Science.gov

Sample records for apollo moon mission

  1. The Apollo Missions and the Chemistry of the Moon

    ERIC Educational Resources Information Center

    Pacer, Richard A.; Ehmann, William D.

    1975-01-01

    Presents the principle chemical features of the moon obtained by analyzing lunar samples gathered on the Apollo missions. Outlines the general physical features of the moon and presents theories on its origin. (GS)

  2. The Moon: What Have the Apollo Missions Taught Us? Part II: The View from Apollo.

    ERIC Educational Resources Information Center

    McKeever, S. W. S.

    1980-01-01

    Summarizes scientific findings resulting from the Apollo missions, including lunar rocks and soil, age determination, and the moon's interior, evolution, and origin. Indicates experiments for future lunar research. (SK)

  3. Apollo 17 mission report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Operational and engineering aspects of the Apollo 17 mission are outlined. The vehicle configuration was similar to those of Apollo 15 and 16. There were significant differences in the science payload for Apollo 17 and spacecraft hardware differences and experiment equipment are described. The mission achieved a landing in the Taurus-Littrow region of the moon and returned samples of the pre-Imbrium highlands and young craters.

  4. Preserving the Science Legacy from the Apollo Missions to the Moon

    NASA Astrophysics Data System (ADS)

    Todd, N. S.; Evans, C. A.; Zeigler, R. A.; Lehnert, K. A.

    2015-12-01

    Six Apollo missions landed on the Moon from 1969-72, returning to Earth 382 kg of lunar rock, soil, and core samples—among the best documented and preserved samples on Earth that have supported a robust research program for 45 years. From mission planning through sample collection, preliminary examination, and subsequent research, strict protocols and procedures are followed for handling and allocating Apollo subsamples. Even today, 100s of samples are allocated for research each year, building on the science foundation laid down by the early Apollo sample studies and combining new data from today's instrumentation, lunar remote sensing missions and lunar meteorites. Today's research includes advances in our understanding of lunar volatiles, lunar formation and evolution, and the origin of evolved lunar lithologies. Much sample information is available to researchers at curator.jsc.nasa.gov. Decades of analyses on lunar samples are published in LPSC proceedings volumes and other peer-reviewed journals, and tabulated in lunar sample compendia entries. However, for much of the 1969-1995 period, the processing documentation, individual and consortia analyses, and unpublished results exist only in analog forms or primitive digital formats that are either inaccessible or at risk of being lost forever because critical data from early investigators remain unpublished. We have initiated several new efforts to rescue some of the early Apollo data, including unpublished analytical data. We are scanning NASA documentation that is related to the Apollo missions and sample processing, and we are collaborating with IEDA to establish a geochemical database called Moon DB. To populate this database, we are working with prominent lunar PIs to organize and transcribe years of both published and unpublished data. Other initiatives include micro-CT scanning of complex lunar samples to document their interior structure (e.g. clasts, vesicles); linking high-resolution scans of Apollo

  5. Preserving the Science Legacy from the Apollo Missions to the Moon

    NASA Technical Reports Server (NTRS)

    Evans, Cindy; Zeigler, Ryan; Lehnert, Kerstin; Todd, Nancy; Blumenfeld, Erika

    2015-01-01

    Six Apollo missions landed on the Moon from 1969-72, returning to Earth 382 kg of lunar rock, soil, and core samples-among the best documented and preserved samples on Earth that have supported a robust research program for 45 years. From mission planning through sample collection, preliminary examination, and subsequent research, strict protocols and procedures are followed for handling and allocating Apollo subsamples. Even today, 100s of samples are allocated for research each year, building on the science foundation laid down by the early Apollo sample studies and combining new data from today's instrumentation, lunar remote sensing missions and lunar meteorites. Today's research includes advances in our understanding of lunar volatiles, lunar formation and evolution, and the origin of evolved lunar lithologies. Much sample information is available to researchers at curator.jsc.nasa.gov. Decades of analyses on lunar samples are published in LPSC proceedings volumes and other peer-reviewed journals, and tabulated in lunar sample compendia entries. However, for much of the 1969-1995 period, the processing documentation, individual and consortia analyses, and unpublished results exist only in analog forms or primitive digital formats that are either inaccessible or at risk of being lost forever because critical data from early investigators remain unpublished. We have initiated several new efforts to rescue some of the early Apollo data, including unpublished analytical data. We are scanning NASA documentation that is related to the Apollo missions and sample processing, and we are collaborating with IEDA to establish a geochemical database called Moon DB. To populate this database, we are working with prominent lunar PIs to organize and transcribe years of both published and unpublished data. Other initiatives include micro-CT scanning of complex lunar samples to document their interior structure (e.g. clasts, vesicles); linking high-resolution scans of Apollo

  6. Rescue and Preservation of Sample Data from the Apollo Missions to the Moon

    NASA Technical Reports Server (NTRS)

    Todd, Nancy S.; Zeigler, Ryan A.; Evans, Cindy A.; Lehnert, Kerstin

    2016-01-01

    Six Apollo missions landed on the Moon from 1969-72, returning to Earth 382 kg of lunar rock, soil, and core samples. These samples are among the best documented and preserved samples on Earth that have supported a robust research program for 45 years. From mission planning through sample collection, preliminary examination, and subsequent research, strict protocols and procedures are followed for handling and allocating Apollo subsamples, resulting in the production of vast amounts of documentation. Even today, hundreds of samples are allocated for research each year, building on the science foundation laid down by the early Apollo sample studies and combining new data from today's instrumentation, lunar remote sensing missions and lunar meteorites. Much sample information is available to researchers at curator.jsc.nasa.gov. Decades of analyses on lunar samples are published in LPSC proceedings volumes and other peer-reviewed journals, and tabulated in lunar sample compendia entries. However, for much of the 1969-1995 period, the processing documentation, individual and consortia analyses, and unpublished results exist only in analog forms or primitive digital formats that are either inaccessible or at risk of being lost forever because critical data from early investigators remain unpublished.

  7. The Apollo missions.

    NASA Technical Reports Server (NTRS)

    Scherer, L. R.

    1971-01-01

    The Apollo 11 and 12 lunar landings are briefly reviewed together with the problems experienced with Apollo 13. As a result of the first two landing missions it became known that parts of the moon are at least four and one-half billion years old. If the moon was once part of the earth, it must have split off very early in its history. Starting with Apollo 16, changes in hardware will result in very significant improvements and capabilities. The landed payload will be increased by over 100%.

  8. Apollo 11 Moon Landing

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The crowning achievement for the Saturn V rocket came when it launched Apollo 11 astronauts, Neil Armstrong, Edwin (Buzz) Aldrin, and Michael Collins, to the Moon in July 1969. In this photograph, astronaut Aldrin takes his first step onto the surface of the Moon.

  9. Apollo 11 Mission Commemorated

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-07-01

    On 24 July 1969, 4 days after Apollo 11 Mission Commander Neil Armstrong and Lunar Module Eagle Pilot Eugene “Buzz” Aldrin had become the first people to walk on the Moon, they and Apollo 11 Command Module Pilot Michael Collins peered through a window of the Mobile Quarantine Facility on board the U.S.S. Hornet following splashdown of the command module in the central Pacific as U.S. President Richard Nixon told them, “This is the greatest week in the history of the world since the creation.” Forty years later, the Apollo 11 crew and other Apollo-era astronauts gathered at several events in Washington, D. C., to commemorate and reflect on the Apollo program, that mission, and the future of manned spaceflight. “I don’t know what the greatest week in history is,” Aldrin told Eos. “But it was certainly a pioneering opening the door. With the door open when we touched down on the Moon, that was what enabled humans to put many more footprints on the surface of the Moon.”

  10. Apollo 15 mission report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A detailed discussion is presented of the Apollo 15 mission, which conducted exploration of the moon over longer periods, greater ranges, and with more instruments of scientific data acquisition than previous missions. The topics include trajectory, lunar surface science, inflight science and photography, command and service module performance, lunar module performance, lunar surface operational equipment, pilot's report, biomedical evaluation, mission support performance, assessment of mission objectives, launch phase summary, anomaly summary, and vehicle and equipment descriptions. The capability of transporting larger payloads and extending time on the moon were demonstrated. The ground-controlled TV camera allowed greater real-time participation by earth-bound personnel. The crew operated more as scientists and relied more on ground support team for systems monitoring. The modified pressure garment and portable life support system provided better mobility and extended EVA time. The lunar roving vehicle and the lunar communications relay unit were also demonstrated.

  11. Apollo Lunar Sample Integration into Google Moon: A New Approach to Digitization

    NASA Astrophysics Data System (ADS)

    Dawson, M. D.; Todd, N. S.; Lofgren, G. E.

    2011-03-01

    The Google Moon Apollo Lunar Sample Data Integration project enhances the Apollo mission data available on Google Moon and provides an interactive research and learning tool for the Apollo lunar rock sample collection.

  12. How Apollo Flew to the Moon

    NASA Astrophysics Data System (ADS)

    Watkins, Nick

    2009-10-01

    Eos readers who were even young children in the summer of 1969 probably will remember the first Moon landing vividly. If, like myself, they went on to develop a lifelong interest in manned spaceflight, they will have read many accounts in the intervening years, as diverse as Norman Mailer's, Andrew Chaikin's, and the first-person reminiscences of NASA astronaut Michael Collins. The prospect of another book about the Moon landing at first may seem uninspiring, and I confess this was my original reaction to the prospect of reading this book. Additionally, in the intervening 40 years since Apollo 11, there have been some superb films including For All Mankind (1989) and In the Shadow of the Moon (2006). The Internet has brought new possibilities for space documentation. The best known Web site on the Apollo missions is the Apollo Lunar Surface Journal, which now is hosted by NASA at http://www.hq.nasa.gov/alsj/. The Web site includes commentary from all of the surviving Moon walkers. Scottish space enthusiast W. David Woods created the companion Apollo Flight Journal, found at http://history.nasa.gov/afj//, which focuses on how the missions actually got to the Moon and back. Now Woods has distilled the information into the book How Apollo Flew to the Moon.

  13. Apollo 8, Man Around the Moon.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This pamphlet presents a series of photographs depicting the story of the Apollo 8 mission around the moon and includes a brief description as well as quotes from the astronauts. The photographs show scenes of the astronauts training, the Saturn V rocket, pre-flight preparation, blast off, the earth from space, the lunar surface, the earth-based…

  14. Apollo Expeditions to the Moon

    NASA Technical Reports Server (NTRS)

    Cortright, E. M. (Editor)

    1975-01-01

    The Apollo program is described from the planning stages through Apollo 17. The organization of the program is discussed along with the development of the spacecraft and related technology. The objectives and accomplishments of each mission are emphasized along with personal accounts of the major figures involved. Other topics discussed include: ground support systems and astronaut selection.

  15. Integration of Apollo Lunar Sample Data into Google Moon

    NASA Technical Reports Server (NTRS)

    Dawson, Melissa D.; Todd, Nancy S.; Lofgren, Gary

    2010-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is a continuation of the Apollo 15 Google Moon Add-On project, which provides a scientific and educational tool for the study of the Moon and its geologic features. The main goal of this project is to provide a user-friendly interface for an interactive and educational outreach and learning tool for the Apollo missions. Specifically, this project?s focus is the dissemination of information about the lunar samples collected during the Apollo missions by providing any additional information needed to enhance the Apollo mission data on Google Moon. Apollo missions 15 and 16 were chosen to be completed first due to the availability of digitized lunar sample photographs and the amount of media associated with these missions. The user will be able to learn about the lunar samples collected in these Apollo missions, as well as see videos, pictures, and 360 degree panoramas of the lunar surface depicting the lunar samples in their natural state, following collection and during processing at NASA. Once completed, these interactive data layers will be submitted for inclusion into the Apollo 15 and 16 missions on Google Moon.

  16. Apollo astronaut supports return to the Moon

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-12-01

    Nearly 40 years after the Apollo 17 Moon launch on 7 December 1972, former NASA astronaut Harrison Schmitt said there is "no question" that the Moon is still worth going to, "whether you think about the science of the Moon or the resources of the Moon, or its relationship to accelerating our progress toward Mars." Schmitt, a geologist and the lunar module pilot for that final Apollo mission, was speaking at a 6 December news briefing about lunar science at the AGU Fall Meeting. "By going back to the Moon, you accelerate your ability to go anywhere else," Schmitt said, because of the ability to gain experience on a solar system body just a 3-day journey from Earth; test new hardware and navigation and communication techniques; and utilize lunar resources such as water, hydrogen, methane, and helium-3. He said lunar missions also would be a way "to develop new generations of people who know how to work in deep space. The people who know how to work [there] are my age, if not older, and we need young people to get that kind of experience." Schmitt, 77, said that a particularly interesting single location to explore would be the Aitken Basin at the Moon's south pole, where a crater may have reached into the Moon's upper mantle. He also said a longer duration exploration program might be able to explore multiple sites.

  17. Apollo 16 mission report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Information is provided on the operational and engineering aspects of the Apollo 16 mission. Customary units of measurement are used in those sections of the report pertaining to spacecraft systems and trajectories. The International System of Units is used in sections pertaining to science activities.

  18. Apollo mission experience

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1972-01-01

    Dosimetric implications for manned space flight are evaluated by analyzing the radiation field behind the heavy shielding of a manned space vehicle on a near-earth orbital mission and how it compares with actual exposure levels recorded on Apollo missions. Emphasis shifts from flux densities and energy spectra to incident radiation and absorbed doses and dose equivalents as they are recorded within the ship at locations close to crew members.

  19. Working on the moon: The Apollo experience

    SciTech Connect

    Jones, E.M.

    1989-01-01

    The successful completion of any scientific or engineering project on the Moon will depend, in part, on human ability to do useful work under lunar conditions. In making informed decisions about such things as the use of humans rather than robots for specific tasks, the scheduling of valuable human time, and the design and selection of equipment and tools, good use can be made of the existing experience base. During the six completed landing missions, Apollo lunar surface crews conducted 160 astronaut-hours of extra-vehicular activities (EVAs) and also spent a similar sum of waking hours working in the cramped confines of the Lunar Module. The first three missions were primarily proof-tests of flight hardware and procedures. The ability to land equipment and consumables was very modest but, despite stay times of no more than 32 hours, the crews of Apollos 11, 12, and 14 were able to test their mobility and their capability of doing useful work outside the spacecraft. For the last three missions, thanks to LM modifications which enabled landings with significant amounts of cargo, stay times more than doubled to three days. The crews were able to use Lunar Rovers to conduct extensive local exploration and to travel up to 10 kilometers away from their immediate landing sites. During these final missions, the astronauts spent enough time doing work of sufficient complexity that their experience should be of use in the formulation early-stage lunar base operating plans. 2 refs.

  20. Moon Rock Presented to Smithsonian Institute by Apollo 11 Crew

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 astronauts, (left to right) Edwin E. Aldrin Jr., Lunar Module pilot; Michael Collins, Command Module pilot; and Neil A. Armstrong, commander, are showing a two-pound Moon rock to Frank Taylor, director of the Smithsonian Institute in Washington D.C. The rock was picked up from the Moon's surface during the Extra Vehicular Activity (EVA) of Aldrin and Armstrong following man's first Moon landing and was was presented to the Institute for display in the Art and Industries Building. The Apollo 11 mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  1. On the Moon with Apollo 15, A Guidebook to Hadley Rille and the Apennine Mountains.

    ERIC Educational Resources Information Center

    Simmons, Gene

    The booklet, published before the Apollo 15 mission, gives a timeline for the mission; describes and illustrates the physiography of the landing site; and describes and illustrates each lunar surface scientific experiment. Separate timelines are included for all traverses (the traverses are the Moon walks and, for Apollo 15, the Moon rides in the…

  2. Apollo 11 crewmembers participates in simulation of moon's surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Two members of the Apollo 11 lunar landing mission participate in a simulation of deploying and using lunar tools on the surface of the moon during a training exercise in bldg 9 on April 22, 1969. Astronaut Edwin E. Aldrin Jr. (on left), lunar module pilot, uses scoop and tongs to pick up sample. Astronaut Neil A. Armstrong, Apollo 11 commander, holds bag to receive sample. In the background is a Lunar Module mockup. Both men are wearing Extravehicular Mobility Units (EMU).

  3. Apollo Lunar Sample Integration into Google Moon: A New Approach to Digitization

    NASA Technical Reports Server (NTRS)

    Dawson, Melissa D.; Todd, nancy S.; Lofgren, Gary E.

    2011-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is part of a larger, LASER-funded 4-year lunar rock photo restoration project by NASA s Acquisition and Curation Office [1]. The objective of this project is to enhance the Apollo mission data already available on Google Moon with information about the lunar samples collected during the Apollo missions. To this end, we have combined rock sample data from various sources, including Curation databases, mission documentation and lunar sample catalogs, with newly available digital photography of rock samples to create a user-friendly, interactive tool for learning about the Apollo Moon samples

  4. Apollo

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    US programme to land men on the moon. Included 11 manned missions, October 1968-December 1972, with three missions restricted to a lunar flyby or orbital survey (Apollos 8, 10 and 13), and six landings (Apollos 11, 12, 14, 15, 16 and 17). Returned 385 kg of lunar soil and rock samples which provided evidence that the Moon was about the same age as the Earth and probably originated from material d...

  5. Apollo 11 cremembers participates in simulation of moon's surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Edwin E. Aldrin Jr., wearing an Extravehicular Mobility Unit, simulates deploying the Solar Wind Composition (SWC) experiment on the surface of the moon during a training exercise in bldg 9 on April 22, 1969. The SWC is a component of the Early Apollo Scientific Experiment Package (EASEP). Aldrin is the lunar module pilot of the Apollo 11 lunar landing mission (32247); Astronaut Neil A. Armstrong, wearing an EMU, participates in a simulation of deploying and using lunar tools on the surface of the moon during a training exercise in bldg 9. Armstrong is the commander of the Apollo 11 lunar landing mission. His is using a scoop to place the sample into a bag. On the right is a Lunar Module mock-up (32248).

  6. Cameras on the moon with Apollos 15 and 16.

    NASA Technical Reports Server (NTRS)

    Page, T.

    1972-01-01

    Description of the cameras used for photography and television by Apollo 15 and 16 missions, covering a hand-held Hasselblad camera for black and white panoramic views at locations visited by the astronauts, a special stereoscopic camera designed by astronomer Tom Gold, a 16-mm movie camera used on the Apollo 15 and 16 Rovers, and several TV cameras. Details are given on the far-UV camera/spectrograph of the Apollo 16 mission. An electronographic camera converts UV light to electrons which are ejected by a KBr layer at the focus of an f/1 Schmidt camera and darken photographic films much more efficiently than far-UV. The astronomical activity of the Apollo 16 astronauts on the moon, using this equipment, is discussed.

  7. Apollo 17: One giant step toward understanding the tectonic evolution of the Moon

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.

    1992-01-01

    Our present understanding of the tectonic history of the Moon has been shaped in large measure by the Apollo Program, and particularly the Apollo 17 Mission. I attempt to summarize some of the interpretations that have emerged since Apollo 17, focusing on some of the problems and uncertainties that remain to stimulate future exploration of the Moon. The topics covered include: (1) Taurus-Littrow Valley; (2) origin of mare ridges; and (3) nature and timing of tectonic rille formation.

  8. Prime crew photographed during Apollo 7 mission

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut Walter M. Schirra Jr., Apollo 7 commander, is photographed during the Apollo 7 mission (1582); Astronaut Donn F. Eisele, Apollo 7 command module pilot, is photographed during the mission (1583); Astronaut Walter Cunningham, Apollo 7 lunar module pilot, is photographed during mission (1584).

  9. Prime crew photographed during Apollo 7 mission

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut Walter M. Schirra Jr., Apollo 7 commander, is photographed during the Apollo 7 mission (1582); Astronaut Donn F. Eisele, Apollo 7 command module pilot, is phtographed during the mission (1583); Astronaut Walter Cunningham, Apollo 7 lunar module pilot, is photographed during mission (1584).

  10. Apollo experience report: Mission planning for Apollo entry

    NASA Technical Reports Server (NTRS)

    Graves, C. A.; Harpold, J. C.

    1972-01-01

    The problems encountered and the experience gained in the entry mission plans, flight software, trajectory-monitoring procedures, and backup trajectory-control techniques of the Apollo Program should provide a foundation upon which future spacecraft programs can be developed. Descriptions of these entry activities are presented. Also, to provide additional background information needed for discussion of the Apollo entry experience, descriptions of the entry targeting for the Apollo 11 mission and the postflight analysis of the Apollo 10 mission are presented.

  11. Bonus: Apollo's Amazing Mission and Spin-Offs from Space.

    ERIC Educational Resources Information Center

    Learning, 1994

    1994-01-01

    Two posters examine the 1969 Apollo moon mission. The first tracks the stages and path of the mission, suggesting that students create their own diagrams or models. The second presents a puzzle that helps student understand how many items developed for the mission are useful to today's everyday life. (SM)

  12. Managing the Moon Program: Lessons Learned from Project Apollo

    NASA Technical Reports Server (NTRS)

    1999-01-01

    There have been many detailed historical studies of the process of deciding on and executing the Apollo lunar landing during the 1960s and early 1970s. From the announcement of President John F Kennedy on May 25, 1961, of his decision to land an American on the Moon by the end of the decade, through the first lunar landing on July 20, 1969, on to the last of six successful Moon landings with Apollo 17 in December 1972, NASA carried out Project Apollo with enthusiasm and aplomb. While there have been many studies recounting the history of Apollo, at the time of the 30th anniversary of the first lunar landing by Apollo 11, it seems appropriate to revisit the process of large-scale technological management as it related to the lunar mission. Consequently, the NASA History Office has chosen to publish this monograph containing the recollections of key partcipants in the management process. The collective oral history presented here was recorded in 1989 at the Johnson Space Center's Gilruth Recreation Center in Houston, Texas. It includes the recollections of key participants in Apollo's administration, addressing issues such as communication between field centers, the prioritization of technological goals, and the delegation of responsibility. The following people participated: George E. Muller, Owen W. Morris, Maxime A. Faget, Robert R. Gilruth, Christopher C. Kraft, and Howard W. (Bill) Tindall. The valuable perspectives of these individuals deepen and expand our understanding of this important historical event. This is the 14th in a series of special studies prepared by the NASA History Office. The Monographs in Aerospace History series is designed to provide a wide variety of investigations relative to the history of aeronautics and space. These publications are intended to be tightly focused in terms of subject, relatively short in length, and reproduced in an inexpensive format to allow timely and broad dissemination to researchers in aerospace history.

  13. Apollo Soyuz, mission evaluation report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Apollo Soyuz mission was the first manned space flight to be conducted jointly by two nations - the United States and the Union of Soviet Socialist Republics. The primary purpose of the mission was to test systems for rendezvous and docking of manned spacecraft that would be suitable for use as a standard international system, and to demonstrate crew transfer between spacecraft. The secondary purpose was to conduct a program of scientific and applications experimentation. With minor modifications, the Apollo and Soyuz spacecraft were like those flown on previous missions. However, a new module was built specifically for this mission - the docking module. It served as an airlock for crew transfer and as a structural base for the docking mechanism that interfaced with a similar mechanism on the Soyuz orbital module. The postflight evaluation of the performance of the docking system and docking module, as well as the overall performance of the Apollo spacecraft and experiments is presented. In addition, the mission is evaluated from the viewpoints of the flight crew, ground support operations, and biomedical operations. Descriptions of the docking mechanism, docking module, crew equipment and experiment hardware are given.

  14. Apollo Mission Techniques Lunar Orbit Activities - Part 1a

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael A.

    2009-01-01

    This slide presentation reviews the planned sequence of events and the rationale for all lunar missions, and the flight experiences and lessons learned for the lunar orbit activities from a trajectory perspective. Shown are trajectories which include the moon's position at the various stages in the complete trip from launch, to the return and reentry. Included in the presentation are objectives and the sequence of events,for the Apollo 8, and Apollo 10. This is followed by a discussion of Apollo 11, including: the primary mission objective, the sequence of events, and the flight experience. The next mission discussed was Apollo 12. It reviews the objectives, the ground tracking, procedure changes, and the sequence of events. The aborted Apollo 13 mission is reviewed, including the objectives, and the sequence of events. Brief summaries of the flight experiences for Apollo 14-16 are reviewed. The flight sequence of events of Apollo 17 are discussed. In summary each mission consistently performing precision landings required that Apollo lunar orbit activities devote considerable attention to: (1) Improving fidelity of lunar gravity models, (2) Maximizing availability of ground tracking, (3) Minimizing perturbations on the trajectory, (4) Maximizing LM propellant reserves for hover time. Also the use of radial separation maneuvers (1) allows passive re-rendezvous after each rev, but ... (2) sensitive to small dispersions in initial sep direction

  15. The 2012 Moon and Mars Analog Mission

    NASA Technical Reports Server (NTRS)

    Graham, Lee

    2014-01-01

    The 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were completed on Mauna Kea volcano in Hawaii in July 2012. The investigations were conducted on the southeast flank of the Mauna Kea volcano at an elevation of approximately 11,500 ft. This area is known as "Apollo Valley" and is in an adjacent valley to the Very Large Baseline Array dish antenna.

  16. Apollo scientific exploration of the moon

    NASA Technical Reports Server (NTRS)

    Compton, W. D.

    1987-01-01

    The fundamental dichotomy of space exploration, unmanned versus manned projects, is discussed from an historical perspective. The integration of science into Apollo operations is examined with attention given to landing sites, extending the missions, and crew selection. A Science Working Group composed of scientists and Manned Spacecraft Center flight planners was formed in an attempt to produce the most scientific information possible within those operational limits that were considered absolutely inviolable.

  17. Apollo 11 crewmembers participates in simulation of moon's surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, participates in a simulation of deploying and using lunar tools on the surface of the moon during a training exercise in bldg 9 on April 22, 1969. Armstrong is the commander of the Apollo 11 lunar landing mission. In the background is a Lunar Module mockup (32240); Astronaut Edwin Aldrin, Apollo 11 lunar module pilot, simulates deplying the Passive Seismic Experiment Package during trainin exercise in bldg 9 (32241); Armstrong is standing beside Lunar Module mock-up, holding sample bags during training exercise (32242); Aldrin and Armstrong during lunar surface training exercise. Aldrin (on left) uses a scoop to pick up a sample. Armstrong holds bag to receive sample. In the background is a Lunar Module mock-up. Both men are wearing the EMU (32244).

  18. Engineering potential for lunar missions after Apollo.

    NASA Technical Reports Server (NTRS)

    Burke, J. D.

    1972-01-01

    The need for continuing post-Apollo lunar research is defined by outlining problems in stellar, planetary, biological, and social evolution which require specific studies of the moon. Engineering capabilities existing immediately after the Apollo program are described in the areas of launch vehicles and spacecraft, lunar surface mobility, instrumentation, and communications.

  19. Structure of the moon. [Apollo seismic data

    NASA Technical Reports Server (NTRS)

    Toksoz, M. N.; Dainty, A. M.; Solomon, S. C.; Anderson, K. R.

