; Ellis J. White, 'Discussion of Three Typical Langley Research Center Simulation Programs,' Paper presented at the Eastern Simulation Council (EAI's Princeton Computation Center), Princeton, NJ, October 20, 1966.

  10. Apollo Project

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Construction of Model 1 used in the LOLA simulator. This was a twenty-foot sphere which simulated for the astronauts what the surface of the moon would look like from 200 miles up. Project LOLA or Lunar Orbit and Landing Approach was a simulator built at Langley to study problems related to landing on the lunar surface. It was a complex project that cost nearly $2 million dollars. James Hansen wrote: 'This simulator was designed to provide a pilot with a detailed visual encounter with the lunar surface; the machine consisted primarily of a cockpit, a closed-circuit TV system, and four large murals or scale models representing portions of the lunar surface as seen from various altitudes. The pilot in the cockpit moved along a track past these murals which would accustom him to the visual cues for controlling a spacecraft in the vicinity of the moon. Unfortunately, such a simulation--although great fun and quite aesthetic--was not helpful because flight in lunar orbit posed no special problems other than the rendezvous with the LEM, which the device did not simulate. Not long after the end of Apollo, the expensive machine was dismantled.' (p. 379) Ellis J. White wrote: 'Model 1 is a 20-foot-diameter sphere mounted on a rotating base and is scaled 1 in. = 9 miles. Models 2,3, and 4 are approximately 15x40 feet scaled sections of model 1. Model 4 is a scaled-up section of the Crater Alphonsus and the scale is 1 in. = 200 feet. All models are in full relief except the sphere.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 379; Ellis J. White, 'Discussion of Three Typical Langley Research Center Simulation Programs,' Paper presented at the Eastern Simulation Council (EAI's Princeton Computation Center), Princeton, NJ, October 20, 1966.

  11. Apollo Lesson Sampler: Apollo 13 Lessons Learned

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael A.

    2008-01-01

    This CD-ROM contains a two-part case study of the Apollo 13 accident. The first lesson contains an overview of the electrical system hardware on the Apollo spacecraft, providing a context for the details of the oxygen tank explosion, and the failure chain reconstruction that led to the conditions present at the time of the accident. Given this background, the lesson then covers the tank explosion and immediate damage to the spacecraft, and the immediate response of Mission Control to what they saw. Part 2 of the lesson picks up shortly after the explosion of the oxygen tank on Apollo 13, and discusses how Mission Control gained insight to and understanding of the damage in the aftermath. Impacts to various spacecraft systems are presented, along with Mission Control's reactions and plans for in-flight recovery leading to a successful entry. Finally, post-flight vehicle changes are presented along with the lessons learned.

  12. Lunar science: The Apollo Legacy

    Microsoft Academic Search

    D. S. Burnett

    1975-01-01

    A general review of lunar science is presented, utilizing two themes: a summary of fundamental problems relating to the composition, structure, and history of the moon and a discussion of some surprising, unanticipated results obtained from Apollo lunar science. (1) The moon has a crust of approximately 60-km thickness, probably composed of feldspar-rich rocks. Such rocks are exposed at the

  13. The scientific rationale for the C1XS X-ray spectrometer on India's Chandrayaan-1 mission to the moon

    Microsoft Academic Search

    I. A. Crawford; K. H. Joy; B. J. Kellett; M. Grande; M. Anand; N. Bhandari; A. C. Cook; L. d’Uston; V. A. Fernandes; O. Gasnault; J. Goswami; C. J. Howe; J. Huovelin; D. Koschny; D. J. Lawrence; B. J. Maddison; S. Maurice; S. Narendranath; C. Pieters; T. Okada; D. A. Rothery; S. S. Russell; P. Sreekumar; B. Swinyard; M. Wieczorek; M. Wilding

    2009-01-01

    The UK-built Chandrayaan-1 X-ray Spectrometer (C1XS) will fly as an ESA instrument on India's Chandrayaan-1 mission to the Moon, launched in October 2008. C1XS builds on experience gained with the earlier D-CIXS instrument on SMART-1, but will be a scientifically much more capable instrument. Here we describe the scientific objectives of this instrument, which include mapping the abundances of the

  14. Lunar Terrain and Albedo Reconstruction from Apollo Imagery

    NASA Technical Reports Server (NTRS)

    Nefian, Ara V.; Kim, Taemin; Broxton, Michael; Moratto, Zach

    2010-01-01

    Generating accurate three dimensional planetary models and albedo maps is becoming increasingly more important as NASA plans more robotics missions to the Moon in the coming years. This paper describes a novel approach for separation of topography and albedo maps from orbital Lunar images. Our method uses an optimal Bayesian correlator to refine the stereo disparity map and generate a set of accurate digital elevation models (DEM). The albedo maps are obtained using a multi-image formation model that relies on the derived DEMs and the Lunar- Lambert reflectance model. The method is demonstrated on a set of high resolution scanned images from the Apollo era missions.

  15. Adrenocortical responses of the Apollo 17 crew members

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Rambaut, P. C.; Johnson, P. C.

    1974-01-01

    Changes in adrenal activity of the three Apollo 17 crew members were studied during the 12.55-day mission and during selected post-recovery days. Aldosterone excretion was normal early and elevated later in the mission, probably causing a loss in total body exchangeable potassium. There was decreased 17-hydroxycorticosteroid excretion only during the early mission days for the two moon landers and throughout the mission for the other astronaut. Cortisol excretion was elevated on physically stressful mission days. At recovery, plasma ACTH was elevated without a similar increase in plasma cortisol. Angiotensin I activity was elevated at recovery in only one crewman. This crewman was the only one with a decreased extracellular fluid volume. These results indicate that the mission and its activities affect adrenal function of the crewmen.

  16. The Cassini-Huygens mission includes the Cassini orbiter, which orbits Saturn and its moons for four years, and the Huygens probe,

    E-print Network

    Mojzsis, Stephen J.

    The Cassini-Huygens mission includes the Cassini orbiter, which orbits Saturn and its moons and photochemistry of Saturn, Titan and other moons,and the nature and history of Saturn's rings. UVIS was built by a Titan IV/B Centaur rocket Launched from Kennedy Space Center in Florida Cruise to Saturn 7 years and 3

  17. Neil Armstrong chats with attendees at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Former Apollo 11 astronaut Neil A. Armstrong poses for a photograph with fans who attended the anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  18. Quarantined Apollo 11 Astronauts Greeted by Wives

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. On arrival at Ellington Air Force base near the MSC, the crew, still under a 21 day quarantine in the MQF are greeted by their wives. Looking out of the facility are (L-R) Armstrong, Aldrin, and Collins. Wives are (L-R) Pat Collins, Jan Armstrong, and Joan Aldrin.

  19. JUpiter ICy moons Explorer (juice): AN ESA L-Class Mission Candidate to the Jupiter System

    NASA Astrophysics Data System (ADS)

    Dougherty, M. K.; Grasset, O.; Erd, C.; Titov, D.; Bunce, E. J.; Coustenis, A.; Blanc, M.; Coates, A. J.; Drossart, P.; Fletcher, L.; Hussmann, H.; Jaumann, R.; Krupp, N.; Prieto-Ballesteros, O.; Tortora, P.; Tosi, F.; Van Hoolst, T.

    2012-04-01

    The overarching theme for JUICE is: The emergence of habitable worlds around gas giants. Humankind wonders whether the origin of life is unique to the Earth or if it occurs elsewhere in our Solar System or beyond. To answer this question, even though the mechanisms by which life originated on Earth are not yet clearly understood, one can assume that the necessary conditions involve the simultaneous presence of organic compounds, trace elements, water, energy sources and a relative stability of the environment over time. JUICE will address the question: Are there current habitats elsewhere in the Solar System with the necessary conditions (water, biological essential elements, energy and stability) to sustain life? The spatial extent and evolution of habitable zones within the Solar System are critical elements in the development and sustainment of life, as well as in addressing the question of whether life developed on Earth alone or whether it was developed in other Solar System environments and was then imported to Earth. The focus of JUICE is to characterise the conditions that may have led to the emergence of habitable environments among the Jovian icy satellites, with special emphasis on the three ocean-bearing worlds, Ganymede, Europa, and Callisto. Ganymede is identified for detailed investigation since it provides a natural laboratory for analysis of the nature, evolution and potential habitability of icy worlds in general, but also because of the role it plays within the system of Galilean satellites, and its unique magnetic and plasma interactions with the surrounding Jovian environment. For Europa, where two targeted flybys are planned, the focus will be on the chemistry essential to life, including organic molecules, and on understanding the formation of surface features and the composition of the non water-ice material, leading to the identification and characterisation of candidate sites for future in situ exploration. Furthermore, JUICE will provide the first subsurface observations of this icy moon, including the first determination of the minimal thickness of the icy crust over the most recently active regions. JUICE will determine the characteristics of liquid-water oceans below the icy surfaces of the moons. This will lead to an understanding of the possible sources and cycling of chemical and thermal energy, allow investigation of the evolution and chemical composition of the surfaces and of the subsurface oceans, and enable an evaluation of the processes that have affected the satellites and their environments through time. The study of the diversity of the satellite system will be enhanced with additional information gathered remotely on Io and smaller moons. The mis-sion will also focus on characterising the diversity of processes in the Jupiter system which may be required in order to provide a stable environment at Ganymede, Europa and Callisto on geologic time scales, including gravitational coupling between the Galilean satellites and their long term tidal influence on the system as a whole. Focused stud-ies of Jupiter's atmosphere, and magnetosphere and their interaction with the Galilean satellites will further enhance our understanding of the evolution and dynamics of the Jovian system. The circulation, meteorology, chemistry and structure of Jupiter will be studied from the cloud tops to the thermosphere. These observations will be attained over a sufficiently long temporal baseline with broad latitudinal coverage to investigate evolving weather systems and the mechanisms of transporting energy, momentum and material between the different layers. The focus in Jupiter's magnetosphere will include an investigation of the three dimensional properties of the magnetodisc and in-depth study of the coupling processes within the magnetosphere, ionosphere and thermosphere. Aurora and radio emissions and their response to the solar wind will be elucidated.

  20. APOLLO 12: A heartstopping launch

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 12: A heartstopping launch as the rocket is struck by lightning. From the film documentary 'APOLLO 12: 'Pinpoint for Science'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLLO 12: Second manned lunar landing and return with Charles 'Pete' Conrad, Jr., Richard F. Gordon, and Alan F. Bean. Landed in the Ocean of Storms on November 19, 1969; deployed television camera and ALSEP experiments; two EVA's performed; collected core samples and lunar materials; photographed and retrieved parts from surveyor 3 spacecraft. Mission duration 244hrs 36min 24sec

  1. APOLLO 11: The heroes Return

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The crew of APOLLO 11 return as heroes after their succesfull landing on the lunar surface. From the film documentary 'APOLLO 11:'The Eagle Has Landed'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLLO 11: First manned lunar landing and return to Earth with Neil A. Armstrong, Michael Collins, and Edwin E. Aldrin. Landed in the Sea of Tranquilityon July 20, 1969; deployed TV camera and EASEP experiments, performed lunar surface EVA, returned lunar soil samples. Mission Duration 195 hrs 18 min 35sec

  2. Apollo: A retrospective analysis

    NASA Technical Reports Server (NTRS)

    Launius, Roger D.

    1994-01-01

    Since the completion of Project Apollo more than twenty years ago there have been a plethora of books, studies, reports, and articles about its origin, execution, and meaning. At the time of the twenty-fifth anniversary of the first landing, it is appropriate to reflect on the effort and its place in U.S. and NASA history. This monograph has been written as a means to this end. It presents a short narrative account of Apollo from its origin through its assessment. That is followed by a mission by mission summary of the Apollo flights and concluded by a series of key documents relative to the program reproduced in facsimile. The intent of this monograph is to provide a basic history along with primary documents that may be useful to NASA personnel and others desiring information about Apollo.

  3. In Search of Moon Trees

    NSDL National Science Digital Library

    Phillips, Tony.

    2002-01-01

    In 1971, hundreds of tree seedlings germinated aboard NASA's Apollo 14 mission to the moon. A few years later, they were planted around the nation, often with much fanfare. However, no one kept a systematic record of these plantings, and as a result, the whereabouts of most of the trees remains a mystery. Visitors can read or listen to an account of the history and current status of them at this Web site, and follow links to access additional information relating to the story or to learn the location of known Moon trees. NASA scientist Dave Williams continues to search for the remaining trees and encourages readers to contact him if they believe they know of trees not currently mentioned on his list. What this site lacks in colorful, interactive features is more than made up for by its engaging feature story.

  4. Apollo lunar sounder experiment

    USGS Publications Warehouse

    Phillips, R.J.; Adams, G.F.; Brown, W.E., Jr.; Eggleton, R.E.; Jackson, P.; Jordan, R.; Linlor, W.I.; Peeples, W.J.; Porcello, L.J.; Ryu, J.; Schaber, G.; Sill, W.R.; Thompson, T.W.; Ward, S.H.; Zelenka, J.S.

    1973-01-01

    The scientific objectives of the Apollo lunar sounder experiment (ALSE) are (1) mapping of subsurface electrical conductivity structure to infer geological structure, (2) surface profiling to determine lunar topographic variations, (3) surface imaging, and (4) measuring galactic electromagnetic radiation in the lunar environment. The ALSE was a three-frequency, wide-band, coherent radar system operated from lunar orbit during the Apollo 17 mission.

  5. Six Flags over Luna: The Role of Flags in Moon Landing Conspiracy Theories

    E-print Network

    Platoff, Anne M.

    2011-01-01

    Apollo 11 Mission (frame from the data acquisition camera,cameras mounted on the lunar rovers to confirm that the ApolloApollo missions. During the missions, the astronauts used specially modified Hasselblad cameras

  6. Apollo Program

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Construction of the track which runs in front of Model 2. Technicians work on Model 1, the 20-foot sphere. Project LOLA or Lunar Orbit and Landing Approach was a simulator built at Langley to study problems related to landing on the lunar surface. It was a complex project that cost nearly $2 million dollars. James Hansen wrote: 'This simulator was designed to provide a pilot with a detailed visual encounter with the lunar surface; the machine consisted primarily of a cockpit, a closed-circuit TV system, and four large murals or scale models representing portions of the lunar surface as seen from various altitudes. The pilot in the cockpit moved along a track past these murals which would accustom him to the visual cues for controlling a spacecraft in the vicinity of the moon. Unfortunately, such a simulation--although great fun and quite aesthetic--was not helpful because flight in lunar orbit posed no special problems other than the rendezvous with the LEM, which the device did not simulate. Not long after the end of Apollo, the expensive machine was dismantled.' (p. 379) Ellis J. White wrote in his paper 'Discussion of Three Typical Langley Research Center Simulation Programs,' 'The model system is designed so that a television camera is mounted on a camera boom on each transport cart and each cart system is shared by two models. The cart's travel along the tracks represents longitudinal motion along the plane of a nominal orbit, vertical travel of the camera boom represents latitude on out-of-plane travel, and horizontal travel of the camera boom represents altitude changes.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 379; Ellis J. White, 'Discussion of Three Typical Langley Research Center Simulation Programs,' Paper presented at the Eastern Simulation Council (EAI's Princeton Computation Center), Princeton, NJ, October 20, 1966.

  7. Apollo Project

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Artists used paintbrushes and airbrushes to recreate the lunar surface on each of the four models comprising the LOLA simulator. Project LOLA or Lunar Orbit and Landing Approach was a simulator built at Langley to study problems related to landing on the lunar surface. It was a complex project that cost nearly $2 million dollars. James Hansen wrote: 'This simulator was designed to provide a pilot with a detailed visual encounter with the lunar surface; the machine consisted primarily of a cockpit, a closed-circuit TV system, and four large murals or scale models representing portions of the lunar surface as seen from various altitudes. The pilot in the cockpit moved along a track past these murals which would accustom him to the visual cues for controlling a spacecraft in the vicinity of the moon. Unfortunately, such a simulation--although great fun and quite aesthetic--was not helpful because flight in lunar orbit posed no special problems other than the rendezvous with the LEM, which the device did not simulate. Not long after the end of Apollo, the expensive machine was dismantled.' (p. 379) Ellis J. White described the simulator as follows: 'Model 1 is a 20-foot-diameter sphere mounted on a rotating base and is scaled 1 in. = 9 miles. Models 2,3, and 4 are approximately 15x40 feet scaled sections of model 1. Model 4 is a scaled-up section of the Crater Alphonsus and the scale is 1 in. = 200 feet. All models are in full relief except the sphere.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 379; Ellis J. White, 'Discussion of Three Typical Langley Research Center Simulation Programs,' Paper presented at the Eastern Simulation Council (EAI's Princeton Computation Center), Princeton, NJ, October 20, 1966.

  8. Apollo Program

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Construction of the track which runs in front of Model 3: Project LOLA or Lunar Orbit and Landing Approach was a simulator built at Langley to study problems related to landing on the lunar surface. It was a complex project that cost nearly $2 million dollars. James Hansen wrote: 'This simulator was designed to provide a pilot with a detailed visual encounter with the lunar surface; the machine consisted primarily of a cockpit, a closed-circuit TV system, and four large murals or scale models representing portions of the lunar surface as seen from various altitudes. The pilot in the cockpit moved along a track past these murals which would accustom him to the visual cues for controlling a spacecraft in the vicinity of the moon. Unfortunately, such a simulation--although great fun and quite aesthetic--was not helpful because flight in lunar orbit posed no special problems other than the rendezvous with the LEM, which the device did not simulate. Not long after the end of Apollo, the expensive machine was dismantled.' (p. 379) Ellis J. White wrote in his paper 'Discussion of Three Typical Langley Research Center Simulation Programs,' 'The model system is designed so that a television camera is mounted on a camera boom on each transport cart and each cart system is shared by two models. The cart's travel along the tracks represents longitudinal motion along the plane of a nominal orbit, vertical travel of the camera boom represents latitude on out-of-plane travel, and horizontal travel of the camera boom represents altitude changes.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 379; Ellis J. White, 'Discussion of Three Typical Langley Research Center Simulation Programs,' Paper presented at the Eastern Simulation Council (EAI's Princeton Computation Center), Princeton, NJ, October 20, 1966.

  9. Apollo Project

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Track, Model 2 and Model 1, the 20-foot sphere. Project LOLA or Lunar Orbit and Landing Approach was a simulator built at Langley to study problems related to landing on the lunar surface. It was a complex project that cost nearly $2 million dollars. James Hansen wrote: 'This simulator was designed to provide a pilot with a detailed visual encounter with the lunar surface; the machine consisted primarily of a cockpit, a closed-circuit TV system, and four large murals or scale models representing portions of the lunar surface as seen from various altitudes. The pilot in the cockpit moved along a track past these murals which would accustom him to the visual cues for controlling a spacecraft in the vicinity of the moon. Unfortunately, such a simulation--although great fun and quite aesthetic--was not helpful because flight in lunar orbit posed no special problems other than the rendezvous with the LEM, which the device did not simulate. Not long after the end of Apollo, the expensive machine was dismantled.' (p. 379) From Ellis J. White, 'Discussion of Three Typical Langley Research Center Simulation Programs,' Paper presented at the Eastern Simulation Council (EAI's Princeton Computation Center), Princeton, NJ, October 20, 1966. 'The model system is designed so that a television camera is mounted on a camera boom on each transport cart and each cart system is shared by two models. The cart's travel along the tracks represents longitudinal motion along the plane of a nominal orbit, vertical travel of the camera boom represents latitude on out-of-plane travel, and horizontal travel of the camera boom represents altitude changes.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 379.

  10. Apollo Project

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Artists used paintbrushes and airbrushes to recreate the lunar surface on each of the four models comprising the LOLA simulator. Project LOLA or Lunar Orbit and Landing Approach was a simulator built at Langley to study problems related to landing on the lunar surface. It was a complex project that cost nearly $2 million dollars. James Hansen wrote: 'This simulator was designed to provide a pilot with a detailed visual encounter with the lunar surface; the machine consisted primarily of a cockpit, a closed-circuit TV system, and four large murals or scale models representing portions of the lunar surface as seen from various altitudes. The pilot in the cockpit moved along a track past these murals which would accustom him to the visual cues for controlling a spacecraft in the vicinity of the moon. Unfortunately, such a simulation--although great fun and quite aesthetic--was not helpful because flight in lunar orbit posed no special problems other than the rendezvous with the LEM, which the device did not simulate. Not long after the end of Apollo, the expensive machine was dismantled.' (p. 379) Ellis J. White further described LOLA in his paper 'Discussion of Three Typical Langley Research Center Simulation Programs,' 'Model 1 is a 20-foot-diameter sphere mounted on a rotating base and is scaled 1 in. = 9 miles. Models 2,3, and 4 are approximately 15x40 feet scaled sections of model 1. Model 4 is a scaled-up section of the Crater Alphonsus and the scale is 1 in. = 200 feet. All models are in full relief except the sphere.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 379; Ellis J. White, 'Discussion of Three Typical Langley Research Center Simulation Programs,' Paper presented at the Eastern Simulation Council (EAI's Princeton Computation Center), Princeton, NJ, October 20, 1966.

  11. Apollo Project

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Artists used paintbrushes and airbrushes to recreate the lunar surface on each of the four models comprising the LOLA simulator. Project LOLA or Lunar Orbit and Landing Approach was a simulator built at Langley to study problems related to landing on the lunar surface. It was a complex project that cost nearly $2 million dollars. James Hansen wrote: 'This simulator was designed to provide a pilot with a detailed visual encounter with the lunar surface; the machine consisted primarily of a cockpit, a closed-circuit TV system, and four large murals or scale models representing portions of the lunar surface as seen from various altitudes. The pilot in the cockpit moved along a track past these murals which would accustom him to the visual cues for controlling a spacecraft in the vicinity of the moon. Unfortunately, such a simulation--although great fun and quite aesthetic--was not helpful because flight in lunar orbit posed no special problems other than the rendezvous with the LEM, which the device did not simulate. Not long after the end of Apollo, the expensive machine was dismantled.' (p. 379) Ellis J. White further described LOLA in his paper 'Discussion of Three Typical Langley Research Center Simulation Programs,' 'Model 1 is a 20-foot-diameter sphere mounted on a rotating base and is scaled 1 in. = 9 miles. Models 2,3, and 4 are approximately 15x40 feet scaled sections of model 1. Model 4 is a scaled-up section of the Crater Alphonsus and the scale is 1 in. = 200 feet. All models are in full relief except the sphere.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 379; From Ellis J. White, 'Discussion of Three Typical Langley Research Center Simulation Programs,' Paper presented at the Eastern Simulation Council (EAI's Princeton Computation Center), Princeton, NJ, October 20, 1966.

  12. Apollo Program

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Construction of Model 2 used in the LOLA simulator: Project LOLA or Lunar Orbit and Landing Approach was a simulator built at Langley to study problems related to landing on the lunar surface. It was a complex project that cost nearly $2 million dollars. James Hansen wrote: 'This simulator was designed to provide a pilot with a detailed visual encounter with the lunar surface; the machine consisted primarily of a cockpit, a closed-circuit TV system, and four large murals or scale models representing portions of the lunar surface as seen from various altitudes. The pilot in the cockpit moved along a track past these murals which would accustom him to the visual cues for controlling a spacecraft in the vicinity of the moon. Unfortunately, such a simulation--although great fun and quite aesthetic--was not helpful because flight in lunar orbit posed no special problems other than the rendezvous with the LEM, which the device did not simulate. Not long after the end of Apollo, the expensive machine was dismantled.' (p. 379) Ellis J. White wrote in his paper, 'Discussion of Three Typical Langley Research Center Simulation Programs,' 'Model 1 is a 20-foot-diameter sphere mounted on a rotating base and is scaled 1 in. = 9 miles. Models 2,3, and 4 are approximately 15x40 feet scaled sections of model 1. Model 4 is a scaled-up section of the Crater Alphonsus and the scale is 1 in. = 200 feet. All models are in full relief except the sphere.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 379; Ellis J. White, 'Discussion of Three Typical Langley Research Center Simulation Programs,' Paper presented at the Eastern Simulation Council (EAI's Princeton Computation Center), Princeton, NJ, October 20, 1966.

  13. The Interior of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission

    NASA Astrophysics Data System (ADS)

    Zuber, Maria

    2015-04-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mapped the Moon from March through December 2012 at average altitudes from 55 km down to 11 km. The current global gravity field resolves spatial blocks of

  14. Soil mechanics. [characteristics of lunar soil from Apollo 17 flight lunar landing site

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Carrier, W. D., III; Costes, N. C.; Houston, W. N.; Scott, R. F.; Hovland, H. J.

    1973-01-01

    The soil mechanics experiment on the Apollo 17 mission to the Taurus-Littrow area of the moon is discussed. The objectives of the experiment were to determine the physical characteristics and mechanical properties of the lunar soil at the surface and subsurface in lateral directions. Data obtained on the lunar surface in conjunction with observations of returned samples of lunar soil are used to determine in-place density and porosity profiles and to determine strength characteristics on local and regional scales.

  15. Interviews with the Apollo lunar surface astronauts in support of planning for EVA systems design

    NASA Technical Reports Server (NTRS)

    Connors, Mary M.; Eppler, Dean B.; Morrow, Daniel G.

    1994-01-01

    Focused interviews were conducted with the Apollo astronauts who landed on the moon. The purpose of these interviews was to help define extravehicular activity (EVA) system requirements for future lunar and planetary missions. Information from the interviews was examined with particular attention to identifying areas of consensus, since some commonality of experience is necessary to aid in the design of advanced systems. Results are presented under the following categories: mission approach; mission structure; suits; portable life support systems; dust control; gloves; automation; information, displays, and controls; rovers and remotes; tools; operations; training; and general comments. Research recommendations are offered, along with supporting information.

  16. Earthrise - Apollo 8

    NSDL National Science Digital Library

    NASA

    This view of the rising Earth greeted the Apollo 8 astronauts as they came from behind the Moon after the lunar orbit insertion burn. Earth is about five degrees above the horizon in the photo. The unnamed surface features in the foreground are near the eastern limb of the Moon as viewed from Earth. The lunar horizon is approximately 780 kilometers from the spacecraft. Width of the photographed area at the horizon is about 175 km (109 miles). On the Earth 386,000 km (240,000 miles) away, the sunset terminator bisects Africa.

  17. Lunar Surface Reconstruction from Apollo MC Images

    NASA Astrophysics Data System (ADS)

    Elaksher, Ahmed F.; Al-Jarrah, Ahmad; Walker, Kyle

    2015-07-01

    The last three Apollo lunar missions (15, 16, and 17) carried an integrated photogrammetric mapping system of a metric camera (MC), a high-resolution panoramic camera, a star camera, and a laser altimeter. Recently images taken by the MC were scanned by Arizona State University (ASU); these images contain valuable information for scientific exploration, engineering analysis, and visualization of the Moon's surface. In this article, we took advantage of the large overlaps, the multi viewing, and the high ground resolution of the images taken by the Apollo MC in generating an accurate and reliable surface of the Moon. We started by computing the relative positions and orientations of the exposure stations through a rigorous photogrammetric bundle adjustment process. We then generated a surface model using a hierarchical correlation-based matching algorithm. The matching algorithm was implemented in a multi-photo scheme and permits the exclusion of obscured pixels. The generated surface model was registered with LOLA topographic data and the comparison between the two surfaces yielded an average absolute difference of 36 m. These results look very promising and demonstrate the effectiveness of the proposed algorithm in accounting for depth discontinuities, occlusions, and image-signal noise.

