Sample records for apollo moon mission

  1. The Apollo Missions and the Chemistry of the Moon

    ERIC Educational Resources Information Center

    Pacer, Richard A.; Ehmann, William D.

    1975-01-01

    Presents the principle chemical features of the moon obtained by analyzing lunar samples gathered on the Apollo missions. Outlines the general physical features of the moon and presents theories on its origin. (GS)

  2. Apollo 8 Mission image,Moon, farside

    NASA Image and Video Library

    2009-02-19

    AS08-14-2432 (21-27 Dec. 1968) --- This is a near vertical photograph of the lunar surface taken with a telephoto lens during the Apollo 8 lunar orbit mission. The photographed area is approximately 20 miles on a side and is located within a large, unmanned 100-miles-in-diameter crater on the farside of the moon. This large crater is located at 10 degrees south latitude and 160 degrees east longitude. The lunar surface probably has less pronounced color then indicated by this print.

  3. Apollo 8 Mission image,Moon, farside

    NASA Image and Video Library

    2009-02-19

    AS08-14-2431 (21-27 Dec. 1968) --- This is a near vertical photograph of the lunar surface taken with a telephoto lens during the Apollo 8 lunar orbit mission. The photographed area is approximately 20 miles on a side, and is located within a large, unmanned 100-statute-miles-in-diameter crater on the farside of the moon. This large crater is located at 10 degrees south latitude and 160 degrees east longitude. The lunar surface probably has less pronounced color than indicated by this print.

  4. The Moon: What Have the Apollo Missions Taught Us? Part II: The View from Apollo.

    ERIC Educational Resources Information Center

    McKeever, S. W. S.

    1980-01-01

    Summarizes scientific findings resulting from the Apollo missions, including lunar rocks and soil, age determination, and the moon's interior, evolution, and origin. Indicates experiments for future lunar research. (SK)

  5. Integration of Apollo Lunar Sample Data into Google Moon

    NASA Technical Reports Server (NTRS)

    Dawson, Melissa D.; Todd, Nancy S.; Lofgren, Gary

    2010-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is a continuation of the Apollo 15 Google Moon Add-On project, which provides a scientific and educational tool for the study of the Moon and its geologic features. The main goal of this project is to provide a user-friendly interface for an interactive and educational outreach and learning tool for the Apollo missions. Specifically, this project?s focus is the dissemination of information about the lunar samples collected during the Apollo missions by providing any additional information needed to enhance the Apollo mission data on Google Moon. Apollo missions 15 and 16 were chosen to be completed first due to the availability of digitized lunar sample photographs and the amount of media associated with these missions. The user will be able to learn about the lunar samples collected in these Apollo missions, as well as see videos, pictures, and 360 degree panoramas of the lunar surface depicting the lunar samples in their natural state, following collection and during processing at NASA. Once completed, these interactive data layers will be submitted for inclusion into the Apollo 15 and 16 missions on Google Moon.

  6. Preserving the Science Legacy from the Apollo Missions to the Moon

    NASA Technical Reports Server (NTRS)