    1974-01-01

    Seismic data fron the four stations of the Apollo passive seismic network have been analyzed to obtain the velocity structure of the moon. Analysis of body wave phases from artificial impacts of known impact time and position yields a crustal section. In the Mare Cognitum region the crust is about 60 km thick and is layered. In the 20-km-thick upper layer, velocity gradients are high and microcracks may play an important role. The 40-km-thick lower layer has a nearly constant 6.8-km/sec velocity. There may be a thin high-velocity layer present beneath the crust. The determination of seismic velocities in the lunar mantle is attempted by using natural impacts and deep moonquakes. The simplest model that can be proposed for the mantle consists of a 'lithosphere' overlying an 'asthenosphere'.

  20. Apollo 13 Facts [Post Mission Honorary Ceremony

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Apollo 13 astronauts, James Lovell, Jr., John Swigert, Jr., and Fred Haise, Jr., are seen during this post mission honorary ceremony, led by President Richard Nixon. Lovell is shown during an interview, answering questions about the mission.

  1. A Comparative Analysis of the Geology Tools Used During the Apollo Lunar Program and Their Suitability for Future Missions to the Moon

    NASA Astrophysics Data System (ADS)

    Anderson, Lindsay Kathleen

    With the current push to return to planetary exploration it is important to consider what science will be performed on such missions and how it is to be performed. This study considered three hand tools used for geologic sampling during the Apollo missions to determine whether handle redesigns guided by NASA-STD-3001 improved the performance of the tools. The tools of interest were the large adjustable scoop, the rake, and the 32-inch tongs, selected for relevance and usability in the test location. The three tools with their original and modified handle diameters were tested with two subjects wearing the NDX-1 Planetary Suit and performed within the regolith bin operated by Swamp Works at Kennedy Space Center. The effects of the tool modifications on task performance did not conclusively demonstrate improvement. However, a methodology was developed that may prove beneficial in future tests using larger sample sizes.

  2. Apollo Basin, Moon: Estimation of Impact Conditions

    NASA Astrophysics Data System (ADS)

    Echaurren, J. C.

    2015-07-01

    The Apollo Basin is a, pre-Nectarian, multi-ring basin located within the large South Pole-Aitken Basin (SPA). Multispectral data from both Galileo and Clementine showed that the composition of materials in Apollo is distinct…

  3. Optical properties of Apollo 12 moon samples.

    NASA Technical Reports Server (NTRS)

    O'Leary, B.; Briggs, F.

    1973-01-01

    We present the photometric phase function, color, normal albedo, polarimetric phase function, and spectrophotometry of the Apollo 12 soil. With a few minor exceptions, the optical properties of the Apollo 12 soil are very similar to those of the Apollo 11 soil and of lunar mare surfaces.

  4. Close-up view of U.S. flag deployed on Moon by Apollo 17 crew

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A close-up view of the U.S. flag deployed on the Moon at the Taurus-Littrow landing site by the crewmen of the Apollo 17 lunar landing mission. The crescent Earth can be seen in the far distant background above the flag. The lunar feature in the near background is South Massif.

  5. Where No Man Has Gone Before: A History of Apollo Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Compton, William David

    1988-01-01

    This book is a narrative account of the development of the science program for the Apollo lunar landing missions. It focuses on the interaction between scientific interests and operational considerations in such matters as landing site selection and training of crews, quarantine and back contamination control, and presentation of results from scientific investigations. Scientific exploration of the moon on later flights, Apollo 12 through Apollo 17 is emphasized.

  6. Apollo experience report: Guidance and control systems. Mission control programmer for unmanned missions AS-202, Apollo 4, and Apollo 6

    NASA Technical Reports Server (NTRS)

    Holloway, G. F.

    1975-01-01

    An unmanned test flight program required to evaluate the command module heat shield and the structural integrity of the command and service module/Saturn launch vehicle is described. The mission control programer was developed to provide the unmanned interface between the guidance and navigation computer and the other spacecraft systems for mission event sequencing and real-time ground control during missions AS-202, Apollo 4, and Apollo 6. The development of this unmanned programer is traced from the initial concept through the flight test phase. Detailed discussions of hardware development problems are given with the resulting solutions. The mission control programer functioned correctly without any flight anomalies for all missions. The Apollo 4 mission control programer was reused for the Apollo 6 flight, thus being one of the first subsystems to be reflown on an Apollo space flight.

  7. Apollo 16 view of moon taken with Fairchild metric mapping camera in orbit

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A newly-analyzed photograph of the southwest quadrant of the Moon with an overlay indicating where the launch vehicle stages from two Apollo missions, 13 and 14, hit the lunar surface. This is the first time two S-IVB stage impact points have been located in a single photo. The S-IVB stage is the thrid stage of the Saturn V launch vehicle. The Riphaeus Mountains run northward between the two impact points. The fresh, raised-rim crater at center left is Euclides; and the largest crater near the horizon at upper left is Landberg. The mare area at lower right is the Known Sea. The photograph was taken by the Apollo 16 Fairchild metric mapping camera in lunar orbit, at a 40-degree north oblique angle. The picture was taken during the Apollo 16 Command/Service Module's 59th revolution of the Moon, at an altitude of 124 kilometers. The Sun elevation was 18 degrees.

  8. Apollo program flight summary report: Apollo missions AS-201 through Apollo 16, revision 11

    NASA Technical Reports Server (NTRS)

    Holcomb, J. K.

    1972-01-01

    A summary of the Apollo flights from AS-201 through Apollo 16 is presented. The following subjects are discussed for each flight: (1) mission primary objectives, (2) principle objectives of the launch vehicle and spacecraft, (3) secondary objectives of the launch vehicle and spacecraft, (4) unusual features of the mission, (5) general information on the spacecraft and launch vehicle, (6) space vehicle and pre-launch data, and (7) recovery data.

  9. Emblem of the Apollo 17 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This is the Official emblem of the Apollo 17 lunar landing mission which will be flown by Astronauts Eugene A. Cernan, Ronald E. Evans and Harrison H. Schmitt. The insignia is dominated by the image of Apollo, the Greek sun god. Suspended in space behind the head of Apollo is an American eagle of contemporary design, the red bars of the eagle's wing represent the bars in the U.S. flag; the three white stars symbolize the three astronaut crewmen. The background is deep blue space and within it are the Moon, the planet Saturn and a spiral galaxy or nebula. The Moon is partially overlaid by the eagle's wing suggesting that this is a celestial body that man has visited and in that sense conquered. The thrust of the eagle and the gaze of Apollo to the right and toward Saturn and the galaxy is meant to imply that man's goals in space will someday include the planets and perhaps the stars. The colors of the emblem are red, white and blue, the colors of our flag; with the addition of gold, to

  10. After Apollo: Fission Origin of the Moon

    ERIC Educational Resources Information Center

    O'Keefe, John A.

    1973-01-01

    Presents current ideas about the fission process of the Moon, including loss of mass. Saturnian rings, center of the Moon, binary stars, and uniformitarianism. Indicates that planetary formation may be best explained as a destructive, rather than a constructive process. (CC)

  11. How the Apollo Program Changed the Geology of the Moon

    ERIC Educational Resources Information Center

    Smith, J. V.; Steele, I. M.

    1973-01-01

    Evaluates the effect of the Apollo program on the geology of the Moon to determine further study problems. Concludes that the National Aeronautics and Space Administration can provide excellent justification for its extension since human beings have the possibility of using the rocks in ways not currently conceived. (CC)

  12. Biocore experiment. [Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Bailey, O. T.; Benton, E. V.; Cruty, M. R.; Harrison, G. A.; Haymaker, W.; Humason, G.; Leon, H. A.; Lindberg, R. L.; Look, B. C.; Lushbaugh, C. C.

    1973-01-01

    The Apollo 17 biological cosmic ray experiment to determine the effect of heavy cosmic ray particles on the brain and eyes is reported. The pocket mouse was selected as the biological specimen for the experiment. The radiation monitors, animal autopsy and animal processing are described, and the radiation effects on the scalp, retina, and viscera are analyzed.

  13. Moon geophysics and Lunar environemental monitoring: Apollo data reprocessing and perspectives with the MoonTwin project.

    NASA Astrophysics Data System (ADS)

    Lognonné, P.; Regnier, P.; Apollo Team

    2007-12-01

    The formation of the Moon is probably results from a large impact between a Mars-sized planet and the Earth. The size of the Moon's core, the thickness of the crust and the structure of the lunar mantle are among the few parameters able to constrain this impact, along with the depth and vigor of the magma ocean that appeared on the young moon, after re-accretion around Earth's orbit. These parameters are therefore crucial to understand how our planet was affected by the impact, from both the energetic and volatile budget point of view, and how a body like the moon evolves. The reprocessing of the data recorded by the 4 ALSEP stations (Apollo 12, 14, 15 and 16), which were the first and, to date, the only successful geophysical stations in Planetary sciences, have shed new light on the interior of the Moon and in the determination of the parameters listed above. Very large uncertainties however remain. A first example is in the crustal thickness. The seismic crustal thickness estimates vary from 58 km to 30±5 km near the Apollo 12 landing site. When the lateral variations are taken into account, a mean crustal thickness beneath the Apollo stations of 34±5 km is found. Comparable uncertainties are found in the deep structure of the Moon, which is not directly constrained by seismology. Interior structure models obtained from joint inversion of the density, moment of inertia, Love number (k2) and using the seismic data apriori for the upper mantle and middle mantle show that a wide range of acceptable core models with 1%-2% lunar mass fit the data.These two extreme examples of lunar interior structure show that large uncertainties remain. Most are related to the lack of goo geophysical data. The Apollo seismometers had limited performance, especially in terms of frequency bandwidth and limited coverage of th network. Only two heat flow measurements were made by Apollo and all geodetic beacons are close to the equator; Other are related to the large lateral

  14. Apollo 14 mission circuit breaker anomaly

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Continuity through the circuit breaker in the mechanically closed condition was prevented by a foreign substance on the contact surface onboard Apollo 14. It was concluded that this was the only failure of this type in over 3400 units that were flown, and since no circuit breaker is a single-point failure for crew safety or mission success, no corrective action was taken.

  15. Apollo 17 mission 5-day report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A five day report of the Apollo 17 mission is presented. The subjects discussed are: (1) sequence of events, (2) extravehicular activities, (3) first, second, and third lunar surface extravehicular activity, (4) transearth extravehicular activity, (5) lunar surface experiments conducted, (6) orbital science activities, (7) spacecraft reentry and recovery.

  16. Apollo 13 Astronaut Fred Haise and Apollo 13 Mission Patch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Astronaut Fred Haise Jr. of Biloxi, Miss., views his Apollo 13 mission patch, the flight on which he served in 1970, in a StenniSphere display donated to NASA by the American Needlepoint Guild. The exhibit is on permanent display at StenniSphere, the visitor center at John C. Stennis Space Center. In its first year of operation, more than 251,000 visitors representing over 40 countries have viewed the 123 hand-stitched patches in the exhibit. Forty-two guild members from 20 states made the trip to StenniSphere for the opening of the exhibit, one of the most popular at StenniSphere.

  17. Apollo 11 Celebration at Mission Control

    NASA Technical Reports Server (NTRS)

    1969-01-01

    NASA and Manned Spacecraft Center (MSC) officials join the flight controllers in celebrating the conclusion of the Apollo 11 mission. From left foreground Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director fo Flight Operations; Julian Scheer (in back), Assistant Adminstrator, Office of Public Affairs, NASA HQ.; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA HQ.

  18. Geologic Traverse Planning for Apollo Missions

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary

    2012-01-01

    The science on Apollo missions was overseen by the Science Working Panel (SWP), but done by multiple PIs. There were two types of science, packages like the Apollo Lunar Surface Experiment Package (ALSEP) and traverse science. Traverses were designed on Earth for the astronauts to execute. These were under direction of the Lunar Surface PI, but the agreed traverse was a cooperation between the PI and SWP. The landing sites were selected by a different designated committee, not the SWP, and were based on science and safety.

  19. Astronaut Alan Bean deploys ALSEP during first Apollo 12 EVA on moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, Apollo 12 lunar module pilot, deploys components of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA) on the moon. The photo was made by Astronaut Charles Conrad Jr., Apollo 12 commander, using a 70mm handheld Haselblad camera modified for lunar surface usage.

  20. Apollo A-7L Spacesuit Tests and Certification, and Apollo 7 Through 14 Missions Experience

    NASA Technical Reports Server (NTRS)

    McBarron, James W., II

    2015-01-01

    As a result of his 50 years of experience and research, Jim McBarron shared his significant knowledge about Apollo A-7L spacesuit certification testing and Apollo 7 through 14 missions' spacesuit details.

  1. Suprathermal ion detector results from Apollo missions.

    NASA Technical Reports Server (NTRS)

    Freeman, J. W., Jr.

    1972-01-01

    This paper reviews briefly the knowledge of the ion environment of the moon as obtained from the Apollo Lunar Surface Experiments Package, Suprathermal Ion Detector Experiment. Topics to be discussed include: an interplanetary shock as seen from the lunar surface; bow shock and magnetosheath ions; magnetotail plasma seen during a magnetic disturbance; suprathermal ions seen during passage of the sunset and sunrise terminators; and ions associated with neutral gas clouds in the vicinity of the moon, and in particular the low energy mono-energetic spectrum of these ions. It is believed that these low energy spectra and some terminator ions can be explained by ion acceleration by the interplanetary electric field. This paper serves as catalog to references to these and other related phenomena.

  2. In This Decade, Mission to the Moon.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The development and accomplishments of the National Aeronautics and Space Administration (NASA) from its inception in 1958 to the final preparations for the Apollo 11 mission in 1969 are traced in this brochure. A brief account of the successes of projects Mercury, Gemini, and Apollo is presented and many color photographs and drawings of the…

  3. Review of measurements of dust movements on the Moon during Apollo

    NASA Astrophysics Data System (ADS)

    O'Brien, Brian J.

    2011-11-01

    This is the first review of 3 Apollo experiments, which made the only direct measurements of dust on the lunar surface: (i) minimalist matchbox-sized 270 g Dust Detector Experiments (DDEs) of Apollo 11, 12, 14 and 15, produced 30 million Lunar Day measurements 21 July 1969-30 September, 1977; (ii) Thermal Degradation Samples (TDS) of Apollo 14, sprinkled with dust, photographed, taken back to Earth into quarantine and lost; and (iii) the 7.5 kg Lunar Ejecta and Meteoroids (LEAM) experiment of Apollo 17, whose original tapes and plots are lost. LEAM, designed to measure rare impacts of cosmic dust, registered scores of events each lunation most frequently around sunrise and sunset. LEAM data are accepted as caused by heavily-charged particles of lunar dust at speeds of <100 m/s, stimulating theoretical models of transporting lunar dust and adding significant motivation for returning to the Moon. New analyses here show some raw data are sporadic bursts of 1, 2, 3 or more events within time bubbles smaller than 0.6 s, not predicted by theoretical dust models but consistent with noise bits caused by electromagnetic interference (EMI) from switching of large currents in the Apollo 17 Lunar Surface Experiment Package (ALSEP), as occurred in pre-flight LEAM-acceptance tests. On the Moon switching is most common around sunrise and sunset in a dozen heavy-duty heaters essential for operational survival during 350 h of lunar night temperatures of minus 170 °C. Another four otherwise unexplained features of LEAM data are consistent with the "noise bits" hypothesis. Discoveries with DDE and TDS reported in 1970 and 1971, though overlooked, and extensive DDE discoveries in 2009 revealed strengths of adhesive and cohesive forces of lunar dust. Rocket exhaust gases during Lunar Module (LM) ascent caused dust and debris to (i) contaminate instruments 17 m distant (Apollo 11) as expected, and (ii) unexpectedly cleanse Apollo hardware 130 m (Apollo 12) and 180 m (Apollo 14) from LM

  4. Towards a Selenographic Information System: Apollo 15 Mission Digitization

    NASA Astrophysics Data System (ADS)

    Votava, J. E.; Petro, N. E.

    2012-12-01

    The Apollo missions represent some of the most technically complex and extensively documented explorations ever endeavored by mankind. The surface experiments performed and the lunar samples collected in-situ have helped form our understanding of the Moon's geologic history and the history of our Solar System. Unfortunately, a complication exists in the analysis and accessibility of these large volumes of lunar data and historical Apollo Era documents due to their multiple formats and disconnected web and print locations. Described here is a project to modernize, spatially reference, and link the lunar data into a comprehensive SELENOGRAPHIC INFORMATION SYSTEM, starting with the Apollo 15 mission. Like its terrestrial counter-parts, Geographic Information System (GIS) programs, such as ArcGIS, allow for easy integration, access, analysis, and display of large amounts of spatially-related data. Documentation in this new database includes surface photographs, panoramas, samples and their laboratory studies (major element and rare earth element weight percents), planned and actual vehicle traverses, and field notes. Using high-resolution (<0.25 m/pixel) images from the Lunar Reconnaissance Orbiter Camera (LROC) the rover (LRV) tracks and astronaut surface activities, along with field sketches from the Apollo 15 Preliminary Science Report (Swann, 1972), were digitized and mapped in ArcMap. Point features were created for each documented sample within the Lunar Sample Compendium (Meyer, 2010) and hyperlinked to the appropriate Compendium file (.PDF) at the stable archive site: http://curator.jsc.nasa.gov/lunar/compendium.cfm. Historical Apollo Era photographs and assembled panoramas were included as point features at each station that have been hyperlinked to the Apollo Lunar Surface Journal (ALSJ) online image library. The database has been set up to allow for the easy display of spatial variation of select attributes between samples. Attributes of interest that have

  5. Endocrine Laboratory Results Apollo Missions 14 and 15

    NASA Technical Reports Server (NTRS)

    Leach, C. S.

    1972-01-01

    Endocrine/metabolic responses to space flight have been measured on the crewmen of Apollo missions 14 and 15. There were significant biochemical changes in the crewmen of both missions immediately postflight. However, the Apollo 15 mission results differed from Apollo 14 and preflight shown by a normal to increased urine volume with slight increases in antidiuretic hormone. Although Apollo 15 was the first mission in which the exchangeable potassium measurement was made (a decrease), results from other missions were indicative of similar conclusions.

  6. Apollo and the geology of the moon /Twenty-eighth William Smith Lecture/

    NASA Technical Reports Server (NTRS)

    Schmitt, H. H.

    1975-01-01

    Lunar geology evidence is examined for clues to the origin and evolution of the moon and earth. Seven evolutionary episodes, the last covering three billion years to the present day, are constructed for the moon. Parallel episodes in the earth's evolution are masked by the dynamic continuing evolution of the earth over a 4.5 billion year span, in contrast to the moon's quiescence and inability to retain fluids. Comparisons are drawn between the geochemistry and tectonics of the lunar basaltic maria and the earth's ocean basins. Lunar maria rocks differ strikingly in chemical composition from meteoritic matter and solar material. Inundation of frontside lunar maria basins by vast oceans of dark basalt mark the last of the major internally generated evolutionary episodes, and is attributed to consequences of meltdown of the lunar mantle and crust by radioisotope decay from below. Data are drawn primarily from Apollo missions 11-17, supplemented by other sources.

  7. Apollo 13 emblem

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is the insignia of the Apollo 13 lunar landing mission. Represented in the Apollo 13 emblem is Apollo, the sun god of Greek mythology, symbolizing how the Apollo flights have extended the light of knowledge to all mankind. The Latin phrase Ex Luna, Scientia means 'From the Moon, Knowledge'.

  8. Moon Age and Regolith Explorer (MARE) Mission Design and Performance

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.; Lee, David E.

    2016-01-01

    The moon’s surface last saw a controlled landing from a U.S. spacecraft on December 11, 1972 with Apollo 17. Since that time, there has been an absence of methodical in-situ investigation of the lunar surface. In addition to the scientific value of measuring the age and composition of a relatively young portion of the lunar surface near Aristarchus Plateau, the Moon Age and Regolith Explorer (MARE) proposal provides the first U.S. soft lunar landing since the Apollo Program and the first ever robotic soft lunar landing employing an autonomous hazard detection and avoidance system, a system that promises to enhance crew safety and survivability during a manned lunar (or other) landing. This report focuses on the mission design and performance associated with the MARE robotic lunar landing subject to mission and trajectory constraints.

  9. View of Mission Control Center during the Apollo 13 oxygen cell failure

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A group of eight astronauts and flight controllers monitor the console activity in the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC) during the Apollo 13 lunar landing mission. Seated, left to right, are MOCR Guidance Officer Raymond F. Teague; Astronaut Edgar D. Michell, and Astronaut Alan B. Shepard Jr., Standing, left to right, are Scientist-Astronaut Anthony W. England; Astronaut Joe H. Engle; Astronaut Eugene A. Cernan; Astronaut Ronald E. Evans; and M.P. Frank, a flight controller. When this picture was made, the Apollo 13 moon landing had already been cancelled, and the Apollo 13 crewmen were in transearth trajectory attempting to bring their crippled spacecraft back home.

  10. Lunar and Planetary Science XXXV: Future Missions to the Moon

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This document contained the following topics: A Miniature Mass Spectrometer Module; SELENE Gamma Ray Spectrometer Using Ge Detector Cooled by Stirling Cryocooler; Lunar Elemental Composition and Investigations with D-CIXS X-Ray Mapping Spectrometer on SMART-1; X-Ray Fluorescence Spectrometer Onboard the SELENE Lunar Orbiter: Its Science and Instrument; Detectability of Degradation of Lunar Impact Craters by SELENE Terrain Camera; Study of the Apollo 16 Landing Site: As a Standard Site for the SELENE Multiband Imager; Selection of Targets for the SMART-1 Infrared Spectrometer (SIR); Development of a Telescopic Imaging Spectrometer for the Moon; The Lunar Seismic Network: Mission Update.

  11. Apollo 12 Mission Summary and Splashdown

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This NASA Kennedy Space Center (KSC) video release presents footage of the November 14, 1969 Apollo-12 space mission begun from launch complex pad 39-A at Kennedy Space Center, Florida. Charles Conrad, Jr., Richard F. Gordon, Jr., and Alan L. Bean make up the three-man spacecrew. The video includes the astronaut's pre-launch breakfast, President Nixon, his wife, and daughter arriving at Cape Kennedy in time to see the launch, as well as countdown and liftoff. After the launch, President Nixon gives a brief congratulatory speech to the members of launch control at KSC. The video also presents views of the astronauts and spacecraft in space as well as splashdown of the command module on November 24, 1969. The video ends with the recovery, by helicopter and additional personnel, of the spacecrew from the command module floating in the waters of the Atlantic.

  12. Sunrise-driven movements of dust on the Moon: Apollo 12 Ground-truth measurements

    NASA Astrophysics Data System (ADS)

    O'Brien, Brian J.; Hollick, Monique

    2015-12-01

    The first sunrise after Apollo 12 astronauts left the Moon caused dust storms across the site where rocket exhausts had disrupted about 2000 kg of smooth fine dust. The next few sunrises started progressively weaker dust storms, and the Eastern horizon brightened, adding to direct sunlight for half an hour. These Ground truth measurements were made 100 cm above the surface by the 270 g Apollo 12 Dust Detector Experiment we invented in 1966. Dust deposited on the horizontal solar cell during two lunar days after the first sunrise was almost 30% of the total it then measured over 6 years. The vertical east-facing solar cell measured horizon brightening on 14 of the first 17 lunations, with none detected on the following 61 Lunar Days. Based on over 2 million such measurements we propose a new qualitative model of sunrise-driven transport of individual dust particles freed by Apollo 12 activities from strong particle-to-particle cohesive forces. Each sunrise caused sudden surface charging which, during the first few hours, freshly mobilised and lofted the dust remaining free, microscopically smoothing the disrupted local areas. Evidence of reliability of measurements includes consistency among all 6 sensors in measurements throughout an eclipse. We caution Google Lunar XPrize competitors and others planning missions to the Moon and large airless asteroids that, after a spacecraft lands, dust hazards may occur after each of the first few sunrises. Mechanical problems in its first such period stranded Chinese lunar rover Yutu in 2014, although we would not claim yet that the causes were dust. On the other hand, sunrise-driven microscopic smoothing of disturbed areas may offer regular natural mitigations of dust consequences of mining lunar resources and reduce fears that many expeditions might cause excessive fine dust globally around the Moon.

  13. View of Mission Control Center during Apollo 13 splashdown

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Overall view of Mission Operations Control Room in Mission Control Center at the Manned Spacecraft Center (MSC) during the ceremonies aboard the U.S.S. Iwo Jima, prime recovery ship for the Apollo 13 mission. The Apollo 13 spacecraft, with Astronauts James Lovell, John Swigert, and Fred Haise aboard splashed down in the South Pacific at 12:07:44 p.m., April 17, 1970.

  14. View of Mission Control Center during Apollo 13 splashdown

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Overall view of Mission Operations Control Room in Mission Control Center at the Manned Spacecraft Center (MSC) during the ceremonies aboard the U.S.S. Iwo Jima, prime recovery ship for the Apollo 13 mission. Dr. Donald K. Slayton (in black shirt, left of center), Director of Flight Crew Operations at MSC, and Chester M. Lee of the Apollo Program Directorate, Office of Manned Space Flight, NASA Headquarters, shake hands, while Dr. Rocco A. Petrone, Apollo Program Director, Office of Manned Space Flight, NASA Headquarters (standing, near Lee), watches the large screen showing Astronaut James A. Lovell Jr., Apollo 13 commander, during the on-board ceremonies. In the foreground, Glynn S. Lunney (extreme left) and Eugene F. Kranz (smoking a cigar), two Apollo 13 Flight Directors, view the activity from their consoles.

  15. Endocrine, electrolyte, and fluid volume changes associated with Apollo missions

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Alexander, W. C.; Johnson, P. C.

    1975-01-01

    The endocrine and metabolic results obtained before and after the Apollo missions and the results of the limited in-flight sampling are summarized and discussed. The studies were designed to evaluate the biochemical changes in the returning Apollo crewmembers, and the areas studied included balance of fluids and electrolytes, regulation of calcium metabolism, adaptation to the environment, and regulation of metabolic processes.

  16. Origin and Evolution of the Moon: Apollo 2000 Model

    NASA Astrophysics Data System (ADS)

    Schmitt, H. H.