  18. The Apollo VHF ranging system

    Microsoft Academic Search

    E. J. Nossen

    1977-01-01

    As the Apollo program proceeded, redundancy became a requirement for all crew safety functions. One critical period of the Apollo missions was the rendezvous of the Command Module and the Lunar Module. The rendezvous radar provided the critical range, range rate, and angle measurements necessary to complete the rendezvous. Use of a redundant radar for backup was out of the

  19. Solar Reflectance Measurements of Apollo Lunar Soils

    NASA Astrophysics Data System (ADS)

    Foote, E.; Paige, D.; Shepard, M.; Johnson, J.; Grundy, W.; Biggar, S.; Greenhagen, B.; Allen, C.

    2012-09-01

    The moon is the one planetary object from which we have returned samples. The goal of this work is to analyze and understand the solar reflectance of the Moon. Our approach is to compare Lunar Reconnaissance Orbiter (LRO) Diviner orbital solar albedo measurements at the Apollo soil sample sites with laboratory bidirectional reflectance measurements. CAPTEM provided us with five representative lunar soil samples: a typical low albedo mare sample (10084, Apollo 11), a low titanium basaltic sample with impact breccias (12001, Apollo 12), an Apollo 15 sample (15071), a high albedo lunar highlands soil (68810 & 61141, Apollo 16) and an Apollo 17 soil sample (70181). The laboratory and Diviner datasets provide complementary and independent insights into the photometric properties of the lunar surface. We have made the most extensive set of laboratory bidirectional measurements of lunar soil to date and have successfully fit photometric models to the laboratory data.

  20. APOLLO XVII LUNAR SURFACE ELECTRICAL PROPERTIES EXPERIMENT

    E-print Network

    Rathbun, Julie A.

    may help interpret observations already made with both earth-based radar and with bistatic radar. (For an elementary discussion of bistatic radar and some preliminary results see On the Moon with Apollo 16-Guidebook

  1. The Apollo Archive Explorer Douglas W. Oard

    E-print Network

    Oard, Doug

    video, the Apollo astronauts also took about 6,000 still photographs using Hasselblad cameras which wereThe Apollo Archive Explorer Douglas W. Oard College of Information Studies/UMIACS University jmalionek@gmail.com ABSTRACT A system for exploring the rich recorded legacy of the Apollo missions

  2. APOLLO MANNED LUNAR LANDING SCIENTIFIC EXPERIMENT PROPOSAL

    E-print Network

    Rathbun, Julie A.

    APOLLO MANNED LUNAR LANDING SCIENTIFIC EXPERIMENT PROPOSAL GEOLOGICAL FIELD INVESTIGATION IN EARLY APOLLO MANNED LUNAR LANDING MISSIONS Abstract and Techi~icalSection E. M.Shoemaker, U. S-investigator November 1965 #12;APOLLO MANNED 1,UNAR I,ANDING SCIENTIFIC EXPERIMENT PROPOSAL GEOLOGICAL FIETADINi

  3. Evidence from Apollo.

    ERIC Educational Resources Information Center

    Lowman, Paul D., Jr.

    2001-01-01

    Discusses the claims of tabloids and television that the U.S. mission to the moon was faked. Recommends using samples brought back from the moon on the Lunar Sample Disk as instructional material to open a discussion. Makes suggestions for examining lunar rocks. (YDS)

  4. Apollo 11 -- 30th Anniversary

    NSDL National Science Digital Library

    July 20, 1999 marks the 30th Anniversary of the Apollo 11 moon landing and the historic first steps by humans on the surface of another planet. In celebration, the National Air and Space Museum, Newseum, NASA, National Space Society and Artrain hosted a variety of activities in Washington, D.C. and on the internet. The site features a set of exhibitions: "Milestones of Flight," "Lunar Exploration Vehicles," "Apollo to the Moon," and the "Space Race." Additionally links to different collections, resources and activities, and past anniversary events are provided.

  5. Declaring the Republic of the Moon - Some artistic strategies for re-imagining the Moon.

    NASA Astrophysics Data System (ADS)

    La Frenais., R.

    2014-04-01

    Sooner or later, humans are going back to the Moonwhether to mine it, to rehearse for a Mars mission or to just live there. But how will human activity there reflect what has happened on Earth since the last moon mission, to reflect the diversity and political and social changes that have happened since? Can artists imagine what it would be like to live on the Moon? Artists are already taking part in many scientific endeavours, becoming involved in emerging fields such as synthetic bioloogy, nanotechology, ecological remediation and enthusiastically participating in citizen science. There are already artists in Antarctica. It should be inevitable that artists will sooner or later accompany the next visit by humans to the Moon. But why wait? Artists are already imagining how it would be to live on the Moon, whether in their imaginations or though rehearsals in lunar analogues. In the recent exhibition 'Republic of the Moon' a number of visionary strategies were employed, from the use of earth-moon-earth 'moonbouncing' (Katie Paterson) to the breeding and imprinting of real geese as imagined astronauts. (Agnes Meyer-Brandis). The Outer Space Treaty and the (unsigned) Moon treaty were re-analysed and debates and even small demonstrations were organised protesting (or demanding) the industrial exploitation of the Moon. Fortuitously, China's Chang-e mission landed during the exhibition and the life and death of the rover Jade Rabbit brought a real life drama to the Republic of the Moon. There have been other artistic interventions into lunar exploration, including Aleksandra Mir's First Woman on the Moon, Alicia Framis's Moonlife project and of course the historic inclusion of two artistic artefacts into the Apollo missions, Monument to the Fallen Astronaut (still on the Moon) and the Moon Museum, reportedly inserted by an engineer into the leg of the Lunar Exploration Module. With the worldwide race by the Global Lunar X Prize teams to land a rover independently of any to fly in the government agency by the end of 2015 there must surely be a possibility for a real art project near future. In the meantime artists will keep working to re-imagine the Moon using whatever strategies they can find.

  6. Asteroid Moon Micro-imager Experiment (amie) For Smart-1 Mission, Science Objectives and Devel- Opment Status.

    NASA Astrophysics Data System (ADS)

    Josset, J.-L.; Heather, D.; Dunkin, S.; Roussel, F.; Beauvivre, S.; Kraenhenbuehl, D.; Plancke, P.; Lange-Vin, Y.; Pinet, P.; Chevrel, S.; Cerroni, P.; de Sanctis, M.-C.; Dillelis, A.; Sodnik, Z.; Koschny, D.; Barucci, A.; Hofmann, B.; Josset, M.; Muinonen, K.; Pironnen, J.; Ehrenfreud, P.; Shkuratov, Y.; Shevchenko, V.

    The Asteroid Moon micro-Imager Experiment (AMIE), which will be on board the first ESA SMART-1 mission to the Moon (launch foreseen late 2002), is an imaging sys- tem with scientific, technical and public outreach oriented objectives. The science objectives are to imagine the Lunar South Pole (Aitken basin), permanent shadow areas (ice deposit), eternal light (crater rims), ancient Lunar Non- mare volcanism, local spectro-photometry and physical state of the lunar surface, and to map high latitudes regions (south) mainly at far side (Fig. 1). The technical objectives are to perform a laser-link experiment (detection of laser beam emitted by ESA Tenerife ground station), flight demonstration of new technologies, navigation aid (feasi- bility study), and on-board autonomy investigations. Figure 3: AMIE camera (< 0.5 kg) For better interpretation of the future imagery of the Moon by the instrument, laboratory measurements have been carried out by CSEM in Tampere (Finland), with support of the Observatory of Helsinki. The experimental set-up is composed of an optical system to image samples in verti- cal position, a light source and a photodiode to verify the stability of the incident flux. The optical system is com- posed of a lens to insure good focusing on the samples (focus with the camera is at distance > 100m) and a mirror to image downwards. The samples used were anorthosite from northern Finland, basalt from Antarctis, meteorites and other lunar analog materials. A spectralon panel has also been used to have flat fields references. The samples were imaged with dif- Figure 1: SMART-1 camera imaging the Moon (simulated view) ferent phase angles. Figure 4 shows images obtained with In order to have spectral information of the surface of the basalt and olivine samples, with different integration times Moon, the camera is equipped with a set of filters (Fig. 2), in order to have information in all areas. introduced between the CCD and the teleobjective. Bandpass-filter No Filter, 750 nm (1) AR coating (3) Bandpass-filter 915 nm (2) Longpass-filter 960 nm (4) Band- Band- Figure 4: Basalt and Olivine sample ­ entire image (left) and passfilter passfilter 915 nm 750 nm visible part () (6) (7) Bandpass- More than 150 images were acquired during this validation filter 847 nm (5) campaign and analysis of this data will give precious in- formation about the instrument ability to image the south Figure 2: AMIE Filters in front of the detector pole of our satellite, with the ambition of renewing our vision of the Moon.

  7. Apollo 8 Launch Control Center Operations

    NASA Technical Reports Server (NTRS)

    1968-01-01

    This photograph depicts a busy Launch Control Center at Kennedy Space Center during the Apollo 8 mission prelaunch activities. The first manned Apollo mission launched aboard the Saturn V and first manned Apollo craft to enter lunar orbit, the SA-503, Apollo 8 The crew included astronauts Frank Borman, Commander; William Anders, Lunar Module (LM) Pilot; and James Lovell, Command Module (CM) pilot. The three safely returned to Earth on December 27, 1968. The mission achieved operational experience and tested the Apollo command module systems, including communications, tracking, and life-support, in cis-lunar space and lunar orbit, and allowed evaluation of crew performance on a lunar orbiting mission. The crew photographed the lunar surface, both far side and near side, obtaining information necessary for future Apollo landings. All systems operated within allowable parameters and all objectives of the mission were achieved.

  8. Distribution of Anorthositic and Noritic Material in the Apollo Basin

    NASA Astrophysics Data System (ADS)

    Petro, N. E.; Tompkins, S.; Sunshine, J. M.; Besse, S.; Pieters, C. M.; Head, J. W.; Klima, R. L.; Isaacson, P.; Taylor, L. A.

    2009-12-01

    The Moon Mineralogy Mapper (M3), an instrument on Chandrayaan-1, is an imaging spectrometer with high spatial and spectral resolution covering the wavelength range from 430-3000 nm. Data gathered over northeastern South Pole-Aitken Basin (SPA) enable a detailed compositional study of the materials associated with the Apollo Basin. Both the Galileo and Clementine missions revealed the Apollo Basin to be spectrally and geologically unique. With Galileo SSI data, the interior of Apollo was found to be similar in albedo, visible spectral slope, and mafic content to areas west of Apollo in SPA, suggesting that Apollo exposed a thick and extensive unit of mafic crustal material [1]. Using Clementine UVVIS data, anorthositic materials were hypothesized to exist in the rings of Apollo and are amongst the few probable exposures of such materials in SPA [2-4]. These materials were thought to form from a differentiated SPA-melt sheet or represent exposed crustal material surrounded by the more mafic SPA melt. If we assume that the original crust within SPA’s transient cavity was removed, then the presence of anorthositic material at Apollo can be used to constrain the extent of the SPA transient cavity [5]. M3 data suggest that the anorthositic material associated with Apollo is pervasive in both the inner ring and the smooth floor (as soils) across the interior of the basin and has been covered by mare deposits in both the center and south of the basin. The anorthositic material in Apollo is spectrally similar to material located outside of SPA in the feldspathic highlands. The anorthositic material observed in Apollo’s rings lacks the diagnostic plagioclase absorption features indicative of unshocked crystalline anorthosite, such as those identified in the rings of the Orientale basin [6]. There are also several exposures of mafic materials within Apollo, in addition to the basalts. These other mafic exposures are associated with craters larger than 5 km in diameter, mostly clustered around the center of the basin, and have exposed a low-Ca pyroxene-bearing material, interpreted to be noritic. Previous analyses found that the interior of SPA, as a whole, contained noritic materials [4], which were interpreted as SPA-derived impact-melt breccias. If we assume that Apollo excavated through a veneer of SPA impact-melt and/or SPA ejecta and retained its own anorthositic melt material, the noritic material exposed in Apollo must be derived from the secondary, more mafic portions of the crust [1]. One of the largest craters in the Apollo basin, Dryden, contains noritic materials in its floor and ejecta, suggesting that noritic material is found at depths of at least 5 km in the northern interior of Apollo. That the inner ring of Apollo does not contain a mafic signature suggests that its materials are from a somewhat different and shallower region of the anorthositic crust, perhaps near a transition to more mafic materials. References: [1]Head,et al.,1993,JGR,17149-17181.[2]Morrison and Bussey,1997,LPSC 28,1501.[3]Morrison,1998,LPSC 29,1657.[4] Pieters,et al.,2001,JGR,28001-28022.[5]Petro and Pieters,LPSC 33,1848.[6]Pieters,2009,LPSC 40,2157.

  9. Spacecraft Conceptual Design Compared to the Apollo Lunar Lander

    NASA Technical Reports Server (NTRS)

    Young, C.; Bowie, J.; Rust, R.; Lenius, J.; Anderson, M.; Connolly, J.

    2011-01-01

    Future human exploration of the Moon will require an optimized spacecraft design with each sub-system achieving the required minimum capability and maintaining high reliability. The objective of this study was to trade capability with reliability and minimize mass for the lunar lander spacecraft. The NASA parametric concept for a 3-person vehicle to the lunar surface with a 30% mass margin totaled was considerably heavier than the Apollo 15 Lunar Module "as flown" mass of 16.4 metric tons. The additional mass was attributed to mission requirements and system design choices that were made to meet the realities of modern spaceflight. The parametric tool used to size the current concept, Envision, accounts for primary and secondary mass requirements. For example, adding an astronaut increases the mass requirements for suits, water, food, oxygen, as well as, the increase in volume. The environmental control sub-systems becomes heavier with the increased requirements and more structure was needed to support the additional mass. There was also an increase in propellant usage. For comparison, an "Apollo-like" vehicle was created by removing these additional requirements. Utilizing the Envision parametric mass calculation tool and a quantitative reliability estimation tool designed by Valador Inc., it was determined that with today?s current technology a Lunar Module (LM) with Apollo capability could be built with less mass and similar reliability. The reliability of this new lander was compared to Apollo Lunar Module utilizing the same methodology, adjusting for mission timeline changes as well as component differences. Interestingly, the parametric concept's overall estimated risk for loss of mission (LOM) and loss of crew (LOC) did not significantly improve when compared to Apollo.

  10. NASA Technical Memorandum 108846 Interviews with the Apollo

    E-print Network

    Rathbun, Julie A.

    NASA Technical Memorandum 108846 Interviews with the Apollo Lunar Surface Astronauts in Support-1000 #12;Interviews with the Apollo Lunar Surface Astronauts in Support of Planning for EVA Systems Design interviews were conducted with the Apollo astronauts who landed on the Moon. The purpose of these interviews

  11. Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets

    NASA Technical Reports Server (NTRS)

    Jolliff, Brad L. (Editor); Ryder, Graham (Editor)

    1998-01-01

    It has been more than 25 years since Apollo 17 returned the last of the Apollo lunar samples. Since then, a vast amount of data has been obtained from the study of rocks and soils from the Apollo and Luna sample collections and, more recently, on a set of about a dozen lunar meteorites collected on Earth. Based on direct studies of the samples, many constraints have been established for the age, early differentiation, crust and mantle structure, and subsequent impact modification of the Moon. In addition, geophysical experiments at the surface, as well as remote sensing from orbit and Earth-based telescopic studies, have provided additional datasets about the Moon that constrain the nature of its surface and internal structure. Some might be tempted to say that we know all there is to know about the Moon and that it is time to move on from this simple satellite to more complex objects. However, the ongoing Lunar Prospector mission and the highly successful Clementine mission have provided important clues to the real geological complexity of the Moon, and have shown us that we still do not yet adequately understand the geologic history of Earth's companion. These missions, like Galileo during its lunar flyby, are providing global information viewed through new kinds of windows, and providing a fresh context for models of lunar origin, evolution, and resources, and perhaps even some grist for new questions and new hypotheses. The probable detection and characterization of water ice at the poles, the extreme concentration of Th and other radioactive elements in the Procellarum-Imbrium-Frigon's resurfaced areas of the nearside of the Moon, and the high-resolution gravity modeling enabled by these missions are examples of the kinds of exciting new results that must be integrated with the extant body of knowledge based on sample studies, in situ experiments, and remote-sensing missions to bring about the best possible understanding of the Moon and its history.

  12. Rb-Sr ages of igneous rocks from the Apollo 14 mission and the age of the Fra Mauro formation.

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Wasserburg, G. J.

    1971-01-01

    Internal Rb-Sr isochrons were determined on four basaltic rocks and on a basaltic clast from a breccia from the Fra Mauro landing site. An internal isochron was determined for rock 12004 and yielded a value in agreement with previous results for basaltic rocks from the Apollo 12 site. The crystallization ages for Apollo 14 basalts are only 0.2 to 0.3 AE older than were found for mare basalts from the Sea of Tranquility. Assuming these leucocratic igneous rocks to be representative of the Fra Mauro site, it follows that there were major igneous processes active in these regions, and presumably throughout the highlands, at times only slightly preceding the periods at which the maria were last flooded.

  13. Apollo Project - LOLA

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Test subject sitting at the controls: Project LOLA or Lunar Orbit and Landing Approach was a simulator built at Langley to study problems related to landing on the lunar surface. It was a complex project that cost nearly $2 million dollars. James Hansen wrote: 'This simulator was designed to provide a pilot with a detailed visual encounter with the lunar surface; the machine consisted primarily of a cockpit, a closed-circuit TV system, and four large murals or scale models representing portions of the lunar surface as seen from various altitudes. The pilot in the cockpit moved along a track past these murals which would accustom him to the visual cues for controlling a spacecraft in the vicinity of the moon. Unfortunately, such a simulation--although great fun and quite aesthetic--was not helpful because flight in lunar orbit posed no special problems other than the rendezvous with the LEM, which the device did not simulate. Not long after the end of Apollo, the expensive machine was dismantled.' (p. 379) From Ellis J. White, 'Discussion of Three Typical Langley Research Center Simulation Programs,' Paper presented at the Eastern Simulation Council (EAI's Princeton Computation Center), Princeton, NJ, October 20, 1966. 'A typical mission would start with the first cart positioned on model 1 for the translunar approach and orbit establishment. After starting the descent, the second cart is readied on model 2 and, at the proper time, when superposition occurs, the pilot's scene is switched from model 1 to model 2. then cart 1 is moved to and readied on model 3. The procedure continues until an altitude of 150 feet is obtained. The cabin of the LM vehicle has four windows which represent a 45 degree field of view. The projection screens in front of each window represent 65 degrees which allows limited head motion before the edges of the display can be seen. The lunar scene is presented to the pilot by rear projection on the screens with four Schmidt television projectors. The attitude orientation of the vehicle is represented by changing the lunar scene through the portholes determined by the scan pattern of four orthicons. The stars are front projected onto the upper three screens with a four-axis starfield generation (starball) mounted over the cabin and there is a separate starball for the low window. Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 379.

  14. Apollo 11 Commander Armstrong Presents President With Commemorative Plaque

    NASA Technical Reports Server (NTRS)

    1974-01-01

    On June 4, 1974, 5 years after the successful Apollo 11 lunar landing mission, commander Neil Armstrong (right) presented a plaque to U.S. President Richard Milhous Nixon (left) on behalf of all people who had taken part in the space program. In making the presentation, Armstrong said 'Mr. President, you have proclaimed this week to be United States Space week in conjunction with the fifth anniversary of our first successful landing on the Moon. It is my privilege to represent my colleagues, the crewmen of projects Mercury, Gemini, Apollo, and Skylab, and the men and women of NASA, and the hundreds of thousands of Americans from across the land who contributed so mightily to the success of our efforts in space in presenting this plaque which bears the names of each individual who has had the privilege of representing this country' in a space flight. The presentation was made at the California white house in San Clemente.

  15. On the fundamental importance of the social psychology of research as a basic paradigm for the philosophy of science: A philosophical case study of the psychology of the Apollo moon scientists

    NASA Technical Reports Server (NTRS)

    Mitroff, I. I.

    1972-01-01

    A combined philosophical and social psychological study of over 40 of the Apollo moon Scientists reveals that the Orthodox or Received View of Scientific Theories is found wanting in several respects: (1) observations are not theory-free; (2) scientific observations are not directly observable; and (3) observations are no less problematic than theories. The study also raises some severe criticisms of distinction between the context of discovery and the context of justification. Not only does this distinction fail to describe the actual practice of science but even more important it has the dangerous effect of excluding some of the strongest lines of evidence which could most effectively challenge the distinction. The distinction is harmful of efforts to found interdisciplinary theories and philosophies of science.

  16. Apollo gastrointestinal analysis

    NASA Technical Reports Server (NTRS)

    Nichols, B. L.; Huang, C. T. L.

    1975-01-01

    Fecal bile acid patterns for the Apollo 17 flight were studied to determine the cause of diarrhea on the mission. The fecal sterol analysis gave no indication of an infectious diarrhea, or specific, or nonspecific etiology occurring during the entire flight. It is assumed that the gastrointestinal problems encountered are the consequences of altered physiology, perhaps secondary to physical or emotional stress of flight.

  17. From the Earth to the Moon! FRS 104, Princeton University!

    E-print Network

    Stengel, Robert F.

    From the Earth to the Moon! FRS 104, Princeton University! Robert Stengel" ·! Science History & Fiction" !! Precursors to Space Flight" !! Early Space Age" !! Antecedents to Apollo" !! Apollo." 4.# Cyrano de Bergerac, A Voyage to the Moon." 5.# Jules Verne, From the Earth to the Moon and Round

  18. General Human Health Issues For Moon And Mars Missions: Results From The HUMEX Study

    Microsoft Academic Search

    G. Horneck; B. Comet

    2004-01-01

    Human exploratory missions, such as the establishment of a permanently inhabited lunar base and\\/or human visits to Mars will add a new dimension to human space flight, concerning the distance of travel, the radiation environment, the gravity lev-els, the duration of the mission, and the level of confinement and isolation the crew will be exposed to. This will raise the

  19. NASA's New Horizons Mission Dr. Henry Throop

    E-print Network

    Throop, Henry

    flying - it doesn't land, and it never comes back to Earth. New Horizons Spacecraft #12;#12;#12;#12;#12;#12;#12;New Horizons Team #12;#12;#12;#12;Lockheed-Martin AtlasV Rocket Rocket: 575,198 kg Spacecraft: 478 kg spacecraft ever launched! Mission Time to get to the Moon's distance Apollo 11 96 hours New Horizons 6 hours

  20. Apollo 11 Astronaut Armstrong Arrives at the Flight Crew Training Building

    NASA Technical Reports Server (NTRS)

    1969-01-01

    In this photograph, Apollo 11 astronaut Neil Armstrong walks to the flight crew training building at the NASA Kennedy Space Center (KSC) in Florida, one week before the nation's first lunar landing mission. The Apollo 11 mission launched from KSC via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  1. Restoration of APOLLO Data by the NSSDC and PDS Lunar Data Node

    NASA Technical Reports Server (NTRS)

    Williams, David R.; Hills, H. Kent; Guinness, Edward A.; Taylor, Patrick T.; McBride, Marie J.

    2012-01-01

    The Apollo Lunar Surface Experiment Packages (ALSEPs), suites of instruments deployed by the Apollo 12. 14, 15, 16 and 17 astronauts on the lunar surface, still represent the only in-situ measurements of the Moon's environment taken over long time periods, Much of these data are housed at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center but are in forms that are not readily usable, such as microfilm, hardcopy, and magnetic tapes with older, obsolete formats. The Lunar Data Node (LDN) has been formed under the auspices of the Planetary Data System (PDS) Geosciences Node to put relevant, scientifically important Apollo data into accessible digital form for use by researchers and mission planners. The LDN has prioritized the restoration of these data based on their scientific and engineering value and the level of effort required. We will report on progress made and plans for future data restorations.

  2. General human health issues for Moon and Mars missions: Results from the HUMEX study

    NASA Astrophysics Data System (ADS)

    Horneck, Gerda; Comet, Bernard

    The general health issues considered in two scenarios of human long-term exploratory missions, which include a mission to a lunar base and a mission to Mars, have been analysed. Based on statistical data from occupational and normal population groups of Western countries, the following safety objectives have been chosen: individual risk of death by illness (=natural death) during the mission shall be <2 × 10-3/year, that by injury (=accidental death) <4 × 10-4/year, and that from all causes, including spacecraft failure (taken from most exposed professions) <3 × 10-2/year. Using the classical reliability requirements for human space missions, reliability objectives have been set for each mission scenario, resulting in values compatible with the mission safety objectives. The main results are as follows: (i) based of the probability of occurrence of diseases and injuries and on the constraints imposed by exploratory mission scenarios, the crew shall have a full autonomy in terms of medical and surgical diagnostics and care means and competency; (ii) the control of the toxic and biological risks in a confined environment for a so long exposure shall be carefully analyzed and the technical solutions shall master these risks; (iii) the state of the art shows that bone loss during the long stay in weightlessness, especially during missions to Mars, remains an unacceptable risk. Solutions to control and to prevent this risk shall be developed; (iv) the control of human physical capacity impairment under weightlessness shall be optimised. A roadmap in the field of health care has been elaborated for a future European participation strategy towards human exploratory missions taking into account preparatory activities, such as analogue situations and ISS opportunities, and potential terrestrial applications and benefits.

  3. Apollo Project

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Artists used paintbrushes and airbrushes to recreate the lunar surface on each of the four models comprising the LOLA simulator. Project LOLA or Lunar Orbit and Landing Approach was a simulator built at Langley to study problems related to landing on the lunar surface. It was a complex project that cost nearly $2 million dollars. James Hansen wrote: 'This simulator was designed to provide a pilot with a detailed visual encounter with the lunar surface; the machine consisted primarily of a cockpit, a closed-circuit TV system, and four large murals or scale models representing portions of the lunar surface as seen from various altitudes. The pilot in the cockpit moved along a track past these murals which would accustom him to the visual cues for controlling a spacecraft in the vicinity of the moon. Unfortunately, such a simulation--although great fun and quite aesthetic--was not helpful because flight in lunar orbit posed no special problems other than the rendezvous with the LEM, which the device did not simulate. Not long after the end of Apollo, the expensive machine was dismantled.' (p. 379) Ellis J. White further described LOLA in his paper 'Discussion of Three Typical Langley Research Center Simulation Programs,' 'Model 1 is a 20-foot-diameter sphere mounted on a rotating base and is scaled 1 in. = 9 miles. Models 2,3, and 4 are approximately 15x40 feet scaled sections of model 1. Model 4 is a scaled-up section of the Crater Alphonsus and the scale is 1 in. = 200 feet. All models are in full relief except the sphere.' Published in James R. Hansen, Spaceflight Revolution, NASA SP-4308, p. 379; Ellis J. White, 'Discussion of Three Typical Langley Research Center Simulation Programs,' Paper presented at the Eastern Simulation Council (EAI's Princeton Computation Center), Princeton, NJ, October 20, 1966.