    Evans, Cindy; Zeigler, Ryan; Lehnert, Kerstin; Todd, Nancy; Blumenfeld, Erika

    2015-01-01

    Six Apollo missions landed on the Moon from 1969-72, returning to Earth 382 kg of lunar rock, soil, and core samples-among the best documented and preserved samples on Earth that have supported a robust research program for 45 years. From mission planning through sample collection, preliminary examination, and subsequent research, strict protocols and procedures are followed for handling and allocating Apollo subsamples. Even today, 100s of samples are allocated for research each year, building on the science foundation laid down by the early Apollo sample studies and combining new data from today's instrumentation, lunar remote sensing missions and lunar meteorites. Today's research includes advances in our understanding of lunar volatiles, lunar formation and evolution, and the origin of evolved lunar lithologies. Much sample information is available to researchers at curator.jsc.nasa.gov. Decades of analyses on lunar samples are published in LPSC proceedings volumes and other peer-reviewed journals, and tabulated in lunar sample compendia entries. However, for much of the 1969-1995 period, the processing documentation, individual and consortia analyses, and unpublished results exist only in analog forms or primitive digital formats that are either inaccessible or at risk of being lost forever because critical data from early investigators remain unpublished. We have initiated several new efforts to rescue some of the early Apollo data, including unpublished analytical data. We are scanning NASA documentation that is related to the Apollo missions and sample processing, and we are collaborating with IEDA to establish a geochemical database called Moon DB. To populate this database, we are working with prominent lunar PIs to organize and transcribe years of both published and unpublished data. Other initiatives include micro-CT scanning of complex lunar samples to document their interior structure (e.g. clasts, vesicles); linking high-resolution scans of Apollo

  7. Preserving the Science Legacy from the Apollo Missions to the Moon

    NASA Astrophysics Data System (ADS)

    Todd, N. S.; Evans, C. A.; Zeigler, R. A.; Lehnert, K. A.

    2015-12-01

    Six Apollo missions landed on the Moon from 1969-72, returning to Earth 382 kg of lunar rock, soil, and core samples—among the best documented and preserved samples on Earth that have supported a robust research program for 45 years. From mission planning through sample collection, preliminary examination, and subsequent research, strict protocols and procedures are followed for handling and allocating Apollo subsamples. Even today, 100s of samples are allocated for research each year, building on the science foundation laid down by the early Apollo sample studies and combining new data from today's instrumentation, lunar remote sensing missions and lunar meteorites. Today's research includes advances in our understanding of lunar volatiles, lunar formation and evolution, and the origin of evolved lunar lithologies. Much sample information is available to researchers at curator.jsc.nasa.gov. Decades of analyses on lunar samples are published in LPSC proceedings volumes and other peer-reviewed journals, and tabulated in lunar sample compendia entries. However, for much of the 1969-1995 period, the processing documentation, individual and consortia analyses, and unpublished results exist only in analog forms or primitive digital formats that are either inaccessible or at risk of being lost forever because critical data from early investigators remain unpublished. We have initiated several new efforts to rescue some of the early Apollo data, including unpublished analytical data. We are scanning NASA documentation that is related to the Apollo missions and sample processing, and we are collaborating with IEDA to establish a geochemical database called Moon DB. To populate this database, we are working with prominent lunar PIs to organize and transcribe years of both published and unpublished data. Other initiatives include micro-CT scanning of complex lunar samples to document their interior structure (e.g. clasts, vesicles); linking high-resolution scans of Apollo

  8. The Apollo missions.

    NASA Technical Reports Server (NTRS)

    Scherer, L. R.

    1971-01-01

    The Apollo 11 and 12 lunar landings are briefly reviewed together with the problems experienced with Apollo 13. As a result of the first two landing missions it became known that parts of the moon are at least four and one-half billion years old. If the moon was once part of the earth, it must have split off very early in its history. Starting with Apollo 16, changes in hardware will result in very significant improvements and capabilities. The landed payload will be increased by over 100%.

  9. Apollo 11 Mission Commemorated

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-07-01

    On 24 July 1969, 4 days after Apollo 11 Mission Commander Neil Armstrong and Lunar Module Eagle Pilot Eugene “Buzz” Aldrin had become the first people to walk on the Moon, they and Apollo 11 Command Module Pilot Michael Collins peered through a window of the Mobile Quarantine Facility on board the U.S.S. Hornet following splashdown of the command module in the central Pacific as U.S. President Richard Nixon told them, “This is the greatest week in the history of the world since the creation.” Forty years later, the Apollo 11 crew and other Apollo-era astronauts gathered at several events in Washington, D. C., to commemorate and reflect on the Apollo program, that mission, and the future of manned spaceflight. “I don’t know what the greatest week in history is,” Aldrin told Eos. “But it was certainly a pioneering opening the door. With the door open when we touched down on the Moon, that was what enabled humans to put many more footprints on the surface of the Moon.”