    1999-01-01

    A descriptive formulation of the stages of lunar evolution as an augmentation of the traditional time-stratigraphic approach [21 enables broadened multidisciplinary discussions of issues related to the Moon and planets. An update of this descriptive formulation [3], integrating Apollo and subsequently acquired data, provides additional perspectives on many of the outstanding issues in lunar science. (Stage 1): Beginning (Pre-Nectarian) - 4.57 Ga; (Stage 2): Magma Ocean (Pre-Nectarian) - 4.57-4.2(?) Ga; (Stage 3:) Cratered Highlands (Pre-Nectarian) - 4.4(?) 4.2(?) Ga (Stage 4:) Large Basins - (Pre-Nectarian - Upper Imbrium) 4.3(?)-3.8 Ga; (Stage 4A:) Old Large Basins and Crustal Strengthening (Pre Nectarian) - 4.3(?)-3.92 Ga; (Stage 4B): Young Large Basins (Nectarian - Lower Imbrium) 3.92-3.80 Ga; (Stage 5): Basaltic Maria (Upper Imbrium) - 4.3(?)- 1.0(?) Ga; (Stage 6): Mature Surface (Copernican and Eratosthenian) - 3.80 Ga to Present. Increasingly strong indications of a largely undifferentiated lower lunar mantle and increasingly constrained initial conditions for models of an Earth-impact origin for the Moon suggest that lunar origin by capture of an independently evolved planet should be investigated more vigorously. Capture appears to better explain the geochemical and geophysical details related to the lower mantle of the Moon and to the distribution of elements and their isotopes. For example, the source of the volatile components of the Apollo 17 orange glass apparently would have lain below the degassed and differentiated magma ocean (3) in a relatively undifferentiated primordial lower mantle. Also, a density reversal from 3.7 gm/cubic cm to approximately 3.3 gm/cubic cm is required at the base of the upper mantle to be consistent with the overall density of the Moon. Finally, Hf/W systematics allow only a very narrow window, if any at all for a giant impact to form the Moon. Continued accretionary impact activity during the crystallization of the magma

  17. View of Mission Control Center during the Apollo 13 liftoff

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Sigurd A. Sjoberg, Director of Flight Operations at Manned Spacecraft Center (MSC), views the Apollo 13 liftoff from a console in the MSC Mission Control Center, bldg 30. Apollo 13 lifted off at 1:13 p.m., April 11, 1970 (34627); Astronaut Thomas F. Mattingly II, who was scheduled as a prime crewman for the Apollo 13 mission but was replaced in the final hours when it was discovered he had been exposed to measles, watches the liftoff phase of the mission. He is seated at a console in the Mission Control Center's Mission Operations Control Room. Scientist-Astronaut Joseph P. Kerwin, a spacecraft communicator for the mission, looks on at right (34628).

  18. Moon and Mars Analog Mission Activities for Mauna Kea 2012

    NASA Astrophysics Data System (ADS)

    Graham, L. D.; Morris, R. V.; Graff, T. G.; Yingst, R. A.; ten Kate, I. L.; Glavin, D. P.; Hedlund, M.; Malespin, C. A.; Mumm, E.

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were recently completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Initial science operations were planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred as the analog mission progressed. We report here on the preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering and science trades and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as “ Apollo Valley.”

  19. Moon and Mars Analog Mission Activities for Mauna Kea 2012

    NASA Technical Reports Server (NTRS)

    Graham, Lee D.; Morris, Richard V.; Graff, Trevor G.; Yingst, R. Aileen; tenKate, I. L.; Glavin, Daniel P.; Hedlund, Magnus; Malespin, Charles A.; Mumm, Erik

    2012-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were recently completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Initial science operations were planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred as the analog mission progressed. We report here on the preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering and science trades discussions and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as "Apollo Valley".

  20. Visual light flash phenomenon. [Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Pinsky, L. S.; Osborne, W. Z.; Bailey, J. V.

    1973-01-01

    Light flash phenomenon observed by crewmen on Apollo 14, 15, 16, and 17 are analyzed. The passage of cosmic rays through the crewman's head and eyes was recorded by the Apollo light flash moving emulsion detector. Events of all the light flash observations are tabulated. It is suggested that the most probable explanation of the phenomenon is that it is caused by cosmic rays penetrating the eyes and retinas of the observers.

  1. Apollo 14 and 15 missions: Intermittent steerable antenna operation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An attempt was made to determine the cause of antenna tracking interruptions during Apollo 14 and Apollo 15 missions prior to powered descent, and after ascent from the lunar surface but before rendezvous. Probable causes examined include: (1) amplitude modulation on the uplink radio frequency carrier, (2) noise capacitively or inductively coupled into the track error line, and (3) hardware problems resulting in tracking loop instabilities. It was determined that amplitude modulation caused the antenna oscillations. The corrective procedures taken are given.

  2. Stennis engineer part of LCROSS moon mission

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Karma Snyder, a project manager at NASA's John C. Stennis Space Center, was a senior design engineer on the RL10 liquid rocket engine that powered the Centaur, the upper stage of the rocket used in NASA's Lunar CRater Observation and Sensing Satellite (LCROSS) mission in October 2009. Part of the LCROSS mission was to search for water on the moon by striking the lunar surface with a rocket stage, creating a plume of debris that could be analyzed for water ice and vapor. Snyder's work on the RL10 took place from 1995 to 2001 when she was a senior design engineer with Pratt & Whitney Rocketdyne. Years later, she sees the project as one of her biggest accomplishments in light of the LCROSS mission. 'It's wonderful to see it come into full service,' she said. 'As one of my co-workers said, the original dream was to get that engine to the moon, and we're finally realizing that dream.'

  3. Plans and objectives of the remaining Apollo missions.

    NASA Technical Reports Server (NTRS)

    Scherer, L. R.

    1972-01-01

    The three remaining Apollo missions will have significantly increased scientific capabilities. These result from increased payload, more time on the surface, improved range, and more sophisticated experiments on the surface and in orbit. Landing sites for the last three missions will be carefully selected to maximize the total scientific return.

  4. Apollo 15 impact melts, the age of Imbrium, and the Earth-Moon impact cataclysm

    NASA Technical Reports Server (NTRS)

    Ryder, Graham; Dalrymple, G. Brent

    1992-01-01

    The early impact history of the lunar surface is of critical importance in understanding the evolution of both the primitive Moon and the Earth, as well as the corresponding populations of planetesimals in Earth-crossing orbits. Two endmember hypotheses call for greatly dissimilar impact dynamics. One is a heavy continuous (declining) bombardment from about 4.5 Ga to 3.85 Ga. The other is that an intense but brief bombardment at about 3.85 +/- Ga was responsible for producing the visible lunar landforms and for the common 3.8-3.9 Ga ages of highland rocks. The Apennine Front, the main topographic ring of the Imbrium Basin, was sampled on the Apollo 15 mission. The Apollo 15 impact melts show a diversity of chemical compositions, indicating their origin in at least several different impact events. The few attempts at dating them have generally not produced convincing ages, despite their importance. Thus, we chose to investigate the ages of melt rock samples from the Apennine Front, because of their stratigraphic importance yet lack of previous age definition.

  5. An ESA precursor mission to human exploration of the Moon

    NASA Astrophysics Data System (ADS)

    Carpenter, James; Fisackerly, Richard; Houdou, Berengere; Pradier, Alain; de Rossa, Diego; Vanoutryve, Benjamin; Jojaghaian, Aliac; Espinasse, Sylvie; Gardini, Bruno

    2010-05-01

    The coming decades will once again see humans on the surface of the Moon. Unlike the Apollo missions of the 1960s this new lunar exploration will be an international effort, with long duration missions and a goal to pave the way for further human expansion into the solar system. Ensuring the success and sustainability of this exploration poses significant challenges for all involved. ESA is currently preparing its first contribution to this international lunar exploration effort; a lunar lander mission, which will be a precursor to a future, Ariane V launched, ESA cargo and logistics capability to the Moon. The precursor mission will demonstrate soft precision landing with hazard avoidance capabilities, which will be required by a future cargo lander. In addition the mission can be applied as a preparation for future human exploration activities and help to ensure the sustainability of future exploration efforts. Activities have included Phase A and B1 mission design studies and technology development activities (both reported in another paper) and the definition of mission objectives and a model payload. The mission objectives have been derived by the Lunar Exploration Definition Team, a group derived of European specialists in various areas of exploration related science and technology, supported by ESA. Major inputs to the definition process were the 195 responses received to a request for information for potential payload contributions to the mission. The group was tasked with establishing how such a mission could best prepare for future human exploration. It was determined that the mission's goal should be to enable sustainable exploration and objectives were identified within a number of themes: health, habitation, resources, mobility and scientific preparations for future human activities. Investigations seek to characterise the lunar environment (e.g. radiation, dust etc.) and its effects and the properties of a landing site (potential resources, geological

  6. An ESA precursor mission to human exploration of the Moon

    NASA Astrophysics Data System (ADS)

    Carpenter, James; Fisackerly, Richard; Houdou, Berengere; Pradier, Alain; de Rossa, Diego; Vanoutryve, Benjamine; Jojaghaian, Aliac; Espinasse, Sylvie; Gardini, Bruno

    The coming decades will once again see humans on the surface of the Moon. Unlike the Apollo missions of the 1960s this new lunar exploration will be an international effort, with long duration missions and a goal to pave the way for further human expansion into the solar system. Ensuring the success and sustainability of this exploration poses significant challenges for all involved. ESA is currently preparing its first contribution to this international lunar exploration effort; a lunar lander mission, which will be a precursor to a future, Ariane V launched, ESA cargo and logistics capability to the Moon. The precursor mission will demonstrate soft precision landing with hazard avoidance capabilities, which will be required by a future cargo lander. In addition the mission can be applied as a preparation for future human exploration activities and help to ensure the sustainability of future exploration efforts. Activities have included Phase A and B1 mission design studies and technology development activities (both reported in another paper) and the definition of mission objectives and a model payload. The mission objectives have been derived by the Lunar Exploration Definition Team, a group derived of European specialists in various areas of exploration related science and technology, supported by ESA. Major inputs to the definition process were the 195 responses received to a request for information for potential payload contributions to the mission. The group was tasked with establishing how such a mission could best prepare for future human exploration. It was determined that the mission's goal should be to enable sustainable exploration and objectives were identified within a number of themes: health, habitation, resources, mobility and scientific preparations for future human activities. Investigations seek to characterise the lunar environment (e.g. radiation, dust etc.) and its effects and the properties of a landing site (potential resources, geological

  7. Apollo 16 mission: Oxidizer deservicing tank failure

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An explosive failure of a ground support equipment decontamination unit tank occurred during the postflight deactivation of the oxidizer (nitrogen tetroxide) portion of the Apollo 16 command module reaction control system. A discussion of the significant aspects of the incident and conclusions are included.

  8. Apollo 14 mission food preparation unit leakage

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A bubble of water collected on the delivery probe of the food preparation unit after hot water was dispensed by the Apollo 14 crew. Postflight tests showed that dimensional interference between the cylinder and the piston at hot water temperatures produced the apparent leak by causing erratic and slow stroke time of the valve assembly.

  9. Lunar interior as seen by seismology: from Apollo to future missions

    NASA Astrophysics Data System (ADS)

    Lognonne, Philippe; Kobayashi, Naoki; Garcia, Raphael; Weber, Renee; Johnson, Catherine; Gagnepain-Beyneix, Jeannine

    2012-07-01

    About 40 years ago, the Apollo missions deployed a network of 4 passive seismometers on the Moon, at landing sites 12, 14, 15 and 16. A seismometer was also deployed on Apollo 11 and a gravimeter on Apollo 17 landing sites. Although this network stopped its operation in 1977, the analysis of the data is surprisingly still ongoing and has led to the determination of major radial features in the lunar interior, including the recent discovery of core phases in 2011 by Weber et al and Garcia et all, 2011. We review in this presentation the general results of these seismic analyses, from the subsurface near the landing sites to the core. Special focus is given to the crustal structure, both in term of thickness and lateral variation and to the core structure, in term of radius, core state, temperature and composition. We also discuss the existence of possible discontinuities in the mantle, proposed by some early seismic models but challenged by others and interpreted as the possible limit of an early magma ocean. We finally present the perspectives of future missions, first with the SELENE2 mission, which is expected to deploy a new generation of very broad band seismometer followed by other projects proposed either in Europe or the USA. By using the expected sensitivity of the seismometers considered for these mission, we conclude by presenting the potential challenges, science objectives and discoveries of this future step in the seismic exploration of our satellite.

  10. Gold replica of olive branch left on moons surface by Apollo 11

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A gold replica of an olive branch, the traditional symbol of peace, which was left on the Moon's surface by the Apollo 11 crew members. Astronaut Neil A. Armstrong, commander, was in charge of placing the replica (less than half a foot in length) on the Moon. The gesture represents a fresh wish for peace for all mankind. astronauts will be released from quarantine on August 11, 1969. Donald K. Slayton (right), MSC Director of Flight Crew Operations; and Lloyd Reeder, training coordinator.

  11. Apollo 17 petrology and experimental determination of differentiation sequences in model moon compositions

    NASA Technical Reports Server (NTRS)

    Hodges, F. N.; Kushiro, I.

    1974-01-01

    Experimental studies of model moon compositions are discussed, taking into account questions related to the differentiation of the outer layer of the moon. Phase relations for a series of proposed lunar compositions have been determined and a petrographic and electron microprobe study was conducted on four Apollo 17 samples. Two of the samples consist of high-titanium mare basalts, one includes crushed anorthosite and gabbro, and another contains blue-gray breccia.

  12. Flag to be implanted on the moon by the Apollo 11 astronauts

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is a photographic illustration of how the flag of the United States will be implanted on the moon by the Apollo 11 astronauts. The flag is three by five feet, and is made of nylon. It will be erected on an eight-foot aluminun staff, and tubing along its top edge will unfurl it in the airless environment of the moon. The photograph on the right shows the flag in a furled condition.

  13. Clementine: An inexpensive mission to the Moon and Geographos

    NASA Technical Reports Server (NTRS)

    Shoemaker, Eugene M.; Nozette, Stewart

    1993-01-01

    The Clementine Mission, a joint project of the Strategic Defense Initiative Organization (SDIO) and NASA, has been planned primarily to test and demonstrate a suite of lightweight sensors and other lightweight spacecraft components under extended exposure to the space environment. Although the primary objective of the mission is to space-qualify sensors for Department of Defense applications, it was recognized in 1990 that such a mission might also be designed to acquire scientific observations of the Moon and of Apollo asteroid (1620) Geographos. This possibility was explored jointly by SDIO and NASA, including representatives from NASA's Discovery Program Science Working Group, in early 1991. Besides the direct return of scientific information, one of the benefits envisioned from a joint venture was the development of lightweight components for possible future use in NASA's Discovery-class spacecraft. In Jan. 1992, SDIO informed NASA of its intent to fly a 'Deep Space Program Science Experiment,' now popularly called Clementine; NASA then formed an advisory science working group to assist in the early development of the mission. The Clementine spacecraft is being assembled at the Naval Research Laboratory, which is also in charge of the overall mission design and mission operations. Support for mission design is being provided by GSFC and by JPL. NASA's Deep Space Network will be utilized in tracking and communicating with the spacecraft. Following a recommendation of the COMPLEX committee of the Space Science Board, NASA will issue an NRA and appoint a formal science team in early 1993. Clementine is a 3-axis stabilized, 200 kg (dry weight) spacecraft that will be launched on a refurbished Titan-2G. One of the goals has been to build two spacecraft, including the sensors, for $100M. Total time elapsed from the decision to proceed to the launch will be two years.

  14. Clementine: An inexpensive mission to the Moon and Geographos

    NASA Astrophysics Data System (ADS)

    Shoemaker, Eugene M.; Nozette, Stewart

    1993-03-01

    The Clementine Mission, a joint project of the Strategic Defense Initiative Organization (SDIO) and NASA, has been planned primarily to test and demonstrate a suite of lightweight sensors and other lightweight spacecraft components under extended exposure to the space environment. Although the primary objective of the mission is to space-qualify sensors for Department of Defense applications, it was recognized in 1990 that such a mission might also be designed to acquire scientific observations of the Moon and of Apollo asteroid (1620) Geographos. This possibility was explored jointly by SDIO and NASA, including representatives from NASA's Discovery Program Science Working Group, in early 1991. Besides the direct return of scientific information, one of the benefits envisioned from a joint venture was the development of lightweight components for possible future use in NASA's Discovery-class spacecraft. In Jan. 1992, SDIO informed NASA of its intent to fly a 'Deep Space Program Science Experiment,' now popularly called Clementine; NASA then formed an advisory science working group to assist in the early development of the mission. The Clementine spacecraft is being assembled at the Naval Research Laboratory, which is also in charge of the overall mission design and mission operations. Support for mission design is being provided by GSFC and by JPL. NASA's Deep Space Network will be utilized in tracking and communicating with the spacecraft. Following a recommendation of the COMPLEX committee of the Space Science Board, NASA will issue an NRA and appoint a formal science team in early 1993. Clementine is a 3-axis stabilized, 200 kg (dry weight) spacecraft that will be launched on a refurbished Titan-2G. One of the goals has been to build two spacecraft, including the sensors, for $100M. Total time elapsed from the decision to proceed to the launch will be two years.

  15. NASA's Lunar Polar Ice Prospector, RESOLVE: Mission Rehearsal in Apollo Valley

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Picard, Martin; Quinn, Jacqueline; Sanders, Gerald B.; Colaprete, Anthony; Elphic, Richard C.

    2012-01-01

    After the completion of the Apollo Program, space agencies didn't visit the moon for many years. But then in the 90's, the Clementine and Lunar Prospector missions returned and showed evidence of water ice at the poles. Then in 2009 the Lunar Crater Observation and Sensing Satellite indisputably showed that the Cabeus crater contained water ice and other useful volatiles. Furthermore, instruments aboard the Lunar Reconnaissance Orbiter (LRO) show evidence that the water ice may also be present in areas that receive several days of continuous sunlight each month. However, before we can factor this resource into our mission designs, we must understand the distribution and quantity of ice or other volatiles at the poles and whether it can be reasonably harvested for use as propellant or mission consumables. NASA, in partnership with the Canadian Space Agency (CSA), has been developing a payload to answer these questions. The payload is named RESOLVE. RESOLVE is on a development path that will deliver a tested flight design by the end of 2014. The team has developed a Design Reference Mission using LRO data that has RESOLVE landing near Cabeus Crater in May of2016. One of the toughest obstacles for RESOLVE's solar powered mission is its tight timeline. RESOLVE must be able to complete its objectives in the 5-7 days of available sunlight. The RESOLVE team must be able to work around obstacles to the mission timeline in real time. They can't afford to take a day off to replan as other planetary missions have done. To insure that this mission can be executed as planned, a prototype version of RESOLVE was developed this year and tested at a lunar analog site on Hawaii, known as Apollo Valley, which was once used to train the Apollo astronauts. The RESOLVE team planned the mission with the same type of orbital imagery that would be available from LRO. The simulation team prepositioned a Lander in Apollo Valley with RESOLVE on top mounted on its CSA rover. Then the mission

  16. MoonRise: A US Robotic Sample-Return Mission to Address Solar System Wide Processes

    NASA Astrophysics Data System (ADS)

    Jolliff, Bradley; Warren, P. H.; Shearer, C. K.; Alkalai, L.; Papanastassiou, D. A.; Huertas, A.; MoonRise Team

    2010-10-01

    The MoonRise lunar sample-return mission is currently funded to perform a Phase A Concept Study as part of NASA's New Frontiers Program. Exploration of the great (d = 2500 km) South Pole-Aitken basin has been assigned high priority in several NRC reports. MoonRise would be the first US robotic sample-return mission from another planetary surface. Key strengths of the MoonRise mission include: 1. Most importantly, MoonRise will sample the SPA basin's interior on the Moon's southern far side, instead of the same small region near the center of the near side as all previous (Apollo and Luna) sampling missions. Science objectives for the SPA sample-return mission fall into three main categories: (1) testing the impact cataclysm hypothesis, with its profound implications for the evolution of the Solar System and for life on the Earth at 3.9 Ga; (2) constraining basin-scale impact processes; and (3) constraining how the Moon's interior varies laterally on a global scale, and with depth on a scale of many tens of kilometers; and thus how the lunar crust formed and evolved. 2. MoonRise will greatly enhance scientific return by using a sieving mechanism to concentrate small rock fragments. As an example, for rocks ɳ mm in size (minimum dimension) and a target regolith of approximately average grain-size distribution, the acquisition yield will be improved by a factor of 50. 3. MoonRise will obtain a total of at least one kilogram of lunar material, including 100 g of bulk, unsieved soil for comparison with remote sensing data. 4. MoonRise will exploit data from LRO, Kaguya, Chandrayaan-1, and other recent remote-sensing missions, in particular LRO's Narrow Angle Camera (NAC), to ensure a safe landing by avoidance of areas with abundant boulders, potentially hazardous craters, and/or high slopes mapped from high resolution stereo images.

  17. View of Mission Control Center celebrating conclusion of Apollo 11 mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Overall view of the Mission Operations Control Room in the Mission Control Center, bldg 30, Manned Spacecraft Center (MSC), at the conclusion of the Apollo 11 lunar landing mission. The television monitor shows President Richard M. Nixon greeting the Apollo 11 astronauts aboard the U.S.S. Hornet in the Pacific recovery area (40301); NASA and MSC Officials join the flight controllers in celebrating the conclusion of the Apollo 11 mission. From left foreground Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director fo Flight Operations; Julian Scheer (in back), Assistant Adminstrator, Offic of Public Affairs, NASA HQ.; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA HQ (40302).

  18. ESA SMART-1 Mission to the Moon

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.; Racca, Giuseppe D.; Marini, Andrea; Grande, Manuel; Huovelin, Juhani; Josset, Jean-Luc; Keller, Horst Uwe; Nathues, Andreas; Koschny, Detlef; Malkki, Ansi

    SMART-1 is the first of ESA’s Small Missions for Advanced Research and Technology. Its objective is to demonstrate Primary Solar Electric Propulsion for future Cornerstones (such as Bepi-Colombo) and to test new technologies for spacecraft and instruments. The 370 kg spacecraft is to be launched in summer 2003 as Ariane-5 auxiliary passenger and after a 15 month cruise is to orbit the Moon for 6 months with possible extension. SMART-1 will carry out observations during the cruise and in lunar orbit with a science and technology payload (19 kg total mass): a miniaturised high-resolution camera (AMIE) a near-infrared point-spectrometer (SIR) for lunar mineralogy a very compact X-ray spectrometer (D-CIXS) mapping surface elemental composition a Deep Space Communication experiment (KaTE) a radio-science investigations (RSIS) a Laser-Link Experiment an On Board Autonomous Navigation experiment (OBAN) and plasma sensors (SPEDE). SMART-1 will study accretional and bombardment processes that led to the formation of rocky planets and the origin and evolution of the Earth-Moon system. Its science investigations include studies of the chemical composition of the Moon of geophysical processes (volcanism tectonics cratering erosion deposition of ices and volatiles) for comparative planetology and the preparation for future lunar and planetary exploration.

  19. Apollo 17

    NASA Technical Reports Server (NTRS)

    Garrett, David

    1972-01-01

    This is the Press Kit that was given to the various media outlets that were interested in covering the Apollo 17 mission. It includes information about the moon, lunar science, concentrating on the planned mission. The kit includes information about the flight, and the trajectory, planned orbit insertion maneuvers, the extravehicular mission events, a comparison with the Apollo 16, a map of the lunar surface, and the surface activity, information about the Taurus-Littrow landing site, the planned science experiments, the power source for the experiment package and diagrams of some of the instrumentation that was used to perform the experiments.

  20. Apollo-Soyuz US-USSR joint mission results

    NASA Technical Reports Server (NTRS)

    Bean, A. L.; Evans, R. E.

    1975-01-01

    The technical and nontechnical objectives of the Apollo-Soyuz mission are briefly considered. The mission demonstrated that Americans and Russians can work together to perform a very complex operation, including rendezvous in space, docking, and the conduction of joint experiments. Certain difficulties which had to be overcome were partly related to differences concerning the role of the astronaut in the basic alignment and docking procedures for space vehicles. Attention is also given to the experiments conducted during the mission and the approach used to overcome the language barrier.

  1. Apollo Lunar Sample Photographs: Digitizing the Moon Rock Collection

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary E.; Todd, Nancy S.; Runco, S. K.; Stefanov, W. L.

    2011-01-01

    The Acquisition and Curation Office at JSC has undertaken a 4-year data restoration project effort for the lunar science community funded by the LASER program (Lunar Advanced Science and Exploration Research) to digitize photographs of the Apollo lunar rock samples and create high resolution digital images. These sample photographs are not easily accessible outside of JSC, and currently exist only on degradable film in the Curation Data Storage Facility

  2. Volatile elements in Apollo 16 samples - Possible evidence for outgassing of the moon.

    NASA Technical Reports Server (NTRS)

    Krahenbuhl, U.; Ganapathy, R.; Morgan, J. W.; Anders, E.

    1973-01-01

    Several Apollo 16 breccias, including one containing goethite, are strikingly enriched in volatile elements such as bromine, cadmium, germanium, antimony, thallium, and zinc. Similar but smaller enrichments are found in all highland soils. It appears that volcanic processes took place in the lunar highlands, involving the release of volatiles including water. The lunar thallium/uranium ratio is .0002 of the cosmic ratio, which suggests that the moon's original water content could not have exceeded the equivalent of a layer 22 meters deep. The cataclastic anorthosites at the Apollo 16 site may represent deep ejecta from the Nectaris basin.

  3. The impact history of the Moon: implications of new high-resolution U-Pb analyses of Apollo impact breccias

    NASA Astrophysics Data System (ADS)

    Snape, Joshua F.; Nemchin, Alexander A.; Thiessen, Fiona; Bellucci, Jeremy J.; Whitehouse, Martin J.

    2015-04-01

    Constraining the impact history of the Moon is a key priority, both for lunar science [1] and also for our understanding of how this fundamental geologic processes [2] has affected the evolution of planets in the inner solar system. The Apollo impact breccia samples provide the most direct way of dating impact events on the Moon. Numerous studies have dated samples from the Apollo landing sites by multiple different methods with varying degrees of precision [3]. This has led to an ongoing debates regarding the presence of a period of intense meteoritic bombardment (e.g. [4-8]). In this study we present high precision U-Pb analyses of Ca-phosphates in a variety of Apollo impact breccias. These data allow us to resolve the signatures of multiple different impact events in samples collected by the Apollo 12, 14 and 17 missions. In particular, the potential identification of three significant impact events between the period of ~3915-3940 Ma, is indicative of a high rate of meteorite impacts at this point in lunar history. A more fundamental problem with interpretations of Apollo breccia ages is that the samples originate from the lunar regolith and do not represent samples of actual bedrock exposures. As such, although improvements in analytical precision may allow us to continue identifying new impact signatures, the proposed links between these signatures and particular impact features remain highly speculative. This is a problem that will only be truly addressed with a more focused campaign of lunar exploration. Most importantly, this would include the acquisition of samples from below the lunar regolith, which could be confidently attributed to particular bedrock formations and provide a degree of geologic context that has been largely absent from studies of lunar geology to date. References: [1] National Research Council (2007) The scientific context for exploration of the Moon, National Academies Press. [2] Melosh H. J. (1989) Impact Cratering: A Geologic

  4. Apollo

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Test subject sitting at the controls: Project LOLA or Lunar Orbit and Landing Approach was a simulator built at Langley to study problems related to landing on the lunar surface. It was a complex project that cost nearly $2 million dollars. James Hansen wrote: 'This simulator was designed to provide a pilot with a detailed visual encounter with the lunar surface; the machine consisted primarily of a cockpit, a closed-circuit TV system, and four large murals or scale models representing portions of the lunar surface as seen from various altitudes. The pilot in the cockpit moved along a track past these murals which would accustom him to the visual cues for controlling a spacecraft in the vicinity of the moon. Unfortunately, such a simulation--although great fun and quite aesthetic--was not helpful because flight in lunar orbit posed no special problems other than the rendezvous with the LEM, which the device did not simulate. Not long after the end of Apollo, the expensive machine was dismantled.' (p. 379) Ellis J. White further described this simulator in his paper , 'Discussion of Three Typical Langley Research Center Simulation Programs,' (Paper presented at the Eastern Simulation Council (EAI's Princeton Computation Center), Princeton, NJ, October 20, 1966.) 'A typical mission would start with the first cart positioned on model 1 for the translunar approach and orbit establishment. After starting the descent, the second cart is readied on model 2 and, at the proper time, when superposition occurs, the pilot's scene is switched from model 1 to model 2. then cart 1 is moved to and readied on model 3. The procedure continues until an altitude of 150 feet is obtained. The cabin of the LM vehicle has four windows which represent a 45 degree field of view. The projection screens in front of each window represent 65 degrees which allows limited head motion before the edges of the display can be seen. The lunar scene is presented to the pilot by rear projection on the

  5. MSFC Skylab Apollo Telescope Mount experiment systems mission evaluation

    NASA Technical Reports Server (NTRS)

    White, A. F., Jr.