  4. The scientific rationale for the C1XS X-ray spectrometer on India's Chandrayaan-1 mission to the moon

    NASA Astrophysics Data System (ADS)

    Crawford, I. A.; Joy, K. H.; Kellett, B. J.; Grande, M.; Anand, M.; Bhandari, N.; Cook, A. C.; d'Uston, L.; Fernandes, V. A.; Gasnault, O.; Goswami, J.; Howe, C. J.; Huovelin, J.; Koschny, D.; Lawrence, D. J.; Maddison, B. J.; Maurice, S.; Narendranath, S.; Pieters, C.; Okada, T.; Rothery, D. A.; Russell, S. S.; Sreekumar, P.; Swinyard, B.; Wieczorek, M.; Wilding, M.

    2009-06-01

    The UK-built Chandrayaan-1 X-ray Spectrometer (C1XS) will fly as an ESA instrument on India's Chandrayaan-1 mission to the Moon, launched in October 2008. C1XS builds on experience gained with the earlier D-CIXS instrument on SMART-1, but will be a scientifically much more capable instrument. Here we describe the scientific objectives of this instrument, which include mapping the abundances of the major rock-forming elements (principally Mg, Al, Si, Ti, Ca and Fe) in the lunar crust. These data will aid in determining whether regional compositional differences (e.g., the Mg/Fe ratio) are consistent with models of lunar crustal evolution. C1XS data will also permit geochemical studies of smaller scale features, such as the ejecta blankets and central peaks of large impact craters, and individual lava flows and pyroclastic deposits. These objectives all bear on important, and currently unresolved, questions in lunar science, including the structure and evolution of any primordial magma ocean, as revealed by vertical and lateral geochemical variations in the crust, and the composition of the lunar mantle, which will further constrain theories of the Moon's origin, thermal history and internal structure.

  5. High-resolution local gravity model of the south pole of the Moon from GRAIL extended mission data

    PubMed Central

    Goossens, Sander; Sabaka, Terence J; Nicholas, Joseph B; Lemoine, Frank G; Rowlands, David D; Mazarico, Erwan; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2014-01-01

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6° by 1/6° (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40°. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models. Key Points We present a high-resolution gravity model of the south pole of the Moon Improved correlations with topography to higher degrees than global models Improved fits to the data and reduced striping that is present in global models PMID:26074637

  6. High-resolution Local Gravity Model of the South Pole of the Moon from GRAIL Extended Mission Data

    NASA Technical Reports Server (NTRS)

    Goossens, Sander Johannes; Sabaka, Terence J.; Nicholas, Joseph B.; Lemoine, Frank G.; Rowlands, David D.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2014-01-01

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6deg by 1/6deg (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40deg. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models.

  7. High-resolution local gravity model of the south pole of the Moon from GRAIL extended mission data

    NASA Astrophysics Data System (ADS)

    Goossens, Sander; Sabaka, Terence J.; Nicholas, Joseph B.; Lemoine, Frank G.; Rowlands, David D.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2014-05-01

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6° by 1/6° (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40°. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models.

  8. A Baylor University Payload Contribution to the Universitaet Stuttgart Moon Orbiter LUNAR MISSION BW1

    Microsoft Academic Search

    R. Laufer; T. W. Hyde; L. Matthews; M. Lachenmann; G. Herdrich; R. Srama; H.-P. Roeser

    2010-01-01

    The LUNAR MISSION BW1 is an academic small lunar orbiting satellite of the Universitaet Stuttgart, Germany. As part of a collaborative agreement between Baylor University and the Universitaet Stuttgart, an instrument contribution is under consideration.

  9. The European Student Moon Orbiter (ESMO): A lunar mission for education, outreach and science

    Microsoft Academic Search

    R. Walker; M. Cross

    2010-01-01

    ESMO is the fourth mission within ESA's Education Satellite Programme and builds upon the experience gained with SSETI Express (a micro-satellite launched into LEO in 2005), the YES2 tether experiment (launched into LEO on the Foton-M3 mission in 2007) and the European Student Earth Orbiter (a micro-satellite planned for launch in 2011\\/2012). The ESMO project is performed in order to

  10. The Apollo lunar sounder radar system

    Microsoft Academic Search

    LEONARD J. PORCELLO; R. L. Jordan; JERRY S. ZELENKA; GARY F. ADAMS; ROGER J. PHILLIPS; WALTER E. BROWN; S. H. Ward; P. L. Jackson

    1974-01-01

    The objectives of the Apollo 17 Lunar Sounder Experiment (ALSE) were to detect subsurface geologic structures, to generate a continuous lunar profile, and to image the moon a radar wavelengths. The first objective is generally impossible on Earth, but is possible on the moon because of the very low EM attenuation found in lunar rocks. A three-wavelength synthetic-aperture radar (SAR)

  11. Water and other volatiles on the moon: A review

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Abdrakhimov, A. M.; Dorofeeva, V. A.

    2012-04-01

    This paper presents a review of research findings on the various forms of water on the Moon. First, this is the water of the Moon's interior, which has been detected by sensitive mass spectrometric analysis of basaltic glasses delivered by the Apollo 15 and Apollo 17 missions. The previous concepts that lunar magmas are completely dehydrated have been disproved. Second, this is H2O and/or OH in a thin layer (a few upper millimeters) of the lunar regolith, which is likely a result of bombardment of the oxygen contained in the lunar regolith with solar wind protons. This form of water is highly unstable and quite easily escapes from the surface, possibly being one of the sources of the water ice reservoirs at the Moon's poles. Third, this is water ice associated with other frozen gases in cold traps at the lunar poles. Its possible sources are impacts of comets and meteorites, the release of gas from the Moon's interior, and solar wind protons. The ice trapped at the lunar polars could be of practical interest for further exploration of the Moon.

  12. Apollo 15 insignia

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This is the patch designed for the Apollo 15 lunar landing mission. The circular design features the colors red, white and blue. On the outer portion of the patch a narrow band of blue and a narrow band of red encircle a wider band of white. The large disc in the center of the emblem has red, white and blue symbols of flight, superimposed over an artist's concept of the Apollo 15 Hadley-Apennine landing site of grey tone. The surnames of the crew are centered in the white band at the bottom of the insignia.

  13. Apollo 14 food system.

    NASA Technical Reports Server (NTRS)

    Smith, M. C., Jr.; Huber, C. S.; Heidelbaugh, N. D.

    1971-01-01

    The program for improving foods for use during space flights consists of introducing new foods and food-handling techniques on each successive manned space flight. Because of this continuing improvement program, the Apollo 14 food system was the most advanced and sophisticated food system to be used in the U.S. space program. The food system used during the Apollo 14 mission and recent space-food-system advances are described and discussed in regard to their usefulness for future manned space flights.

  14. Food and Nutrition for the Moon Base: What we have Learned in 45 Years of Space Flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen; Kloeris, Vickie; Perchonok, Michele; Zwart, Sara; Smith, Scott M.

    2006-01-01

    The United States has a new human space flight mission to return to the Moon, this time to establish an outpost to continue research there and develop our ability to send humans to Mars and bring them back in good health. The Apollo missions were the first human expeditions to the Moon. Only 2 crew members landed on the lunar surface on each Apollo mission, and they spent a maximum of 72 hours there. Future trips will have at least 4 crew members, and the initial trips will include several days of surface activity. Eventually, these short (sortie) missions will extend to longer lunar surface times, on the order of weeks. Thus, the challenges of meeting the food and nutritional needs of crew members at a lunar outpost will be significantly different from those during the early Apollo missions. The U.S. has had humans in space beginning in 1961 with increasing lengths of time in space flight. Throughout these flights, the areas of particular concern for nutrition are body mass, bone health, and radiation protection. The development and refinement of the food systems over the last 30 years are discussed, as well as the plans for both the sortie and lunar. The articles briefly review what we know today about food and nutrition for space travelers and relate this knowledge to our planned human flights back to the Moon.

  15. Apollo 16 Insignia

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 16 crew patch is dominated by an eagle perched atop a red, white, and blue shield superimposed on a lunar surface scene. Similar to that on the NASA agency shield and insignia, there is a gold symbol of flight outlined in blue across the face of the shield. The border surrounding the shield is a circle of 16 stars completed by the the crew's surnames at the bottom. The patch was designed from ideas submitted by the Apollo 16 3-man crew: John W. Young, Mission Commander: Thomas K. Mattingly, Command Module pilot; and Charles M. Duke, Lunar Module pilot. (Note: This is the official Apollo 16 emblem, a property of the United States government. Its reproduction in any form other than in news, information, and education media is not authorized without approval. Unauthorized use is subject to the provisions of Title 18, U.S. Code, Section 701.)

  16. Quarantined Apollo 11 Astronauts Loaded Onto Trailer For Transport

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet recovery ship, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home for 21 days. In this photo taken at Pearl Harbor, Hawaii, the quarantined housing facility is being lowered from the U.S.S. Hornet, onto a trailer for transport to Hickam Field. From there, it was loaded aboard an Air Force C-141 jet and flown back to Ellington Air Force Base Texas, and then on to the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas.

  17. Quarantined Apollo 11 Astronaut Aldrin Speaks With Wife Joan

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. On arrival at Ellington Air Force base near the MSC, the crew, still under a 21 day quarantine in the MQF, were greeted by their wives. Pictured here is Joan Aldrin, wife of Buzz Aldrin, speaking with her husband via telephone patch.

  18. Earth to Moon Transfer: Direct vs Via Libration Points (L1, L2)

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.; Wilson, Samuel W.

    2004-01-01

    For some three decades, the Apollo-style mission has served as a proven baseline technique for transporting flight crews to the Moon and back with expendable hardware. This approach provides an optimal design for expeditionary missions, emphasizing operational flexibility in terms of safely returning the crew in the event of a hardware failure. However, its application is limited essentially to low-latitude lunar sites, and it leaves much to be desired as a model for exploratory and evolutionary programs that employ reusable space-based hardware. This study compares the performance requirements for a lunar orbit rendezvous mission type with one using the cislunar libration point (L1) as a stopover and staging point for access to arbitrary sites on the lunar surface. For selected constraints and mission objectives, it contrasts the relative uniformity of performance cost when the L1 staging point is used with the wide variation of cost for the Apollo-style lunar orbit rendezvous.

  19. Earth rise as photographed by Apollo 16

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 16 astronauts captured this Earth rise scene with a handheld Hasselblad camera during the second revolution of the Moon. Identifiable craters seen on the moon include Saha, Wyld, and Saenger. Much of the terrain seen here is never visible from the Earth, as the Command Module was just passing into what is known as the dark side or far side of the Moon.

  20. Apollo 15 30-day failure and anomaly listing report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The significant anomalies that occurred during the Apollo 15 mission are discussed. The five major areas are command and service modules, lunar module, scientific instrument module experiments, Apollo lunar surface experiment package and associated equipment, and government furnished equipment.

  1. Local Gravity Field Determination On The Moon Using GRAIL Extended Mission Data

    NASA Astrophysics Data System (ADS)

    Goossens, S. J.; Lemoine, F. G.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2013-12-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were launched on September 10, 2011, and conducted their primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km. GRAIL's extended mission commenced on August 30 and was completed on December 14, 2012. The average altitude during the extended mission was 23 km above lunar surface. Both primary and extended mission data have been processed at NASA/GSFC using the GEODYN software, resulting in high-resolution (degree and order 900 in spherical harmonics) gravity field models of high accuracy. However, especially during low-altitude passes, Ka-band range-rate (KBRR) data residuals are still well above noise level. Here, we focus on methods to determine local gravity adjustments from KBRR data. We represent gravity in the area of interest as gravity anomaly adjustments with respect to the background spherical harmonics model. We use KBRR data only over the area of interest, and we then perform short-arc orbit determination. Our areas of focus are mainly the Mare Orientale area, where GRAIL achieved its lowest altitude above the lunar surface towards the end of the mission, and the south pole area, where naturally there is a confluence of orbit tracks. We investigate different grids and different smoothing constraints used in the estimation of the anomalies, numerical differentiation with respect to time of the KBRR data to localize its sensitivity further, and we evaluate the solutions in terms of Bouguer anomaly signatures, KBRR data fit, and correlations with local topography.

  2. Comparison of the chemistry of moon and Mars

    NASA Astrophysics Data System (ADS)

    Dreibus, G.; Wanke, H.

    Chemical composition of the moon, derived from the study of lunar samples from various Apollo missions, is compared to that of Mars, derived from data of the Viking X-ray fluorescence experiments and from the compositions of SNC meteorites, which are now assumed to have originated from Mars's mantle. Results show that the chemical composition of Mars differs considerably from that of earth and moon. Compared with earth, the moon is depleted in volatile and moderately volatile elements, but, relative to C1-abundances, the lunar mantle shows the same depletion of Cr and Mn as does the earth's mantle. On the other hand, these elements are not depleted in the Martian mantle and the silicate phase of eucrite parent body.

  3. Lunar penetrator mission

    NASA Astrophysics Data System (ADS)

    Mizutani, H.; Kohno, M.; Fujimura, A.; Yamada, I.; Tanaka, S.; Hayakawa, M.

    1992-01-01

    Institute of Space and Astronautical Science (ISAS), Japan, plans to undertake a lunar mission, named LUNAR-A, which is to be launched in early 1996. The scientific objective of the mission is to explore the lunar interior using seismometry and heat-flow measurement toward better understanding of the origin and evolution of the moon. The M-V, the newest version of the Mu series launch vehicles now under development, is used to send a 550 kg of spacecraft to the lunar transfer orbit. Three penetrators (which are missile-shaped instrument carriers) are deployed from a spacecraft onto the lunar surface, and constitute a seismic and heat-flow measurement network of a larger span than the Apollo ALSEP network. The present paper describes the outline and scientific implications of the ISAS lunar penetrator mission.

  4. Apollo 9 thermal-control-coating degradation

    NASA Technical Reports Server (NTRS)

    Smith, J. A.

    1972-01-01

    Analytical studies, ground-test data, and flight data before 1967 indicated that degradation of Apollo thermal-control coatings could be expected, possibly to an extent requiring spacecraft design changes to accomplish the worst-case lunar-landing mission. On the Apollo 9 mission, specimens of Apollo thermal-control coatings were retrieved by the astronauts during the extravehicular activity. These specimens were the first to be returned to earth from space unaffected by entry conditions. Subsequent measurements of the thermophysical properties (solar absorptance and hemispherical emittance) of the thermal-control-sample coatings revealed degradation levels well within the design capability of the Apollo spacecraft.

  5. Wernher von Braun Takes a Close Look at Apollo 15 Launch

    NASA Technical Reports Server (NTRS)

    1971-01-01

    During the Apollo 15 launch activities in the launch control center's firing room 1 at Kennedy Space Center, Dr. Wernher von Braun, NASA's Deputy Associate Administrator for planning, takes a closer look at the launch pad through binoculars. The fifth manned lunar landing mission, Apollo 15 (SA-510), carrying a crew of three astronauts: Mission commander David R. Scott, Lunar Module pilot James B. Irwin, and Command Module pilot Alfred M. Worden Jr., lifted off on July 26, 1971. Astronauts Scott and Irwin were the first to use a wheeled surface vehicle, the Lunar Roving Vehicle, or the Rover, which was designed and developed by the Marshall Space Flight Center, and built by the Boeing Company. Astronauts spent 13 days, nearly 67 hours, on the Moon's surface to inspect a wide variety of its geological features.

  6. Neil Armstrong chats with attendees at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Former Apollo 11 astronaut Neil A. Armstrong is the center of attention at the anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon. He appeared at the banquet with other former astronauts Edwin 'Buzz' Aldrin, Gene Cernan, Walt Cunningham and others.

  7. Exploring the Moon

    NSDL National Science Digital Library

    This teacher's guide provides background information about the moon, its geological history, and progress in lunar science from before, during, and after the Apollo program. A set of activities is provided to demonstrate such concepts as scale models, proportional relationships, rock and mineral identification, and lunar geography.

  8. The Chemist's Moon

    ERIC Educational Resources Information Center

    Arnold, James R.

    1973-01-01

    Summarizes chemical information about the lunar surface on the basis of experiments performed in orbit and analyses of lunar soil and rocks. Indicates that the Apollo program completes chemical mapping of about 20 percent of the Moon with 80 percent remaining to be solved in the future. (CC)

  9. Nickel for your thoughts: urey and the origin of the moon.

    PubMed

    Brush, S G

    1982-09-01

    The theories of Harold C. Urey (1893-1981) on the origin of the moon are discussed in relation to earlier ideas, especially George Howard Darwin's fission hypothesis. Urey's espousal of the idea that the moon had been captured by the earth and has preserved information about the earliest history of the solar system led him to advocate a manned lunar landing. Results from the Apollo missions, in particular the deficiency of siderophile elements in the lunar crust, led him to abandon the capture selenogony and tentatively adopt the fission hypothesis. PMID:17747939

  10. Science Goals of MAJIS, the Moons And Jupiter Imaging Spectrometer, selected for the ESA/JUICE mission

    NASA Astrophysics Data System (ADS)

    Langevin, Yves; Piccioni, Giuseppe; Filacchione, Gianrico; Poulet, Francois; Eng, Pascal; Tosi, Federico; Majis Team

    2014-05-01

    The Moons And Jupiter Imaging Spectrometer (MAJIS) is the VIS-IR spectral mapper selected for the JUICE (Jupiter Icy Moon Explorer) L-class mission by ESA. Launched in 2022, JUICE will perform 35 targeted flybys of Galilean satellites (Callisto: 20; Ganymede: 13; Europa: 2) from January 2030 to September 2032, then a 9 months orbital phase around Ganymede. This comprehensive tour will make it possible to perform in-depth investigations of the atmosphere of Jupiter (including at high latitudes during a sequence of inclined orbits in mid-tour), Io, small satellites, rings and dust in the Jupiter system. Spectral imaging in the visible and near-IR ranges is a key technique for characterizing the composition of both surfaces and atmospheres. MAJIS will provide spectral imaging observations of the Jupiter system with an unprecedented coverage, spatial resolution (0.125 mrad, e.g. 62.5 m / pixel for Ganymede on a 500 km altitude orbit and 125 km / pixel for Jupiter from the orbit of Ganymede) and spectral resolution (1280 spectral channels from 0.4 µm to 5.7 µm), adressing major science goals of JUICE: - Determination of the icy, mineral and organic composition of the surface of satellites - Relationship between composition and geological processes - Detection of volatiles, relationship with cryovolcanic activity and exobiology - Interaction of surfaces with the environment, characterization of exospheres - Time evolution of hot spots on Io (40 distant encounters, down to 50 km/pixel) - Exospheres of Galilean satellites, relationship with the surface and the environment - Compositional relationship between small satellites and rings - Stratospheric and thermospheric structure of the atmosphere of Jupiter - Composition and general circulation of the atmosphere of Jupiter, clouds, hot spots - Minor constituents (water, hydrocarbon chemistry) - Vertical mixing in the stratosphere of Jupiter - Observations of Auroral emissions During the initial stages of the study phase, specific scenarios are investigated so as to best use spacecraft capabilities for science during critical mission phases such as the 500 km circular orbit arount Ganymede, the Europa flybys and the high inclination orbits. A large mass storage capability is foreseen, which is particularly useful for MAJIS given its large data output during satellite flybys and time evolution sequences for Jupiter. There will be limitations due to downlink, but the present allocation will already make it possible to obtain extensive coverage as well as many opportunities for HR observations by MAJIS.

  11. STS-32 view of the moon setting over the Earth's limb

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-32 crew took this view of the moon setting over the Earth's limb. Near the center is a semi-vortex in the clouds - a storm system in the early stages of formation. The moon's image is distorted due to refraction through the Earth's atmosphere. The near side of the moon is visible showing the vast area of the moon's western seas (Mare Occidental), Apollo landing sites: Apollo 14 at Fra Mauro and Apollo 16 at Central Highlands near Descartes.

  12. A new look at lunar soil collected from the sea of tranquility during the Apollo 11 mission.

    PubMed

    Kiely, Carol; Greenberg, Gary; Kiely, Christopher J

    2011-02-01

    Complementary state-of-the-art optical, scanning electron, and X-ray microscopy techniques have been used to study the morphology of Apollo 11 lunar soil particles (10084-47). The combination of innovative lighting geometries with image processing of a through focal series of images has allowed us to obtain a unique collection of high-resolution light micrographs of these fascinating particles. Scanning electron microscopy (SEM) stereo-pair imaging has been exploited to illustrate some of the unique morphological properties of lunar regolith. In addition, for the first time, X-ray micrographs with submicron resolution have been taken of individual particles using X-ray ultramicroscopy (XuM). This SEM-based technique lends itself readily to the imaging of pores, cracks, and inclusions and allows the internal structure of an entire particle to be viewed. Rotational SEM and XuM movies have also been constructed from a series of images collected at sequential angles through 360°. These offer a new and insightful view of these complex particles providing size, shape, and spatial information on many of their internal features. PMID:21087545

  13. 3D Lunar Terrain Reconstruction from Apollo Images

    NASA Technical Reports Server (NTRS)

    Broxton, Michael J.; Nefian, Ara V.; Moratto, Zachary; Kim, Taemin; Lundy, Michael; Segal, Alkeksandr V.

    2009-01-01

    Generating accurate three dimensional planetary models is becoming increasingly important as NASA plans manned missions to return to the Moon in the next decade. This paper describes a 3D surface reconstruction system called the Ames Stereo Pipeline that is designed to produce such models automatically by processing orbital stereo imagery. We discuss two important core aspects of this system: (1) refinement of satellite station positions and pose estimates through least squares bundle adjustment; and (2) a stochastic plane fitting algorithm that generalizes the Lucas-Kanade method for optimal matching between stereo pair images.. These techniques allow us to automatically produce seamless, highly accurate digital elevation models from multiple stereo image pairs while significantly reducing the influence of image noise. Our technique is demonstrated on a set of 71 high resolution scanned images from the Apollo 15 mission

  14. Navigation of the GRAIL Spacecraft Pair Through the Extended Mission at the Moon

    NASA Technical Reports Server (NTRS)

    Goodson, Troy D.; Antreasian, Peter G.; Bhat, Ram S.; Chung, Min-Kun; Criddle, Kevin E.; Hatch, Sara J.; Jefferson, David C.; Lau, Eunice L.; Roncoli, Ralph B.; Ryne, Mark S.; Sweetser, Theodore H.; You, Tung-Han; Young, Brian T.; Wong, Mau C.; Kangas, Julie A.; Wen, Hui Ying

    2013-01-01

    The GRAIL extended mission (XM) dramatically expands the scope of GRAIL's gravity science investigation by flying the pair of spacecraft at the lowest orbit the flight team can safely support. From the perspective of the Navigation team, the low orbit altitude introduces new challenges. At this lower altitude, navigation is more sensitive to higher-order terms of the gravity field so that orbit determination solutions are more difficult and there is less certainty of achieving maneuver targets. This paper reports on the strategy and performance of the Navigation system for GRAIL's XM. On a weekly basis, the Navigation team provided reference trajectory updates, designed three maneuvers, and reconstructed the execution of those maneuvers. In all, the XM involved 55 planned maneuvers; five were canceled. The results of the Navigation team's efforts, in terms of maintaining the reference-trajectory targets, satisfying requirements, and achieving desired separation distances, are assessed.

  15. Rare earth element selenochemistry of immiscible liquids and zircon at Apollo 14 - An ion probe study of evolved rocks on the moon

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Taylor, Lawrence A.; Crozaz, Ghislaine

    1993-01-01

    Results are presented of trace-element analyses of three lunar zircons. The major-element and REE compositions were determined using electron microprobes, and a correction was made for zircon for Zr-Si-O molecular interferences in the La to Pr mass region. The three zircons were found to exhibit similar REE abundances and patterns. Results of the analyses confirm earlier studies (Hess et al., 1975; Watson, 1976; Neal and Taylor, 1989) on the partitioning behavior of trace elements in immiscible liquid-liquid pairs. The results also support the postulated importance of silicate liquid immiscibility in the differentiation of the upper mantle and crust of the moon.

  16. NASA Administrator Dan Goldin greets Neil Armstrong at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During an anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible, former Apollo astronaut Neil A. Armstrong (left) shakes the hand of Judy Goldin (center), wife of NASA Administrator Daniel S. Goldin (right). The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7.

  17. Apollo 13 Command Module recovery after splashdown

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Crewmen aboard the U.S.S. Iwo Jima, prime recovery ship for the Apollo 13 mission, guide the Command Module (CM) atop a dolly on board the ship. The CM is connected by strong cable to a hoist on the vessel. The Apollo 13 crewmen were already aboard the Iwo Jima when this photograph was taken. The Apollo 13 spacecraft splashed down at 12:07:44 p.m., April 17, 1970 in the South Pacific Ocean.

  18. Development of an Embedded CPU-Based Instrument Control Unit for the SIR2 Instrument Onboard the Chandrayaan-1 Mission to the Moon

    Microsoft Academic Search

    Olav Torheim; Kjell Bronstad; Klaus Heerlein; Urs Mall; Andreas Nathues; Witold Nowosielski; Piotr Orleanski; Bjørn Pommeresche; Viviana Reimundo; Yngve Skogseide; Arne Solberg; Kjetil Ullaland

    2009-01-01

    This paper presents a computer architecture developed for the instrument control unit (ICU) of the Spectrometer Infrared 2 (SIR-2) instrument onboard the Chandrayaan-1 mission to the Moon. Characteristic features of this architecture are its high autonomy, its high reliability, and its high performance, which are obtained by the following methods: 1) adopting state-of-the-art digital-construction techniques using one single radiation-tolerant field-programmable

  19. Earliest high-Ti volcanism on the Moon: 40Ar-39Ar, Sm-Nd, and Rb-Sr isotopic studies of Group D basalts from the Apollo 11 landing site

    NASA Astrophysics Data System (ADS)

    Snyder, Gregory A.; Hall, Chris M.; Halliday, Alex N.; Lee, Der-Chuen; Taylor, Lawrence A.