    1974-01-01

    A detailed evaluation is presented of the Skylab Apollo Telescope Mount experiments performance throughout the eight and one-half month Skylab Mission. Descriptions and the objectives of each instrument are included. The anomalies experienced, the causes, and corrective actions taken are discussed. Conclusions, based on evaluation of the performance of each instrument, are presented. Examples of the scientific data obtained, as well as a discussion of the quality and quantity of the data, are presented.

  6. MSFC Skylab Apollo Telescope Mount summary mission report

    NASA Technical Reports Server (NTRS)

    Morse, A. R.

    1974-01-01

    A summary of the Apollo Telescope Mount (ATM) performance during the 8.5-month Skylab mission is presented. A brief description of each ATM system, system performance summaries, discussion of all significant ATM anomalies which occurred during the Skylab mission, and, in an appendix, a summary of the Skylab ATM Calibration Rocket Project (CALROC) are provided. The text is supplemented and amplified by photographs, drawings, curves, and tables. The report shows that the ATM not only met, but exceeded premission performance criteria, and that participation of man in space for this scientific investigation greatly enhanced the quality and quantity of the data attained.

  7. SELENE: The Moon-Orbiting Observatory Mission

    NASA Astrophysics Data System (ADS)

    Mizutani, H.; Kato, M.; Sasaki, S.; Iijima, Y.; Tanaka, K.; Takizawa, Y.

    The Moon-orbiting SELENE (Selenological and Engineering Explorer) mission is prepared in Japan for lunar science and technology development. The launch target has been changed from 2005 to 2006 because of the launch failure of H2A rocket in 2003. The spacecraft consists of a main orbiting satellite at about 100 km altitude in the polar orbit and two sub-satellites in the elliptical orbits. The scientific objectives of the mission are; 1) study of the origin and evolution of the Moon, 2) in-situ measurement of the lunar environment, and 3) observation of the solar-terrestrial plasma environment. SELENE carries the instruments for scientific investigation, including mapping of lunar topography and surface composition, measurement of the gravity and magnetic fields, and observation of lunar and solar-terrestrial plasma environment. The total mass of scientific payload is about 300 kg. The mission period will be 1 year. If extra fuel is available, the mission will be extended in a lower orbit around 50 km. The elemental abundances are measured by x-ray and gamma-ray spectrometers. Alpha particles from the radon gas and polonium are detected by an alpha particle spectrometer. The mineralogical abundance is characterized by a multi-band imager. The mineralogical composition is identified by a spectral profiler which is a continuous spectral analyzer. The surface topographic data are obtained by a high resolution terrain camera and a laser altimeter. The inside structure up to 5 km below the lunar surface is observed by the radar sounder experiment using a 5 MHz radio wave. A magnetometer and an electron reflectometer provides data on the lunar surface magnetic field. Doppler tracking of the orbiter via the sub-satellite when the orbiter is in the far side is used to determine the gravity field of the far side. Radio sources on the two sub-satellites are used to conduct differential VLBI observation from the ground stations. The lunar environment of high energy particles

  8. Artists concept of Apollo 11 Astronaut Neil Armstrong on the moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A Grumman Aircraft Engineering Corporation artist's concept depicting mankind's first walk on another celestianl body. Here, Astronaut Neil Armstrong, Apollo 11 commander, is making his first step onto the surface of the moon. In the background is the Earth, some 240,000 miles away. Armstrong. They are continuing their postflight debriefings. The three astronauts will be released from quarantine on August 11, 1969. Donald K. Slayton (right), MSC Director of Flight Crew Operations; and Lloyd Reeder, training coordinator.

  9. Log of Apollo 11.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The major events of the first manned moon landing mission, Apollo 11, are presented in chronological order from launch time until arrival of the astronauts aboard the U.S.S. Hornet. The log is descriptive, non-technical, and includes numerous color photographs of the astronauts on the moon. (PR)

  10. MSFC Flight Mission Directive Apollo-Saturn 205 Mission

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The purpose of this directive is to provide, under one cover, coordinated direction for the AS-205 Space Vehicle Flight. Within this document, mission objectives are specified, vehicle configuration is described and referenced, flight trajectories, data acquisition requirements, instrumentation requirements, and detailed documentation requirements necessary to meet launch vehicle mission objectives are defined and/or referenced.

  11. Estimates of the moon's geometry using lunar orbiter imagery and Apollo laser altimeter data

    NASA Technical Reports Server (NTRS)

    Jones, R. L.

    1973-01-01

    Selenographic coordinates for about 6000 lunar points identified on the Lunar Orbiter photographs are tabulated and have been combined with those lunar radii derived from the Apollo 15 laser altimeter data. These coordinates were used to derive that triaxial ellipsoid which best fits the moon's irregular surface. Fits were obtaind for different constraints on both the axial orientations and the displacement of the center of the ellipsoid. The semiaxes for the unconstrained ellipsoid were a = 1737.6 km, b = 1735.6 km, and c = 1735.0 km which correspond to a mean radius of about 1736.1 km. These axes were found to be nearly parallel to the moon's principal axes of inertia, and the origin was displaced about 2.0 km from the moon's center of gravity in a direction away from the earth and to the south of the lunar equator.

  12. Petrologic constraints on the origin of the Moon: Evidence from Apollo 14

    SciTech Connect

    Shervais, J.W.; Taylor, L.A.

    1984-01-01

    The Fra Mauro breccias at Apollo 14 contain distinctive suites of mare basalts and highland crustal rocks that contrast significantly with equivalent rocks from other Apollo sites. These contrasts imply lateral heterogeneity of the lunar crust and mantle on a regional scale. This heterogeneity may date back to the earliest stages of lunar accretion and differentiation. Current theories requiring a Moon-wide crust of Ferroan Anorthosite are based largely on samples from Apollo 16, where all but a few samples represent the FAN suite. However, at the nearside sites, FAN is either scarce (A-15) or virtually absent (A-12, A-14, A-17). It is suggested that the compositional variations could be accounted for by the acceleration of a large mass of material (e.g., 0.1 to 0.2 moon masses) late in the crystallization history of the magma ocean. Besides adding fresh, primordial material, this would remelt a large pocket of crust and mantle, thereby allowing a second distillation to occur in the resulting magma sea.

  13. In Situ Biological Contamination Studies of the Moon: Implications for Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.

  14. Chandrayaan-1 mission blasts off to the Moon

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2008-11-01

    India has launched its first mission to the Moon in a bid to create the highest resolution 3D maps of the lunar surface and provide a complete chemical mapping of the Moon's soil. The unmanned Chandrayaan-1 spacecraft successfully launched from Sriharikota, an island off the coast of the southern state of Andhra Pradesh last month.

  15. APOLLO 17 : A symbol for the APOLLO program

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 17 : The astonauts intend, as a symbolic gesture, to return a piece of moon-rock to share with countries all around the world. From the film documentary 'APOLLO 17: On the shoulders of Giants'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APPOLO 17 : Sixth and last manned lunar landing mission in the APOLLO series with Eugene A. Cernan, Ronald E.Evans, and Harrison H. (Jack) Schmitt. Landed at Taurus-Littrow on Dec 11.,1972. Deployed camera and experiments; performed EVA with lunar roving vehicle. Returned lunar samples. Mission Duration 301hrs 51min 59sec

  16. Former Apollo astronauts speak at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Former Apollo astronauts Edwin 'Buzz' Aldrin (left) and Gene Cernan share stories about their missions for an audience attending an anniversary banquet honoring the Apollo program team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Other guests at the banquet were astronauts Wally Schirra, Gene Cernan and Walt Cunningham. Neil Armstrong was the first man to walk on the moon; Gene Cernan was the last.

  17. Forward Contamination of the Moon and Mars: Implications for Future Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2004-01-01

    NASA and ESA have outlined new visions for solar system exploration that will include a series of lunar robotic missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under COSPAR's current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft. Nonetheless, future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  18. Surface electrical properties experiment. [for Taurus-Littrow region of the moon on Apollo 17

    NASA Technical Reports Server (NTRS)

    Simmons, G.

    1974-01-01

    The Surface Electrical Properties Experiment (SEP) was flown to the moon in December 1972 on Apollo 17 and used to explore a portion of the Taurus-Littrow region. SEP used a relatively new technique, termed radio frequency interferometry (RFI). Electromagnetic waves were radiated from two orthogonal, horizontal electric dipole antennas on the surface of the moon at frequencies of 1, 2, 4, 8, 16, and 32 Mhz. The field strength of the EM waves was measured as a function of distance with a receiver mounted on the Lunar Roving Vehicle and using three orthogonal, electrically small, loops. The interference pattern produced by the waves that travelled above the moon's surface and those that travelled below the surface was recorded on magnetic tape. The tape was returned to earth for analysis and interpretation. Several reprints, preprints, and an initial draft of the first publication of the SEP results are included. These documents provide a rather complete account of the details of the theory of the RFI technique, of the terrestrial tests of the technique, and of the present state of our interpretation of the Apollo 17 data.

  19. Mare glasses from Apollo 17 - Constraints on the moon's bulk composition

    NASA Technical Reports Server (NTRS)

    Delano, J. W.; Lindsley, D. H.

    1983-01-01

    Two previously unreported varieties of mare volcanic glass have been discovered in Apollo 17 samples. Twenty-three chemical types of volcanic glass have now been analyzed from the six Apollo landing sites. These volcanic glasses, which may be samples of primary magmas derived from the differentiated lunar mantle, define two linear arrays that seem to reflect regional, if not global, regularities among the source regions of these melts. Additional systematics among these glasses have been used to estimate the bulk composition of the moon. The results suggest that the refractory lithophile elements are present at abundances of 1.7 x chondrites. The silicate portion of the moon appears to have a major-element composition similar to a volatile (Si, Na, K)-depleted, earth's upper mantle. The theory involving an earth-fission origin of the moon can be tested further through trace element analyses on the volcanic glasses, and through determination of the N/Ar-36 ratio and noble gas isotopes from primordial lunar gas trapped within vesicles associated with mare volcanic glass.

  20. The Moon Zoo citizen science project: Preliminary results for the Apollo 17 landing site

    NASA Astrophysics Data System (ADS)

    Bugiolacchi, Roberto; Bamford, Steven; Tar, Paul; Thacker, Neil; Crawford, Ian A.; Joy, Katherine H.; Grindrod, Peter M.; Lintott, Chris

    2016-06-01

    Moon Zoo is a citizen science project that utilises internet crowd-sourcing techniques. Moon Zoo users are asked to review high spatial resolution images from the Lunar Reconnaissance Orbiter Camera (LROC), onboard NASA's LRO spacecraft, and perform characterisation such as measuring impact crater sizes and identify morphological 'features of interest'. The tasks are designed to address issues in lunar science and to aid future exploration of the Moon. We have tested various methodologies and parameters therein to interrogate and reduce the Moon Zoo crater location and size dataset against a validated expert survey. We chose the Apollo 17 region as a test area since it offers a broad range of cratered terrains, including secondary-rich areas, older maria, and uplands. The assessment involved parallel testing in three key areas: (1) filtering of data to remove problematic mark-ups; (2) clustering methods of multiple notations per crater; and (3) derivation of alternative crater degradation indices, based on the statistical variability of multiple notations and the smoothness of local image structures. We compared different combinations of methods and parameters and assessed correlations between resulting crater summaries and the expert census. We derived the optimal data reduction steps and settings of the existing Moon Zoo crater data to agree with the expert census. Further, the regolith depth and crater degradation states derived from the data are also found to be in broad agreement with other estimates for the Apollo 17 region. Our study supports the validity of this citizen science project but also recommends improvements in key elements of the data acquisition planning and production.

  1. JUICE: A European Mission to Jupiter and its Icy Moons

    NASA Astrophysics Data System (ADS)

    Witasse, O.; Altobelli, N.; Barabash, S.; Bruzzone, L.; Dougherty, M.; Erd, C.; Fletcher, L.; Gladstone, R.; Grasset, O.; Gurvits, L.; Hartogh, P.; Hussmann, H.; Iess, I.; Langevin, Y.; Palumbo, P.; Piccioni, G.; Sarri, G.; Titov, D.; Wahlund, J.-E.

    2015-10-01

    JUICE -JUpiter ICy moons Explorer -is the first large mission in the ESA Cosmic Vision 2015-2025 programme[1]. The mission was selected in May 2012 and adopted in November 2014. The implementation phase starts in July 2015, following the selection of the prime industrial contractor. Planned for launch in June 2022 and arrival at Jupiter in October 2029, it will spend at least three years making detailed observations of Jupiter and three of its largest moons, Ganymede, Callisto and Europa.

  2. KSC Launch Complex 34 during Apollo/Saturn Mission 202 pre-launch alert

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Scene at the Kennedy Space Center's Launch Complex 34 during an Apollo/Saturn Mission 202 pre-launch alert. The mission was a step toward qualifying the Apollo Command and Service modules and the uprated Saturn I launch vehicle for manned flight.

  3. Using Technology to Better Characterize the Apollo Sample Suite: A Retroactive PET Analysis and Potential Model for Future Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.

    2015-01-01

    From 1969-1972 the Apollo missions collected 382 kg of lunar samples from six distinct locations on the Moon. Studies of the Apollo sample suite have shaped our understanding of the formation and early evolution of the Earth-Moon system, and have had important implications for studies of the other terrestrial planets (e.g., through the calibration of the crater counting record) and even the outer planets (e.g., the Nice model of the dynamical evolution of the Solar System). Despite nearly 50 years of detailed research on Apollo samples, scientists are still developing new theories about the origin and evolution of the Moon. Three areas of active research are: (1) the abundance of water (and other volatiles) in the lunar mantle, (2) the timing of the formation of the Moon and the duration of lunar magma ocean crystallization, (3) the formation of evolved lunar lithologies (e.g., granites) and implications for tertiary crustal processes on the Moon. In order to fully understand these (and many other) theories about the Moon, scientists need access to "new" lunar samples, particularly new plutonic samples. Over 100 lunar meteorites have been identified over the past 30 years, and the study of these samples has greatly aided in our understanding of the Moon. However, terrestrial alteration and the lack of geologic context limit what can be learned from the lunar meteorites. Although no "new" large plutonic samples (i.e., hand-samples) remain to be discovered in the Apollo sample collection, there are many large polymict breccias in the Apollo collection containing relatively large (approximately 1 cm or larger) previously identified plutonic clasts, as well as a large number of unclassified lithic clasts. In addition, new, previously unidentified plutonic clasts are potentially discoverable within these breccias. The question becomes how to non-destructively locate and identify new lithic clasts of interest while minimizing the contamination and physical degradation of

  4. Official emblam of Apollo 11, the first scheduled lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Official emblam of Apollo 11, the first scheduled lunar landing mission. It depicts and eagle descending toward the lunar surface with an olive branch, symbolizing America's peaceful mission in space.

  5. Montage of Apollo Crew Patches

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This montage depicts the flight crew patches for the manned Apollo 7 thru Apollo 17 missions. The Apollo 7 through 10 missions were basically manned test flights that paved the way for lunar landing missions. Primary objectives met included the demonstration of the Command Service Module (CSM) crew performance; crew/space vehicle/mission support facilities performance and testing during a manned CSM mission; CSM rendezvous capability; translunar injection demonstration; the first manned Apollo docking, the first Apollo Extra Vehicular Activity (EVA), performance of the first manned flight of the lunar module (LM); the CSM-LM docking in translunar trajectory, LM undocking in lunar orbit, LM staging in lunar orbit, and manned LM-CSM docking in lunar orbit. Apollo 11 through 17 were lunar landing missions with the exception of Apollo 13 which was forced to circle the moon without landing due to an onboard explosion. The craft was,however, able to return to Earth safely. Apollo 11 was the first manned lunar landing mission and performed the first lunar surface EVA. Landing site was the Sea of Tranquility. A message for mankind was delivered, the U.S. flag was planted, experiments were set up and 47 pounds of lunar surface material was collected for analysis back on Earth. Apollo 12, the 2nd manned lunar landing mission landed in the Ocean of Storms and retrieved parts of the unmanned Surveyor 3, which had landed on the Moon in April 1967. The Apollo Lunar Surface Experiments Package (ALSEP) was deployed, and 75 pounds of lunar material was gathered. Apollo 14, the 3rd lunar landing mission landed in Fra Mauro. ALSEP and other instruments were deployed, and 94 pounds of lunar materials were gathered, using a hand cart for first time to transport rocks. Apollo 15, the 4th lunar landing mission landed in the Hadley-Apennine region. With the first use of the Lunar Roving Vehicle (LRV), the crew was bale to gather 169 pounds of lunar material. Apollo 16, the 5th lunar

  6. Surveying the Newly Digitized Apollo Metric Images for Highland Fault Scarps on the Moon

    NASA Astrophysics Data System (ADS)

    Williams, N. R.; Pritchard, M. E.; Bell, J. F.; Watters, T. R.; Robinson, M. S.; Lawrence, S.

    2009-12-01

    The presence and distribution of thrust faults on the Moon have major implications for lunar formation and thermal evolution. For example, thermal history models for the Moon imply that most of the lunar interior was initially hot. As the Moon cooled over time, some models predict global-scale thrust faults should form as stress builds from global thermal contraction. Large-scale thrust fault scarps with lengths of hundreds of kilometers and maximum relief of up to a kilometer or more, like those on Mercury, are not found on the Moon; however, relatively small-scale linear and curvilinear lobate scarps with maximum lengths typically around 10 km have been observed in the highlands [Binder and Gunga, Icarus, v63, 1985]. These small-scale scarps are interpreted to be thrust faults formed by contractional stresses with relatively small maximum (tens of meters) displacements on the faults. These narrow, low relief landforms could only be identified in the highest resolution Lunar Orbiter and Apollo Panoramic Camera images and under the most favorable lighting conditions. To date, the global distribution and other properties of lunar lobate faults are not well understood. The recent micron-resolution scanning and digitization of the Apollo Mapping Camera (Metric) photographic negatives [Lawrence et al., NLSI Conf. #1415, 2008; http://wms.lroc.asu.edu/apollo] provides a new dataset to search for potential scarps. We examined more than 100 digitized Metric Camera image scans, and from these identified 81 images with favorable lighting (incidence angles between about 55 and 80 deg.) to manually search for features that could be potential tectonic scarps. Previous surveys based on Panoramic Camera and Lunar Orbiter images found fewer than 100 lobate scarps in the highlands; in our Apollo Metric Camera image survey, we have found additional regions with one or more previously unidentified linear and curvilinear features on the lunar surface that may represent lobate thrust

  7. NASA's plans for manned missions to the moon and Mars

    NASA Technical Reports Server (NTRS)

    Bekey, Ivan

    1989-01-01

    Issues, problems, and potential solutions of the lunar and Mars missions which will be undertaken in the first decade of the next century are discussed. Arguments are made for the feasibility and usefulness of a lunar base, and an evolutionary approach to a manned Mars mission involving a preliminary mission to Phobos is outlined. The Shuttle Z concept for both moon and Mars missions which involves a dual use of a spacecraft transfer stage operating also as a booster third stage is defined.

  8. Robotics and telepresence for moon missions

    NASA Astrophysics Data System (ADS)

    Sallaberger, Christian

    1994-10-01

    An integrated moon program has often been proposed as a logical next step for today's space efforts. In the context of preparing for the possibility of launching a moon program, the European Space Agency is currently conducting an internal study effort which is focusing on the assessment of key technologies. Current thinking has this moon program organized into four phases. Phase 1 will deal with lunar resource exploration. The goal would be to produce a complete chemical inventory of the moon, including oxygen, water, other volatiles, carbon, silicon, and other resources. Phase 2 will establish a permanent robotic presence on the moon via a number of landers and surface rovers. Phase 3 will extend the second phase and concentrate on the use and exploitation of local lunar resources. Phase 4 will be the establishment of a first human outpost. Some preliminary work such as the building of the outpost and the installation of scientific equipment will be done by unmanned systems before a human crew is sent to the moon.

  9. Robotics and telepresence for moon missions

    NASA Technical Reports Server (NTRS)

    Sallaberger, Christian

    1994-01-01

    An integrated moon program has often been proposed as a logical next step for today's space efforts. In the context of preparing for the possibility of launching a moon program, the European Space Agency is currently conducting an internal study effort which is focusing on the assessment of key technologies. Current thinking has this moon program organized into four phases. Phase 1 will deal with lunar resource exploration. The goal would be to produce a complete chemical inventory of the moon, including oxygen, water, other volatiles, carbon, silicon, and other resources. Phase 2 will establish a permanent robotic presence on the moon via a number of landers and surface rovers. Phase 3 will extend the second phase and concentrate on the use and exploitation of local lunar resources. Phase 4 will be the establishment of a first human outpost. Some preliminary work such as the building of the outpost and the installation of scientific equipment will be done by unmanned systems before a human crew is sent to the moon.

  10. MSFC Skylab Apollo Telescope Mount thermal control system mission evaluation

    NASA Technical Reports Server (NTRS)

    Hueter, U.

    1974-01-01

    The Skylab Saturn Workshop Assembly was designed to expand the knowledge of manned earth orbital operations and accomplish a multitude of scientific experiments. The Apollo Telescope Mount (ATM), a module of the Skylab Saturn Workshop Assembly, was the first manned solar observatory to successfully observe, monitor, and record the structure and behavior of the sun outside the earth's atmosphere. The ATM contained eight solar telescopes that recorded solar phenomena in X-ray, ultraviolet, white light, and hydrogen alpha regions of the electromagnetic spectrum. In addition, the ATM contained the Saturn Workshop Assembly's pointing and attitude control system, a data and communication system, and a solar array/rechargeable battery power system. This document presents the overall ATM thermal design philosophy, premission and mission support activity, and the mission thermal evaluation. Emphasis is placed on premission planning and orbital performance with particular attention on problems encountered during the mission. ATM thermal performance was satisfactory throughout the mission. Although several anomalies occurred, no failure was directly attributable to a deficiency in the thermal design.

  11. Return to the Moon: Lunar robotic science missions

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.

    1992-01-01

    There are two important aspects of the Moon and its materials which must be addressed in preparation for a manned return to the Moon and establishment of a lunar base. These involve its geologic science and resource utilization. Knowledge of the Moon forms the basis for interpretations of the planetary science of the terrestrial planets and their satellites; and there are numerous exciting explorations into the geologic science of the Moon to be conducted using orbiter and lander missions. In addition, the rocks and minerals and soils of the Moon will be the basic raw materials for a lunar outpost; and the In-Situ Resource Utilization (ISRU) of lunar materials must be considered in detail before any manned return to the Moon. Both of these fields -- planetary science and resource assessment -- will necessitate the collection of considerable amounts of new data, only obtainable from lunar-orbit remote sensing and robotic landers. For over fifteen years, there have been a considerable number of workshops, meetings, etc. with their subsequent 'white papers' which have detailed plans for a return to the Moon. The Lunar Observer mission, although grandiose, seems to have been too expensive for the austere budgets of the last several years. However, the tens of thousands of man-hours that have gone into 'brainstorming' and production of plans and reports have provided the precursor material for today's missions. It has been only since last year (1991) that realistic optimism for lunar orbiters and soft landers has come forth. Plans are for 1995 and 1996 'Early Robotic Missions' to the Moon, with the collection of data necessary for answering several of the major problems in lunar science, as well as for resource and site evaluation, in preparation for soft landers and a manned-presence on the Moon.

  12. Future lunar missions and investigation of dusty plasma processes on the Moon

    NASA Astrophysics Data System (ADS)

    Popel, Sergey I.; Zelenyi, Lev M.; Zelenyi

    2013-08-01

    From the Apollo era of exploration, it was discovered that sunlight was scattered at the terminators giving rise to ``horizon glow'' and ``streamers'' above the lunar surface. Subsequent investigations have shown that the sunlight was most likely scattered by electrostatically charged dust grains originating from the surface. A renaissance is being observed currently in investigations of the Moon. The Luna-Glob and Luna-Resource missions (the latter jointly with India) are being prepared in Russia. Some of these missions will include investigations of lunar dust. Here we discuss the future experimental investigations of lunar dust within the missions of Luna-Glob and Luna-Resource. We consider the dusty plasma system over the lunar surface and determine the maximum height of dust rise. We describe mechanisms of formation of the dusty plasma system over the Moon and its main properties, determine distributions of electrons and dust over the lunar surface, and show a possibility of rising dust particles over the surface of the illuminated part of the Moon in the entire range of lunar latitudes. Finally, we discuss the effect of condensation of micrometeoriod substance during the expansion of the impact plume and show that this effect is important from the viewpoint of explanation of dust particle rise to high altitudes in addition to the dusty plasma effects.

  13. Apollo experience report: Mission planning for lunar module descent and ascent

    NASA Technical Reports Server (NTRS)

    Bennett, F. V.

    1972-01-01

    The premission planning, the real-time situation, and the postflight analysis for the Apollo 11 lunar descent and ascent are described. A comparison between premission planning and actual results is included. A navigation correction capability, developed from Apollo 11 postflight analysis was used successfully on Apollo 12 to provide the first pinpoint landing. An experience summary, which illustrates typical problems encountered by the mission planners, is also included.

  14. Mission to the Moon: Europe's priorities for the scientific exploration and utilisation of the Moon

    NASA Astrophysics Data System (ADS)

    Battrick, Bruce; Barron, C.