    1996-05-01

    High-Ti basalts from the Apollo collections span a range in age from 3.87 Ga to 3.55 Ga. The oldest of these are the common Apollo 11 Group B2 basalts which yield evidence of some of the earliest melting of the lunar mantle beneath Mare Tranquillitatis. Rare Group D high-Ti basalts from Mare Tranquillitatis have been studied in an attempt to confirm a postulated link with Group B2 basalts (Jerde et al., 1994). The initial Sr isotopic ratio of a known Group D basalt (0.69916 ± 3 at 3.85 Ga) lies at the lower end of the tight range for Group B2 basalts (87Sr/86Sr = 0.69920 to 0.69921). One known Group D basalt and a second postulated Group D basalt yield indistinguishable initial ?Nd (1.2 ± 0.6 and 1.2 ± 0.3) and again lie at the lower end of the range for the Group B2 basalts from Apollo 11 (+2.0 ± 0.4 to +3.9 ± 0.6, at 3.85 Ga). A third sample has isotopic (87Sr/86Sr = 0.69932 ± 2; ?Nd = 2.5 ± 0.4; at 3.59 Ga; as per Snyder et al., 1994b) and elemental characteristics similar to the Group A high-Ti basalts returned from the Apollo 11 landing site. Ages of 40Ar-39Ar have been determined for one known Group D basalt and a second postulated Group D basalt using step-heating with a continuous-wave laser. Suspected Group D basalt, 10002, 1006, yielded disturbed age spectra on two separate runs, which was probably due to 39Ar recoil effects. Using the "reduced plateau age" method of Turner et al. (1978), the ages derived from this sample were 3898 ± 19 and 3894 ± 19 Ma. Three separate runs of known Group D basalt 10002, 116 yielded 40Ar/39Ar plateau ages of 3798 ± 9 Ma, 3781 ± 8 Ma, and 3805 ± 7 Ma (all errors 2?). Furthermore, this sample has apparently suffered significant 40Ar loss either due to solar heating or due to meteorite impact. The loss of a significant proportion of 40Ar at such a time means that the plateau ages underestimate the "true" crystallization age of the sample. Modelling of this Ar loss yields older, "true" ages of 3837 ± 18, 3826 ± 16, and 3836 ± 14 Ma. These ages overlap the ages of Group B2 high-Ti basalts (weighted average age = 3850 ± 20 Ma; range in ages = 3.80 to 3.90 Ga). The combined evidence indicates that the Group D and B2 high-Ti basalts could be coeval and may be genetically related, possibly through increasing degrees of melting of a similar source region in the upper mantle of the Moon that formed >4.2 Ga ago. The Group D basalts were melted from the source first and contained 3-5×more trapped KREEP-like liquid than the later (by possibly only a few million years) Group B2 basalts. Furthermore, the relatively LREE- and Rb-enriched nature of these early magmas may lend credence to the idea that the decay of heat-producing elements enriched in the KREEP-like trapped liquid of upper mantle cumulates, such as K, U, and Th, could have initiated widespread lunar volcanism.

  20. Apollo Field Geology: 45 Years of Digesting Rocks, Field Data, and Future Objectives

    NASA Astrophysics Data System (ADS)

    Schmitt, H. H.

    2012-12-01

    Twelve Apollo astronauts participated in the Lunar Field Geological Experiment, overseen by Gene Shoemaker, Gordon Swann, and Bill Muehlberger and their Co-Investigators. In conjunction with geologists and engineers of the Geological Survey and NASA, this team planned, trained and executed the first extraterrestrial field geological investigation. As a result, astronaut sample selection, observations, photo-documentation and experiment deployment underpin 45 years of laboratory analyses and interpretation by thousands of lunar and planetary scientists. --Current hypotheses related to the origin, evolution and nature of the Moon would be far different had Apollo geological explorations not occurred, even assuming that all robotic missions flown before and since Apollo were flown. *Would we have recognized lunar meteorites without the broad suite of Apollo samples to guide us? If we eventually had properly identified such meteorites, would their chemistry and age data give us the same detailed insights about the origin and evolution of the Moon without the highly specific field documentation of samples collected by the astronauts? *Would we recognize that the early history of the Earth and Mars up to 3.8 billion years ago, including the development of life's precursors, was a period of the prolonged violence due to impacts of asteroids and comets? Would we have realized that clay minerals, produced by the alteration of impact-generated glass and debris, would have been dominant components and potential templates for complex organic molecules in the terrestrial and Martian environments? *Would we fully understand the surface environments of asteroids and young terrestrial planets without the detailed dissection and analysis of Apollo's lunar regolith samples? *Would the Moon's near-surface environment, and its mantle and core structure, be as well defined as they are without the ground-truth provided by Apollo samples and the equipment carefully emplaced there by the Apollo astronauts? *Would we finally be having an observation-based debate about testable hypotheses related to the origin of the Moon without the pristine samples of volatile-rich, orange and green pyroclastic glass? *Would we know of the three potential sources of lunar water-ice in permanent shadow, namely, comets, solar wind, and primordial water, without Apollo's samples of the regolith and pristine pyroclastic glasses? *Would we know the extent of the distributed resources of the Moon, including solar Helium-3, without regolith samples from six sites on the Moon? *Without the broad spectrum of Apollo samples, many other questions about the Moon would still be open or unasked. --Future lunar and planetary geological exploration should focus both on expanding science related to the history of the Earth and other planets and on preparations for permanent human settlement. In optimizing that exploration, an enhanced partnership between field activities undertaken by humans and robots should be developed. Robotic precursor and post-cursor support of planning, equipment deployment, and systematic data-gathering can add significantly to the normal returns provided by the insights of trained and experienced field geologists. They should do what humans do best, that is, react instantaneously and with perspicacity to new situations, discoveries and challenges.

  1. APOLLO 16: One for the Album

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 16 :Charles M. Duke photographs Cmdr. John W. Young in front of the Lunar Module. From the film documentary 'APOLLO 16: 'Nothing So Hidden'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLO16: Fifth manned lunar landing mission withJohn W. Young, Ken Mattingly, and Charles M. Duke. Landed at Descartes on April 20 1972. Deployed camera and experiments; performed EVA with lunar roving vehicle. Deployed P&F Subsattelite in lunar orbit. Mission Duration 265hrs 51 min 5sec

  2. APOLLO 13: A News Bulletin from ABC

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 13: ABC breaks the news of a mishap aboard the spacecraft From the film documentary 'APOLLO 13: 'Houston, We've got a problem'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLO 13 : Third manned lunar landing attempt with James A. Lovell, Jr., John L. Swigert, Jr., and Fred W. Haise, Jr. Pressure lost in SM oxygen system; mission aborted; LM used for life support. Mission Duration 142hrs 54mins 41sec

  3. Apollo 8 Launch Control Center Operations

    NASA Technical Reports Server (NTRS)

    1968-01-01

    This photograph depicts a busy Launch Control Center at Kennedy Space Center during the Apollo 8 mission launch activities. Apollo 8 served as the first manned lunar orbit mission. Liftoff occurred on December 21, 1968 with a three man crew consiting of astronauts Frank Borman, commander; William Anders, Lunar Module (LM) Pilot; and James Lovell, Command Module (CM) pilot. The three safely returned to Earth on December 27, 1968. The mission achieved operational experience and tested the Apollo command module systems, including communications, tracking, and life-support, in cis-lunar space and lunar orbit, and allowed evaluation of crew performance on a lunar orbiting mission. The crew photographed the lunar surface, both far side and near side, obtaining information on topography and landmarks as well as other scientific information necessary for future Apollo landings. All systems operated within allowable parameters and all objectives of the mission were achieved.

  4. Exploring the Moon: A Teacher's Guide with Activities for Earth and Space Sciences.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educational guide concerns exploring the moon. Activities are divided into three units: Pre-Apollo, Learning from Apollo, and The Future. These correspond, at least roughly, to exercises that can be done before the Lunar Sample Disk (available from NASA) arrives to the school (Pre-Apollo), while it is there (Learning from Apollo), and after…

  5. Apollo 15 Proves Galileo Correct - Duration: 48 seconds.

    NASA Video Gallery

    At the end of the last Apollo 15 moon walk, Commander David Scott held out a geologic hammer and a feather and dropped them at the same time. Because they were essentially in a vacuum, there was no...

  6. APOLLO 9 : Who's in charge of Spider & Gumdrop?

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Introduces the crew of the APOLLO 9 mission. From the film documentary 'APOLLO 9: The Duet of Spider & Gumdrop': part of a documentary series made in the early 70's on the APOLLO missions, and narrated by Burgess Meredith. (Actual date created is not known at this time) Mission: APOLLO 9: Earth orbital flight with James A. McDivitt, David R. Scott, and Russell Schweickart. First flight of the Lunar Module. Performed rendezvous, docking and E.V.A..Mission Duration 241hrs 0m 54s.

  7. A new look at the Apollo 11 regolith and KREEP

    Microsoft Academic Search

    Randy L. Korotev; Jeffrey J. Gillis

    2001-01-01

    Although the Apollo 11 mission landed in Mare Tranquillitatis, ~50 km from the nearest exposure of highlands, small nonmare particles are conspicuous in the regolith. The nonmare portion of the Apollo 11 regolith is compositionally similar to the Apollo 16 regolith. At both sites most of the nonmare material is from the feldspathic highlands, but some is mafic impact-melt breccia

  8. Lunar Soil Erosion Physics for Landing Rockets on the Moon

    NASA Astrophysics Data System (ADS)

    Clegg, Ryan; Metzger, Philip; Roberson, Luke; Stephen, Huff

    2010-03-01

    To develop a lunar outpost, we must understand the blowing of soil during launch and landing of the new Altair Lander. For example, the Apollo 12 Lunar Module landed approximately 165 meters from the deactivated Surveyor III spacecraft, scouring its surfaces and creating numerous tiny pits. Based on simulations and video analysis from the Apollo missions, blowing lunar soil particles have velocities up to 2000 m/s at low ejection angles relative to the horizon, reach an apogee higher than the orbiting Command and Service Module, and travel nearly the circumference of the Moon. The low ejection angle and high velocity are concerns for the lunar outpost. As a first step in investigating this concern, we have performed a series of low-velocity impact experiments in a modified sandblasting hood using lunar soil simulant impacted upon various materials that are commonly used in spaceflight hardware. It was seen that considerable damage is inevitable and protective barriers need to be designed.

  9. Astronauts Mitchell and Shepard during first Apollo 14 EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut Edgar D. Mitchell, lunar module pilot, operates the Active Seismic Experiment's thumper during the first Apollo 14 extravehicular activity (EVA-1) on the Moon. Astronaut Alan B. Shepard Jr., commander, walks near deployed components of the Apollo Lunar Surface Experiments Package (ALSEP) in the background. This photograph was taken by an automatic 16mm camera mounted on the Apollo lunar hand tool carrier aboard the Modularized Equipment Transporter (MET).

  10. Long-lasting Science Returns from the Apollo Heat Flow Experiments

    NASA Astrophysics Data System (ADS)

    Nagihara, S.; Taylor, P. T.; Williams, D. R.; Zacny, K.; Hedlund, M.; Nakamura, Y.

    2012-12-01

    The Apollo astronauts deployed geothermal heat flow instruments at landing sites 15 and 17 as part of the Apollo Lunar Surface Experiments Packages (ALSEP) in July 1971 and December 1972, respectively. These instruments continuously transmitted data to the Earth until September 1977. Four decades later, the data from the two Apollo sites remain the only set of in-situ heat flow measurements obtained on an extra-terrestrial body. Researchers continue to extract additional knowledge from this dataset by utilizing new analytical techniques and by synthesizing it with data from more recent lunar orbital missions such as the Lunar Reconnaissance Orbiter. In addition, lessons learned from the Apollo experiments help contemporary researchers in designing heat flow instruments for future missions to the Moon and other planetary bodies. For example, the data from both Apollo sites showed gradual warming trends in the subsurface from 1971 to 1977. The cause of this warming has been debated in recent years. It may have resulted from fluctuation in insolation associated with the 18.6-year-cycle precession of the Moon, or sudden changes in surface thermal environment/properties resulting from the installation of the instruments and the astronauts' activities. These types of re-analyses of the Apollo data have lead a panel of scientists to recommend that a heat flow probe carried on a future lunar mission reach 3 m into the subsurface, ~0.6 m deeper than the depths reached by the Apollo 17 experiment. This presentation describes the authors' current efforts for (1) restoring a part of the Apollo heat flow data that were left unprocessed by the original investigators and (2) designing a compact heat flow instrument for future robotic missions to the Moon. First, at the conclusion of the ALSEP program in 1977, heat flow data obtained at the two Apollo sites after December 1974 were left unprocessed and not properly archived through NASA. In the following decades, heat flow data from January 1975 through February 1976, as well as the metadata necessary for processing the data (the data reduction algorithm, instrument calibration data, etc.), were somehow lost. In 2010, we located 450 original master archival tapes of unprocessed data from all the ALSEP instruments for a period of April through June 1975 at the Washington National Records Center. We are currently extracting the heat flow data packets from these tapes and processing them. Second, on future lunar missions, heat flow probes will likely be deployed by a network of small robotic landers, as recommended by the latest Decadal Survey of the National Academy of Science. In such a scenario, the heat flow probe must be a compact system, and that precludes use of heavy excavation equipment such as a rotary drill for reaching the 3-m target depth. The new heat flow system under development uses a pneumatically driven penetrator. It utilizes a stem that winds out of a reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab experiments have demonstrated its effectiveness in lunar vacuum.

  11. Case study of magmatic differentiation trends on the Moon based on lunar meteorite Northwest Africa 773 and comparison with Apollo 15 quartz monzodiorite

    NASA Astrophysics Data System (ADS)

    Fagan, Timothy J.; Kashima, Daiju; Wakabayashi, Yuki; Suginohara, Akiko

    2014-05-01

    Pyroxene and feldspar compositions indicate that most clasts from the Northwest Africa 773 (NWA 773) lunar meteorite breccia crystallized from a common very low-Ti (VLT) mare basalt parental magma on the Moon. An olivine cumulate (OC), with low-Ca and high-Ca pyroxenes and plagioclase feldspar formed during early stages of crystallization, followed by pyroxene gabbro, which is characterized by zoned pyroxene (Fe# = molar Fe/(Fe + Mg) × 100 from ˜35 to 90; Ti# = molar Ti/(Ti + Cr) × 100 from ˜20 to 99) and feldspar (˜An90-95Ab05-10 to An80-85Ab10-16). Late stage lithologies include alkali-poor symplectite consisting of fayalite, hedenbergitic pyroxene and silica, and alkaline-phase-ferroan clasts characterized by K-rich glass and/or K,Ba-feldspar with fayalite and/or pyroxene. Igneous silica only occurs with the alkaline-phase-ferroan clasts. This sequence of clasts represents stages of magmatic evolution along a ferroan-titanian trend characterized by correlated Fe# and Ti# in pyroxene, and a wide range of increase in Fe# and Ti# prior to crystallization of igneous silica.

  12. Food and nutrition studies for Apollo 16

    NASA Technical Reports Server (NTRS)

    Smith, M. C., Jr.; Rambaut, P. C.; Heidelbaugh, N. D.; Rapp, R. M.; Wheeler, H. O.

    1972-01-01

    A study has been conducted on nutrient intake and absorption during the Apollo 16 mission. Results indicate that inflight intakes of all essential nutrients were adequate and that absorption of these materials occurred normally.

  13. Crawford:Apollo legAcy 6.24 A&G December 2012 Vol. 53

    E-print Network

    Crawford, Ian

    cameras than with the bulky Apollo Hasselblads, of course); we did not obtain any drill cores or make anyCrawford:Apollo legAcy 6.24 A&G · December 2012 · Vol. 53 On the 40th anniversary of the last human expedition to the Moon, Ian Crawford reviews the scientific legacy of the Apollo programme and argues

  14. Apollo 14 and Apollo 16 Heavy-Particle Dosimetry Experiments

    Microsoft Academic Search

    R. L. Fleischer; H. R. Hart Jr.; G. M. Comstock; M. Carter; A. Renshaw; A. Hardy

    1973-01-01

    Doses of heavy particles at positions inside the command modules of Apollo missions 8, 12, 14, and 16 correlate well with the calculated effects of solar modulation of the primary cosmic radiation. Differences in doses at different stowage positions indicate that the redistribution of mass within the spacecraft could enhance safety from the biological damage that would otherwise be expected

  15. The prologue - A look at Apollo and Apollo\\/Soyuz

    Microsoft Academic Search

    C. M. Lee; A. S. Lyman

    1974-01-01

    The importance of man to the success of the Apollo missions is considered, giving attention to man's capabilities to provide rapid response to emergencies, the ability to carry out self-contained operations in the absence of communication with the ground, and the ability for rapid sensing, reaction, and vehicle control. In the upcoming Shuttle era the capabilities possessed by man are

  16. Apollo 13 Guidance, Navigation, and Control Challenges

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2009-01-01

    Combustion and rupture of a liquid oxygen tank during the Apollo 13 mission provides lessons and insights for future spacecraft designers and operations personnel who may never, during their careers, have participated in saving a vehicle and crew during a spacecraft emergency. Guidance, Navigation, and Control (GNC) challenges were the reestablishment of attitude control after the oxygen tank incident, re-establishment of a free return trajectory, resolution of a ground tracking conflict between the LM and the Saturn V S-IVB stage, Inertial Measurement Unit (IMU) alignments, maneuvering to burn attitudes, attitude control during burns, and performing manual GNC tasks with most vehicle systems powered down. Debris illuminated by the Sun and gaseous venting from the Service Module (SM) complicated crew attempts to identify stars and prevented execution of nominal IMU alignment procedures. Sightings on the Sun, Moon, and Earth were used instead. Near continuous communications with Mission Control enabled the crew to quickly perform time critical procedures. Overcoming these challenges required the modification of existing contingency procedures.

  17. Preliminary Scientific Results of Apollo 15 (As of September 24, 1971)

    E-print Network

    Rathbun, Julie A.

    ' . Preliminary Scientific Results of Apollo 15 (As of September 24, 1971) INTRODUCTION The preliminary scientific results of Apollo 15 are set forth herein. An attempt is made to describe these results in the framework of results from previous Apollo missions. It should be understood that analysis of Apollo 15 data

  18. Apollo 14 and apollo 16 heavy-particle dosimetry experiments.

    PubMed

    Fleischer, R L; Hart, H R; Comstock, G M; Carter, M; Renshaw, A; Hardy, A

    1973-08-01

    Doses of heavy particles at positions inside the command modules of Apollo missions 8, 12, 14, and 16 correlate well with the calculated effects of solar modulation of the primary cosmic radiation. Differences in doses at different stowage positions indicate that the redistribution of mass within the spacecraft could enhance safety from the biological damage that would otherwise be expected on manned, deep-space missions. PMID:17793335

  19. Apollo 11 Lunar Science Conference

    ERIC Educational Resources Information Center

    Cochran, Wendell

    1970-01-01

    Report of a conference called to discuss the findings of 142 scientists from their investigations of samples of lunar rock and soil brought back by the Apollo 11 mission. Significant findings reported include the age and composition of the lunar samples, and the absence of water and organic matter. Much discussed was the origin and structure of…

  20. Apollo 15 at Hadley Base.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This publication highlights the mission of Apollo 15 and includes many detailed black and white and color photographs taken near the lunar Apennine Mountains and the mile-wide, meandering Hadley Rille. Some of the photographs are full page (9 by 12 inch) reproductions. (Author/PR)

  1. APOLLO 11: Lunar Module Separates for descent

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Separation of the Lunar module for descent to the Lunar surface From the film documentary 'APOLLO 11:'The eagle Has Landed'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLLO 11: First manned lunar landing and return to Earth with Neil A. Armstrong, Michael Collins, and Edwin E. Aldrin. Landed in the Sea of Tranquilityon July 20, 1969; deployed TV camera and EASEP experiments, performed lunar surface EVA, returned lunar soil samples. Mission Duration 195 hrs 18 min 35sec

  2. Apollo Program Summary Report: Synopsis of the Apollo Program Activities and Technology for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Overall program activities and the technology developed to accomplish lunar exploration are discussed. A summary of the flights conducted over an 11-year period is presented along with specific aspects of the overall program, including lunar science, vehicle development and performance, lunar module development program, spacecraft development testing, flight crew summary, mission operations, biomedical data, spacecraft manufacturing and testing, launch site facilities, equipment, and prelaunch operations, and the lunar receiving laboratory. Appendixes provide data on each of the Apollo missions, mission type designations, spacecraft weights, records achieved by Apollo crewmen, vehicle histories, and a listing of anomalous hardware conditions noted during each flight beginning with Apollo 4.

  3. Where no flag has gone before: Political and technical aspects of placing a flag on the Moon

    NASA Technical Reports Server (NTRS)

    Platoff, Anne M.

    1993-01-01

    The flag on the Moon represents an important event in vexillological history. The political and technical aspects of placing a flag on the Moon, focusing on the first Moon landing, is examined. During their historic extravehicular activity, the Apollo 11 crew planted the flag of the United States on the lunar surface. This flag-raising was strictly a symbolic activity, as the United Nations Treaty on Outer Space precluded any territorial claim. Nevertheless, there were domestic and international debates over the appropriateness of the event. Congress amended the agency's appropriations bill to prevent the National Aeronautics and Space Administration (NASA) from placing flags of other nations, or those of international associations, on the Moon during missions funded solely by the United States. Like any activity in space exploration, the Apollo flag-raising also provided NASA engineers with an interesting technical challenge. They designed a flagpole with a horizontal bar allowing the flag to 'fly' without the benefit of wind to overcome the effects of the Moon's lack of an atmosphere. Other factors considered in the design were weight, heat resistance, and ease of assembly by astronauts whose space suits restricted their range of movement and ability to grasp items. As NASA plans a return to the Moon and an expedition to Mars, we will likely see flags continue to go 'where no flag has gone before'.

  4. APOLLO 17 : 'Rover' gets some Rough and Ready Repair

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 17 : Some tough roving neccesitates rough and ready repairs From the film documentary 'APOLLO 17: On the shoulders of Giants'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APPOLO 17 : Sixth and last manned lunar landing mission in the APOLLO series with Eugene A. Cernan, Ronald E.Evans, and Harrison H. (Jack) Schmitt. Landed at Taurus-Littrow on Dec 11.,1972. Deployed camera and experiments; performed EVA with lunar roving vehicle. Returned lunar samples. Mission Duration 301hrs 51min 59sec

  5. APOLLO 16: Putting the 'rover' thru its paces

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 16 : Cmdr Young puts the 'rover' thru a full field test... From the film documentary 'APOLLO 16: 'Nothing So Hidden'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLLO 16: Fifth manned lunar landing mission with John W. Young, Ken Mattingly, and Charles M. Duke. Landed at Descartes on April 20 1972. Deployed camera and experiments; performed EVA with lunar roving vehicle. Deployed P&F subsattelite in lunar orbit. Mission Duration 265hrs. 51 min. 5sec.

  6. Galileo photometry of Apollo landing sites

    Microsoft Academic Search

    P. Helfenstein; J. Veverka; James W. Head; C. Pieters; S. Pratt; J. Mustard; K. Klaasen; G. Neukum; H. Hoffmann; R. Jaumann

    1993-01-01

    As of December 1992, the Galileo spacecraft performed its second and final flyby (EM2), of the Earth-Moon system, during which it acquired Solid State Imaging (SSI) camera images of the lunar surface suitable for photometric analysis using Hapke's, photometric model. These images, together with those from the first flyby (EM1) in December 1989, provide observations of all of the Apollo

  7. Neil Armstrong On The Moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, Apollo ll mission commander, at the modular equipment storage assembly (MESA) of the Lunar Module 'Eagle' on the historic first extravehicular activity (EVA) on the lunar surface. Astronaut Edwin E. Aldrin Jr. took the photograph with a Hasselblad 70mm camera. Most photos from the Apollo 11 mission show Buzz Aldrin. This is one of only a few that show Neil Armstrong (some of these are blurry).

  8. What's new on the moon. II. [impact on understanding solar system evolution

    NASA Technical Reports Server (NTRS)

    French, B. M.

    1977-01-01

    Apollo missions and returned lunar samples have provided new information about the moon, the earth, the sun, and the universe. Analyses show that all the planets were formed by the rapid accumulation of small bodies into larger ones about 4.6 billion years ago. The existence of simple molecules formed by reactions between the soil particles and atoms of carbon, oxygen, and nitrogen that have come from the sun, suggests that the basic ingredients for life are common in the universe. The ratio of hydrogen to helium in the solar wind reaching the moon is found to be 20 to 1, whereas the earth-based measurements show this ratio to be 10 to 1. Although the moon does not have any magnetic field at the present, the analyses revealed the existence of such a field three billion years ago. The understanding of the reasons for the disappearance of this field is vital for understanding planetary magnetic fields. The determination of the chemical composition of the whole moon, the explanation of the moon's observed asymmetry, and the understanding of the nature of moon's interior will have to be achieved by future, possibly unmanned, missions.

  9. Ice on the Moon

    NSDL National Science Digital Library

    David Williams

    2003-01-22

    This information about the Lunar Prospector mission to the Moon discusses the possibility that ice exists on the lunar surface. The article indicates that no native water ice has been found on the moon. If ice has been found, it most likely originated from meteors and meteorites which periodically bombard the lunar surface.

  10. The Use of Deep Moonquakes for Constraining the Internal Structure of the Moon

    NASA Technical Reports Server (NTRS)

    Weber, Renee; Garcia, Raphael; Johnson, Catherine; Knapmeyer, Martin; Lognonne, Philippe; Nakamura, Yosio; Schmerr, Nick

    2010-01-01

    The installation of seismometers on the Moon s surface during the Apollo era provided a wealth of information that transformed our understanding of lunar formation and evolution. Seismic events detected by the nearside network were used to constrain the structure of the Moon s crust and mantle down to a depth of about 1000 km. The presence of an attenuating region in the deepest interior has been inferred from the paucity of farside events, as well as other indirect geophysical measurements. Recent re-analyses of the Apollo data have tentatively identified this region as a lunar core, although its properties are not yet constrained. Here we present new modeling in support of seismic missions that plan to build upon the knowledge of the Moon s interior gathered by Apollo. We have devised a method in which individual events can be linked to a known cluster using the observed S-P arrival time differences and azimuth to only two stations. Events can be further identified using each cluster's unique occurrence time signature

  11. Apollo 11 Launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This NASA Kennedy Space Center video release presents the countdown and liftoff of Apollo 11, the first manned journey to the Moon which began at Pad A, Launch Complex 39, Kennedy Space Center, Florida at 9:32 a.m. EDT on July 16, 1969. The crew of Apollo 11 included Commander Neil A. Armstrong, Command Module pilot Michael Collins, and Lunar Module pilot Edwin E. Aldrin, Jr. Several different camera viewpoints of the spacecraft as well as over-head shots of the Kennedy launch control center are presented prior to liftoff. Other footage includes shots of President Lyndon B. Johnson and his wife among the Florida audience viewing liftoff. During the countdown several audio updates from Kennedy launch control are presented as to the status of pre-launch testing and system readiness. Captivating footage from liftoff to the spacecraft nearing the outer Earth atmosphere is shown as the video ends with Neil Armstrong's confirmation of engine skirt separation and launch escape tower separation from the spacecraft.

  12. Astronaut Eugene Cernan eating a meal aboard Apollo 17 spacecraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A fellow crewman took this photograph of Astronaut Eugene A. Cernan, Apollo 17 mission commander, eating a meal under the weightless conditions of space during the final lunar landing mission in the Apollo program. Cernan appears to be eating chocolate pudding.

  13. Preparing to return to the Moon: Lessons from science-driven analogue missions to the Mistastin Lake impact structure, Canada, a unique lunar analogue site

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.; Barfoot, T.; Chanou, A.; Daly, M. G.; Francis, R.; Hodges, K. V.; Jolliff, B. L.; Mader, M. M.; McCullough, E. M.; Moores, J. E.; Pickersgill, A.; Pontefract, A.; Preston, L.; Shankar, B.; Singleton, A.; Sylvester, P.; Tornabene, L. L.; Young, K. E.

    2013-12-01

    Impact cratering is the dominant geological process on the Moon, Near Earth Asteroids (NEAs) and the moons of Mars - the objectives for the new Solar System Exploration Research Virtual Institute (SSERVI). Led by members of the Canadian Lunar Research Network (CLRN), funded by the Canadian Space Agency, and with participants from the U.S., we carried out a series of analogue missions on Earth in order to prepare and train for future potential robotic and human sample return missions. Critically, these analogue missions were driven by the paradigm that operational and technical objectives are conducted while conducting new science and addressing real overarching scientific objectives. An overarching operational goal was to assess the utility of a robotic field reconnaissance mission as a precursor to a human sortie sample return mission. Here, we focus on the results and lessons learned from a robotic precursor mission and follow on human-robotic mission to the Mistastin Lake impact structure in Labrador, northern Canada (55°53'N; 63°18'W). The Mistastin structure was chosen because it represents an exceptional analogue for lunar craters. This site includes both an anorthositic target, a central uplift, well-preserved impact melt rocks - mostly derived from melting anorthosite - and is (or was) relatively unexplored. This crater formed ~36 million years ago and has a diameter of ~28 km. The scientific goals for these analogue missions were to further our understanding of impact chronology, shock processes, impact ejecta and potential resources within impact craters. By combining these goals in an analogue mission campaign key scientific requirements for a robotic precursor were determined. From the outset, these analogue missions were formulated and executed like an actual space mission. Sites of interest were chosen using remote sensing imagery without a priori knowledge of the site through a rigorous site selection process. The first deployment occurred in August and September 2010 and involved simulated robotic surveying of selected 'landing sites' at the Mistastin structure. The second deployment took place at the same location in 2011, which included simulated astronaut surface operations with, and without, the aid of a robotic assistant. A mission control team, based at the University of Western Ontario, London, Ontario, 1,900 km from the field site, oversaw operations. Our study showed the value of precursor reconnaissance missions in providing surface geology visualization at resolutions and from viewpoints not achievable from orbit, including high-resolution surface imagery on the scale of 10s of metres to kilometres. Indeed, data collected during the robotic precursor mission led to the formulation of a hypothesis that a large impact melt outcrop - named Discovery Hill - represents an impact melt pond in the terraced region of the crater, analogous to similar ponds of melt documented around the rim of well-preserved lunar craters such as Tycho. Further discoveries, that will be highlight here, include documentation of ejecta deposits for the first time at Mistastin, quantification of shock in anorthosites, and refined age estimates for the Mistastin impact event.

  14. Influence of the lunar ambience on dynamic surface hydration on sunlit regions of the Moon

    NASA Astrophysics Data System (ADS)

    Califorrniaa, E.

    2015-03-01

    The accepted paradigm of a dry Moon has been upset by the recent detection of a wet Moon. EPOXI, NASA's extended mission for the Deep Impact spacecraft, observed and quantified dynamic surface hydration on sunlit regions of the Moon by infrared spectrometry in separate flybys. MIP CHACE, released from ISRO's Chandrayaan-1 spacecraft, detected H2O by mass spectrometry in orbit in the sunlit lunar ambience at a partial pressure exceeding Apollo inferences by over two orders of magnitude. Here it is shown CHACE and EPOXI are mutually supportive, suggesting the order of magnitude reported by CHACE is correct. With this confirmation in mind, it is shown the CHACE data imply H2O in the lunar ambience impinges upon near equatorial surfaces at an annual average of ?400 g m-2 yr-1 by cursory estimate.

  15. Prospecting for In Situ Resources on the Moon and Mars Using Wheel-Based Sensors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Anderson, Robert C.; Seshadri, Suresh; Schaap, Marcel G.

    2005-01-01

    The Apollo and Russian missions during 1970's were reviewed to rediscover the type and distribution of minerals on the Moon. This study revealed that the Moon is a relatively barren place in mineral content when compared with the Earth. Results from the Lunar minerals brought back to Earth, indicate that the Moon lacks water, hydroxyl ions, and carbon based minerals. Our approach to prospecting utilizes a vehicle with sensors embedded in a wheel that allow measurements while the vehicle is in motion. Once a change in soil composition is detected, decision making software stops the vehicle and analytical instruments perform a more definitive analysis of the soil. The focus of this paper is to describe the instrumentation and data from the wheel-based sensors.

  16. Life sciences - On the critical path for missions of exploration

    NASA Technical Reports Server (NTRS)

    Sulzman, Frank M.; Connors, Mary M.; Gaiser, Karen

    1988-01-01

    Life sciences are important and critical to the safety and success of manned and long-duration space missions. The life science issues covered include gravitational physiology, space radiation, medical care delivery, environmental maintenance, bioregenerative systems, crew and human factors within and outside the spacecraft. The history of the role of life sciences in the space program is traced from the Apollo era, through the Skylab era to the Space Shuttle era. The life science issues of the space station program and manned missions to the moon and Mars are covered.

  17. Impact origin of the Moon

    SciTech Connect

    Slattery, W.L.

    1998-12-31

    A few years after the Apollo flights to the Moon, it became clear that all of the existing theories on the origin of the Moon would not satisfy the growing body of constraints which appeared with the data gathered by the Apollo flights. About the same time, researchers began to realize that the inner (terrestrial) planets were not born quietly -- all had evidences of impacts on their surfaces. This fact reinforced the idea that the planets had formed by the accumulation of planetesimals. Since the Earth`s moon is unique among the terrestrial planets, a few researchers realized that perhaps the Moon originated in a singular event; an event that was quite probable, but not so probable that one would expect all the terrestrial planets to have a large moon. And thus was born the idea that a giant impact formed the Moon. Impacts would be common in the early solar system; perhaps a really large impact of two almost fully formed planets of disparate sizes would lead to material orbiting the proto-earth, a proto-moon. This idea remained to be tested. Using a relatively new, but robust, method of doing the hydrodynamics of the collision (Smoothed-Particle Hydrodynamics), the author and his colleagues (W. Benz, Univ. of Arizona, and A.G.W. Cameron, Harvard College Obs.) did a large number of collision simulations on a supercomputer. The author found two major scenarios which would result in the formation of the Moon. The first was direct formation; a moon-sized object is boosted into orbit by gravitational torques. The second is when the orbiting material forms a disk, which, with subsequent evolution can form the Moon. In either case the physical and chemical properties of the newly formed Moon would very neatly satisfy the physical and chemical constraints of the current Moon. Also, in both scenarios the surface of the Earth would be quite hot after the collision. This aspect remains to be explored.

  18. Rb-Sr-analyses of apollo 16 melt rocks and a new age estimate for the imbrium basin: lunar basin chronology and the early heavy bombardment of the moon

    SciTech Connect

    Deutsch, A.; Stoeffler, D.

    1987-07-01

    Rb-Sr-model ages on 7 impact glass-bombs and internal Rb-Sr isochrons for two crystalline impact melt rocks from the Apollo 16 collection have been determined. The post-Cayley glass-bombs with model ages between 4.75 +- 0.45 AE and 3.97 +- 0.08 AE can be classified according to their calculated single stage (/sup 87/Rb/sup 86/Sr)/sub I/-ratios: 67728, 67946, and 67627.8 point to a KREEP-free precursor terrain - the Descartes highlands; whereas 63566, 67567, 67627.10 and 67629 are derived from the more heterogeneous Cayley plains. The very feldspar-rich impact melt rock 65795, which is compositionally similar to the group of feldspathic microporphyritic melt breccias (FM-suite), yields a crystallization age of 3.81 +- 0.04 AE (2sigma; lambda/sup 87/Rb = 1.42/sup -11/ yr/sup -1/) and I/sub Sr/ of .69929 +- 3. The authors suggest that the Imbrium basin and the related Fra Mauro and Cayley formations were formed 3.77 +- 0.02 AE ago and could be even as young as 3.75 AE. As a consequence, they adopt 3.92 +- 0.03 AE, 3.87 +- 0.03 AE, and 3.84 +- 0.04 AE as ages for the Nectaris, Serenitatis, and Crisium basins, respectively, in agreement with the relative crater densities measured on the ejecta blankets of these basins. The proposed age sequence leads to an average formation interval for the observed 12-13 Nectarian basins of 7 to 14 m.y. leaving approx. 30 pre-Nectarian basins of unknown age. These facts suggest that there is no late terminal lunar cataclysm in the sense of a culmination of the lunar impact rate at approx. 3.8 AE ago. Rather, the observations are compatible with a steeply and steadily decreasing flux of impactors in the sense of an early heavy bombardment which started at the time of the moon's accretion and terminated around 3.75 AE ago.

  19. The Moon and Its Origin

    ERIC Educational Resources Information Center

    Urey, Harold C.

    1973-01-01

    Describes the origin of the Moon on the basis of the Apollo expeditions as an accumulated gas sphere at its very beginning and, later, a satellite captured by the Earth. Indicates that the model would be substantially believable if further observations should be proved to exist as estimated. (CC)

  20. APOLLO II

    SciTech Connect

    Sanchez, R.; Mondot, J.; Stankovski, Z.; Cossic, A.; Zmijarevic, I.

    1988-11-01

    APOLLO II is a new, multigroup transport code under development at the Commissariat a l'Energie Atomique. The code has a modular structure and uses sophisticated software for data structuralization, dynamic memory management, data storage, and user macrolanguage. This paper gives an overview of the main methods used in the code for (a) multidimensional collision probability calculations, (b) leakage calculations, and (c) homogenization procedures. Numerical examples are given to demonstrate the potential of the modular structure of the code and the novel multilevel flat-flux representation used in the calculation of the collision probabilities.

  1. Teen Moon: Moon Ooze

    NSDL National Science Digital Library

    Lunar and Planetary Institute

    2010-01-01

    In this activity, learners model how the Moon's volcanic period reshaped its earlier features. Learners consider that the broad, shallow impact basins--which had formed earlier while it was a "kid Moon"--contained cracks through which magma seeped up. A plate in which slits have been cut is used to represent an impact basin and a dish of red-colored water is used to represent the pockets of magma within the Moon's upper layers. When the model impact basin is pressed into the magma, "lava" fills in the low areas through the same process that produced the dark patches, or maria, on the Moon. Learners may examine a type of Earth rock (named basalt) that is also found on the Moon and that would have been shaped by the processes explored here. This activity investigates the Moon's "teen years," when it was one to three billion years old.

    This activity station is part of a sequence of stations that can be set up to help learners trace the Moon's 4.5-billion-year history from "infancy" to the imagined future. Learners tie together major events in the Moon's geologic history as a series of comic panels in their Marvel Moon comic books.

  2. Europa Jupiter System Mission and Marco Polo Mission: Italian partecipation in studies of laser altimeters for Jovian moons and asteroids exploration

    Microsoft Academic Search

    M. R. Santovito; H. Hussman; J. Oberst; K. Lingenauber

    2011-01-01

    CO.RI.S.T.A. (Consortium for Research on Advanced Remote Sensing Systems) is member of international science teams devoted to the studies of laser altimeters to fly on Europa Jupiter System Mission (EJSM) and Marco Polo Mission, currently under study of ESA's Cosmic Vision program as L-class and M-class mission respectively. Both the studies will focus on the assessment of alternative technical approaches

  3. Proposal for revisions of the United Nations Moon Treaty

    NASA Astrophysics Data System (ADS)

    Fernandes, Vera; Abreu, Neyda; Fritz, J.; Knapmeyer, Martin; Smeenk, Lisa; Ten Kate, Inge; Trüninger, Monica

    During this new 2010-decade, it will be imperative to reconsider the effectiveness of the current United Nations (U.N.) Moon Treaty (c.1979). Amendments are necessary to underline the mandatory human stewardship of this fragile planetary body of our Solar System, indispensible to life on Earth. After the very successful Apollo and Luna missions to the Moon (ending in 1976), which brought a wide array of data (samples, surface and orbital experiments), the Moon lost its exploratory attraction in favor of other programs, such as the International Space Station and potential human exploration of Mars. However, since the mid-90's, the enthusiasm for the Moon has been revived, which resulted in several space agencies worldwide (NASA, ESA, ISRO, JAXA, and the Chinese Space Agency) having made great efforts to re-start ex-ploratory and scientific campaigns even though budgetary changes may delay the process. As a result, a wide array of peoples and their interests are put together in each mission planned to reach the Moon (e.g., orbiters and landers). Up to now, mission plans focus on technical requirements and the desires of scientists and engineers, but hardly any other aspects. Field specialists on issues regarding the social, economic, political, cultural, ethical and environmen-tal impacts of Moon exploration and colonization have had little to no involvement in current and past lunar missions. However, these fields would provide different and essential points of view regarding the planning of lunar missions. Moreover, recent documents written by the scientific community, such as "The Scientific Context for Exploration of the Moon: Final Re-port" Committee on the Scientific Context for Exploration of the Moon, National Research Council (2007), or the recent (summer 2009) White Papers for the National Research Council Planetary Science Decadal Survey 2011-2020, do not seem to leave space for a multidisciplinary approach regarding the future lunar exploration either. More than 30 years have passed since the Moon Treaty (c. 1979) was elaborated, and since then technology and science have evolved leading to the need to change the requirements. As stated in the Moon Treaty, the State par-ties who had signed the Treaty meet every 5 and 10 years to revise the Treaty and suggest the necessary ratifications and amendments. The present version of the Moon Treaty, however, does not demonstrate ratifications that take into consideration environmental protection and preservation. For this, it is here suggested, that both the Antarctica Treaty (c. 1959), and more importantly, the Protocol on Environmental Protection to the Antarctic Treaty (c. 1991) are to be used as references for future documents that will be drawn pertaining the Moon. The Antarctica Treaty is currently one of the world's most successful international agreements and has evolved through time as needs and awareness require. The Protocol on Environmental Protection to the Antarctic Treaty reflects concerns regarding the impact of humans on the fragile environment of that continent. This concern is equally critical as new stages of lunar exploration unfold and the effects of such activity are progressively assessed. The key aspects of the Antarctic Protocol applicable to the Moon Treaty are: (1) a ban on commercial mineral resource activity, (2) careful waste disposal management, and (3) protection of areas of par-ticular scientific, environmental, and historical value. These measures should be implemented to prevent irreparable damage of the pristine lunar environment while permitting scientific, educational, and touristic uses and encouraging continued commitment to exploration of the Moon and other planetary bodies irrespective of exploration being robotic or human. A num-ber of other documents that establish an Environmental Code of Conduct for certain areas within the Antarctic continent (e.g., Management Plan for the Antarctic Specially Managed Area No.2, the McMurdo Dry Valleys of Southern Victoria Land) will also be instrumental in improving the current

  4. Apollo 16: Nothing So Hidden

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This film shows the landing and the three lunar traverses in the highland region of the moon, near the crater descartes. It includes an astronaut's eye view from the rover, lunar grand prix, discovery of the house-sized rock, lunar lift-off and eva 173,000 miles above the earth. Microphones and cameras in mission control record the emergency problem solving during the prelanding crisis and the reactions of scientists on earth as the astronauts explore the moon.

  5. APOLLO 12: C.Conrad Jr. collects geological samples

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 12: 'Pete' Conrad collects samples from the lunar surface, while at the same time adjusting to, and remarking on, the working conditions. From the film documentary 'APOLLO 12: 'Pinpoint for Science'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLLO 12: Second manned lunar landing and return with Charles 'Pete' Conrad, Jr., Richard F. Gordon, and Alan F. Bean. Landed in the Ocean of Storms on November 19, 1969; deployed television camera and ALSEP experiments; two EVA's performed; collected core samples and lunar materials; photographed and retrieved parts from surveyor 3 spacecraft. Mission duration 244hrs 36min 24sec

  6. APOLLO 11: Landing the Eagle - The Final Approach

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 11: Landing the Eagle - The Final Approach. The dramatic final 60 seconds before touchdown. From the film documentary 'APOLLO 11:'The Eagle Has Landed'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLLO 11: First manned lunar landing and return to Earth with Neil A. Armstrong, Michael Collins, and Edwin E. Aldrin. Landed in the Sea of Tranquilityon July 20, 1969; deployed TV camera and EASEP experiments, performed lunar surface EVA, returned lunar soil samples. Mission Duration 195 hrs 18 min 35sec

  7. Apollo 17 Lunar Surface Experiment equipment

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Table-top views of some of the Apollo 17 Lunar Surface Experiment equipment. Included are the Geophone Module and Cable Reels of the Lunar Seismic Profiling Experiment (S-203), a component of the Apollo Lunar Surface Experiments Package which will be carried on the Apollo 17 lunar landing mission. After it is triggered, the experiment will settle down into a passive listening mode, detecting Moonquakes, meteorite impacts and the thump caused by the Lunar Module ascent stage impact (37259); The remote antenna for the Lunar Seismic Profiling Experiment (S-203) (37260).

  8. Space Science in Action: Moon [Videotape].

    ERIC Educational Resources Information Center

    1999

    This videotape recording answers key questions about the Moon such as, What keeps it revolving around the Earth?, Why do we see only one side of the Moon?, and What is the origin of the Moon? Students learn about how the Moon has been studied throughout history, including recent lunar missions, its phases, eclipses, and how it causes tides on…

  9. The Apollo SWC Experiment: Results, Conclusions, Consequences

    Microsoft Academic Search

    J. Geiss; F. Bühler; H. Cerutti; P. Eberhardt; Ch. Filleux; J. Meister; P. Signer

    2004-01-01

    The Apollo Solar Wind Composition (SWC) experiment was designed to measure elemental and isotopic abundances of the light\\u000a noble gases in the solar wind, and to investigate time variations in the solar-wind composition. The experiment was deployed\\u000a on the first five Apollo lunar landing missions. The crews exposed a foil at each of the five landing sites, and solar wind

  10. Space food systems - Mercury through Apollo.

    NASA Technical Reports Server (NTRS)

    Roth, N. G.; Smith, M. C.

    1972-01-01

    Major achievements which characterized the development of food systems used by American astronauts in manned space flight are reviewed throughout a period spanning the Mercury, Gemini, and Apollo programs up to and including the Apollo 11 lunar landing mission. Lists of food types are accompanied by information on packaging, storage, preparation, consumption, and quality of particular products. Experience gained from development efforts for the Manned Orbiting Laboratory Program is also discussed.

  11. Neil Armstrong gets round of applaus at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Former Apollo 11 astronaut Neil A. Armstrong stands to a round of applause after being introduced at the anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon. He appeared at the banquet with other former astronauts Edwin 'Buzz' Aldrin, Gene Cernan, Walt Cunningham and others.

  12. Former astronauts Armstrong and Cernan talk at Apollo 11 anniversary banquet

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During an anniversary banquet honoring the Apollo program team, the people who made the entire lunar landing program possible, former Apollo astronauts Neil Armstrong (left) and Gene Cernan talk about their experiences. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Other guests at the banquet were astronauts Wally Schirra, Edwin 'Buzz' Aldrin and Walt Cunningham. Neil Armstrong was the first man to walk on the moon; Gene Cernan was the last.

  13. Lunar Science for Future Missions

    NASA Astrophysics Data System (ADS)

    Jolliff, B. L.

    2006-12-01

    NASA's Vision for Space Exploration (VSE) will return humans to the Moon and will include robotic precursor missions in its early phases, including the Lunar Reconnaissance Orbiter, now in development. Many opportunities for scientific investigations will arise from this program of exploration. Such opportunities will span across disciplines of planetary science, astrophysics, heliophysics, and Earth science via remote observation and monitoring. This abstract focuses on some of the key lunar science objectives that can be addressed with robotic and human missions. Even after 35+ years of study of Apollo samples and data, and global remote sensing missions of the 1990's, key lunar science questions remain. Apollo provided ground truth for the central nearside, but ground truth is lacking for the lunar farside and poles. Lunar meteorites provide knowledge about areas potentially far distant from the central nearside, but ground truth in key areas such as the farside South Pole-Aitken Basin, which provides access to the lower crust and possibly the upper mantle, will enable more direct correlations between the lunar meteorites and global remotely sensed data. Extending and improving knowledge of surface compositions, including partially buried basalt deposits, globally, is needed to better understand the composition of the Moon's crust as a function of depth and of the mantle, and to provide new tests of the Moon's origin and early surface and internal evolution. These issues can be addressed in part with robotic measurements on the surface; however, samples cached for return to Earth are needed for detailed chemical, lithologic, and geochronologic investigations. Apollo experience has shown that regolith samples and/or rock fragments sieved from regolith provide a wealth of information that can be interpreted within the context of regional geology. Targeted sampling by humans and human/robotic teams can optimize sampling strategies. Detailed knowledge of specific sites on local to regional geologic scales is needed to assess regolith resources as well as science activities that can be accomplished from a lunar outpost. Critical resources will include O, H, other solar-wind-implanted gases, and construction materials; understanding their distribution and concentration within the local geologic setting is required. Assessment of ilmenite-rich regolith developed on high-Ti basalt surfaces is a key resource development activity. Early missions can contribute importantly to network science such as seismic and heat-flow experiments. Consideration must be given to synergistic activities with a view to long-term results and/or international collaboration, for example, through use of communication satellites to better determine far-side gravity and to test models of crust/mantle structure, impact-basin formation and compensation, and thermal history.

  14. Europa Jupiter System Mission and Marco Polo Mission: Italian partecipation in studies of laser altimeters for Jovian moons and asteroids exploration.

    NASA Astrophysics Data System (ADS)

    Santovito, M. R.; Hussman, H.; Oberst, J.; Lingenauber, K.

    CO.RI.S.T.A. (Consortium for Research on Advanced Remote Sensing Systems) is member of international science teams devoted to the studies of laser altimeters to fly on Europa Jupiter System Mission (EJSM) and Marco Polo Mission, currently under study of ESA's Cosmic Vision program as L-class and M-class mission respectively. Both the studies will focus on the assessment of alternative technical approaches that would reduce the mass, size and power requirements. In particular a Single Photon Counting (SPC) device will be studied taking into account the robustness against false detections due to harsh radiation environment in the Jupiter system. Innovative technical aspects which will characterize the studies of laser altimeters in the scenarios of EJSM and MarcoPolo, which will permit us to make major contributions to the science goals of the two missions.

  15. From the Moon: Bringing Space Science to Diverse Audiences

    NASA Astrophysics Data System (ADS)

    Runyon, C. J.; Hall, C.; Joyner, E.; Meyer, H. M.; M3 Science; E/PO Team

    2011-12-01

    NASA's Apollo missions held a place in the mindset of many Americans - we dared to go someplace where humans had never set foot, a place unknown and beyond our imaginations. These early NASA missions and discoveries resulted in an enhanced public understanding of the Moon. Now, with the human element so far removed from space exploration, students must rely on textbooks, TV's, and computers to build their understanding of our Moon. However, NASA educational materials about the Moon are stale and out-of-date. In addition, they do not effectively address 21st Century Skills, an essential for today's classrooms. Here, we present a three-part model for developing opportunities in lunar science education professional development that is replicable and sustainable and integrates NASA mission-derived data (e.g., Moon Mineralogy Mapper (M3)/Chandrayaan-1). I) With the return of high resolution/high spatial data from M3/Chandrayaan-1, we can now better explore and understand the compositional variations on the lunar surface. Data and analysis techniques from the imaging spectrometer are incorporated into the M3 Educator's Guide: Seeing the Moon in a New Light. The guide includes an array of activities and lessons to help educators and students understand how NASA is currently exploring the Moon. The guide integrates NASA maps and data into the interactive lessons, bringing the excitement of scientific exploration and discovery into the classroom. II) Utilizing the M3 Educator's Guide as well as educational activities from more current NASA lunar missions, we offer two sustained professional development opportunities for educators to explore the Moon through interactive and creative strategies. 1) Geology of the Moon, an online course offered through Montana State University's National Teacher Enhancement Network, is a 3-credit graduate course. 2) Fly Me to the Moon, offered through the College of Charleston's Office of Professional Development in Education, is a two-hour graduate credit course. Through these courses, teachers from a variety of disciplines and grade levels journey to the Moon, exploring NASA's historic and current missions and data. As both of these courses are primarily online, we incorporate interactive ways for educators to explore and communicate their ideas. Through a series of scaffolded webquests, educators work through inquiry-oriented lessons to gather information and data directly through the Internet. The webquests allow students to freely explore, motivating them to investigate open-ended questions and enhance their self-learning process. III) To address more diverse audiences, a unique partnership among the College of Charleston's School of Science and Math and the School of the Arts will showcase a two-year celebration of lunar observations and analyses. From the Moon: Mapping and Exploration will open in November, 2011. From the Moon: Mysteries and Myths exhibit at the Halsey Gallery of Art in Charleston, SC will open in Fall, 2013. Patrons will explore one-of-a-kind artifacts, as well as early observations from Galileo to current observations from ongoing NASA lunar missions. Both exhibits will be paired with tactile activities, lesson plans and professional development opportunities.

  16. Neil Armstrong talks of his experiences at Apollo 11 anniversary banquet

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Neil Armstrong, former Apollo 11 astronaut, and first man to walk on the moon, talks about his experiences for an enthusiastic audience at the Apollo/Saturn V Center, part of the KSC Visitor Complex. The occasion was a banquet celebrating the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among other guests at the banquet were astronauts Wally Schirra, Edwin 'Buzz' Aldrin and Walt Cunningham. Gene Cernan was the last man to walk on the moon.

  17. The Electrostatic Environments of Mars and the Moon

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2011-01-01

    The electrical activity present in the environment near the surfaces of Mars and the moon has very different origins and presents a challenge to manned and robotic planetary exploration missions. Mars is covered with a layer of dust that has been redistributed throughout the entire planet by global dust storms. Dust, levitated by these storms as well as by the frequent dust devils, is expected to be electrostatically charged due to the multiple grain collisions in the dust-laden atmosphere. Dust covering the surface of the moon is expected to be electrostatically charged due to the solar wind, cosmic rays, and the solar radiation itself through the photoelectric effect. Electrostatically charged dust has a large tendency to adhere to surfaces. NASA's Mars exploration rovers have shown that atmospheric dust falling on solar panels can decrease their efficiency to the point of rendering the rover unusable. And as the Apollo missions to the moon showed, lunar dust adhesion can hinder manned and unmanned lunar exploration activities. Taking advantage of the electrical activity on both planetary system bodies, dust removal technologies are now being developed that use electrostatic and dielectrophoretic forces to produce controlled dust motion. This paper presents a short review of the theoretical and semiempirical models that have been developed for the lunar and Martian electrical environments.

  18. Apollo experience report: Safety activities

    NASA Technical Reports Server (NTRS)

    Rice, C. N.

    1975-01-01

    A description is given of the flight safety experiences gained during the Apollo Program and safety, from the viewpoint of program management, engineering, mission planning, and ground test operations was discussed. Emphasis is placed on the methods used to identify the risks involved in flight and in certain ground test operations. In addition, there are discussions on the management and engineering activities used to eliminate or reduce these risks.