    1992-06-01

    A study to determine Europe's potential role in the future exploration and utilization of the Moon is presented. To establish the scientific justifications the Lunar Study Steering Group (LSSG) was established reflecting all scientific disciplines benefitting from a lunar base (Moon studies, astronomy, fusion, life sciences, etc.). Scientific issues were divided into three main areas: science of the Moon, including all investigations concerning the Moon as a planetary body; science from the Moon, using the Moon as a platform and therefore including observatories in the broadest sense; science on the Moon, including not only questions relating to human activities in space, but also the development of artificial ecosystems beyond the Earth. Science of the Moon focuses on geographical, geochemical and geological observations of the Earth-Moon system. Science from the Moon takes advantage of the stable lunar ground, its atmosphere free sky and, on the far side, its radio quiet environment. The Moon provides an attractive platform for the observation and study of the Universe. Two techniques that can make unique cause of the lunar platform are ultraviolet to submillimeter interferometric imaging, and very low frequency astronomy. One of the goals of life sciences studies (Science on the Moon) is obviously to provide the prerequisite information for establishing a manned lunar base. This includes studies of human physiology under reduced gravity, radiation protection and life support systems, and feasibility studies based on existing hardware. The overall recommendations are essentially to set up specific study teams for those fields judged to be the most promising for Europe, with the aim of providing more detailed scientific and technological specifications. It is also suggested that the scope of the overall study activities be expanded in order to derive mission scenarios for a viable ESA lunar exploration program and to consider economic, legal and policy matters

  15. Apollo 8's Christmas Eve 1968 Message

    NASA Video Gallery

    Apollo 8, the first manned mission to the moon, entered lunar orbit on Christmas Eve, Dec. 24, 1968. That evening, the astronauts--Commander Frank Borman, Command Module Pilot Jim Lovell, and Lunar...

  16. The Apollo Program and Lunar Science

    ERIC Educational Resources Information Center

    Kuiper, Gerard P.

    1973-01-01

    Discusses the history of the Vanguard project and the findings in Ranger records and Apollo missions, including lunar topography, gravity anomalies, figure, and chemistry. Presented are speculative remarks on the research of the origin of the Moon. (CC)

  17. On Eagle's Wings: The Parkes Observatory's Support of the Apollo 11 Mission

    NASA Astrophysics Data System (ADS)

    Sarkissian, John M.

    At 12:56 p.m., on Monday 21 July 1969 (AEST), six hundred million people witnessed Neil Armstrong's historic first steps on the Moon through television pictures transmitted to Earth from the lunar module, Eagle. Three tracking stations were receiving the signals simultaneously. They were the CSIRO's Parkes Radio Telescope, the Honeysuckle Creek tracking station near Canberra, and NASA's Goldstone station in California. During the first nine minutes of the broadcast, NASA alternated between the signals being received by the three stations. When they switched to the Parkes pictures, they were of such superior quality that NASA remained with them for the rest of the 2½-hour moonwalk. The television pictures from Parkes were received under extremely trying and dangerous conditions. A violent squall struck the telescope on the day of the historic moonwalk. The telescope was buffeted by strong winds that swayed the support tower and threatened the integrity of the telescope structure. Fortunately, cool heads prevailed and as Aldrin activated the TV camera, the Moon rose into the field-of-view of the Parkes telescope. This report endeavours to explain the circumstances of the Parkes Observatory's support of the Apollo 11 mission, and how it came to be involved in the historic enterprise.

  18. View of Mission Control Center during the Apollo 13 oxygen cell failure

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Two phases of busy activity during critical moments of the Apollo 13 mission are reflected in this view in the Mission Control Center (MCC), bldg 30, Manned Spacecraft Center (MCC). In the foreground, Henry Simmons (left) of Newsweek magazine and John E. Riley, Public Information Specialist, Public Affairs Office, MCC, man their positions in the Press Room. At extreme left of photo, Gerald D. Griffin, Shift 2 Flight Director, talks on telephone in Mission Operations Control Room. When this photograph was taken, the Apollo 13 lunar landing had been cancelled, and the problem-plagued Apollo 13 crewmen were in transearth trajectory attempting to bring their crippled spacecraft back home.

  19. Prime crew of Apollo/Saturn Mission 204 prepares for water egress training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The prime crew of the first manned Apollo space flight, Apollo/Saturn Mission 204, is suited up aboard the NASA Motor Vessel Retriever in preparation for Apolllo water egress training in the Gulf of Mexico. Left to right, are Astronauts Edward H. White II, senior pilot; Virgil I. Grissom, command pilot; and Roger B. Chaffee, pilot.

  20. Backup Crew of the first manned Apollo mission practice water egress

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Backup crew for Apollo/Saturn Mission 204, the first manned Apollo space flight, onboard the NASA Motor Vessel Retriever during water egress training activity in the Gulf of Mexico. Left to right, are Astronauts James A. McDivitt, Russell L. Schwickart, and David R. Scott.

  1. 2012 Moon Mars Analog Mission Activities on Mauna Kea, Hawai'i

    NASA Astrophysics Data System (ADS)

    Graham, Lee; Graff, Trevor G.; Aileen Yingst, R.; ten Kate, Inge L.; Russell, Patrick

    2015-05-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Four separate science investigations were integrated in a Martian analog environment with initial science operations planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred during the initial planning sessions and as the analog mission progressed. We review here the overall program of the investigation into the origin of the valley including preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering, and science trades and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as “Apollo Valley”.

  2. Lunette: A Dual Lander Mission to the Moon to Explore Early Planetary Differentiation

    NASA Astrophysics Data System (ADS)

    Neal, C. R.; Banerdt, B.; Jones, M.; Elliott, J.; Alkalai, L.; Turyshev, S.; Lognonné, P.; Kobayashi, N.; Grimm, R. E.; Spohn, T.; Weber, R. C.; Lunette Science; Instrument Support Team

    2010-12-01

    The Moon is critical for understanding fundamental aspects of how terrestrial planets formed and evolved. The Moon’s size means that a record of early planetary differentiation has been preserved. However, data from previous, current and planned missions are (will) not (be) of sufficient fidelity to provide definitive conclusions about its internal state, structure, and composition. Lunette rectifies this situation. Lunette is a solar-powered, 2 identical lander geophysical network mission that operates for at least 4 years on the surface of the Moon. Each Lunette lander carries an identical, powerful geophysical payload consisting of four instruments: 1) An extremely sensitive instrument combining a 3-axis triad of Short Period sensors and a 3-axis set of Long Period sensors, to be placed with its environmental shield on the surface; 2) A pair of self-penetrating “Moles,” each carrying thermal and physical sensors at least 3 m below the surface to measure the heat flow from the lunar interior; 3) Lunar Laser Ranging Retro-Reflector: A high-precision, high-performance corner cube reflector for laser ranging between the Earth and the Moon; and 4) ElectroMagnetic Sounder: A set of directional magnetometers and electrometers that together probe the electrical resistivity and thermal conductivity of the interior. The 2 landers are deployed to distinct lunar terranes: the Feldspathic Highlands Terrane (FHT) and the Procellarum KREEP Terrane (PKT) on the lunar nearside. They are launched together on a single vehicle, then separate shortly after trans-lunar injection, making their way individually to an LL2 staging point. Each lander descends to the lunar surface at the beginning of consecutive lunar days; the operations team can concentrate on completing lander checkout and instrument deployments well before lunar night descends. Lunette has one primary goal: Understand the early stages of terrestrial planet differentiation. Lunette uses Apollo knowledge of deep

  3. Portrait of Astronaut Neil A. Armstrong, commander of Apollo 11 mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Portrait of Astronaut Neil A. Armstrong, commander of the Apollo 11 Lunar Landing mission in his space suit, with his helmet on the table in front of him. Behind him is a large photograph of the lunar surface.

  4. View of Mission Control Center during the Apollo 13 oxygen cell failure

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Several persons important to the Apollo 13 mission, at consoles in the Mission Operations Control Room of the Mission Control Center (MCC). Seated at consoles, from left to right, are Astronaut Donald K. Slayton, Director of Flight Crew Operations; Astronaut Jack R. Lousma, Shift 3 spacecraft communicator; and Astronaut John W. Young, commander of the Apollo 13 back-up crew. Standing, left to right, are Astronaut Tom K. Mattingly, who was replaced as Apollo 13 command module pilot after it was learned he may come down with measles, and Astronaut Vance D. Brand, Shift 2 spacecraft communicator. Several hours earlier crew members of the Apollo 13 mission reported to MCC that trouble had developed with an oxygen cell in their spacecraft.

  5. Apollo 16 Crew Aboard Rescue Ship

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The Apollo 16 Command Module splashed down in the Pacific Ocean on April 27, 1972 after an 11-day moon exploration mission. The 3-man crew is shown here aboard the rescue ship, USS Horton. From left to right are: Mission Commander John W. Young, Lunar Module pilot Charles M. Duke, and Command Module pilot Thomas K. Mattingly II. The sixth manned lunar landing mission, the Apollo 16 (SA-511) lifted off on April 16, 1972. The Apollo 16 mission continued the broad-scale geological, geochemical, and geophysical mapping of the Moon's crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used.

  6. Saturn V Instrument Unit for the Apollo 4 Mission in the Vehicle Assembly Building

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This photograph was taken during the final assembly operation of the Saturn V launch vehicle for the Apollo 4 (SA 501) mission. The instrument unit (IU) was mated atop the S-IC/S-II assembly in the Vehicle Assembly Building high bay at the Kennedy Space Center. The Apollo 4 mission was the first launch of the Saturn V launch vehicle. Objectives of the unmanned Apollo 4 test flight were to obtain flight information on launch vehicle and spacecraft structural integrity and compatibility, flight loads, stage separation, and subsystems operation including testing of restart of the S-IVB stage, and to evaluate the Apollo command module heat shield. The Apollo 4 was launched on November 9, 1967 from KSC.

  7. Saturn V Instrument Unit for the Apollo 4 Mission in the Vehicle Assembly Building

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This photograph was taken during the final assembly operation of the Saturn V launch vehicle for the Apollo 4 (SA 501) mission. The instrument unit (IU) was hoisted to be mated to the S-IC/S-II assembly in the Vehicle Assembly Building high bay at the Kennedy Space Center. The Apollo 4 mission was the first launch of the Saturn V launch vehicle. Objectives of the unmanned Apollo 4 test flight were to obtain flight information on launch vehicle and spacecraft structural integrity and compatibility, flight loads, stage separation, and subsystems operation including testing of restart of the S-IVB stage, and to evaluate the Apollo command module heat shield. The Apollo 4 was launched on November 9, 1967 from KSC.

  8. Saturn V Vehicle for the Apollo 4 Mission in the Vehicle Assembly Building

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This photograph depicts the Saturn V vehicle (SA-501) for the Apollo 4 mission in the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC). After the completion of the assembly operation, the work platform was retracted and the vehicle was readied to rollout from the VAB to the launch pad. The Apollo 4 mission was the first launch of the Saturn V launch vehicle. Objectives of the unmanned Apollo 4 test flight were to obtain flight information on launch vehicle and spacecraft structural integrity and compatibility, flight loads, stage separation, and subsystems operation including testing of restart of the S-IVB stage, and to evaluate the Apollo command module heat shield. The Apollo 4 was launched on November 9, 1967 from KSC.

  9. Magnetism and the interior of the moon. [measured at Apollo landing sites

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    During the time period 1961-1972 eleven magnetometers were sent to the moon. The results of lunar magnetometer data analysis are reviewed, with emphasis on the lunar interior. Magnetic fields have been measured on the lunar surface at the Apollo 12, 14, 15, and 16 landing sites. The remanent field values at these sites are given. Satellite and surface measurements show strong evidence that the lunar crust is magnetized over much of the lunar globe. The origin of the lunar remanent field is not yet satisfactorily understood; several source models are presented. Simultaneous data from the Apollo 12 lunar surface magnetometer and the Explorer 35 Ames magnetometer are used to construct a wholemoon hysteresis curve, from which the global lunar permeability is determined. Total iron abundance is calculated for two assumed compositional models of the lunar interior. Other lunar models with a small iron core and with a shallow iron-rich layer are also discussed in light of the measured global permeability.

  10. The cryogenics analysis program for Apollo mission planning and analysis

    NASA Technical Reports Server (NTRS)

    Scott, W.; Williams, J.

    1971-01-01

    The cryogenics analysis program was developed as a simplified tool for use in premission planning operations for the Apollo command service module. Through a dynamic development effort, the program has been extended to include real time and postflight analysis capabilities with nominal and contingency planning features. The technical aspects of the program and a comparison of ground test and mission data with data generated by using the cryogenics analysis program are presented. The results of the program capability to predict flight requirements also are presented. Comparisons of data from the program with data from flight results, from a tank qualifications program, and from various system anomalies that have been encountered are discussed. Future plans and additional considerations for the program also are included. Among these plans are a three tank management scheme for hydrogen, venting profile generation for Skylab, and a capability for handling two gas atmospheres. The plan for two gas atmospheres will involve the addition of the capability to handle nitrogen as well as oxygen and hydrogen.

  11. The Clementine Mission science return at the Moon and Geographos

    NASA Technical Reports Server (NTRS)

    Vorderbruegge, R. W.; Davies, M. E.; Horan, D. M.; Lucey, P. G.; Pieters, C. M.; Mcewen, A. S.; Nozette, S.; Shoemaker, E. M.; Squyres, S. W.; Thomas, P. C.

    1993-01-01

    The Clementine Mission is being built and flown by the Naval Research Laboratory under the sponsorship of the Strategic Defense Initiative Organization of the United States Department of Defense in joint-cooperation with NASA, and will explore the Moon and the near-Earth asteroid (NEA) 1620 Geographos with lightweight sensors developed by the Lawrence Livermore National Laboratory. A NASA Science Team for this mission will be selected by way of a NRA in April 1993. The instrument suite includes imaging cameras that cover a spectral range from the near-ultraviolet to the mid-infrared, a laser ranger, and, potentially, a charged particle telescope. To be launched in early 1994, Clementine will be in lunar orbit from February through May 1994, at which time it will depart the Moon for a flyby of 1620 Geographos in August 1994. This mission represents an outstanding opportunity for scientists interested in the Moon and asteroids. It is anticipated that the data returned from this mission will permit: an assessment of global lunar crustal heterogeneity and a resolution of less than 1 km; an assessment of the lithologic heterogeneity of Geographos at a scale of 100 m or better; and an assessment of surface processes on Geographos on the order of 10 m. The basic mission of Clementine and some of the key scientific questions that will be addressed are described. Additional material on the Clementine mission, its data handling and processing, and its instrument suite is presented elsewhere.

  12. Launch of the Apollo 12 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The huge, 363-foot tall Apollo 12 (Spacecraft 108/Lunar Module 6/Saturn 507) space vehicles is launched from Pad A, Launch Complex 39, Kennedy Space Center, at 11:22 a.m., November 14, 1969 (58883); View of the launch from across the water. Note the flocks of birds flying across the water as the Apollo spacecraft lifts off (58884).

  13. The Japanese Air Pollusion Observation Missions, GMAP-Asia and APOLLO.

    NASA Astrophysics Data System (ADS)

    Kasai, Y.; Kita, K.; Kanaya, Y.; Gmap-Asia; Apollo Mission Team

    2011-12-01

    There are two mission concepts in Japan for air quality observation, GMAP-Asia (Geostationary mission for Meteorology and Air Pollution) from geostationary orbit and APOLLO (Atmospheric pollution observation) from Japanese Experiment Module (JEM) of International Space Station (ISS). The mission's purpose is to identify human versus natural sources of ozone and its precursors, aerosols, and intercontinental air pollution transport, and understand the dynamics of coastal ecosystems. The scientific targets are: 1. Understanding of global air quality status. 2. Air pollution and human health. 3. Impact of air pollution on climate change. GMAP-Asia passed the Mission Definition Review in Japanese space agency in December 2009, and continue the investigation of the instrument. Science working groups are developing and prioritizing the requirements for atmospheric composition, and aerosols for for APOLLO mission. In this talk we will summarize the current status of GMAP-Asia and APOLLO mission study activities.

  14. NASA's J-2X Engine Builds on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Snoddy, Jimmy R.

    2006-01-01

    In January 2006, NASA streamlined its U.S. Vision for Space Exploration hardware development approach for replacing the Space Shuttle after it is retired in 2010. The revised CLV upper stage will use the J-2X engine, a derivative of NASA s Apollo Program Saturn V s S-II and S-IVB main propulsion, which will also serve as the Earth Departure Stage (EDS) engine. This paper gives details of how the J- 2X engine effort mitigates risk by building on the Apollo Program and other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with first demonstration flight in 2010 and human test flights in 2012. It is well documented that propulsion is historically a high-risk area. NASA s risk reduction strategy for the J-2X engine design, development, test, and evaluation is to build upon heritage hardware and apply valuable experience gained from past development efforts. In addition, NASA and its industry partner, Rocketdyne, which originally built the J-2, have tapped into their extensive databases and are applying lessons conveyed firsthand by Apollo-era veterans of America s first round of Moon missions in the 1960s and 1970s. NASA s development approach for the J-2X engine includes early requirements definition and management; designing-in lessons learned from the 5-2 heritage programs; initiating long-lead procurement items before Preliminary Desi& Review; incorporating design features for anticipated EDS requirements; identifying facilities for sea-level and altitude testing; and starting ground support equipment and logistics planning at an early stage. Other risk reduction strategies include utilizing a proven gas generator cycle with recent development experience; utilizing existing turbomachinery ; applying current and recent main combustion chamber (Integrated Powerhead Demonstrator) and channel wall nozzle (COBRA) advances; and performing rigorous development, qualification, and certification testing of the engine system

  15. Apollo Project

    NASA Technical Reports Server (NTRS)

    1966-01-01

    From Spaceflight Revolution: 'Top NASA officials listen to a LOPO briefing at Langley in December 1966. Sitting to the far right with his hand on his chin is Floyd Thompson. To the left sits Dr. George Mueller, NASA associate administrator for Manned Space Flight. On the wall is a diagram of the sites selected for the 'concentrated mission.' 'The most fundamental issue in the pre-mission planning for Lunar Orbiter was how the moon was to be photographed. Would the photography be 'concentrated' on a predetermined single target, or would it be 'distributed' over several selected targets across the moon's surface? On the answer to this basic question depended the successful integration of the entire mission plan for Lunar Orbiter.' The Lunar Orbiter Project made systematic photographic maps of the lunar landing sites. Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 337.

  16. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Apollo/Saturn V Center, Lisa Malone (left), chief of KSC's Media Services branch, relays a question from the media to former Apollo astronaut Neil A. Armstrong. Beside Armstrong are Edwin 'Buzz' Aldrin, Gene Cernan, and Walt Cunningham, all of whom also flew on Apollo missions. The four met with the media prior to an anniversary banquet highlighting the contributions of aerospace employees who made the Apollo program possible. The banquet celebrated the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  17. Apollo Project

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Langley Center Director Floyd Thompson shows Ann Kilgore the 'picture of the century.' This was the first picture of the earth taken from space. From Spaceflight Revolution: 'On 23 August 1966 just as Lunar Orbiter I was about to pass behind the moon, mission controllers executed the necessary maneuvers to point the camera away from the lunar surface and toward the earth. The result was the world's first view of the earth from space. It was called 'the picture of the century' and 'the greatest shot taken since the invention of photography.' Not even the color photos of the earth taken during the Apollo missions superseded the impact of this first image of our planet as a little island of life floating in the black and infinite sea of space.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), pp. 345-346.

  18. High Leverage Space Transportation System Technologies for Human Exploration Missions to the Moon and Beyond

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Dudzinski, Leonard A.

    1996-01-01

    The feasibility of returning humans to the Moon by 2004, the 35th anniversary of the Apollo 11 landing, is examined assuming the use of existing launch vehicles (the Space Shuttle and Titan 4B), a near term, advanced technology space transportation system, and extraterrestrial propellant--specifically 'lunar-derived' liquid oxygen or LUNOX. The lunar transportation system (LTS) elements consist of an expendable, nuclear thermal rocket (NTR)-powered translunar injection (TLI) stage and a combination lunar lander/Earth return vehicle (LERV) using cryogenic liquid oxygen and hydrogen (LOX/LH2) chemical propulsion. The 'wet' LERV, carrying a crew of 2, is configured to fit within the Shuttle orbiter cargo bay and requires only modest assembly in low Earth orbit. After Earth orbit rendezvous and docking of the LERV with the Titan 4B-launched NTR TLI stage, the initial mass in low Earth orbit (IMLEO) is approx. 40 t. To maximize mission performance at minimum mass, the LERV carries no return LOX but uses approx. 7 t of LUNOX to 'reoxidize' itself for a 'direct return' flight to Earth followed by an 'Apollo-style' capsule recovery. Without LUNOX, mission capability is constrained and the total LTS mass approaches the combined Shuttle-Titan 4B IMLEO limit of approx. 45 t even with enhanced NTR and chemical engine performance. Key technologies are discussed, lunar mission scenarios described, and LTS vehicle designs and characteristics are presented. Mission versatility provided by using a small 'all LH2' NTR engine or a 'LOX-augmented' derivative, either individually or in clusters, for outer planet robotic orbiter, small Mars cargo, lunar 'commuter', and human Mars exploration class missions is also briefly discussed.

  19. Apollo 14 mission report. Supplement 7: Inflight demonstrations

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Experiments performed on board the Apollo 14 are reviewed. These include a liquid transfer demonstration during the transearth coast, electrophoresis separation, a composite casting demonstration, and a heat flow and convection demonstration.

  20. In Situ Biological Contamination Studies of the Moon: Implications for Future Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there yet a planetary protection category for human missions. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  1. Characterization of Apollo Regolith by X-Ray and Electron Microbeam Techniques: An Analog for Future Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan A.

    2015-01-01

    The Apollo missions collected 382 kg of rock and regolith from the Moon; approximately 1/3 of the sample mass collected was regolith. Lunar regolith consists of well mixed rocks, minerals, and glasses less than 1-centimeter n size. The majority of most surface regolith samples were sieved into less than 1, 1-2, 2-4, and 4-10- millimiter size fractions; a portion of most samples was re-served unsieved. The initial characterization and classification of most Apollo regolith particles was done primarily by binocular microscopy. Optical classification of regolith is difficult because (1) the finest fraction of the regolith coats and obscures the textures of the larger particles, and (b) not all lithologies or minerals are uniquely identifiable optically. In recent years, we have begun to use more modern x-ray beam techniques [1-3], coupled with high resolution 3D optical imaging techniques [4] to characterize Apollo and meteorite samples as part of the curation process. These techniques, particularly in concert with SEM imaging of less than 1-millimeter regolith grain mounts, allow for the rapid characterization of the components within a regolith.

  2. Apollo 11: 20th anniversary

    NASA Astrophysics Data System (ADS)

    1989-07-01

    The Apollo 11 Mission which culminated in the first manned lunar landing on July 20, 1969 is recounted. Historical footage of preparation, takeoff, stage separation, the Eagle Lunar Lander, and the moon walk accompany astronauts Michael Collins, Buzz Aldrin, and Neal Armstrong giving their recollections of the mission are shown.

  3. Activity Book. Celebrate Apollo 11.

    ERIC Educational Resources Information Center

    Barchert, Linda; And Others

    1994-01-01

    An activity book helps students learn about the 1969 Apollo 11 mission to the moon as they get a sense of the mission's impact on their lives. The activities enhance understanding of science, math, social studies, and language arts. A teacher's page offers information on books, magazines, computer materials, and special resources. (SM)

  4. Apollo 10 - 11

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This video gives overviews of the Apollo 10 and Apollo 11 missions to the moon, including footage from the launches and landings of the Command Module Columbia, which is used for both flights. The Apollo 10 crewmembers, Commander Thomas Stafford, Command Module Pilot John Young, and Lunar Module Pilot Eugene Cernan, are seen as they suit-up in preparation for launch and then as they experiment with the microgravity environment on their way to the moon. The moon's surface is seen in detail as the Command Module orbits at an altitude of 69 miles. The Apollo 11 crewmembers, Commander Neil Armstrong, Command Module Pilot Michael Collins, and Lunar Module Pilot Buzz Aldrin, are seen during various training activities, including simulated lunar gravity training, practicing collecting lunar material, and using the moonquake detector. Footage shows the approach and landing of the Lunar Module Eagle on the moon. Armstrong and Aldrin descend to the moon's surface, collect a sample of lunar dust, and erect the American flag. Eagle's liftoff from the moon is seen.

  5. Moon - Possible nature of the body that produced the Imbrian Basin, from the composition of Apollo 14 samples.

    NASA Technical Reports Server (NTRS)

    Ganapathy, R.; Laul, J. C.; Morgan, J. W.; Anders, E.

    1972-01-01

    Soils from the Apollo 14 site contain nearly three times as much meteoritic material as soils from the Apollo 11, Apollo 12, and Luna 16 sites. Part of this material consists of the ubiquitous micrometeorite component, of primitive (carbonaceous-chondrite-like) composition. The remainder, seen most conspicuously in coarse glass and norite fragments, has a decidedly fractionated composition, with volatile elements less than one-tenth as abundant as siderophiles. This material seems to be debris of the Cyprus-sized planetesimal that produced the Imbrian Basin. Compositionally this planetesimal has no exact counterpart among known meteorite classes, though group IVA irons come close. It also resembles the initial composition of the earth as postulated by the two-component model. Apparently the Imbrian planetesimal was an earth satellite swept up by the moon during tidal recession or capture, or an asteroid deflected by Mars into terrestrial space.

  6. Is There Water on the Moon? NASA's LCROSS Mission

    NASA Technical Reports Server (NTRS)

    Noneman, Steven

    2007-01-01

    NASA is preparing for its return to the moon with the Lunar CRater Observation and Sensing Satellite (LCROSS) mission. This secondary payload spacecraft will travel with the Lunar Reconnaissance Orbiter (LRO) satellite to the Moon on the same Atlas-V 401 Centaur rocket launched from Cape Canaveral Air Force Station, Florida. The LCROSS mission will robotically seek to determine the presence of water ice at the Moon's South Pole. The 1000kg Secondary Payload budget is efficiently used to provide a highly modular and reconfigurable LCROSS Spacecraft with extensive heritage to accurately guide the expended Centaur into the crater. Upon separation, LCROSS flies through the impact plume, telemetering real-time images and characterizing water ice in the plume with infrared cameras and spectrometers. LCROSS then becomes a 700kg impactor itself, to provide a second opportunity to study the nature of the Lunar Regolith. LCROSS provides a critical ground-truth for Lunar Prospector and LRO neutron and radar maps, making it possible to assess the total lunar water inventory. This presentation contains a reference to video animation of the LCROSS mission that will be covered separately.

  7. APOLLO 15 Galileo's Gravity Experiment

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 15: A demonstration of a classic experiment. From the film documentary 'APOLLO 15 'The mountains of the Moon''', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLO 15: Fourth manned lunar landing with David R. Scott, Alfred M. Worden, and James B. Irwin. Landed at Hadley rilleon July 30, 1971;performed EVA with Lunar Roving Vehicle; deployed experiments. P& F Subsattelite spring-launched from SM in lunar orbit. Mission Duration 295 hrs 11 min 53sec

  8. Apollo A-7L Spacesuit Development for Apollo 7 Through 14 Missions

    NASA Technical Reports Server (NTRS)

    McBarron, James W., II

    2015-01-01

    Jim McBarron has over 50 years of experience with NASA spacesuit development and operations as well as the U.S. Air Force pressure suit. As a result of his experience and research, he shared his significant knowledge about early Apollo spacesuit development, A-7L suit requirements, and design details.

  9. Apollo

    Integrated Risk Information System (IRIS)

    Apollo ; CASRN 74115 - 24 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  10. Status of esa smart-1 mission to the moon

    NASA Astrophysics Data System (ADS)

    Foing, B. H.; Racca, G. R.; Marini, A.; SMART-1 Technology Working Team

    2003-04-01

    SMART-1 is the first in the programme of ESA’s Small Missions for Advanced Research and Technology . Its objective is to demonstrate Solar Electric Primary Propulsion (SEP) for future Cornerstones (such as Bepi-Colombo) and to test new technologies for spacecraft and instruments. The spacecraft has been readied for launch in spring 2003 as an Ariane-5 auxiliary passenger. After a cruise with primary SEP, the SMART-1 mission is to orbit the Moon for a nominal period of six months, with possible extension. The spacecraft will carry out a complete programme of scientific observations during the cruise and in lunar orbit. SMART-1's science payload, with a total mass of some 19 kg, features many innovative instruments and advanced technologies. A miniaturised high-resolution camera (AMIE) for lunar surface imaging, a near-infrared point-spectrometer (SIR) for lunar mineralogy investigation, and a very compact X-ray spectrometer (D-CIXS) with a new type of detector and micro-collimator which will provide fluorescence spectroscopy and imagery of the Moon's surface elemental composition. The payload also includes an experiment (KaTE) aimed at demonstrating deep-space telemetry and telecommand communications in the X and Ka-bands, a radio-science experiment (RSIS), a deep space optical link (Laser-Link Experiment), using the ESA Optical Ground station in Tenerife, and the validation of a system of autonomous navigation SMART-1 lunar science investigations include studies of the chemical (OBAN) based on image processing. SMART-1 lunar science investigations include studies of the chemical composition and evolution of the Moon, of geophysical processes (volcanism, tectonics, cratering, erosion, deposition of ices and volatiles) for comparative planetology, and high resolution studies in preparation for future steps of lunar exploration. The mission could address several topics such as the accretional processes that led to the formation of planets, and the origin of the

  11. Field Trip to the Moon

    ERIC Educational Resources Information Center

    Lowman, Paul D., Jr.

    2004-01-01

    This article focuses on the geology of a single area of the Moon, the Imbrium Basin, and shows how geologists have combined basic geologic principles with evidence collected by the Apollo missions to learn more about the history of the Moon as a whole. In this article, the author discusses lunar geology teaching tips and mapping the Imbrium Basin…

  12. A description of hardware and mission planning for the Apollo-Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Littleton, F. C.

    1975-01-01

    The Apollo-Soyuz Test Program (ASTP) is scheduled for flight in July 1975. This paper will describe briefly the mission planning and hardware associated with the program. Of interest are modifications to the basic Apollo and Soyuz vehicles as well as the newly developed docking module and docking system. Joint aspects of the mission profile are explained. Science objectives and corresponding experiments are described. Utilization of the ATS-6 Satellite for relay of TV, voice, and data to the ground is also a topic. The paper concludes with a discussion of the joint flight control interface.

  13. Chandrayaan-2: India's First Soft-landing Mission to Moon

    NASA Astrophysics Data System (ADS)

    Mylswamy, Annadurai; Krishnan, A.; Alex, T. K.; Rama Murali, G. K.

    2012-07-01

    The first Indian planetary mission to moon, Chandrayaan-1, launched on 22nd October, 2008 with a suite of Indian and International payloads on board, collected very significant data over its mission duration of close to one year. Important new findings from this mission include, discovery of hydroxyl and water molecule in sunlit lunar surface region around the poles, exposure of large anorthositic blocks confirming the global lunar magma hypothesis, signature of sub surface ice layers in permanently shadowed regions near the lunar north pole, evidence for a new refractory rock type, mapping of reflected lunar neutral atoms and identification of mini-magnetosphere, possible signature of water molecule in lunar exosphere, preserved lava tube that may provide site for future human habitation and radiation dose en-route and around the moon. Chandrayaan-2:, The success of Chandrayaan-1 orbiter mission provided impetus to implement the second approved Indian mission to moon, Chandrayaan-2, with an Orbiter-Lander-Rover configuration. The enhanced capabilities will enable addressing some of the questions raised by the results obtained from the Chandrayaan-1 and other recent lunar missions and also to enhance our understanding of origin and evolution of the moon. The orbiter that will carry payloads to further probe the morphological, mineralogical and chemical properties of the lunar surface material through remote sensing observations in X-ray, visible, infra-red and microwave regions. The Lander-Rover system will enable in-depth studies of a specific lunar location and probe various physical properties of the moon. The Chandrayaan-2 mission will be collaboration between Indian Space Research Organization (ISRO) and the Federal Space Agency of Russia. ISRO will be responsible for the Launch Vehicle, the Orbiter and the Rover while the Lander will be provided by Russia. Initial work to realize the different elements of the mission is currently in progress in both countries

  14. Protolife on the Moon--A Neglected Mission

    NASA Astrophysics Data System (ADS)

    Green, J.

    Fumaroles contain the ingredients for protolife on the earth and on the moon. Early Precambrian lunar fumaroles in shadow probably produced H_2O, HCHO, CO_2, CO, C_2N_2, HC_3N, NH3, COS, CH_4, HCN, S-bearing fluids and other compounds. Fumarolic water could have been more abundant in the early Precambrian on the moon based in part on fugacity data for the Apollo fire fountain beads. Formaldehyde formed "in the spark" on the moon in shadow would not be decomposed. Volcanism by flow charging and/or freezing by charge separation of some fumarolic fluids can readily provide the "spark". Only nanocurrents need be invoked. In shadow on the moon, most fumarolic fluids could be preserved as ices for up to billions of years at 40 Kelvin. Realistically, these ices would be discontinuously interlaminated or admixed with ejecta. Early formed amphiphilic compounds (lipids) probably formed double membraned vesicles. Miller-type reactions could possibly provide hydroxy amino acids, sugars, purines and pyrimidines. Cooling of ammonium cyanide compounds with formaldehyde in lunar shadow is presumed to have created hydrogen cyanide and adenine. Fischer-Tropsch reactions in fumaroles could result in aromatic and basic amino acids and on clay produce ribose. Ribose and adenine react to form adenosine which in turn could combine with soluble polyphosphates found in fumaroles to yield adenosine triphosphate. RNA evolving through intermediate compounds can polymerize even in an ice matrix (Monnard, 2002) as would be expected in lunar shadow. In the laboratory, RNA attached to montmorillonite template particles can be encapsulated within enlarged lipid vesicles or protocells (Hanczyc et al, 2003). Clay associated with RNA enhances the enzymatic activity of RNA (Marco, 1999). On earth, the evolution of the Archaea was dependent on tungsto-enzymes; fumaroles on earth are enriched in tungsten. Fumaroles within a distance of meters, exhibit a wide range of temperatures, pH, Eh, periods of

  15. A mission to Mercury and a mission to the moons of Mars

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Two Advanced Design Projects were completed this academic year at Penn State - a mission to the planet Mercury and a mission to the moons of Mars (Phobos and Deimos). At the beginning of the fall semester the students were organized into six groups and given their choice of missions. Once a mission was chosen, the students developed conceptual designs. These designs were then evaluated at the end of the fall semester and combined into two separate mission scenarios. To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form two mission teams. An integration team consisting of two members from each group was formed for each mission team so that communication and exchange of information would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Lewis Research Center Advanced Projects Office. Robotic planetary missions throughout the solar system can be considered valuable precursors to human visits and test beds for innovative technology. For example, by studying the composition of the Martian moons, scientists may be able to determine if their resources may be used or synthesized for consumption during a first human visit.

  16. Jupiter Icy Moons Explorer: mission status after the Definition Phase

    NASA Astrophysics Data System (ADS)

    Titov, Dmitri; Barabash, Stas; Bruzzone, Lorenzo; Dougherty, Michele; Erd, Christian; Fletcher, Leigh; Gare, Philippe; Gladstone, Randall; Grasset, Olivier; Gurvits, Leonid; Hartogh, Paul; Hussmann, Hauke; Iess, Luciano; Jaumann, Ralf; Langevin, Yves; Palumbo, Pasquale; Piccioni, Giuseppe; Sarri, Giuseppe; Wahlund, Jan-Erik; Witasse, Olivier

    2015-04-01

    JUpiter ICy moons Explorer (JUICE), the ESA first large-class mission within the Cosmic Vision Program 2015-2025, was adopted in November 2014. The mission will perform detailed investigations of Jupiter and its system with particular emphasis on Ganymede as a planetary body and potential habitat. The overarching theme for JUICE is: The emergence of habitable worlds around gas giants. At Ganymede, the mission will characterize in detail the ocean layers; provide topographical, geological and compositional mapping of the surface; study the physical properties of the icy crusts; characterize the internal mass distribution, investigate the exosphere; study Ganymede's intrinsic magnetic field and its interactions with the Jovian magnetosphere. For Europa, the focus will be on the non-ice chemistry, understanding the formation of surface features and subsurface sounding of the icy crust over recently active regions. Callisto will be explored as a witness of the early solar system. JUICE will perform a multidisciplinary investigation of the Jupiter system as an archetype for gas giants. The circulation, meteorology, chemistry and structure of the Jovian atmosphere will be studied from the cloud tops to the thermosphere. The focus in Jupiter's magnetosphere will include an investigation of the three dimensional properties of the magnetodisc and in-depth study of the coupling processes within the magnetosphere, ionosphere and thermosphere. Aurora and radio emissions will be elucidated. JUICE will study the moons' interactions with the magnetosphere, gravitational coupling and long-term tidal evolution of the Galilean satellites. JUICE highly capable scientific payload includes 10 state-of-the-art instruments onboard the spacecraft plus one experiment that uses the spacecraft telecommunication system with ground-based radio telescopes. The remote sensing package includes a high-resolution multi-band visible imager (JANUS) and spectro-imaging capabilities from the

  17. Moon search algorithms for NASA's Dawn Mission to asteroid Vesta

    NASA Astrophysics Data System (ADS)

    Memarsadeghi, Nargess; McFadden, Lucy A.; Skillman, David R.; McLean, Brian; Mutchler, Max; Carsenty, Uri; Palmer, Eric E.

    2012-03-01

    A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecraft's safety on its mission to the asteroid (4) Vesta primarily motivated the work of Dawn's Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vesta's satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet (1) Ceres.

  18. Moon Search Algorithms for NASA's Dawn Mission to Asteroid Vesta

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Mcfadden, Lucy A.; Skillman, David R.; McLean, Brian; Mutchler, Max; Carsenty, Uri; Palmer, Eric E.

    2012-01-01

    A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecraft's safety on its mission to the asteroid Vesta primarily motivated the work of Dawn's Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vesta's satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet Ceres.

  19. Analogue Missions on Earth, a New Approach to Prepare Future Missions on the Moon

    NASA Astrophysics Data System (ADS)

    Lebeuf, Martin

    Human exploration of the Moon is a target by 2020 with an initial lunar outpost planned in polar regions. Current architectures maintain a capability for sorties to other latitudes for science activities. In the early stages of design of lunar outpost infrastructure and science activity planning, it has been recognized that analogue missions could play a major role in Moon mission design. Analogue missions, as high fidelity simulations of human and robotic surface operations, can help field scientists and engineers develop and test strategies as well as user requirements, as they provide opportunities to groundtruth measurements, and for the team to share understanding of key science needs and key engineering trades. These types of missions also provide direct training in planning science operations, and in team building and communication. The Canadian Space Agency's Exploration Core Program targets the development of technology infrastructure elements in key areas of science, technology and robotics in preparation for its role in the future exploration of the Moon and Mars. Within this Program, Analogue Missions specifically target the operations requirements and lessons learned that will reduce costs and lower the risk of planetary surface missions. Analogue missions are simulations of planetary surface operations that take place at analogue sites on Earth. A terrestrial analogue site resembles in some key way: eg. geomorphologically or geochemically, a surface environment of another planet. An analogue mission can, therefore, be defined as an integrated set of activities that represent (or simulate) entire mission designs or narrowly focus on specific aspects of planned or potential future planetary exploration missions. Within the CSA's Exploration Core Program, Analogue Missions facilitate the maturation of science instruments and mission concepts by integrating ongoing space instrument and technology development programs with science and analogue elements. As

  20. Apollo: A Retrospective Analysis

    NASA Technical Reports Server (NTRS)

    Launius, Roger D.

    2004-01-01

    The program to land an American on the Moon and return safely to Earth in the 1960s has been called by some observers a defining event of the twentieth century. Pulitzer Prize-winning historian Arthur M. Schlesinger, Jr., even suggested that when Americans two centuries hence study the twentieth century, they will view the Apollo lunar landing as the critical event of the century. While that conclusion might be premature, there can be little doubt but that the flight of Apollo 11 in particular and the overall Apollo program in general was a high point in humanity s quest to explore the universe beyond Earth. Since the completion of Project Apollo more than twenty years ago there have been a plethora of books, studies, reports, and articles about its origin, execution, and meaning. At the time of the twenty-fifth anniversary of the first landing, it is appropriate to reflect on the effort and its place in U.S. and NASA history. This monograph has been written as a means to this end. It presents a short narrative account of Apollo from its origin through its assessment. That is followed by a mission by mission summary of the Apollo flights and concluded by a series of key documents relative to the program reproduced in facsimile. The intent of this monograph is to provide a basic history along with primary documents that may be useful to NASA personnel and others desiring information about Apollo.

  1. A Simulated Geochemical Rover Mission to the Taurus-Littrow Valley of the Moon

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.; Haskin, Larry A.; Jolliff, Bradley L.

    1995-01-01

    We test the effectiveness of using an alpha backscatter, alpha-proton, X ray spectrometer on a remotely operated rover to analyze soils and provide geologically useful information about the Moon during a simulated mission to a hypothetical site resembling the Apollo 17 landing site. On the mission, 100 soil samples are "analyzed" for major elements at moderate analytical precision (e.g., typical relative sample standard deviation from counting statistics: Si[11%], Al[18%], Fe[6%], Mg[20%], Ca[5%]). Simulated compositions of soils are generated by combining compositions of components representing the major lithologies occurring at the site in known proportions. Simulated analyses are generated by degrading the simulated compositions according to the expected analytical precision of the analyzer. Compositions obtained from the simulated analyses are modeled by least squares mass balance as mixtures of the components, and the relative proportions of those components as predicted by the model are compared with the actual proportions used to generate the simulated composition. Boundary conditions of the modeling exercise are that all important lithologic components of the regolith are known and are represented by model components, and that the compositions of these components are well known. The effect of having the capability of determining one incompatible element at moderate precision (25%) is compared with the effect of the lack of this capability. We discuss likely limitations and ambiguities that would be encountered, but conclude that much of our knowledge about the Apollo 17 site (based on the return samples) regarding the distribution and relative abundances of lithologies in the regolith could be obtained. This success requires, however, that at least one incompatible element be determined.

  2. Radish plant exposed to lunar material collected on the Apollo 12 mission

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The leaves of this radish plant were rubbed with lunar material colleted on the Apollo 12 lunar landing mission in experiments conducted in the Manned Spacecraft Center's Lunar Receiving Laboratory. The plant was exposed to the material 30 days before this photograph was made. Evidently no ill effects resulted from contact with the lunar soil.

  3. Dual exposure view of exterior and interior of Apollo Mission simulator

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Dual exposure showing the Apollo Mission Simulator in bldg 5. In the exterior view Astronauts William A. Anders, Michael Collins, and Frank Borman (reading from top of stairs) are about to enter the simulator. Interior view shows the three astronauts in the simulator. They are (left to right) Borman, Collins, and Anders.

  4. Dr. George Mueller Follows the Progress of the Apollo 11 Mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Dr. George E. Mueller, Associate Administrator for Manned Space Flight, NASA, follows the progress of the Apollo 11 mission. This photo was taken on July 16, 1969 in the Launch Control Center at the Spaceport on the morning of the launch.

  5. Apollo 16 mission report. Supplement 2: Service Propulsion system final flight evaluation

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Wood, S. C.

    1974-01-01

    The Apollo 16 Mission was the sixteenth in a series of flights using Apollo flight hardware and included the fifth lunar landing of the Apollo Program. The Apollo 16 Mission utilized CSM 113 which was equipped with SPS Engine S/N 66 (Injector S/N 137). The engine configuration and expected performance characteristics are presented. Since previous flight results of the SPS have consistently shown the existence of a negative mixture ratio shift, SPS Engine S/N 66 was reorificed to increase the mixture ratio for this mission. The propellant unbalance for the two major engine firings is compared with the predicted unbalance. Although the unbalance at the end of the TEI burn is significantly different than the predicted unbalance, the propellant mixture ratio was well within limits. The SPS performed six burns during the mission, with a total burn duration of 575.3 seconds. The ignition time, burn duration and velocity gain for each of the six SPS burns are reported.

  6. Radiation exposure and protection for moon and Mars missions

    SciTech Connect

    MacFarlane, R.E.; Prael, R.E.; Strottman, D.D.; Strniste, G.F.; Feldman, W.C.

    1991-04-01

    A deep space radiation environment of galactic cosmic rays and energetic particles from solar flares imposes stringent requirements for radiation shielding for both personnel and electronic equipment at a moon base or on a Mars expedition. Current Los Alamos capabilities for calculating the effect of such shielding are described, and extensions and validation needed before actual manned deep space missions are launched are outlined. The biological effects of exposure to cosmic-ray ions and to low doses of radiation at low dose rates are poorly understood. Recent Los Alamos work on mutation effects in cells, DNA repair processes, and the analysis of chromosomal aberrations promises to increase our understanding of the basic processes, to provide methods to screen for radiation sensitivity, and to provide advanced dosimetry equipment for space missions.

  7. Training Space Surgeons for Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Pool, S. L.; McSwain, N.

    2004-01-01

    Over a period of 4 years, several working groups reviewed the provisions for medical care in low earth orbit and for future flights such as to the Moon and Mars. More than 60 medical experts representing a wide variety of clinical backgrounds participated in the working groups. They concluded that NASA medical training for long-duration missions, while critical to success, is currently aimed at short-term skill retention. They noted that several studies have shown that skills and knowledge deteriorate rapidly in the absence of adequate sustainment training. American Heart Association studies have shown that typically less than twenty-five percent of learned skills remain after 6 to 8 months. In addition to identifying the current training deficiencies, the working groups identified additional skill and knowledge sets required for missions to the Moon and Mars and curricula were developed to address inadequacies. Space medicine care providers may be categorized into 4 types based on health care responsibilities and level of education required. The first 2 types are currently recognized positions within the flight crew: crew medical officers and astronaut-physician. The crew medical officer (CMO), a non-medically trained astronaut crewmember, is given limited emergency medical technician-like training to provide medical care on orbit. Many of hidher duties are carried out under the direction of a ground-based flight surgeon in mission control. Second is the astronaut- physician whose primary focus is on mission specialist duties and training, and who has very limited ability to maintain medical proficiency. Two new categories are recommended to complete the 4 types of care providers primarily to address the needs of those who will travel to the Moon and Mars. Physician astronaut - a physician, who in addition to being a mission specialist, will be required to maintain and enhance hidher medical proficiency while serving as an astronaut. Space surgeon - a physician

  8. Apollo experience report: Guidance and control systems: Automated control system for unmanned mission AS-201

    NASA Technical Reports Server (NTRS)

    Holloway, G. F.

    1975-01-01

    The Apollo command module heat shield and Apollo command and service module/Saturn launch vehicle structural integrity were evaluated in an unmanned test flight. An automated control system was developed to provide the mission event sequencing, the real-time ground control interface, and the backup attitude reference system for the unmanned flight. The required mission events, the design logic, the redundancy concept, and the ground-support-equipment concept are described and some development problem areas are discussed. The mission event time line and the real-time ground command list are included to provide an outline of the control system capabilities and requirements. The mission was accomplished with the automated control system, which functioned without flight anomalies.

  9. Chandrayaan-1: India's First Mission to the Moon

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil

    India's first lunar mission Chandrayaan-1 was launched on Oct. 22, 2008, using Indian Polar Satellite Launch Vehicle (PSLV-XL), and was inserted into lunar polar orbit on Nov. 8, 2008. The spacecraft was placed in the designated 100 km lunar polar orbit on Nov. 12, 2008, and the Moon Impact Probe (MIP) was released on Nov. 14, to land at a pre-determined location in the south pole. The MIP carried a mass spectrometer (CHACE), a radar altimeter and a visible camera. The battery of ten experiments on the Chandrayaan-1 orbiter included the Terrain Mapping stereo Camera (TMC), Hyper Spectral Imager (HYSI), Lunar Laser Ranging Instrument (LLRI), Low Energy (1-10 keV) X-ray spectrometer (C1XS, which also included Solar X-ray Monitor (SXM) working in the 2-10 keV energy range), High Energy (10-200 keV) X-ray/gamma-ray spectrometer (HEX), Miniature Synthetic Aperture Radar (Mini-SAR), Near-Infrared Spectrometer (SIR-2), Sub-keV Atom Reflecting Analyzer (SARA, which consist of 2 instruments: Chandrayaan Energetic Neutral Atom Analyzer (CENA) and Solar Wind monitor (SWIM)), Moon Mineral Mapper (MMM), and Radiation Dose Monitor (RADOM). All the experiments performed very well and a large amount of high quality data has been obtained until the end of August 2009, when mission was terminated due to communication loss. New findings and discoveries have been reported from observations made by experiments on the Chandrayaan-1. This talk will summarize the Chandrayaan-1 mission and its major scientific results. Chandrayaan-1 mission is a good example of an international cooperation and collaboration and marked the beginning of India's foray into planetary exploration.

  10. Apollo Soyuz test project, USA-USSR. [mission plan of spacecraft docking

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The mission plan of the docking of a United States Apollo and a Soviet Union Soyuz spacecraft in Earth orbit to test compatible rendezvous and docking equipment and procedures is presented. Space experiments conducted jointly by the astronauts and cosmonauts during the joint phase of the mission as well as experiments performed solely by the U.S. astronauts and spread over the nine day span of the flight are included. Biographies of the astronauts and cosmonauts are given.

  11. Saturn 5 launch vehicle flight evaluation report-AS-511 Apollo 16 mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A postflight analysis of the Apollo 16 mission is presented. The basic objective of the flight evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are deet determined, and recommendations are made for corrective actions. Summaries of launch operations and spacecraft performance are included. Significant events for all phases of the flight are provide in tabular form.

  12. Impact landing ends SMART-1 mission to the Moon

    NASA Astrophysics Data System (ADS)

    2006-09-01

    SMART-1 scientists, engineers and space operations experts witnessed the final moments of the spacecraft’s life in the night between Saturday 2 and Sunday 3 September at ESA’s European Space Operations Centre (ESOC), in Darmstadt, Germany. The confirmation of the impact reached ESOC at 07:42:22 CEST (05:42:22 UT) when ESA’s New Norcia ground station in Australia suddenly lost radio contact with the spacecraft. SMART-1 ended its journey in the Lake of Excellence, in the point situated at 34.4º South latitude and 46.2º West longitude. The SMART-1 impact took place on the near side of the Moon, in a dark area just near the terminator (the line separating the day side from the night side), at a “grazing” angle of about one degree and a speed of about 2 kilometres per second. The impact time and location was planned to favour observations of the impact event from telescopes on Earth, and was achieved by a series of orbit manoeuvres and corrections performed during the course of summer 2006, the last of which was on 1 September. Professional and amateur ground observers all around the world - from South Africa to the Canary Islands, South America, the continental United States, Hawaii, and many other locations - were watching before and during the small SMART-1 impact, hoping to spot the faint impact flash and to obtain information about the impact dynamics and about the lunar surface excavated by the spacecraft. The quality of the data and images gathered from the ground observatories - a tribute to the end of the SMART-1 mission and a possible additional contribution to lunar science - will be assessed in the days to come. For the last 16 months and until its final orbits, SMART-1 has been studying the Moon, gathering data about the morphology and mineralogical composition of the surface in visible, infrared and X-ray light. “The legacy left by the huge wealth of SMART-1 data, to be analysed in the months and years to come, is a precious contribution to

  13. APOLLO 17 : Time...Enemy of the Lunar Investigator

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 17 : There's just never enough time to do everything, especially on the moon From the film documentary 'APOLLO 17: On the shoulders of Giants'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APPOLO 17 : Sixth and last manned lunar landing mission in the APOLLO series with Eugene A. Cernan, Ronald E.Evans, and Harrison H. (Jack) Schmitt. Landed at Taurus-Littrow on Dec 11.,1972. Deployed camera and experiments; performed EVA with lunar roving vehicle. Returned lunar samples. Mission Duration 301hrs 51min 59sec

  14. Radioactivity observed in the sodium iodide gamma-ray spectrometer returned on the Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Dyer, C. S.; Trombka, J. I.; Schmadebeck, R. L.; Eller, E.; Bielefeld, M. J.; Okelley, G. D.; Eldridge, J. S.; Northcutt, K. J.; Metzger, A. E.; Reedy, R. C.

    1975-01-01

    In order to obtain information on radioactive background induced in the Apollo 15 and 16 gamma-ray spectrometers (7 cm x 7 cm NaI) by particle irradiation during spaceflight, and identical detector was flown and returned to earth on the Apollo 17 mission. The induced radioactivity was monitored both internally and externally from one and a half hours after splashdown. When used in conjunction with a computation scheme for estimating induced activation from calculated trapped proton and cosmic-ray fluences, these results show an important contribution resulting from both thermal and energetic neutrons produced in the heavy spacecraft by cosmic-ray interactions.

  15. Radiation Effects and Protection for Moon and Mars Missions

    NASA Technical Reports Server (NTRS)

    Parnell, Thomas A.; Watts, John W., Jr.; Armstrong, Tony W.

    1998-01-01

    Manned and robotic missions to the Earth's moon and Mars are exposed to a continuous flux of Galactic Cosmic Rays (GCR) and occasional, but intense, fluxes of Solar Energetic Particles (SEP). These natural radiations impose hazards to manned exploration, but also present some constraints to the design of robotic missions. The hazards to interplanetary flight crews and their uncertainties have been studied recently by a National Research Council Committee (Space Studies Board 1996). Considering the present uncertainty estimates, thick spacecraft shielding would be needed for manned missions, some of which could be accomplished with onboard equipment and expendables. For manned and robotic missions, the effects of radiation on electronics, sensors, and controls require special consideration in spacecraft design. This paper describes the GCR and SEP particle fluxes, secondary particles behind shielding, uncertainties in radiobiological effects and their impact on manned spacecraft design, as well as the major effects on spacecraft equipment. The principal calculational tools and considerations to mitigate the radiation effects are discussed, and work in progress to reduce uncertainties is included.