  19. Apollo 11 preflight press conference

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The three prime crewmen of the Apollo 11 lunar landing mission participate in a pre-flight press conference in the bldg 1 auditorium on July 5, 1969. Left to right, are Astronauts Neil A. Armstrong, commander; Edwin E. Aldrin Jr., lunar module pilot; and Michael Collins, command module pilot. The box-like enclosure surrounding the three astronauts was part of elaborate precautions in effect to reduce the possibility of exposing the crewmen to infectious disease in the preflight period.

  20. Finite Element Modelling of the Apollo Heat Flow Experiments

    NASA Astrophysics Data System (ADS)

    Platt, J.; Siegler, M. A.; Williams, J.

    2013-12-01

    The heat flow experiments sent on Apollo missions 15 and 17 were designed to measure the temperature gradient of the lunar regolith in order to determine the heat flux of the moon. Major problems in these experiments arose from the fact that the astronauts were not able to insert the probes below the thermal skin depth. Compounding the problem, anomalies in the data have prevented scientists from conclusively determining the temperature dependent conductivity of the soil, which enters as a linear function into the heat flow calculation, thus stymieing them in their primary goal of constraining the global heat production of the Moon. Different methods of determining the thermal conductivity have yielded vastly different results resulting in downward corrections of up to 50% in some cases from the original calculations. Along with problems determining the conductivity, the data was inconsistent with theoretical predictions of the temperature variation over time, leading some to suspect that the Apollo experiment itself changed the thermal properties of the localised area surrounding the probe. The average temperature of the regolith, according to the data, increased over time, a phenomenon that makes calculating the thermal conductivity of the soil and heat flux impossible without knowing the source of error and accounting for it. The changes, possibly resulting from as varied sources as the imprint of the Astronauts boots on the lunar surface, compacted soil around the bore stem of the probe or even heat radiating down the inside of the tube, have convinced many people that the recorded data is unusable. In order to shed some light on the possible causes of this temperature rise, we implemented a finite element model of the probe using the program COMSOL Multi-physics as well as Matlab. Once the cause of the temperature rise is known then steps can be taken to account for the failings of the experiment and increase the data's utility.

  1. Lunar penetrator mission, LUNAR-A

    NASA Astrophysics Data System (ADS)

    Mizutani, H.; Kohno, M.; Fujimura, A.; Kawaguchi, J.; Nakajima, S.; Hinada, M.; Matsuo, H.

    Institute of Space and Astronautical Science (ISAS), Japan, plans to undertake a lunar mission, named as LUNAR-A, which is to be launched in early 1996. The scientific objective of the mission is to explore the lunar interior using seismometry and heat-flow measurement toward better understanding of the origin and evolution of the moon. The M-V, the newest version of the Mu series launch vehicles now under development, is used to send about 550 kg of spacecraft to the lunar transfer orbit. Three penetrators (which are missile-shaped instrument carriers) are deployed from a spacecraft onto the lunar surface, and constitute a seismic and heat-flow measurement network of a larger span than the Apollo network. The present paper describes the outline and scientific implications of the ISAS lunar penetrator mission.

  2. Photograph of Apollo 17 lunar landing site location

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An oblique view of the Taurus-Littrow area on the lunar nearside, as photographed from the Apollo 15 spacecraft in lunar orbit. This is an enlarged view. The 'X' marks the landing site of the scheduled Apollo 17 lunar landing mission. The overlay points out several features in the photograph. The coordinates of the Apollo 17 touchdown point are 30 degrees 44 minutes 58 seconds east longitude and 20 degrees 9 minutes 50 seconds north latitude.

  3. Anomalous Propagation of Elastic Energy within the Moon

    Microsoft Academic Search

    B. I. Pandit; D. C. Tozer

    1970-01-01

    THE records of the seismographs left on the lunar surface by the Apollo 11 and Apollo 12 missions have been discussed by Latham et al.1. From the behaviour immediately following impact of the Apollo 12 ascent stage and similar events present on the records before and after, they have inferred that energy propagation as elastic waves over large distances can

  4. Revised Coordinates for Apollo Hardware

    NASA Astrophysics Data System (ADS)

    Wagner, R. V.; Speyerer, E. J.; Burns, K. N.; Danton, J.; Robinson, M. S.

    2012-08-01

    The Narrow Angle Camera (NAC) on the Lunar Reconnaissance Orbiter provides direct imaging, at pixel scales of 0.5 to 1.0 meter, of anthropogenic equipment left on the Moon. We identified the descent stages of the lunar modules, central stations of the Apollo Lunar Surface Experiments Package, Laser Ranging Retroreflectors (LRRRs), and Lunar Roving Vehicles in each NAC image of the Apollo landing sites. The pixel coordinates of those objects were then converted to latitude and longitude coordinates using SPICE routines in the U.S. Geological Survey Integrated System for Imagers and Spectrometers. For images that contained an LRRR, pointing information was updated to match the well known LRRR coordinates. Final coordinates for each object are reported as averages from multiple images. NAC observations allow refinement of the locations of these objects and result in a more accurate geodetic referencing at these historic sites. Additionally, the anthropogenic coordinate analysis enables realistic error estimates for NAC derived coordinates for features anywhere on the Moon.

  5. APOLLO 16: Young and Duke head for North Ray Crater

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 16 : Young and Duke head for North Ray Crater From the film documentary 'APOLLO 16: 'Nothing So Hidden'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLO16: Fifth manned lunar landing mission withJohn W. Young, Ken Mattingly, and Charles M. Duke. Landed at Descartes on April 20 1972. Deployed camera and experiments; performed EVA with lunar roving vehicle. Deployed P&F Subsattelite in lunar orbit. Mission Duration 265hrs 51 min 5sec

  6. APOLLO 16: A liesurely lunar Lift-off

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 16 : Lift-off should be stress-free event. From the film documentary 'APOLLO 16: 'Nothing So Hidden'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLO16: Fifth manned lunar landing mission withJohn W. Young, Ken Mattingly, and Charles M. Duke. Landed at Descartes on April 20 1972. Deployed camera and experiments; performed EVA with lunar roving vehicle. Deployed P&F Subsattelite in lunar orbit. Mission Duration 265hrs 51 min 5sec

  7. Neil Armstrong, Former NASA Astronaut and the First Person to Walk on the Moon, Dies at 82 - Duration: 18 minutes.

    NASA Video Gallery

    Neil Armstrong, the first man to walk on the moon has died. He was 82. Armstrong, considered an American hero, commanded the the Apollo 11 spacecraft that landed on the moon in 1969. The phrase he ...

  8. Evolved Lithologies and Their Inferred Sources in the Northwestern Procellarum Region of the Moon

    NASA Technical Reports Server (NTRS)

    Jolliff, Bradley L.

    2004-01-01

    Compositional remote sensing from the Lunar Prospector mission reveals the Procellarum- Imbrium region of the Moon, also referred to as the Procellarum KREEP Terrane, to be an area of significant enrichment of heat-producing residua (i.e., Thrich) of the early lunar differentiation. Previous estimates place as much as 60-70% of the whole-Moon content of Th into the crust and as much as 35-40% of the crustal Th content into the Procellarum KREEP Terrane [5], which occupies only approx. 10-15% of the volume of the crust. Although these estimates have significant uncertainty, the correspondence of the enrichment of Th (and other heat producers U and K) in this region is consistent with extended igneous activity, manifested at the surface by extensive basaltic volcanism and subdued topography. Such activity may have extended also to a significant depth, probably including the upper mantle. In this abstract, we present evidence based on Apollo samples for some of the most extensively fractionated lunar rocks types, including a Th-rich mare basalt from Apollo 12, and monzogabbro (also known as monzodiorite), granite, and alkali anorthosite from Apollo 12 and 14 samples. We relate these to likely exposures and sources indicated by compositional remote sensing.

  9. Saturn's Moons

    NSDL National Science Digital Library

    This is a lesson about the relationship between a planet and it's moon(s). Learners will use the data provided on a set of Saturn Moon Cards to compare Saturn's moons with Earth's Moon, and to explore moon properties and physical relationships within a planet-moon system - for example, the farther the moon is from the center of the planet, the slower its orbital speed, and the longer its orbital period. This is lesson 2 of 6 in the Saturn Educators Guide.

  10. Data User's Note: Apollo seismological investigations

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1980-01-01

    Seismological objectives and equipment used in the passive seismic, active seismic, lunar seismic profiling, and the lunar gravimeter experiments conducted during Apollo 11, 12, 14, 15, 16, and 17 missions are described. The various formats in which the data form these investigations can be obtained are listed an an index showing the NSSDC identification number is provided. Tables show manned lunar landing missions, lunar seismic network statistics, lunar impact coordinate statistics, detonation masses and times of EP's, the ALSEP (Apollo 14) operational history; compressed scale playout tape availability, LSPE coverage for one lunation, and experimenter interpreted events types.

  11. Night side electromagnetic response of the moon.

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Smith, B. F.; Sonett, C. P.; Colburn, D. S.; Schwartz, K.

    1973-01-01

    The inductive response of the moon to interplanetary magnetic field fluctuations has been measured by the Apollo 12 lunar surface magnetometer. The dependence of the night side lunar response on frequency in the band from about 0.001 to 0.01 Hz is reported. It is shown that the night side response of the moon is not that of a sphere in vacuum. Instead, hydromagnetic radiation scattered from the moon is strongly confined to the interior of the cavity formed downstream from the moon in the solar wind.

  12. Project Columbiad: Mission to the Moon. Book 2, volume 3: Stage configuration designs; volume 4: Program plan

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Earth Orbital Rendezvous (EOR) configuration for the piloted mission is composed of three propulsive elements in addition to the Crew Module (CM): Primary Trans-Lunar Injection (PTLI), Lunar Braking Module (LBM), and Earth Return Module (ERM). The precursor mission is also composed of three propulsive elements in addition to its surface payloads: PTLI, LBM and the Payload Landing Module (PLM). Refer to Volume 1, Section 5.1 and 5.2 for a break-up of the different stages into the four launches. A quick summary is as follows: PTLI is on Launch 1 and 3 while the LBM, PLM, and surface payloads are on Launch 2 and another LBM, ERM, and CM on Launch 4. The precursor mission is designed to be as modular as possible with the piloted mission for developmental cost considerations. The following topics are discussed: launch vehicle description; primary trans-lunar injection stage; lunar braking module; earth return module; crew module; payload landing module; and surface payload description.

  13. Apollo 12 Command Module nears splashdown in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 12 Command Module, with Astronauts Charles Conrad Jr., Richard F. Gordon Jr., and Alan L. Bean aboard, nears splashdown in the Pacific Ocean to conclude the second lunar landing mission. The Apollo 12 splashdown occurred at 2:58 p.m., November 24, 1969, near American Samoa.

  14. Astronaut Donald Slayton in hatchway between Apollo and Soyuz spacecraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Astronaut Donald K. Slayton, docking module pilot of the American Apollos Soyuz Test Project (ASTP) crew, is seen in the hatchway leading between the Apollo Docking Module (DM) and the Soyuz Orbital Module during the joint U.S.-USSR ASTP docking in Earth orbit mission. The 35mm camera is looking from the the Soyuz into the Docking Module.

  15. Apollo Project

    NASA Technical Reports Server (NTRS)

    1964-01-01

    A 'suited' test subject on the Reduced Gravity Walking Simulator located in the hanger at Langley Research Center. The initial version of this simulator was located inside the hanger. Later a larger version would be located at the Lunar Landing Facility. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. Francis B. Smith wrote in 'Simulators For Manned Space Research:' 'The cables which support the astronaut are supported by an overhead trolley about 150 feet above the center line of the walkway and the support is arranged so that the subject is free to walk, run, jump, and perform other self-locomotive tasks in a more-or-less normal manner, even though he is constrained to move in one place.' 'The studies thus far show that an astronaut should have no particular difficulty in walking in a pressurized space suit on a hard lunar surface. Rather, the pace was faster and the suit was found to be more comfortable and less fatiguing under lunar 'g' than under earth 'g.' When the test subject wished to travel hurriedly any appreciable distance, a long loping gait at about 10 feet per second was found to be most comfortable.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 377; Francis B. Smith, 'Simulators For Manned Space Research,' Paper for 1966 IEEE International Convention, New York, NY, March 21-25, 1966.

  16. Apollo 10 view of the Earth

    NASA Technical Reports Server (NTRS)

    1969-01-01

    An Apollo 10 view of Earth from 26,000 nautical miles photographed from the spacecraft during its translunar journey toward the Moon. While the Yucatan Peninsula is obscured by clouds, nearly all of Mexico north of the Istmus of Tehuantepec can be clearly delineated. The Gulf of California and Baja California and the San Joaquin Valley can be easily identified. Also, the delta of the Rio Grande River and the Texas coast are visible.

  17. Apollo-Soyuz pamphlet no. 4: Gravitational field. [experimental design

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    Two Apollo Soyuz experiments designed to detect gravity anomalies from spacecraft motion are described. The geodynamics experiment (MA-128) measured large-scale gravity anomalies by detecting small accelerations of Apollo in the 222 km orbit, using Doppler tracking from the ATS-6 satellite. Experiment MA-089 measured 300 km anomalies on the earth's surface by detecting minute changes in the separation between Apollo and the docking module. Topics discussed in relation to these experiments include the Doppler effect, gravimeters, and the discovery of mascons on the moon.

  18. A Thorium-rich Mare Basalt Rock Fragment from the Apollo 12 Regolith: A Sample from a Young Procellarum Flow?

    NASA Technical Reports Server (NTRS)

    Jolliff, B. L.; Zeigler, R. A.; Korotev, R. L.; Barra, F.; Swindle, T. D.

    2005-01-01

    In this abstract, we report on the composition, mineralogy and petrography of a basaltic rock fragment, 12032,366-18, found in the Apollo 12 regolith. Age data, collected as part of an investigation by Barra et al., will be presented in detail in. Here, only the age dating result is summarized. This rock fragment garnered our attention because it is significantly enriched in incompatible elements, e.g., 7 ppm thorium, compared to other known lunar basalts. Its mineral- and trace-element chemistry set it apart from other Apollo 12 basalts and indeed from all Apollo and Luna basalts. What makes it potentially very significant is the possibility that it is a sample of a relatively young, thorium-rich basalt flow similar to those inferred to occur in the Procellarum region, especially northwestern Procellarum, on the basis of Lunar Prospector orbital data. Exploiting the lunar regolith for the diversity of rock types that have been delivered to a landing site by impact processes and correlating them to their likely site of origin using remote sensing will be an important part of future missions to the Moon. One such mission is Moonrise, which would collect regolith samples from the South Pole-Aitken Basin, concentrating thousands of rock fragments of 3-20 mm size from the regolith, and returning the samples to Earth.

  19. Chariots for Apollo - A History of Manned Lunar Spacecraft

    NSDL National Science Digital Library

    This site, originally published as part of NASA's History Series, presents a detailed history of the Apollo program. The story begins in the 1950s with early efforts to beat the Soviet Union into space, carries through the Kennedy administration, with its famous challenge to land a man on the moon and return him safely to Earth by the end of the 1960s, and culminates with the landing of Apollo 11 on the Moon in July 1969. The site features text, pictures, references, and several appendices containing more detailed information.

  20. Interactive Visualization of Parking Orbits Around the Moon: An X3D Application for a NASA Lunar Mission Study

    NASA Technical Reports Server (NTRS)

    Murphy, Douglas G.; Qu, Min; Salas, Andrea O.

    2006-01-01

    The NASA Integrated Modeling and Simulation (IM&S) project aims to develop a collaborative engineering system to include distributed analysis, integrated tools, and web-enabled graphics. Engineers on the IM&S team were tasked with applying IM&S capabilities to an orbital mechanics analysis for a lunar mission study. An interactive lunar globe was created to show 7 landing sites, contour lines depicting the energy required to reach a given site, and the optimal lunar orbit orientation to meet the mission constraints. Activation of the lunar globe rotation shows the change of the angle between the landing site latitude and the orbit plane. A heads-up-display was used to embed straightforward interface elements.

  1. Biohazards for human activities on the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Kminek, G.; Schmitt, D.

    Exobiological research on Mars is a key element of the Aurora Exploration Program. It has been acknowledged that it is essential to have a better understanding of a potential Martian biosphere before sending humans. Reason for that is not so much the fact that humans will contaminate Mars once they have landed, but to understand the presence of a biosphere on Mars as a potential hazard to human exploration. A biological hazard could come from either extinct life in the form of toxins that would only affect the crew, or from extant life in the form of pathogens that could affect the terrestrial biosphere using the human mission as a host. Both threats are very small, but cannot be neglected due to a lack of adequate information. There is no biological hazard that can be expected on the surface of the Moon. However, the Apollo missions showed clearly the problems that the all-penetrating lunar dust can generate within a few days of surface operations. Mars, like the Moon, is a dusty planet. And it is the dust that is the major carrier for any contamination - be it biological or chemical. Therefore it is of utmost importance to better understand the hazardous potential of Martian dust in order to establish risk factors for potential biological hazards. This requires dedicated in-situ and sample return missions. However, any robotic missions could realistically only assess whether biological hazards are widespread on Mars or not. They will not be capable to asses the biological hazard in areas that can only be explored by a crew. Hence, it is necessary to develop capabilities to keep the Martian dust out of the habitation area. A new ESA-study on decontamination procedures for EVA-suits, habitat areas, and waste, will partly address these issues. The logical next step would be to go to the Moon and test technologies and procedures for isolating the habitat (including the EVA-suit) from the dust on the Moon where there is no danger of biological contamination in case of system malfunction. In addition, contingency operations (decontamination of the whole habitat) can be carried out on the Moon under realistic conditions, but again, without the real danger of introducing any biohazard. Thus, using the Moon as test-bed for developing technologies and procedures for crew-safety and planetary protection has to be seriously considered.

  2. Scientific rationale for the D-CIXS X-ray spectrometer on board ESA's SMART1 mission to the Moon

    Microsoft Academic Search

    S. K Dunkin; M. Grande; I. Casanova; V. Fernandes; D. J Heather; B. Kellett; K. Muinonen; S. S. Russell; R. Browning; N. Waltham; D. Parker; B. Kent; C. H Perry; B. Swinyard; A. Perry; J. Feraday; C. Howe; K. Phillips; G. McBride; J. Huovelin; P. Muhli; P. J Hakala; O. Vilhu; N. Thomas; D. Hughes; H. Alleyne; M. Grady; R. Lundin; S. Barabash; D. Baker; P. E Clark; C. D Murray; J. Guest; L. C d'Uston; S. Maurice; B. Foing; A. Christou; C. Owen; P. Charles; J. Laukkanen; H. Koskinen; M. Kato; K. Sipila; S. Nenonen; M. Holmstrom; N. Bhandari; R. Elphic; D. Lawrence

    2003-01-01

    The D-CIXS X-ray spectrometer on ESA's SMART-1 mission will provide the first global coverage of the lunar surface in X-rays, providing absolute measurements of elemental abundances. The instrument will be able to detect elemental Fe, Mg, Al and Si under normal solar conditions and several other elements during solar flare events. These data will allow for advances in several areas

  3. Electromagnetic Sounding of the Moon from ARTEMIS

    NASA Astrophysics Data System (ADS)

    Grimm, R. E.; Delory, G. T.; Angelopoulos, V.; Artemis Team

    2011-12-01

    ARTEMIS is a twin-satellite, two-year lunar orbital mission, formed by retasking two of the THEMIS constellation (Angelopoulos, Space Sci. Rev.2010). The two spacecraft achieved lunar orbit in summer 2011. Although conceived for heliospheric science, investigations of the exosphere, crustal magnetic fields, and interior are enabled by the electromagnetic (EM) instruments of ARTEMIS (Sibeck et al., Space Sci. Rev, 2011). EM sounding of the interior will be improved over Apollo-era investigations due to the larger bandwidth, longer mission duration, and geographic coverage. Science objectives include (1) structure and heterogeneity of the outermost 500 km (crust and upper mantle), a region that may contain key information on the lunar magma ocean and the origin of the anomalous Procellarum KREEP Terrane (PKT); (2) tighter bounds on the conductivity of the lower mantle (500-1400 km depth), in order to constrain the temperature and nature of trace elements that control electrical conduction, particularly water; and (3) size of the metallic core, and whether a surrounding layer of molten silicate is present. EM sounding from ARTEMIS can be performed in at least two ways. In the transfer-function (TF) method derived during Apollo, the magnetic fields at a distant platform are compared to a (near) surface sensor to derive the source and sum of source and induced fields, respectively. From these data the internal conductivity structure giving rise to the induced field can be derived. However, source-field heterogeneity disturbs TF responses > 0.01 Hz. These high frequencies are necessary to resolve the crust and upper mantle. In contrast, the magnetotelluric (MT) method derives internal structure from the horizontal components of electric and magnetic fields at a single near-surface sensor, and therefore does not depend strongly on source-field geometry. MT has been used for more than a half-century in terrestrial exploration, but ARTEMIS marks its first planetary application. Both TF and MT are optimally applied when the Moon is in the lobes of the geomagnetic tail and the spacecraft are in daylight, where plasma effects are minimized. Periapsis passages at altitudes of a few hundred km or less with this geometry appear regularly in Nov and Dec. Periapses in the diamagnetic wake cavity are the next choice for EM sounding. The current layer that develops on the day side when the Moon is exposed to the solar wind screens EM sounding from orbit, but ARTEMIS will determine the thickness of this layer. ARTEMIS will advance our understanding of the lunar interior in ways that are complementary to the GRAIL gravity mission, and will provide a baseline for long-integration EM sounding from a surface geophysical network.

  4. Apollo 17 Astronaut Evans Retrieves Film Canister During Space Walk

    NASA Technical Reports Server (NTRS)

    1972-01-01

    In this Apollo 17 onboard photo, Command Module pilot Ronald E. Evans retrieved the film canister of the mapping cameras on the day after Apollo 17 left lunar orbit. His space walk lasted an hour. The seventh and last manned lunar landing and return to Earth mission, the Apollo 17, carrying a crew of three astronauts: Evans; Mission Commander Eugene A. Cernan; and Lunar Module pilot Harrison H. Schmitt, lifted off on December 7, 1972 from the Kennedy Space Flight Center (KSC). Scientific objectives of the Apollo 17 mission included geological surveying and sampling of materials and surface features in a preselected area of the Taurus-Littrow region, deploying and activating surface experiments, and conducting in-flight experiments and photographic tasks during lunar orbit and transearth coast (TEC). These objectives included: Deployed experiments such as the Apollo lunar surface experiment package (ALSEP) with a Heat Flow experiment, Lunar seismic profiling (LSP), Lunar surface gravimeter (LSG), Lunar atmospheric composition experiment (LACE) and Lunar ejecta and meteorites (LEAM). The mission also included Lunar Sampling and Lunar orbital experiments. Biomedical experiments included the Biostack II Experiment and the BIOCORE experiment. The mission marked the longest Apollo mission, 504 hours, and the longest lunar surface stay time, 75 hours, which allowed the astronauts to conduct an extensive geological investigation. They collected 257 pounds (117 kilograms) of lunar samples with the use of the Marshall Space Flight Center designed Lunar Roving Vehicle (LRV). The mission ended on December 19, 1972

  5. Apollo guidance, navigation and control: Guidance system operations plan for manned CM earth orbital and lunar missions using Program COLOSSUS 3. Section 3: Digital autopilots (revision 14)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Digital autopilots for the manned command module earth orbital and lunar missions using program COLOSSUS 3 are discussed. Subjects presented are: (1) reaction control system digital autopilot, (2) thrust vector control autopilot, (3) entry autopilot and mission control programs, (4) takeover of Saturn steering, and (5) coasting flight attitude maneuver routine.

  6. Moon Phases

    NSDL National Science Digital Library

    Mrs. Moser

    2009-02-25

    Standard 1 : Students will understand that the appearance of the moon changes in a predictable cycle as it orbits Earth and as Earth rotates on its axis. On your Moon calendar from class record the phases of the moon for today and for the remainder of the month using the interactive ability of the following website: Virtual Reality Moon Phase Pictures If you do not have a Moon Phase Calendar, print one off from the following link and use that one instead of ...

  7. PDS Archive Release of Apollo 11, Apollo 12, and Apollo 17 Lunar Rock Sample Images

    NASA Technical Reports Server (NTRS)

    Garcia, P. A.; Stefanov, W. L.; Lofgren, G. E.; Todd, N. S.; Gaddis, L. R.

    2013-01-01

    Scientists at the Johnson Space Center (JSC) Lunar Sample Laboratory, Information Resources Directorate, and Image Science & Analysis Laboratory have been working to digitize (scan) the original film negatives of Apollo Lunar Rock Sample photographs [1, 2]. The rock samples, and associated regolith and lunar core samples, were obtained during the Apollo 11, 12, 14, 15, 16 and 17 missions. The images allow scientists to view the individual rock samples in their original or subdivided state prior to requesting physical samples for their research. In cases where access to the actual physical samples is not practical, the images provide an alternate mechanism for study of the subject samples. As the negatives are being scanned, they have been formatted and documented for permanent archive in the NASA Planetary Data System (PDS). The Astromaterials Research and Exploration Science Directorate (which includes the Lunar Sample Laboratory and Image Science & Analysis Laboratory) at JSC is working collaboratively with the Imaging Node of the PDS on the archiving of these valuable data. The PDS Imaging Node is now pleased to announce the release of the image archives for Apollo missions 11, 12, and 17.

  8. Towards Albedo Reconstruction from Apollo Metric Camera Imagery

    NASA Astrophysics Data System (ADS)

    Nefian, A. V.; Kim, T.; Broxton, M.; Beyer, R.; Moratto, Z.

    2010-03-01

    The goal of this research is to model the image formation process and extract the albedo information using digital elevation and surface reflectance models. This paper describes our results on lunar albedo reconstruction from images captured by the Apollo missions.

  9. Towards Albedo Reconstruction from Apollo Metric Camera Imagery

    Microsoft Academic Search

    A. V. Nefian; T. Kim; M. Broxton; R. Beyer; Z. Moratto

    2010-01-01

    The goal of this research is to model the image formation process and extract the albedo information using digital elevation and surface reflectance models. This paper describes our results on lunar albedo reconstruction from images captured by the Apollo missions.

  10. Yes, there was a moon race

    NASA Technical Reports Server (NTRS)

    Oberg, James E.

    1990-01-01

    Examination of newly disclosed evidence confirms that the Soviets were indeed striving to reach the moon before the U.S. in 1969. It is noted that a Soviet unmanned lunar probe crashed on the moon's surface only hours before the U.S. Apollo landing. Now confirmed openly are moon-exploration schedules that were competitive with Apollo plans, the names and histories of Soviet lunar boosters and landers, identities of the lunar cosmonauts; and even photos of manned lunar craft are available. Additional details on the troubled moon-probe program are presented: technical problems, continuous changes in goals, schedules, and planning, vehicle and personnel disasters, transfer of authority between ministries, and political power struggles in the scientific community.