  16. Apollo 15-Lunar Module Falcon

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This is a photo of the Apollo 15 Lunar Module, Falcon, on the lunar surface. Apollo 15 launched from Kennedy Space Center (KSC) on July 26, 1971 via a Saturn V launch vehicle. Aboard was a crew of three astronauts including David R. Scott, Mission Commander; James B. Irwin, Lunar Module Pilot; and Alfred M. Worden, Command Module Pilot. The first mission designed to explore the Moon over longer periods, greater ranges and with more instruments for the collection of scientific data than on previous missions, the mission included the introduction of a $40,000,000 lunar roving vehicle (LRV) that reached a top speed of 16 kph (10 mph) across the Moon's surface. The successful Apollo 15 lunar landing mission was the first in a series of three advanced missions planned for the Apollo program. The primary scientific objectives were to observe the lunar surface, survey and sample material and surface features in a preselected area of the Hadley-Apennine region, setup and activation of surface experiments and conduct in-flight experiments and photographic tasks from lunar orbit. Apollo 15 televised the first lunar liftoff and recorded a walk in deep space by Alfred Worden. Both the Saturn V rocket and the LRV were developed at the Marshall Space Flight Center.

  17. Apollo experience report: Mission evaluation team postflight documentation

    NASA Technical Reports Server (NTRS)

    Dodson, J. W.; Cordiner, D. H.

    1975-01-01

    The various postflight reports prepared by the mission evaluation team, including the final mission evaluation report, report supplements, anomaly reports, and the 5-day mission report, are described. The procedures for preparing each report from the inputs of the various disciplines are explained, and the general method of reporting postflight results is discussed. Recommendations for postflight documentation in future space programs are included. The official requirements for postflight documentation and a typical example of an anomaly report are provided as appendixes.

  18. Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koji; Yamada, Ryuhei; Kikuchi, Fuyuhiko; Kamata, Shunichi; Ishihara, Yoshiaki; Iwata, Takahiro; Hanada, Hideo; Sasaki, Sho

    2015-09-01

    The internal structure of the Moon is important for discussions on its origin and evolution. However, the deep structure of the Moon is still debated due to the absence of comprehensive seismic data. This study explores lunar interior models by complementing Apollo seismic travel time data with selenodetic data which have recently been improved by Gravity Recovery and Interior Laboratory (GRAIL) and Lunar Laser Ranging (LLR). The observed data can be explained by models including a deep-seated zone with a low velocity (S wave velocity = 2.9 ± 0.5 km/s) and a low viscosity (˜3 × 1016 Pa s). The thickness of this zone above the core-mantle boundary is larger than 170 km, showing a negative correlation with the radius of the fluid outer core. The inferred density of the lowermost mantle suggests a high TiO2 content (>11 wt.%) which prefers a mantle overturn scenario.

  19. Small satellite survey mission to the second Earth moon

    NASA Astrophysics Data System (ADS)

    Pergola, P.

    2013-11-01

    This paper presents an innovative space mission devoted to the survey of the small Earth companion asteroid by means of nano platforms. Also known as the second Earth moon, Cruithne, is the target identified for the mission. Both the trajectory to reach the target and a preliminary spacecraft budget are here detailed. The idea is to exploit high efficient ion thrusters to reduce the propellant mass fraction in such a high total impulse mission (of the order of 1e6 Ns). This approach allows for a 100 kg class spacecraft with a very small Earth escape energy (5 km2/s2) to reach the destination in about 320 days. The 31% propellant mass fraction allows for a payload mass fraction of the order of 8% and this is sufficient to embark on such a small spacecraft a couple of nano-satellites deployed once at the target to carry out a complete survey of the asteroid. Two 2U Cubesats are here considered as representative payload, but also other scientific payloads or different platforms might be considered according with the specific mission needs. The small spacecraft used to transfer these to the target guarantees the manoeuvre capabilities during the interplanetary journey, the protection against radiations along the path and the telecommunication relay functions for the data transmission with Earth stations. The approach outlined in the paper offers reliable solutions to the main issues associated with a deep space nano-satellite mission thus allowing the exploitation of distant targets by means of these tiny spacecraft. The study presents an innovative general strategy for the NEO observation and Cruithne is chosen as test bench. This target, however, mainly for its relevant inclination, requires a relatively large propellant mass fraction that can be reduced if low inclination asteroids are of interest. This might increase the payload mass fraction (e.g. additional Cubesats and/or additional scientific payloads on the main bus) for the same 100 kg class mission.

  20. Decompression sickness in simulated Apollo-Soyuz space missions

    NASA Technical Reports Server (NTRS)

    Cooke, J. P.; Robertson, W. G.

    1974-01-01

    Apollo-Soyuz docking module atmospheres were evaluated for incidence of decompression sickness in men simulating passage from the Russian spacecraft atmosphere, to the U.S. spacecraft atmosphere, and then to the American space suit pressure. Following 8 hr of 'shirtsleeve' exposure to 31:69::O2:N2 gas breathing mixture, at 10 psia, subjects were 'denitrogenated' for either 30 or 60 min with 100% O2 prior to decompression directly to 3.7 psia suit equivalent while performing exercise at fixed intervals. Five of 21 subjects experienced symptoms of decompression sickness after 60 min of denitrogenation compared to 6 among 20 subjects after 30 min of denitrogenation. A condition of Grade I bends was reported after 60 min of denitrogenation, and 3 of these 5 subjects noted the disappearance of all symptoms of bends at 3.7 psia. After 30 min of denitrogenation, 2 out of 6 subjects developed Grade II bends at 3.7 psia.

  1. Lost moon, saved lives: using the movie Apollo 13 as a video primer in behavioral skills for simulation trainees and instructors.

    PubMed

    Halamek, Louis P

    2010-10-01

    Behavioral skills such as effective communication, teamwork, and leadership are critically important to successful outcomes in patient care, especially in resuscitation situations where correct decisions must be made rapidly. However, historically, these important skills have rarely been specifically addressed in learning programs directed at healthcare professionals. Not only have most healthcare professionals had little or no formal education and training in applying behavioral skills to their patient care activities but also many of those serving as instructors and content experts for training programs have few resources available that clearly illustrate what these skills are and how they may be used in the context of real clinical situations. This represents a serious shortcoming in the education and training of healthcare professionals and stands in distinct contrast to other industries.Aerospace, similar to other high-consequence industries, has a long history of the use of simulation to improve human performance and reduce risk: astronauts and the engineers in Mission Control spend hundreds of hours in simulated flight in preparation for every mission. The value of time spent in the simulator was clearly illustrated during the flight of Apollo 13, the third mission to land men on the moon. The Apollo 13 crew had to overcome a number of life-threatening technical and medical problems, and it was their simulation-based training that allowed them to display the teamwork, ingenuity, and determination needed to return to earth safely.The movie Apollo 13 depicts in a highly realistic manner the events that occurred during the flight, including the actions of the crew in space and those in Mission Control in Houston. Three scenes from this movie are described in this article; each serves as a useful example for healthcare professionals of the importance of simulation-based learning and the application of behavioral skills to successful resolution of crises. This

  2. Mission objectives for geological exploration of the Apollo 16 landing site

    NASA Technical Reports Server (NTRS)

    Muehlberger, W. R.; Horz, F.; Sevier, J. R.; Ulrich, G. E.

    1980-01-01

    The objectives of the Apollo 16 mission to delineate the nature and origin of two major physiographic units of the central lunar highlands are discussed. Surface exploration plans, specific sampling procedures, operational constraints, and suites of samples that were collected for specific local objectives are described. Pre-mission hypotheses that favored a volcanic origin for the Cayley plains as well as the Descartes mountains were proved to be wrong by the mission results, but not enough samples have been studied to draw any other definite conclusions. Two contrasting schools of thought about the origin of the Apollo fragmental impact deposits are described: one maintains that the samples are predominantly of local origin, while the other suggests more distant, basin-related sources.

  3. Overview of a Preliminary Destination Mission Concept for a Human Orbital Mission to the Martial Moons

    NASA Technical Reports Server (NTRS)

    Mazanek, D. D.; Abell, P. A.; Antol, J.; Barbee, B. W.; Beaty, D. W.; Bass, D. S.; Castillo-Rogez, J. C.; Coan, D. A.; Colaprete, A.; Daugherty, K. J.; Drake, B. G.; Earle, K. D.; Graham, L. D.; Hembree, R. M.; Hoffman, S. J.; Jefferies, S. A.; Lupisella, M. L.; Reeves, David M.

    2012-01-01

    The National Aeronautics and Space Administration s Human Spaceflight Architecture Team (HAT) has been developing a preliminary Destination Mission Concept (DMC) to assess how a human orbital mission to one or both of the Martian moons, Phobos and Deimos, might be conducted as a follow-on to a human mission to a near-Earth asteroid (NEA) and as a possible preliminary step prior to a human landing on Mars. The HAT Mars-Phobos-Deimos (MPD) mission also permits the teleoperation of robotic systems by the crew while in the Mars system. The DMC development activity provides an initial effort to identify the science and exploration objectives and investigate the capabilities and operations concepts required for a human orbital mission to the Mars system. In addition, the MPD Team identified potential synergistic opportunities via prior exploration of other destinations currently under consideration.

  4. Mars Moons Prospector Mission with CubeSats

    NASA Astrophysics Data System (ADS)

    Udrea, Bogdan; Nayak, Mikey; Allen, Brett; Bourke, Justin; Casariego, Gabriela; Gosselin, Steven; Hiester, Evan; Maier, Margaret; Melchert, Jeanmarie; Patel, Chitrang; Reis, Leslie; Smith, Gregory; Snow, Travis; Williams, Sarah; Franquiz, Francsico

    2015-04-01

    The preliminary design of a low-cost Discovery class mission for prospecting Mars moons Phobos and Deimos is undertaken as capstone senior design class in spacecraft design. The mission design is centred on a mothership that carries a dozen of 12U CubeSats, each of 22x22x34cm in size and 24kg in mass. The mothership is equipped with a set of instruments for the investigation of regolith samples, similar to those with identical functions on the Curiosity and the Mars 2020 rovers. The mothership also serves as a telecommunication hub with Earth. Six of the CubeSats have the role of touching down and picking up soil samples for delivery to the mothership for analysis and the six have the role of visually inspecting the moon at close proximity in visible and near and mid infrared light and deploying instruments on the surface of the moons. A suite of miniaturized instruments are investigated for deployment on the CubeSats. The CubeSats are designed to dock with the mothership to be refueled and they heavily leverage the design of the ARAPAIMA (www.eraucubesat.org) proximity operations 6U CubeSat currently in development at ERAU for the Air Force University Nanosatellite Program. The concept of operations envisions the launch of the mothership as a primary payload on a Mars transfer trajectory. After performing a Mars capture maneuver the mothership undertakes autonomous aerobraking to achieve a highly elliptic orbit with the apoapsis at Deimos altitude of 23,460km. Further maneuvering places the mothership in a relative orbit about Deimos from which the CubeSats are deployed. Once the investigation of Deimos is completed the mothership retrieves its CubeSats and maneuver to achieve a relative orbit about Phobos. An investigation similar to that of Deimos is performed. If the mass margins allow it then an extended mission will attempt to confirm the presence of a dust ring between Phobos and Deimos and conduct multi-point atmospheric investigations with supplemental 3U

  5. Report of the Terrestrial Bodies Science Working Group. Volume 4: The moon. [lunar polar orbiter mission

    NASA Technical Reports Server (NTRS)

    Haskin, L. A.; Duke, M. B.; Hubbard, N.; Johnson, T. V.; Malin, M. C.; Minear, J.

    1977-01-01

    A rationale for furture exploration of the moon is given. Topics discussed include the objectives of the lunar polar orbiter mission, the mission profile, and general characteristics of the spacraft to be used.

  6. Collaboration on SEP Missions to the Moon and Small Bodies

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.

    1997-01-01

    In response to the Discovery announcement of opportunity a team consisting of TRW Lewis Research Center, JPL and UCLA with scientific co-investigators from government and University laboratories have proposed to fly the first planetary solar electric propulsion (SEP) mission. Diana is designed to carry an X-ray and gamma ray spectrometer, and imaging spectrometer, a framing camera, a laser altimer an ion spectrometer and a magnetometer. In order to obtain lunar gravity data from the far side of the moon a relay satellite is placed into high polar orbit about the moon to relay the Doppler-shifted telemetry to Earth. Diana will spend two months in a 700 km polar orbit obtaining mineralogical data from a full spectral map of the lunar surface, and then spend a year in a 100 km (or below) polar orbit mapping the lunar elemental composition, its topography, gravity field, ions from its atmosphere and its permanent and induced magnetic fields. After the low altitude mapping phase the ion thrusters propel the spacecraft out of the lunar sphere of influence and onto a heloioscentric trajectory to rendezvous with dormant comet Wilson-Harrington. The ground truth provided by the returned lunar samples to validate the remote sensing instruments for lunar studies will also serve to validate the Wilson-Harrington observations since the same instruments will be used at both bodies.

  7. Tether-mission design for multiple flybys of moon Europa

    NASA Astrophysics Data System (ADS)

    Sanmartin, J. R. S.; Charro, M. C.; Sanchez-Arriaga, G. S. A.; Sanchez-Torres, A. S. T.

    2015-10-01

    A tether mission to carry out multiple flybys of Jovian moon Europa is here presented. There is general agreement on elliptic-orbit flybys of Europa resulting in cost to attain given scientific goals lower than if actually orbiting the moon, tethers being naturally fit to fly-by rather than orbit moons1. The present mission is similar in this respect to the Clipper mission considered by NASA, the basic difference lying in location of periapsis, due to different emphasis on mission-challenge metrics. Clipper minimizes damaging radiation-dose by avoiding the Jupiter neighborhood and its very harsh environment; periapsis would be at Europa, apoapsis as far as moon Callisto. As in all past outer-planet missions, Clipper faces, however, critical power and propulsion needs. On the other hand, tethers can provide both propulsion and power, but must reach near the planet to find high plasma density and magnetic field values, leading to high induced tether current, and Lorentz drag and power. The bottom line is a strong radiation dose under the very intense Radiation Belts of Jupiter. Mission design focuses on limiting dose. Perijove would be near Jupiter, at about 1.2-1.3 Jovian radius, apojove about moon Ganymede, corresponding to 1:1 resonance with Europa, so as to keep dose down: setting apojove at Europa, for convenient parallel flybys, would require two perijove passes per flyby (the Ganymede apojove, resulting in high eccentricity, about 0.86, is also less requiring on tether operations). Mission is designed to attain reductions in eccentricity per perijove pass as high as Δe ≈ - 0.04. Due the low gravity-gradient, tether spinning is necessary to keep it straight, plasma contactors placed at both ends taking active turns at being cathodic. Efficiency of capture of the incoming S/C by the tether is gauged by the ratio of S/C mass to tether mass; efficiency is higher for higher tape-tether length and lower thickness and perijove. Low tether bowing due to the Lorentz

  8. JUICE: a European mission to Jupiter and its icy moons

    NASA Astrophysics Data System (ADS)

    Titov, D.; Erd, C.; Duvet, L.; Wielders, A.; Torralba-Elipe, I.; Altobelli, N.

    2013-09-01

    JUICE (JUpiter ICy moons Explorer) is the first L-class mission selected for the ESA's Cosmic Vision programme 2015-2025 which has just entered the definition phase. JUICE will perform detailed investigations of Jupiter and its system in all their inter-relations and complexity with particular emphasis on Ganymede as a planetary body and potential habitat. Investigations of Europa and Callisto will complete a comparative picture of the Galilean moons. By performing detailed investigations of Jupiter's system, JUICE will address in depth two key questions of the ESA's Cosmic Vision programme: (1) What are the conditions for planet formation and the emergence of life? and (2) How does the Solar System work? The overarching theme for JUICE has been formulated as: The emergence of habitable worlds around gas giants. At Ganymede the mission will characterize in detail the ocean layers; provide topographical, geological and compositional mapping of the surface; study the physical properties of the icy crusts; characterize the internal mass distribution, investigate the exosphere; study Ganymede's intrinsic magnetic field and its interactions with the Jovian magnetosphere. For Europa, the focus will be on the non-ice chemistry, understanding the formation of surface features and subsurface sounding of the icy crust over recently active regions. Callisto will be explored as a witness of the early solar system. JUICE will perform a comprehensive multidisciplinary investigation of the Jupiter system as an archetype for gas giants including exoplanets. The circulation, meteorology, chemistry and structure of the Jovian atmosphere will be studied from the cloud tops to the thermosphere. The focus in Jupiter's magnetosphere will include an investigation of the three dimensional properties of the magnetodisc and in-depth study of the coupling processes within the magnetosphere, ionosphere and thermosphere. Aurora and radio emissions and their response to the solar wind will be

  9. LUNETTE - A Discovery Class Mission to the Moon to Establish a Geophysical Network

    NASA Astrophysics Data System (ADS)

    Neal, C. R.; Banerdt, W. B.; Alkalai, L.

    2009-12-01

    Lunette is a Discovery mission concept that is designed to deliver three landed geophysical packages (“nodes”) to widely spaced (3000-5000 km) locations on the lunar surface. This mission will provide detailed information on the interior of the Moon through seismic, thermal, electromagnetic, and precision laser ranging measurements, and will substantially address the lunar interior science objectives set out in “The Scientific Context for the Exploration of the Moon” (NRC, 2008) and ”The Final Report for the International Lunar Network Anchor Nodes Science Definition Team” (NASA, 2009). Each node will contain: a very broad band seismometer that is at least an order of magnitude more sensitive over a wider frequency band than the seismometers used during Apollo; a heat flow probe, delivered via a self-penetrating “mole” device; a low-frequency electromagnetic sounding instrument, which will measure the electromagnetic properties of the outermost few hundred km of the Moon; and a corner-cube laser retroreflector for lunar laser ranging. These instruments will provide an enormous advance in our knowledge of the structure and processes of the lunar interior over that provided by Apollo-era data, allowing insights into the earliest history of the formation and evolution of the Moon. The instruments that comprise the individual nodes are all optimized for low power operation and this mission will not rely on a radioisotope power supply. Improvements in solar energy and battery technology, along with an Event Timer Module which allows the lander to shut down its electronics for most of the lunar night, enables a solar/battery mission architecture with continuous instrument operation and a two-year nominal lifetime. The instruments have a combined mass of <12 kg, and the dry mass of each lander will be on the order of 100 kg, including solar panels, batteries, and communications. The most power hungry instrument is the heat flow “mole”, which requires

  10. Objectives of a prospective Ukrainian orbiter mission to the moon

    NASA Astrophysics Data System (ADS)

    Shkuratov, Yu. G.; Lytvynenko, L. M.; Shulga, V. M.; Yatskiv, Ya. S.; Vidmachenko, A. P.; Kislyulk, V. S.

    2003-06-01

    Ukraine has launch vehicles that are able to deliver about 300 kg to lunar orbit. A future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after the Clementine and Lunar Prospector missions and future missions like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical photopolarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface at a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are a synthetic aperture imaging radar, ground-penetrating radar, and imaging UV-spectropolarimeter. The main purpose of the synthetic aperture imaging radar experiment is to study with high-resolution (50 m) permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential for resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for long-term manned bases on the Moon. Radar and optical imaging and mapping of other interesting regions could be also planned. Multi-frequency, multi-polarization sounding of the lunar surface with ground-penetrating radar can provide data about internal structure of the lunar surface from meters to several hundred meters deep. The ground-penetrating radar can be used for measuring megaregolith properties, detection of cryptomaria, and studies of internal structure of the largest craters. Modest spatial resolution (50 m) of the imaging UV-spectropolarimeter should provide total coverage (or coverage of a large portion) of the lunar surface in oblique viewing at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional experiments could use the synthetic aperture

  11. Apollo Science

    ERIC Educational Resources Information Center

    Biggar, G. M.

    1973-01-01

    Summarizes the scientific activities of the Apollo program, including findings from analyses of the returned lunar sample. Descriptions are made concerning the possible origin of the moon and the formation of the lunar surface. (CC)

  12. Tether-mission design for multiple flybys of moon Europa

    NASA Astrophysics Data System (ADS)

    Sanmartin, J. R. S.; Charro, M. C.; Sanchez-Arriaga, G. S. A.; Sanchez-Torres, A. S. T.

    2015-10-01

    A tether mission to carry out multiple flybys of Jovian moon Europa is here presented. There is general agreement on elliptic-orbit flybys of Europa resulting in cost to attain given scientific goals lower than if actually orbiting the moon, tethers being naturally fit to fly-by rather than orbit moons1. The present mission is similar in this respect to the Clipper mission considered by NASA, the basic difference lying in location of periapsis, due to different emphasis on mission-challenge metrics. Clipper minimizes damaging radiation-dose by avoiding the Jupiter neighborhood and its very harsh environment; periapsis would be at Europa, apoapsis as far as moon Callisto. As in all past outer-planet missions, Clipper faces, however, critical power and propulsion needs. On the other hand, tethers can provide both propulsion and power, but must reach near the planet to find high plasma density and magnetic field values, leading to high induced tether current, and Lorentz drag and power. The bottom line is a strong radiation dose under the very intense Radiation Belts of Jupiter. Mission design focuses on limiting dose. Perijove would be near Jupiter, at about 1.2-1.3 Jovian radius, apojove about moon Ganymede, corresponding to 1:1 resonance with Europa, so as to keep dose down: setting apojove at Europa, for convenient parallel flybys, would require two perijove passes per flyby (the Ganymede apojove, resulting in high eccentricity, about 0.86, is also less requiring on tether operations). Mission is designed to attain reductions in eccentricity per perijove pass as high as Δe ≈ - 0.04. Due the low gravity-gradient, tether spinning is necessary to keep it straight, plasma contactors placed at both ends taking active turns at being cathodic. Efficiency of capture of the incoming S/C by the tether is gauged by the ratio of S/C mass to tether mass; efficiency is higher for higher tape-tether length and lower thickness and perijove. Low tether bowing due to the Lorentz

  13. Apollo 15 mission. Temporary loss of command module television picture

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An investigation was made into the temporary loss of command module color television picture by the ground station converter at Mission Control Center. Results show the picture loss was caused by a false synchronization pulse that resulted from the inability of the black level clipping circuit to respond adequately to the video signal when bright sunlight suddenly entered the camera's field of view.

  14. The Effects of Lunar Dust on EVA Systems During the Apollo Missions

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2005-01-01

    Mission documents from the six Apollo missions that landed on the lunar surface have been studied in order to catalog the effects of lunar dust on Extra-Vehicular Activity (EVA) systems, primarily the Apollo surface space suit. It was found that the effects could be sorted into nine categories: vision obscuration, false instrument readings, dust coating and contamination, loss of traction, clogging of mechanisms, abrasion, thermal control problems, seal failures, and inhalation and irritation. Although simple dust mitigation measures were sufficient to mitigate some of the problems (i.e., loss of traction) it was found that these measures were ineffective to mitigate many of the more serious problems (i.e., clogging, abrasion, diminished heat rejection). The severity of the dust problems were consistently underestimated by ground tests, indicating a need to develop better simulation facilities and procedures.

  15. The Effects of Lunar Dust on EVA Systems During the Apollo Missions

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2007-01-01

    Mission documents from the six Apollo missions that landed on the lunar surface have been studied in order to catalog the effects of lunar dust on Extra-Vehicular Activity (EVA) systems, primarily the Apollo surface space suit. It was found that the effects could be sorted into nine categories: vision obscuration, false instrument readings, dust coating and contamination, loss of traction, clogging of mechanisms, abrasion, thermal control problems, seal failures, and inhalation and irritation. Although simple dust mitigation measures were sufficient to mitigate some of the problems (i.e., loss of traction) it was found that these measures were ineffective to mitigate many of the more serious problems (i.e., clogging, abrasion, diminished heat rejection). The severity of the dust problems were consistently underestimated by ground tests, indicating a need to develop better simulation facilities and procedures.

  16. Moon-Mars Analogue Mission (EuroMoonMars 1 at the Mars Desert Research Station)

    NASA Astrophysics Data System (ADS)

    Lia Schlacht, Irene; Voute, Sara; Irwin, Stacy; Foing, Bernard H.; Stoker, Carol R.; Westenberg, Artemis

    The Mars Desert Research Station (MDRS) is situated in an analogue habitat-based Martian environment, designed for missions to determine the knowledge and equipment necessary for successful future planetary exploration. For this purpose, a crew of six people worked and lived together in a closed-system environment. They performed habitability experiments within the dwelling and conducted Extra-Vehicular Activities (EVAs) for two weeks (20 Feb to 6 Mar 2010) and were guided externally by mission support, called "Earth" within the simulation. Crew 91, an international, mixed-gender, and multidisciplinary group, has completed several studies during the first mission of the EuroMoonMars campaign. The crew is composed of an Italian designer and human factors specialist, a Dutch geologist, an American physicist, and three French aerospace engineering students from Ecole de l'Air, all with ages between 21 and 31. Each crewmember worked on personal research and fulfilled a unique role within the group: commander, executive officer, engineer, health and safety officer, scientist, and journalist. The expedition focused on human factors, performance, communication, health and safety pro-tocols, and EVA procedures. The engineers' projects aimed to improve rover manoeuvrability, far-field communication, and data exchanges between the base and the rover or astronaut. The crew physicist evaluated dust control methods inside and outside the habitat. The geologist tested planetary geological sampling procedures. The crew designer investigated performance and overall habitability in the context of the Mars Habitability Experiment from the Extreme-Design group. During the mission the crew also participated in the Food Study and in the Ethospace study, managed by external groups. The poster will present crew dynamics, scientific results and daily schedule from a Human Factors perspective. Main co-sponsors and collaborators: ILEWG, ESA ESTEC, NASA Ames, Ecole de l'Air, SKOR, Extreme

  17. Global Elemental Maps of the Moon Using Gamma Rays Measured by the Kaguya (SELENE) Mission

    NASA Astrophysics Data System (ADS)

    Reedy, Robert C.; Hasebe, N.; Yamashita, N.; Karouji, Y.; Kobayashi, S.; Hareyama, M.; Hayatsu, K.; Okudaira, O.; Kobayashi, M.; d'Uston, C.; Maurice, S.; Gasnault, O.; Forni, O.; Diez, B.; Kim, K.

    2009-09-01

    The Kaguya spacecraft was in a circular polar lunar orbit from 17 October 2007 until 10 June 2009 as part of JAXA's SELENE lunar exploration program. Among the 13 instruments, an advanced gamma-ray spectrometer (GRS) studied the distributions of many elements. The gamma rays were from the decay of the naturally-radioactive elements K, Th, and U and from cosmic-ray interactions with H, O, Mg, Al, Si, Ca, Ti, Fe, and other elements. They are emitted from the top few tens of centimeters of the lunar surface. The main detector of the GRS was high-purity germanium, which was surrounded by bismuth germanate and plastic scintillators to reduce backgrounds. Gamma-ray spectra were sent to the Earth every 17 seconds (1 degree of the lunar surface) with energies from 0-12 MeV. These spectra were adjusted to a standard gain and then summed over many lunar regions. Background spectra were also determined. Over 200 gamma rays have been observed, with most being backgrounds but many being from the lunar surface, an order more gamma rays than from any previous lunar GRS missions. Elemental results have been determined for K, Th, and U. Results for K and Th are consistent with those from the GRS on Apollo and Lunar Prospector. The first lunar global maps for U have been determined. These 3 elements show strong correlations among themselves, which implies that the Moon is homogeneous in these elements over the entire Moon. Their elemental ratios agree well with those measured in lunar samples and meteorites. Preliminary maps for Fe are consistent with earlier maps. Other elements, including O, Mg, Si, Ca, and Ti, are being mapped, and their distributions vary over the lunar surface and appear consistent with previous lunar elemental results. This work was supported by JAXA, NASA, and CNRS, France.