  11. Artist's drawing of internal arrangement of orbiting Apollo and Soyuz crafts

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Artist's drawing illustrating the internal arrangement of orbiting the Apollo and Soyuz spacecraft in Earth orbit in a docked configuration. The three American Apollo crewmen and the two Soviet Soyuz crewmen will transfer to each other's spacecraft during the July Apollo Soyuz Test Project (ASTP) mission. The four ASTP visible components are, left to right, the Apollo Command Module, the Docking Module, the Soyuz Orbital Module and the Soyuz Descent Vehicle.

  12. Advances in Astromaterials Curation: Supporting Future Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Evans, C. A.; Zeigler, R. A.; Fries, M. D..; Righter, K.; Allton, J. H.; Zolensky, M. E.; Calaway, M. J.; Bell, M. S.

    2015-01-01

    NASA's Astromaterials, curated at the Johnson Space Center in Houston, are the most extensive, best-documented, and leastcontaminated extraterrestrial samples that are provided to the worldwide research community. These samples include lunar samples from the Apollo missions, meteorites collected over nearly 40 years of expeditions to Antarctica (providing samples of dozens of asteroid bodies, the Moon, and Mars), Genesis solar wind samples, cosmic dust collected by NASA's high altitude airplanes, Comet Wild 2 and interstellar dust samples from the Stardust mission, and asteroid samples from JAXA's Hayabusa mission. A full account of NASA's curation efforts for these collections is provided by Allen, et al [1]. On average, we annually allocate about 1500 individual samples from NASA's astromaterials collections to hundreds of researchers from around the world, including graduate students and post-doctoral scientists; our allocation rate has roughly doubled over the past 10 years. The curation protocols developed for the lunar samples returned from the Apollo missions remain relevant and are adapted to new and future missions. Several lessons from the Apollo missions, including the need for early involvement of curation scientists in mission planning [1], have been applied to all subsequent sample return campaigns. From the 2013 National Academy of Sciences report [2]: "Curation is the critical interface between sample return missions and laboratory research. Proper curation has maintained the scientific integrity and utility of the Apollo, Antarctic meteorite, and cosmic dust collections for decades. Each of these collections continues to yield important new science. In the past decade, new state-of-the-art curatorial facilities for the Genesis and Stardust missions were key to the scientific breakthroughs provided by these missions." The results speak for themselves: research on NASA's astromaterials result in hundreds of papers annually, yield fundamental discoveries about the evolution of the solar system (e.g. [3] and references contained therein), and serve the global scientific community as ground truth for current and planned missions such as NASA's Dawn mission to Vesta and Ceres, and the future OSIRIS REx mission to asteroid Bennu [1,3

  13. Geology of the Apollo 17 site

    NASA Technical Reports Server (NTRS)

    Muehlberger, W. R.

    1992-01-01

    The Apollo 17 landing site was unique in several aspects: (1) it was the only site that was not selected from telescopic-based geologic interpretation--interest in the site was generated by the visual observations of Al Worden, Apollo 15 Command Module pilot, who interpreted dark-haloed craters as possible cinder cones; (2) instead of 20-m-resolution photographs, as was the norm for all earlier missions, this site had Apollo 15 panoramic camera photography coverage that had 2-m resolution; and (3) it had a geologist-astronaut aboard who was intimately involved in all stages of planning and mission operation, and was also instrumental in the design of a long-handled sample bag holder that eliminated the need for crew to dismount before collecting a sample, which then permitted sampling between major stations. Details of site geology, sample description, and geologic synthesis of the site as viewed from studies through 1976 are summarized.

  14. Preliminary geologic investigation of the Apollo 12 landing site: Part A: Geology of the Apollo 12 Landing Site

    USGS Publications Warehouse

    Shoemaker, E.M.; Batson, R.M.; Bean, A.L.; Conrad, C., Jr.; Dahlem, D.H.; Goddard, E.N.; Hait, M.H.; Larson, K.B.; Schaber, G.G.; Schleicher, D.L.; Sutton, R.L.; Swann, G.A.; Waters, A.C.

    1970-01-01

    This report provides a preliminary description of the geologic setting of the lunar samples returned fromt he Apollo 12 mission. A more complete interpretation of the geology of the site will be prepared after thorough analysis of the data.

  15. Spectrogoniometric Measurements and Modeling of Apollo 16 Soil 68810

    NASA Astrophysics Data System (ADS)

    Johnson, J. R.; Shepard, M. K.; Paige, D. A.; Foote, E. J.; Grundy, W. M.

    2010-12-01

    Laboratory visible/near-infrared multispectral goniometer observations of Apollo 16 mature highland soil 68810,2 were acquired using the Bloomsburg University Goniometer (BUG) [1]. These data provided constraints on Hapke radiative transfer models for comparison to model results from similar BUG data acquired of Apollo 11 soil 10084 [2]. Such data are relevant to analyses of lunar surface observations acquired by orbital cameras and spectrometers flown on past and present lunar missions. Standard BUG measurements were acquired (incidence 0-60°, emission 0-80°, and phase 3-140°) comprising 680 measurements per wavelength. We acquired multispectral measurements of the 68810 sample at 450, 550 ,700, 750, 850, and 950 nm. We also supplemented this geometric coverage by constructing an elongated sample holder for measurements in and perpendicular to the principal plane. These measurements were acquired at 450, 550, 750, and 950 nm, and allowed expanded geometric coverage to incidence angles of 0-75° and phase angles of 3-155°, comprising 765 measurements per wavelength. Hapke radiative transfer models were run using 1-term and 2-term Henyey-Greenstein (HG) phase functions to determine photometric properties such as single scattering albedo and backscattering behavior. The results show little difference in the photometric parameters between model runs using the standard and expanded data sets. Models of the 68810 highland sample exhibit higher single scattering albedo (by ~66%) than the 10084 mare sample models, consistent with modeling of Clementine and other remote sensing observations [e.g., 3]. The 68810 soil is also slightly more broadly backscattering (in both 1-term and 2-term HG models), with properties similar to results from laboratory analyses of agglutinates and rough, clear spheres. Both Apollo soils are more backscattering than any lunar analog soil yet measured [2]. The opposition effect width h (compaction parameter) is slightly smaller for the 68810 highland soil (h=0.031), suggesting a less uniform average grain size and/or more porous soil than the 10084 mare soil (h=0.040). This is consistent with the comparison of highland and mare regions from [4]. [1] Foote, E., et al., this volume; [2] Johnson, J.R., et al., Spectrogoniometric Measurements and Modeling of Apollo 11 Soil 10084, Lunar Plan. Sci. Conf. XL, # 1427, 2009; [3] Hillier, J. et al., Multispectral photometry of the Moon and absolute calibration of the Clementine UV/Vis camera, Icarus, 141, 205-225, 1999; [4] Helfenstein, P., and Veverka, J., Photometric properties of lunar terrains derived from Hapke’s equation, Icarus, 72, 342-357, 1987.

  16. Neuro-vestibular and Sensory-motor Challenges Associated with NASA Mission Architectures for Moon and Mars

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2004-01-01

    Data from six-month low Earth orbit space flight missions suggest that that substantial neuro-vestibuladsensory-motor adaptation will take place during six-month transit missions to and from Mars. Could intermittent or continuous artificial gravity be used to offset these effects? To what degree would the effects of adaptation to this rotational cure affect its potential benefits? Also, little information exists regarding the gravity thresholds for maintaining functional performance of complex sensory-motor tasks such as balance control and locomotion. Will sensory-motor coordination systems adapt to 30-90 days of 1/6 g on the lunar surface or 18 months of 3/8 g on the Martian surface? Would some form of gravity replacement therapy be required on the surface? And, will transitions between 0 g and 1/6 g or 1/3 g present as great a challenge to the vestibular system as transitions between 0 g and 1 g? Concerted research and development efforts will be required to obtain the answers.

  17. In Brief: Moon landing anniversary

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-07-01

    To commemorate the Apollo program and the fortieth anniversary of the first lunar landing, NASA has announced a nearly month-long series of activities at various locations around the United States during July. Events include a 16 July roundtable discussion about the Apollo program at NASA headquarters in Washington, D. C.; Moonfest 2009 at the NASA Ames Research Center, Moffett Field, Calif., on 19 July; a First Footprint Celebration at the Space and Rocket Center in Huntsville, Ala., on 20 July; and an Apollo 11 Splashdown Celebration at Johnson Space Center on 24 July. NASA Television will broadcast some of the events live. For more information, visit http://www.nasa.gov/mission_pages/apollo/40th/events.html.

  18. Extreme Temperatures on the Moon

    NSDL National Science Digital Library

    Although the airless Moon experiences no weather analogous to terrestrial weather, conditions there are nothing short of extreme. This video segment recounts some of the experiences Apollo 16 astronauts had as they explored the lunar surface, particularly extremes of heat and cold occurring in sunlit and shady areas. The segment is three minutes eleven seconds in length. A background essay and discussion questions are included.

  19. Organic matter on the Earth’s Moon

    NASA Astrophysics Data System (ADS)

    Thomas-Keprta, Kathie L.; Clemett, Simon J.; Messenger, Scott; Ross, Daniel K.; Le, Loan; Rahman, Zia; McKay, David S.; Gibson, Everett K.; Gonzalez, Carla; Peabody, William

    2014-06-01

    Carbonaceous matter on the surfaces of black pyroclastic beads, collected from Shorty crater during the Apollo 17 mission, represents the first identification of complex organic material associated with any lunar sample. We report the chemical, physical and isotopic properties of this organic matter that together support a pre-terrestrial origin. We suggest the most probable source is through the accretion of exogenous meteoritic kerogen from micrometeorite impacts into the lunar regolith. Abiotic organic matter has been continuously delivered to the surfaces of the terrestrial planets and their moons by accretion of asteroidal and cometary material. Determining the nature, distribution and evolution of such matter in the lunar regolith has important implications for understanding the prebiotic chemical inventory of the terrestrial planets.

  20. Teaching Chemistry Using the Movie "Apollo 13."

    ERIC Educational Resources Information Center

    Goll, James G.; Woods, B. J.

    1999-01-01

    Offers suggestions for incorporating topics that relate to the Apollo 13 space mission into a chemistry course. Discusses connections between the study of chemistry and space exploration, including fuels and oxidants used, reasons for an oxygen tank rupture, and lithium hydroxide-containing carbon dioxide filters. Contains 11 references. (WRM)

  1. Apollo looking forward: Crew task challenges

    Microsoft Academic Search

    Laura M. Major; Tye M. Brady; Stephen C. Paschall

    2009-01-01

    During the Apollo landings, onboard astronauts, along with analysis and instructions from mission control, performed the majority of complex tasks beyond automated guidance, navigation, and control (GN&C). The crew played a significant role in the landings and were critical to navigating to the landing site, selecting a safe landing aim point, and commanding the spacecraft via a hand controller. Thus

  2. Apollo 14: Science at Fra Mauro.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The many scientific activities and experiments performed during the Apollo 14 Mission are presented in a descriptive, non-technical format. Content relates to experiments on the lunar surface and to those performed while traveling in space, and provides a great deal of information about the flight. Many photographs from the journey, a map of the…

  3. Gold Olive Branch Left on the Moon by Neil Armstrong

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This is the gold replica of an olive branch, the traditional symbol of peace, left on the Moon's surface by Apollo 11 crewmembers. Astronaut Neil A. Armstrong, commander, placed the small replica (less than half a foot in length) on the Moon. The gesture represented a wish for peace for all mankind.

  4. Astronaut Aldrin is photographed by Astronaut Armstrong on the Moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 Onboard Film -- The deployment of scientific experiments by Astronaut Edwin Aldrin Jr. is photographed by Astronaut Neil Armstrong. Man's first landing on the Moon occurred today at 4:17 p.m. as Lunar Module 'Eagle' touched down gently on the Sea of Tranquility on the east side of the Moon.

  5. Meditations on the new space vision: the Moon as a stepping stone to Mars.

    PubMed

    Mendell, W W

    2005-01-01

    The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity--governmental, international, or commercial--that can responsibly carry on lunar development past the exploration phase. PMID:16010766

  6. Meditations on the new space vision: The moon as a stepping stone to mars

    NASA Astrophysics Data System (ADS)

    Mendell, W. W.

    2005-07-01

    The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity—governmental, international, or commercial—that can responsibly carry on lunar development past the exploration phase.

  7. Apollo-11 lunar sample information catalogue

    NASA Technical Reports Server (NTRS)

    Kramer, F. E. (compiler); Twedell, D. B. (compiler); Walton, W. J. A., Jr. (compiler)

    1977-01-01

    The Apollo 11 mission is reviewed with emphasis on the collection of lunar samples, their geologic setting, early processing, and preliminary examination. The experience gained during five subsequent missions was applied to obtain physical-chemical data for each sample using photographic and binocular microscope techniques. Topics discussed include: binocular examination procedure; breccia clast dexrriptuons, thin section examinations procedure typical breccia in thin section, typical basalt in thin section, sample histories, and chemical and age data. An index to photographs is included.

  8. The Moon: Been there, done that?

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara

    2013-01-01

    Lunar science is planetary science. Lunar samples teach us about the formation and evolution of the Moon, and the history of all the planets. The Moon is a cornerstone for all rocky planets, since it formed and evolved similarly to Earth, Mars, Mercury, Venus, and large asteroids. Lunar robotic missions provide important science and engineering objectives, and keep our eyes on the Moon.

  9. Design of a Multi-Moon Orbiter

    Microsoft Academic Search

    S. D. Ross; W. S. Koon; M. W. Lo; J. E. Marsden

    The Multi-Moon Orbiter concept is introduced, wherein a single spacecraft orbits several moons of Jupiter, allowing long duration observations. The V requirements for this mission can be low if ballistic captures and resonant gravity assists by Jupiter's moons are used. For example, using only 22 m\\/s, a spacecraft initially injected in a jovian orbit can be directed into a capture

  10. Moessbauer Mineralogy on the Moon: The Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.; Korotev, Randy L..; Shelfer, Tad D.; Klingelhoefer, Goestar

    1997-01-01

    A first-order requirement for spacecraft missions that land on solid planetary objects is instrumentation for mineralogical analyses. For purposes of providing diagnostic information about naturally-occurring materials, the element iron is particularly important because it is abundant and multivalent. Knowledge of the oxidation state of iron and its distribution among iron-bearing mineralogies tightly constrains the types of materials present and provides information about formation and modification (weathering) processes. Because Moessbauer spectroscopy is sensitive to both the valence of iron and its local chemical environment, the technique is unique in providing information about both the relative abundance of iron-bearing phases and oxidation state of the iron. The Moessbauer mineralogy of lunar regolith samples (primarily soils from the Apollo 16 and 17 missions to the Moon) were measured in the laboratory to demonstrate the strength of the technique for in situ mineralogical exploration of the Moon. The regolith samples were modeled as mixtures of five iron-bearing phases: olivine, pyroxene, glass, ilmenite, and metal. Based on differences in relative proportions of iron associated with these phases, volcanic ash regolith can be distinguished from impact-derived regolith, impact-derived soils of different geologic affinity (e.g., highlands, maria) can be distinguished on the basis of their constituent minerals, and soil maturity can be estimated. The total resonant absorption area of the Moessbauer spectrum can be used to estimate total FeO concentrations.

  11. Preliminary examination of lunar samples from apollo 14.

    PubMed

    1971-08-20

    The major findings of the preliminary examination of the lunar samples are as follows: 1) The samples from Fra Mauro base may be contrasted with those from Tranquillity base and the Ocean of Storms in that about half the Apollo 11 samples consist of basaltic rocks, and all but three Apollo 12 rocks are basaltic, whereas in the Apollo 14 samples only two rocks of the 33 rocks over 50 grams have basaltic textures. The samples from Fra Mauro base consist largely of fragmental rocks containing clasts of diverse lithologies and histories. Generally the rocks differ modally from earlier lunar samples in that they contain more plagioclase and contain orthopyroxene. 2) The Apollo 14 samples differ chemically from earlier lunar rocks and from their closest meteorite and terrestrial analogs. The lunar material closest in composition is the KREEP component (potassium, rare earth elements, phosphorus), "norite," "mottled gray fragments" (9) from the soil samples (in particular, sample 12033) from the Apollo 12 site, and the dark portion of rock 12013 (10). The Apollo 14 material is richer in titanium, iron, magnesium, and silicon than the Surveyor 7 material, the only lunar highlands material directly analyzed (11). The rocks also differ from the mare basalts, having much lower contents of iron, titanium, manganese, chromium, and scandium and higher contents of silicon, aluminum, zirconium, potassium, uranium, thorium, barium, rubidium, sodium, niobium, lithium, and lanthanum. The ratios of potassium to uranium are lower than those of terrestrial rocks and similar to those of earlier lunar samples. 3) The chemical composition of the soil closely resembles that of the fragmental rocks and the large basaltic rock (sample 14310) except that some elements (potassium, lanthanum, ytterbium, and barium) may be somewhat depleted in the soil with respect to the average rock composition. 4) Rocks display characteristic surface features of lunar material (impact microcraters, rounding) and shock effects similar to those observed in rocks and soil from the Apollo 11 and Apollo 12 missions. The rocks show no evidence of exposure to water, and their content of metallic iron suggests that they, like the Apollo 11 and Apollo 12 material, were formed and have remained in an environment with low oxygen activity. 5) The concentration of solar windimplanted material in the soil is large, as was the case for Apollo 11 and Apollo 12 soil. However, unlike previous fragmental rocks, Apollo 14 fragmental rocks possess solar wind contents ranging from approximately that of the soil to essentially zero, with most rocks investigated falling toward one extreme of this range. A positive correlation appears to exist between the solar wind components, carbon, and (20)Ne, of fragmental rocks and their friability (Fig. 12). 6) Carbon contents lie within the range of carbon contents for Apollo 11 and Apollo 12 samples. 7) Four fragmental rocks show surface exposure times (10 x 10(6) to 20 x 10(6) years) about an order of magnitude less than typical exposure times of Apollo 11 and Apollo 12 rocks. 8) A much broader range of soil mechanics properties was encountered at the Apollo 14 site than has been observed at the Apollo 11, Apollo 12, and Surveyor landing sites. At different points along the traverses of the Apollo 14 mission, lesser cohesion, coarser grain size, and greater resistance to penetration was found than at the Apollo 11 and Apollo 12 sites. These variations are indicative of a very complex, heterogeneous deposit. The soils are more poorly sorted, but the range of grain size is similar to those of the Apollo 11 and Apollo 12 soils. 9) No evidence of biological material has been found in the samples to date. PMID:17798716

  12. Ramadan Moon

    NSDL National Science Digital Library

    2008-06-16

    The sighting of a new moon determines the beginning of the Islamic holy month of Ramadan. In this video from Religion & Ethics Newsweekly, follow the process of sighting a new moon for American Muslims.

  13. The Apollo passive seismic experiment

    NASA Technical Reports Server (NTRS)

    Latham, G. V.; Dorman, H. J.; Horvath, P.; Ibrahim, A. K.; Koyama, J.; Nakamura, Y.

    1979-01-01

    The completed data set obtained from the 4-station Apollo seismic network includes signals from approximately 11,800 events of various types. Four data sets for use by other investigators, through the NSSDC, are in preparation. Some refinement of the lunar model based on seismic data can be expected, but its gross features remain as presented two years ago. The existence of a small, molten core remains dependent upon the analysis of signals from a single, far-side impact. Analysis of secondary arrivals from other sources may eventually resolve this issue, as well as continued refinement of the magnetic field measurements. Evidence of considerable lateral heterogeneity within the moon continues to build. The mystery of the much meteoroid flux estimate derived from lunar seismic measurements, as compared with earth-based estimates, remains; although, significant correlations between terrestrial and lunar observations are beginning to emerge.

  14. Removal of vignetting from Apollo low light level photographs

    Microsoft Academic Search

    G. C. Alvord; D. A. Klinglesmith; L. Dunkelman; R. M. Mercer

    1975-01-01

    A comparison of the vignetting function for Apollo 15, 16 and 17 35-mm cameras is presented. A technique for removing this effect is described and demonstrated on an image of the L4 point of the earth-moon system.

  15. APOLLO 16 CLOSEUP OF SATURN V AS IT BEGINS LIFTOFF

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A camera located at the mobile launcher 360-foot level recorded this view of the Apollo 16 space vehicle as it lifted off at the start of NASA's eighth manned voyage to the Moon. Liftoff was recorded at 12:54 p.m. EST April 16, 1972.

  16. Scanning Apollo Flight Films and Reconstructing CSM Trajectories

    Microsoft Academic Search

    E. Speyerer; M. S. Robinson; J. M. Grunsfeld; S. D. Locke; M. White

    2006-01-01

    Over thirty years ago, the astronauts of the Apollo program made the journey from the Earth to the Moon and back. To record their historic voyages and collect scientific observations many thousands of photographs were acquired with handheld and automated cameras. After returning to Earth, these films were developed and stored at the film archive at Johnson Space Center (JSC),

  17. Apollo 11 Solar Wind Composition Experiment: First Results

    Microsoft Academic Search

    F. Buehler; P. Eberhardt; J. Geiss; J. Meister; P. Signer

    1969-01-01

    The helium-4 solar wind flux during the Apollo 11 lunar surface excursion was (6.3 ± 1.2) × 106 atoms per square centimeter per second. The solar wind direction and energy are essentially not perturbed by the moon. Evidence for a lunar solar wind albedo was found.

  18. Crater dimensions from apollo data and supplemental sources

    Microsoft Academic Search

    Richard J. Pike

    1976-01-01

    A catalog of crater dimensions that were compiled mostly from the new Apollo-based Lunar Topographic Orthophotomaps is presented in its entirety. Values of crater diameter, depth, rim height, flank width, circularity, and floor diameter (where applicable) are tabulated for a sample of 484 craters on the Moon and 22 craters on Earth. Systematic techniques of mensuration are detailed. The lunar

  19. UThPb age of Apollo 12 rock 12013

    USGS Publications Warehouse

    Tatsumoto, M.

    1970-01-01

    A UThPb isotopic study of three chips from lunar rock 12013 indicates that parental material of the intrusion breccia formed quite early in the moon's history, possibly 3.9 to 4.3 by ago. The UThPb characteristics of the rock are distinctly different from those of other Apollo 12 igneous rocks and suggest a different origin. ?? 1970.

  20. Mission Architecture Comparison for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Geffre, Jim; Robertson, Ed; Lenius, Jon

    2006-01-01

    The Vision for Space Exploration outlines a bold new national space exploration policy that holds as one of its primary objectives the extension of human presence outward into the Solar System, starting with a return to the Moon in preparation for the future exploration of Mars and beyond. The National Aeronautics and Space Administration is currently engaged in several preliminary analysis efforts in order to develop the requirements necessary for implementing this objective in a manner that is both sustainable and affordable. Such analyses investigate various operational concepts, or mission architectures , by which humans can best travel to the lunar surface, live and work there for increasing lengths of time, and then return to Earth. This paper reports on a trade study conducted in support of NASA s Exploration Systems Mission Directorate investigating the relative merits of three alternative lunar mission architecture strategies. The three architectures use for reference a lunar exploration campaign consisting of multiple 90-day expeditions to the Moon s polar regions, a strategy which was selected for its high perceived scientific and operational value. The first architecture discussed incorporates the lunar orbit rendezvous approach employed by the Apollo lunar exploration program. This concept has been adapted from Apollo to meet the particular demands of a long-stay polar exploration campaign while assuring the safe return of crew to Earth. Lunar orbit rendezvous is also used as the baseline against which the other alternate concepts are measured. The first such alternative, libration point rendezvous, utilizes the unique characteristics of the cislunar libration point instead of a low altitude lunar parking orbit as a rendezvous and staging node. Finally, a mission strategy which does not incorporate rendezvous after the crew ascends from the Moon is also studied. In this mission strategy, the crew returns directly to Earth from the lunar surface, and is thus referred to as direct return. Figures of merit in the areas of safety and mission success, mission effectiveness, extensibility, and affordability are used to evaluate and compare the lunar orbit rendezvous, libration point rendezvous, and direct return architectures, and this paper summarizes the results of those assessments.

  1. Apollo 17 lunar surface cosmic ray experiment - Measurement of heavy solar wind particles

    NASA Technical Reports Server (NTRS)

    Zinner, E.; Walker, R. M.; Borg, J.; Maurette, M.

    1974-01-01

    During the Apollo 17 mission a series of metal foils and nuclear track detectors were exposed both in the sun and in the shade on the surface of the moon. Here we give the analysis of the mica detectors which were used to measure the flux of solar wind particles of Fe-group and heavier elements. These particles register as shallow pits after etching in hydrofluoric acid. Calibration experiments were performed to determine the registration properties of different ions and to simulate the lunar environment. We obtain an Fe-group flux of 39,000 per sec per sq cm, which together with the H flux measured on IMP-7 gives an Fe/H ratio of 0.000041. For elements with Z exceeding 45 we can set only an upper limit on the abundance, ruling out an overabundance of extremely heavy elements relative to iron by a factor of 4.

  2. A study of lunar models based on Apollo and other data

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The research concerned with the interpretation of lunar data developed during the Apollo Program is reported. The areas of research include: X-ray emission spectra and molecular orbitals of lunar materials, magnetic properties of lunar rock, lunar features, thermal history and evolution of the moon, and the internal constitution and evolution of the moon.

  3. Bone mineral measurement from Apollo experiment M-078. [derangement of bone mineral metabolism in spacecrews

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.; Rambaut, P. C.; Smith, M. C., Jr.

    1974-01-01

    Loss of mineral from bone during periods of immobilization, recumbency, or weightlessness is examined. This report describes the instrumentation, technique, and bone mineral changes observed preflight and postflight for the Apollo 14, 15, and 16 missions. The bone mineral changes documented during the Apollo Program are reviewed, and their relevance to future missions is discussed.

  4. Revolution in Field Science: Apollo Approach to Inaccessible Surface Exploration

    NASA Astrophysics Data System (ADS)

    Clark, P. E.

    2010-07-01

    The extraordinary challenge mission designers, scientists, and engineers, faced in planning the first human expeditions to the surface of another solar system body led to the development of a distinctive and even revolutionary approach to field work. Not only were those involved required to deal effectively with the extreme limitation in resources available for and access to a target as remote as the lunar surface; they were required to developed a rigorous approach to science activities ranging from geological field work to deploying field instruments. Principal aspects and keys to the success of the field work are discussed here, including the highly integrated, intensive, and lengthy science planning, simulation, and astronaut training; the development of a systematic scheme for description and documentation of geological sites and samples; and a flexible yet disciplined methodology for site documentation and sample collection. The capability for constant communication with a ‘backroom’ of geological experts who make requests and weigh in on surface operations was innovative and very useful in encouraging rapid dissemination of information to the greater community in general. An extensive archive of the Apollo era science activity related documents provides evidence of the principal aspects and keys to the success of the field work. The Apollo Surface Journal allows analysis of the astronaut’s performance in terms of capability for traveling on foot, documentation and sampling of field stations, and manual operation of tools and instruments, all as a function of time. The application of these analysis as ‘lessons learned’ for planning the next generation of human or robotic field science activities on the Moon and elsewhere are considered here as well.