  18. The SMART-1 Mission: Photometric Studies of the Moon with the AMIE Camera

    NASA Astrophysics Data System (ADS)

    Shkuratov, Yu. G.; Kreslavsky, M. A.; Stankevich, D. G.; Kaydash, V. G.; Pinet, P.; Shevchenko, V. V.; Foing, B. H.; Josset, J.-L.

    2003-07-01

    We describe the future SMART-1 European Space Mission whose objective is to study the lunar surface from a polar lunar orbit. In particular, it is anticipated that selected regions of the Moon will be photographed using the AMIE camera with a mean spatial resolution of about 100 m in three spectral channels (0.75, 0.92, and 0.96 μm) over a wide range of phase angles. Since these spectral channels and the AMIE resolution are close to those of the UVVIS camera onboard the Clementine spacecraft, the simultaneous processing of SMART-1 and Clementine data can be planned, for example, to obtain phase-ratio images. These images carry information on the structural features of the lunar surface. In particular, UVVIS/Clementine data revealed a photometric anomaly at the Apollo-15 landing site associated with the blowing of the lunar regolith by the lander engine. Anomalies were found in the ejection zones of several fresh craters.

  19. Constraints on the formation age and evolution of the Moon from 142Nd-143Nd systematics of Apollo 12 basalts

    NASA Astrophysics Data System (ADS)

    McLeod, Claire L.; Brandon, Alan D.; Armytage, Rosalind M. G.

    2014-06-01

    The Moon likely formed as a result of a giant impact between proto-Earth and another large body. The timing of this event and the subsequent lunar differentiation timescales are actively debated. New high-precision Nd isotope data of Apollo mare basalts are used to evaluate the Low-Ti, High-Ti and KREEP mantle source reservoirs within the context of lunar formation and evolution. The resulting models are assessed using both reported 146Sm half-lives (68 and 103 Myr). The linear relationship defined by 142Nd-143Nd systematics does not represent multi-component mixing and is interpreted as an isochron recording a mantle closure age for the Sm-Nd system in the Moon. Using a chondritic source model with present day μ142Nd of -7.3, the mare basalt mantle source reservoirs closed at 4.45-09+10 Ga (t Sm146=68 Myr) or 4.39-14+16 Ga (t Sm146=103 Myr). In a superchondritic, 2-stage evolution model with present day μNd142 of 0, mantle source closure ages are constrained to 4.41-08+10 (t Sm146=68 Myr) or 4.34-14+15 Ga (t Sm146=103 Myr). The lunar mantle source reservoir closure ages <4.5 Ga may be reconciled by 3 potential scenarios. First, the Moon formed later than currently favored models indicate, such that the lunar mantle closure age is near or at the time of lunar formation. Second, the Moon formed ca. 4.55 to 4.47 Ga and small amounts of residual melts were sustained within a crystallizing lunar magma ocean (LMO) for up to ca. 200 Myr from tidal heating or asymmetric LMO evolution. Third, the LMO crystallized rapidly after early Moon formation. Thus the Sm-Nd mantle closure age represents a later resetting of isotope systematics. This may have resulted from a global wide remelting event. While current Earth-Moon formation constraints cannot exclusively advocate or dismiss any of these models, the fact that U-Pb ages and Hf isotopes for Jack Hills zircons from Australia are best explained by an Earth that re-equilibrated at 4.4 Ga or earlier following the Moon

  20. Crew of the first manned Apollo mission practice water egress procedures

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Prime crew for the first manned Apollo mission practice water egress procedures with full scale boilerplate model of their spacecraft. In the water at right is Astronaut Edward H. White (foreground) and Astronaut Roger B. Chaffee. In raft near the spacecraft is Astronaut Virgil I. Grissom. NASA swimmers are in the water to assist in the practice session that took place at Ellington AFB, near the Manned Spacecraft Center, Houston.

  1. Crew of the first manned Apollo mission practice water egress procedures

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Prime crew for the first manned Apollo mission relax in a life raft during water egress training in the Gulf of Mexico with a full scale boilerplate model of their spacecraft. Left to right, are Astronauts Roger B. Chaffee, pilot, Virgil I. Grissom, command pilot, and Edward H. White II (facing camera), senior pilot. In background is the 'Duchess', a yacht owned by La Porte businessman Paul Barkley and provided by him as a press boat for newsmen covering the training.

  2. Rock sample brought to earth from the Apollo 12 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A scientist's gloved hand holds one of the numerous rock samples brought back to Earth from the Apollo 12 lunar landing mission. This sample is a highly shattered basaltic rock with a thin black-glass coating on five of its six sides. Glass fills fractures and cements the rock together. The rock appears to have been shattered and thrown out by a meteorite impact explosion and coated with molten rock material before the rock fell to the surface.

  3. Saturn 5 Launch Vehicle Flight Evaluation Report-AS-512 Apollo 17 Mission

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An evaluation of the launch vehicle and lunar roving vehicle performance for the Apollo 17 flight is presented. The objective of the evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are determined, and recommendations are made for corrective action. Summaries of launch operations and spacecraft performance are included. The significant events for all phases of the flight are analyzed.

  4. Saturn 5 launch vehicle flight evaluation report-AS-509 Apollo 14 mission

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A postflight analysis of the Apollo 14 flight is presented. The basic objective of the flight evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight failures are identified, their causes are determined and corrective actions are recommended. Summaries of launch operations and spacecraft performance are included. The significant events for all phases of the flight are analyzed.

  5. Saturn V S-IVB (Third) Stage for the Apollo 4 Mission in the Vehicle Assembly Building

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This photograph was taken during the final assembly operation of the Saturn V launch vehicle for the Apollo 4 (SA 501) mission. The S-IVB (third) stage was hoisted to be mated to the S-IC/S-II/IU assembly in the Vehicle Assembly Building high bay at the Kennedy Space Center. The Apollo 4 mission was the first launch of the Saturn V launch vehicle. Objectives of the unmanned Apollo 4 test flight were to obtain flight information on launch vehicle and spacecraft structural integrity and compatibility, flight loads, stage separation, and subsystems operation including testing of restart of the S-IVB stage, and to evaluate the Apollo command module heat shield. The Apollo 4 was launched on November 9, 1967 from KSC.

  6. Saturn V S-IVB (Third) Stage for the Apollo 4 Mission in the Vehicle Assembly Building

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This photograph was taken during the final assembly operation of the Saturn V launch vehicle for the Apollo 4 (SA 501) mission. The S-IVB (third) stage was mated to the S-IC/S-II/IU assembly in the Vehicle Assembly Building high bay at the Kennedy Space Center. The Apollo 4 mission was the first launch of the Saturn V launch vehicle. Objectives of the unmanned Apollo 4 test flight were to obtain flight information on launch vehicle and spacecraft structural integrity and compatibility, flight loads, stage separation, and subsystems operation including testing of restart of the S-IVB stage, and to evaluate the Apollo command module heat shield. The Apollo 4 was launched on November 9, 1967 from KSC.

  7. Pressurized Rover for Moon and Mars Surface Missions

    NASA Astrophysics Data System (ADS)

    Imhof, Barbara; Ransom, Stephen; Mohanty, Susmita; Özdemir, Kürsad; Häuplik-Meusburger, Sandra; Frischauf, Norbert; Hoheneder, Waltraut; Waclavicek, René

    The work described in this paper was done under ESA and Thales Alenia Space contract in the frame of the Analysis of Surface Architecture for European Space Exploration -Element Design. Future manned space missions to the Moon or to Mars will require a vehicle for transporting astronauts in a controlled and protected environment and in relative comfort during surface traverses of these planetary bodies. The vehicle that will be needed is a pressurized rover which serves the astronauts as a habitat, a refuge and a research laboratory/workshop. A number of basic issues influencing the design of such a rover, e.g. habitability, human-machine interfaces, safety, dust mitigation, interplanetary contamination and radiation protection, have been analysed in detail. The results of these analyses were subsequently used in an investigation of various designs for a rover suitable for surface exploration, from which a single concept was developed that satisfied scientific requirements as well as environmental requirements encoun-tered during surface exploration of the Moon and Mars. This concept was named in memory of the late Sir Arthur C. Clark RAMA (Rover for Advanced Mission Applications, Rover for Advanced Moon Applications, Rover for Advanced Mars Applications) The concept design of the pressurized rover meets the scientific and operational requirements defined during the course of the Surface Architecture Study. It is designed for surface missions with a crew of two or three lasting up to approximately 40 days, its source of energy, a liquid hydrogen/liquid oxygen fuel cell, allowing it to be driven and operated during the day as well as the night. Guidance, navigation and obstacle avoidance systems are foreseen as standard equipment to allow it to travel safely over rough terrain at all times of the day. The rover allows extra-vehicular activity and a remote manipulator is provided to recover surface samples, to deploy surface instruments and equipment and, in general

  8. LAPIS - LAnder Package Impacting a Seismometer - A Proposal for a Semi-Hard Lander Mission to the Moon

    NASA Astrophysics Data System (ADS)

    Lange, C.

    2009-04-01

    With an increased interest on the moon within the last years, at least with several missions in orbit or under development (SELENE/Japan, Chang'e/China, Chandrayaan/India and others), there is a strong demand within the German science community to participate in this initiative, building-up a national competence regarding lunar exploration. For this purpose, a Phase-0 analysis for a small lunar semi-hard landing scenario has been performed at DLR to foster future lunar exploration missions. This study's scope was to work out a more detailed insight into the design drivers and challenges and their impact on mass and cost budgets for such a mission. LAPIS has been dedicated to the investigation of the seismic activities of the moon, additionally to some other geophysical in-situ measurements at the lunar surface. In fact, the current status of the knowledge and understanding of lunar seismic activities leads to a range of open questions which have not been answered so far by the various Apollo missions in the past and could now possibly be answered by the studied LAPIS mission. Among these are the properties of the lunar core, the origin of deep and shallow moonquakes and the occurrence of micro-meteoroids. Therefore, as proposed first for LAPIS on the LEO mission, a payload of a short period micro-seismometer, based on European and American predevelopments, has been suggested. A staged mission scenario will be described, using a 2-module spacecraft with a propulsion part and a landing part, the so called LAPIS-PROP and LAPIS-LAND. In this scenario, the LAPIS-PROP module will do the cruise, until the spacecraft reaches an altitude of 100 m above the moon, after which the landing module will separate and continue to the actual semi-hard landing, which is based on deformable structures. Further technical details, e.g. considering the subsystem technologies, have been addressed within the performed study. These especially critical and uniquely challenging issues, such

  9. Space weathering on the moon: Patina on Apollo 17 samples 75075 and 76015

    NASA Astrophysics Data System (ADS)

    Wentworth, Susan J.; Keller, Lindsay P.; McKay, David S.; Morris, Richard V.

    1999-07-01

    We studied patinas on lunar rocks 75075 and 76015 from the Apollo collection using a multidisciplinary approach, including SEM, EDS, TEM, WDS X-ray mapping, Mössbauer spectroscopy, spectral reflectance, and microspectrophotometry. Based on SEM petrography, we have defined three textural types of patina: glazed, fragmental, and classic (cratered). The presence of classic patina is diagnostic of lunar samples that have been exposed directly to the space weathering environment. It is characterized by the presence of microcraters and glass pancakes, and is the patina type studied by earlier workers. Classic patina is found on 76015 but not on 75075. Glazed patina is found on both 76015 and 75075, while fragmental patina is found only on 75075. The glazed and fragmental patinas on 75075 were probably formed as a result of relatively large nearby impacts, and although these two types of patina are not strictly the result of direct exposure to the space weathering environment, they are important because they affect the optical properties of the rocks. Field emission gun SEM (FE-SEM) of classic patina on 76015 shows evidence of possible solar wind sputtering erosion. TEM studies of 76015 reveal the presence of impact-generated deposits and solar flare particle tracks which, like microcraters and pancakes, are diagnostic of direct exposure to space weathering processes. The outermost surface of the 76015 patina consists of an amorphous rim very much like the rims found on individual lunar soil grains; this amorphous patina rim probably formed by similar processes of impact-generated vapor condensation and possible sputter deposition. Wavelength-dispersive X-ray (WDS) element maps of polished thin sections of 75075 and 76015 indicate that patina compositions are poor indicators of the compositions and mineralogies of the rocks underlying them. On average, the reflectance spectra of patinas on both samples are slightly darker than those of their unweathered equivalents

  10. Recovered Apollo-Era Saturn V F-1 Engines Arrive at Cape Canaveral

    NASA Video Gallery

    Two F-1 engines that powered the first stage of the Saturn V rockets that lifted NASA’s Apollo missions to the moon were recovered from the Atlantic Ocean March 20, 2013 by Jeff Bezos, the founde...

  11. The Mission Transcript Collection: U.S. Human Spaceflight Missions from Mercury Redstone 3 to Apollo 17

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Aboard every U.S. piloted spacecraft, from Mercury through Apollo, NASA installed tape recorders that captured nearly every word spoken by the astronauts during their history-making flights into space. For the first time ever, NASA has digitally scanned all of the transcripts made from both the onboard tapes and those tape recordings made on the ground from the air-to-ground transmissions and placed them on this two CD-ROM set. Gathered in this special collection are 80 transcripts totaling nearly 45,000 pages of text that cover every US human spaceflight from the first human Mercury mission through the last lunar landing flight of Apollo 17. Users of this CD will note that the quantity and type of transcripts made for each mission vary. For example, the Mercury flights each had one transcript whereas the Gemini missions produced several. Starting with the Gemini flights, NASA produced a Public Affairs Office (PAO) commentary version, as well as at least one "technical" air-to-ground transcript version, per mission. Most of the Apollo missions produced four transcripts per flight. These included the onboard voice data recorder transcripts made from the Data Storage Equipment (DSE) on the Command Module (CM), and the Data Storage Electronics Assembly (DSEA) onboard the Lunar Module (LM), in addition to the PAO commentary and air-to-ground technical transcripts. The CD set includes an index listing each transcript file by name. Some of the transcripts include a detailed explanation of their contents and how they were made. Also included in this collection is a listing of all the original air-to-ground audiotapes housed in NASA's archives from which many of these transcripts were made. We hope you find this collection of transcripts interesting and useful.

  12. APOLLO 8: Birth of a Machine (Pt 2/2)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Part 2 of the clip 'Birth of a machine'. This clip reveals the origins of the major components of the mission. From the film documentary 'APOLLO 8:'Debrief': part of a documentary series made in the early 70's on the APOLLO missions, and narrated by Burgess Meredith. (Actual date created is not known at this time) APOLLO 8: First manned Saturn V flight with Frank Borman, James A. Lovell, Jr., and william A. Anders. First manned lunar orbit mission; provided a close-up look at the moon during 10 lunar orbits. Mission Duration 147hrs 0m 42s

  13. Topographic mapping of the moon

    NASA Astrophysics Data System (ADS)

    Wu, S. S. C.

    1985-04-01

    Contour maps of the moon have been compiled by photogrammetric methods that use stereoscopic combinations of all available metric photographs from the Apollo 15, 16, and 17 missions. The maps utilize the same format as the existing NASA shaded-relief Lunar Planning Charts (LOC-1, -2, -3, and -4), which have a scale of 1:2,750,000. The map contour interval is 500 m. A control net derived from Apollo photographs by Doyle and others was used for the compilation. Contour lines and elevations are referred to the new topographic datum of the moon, which is defined in terms of spherical harmonics from the lunar gravity field. Compilation of all four LOC charts was completed on analytical plotters from 566 stereo models of Apollo metric photographs that cover approximately 20 percent of the moon. This is the first step toward compiling a global topographic map of the moon at a scale of 1:5,000,000.

  14. Early Impacts on the Moon: Crystallization Ages of Apollo 16 Melt Breccias

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Shih, C.-Y.; Nyquist, L. E.; Bogard, D. D.; Taylor, L. A.

    2007-01-01

    A better understanding of the early impact history of the terrestrial planets has been identified one of the highest priority science goals for solar system exploration. Crystallization ages of impact melt breccias from the Apollo 16 site in the central nearside lunar highlands show a pronounced clustering of ages from 3.75-3.95 Ga, with several impact events being recognized by the association of textural groups and distinct ages. Here we present new geochemical and petrologic data for Apollo 16 crystalline breccia 67955 that document a much older impact event with an age of 4.2 Ga.

  15. Apollo 17: At Taurus Littrow

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1973-01-01

    A summation, with color illustrations, is presented on the Apollo 17 mission. The height, weight, and thrust specifications are given on the launch vehicle. Presentations are given on: the night launch; earth to moon ascent; separation and descent; EVA, the sixth lunar surface expedition; ascent from Taurus-Littrow; the America to Challenger rendezvous; return, reentry, and recovery; the scientific results of the mission; background information on the astronauts; and the future projects.

  16. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications

    NASA Technical Reports Server (NTRS)

    Mishkin, Andrew; Lee, Young; Korth, David; LeBlanc, Troy

    2007-01-01

    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  17. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications

    NASA Technical Reports Server (NTRS)

    Korth, David; LeBlanc, Troy; Mishkin, Andrew; Lee, Young

    2006-01-01

    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  18. Apollo experience report: Guidance and control systems; lunar module mission programer

    NASA Technical Reports Server (NTRS)

    Vernon, J. A.

    1975-01-01

    A review of the concept, operational requirements, design, and development of the lunar module mission programer is presented, followed by a review of component and subsystem performance during design-feasibility, design-verification, and qualification tests performed in the laboratory. The system was further proved on the unmanned Apollo 5 mission. Several anomalies were detected, and satisfactory solutions were found. These problems are defined and examined, and the corrective action taken is discussed. Suggestions are given for procedural changes to be used if future guidance and control systems of this type are to be developed.

  19. Code-Name: Spider, Flight of Apollo 9.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Apollo 9, an earth orbiting mission during which the Lunar Module was first tested in space flight in preparation for the eventual moon landing missions, is the subject of this pamphlet. Many color photographs and diagrams of the Lunar Module and flight activities are included with a brief description of the mission. (PR)

  20. On the Moon with Apollo 16. A Guidebook to the Descartes Region.

    ERIC Educational Resources Information Center

    Simmons, Gene

    The Apollo 16 guidebook describes and illustrates (with artist concepts) the physical appearance of the lunar region visited. Maps show the planned traverses (trips on the lunar surface via Lunar Rover); the plans for scientific experiments are described in depth; and timelines for all activities are included. A section on "The Crew" is…

  1. On the moon with Apollo 15: A guidebook to Hadley Rille and the Apennine Mountains

    NASA Technical Reports Server (NTRS)

    Simmons, G.

    1971-01-01

    Information is given in simple terms of the Apollo 15 lunar exploration and scientific equipment, to be used in conjunction with other material shown over commercial TV. The EVAs of the astronauts on the surface are divided into experiments and traverses. The landing site and experimental equipment are described, and life sketches are given of the crew.

  2. The Apollo Medical Operations Project: Recommendations to improve crew health and performance for future exploration missions and lunar surface operations

    NASA Astrophysics Data System (ADS)

    Scheuring, Richard A.; Jones, Jeffrey A.; Novak, Joseph D.; Polk, James D.; Gillis, David B.; Schmid, Josef; Duncan, James M.; Davis, Jeffrey R.

    Introduction: Medical requirements for the future crew exploration vehicle (CEV), lunar surface access module (LSAM), advanced extravehicular activity (EVA) suits, and Lunar habitat are currently being developed within the exploration architecture. While much is known about the vehicle and lunar surface activities during Apollo, relatively little is known about whether the hardware, systems, or environment impacted crew health or performance during these missions. Also, inherent to the proposed aggressive surface activities is the potential risk of injury to crewmembers. The Space Medicine Division at the NASA Johnson Space Center (JSC) requested a study in December 2005 to identify Apollo mission issues relevant to medical operations impacting crew health and/or performance during a lunar mission. The goals of this project were to develop or modify medical requirements for new vehicles and habitats, create a centralized database for future access, and share relevant Apollo information with various working groups participating in the exploration effort. Methods: A review of medical operations during Apollo missions 7-17 was conducted. Ten categories of hardware, systems, or crew factors were identified during preliminary data review generating 655 data records which were captured in an Access® database. The preliminary review resulted in 285 questions. The questions were posed to surviving Apollo crewmembers using mail, face-to-face meetings, phone communications, or online interactions. Results: Fourteen of 22 surviving Apollo astronauts (64%) participated in the project. This effort yielded 107 recommendations for future vehicles, habitats, EVA suits, and lunar surface operations. Conclusions: To date, the Apollo Medical Operations recommendations are being incorporated into the exploration mission architecture at various levels and a centralized database has been developed. The Apollo crewmember's input has proved to be an invaluable resource. We will continue

  3. Pulmonary function evaluation during the Skylab and Apollo-Soyuz missions

    NASA Technical Reports Server (NTRS)

    Sawin, C. F.; Nicogossian, A. E.; Rummel, J. A.; Michel, E. L.

    1976-01-01

    Previous experience during Apollo postflight exercise testing indicated no major changes in pulmonary function. Pulmonary function has been studied in detail following exposure to hypoxic and hyperoxic normal gravity environments, but no previous study has reported on men exposed to an environment that was both normoxic at 258 torr total pressure and at null gravity as encountered in Skylab. Forced vital capacity (FVC) was measured during the preflight and postflight periods of the Skylab 2 mission. Inflight measurements of vital capacity (VC) were obtained during the last 2 weeks of the second manned mission (Skylab 3). More detailed pulmonary function screening was accomplished during the Skylab 4 mission. The primary measurements made during Skylab 4 testing included residual volume determination (RV), closing volume (CV), VC, FVC and its derivatives. In addition, VC was measured in flight at regular intervals during the Skylab 4 mission. Vital capacity was decreased slightly (-10%) in flight in all Skylab 4 crewmen. No major preflight-to-postflight changes were observed. The Apollo-Soyuz Test Project (ASTP) crewmen were studied using equipment and procedures similar to those employed during Skylab 4. Postflight evaluation of the ASTP crewmen was complicated by their inadvertent exposure to nitrogen tetroxide gas fumes upon reentry.

  4. Regolith maturation on the earth and the moon with an example from Apollo 15

    NASA Technical Reports Server (NTRS)

    Basu, A.; Griffiths, S. A.; Mckay, D. S.; Nace, G.

    1982-01-01

    Petrographic data on twelve Apollo 15 surface samples and on twelve samples from the double drive tube 15010/011 are presented in the form of triangular AML (agglutinate-monomineralic fragments-lithic fragments) plots. The triangular AML plots for different grain sizes show smoothly varying contour lines only for the solids derived mainly from mare basalts. These contour lines are interpreted as lines of isomaturity. The AML plots with isomature contours are somewhat similar to QFR (quartz-feldspar-rock fragments) triangular plots used for terrestrial clastic sediments. Both kinds of plots are sensitive to maturity and both may be used to predict evolution paths. Soils from predominantly highland areas and from other mixed terrains at Apollo 15 sites do not make smooth contours on AML diagrams. By analogy with QFR diagrams, the lack of smooth contours may be due to mixed source rock families, or to recent mixing, or both.

  5. Mini-SAR: An Imaging Radar for the Chandrayaan-1 Mission to the Moon

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.; Bussey, Ben; Lichtenberg, Chris; Marinelli, Bill; Nozette, Stewart

    2005-01-01

    The debate on the presence of ice at the poles of the Moon continues. We will fly a small imaging radar on the Indian Chandrayaan mission to the Moon, to be launched in September, 2007. Mini-SAR will map the scattering properties of the lunar poles, determining the presence and extent of polar ice.

  6. Relativistic time corrections for Apollo 12 and Apollo 13

    NASA Technical Reports Server (NTRS)

    Lavery, J. E.

    1972-01-01

    Results are presented of computer calculations on the relativistic time corrections relative to a ground-based clock of on-board clock readings for a lunar mission, using simple Newtonian gravitational potentials of earth and moon and based on actual trajectory data for Apollo 12 and Apollo 13. Although the second order Doppler effect and the gravitational red shift give rise to corrections of opposite sign, the net accumulated time corrections, namely a gain of 560 (+ or - 1.5) microseconds for Apollo 12 and gain of 326 (+ or - 1.3) microseconds for Apollo 13, are still large enough that with present day atomic frequency standards, such as the rubidium clock, they can be measured with an accuracy of about + or - 0.5 percent.

  7. GRAIL Mission Constraints on the Thermal Structure and Evolution of the Moon

    NASA Astrophysics Data System (ADS)

    Kiefer, W. S.; Andrews-Hanna, J. C.; Evans, A. J.; Head, J. W.; Matsuyama, I.; McGovern, P. J.; Nimmo, F.; Soderblom, J. M.; Sori, M. M.; Taylor, G. J.; Weber, R. C.; Wieczorek, M. A.; Williams, J. G.; Zuber, M. T.

    2016-05-01

    The GRAIL mission provided new constraints on the Moon's thermal evolution, including the abundance of radioactive elements, the extent of early lunar radius change, volume of early cryptomagmatism, and thickness of a low conductivity megaregolith.

  8. APOLLO 8: Birth of a Machine (pt 1/2)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This clip shows the launch of APOLLO 8: The 'Birth of a Machine' and begins to reveal the origin of its components. From the film documentary 'APOLLO 8:'Debrief'': part of a documentary series made in the early 70's on the APOLLO missions, and narrated by Burgess Meredith. (Actual date created is not known at this time) First manned Saturn V flight with Frank Borman, James A. Lovell, Jr.,and william A. Anders. First manned lunar orbit mission; provided a close-up look at the moon during 10 lunar orbits. Mission Duration 147hrs. 0 min. 42s.

  9. Apollo 11 Facts Project [Pre-Launch Activities and Launch

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The crewmembers of Apollo 11, Commander Neil A. Armstrong, Command Module Pilot Michael Collins, and Lunar Module Pilot Edwin E. Aldrin, Jr., are seen during various stages of preparation for the launch of Apollo 11, including suitup, breakfast, and boarding the spacecraft. They are also seen during mission training, including preparation for extravehicular activity on the surface of the Moon. The launch of Apollo 11 is shown. The ground support crew is also seen as they wait for the spacecraft to approach the Moon.

  10. Apollo 14 mission report. Supplement 5: Descent propulsion system final flight evaluation

    NASA Technical Reports Server (NTRS)

    Avvenire, A. T.; Wood, S. C.

    1972-01-01

    The performance of the LM-8 descent propulsion system during the Apollo 14 mission was evaluated and found to be satisfactory. The average engine effective specific impulse was 0.1 second higher than predicted, but well within the predicted l sigma uncertainty. The engine performance corrected to standard inlet conditions for the FTP portion of the burn at 43 seconds after ignition was as follows: thrust, 9802, lbf; specific impulse, 304.1 sec; and propellant mixture ratio, 1603. These values are + or - 0.8, -0.06, and + or - 0.3 percent different respectively, from the values reported from engine acceptance tests and were within specification limits.