  5. The Moon

    NSDL National Science Digital Library

    Stern, David P. (David Peter), 1931-

    This is a series of web pages on the Earth's Moon. It includes information about the Moon as observed by the eye from Earth, its orbital period, its phases, appearance and the reason it always presents one face, There is also material on the Moon as seen through a telescope, Moon landings, and librations of the Moon, the reason more than 50% of it can be observed from Earth. This part of the work "From Stargazers to Starships" that presents physics concepts using space science and an historical perspective. French and Spanish translations are available.

  6. Lunar Prospector Mission Design

    Microsoft Academic Search

    David Folta; Mark Beckman; David Lozier; Ken Galal

    1997-01-01

    The National Aeronautics and Space Administration (NASA) has selected Lunar Prospector as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and will be launched in September 1997. In keeping with discovery program requirements to reduce total mission cost and utilize new technology,

  7. Lunar Prospector Extended Mission

    Microsoft Academic Search

    David Folta; Mark Beckman; David Lozier; Ken Galal

    1999-01-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector (LP) as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar

  8. MORO: An European Moon Orbiting Observatory

    Microsoft Academic Search

    B. H. Foing; G. Racca

    1996-01-01

    We present the MORO Moon Orbiting Observatory during its phase A study. The context for ESA Intermediate mission M3 is described. We discuss general objectives for scientific lunar studies, specific reasons for a new orbiter around the Moon, and describe the science objectives of MORO and the MORO instruments and mission.

  9. Apollo Lightcraft Project

    NASA Technical Reports Server (NTRS)

    Myrabo, Leik N.; Atonison, Mark A. (editor); Chen, Sammy G. (editor); Decusatis, Casimer (editor); Kusche, Karl P. (editor); Minucci, Marco A. (editor); Moder, Jeffrey P. (editor); Morales, Ciro (editor); Nelson, Caroline V. (editor); Richard, Jacques C. (editor)

    1989-01-01

    The ultimate goal for this NASA/USRA-sponsored Apollo Lightcraft Project is to develop a revolutionary manned launch vehicle technology which can potentially reduce payload transport costs by a factor of 1000 below the Space Shuttle Orbiter. The Rensselaer design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. The research effort focuses on the concept of a 100 MW-class, laser-boosted Lightcraft Technology Demonstrator (LTD) drone. The preliminary conceptual design of this 1.4 meter diameter microspacecraft involved an analytical performance analysis of the transatmospheric engine in its two modes of operation (including an assessment of propellant and tankage requirements), and a detailed design of internal structure and external aeroshell configuration. The central theme of this advanced propulsion research was to pick a known excellent working fluid (i.e., air or LN sub 2), and then to design a combined-cycle engine concept around it. Also, a structural vibration analysis was performed on the annular shroud pulsejet engine. Finally, the sensor satellite mission was examined to identify the requisite subsystem hardware: e.g., electrical power supply, optics and sensors, communications and attitude control systems.

  10. Moon Observations

    NSDL National Science Digital Library

    In this activity students record data about moon phases over the course of one complete moon cycle. The data will be used later in the course when students are building a model to account for the phenomenon of moon phases. Each student will gather data for the date and time, the color of the moon, the weather, the location in the sky and the shape and features of the moon from each day of an entire cycle of moon phases, and record it on a worksheet. This worksheet is available at the link called student activities and can be modified to also include moonrise and moonset data if desired. Links also lead to detailed instructional notes for the teacher and to further information about the moon.

  11. Toward a Suite of Standard Lunar Regolith Simulants for NASA's Lunar Missions: Recommendations of the 2005 Workshop of Lunar Regolith Simulant Materials

    NASA Technical Reports Server (NTRS)

    Schlagheck, R. A.; Sibille, L.; Carpenter, P.

    2005-01-01

    As NASA turns its exploration ambitions towards the Moon once again, the research and development of new technologies for lunar operations face the challenge of meeting the milestones of a fast-pace schedule, reminiscent of the 1960's Apollo program. While the lunar samples returned by the Apollo and Luna missions have revealed much about the Moon, these priceless materials exist in too scarce quantities to be used for technology development and testing. The need for mineral materials chosen to simulate the characteristics of lunar regoliths is a pressing issue that is being addressed today through the collaboration of scientists, engineers and NASA program managers. The issue of reproducing the properties of lunar regolith for research and technology development purposes was addressed by the recently held Workshop on Lunar Regolith Simulant Materials at Marshall Space Flight Center. The conclusions from the workshop and considerations concerning the feasibility (both technical and programmatic) of producing such materials will be presented here.

  12. Lunar Surface Gravimeter Experiment. [characteristics of test equipment installed on lunar surface during Apollo 17 flight

    NASA Technical Reports Server (NTRS)

    Giganti, J. J.; Larson, J. V.; Richard, J. P.; Weber, J.

    1973-01-01

    The lunar surface gravimeter which was emplaced on the moon by the Apollo 17 flight is described and a schematic diagram of the sensor is provided. The objective of the lunar surface gravimeter is to use the moon as an instrumented antenna to detect gravitational waves. Another objective is to measure tidal deformation of the moon. Samples of signals received during lunar sunrise activity and during quiet periods are presented in graph form based on power spectrum analysis

  13. Planetary protection for the Jupiter Icy Moons Orbiter

    Microsoft Academic Search

    R. Gershman; C. Kohlhase; R. Koukol

    2004-01-01

    NASA is developing plans for an ambitious mission to orbit three planet-sized moons of Jupiter -- Callisto, Ganymede and Europa -- which may harbor vast oceans beneath their icy surfaces. The mission, called the Jupiter Icy Moons Orbiter (JIMO), would orbit each of these moons for extensive investigations of their makeup, their history and their potential for sustaining life. JIMO

  14. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2012-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and, as a result, crew members ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVAs, and provides a historical look at energy expenditure during EVAs through the Apollo Program.

  15. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and crewmembers (CMs) ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVA, and provides a historical look at energy expenditure during EVA through the Apollo program.

  16. Cassini Mission

    SciTech Connect

    Mitchell, Robert (Jet Propulsion Laboratory) [Jet Propulsion Laboratory

    2005-08-10

    The Cassini/Huygens mission is a joint NASA/European Space Agency/Italian Space Agency project which has a spacecraft currently in orbit about Saturn, and has successfully sent an atmospheric probe through the atmosphere of Saturn's largest moon Titan and down to its previously hidden surface. This presentation will describe the overall mission, how it got a rather massive spacecraft to Saturn, and will cover some of the scientific results of the mission to date.

  17. Overall view of Mission Operations Control in Mission Control Center

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Overall view of the Mission Operations Control in the Mission Control Center, bldg 30, on the first day of the Apollo 10 lunar orbit mission. A color television transmission was being received from Apollo 10. This picture was made following separation of the Lunar Module (LM) and Saturn third stage (S-IVB) from the Command/Service Modules (CSM) and prior to LM extraction from the S-IVB.

  18. Apollo-Soyuz Pamphlet No. 1: The Flight. Apollo-Soyuz Experiments in Space.

    ERIC Educational Resources Information Center

    Page, Lou Williams; Page, Thornton

    This is the first in a series of nine booklets that discuss the Apollo-Soyuz mission and experiments. This set is designed as a curriculum supplement for teachers, supervisors, curriculum specialists, textbook writers, and the general public. These booklets provide sources of ideas, examples of the scientific method, references to standard…

  19. Apollo-Soyuz Pamphlet No. 8: Zero-G Technology. Apollo-Soyuz Experiments in Space.

    ERIC Educational Resources Information Center

    Page, Lou Williams; Page, Thornton

    This pamphlet is the eighth in a series of nine discussing the Apollo-Soyuz mission and experiments. This set is designed as a curriculum supplement for high school and college teachers, supervisors, curriculum specialists, textbook writers, and the general public. These booklets provide sources of ideas, examples of the scientific method,…

  20. Apollo-Soyuz Pamphlet No. 9: General Science. Apollo-Soyuz Experiments in Space.

    ERIC Educational Resources Information Center

    Page, Lou Williams; Page, Thornton

    This is the last pamphlet in a series of nine discussing the Apollo-Soyuz mission and experiments. This set is designed as a curriculum supplement for secondary and college teachers, supervisors, curriculum specialists, textbook writers, and the general public. These booklets provide sources of ideas, examples of the scientific method, references…

  1. Remote sensing of the Moon sub-surface from a spaceborne microwawe radiometer aboard the European Student Moon Orbiter (ESMO)

    Microsoft Academic Search

    M. Montopoli; P. Tognolatti; F. S. Marzano; M. Pierdicca; G. Perrotta

    2007-01-01

    Given the rising and renewed interest towards the study of Moon the European space Agency (ESA) approved, in March 2006, the phase-A for the feasibility study of the European Student Moon Orbiter (ESMO) mission proposed by the Student Space Exploration & Technology Initiative (SSETI). The objective of the ESMO mission is to acquire images of the moon in stable orbit,

  2. IMP - INTEGRATED MISSION PROGRAM

    NASA Technical Reports Server (NTRS)

    Dauro, V. A.

    1994-01-01

    IMP is a simulation language that is used to model missions around the Earth, Moon, Mars, or other planets. It has been used to model missions for the Saturn Program, Apollo Program, Space Transportation System, Space Exploration Initiative, and Space Station Freedom. IMP allows a user to control the mission being simulated through a large event/maneuver menu. Up to three spacecraft may be used: a main, a target and an observer. The simulation may begin at liftoff, suborbital, or orbital. IMP incorporates a Fehlberg seventh order, thirteen evaluation Runge-Kutta integrator with error and step-size control to numerically integrate the equations of motion. The user may choose oblate or spherical gravity for the central body (Earth, Mars, Moon or other) while a spherical model is used for the gravity of an additional perturbing body. Sun gravity and pressure and Moon gravity effects are user-selectable. Earth/Mars atmospheric effects can be included. The optimum thrust guidance parameters are calculated automatically. Events/maneuvers may involve many velocity changes, and these velocity changes may be impulsive or of finite duration. Aerobraking to orbit is also an option. Other simulation options include line-of-sight communication guidelines, a choice of propulsion systems, a soft landing on the Earth or Mars, and rendezvous with a target vehicle. The input/output is in metric units, with the exception of thrust and weight which are in English units. Input is read from the user's input file to minimize real-time keyboard input. Output includes vehicle state, orbital and guide parameters, event and total velocity changes, and propellant usage. The main output is to the user defined print file, but during execution, part of the input/output is also displayed on the screen. An included FORTRAN program, TEKPLOT, will display plots on the VDT as well as generating a graphic file suitable for output on most laser printers. The code is double precision. IMP is written in FORTRAN 77 for DEC VAX series computers running VMS. The optional TEKPLOT plotting module requires the VAX TEK library. The standard distribution medium for this program is a 9track 1600 BPI magnetic tape in DEC VAX BACKUP format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. An electronic copy of the documentation is included on the distribution medium. Although IMP was originally developed in the 1970s, the author has continued to use and refine it. This version was updated in 1992. DEC, TK50, VAX, and VMS are trademarks of Digital Equipment Corporation.

  3. MPST Software: MoonKommand

    NASA Technical Reports Server (NTRS)

    Kwok, John H.; Call, Jared A.; Khanampornpan, Teerapat

    2012-01-01

    This software automatically processes Sally Ride Science (SRS) delivered MoonKAM camera control files (ccf) into uplink products for the GRAIL-A and GRAIL-B spacecraft as part of an education and public outreach (EPO) extension to the Grail Mission. Once properly validated and deemed safe for execution onboard the spacecraft, MoonKommand generates the command products via the Automated Sequence Processor (ASP) and generates uplink (.scmf) files for radiation to the Grail-A and/or Grail-B spacecraft. Any errors detected along the way are reported back to SRS via email. With Moon Kommand, SRS can control their EPO instrument as part of a fully automated process. Inputs are received from SRS as either image capture files (.ccficd) for new image requests, or downlink/delete files (.ccfdl) for requesting image downlink from the instrument and on-board memory management. The Moon - Kommand outputs are command and file-load (.scmf) files that will be uplinked by the Deep Space Network (DSN). Without MoonKommand software, uplink product generation for the MoonKAM instrument would be a manual process. The software is specific to the Moon - KAM instrument on the GRAIL mission. At the time of this writing, the GRAIL mission was making final preparations to begin the science phase, which was scheduled to continue until June 2012.

  4. The Lunar Seismic Network (LuSeN) Mission: The Need for Compact, Robust, Long-Lived Power Supplies.

    NASA Astrophysics Data System (ADS)

    Neal, C. R.

    2005-12-01

    The Apollo seismic experiment established a network of four seismometers on the lunar nearside at the Apollo 12, 14, 15 and 16 landing sites that was in operation for 8 years (1969-1977). During this time, four different types of moonquakes were recognized and although originally thought to be tectonically dead, the recorded activity showed that lunar seismicity was about equal to that of intraplate settings on Earth. However, the limited spatial coverage of this network has left many unanswered questions, such as: 1) What is the structure and thickness of the crust on the lunar near and far sides? Are crustal structure changes gradational or are distinct domains present? What is the nature of the hypothesized lunar core? What are the mineralogic transitions present in the lunar mantle? Is there a Moon-wide ~500 km discontinuity (magmasphere vs. magma ocean)? Are the core and mantle completely solid or do plastic zones still persist? Are nests producing periodic deep Moonquakes present on the far side? The Lunar Seismic Network (LuSeN) mission concept establishes a modest network of 8-10 seismometers deployed around the Moon with an orbiting communications satellite. Like the Apollo seismic experiment, these seismometers need to be continuously recording and be active for 5-7 years in order to record enough seismic events to establish where the most seismically active areas are in the Moon, as well as answer the scientific questions outlined above. Mass considerations preclude establishing a network of this size using conventional battery and solar power supplies: a compact, robust radionuclear power supply is needed for each seismometer. Given the new emphasis on the Moon, results from the LuSeN mission will be relevant for the establishing a Moon base in a seismically passive (safe) region and one that has a low probability of receiving a sizable meteoroid impact. In addition, the LuSeN mission will also use the Moon as a technology test bed for establishing seismometer arrays on other planets and moons as we go to the Moon, Mars, and beyond.

  5. Apollo 15 and 16 ground-commanded television assembly.

    NASA Technical Reports Server (NTRS)

    Soltoff, B. M.

    1972-01-01

    During the Apollo 15 and 16 missions, a special camera provided the scientific community and the home viewer with real-time coverage of the lunar exploration. The lunar blast-off of the Apollo 16 ascent module was tracked by the mission controller at NASA's Manned Space Center and watched 250,000 miles away on earth. The operation of this television camera and the remote control unit are described and block diagrams given. Ground-command capability from the Mission Control Center permitted versatility and optimization of the TV coverage, without diverting the astronauts from their primary role of lunar exploration.

  6. Pristine moon rocks - A 'large' felsite and a metal-rich ferroan anorthosite

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.; Jerde, Eric A.; Kallemeyn, Gregory W.

    1987-01-01

    Results of elemental analyses, performed either by instrumental neutron activation analysis (NAA) or radiochemical NAA, of 19 lunar rock samples obtained by the Apollo 15, 17, and 12 missions are presented. Two of the samples are most extraordinary: 'large' (1 g) felsite from Apollo 12 and a pristine ferroan anorthosite from Apollo 15. The felsite is mainly a graphic intergrowth of K-feldspar and a silica phase, with about 6 pct plagioclase and 1 pct each of ferroaugite, ilmenite, and fayalitic olivine. The Fe-metal content of ferroan anorthosite is 1.2 wt pct in the thin section studied (but, based on mass balance for Co and Ni, must have been lower in the chip used for bulk-rock analysis); the measured bulk-rock concentrations of siderophile elements Re, Os, and Ir are far higher than previously observed among pristine lunar anorthosites. These results underscore the uncertainty associated with any attempt to estimate the overall siderophile element contents of the moon's crust.

  7. Did We Really Land on the Moon? Suggestions for Science Teachers

    NASA Technical Reports Server (NTRS)

    Lowman, Paul D., Jr.; Smith, David E. (Technical Monitor)

    2001-01-01

    On Feb. 15, 2001, the FOX network broadcast a one hour TV program claiming that the Apollo lunar landings had all been staged in a studio set in Nevada, and that astronauts had never landed on the Moon. This claim can be refuted on many points, focused on the supposed photographic evidence indicating studio lighting or other aspects of the Apollo missions. The TV program ignored the returned lunar samples. Science teachers have been swamped with questions about the program, and this paper has been written to suggest how they can use it to stimulate interest in lunar geology. The article shows how the NASA Lunar Disk kits, available on loan to schools, can be studied by students. These samples are visibly different from terrestrial soils and rocks in several ways. There is no quartz in the lunar soil; there are no true reds and browns resulting from ferric oxides; and the textures of the soil (agglutinates and glass beads) can only be formed on an airless planet. The article has several pictures of the lunar surface and the Apollo samples, and a short bibliography for background reading.

  8. Imaging the Moon's core with seismology

    NASA Astrophysics Data System (ADS)

    Weber, R. C.; Lin, P. P.; Garnero, E. J.; Williams, Q. C.; Lognonne, P.

    2011-12-01

    Constraining the structure of the lunar core is necessary to improve our understanding of the present-day thermal structure of the interior and the history of a lunar dynamo, as well as the origin and thermal and compositional evolution of the Moon. We analyze Apollo deep moonquake seismograms using terrestrial array processing methods to search for the presence of reflected and converted energy from the lunar core. Although moonquake fault parameters are not constrained, we first explore a suite of theoretical focal spheres to verify that fault planes exist that can produce favorable core reflection amplitudes relative to direct up-going energy at the Apollo stations. Beginning with stacks of event seismograms from the known distribution of deep moonquake clusters, we apply a polarization filter to account for the effects of seismic scattering that (a) partitions energy away from expected components of ground motion, and (b) obscures all but the main P- and S-wave arrivals. The filtered traces are then shifted to the predicted arrival time of a core phase (e.g. PcP) and stacked to enhance subtle arrivals associated with the Moon's core. This combination of filtering and array processing is well suited for detecting deep lunar seismic reflections, since we do not expect scattered wave energy from near surface (or deeper) structure recorded at varying epicentral distances and stations from varying moonquakes at varying depths to stack coherently. Our results indicate the presence of a solid inner and fluid outer core, overlain by a partial-melt-containing boundary layer (Table 1). These layers are consistently observed among stacks from four classes of reflections: P-to-P, S-to-P, P-to-S, and S-to-S, and are consistent with current indirect geophysical estimates of core and deep mantle properties, including mass, moment of inertia, lunar laser ranging, and electromagnetic induction. Future refinements are expected following the successful launch of the GRAIL lunar orbiter and SELENE 2 lunar lander missions.

  9. Imaging the Moon's Core with Seismology

    NASA Technical Reports Server (NTRS)

    Weber, Renee C.; Lin, Pei-Ying Patty; Garnero, Ed J.; Williams, Quetin C.; Lognonne, Philippe

    2011-01-01

    Constraining the structure of the lunar core is necessary to improve our understanding of the present-day thermal structure of the interior and the history of a lunar dynamo, as well as the origin and thermal and compositional evolution of the Moon. We analyze Apollo deep moonquake seismograms using terrestrial array processing methods to search for the presence of reflected and converted energy from the lunar core. Although moonquake fault parameters are not constrained, we first explore a suite of theoretical focal spheres to verify that fault planes exist that can produce favorable core reflection amplitudes relative to direct up-going energy at the Apollo stations. Beginning with stacks of event seismograms from the known distribution of deep moonquake clusters, we apply a polarization filter to account for the effects of seismic scattering that (a) partitions energy away from expected components of ground motion, and (b) obscures all but the main P- and S-wave arrivals. The filtered traces are then shifted to the predicted arrival time of a core phase (e.g. PcP) and stacked to enhance subtle arrivals associated with the Moon s core. This combination of filtering and array processing is well suited for detecting deep lunar seismic reflections, since we do not expect scattered wave energy from near surface (or deeper) structure recorded at varying epicentral distances and stations from varying moonquakes at varying depths to stack coherently. Our results indicate the presence of a solid inner and fluid outer core, overlain by a partial-melt-containing boundary layer (Table 1). These layers are consistently observed among stacks from four classes of reflections: P-to-P, S-to-P, P-to-S, and S-to-S, and are consistent with current indirect geophysical estimates of core and deep mantle properties, including mass, moment of inertia, lunar laser ranging, and electromagnetic induction. Future refinements are expected following the successful launch of the GRAIL lunar orbiter and SELENE 2 lunar lander missions.

  10. Laser transit-time measurements between earth and moon with a transportable system

    NASA Technical Reports Server (NTRS)

    Lehr, C. G.; Criswell, S. J.; Ouellette, J. P.; Sozanski, P. W.; Mulholland, J. D.; Shelus, P. J.

    1973-01-01

    A high radiance, pulsed laser system with a transportable transmitting unit was used to measure the transit times of 25 ns, 10 joule, and 530 nm pulses from earth to the Apollo 15 retroreflector on the moon and back.

  11. Apollo experience report: Flight planning for manned space operations

    NASA Technical Reports Server (NTRS)

    Oneill, J. W.; Cotter, J. B.; Holloway, T. W.

    1972-01-01

    The history of flight planning for manned space missions is outlined, and descriptions and examples of the various evolutionary phases of flight data documents from Project Mercury to the Apollo Program are included. Emphasis is given to the Apollo flight plan. Time line format and content are discussed in relationship to the manner in which they are affected by the types of flight plans and various constraints.

  12. Apollo 9 backup crew participate in water egress training

    NASA Technical Reports Server (NTRS)

    1968-01-01

    The backup crew of the Apollo 9 (Spacecraft 104/Lunar Module 3/Saturn 504) space mission stands on the deck of the NASA Motor Vessel Retriever prior to participating in water egress training in the Gulf of Mexico. Left to right, are Astronauts Charels Conrad Jr. (holding hatch), RIchard F. Gordon Jr., and Alan L. Bean. They are standing by the Apollo command module trainer which was used in the exercise.

  13. Giles, Petrone, and Garriott Chat at Apollo 16 Display

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Huntsville's Jack Giles, Alabama State Senator (left), and Dr. Rocco Petrone, Marshall Space Flight Center Director (Middle), speak with Astronaut Owen Garriott who is inside the Apollo 16 Command Module on display at the Alabama Space and Rocket Center in Huntsville, Alabama. The successful Apollo 16 manned lunar landing mission took place April 16, 1972 through April 27, 1972. (Photograph courtesy of Huntsville/Madison County Public Library)

  14. Odyssey Moon - An Entrepreneurial Model for Sustainable Commercial Lunar Enterprise

    NASA Astrophysics Data System (ADS)

    Richards, R. D.; Khadem, R.

    2008-07-01

    This paper outlines how a carefully planned private Moon mission could set in motion the technological, political, legal and regulatory precedents that will enable humanity to embrace the Moon into the world's economic sphere.

  15. SMART1 impact on the Moon - Moon science, orbit reboosts and impact observations

    Microsoft Academic Search

    Octavio Camino; Jurriaan de Bruin; Johannes Schoenmaekers; Peter Rathsman; Joakim Kugelberg; Per Bodin

    2007-01-01

    SMART-1 was launched in September 2003 and impacted the Moon 3 years later. It was the first of ESA's Small Missions for Advanced Research in Technology, with the main goal of testing electric propulsion. Following a spectacular navigation strategy, the craft reached the Moon, where its orbit was optimised for scientific observations. The instruments provided data throughout the mission, interrupted

  16. Telecast of Astronaut Neil Armstrong descending ladder to surface of the moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, Apollo 11 commander, descends the ladder of the Apollo 11 Lunar Module prior to making the first step by man on the moon. This view is a black and white reproduction taken from a telecast by the Apollo 11 lunar surface camera during extravehicular activity. The black bar running through the center of the picture is an anamoly in the television ground data system at the Goldstone Tracking Station.

  17. Photogrammetry of Apollo 15 photography, part C

    NASA Technical Reports Server (NTRS)

    Wu, S. S. C.; Schafer, F. J.; Jordan, R.; Nakata, G. M.; Derick, J. L.

    1972-01-01

    In the Apollo 15 mission, a mapping camera system and a 61 cm optical bar, high resolution panoramic camera, as well as a laser altimeter were used. The panoramic camera is described, having several distortion sources, such as cylindrical shape of the negative film surface, the scanning action of the lens, the image motion compensator, and the spacecraft motion. Film products were processed on a specifically designed analytical plotter.

  18. Apollo Multiplexer operations manual

    SciTech Connect

    Miller, M.M.

    1985-04-01

    This report describes the operation of the the Apollo Multiplexer, a microprocessor based communications device designed to process data between an Apollo computer and up to four Gandalf PACXIV data switches. Details are given on overall operation, hardware, and troubleshooting. The reader should gain sufficient knowledge from this report to understand the operation of the multiplexer and effectively analyze and correct any problems that might occur.

  19. Human Factor Studies on a Mars Analogue During Crew 100b International Lunar Exploration Working Group EuroMoonMars Crew: Proposed New Approaches for Future Human Space and Interplanetary Missions

    PubMed Central

    Rai, Balwant; Kaur, Jasdeep

    2012-01-01

    Knowing the risks, costs, and complexities associated with human missions to Mars, analogue research can be a great (low-risk) tool for exploring the challenges associated with the preparation for living, operating, and undertaking research in interplanetary missions. Short-duration analogue studies, such as those being accomplished at the Mars Desert Research Station (MDRS), offer the chance to study mission operations and human factors in a simulated environment, and therefore contribute to exploration of the Moon and Mars in planned future missions. This article is based upon previously published articles, abstracts, and presentations by a series of independent authors, human factor studies performed on mars analogue station by Crew 100B. The MDRS Crew 100B performed studies over 15 days providing a unique insight into human factor issues in simulated short-duration Mars mission. In this study, 15 human factors were evaluated and analyzed by subjective and objective means, and from the summary of results it was concluded that optimum health of an individual and the crew as a whole is a necessity in order to encourage and maintain high performance and the satisfaction of project goals. PMID:23181225

  20. Human Factor Studies on a Mars Analogue During Crew 100b International Lunar Exploration Working Group EuroMoonMars Crew: Proposed New Approaches for Future Human Space and Interplanetary Missions.

    PubMed

    Rai, Balwant; Kaur, Jasdeep

    2012-11-01

    Knowing the risks, costs, and complexities associated with human missions to Mars, analogue research can be a great (low-risk) tool for exploring the challenges associated with the preparation for living, operating, and undertaking research in interplanetary missions. Short-duration analogue studies, such as those being accomplished at the Mars Desert Research Station (MDRS), offer the chance to study mission operations and human factors in a simulated environment, and therefore contribute to exploration of the Moon and Mars in planned future missions. This article is based upon previously published articles, abstracts, and presentations by a series of independent authors, human factor studies performed on mars analogue station by Crew 100B. The MDRS Crew 100B performed studies over 15 days providing a unique insight into human factor issues in simulated short-duration Mars mission. In this study, 15 human factors were evaluated and analyzed by subjective and objective means, and from the summary of results it was concluded that optimum health of an individual and the crew as a whole is a necessity in order to encourage and maintain high performance and the satisfaction of project goals. PMID:23181225