  10. Apollo 17 Mission Report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Operational and engineering aspects of the Apollo 17 mission are outlined. The vehicle configuration was similar to those of Apollo 15 and 16. There were significant differences in the science payload for Apollo 17 and spacecraft hardware differences and experiment equipment are described. The mission achieved a landing in the Taurus-Littrow region of the moon and returned samples of the pre-Imbrium highlands and young craters.

  11. Apollo 16 astronauts in Apollo Command Module Mission Simulator

    NASA Image and Video Library

    1972-03-14

    S72-31047 (March 1972) --- Astronaut Thomas K. Mattingly II (right foreground), command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in Building 5 at the Manned Spacecraft Center (MSC). Mattingly is scheduled to perform EVA during the Apollo 16 journey home from the moon. Astronaut John W. Young, commander, can be seen in the left background. In the right background is astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator. While Mattingly remains with the Apollo 16 Command and Service Modules (CSM) in lunar orbit, Young and Duke will descend in the Lunar Module (LM) to the moon's Descartes landing site.

  12. Apollo Lunar Sample Integration into Google Moon: A New Approach to Digitization

    NASA Technical Reports Server (NTRS)

    Dawson, Melissa D.; Todd, nancy S.; Lofgren, Gary E.

    2011-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is part of a larger, LASER-funded 4-year lunar rock photo restoration project by NASA s Acquisition and Curation Office [1]. The objective of this project is to enhance the Apollo mission data already available on Google Moon with information about the lunar samples collected during the Apollo missions. To this end, we have combined rock sample data from various sources, including Curation databases, mission documentation and lunar sample catalogs, with newly available digital photography of rock samples to create a user-friendly, interactive tool for learning about the Apollo Moon samples

  13. Apollo 14 Mission to Fra Mauro

    NASA Technical Reports Server (NTRS)

    Beasley, Brian D. (Editor)

    1991-01-01

    The 1971 Apollo 14 Mission to Fra Mauro, a lunar highland area, is highlighted in this video. The mission's primary goal was the collection of lunar rocks and soil samples and lunar exploration. The soil and rock sampling was for the geochronological determination of the Moon's evolution and its comparison with that of Earth. A remote data collection station was assembled on the Moon and left for continuous data collection and surface monitoring experiments. The Apollo 14 astronauts were Alan B. Shepard, Edgar D. Mitchell, and Stuart A. Rossa. Astronauts Shepard and Mitchell landed on the Moon (February 5, 1971) and performed the sampling, the EVA, and deployment of the lunar experiments. There is film-footage of the lunar surface, of the command module's approach to both the Moon and the Earth, Moon and Earth spacecraft launching and landing, in-orbit command- and lunar-module docking, and of Mission Control.

  14. Apollo 11 Mission images - Solar Corona (moon)

    NASA Image and Video Library

    1969-07-19

    AS11-42-6179 (19 July 1969) --- This photograph of the solar corona was taken from the Apollo 11 spacecraft during trans-lunar coast and prior to lunar orbit insertion. The moon is the dark disc between the spacecraft and the sun.

  15. Rescue and Preservation of Sample Data from the Apollo Missions to the Moon

    NASA Technical Reports Server (NTRS)

    Todd, Nancy S.; Zeigler, Ryan A.; Evans, Cindy A.; Lehnert, Kerstin

    2016-01-01

    Six Apollo missions landed on the Moon from 1969-72, returning to Earth 382 kg of lunar rock, soil, and core samples. These samples are among the best documented and preserved samples on Earth that have supported a robust research program for 45 years. From mission planning through sample collection, preliminary examination, and subsequent research, strict protocols and procedures are followed for handling and allocating Apollo subsamples, resulting in the production of vast amounts of documentation. Even today, hundreds of samples are allocated for research each year, building on the science foundation laid down by the early Apollo sample studies and combining new data from today's instrumentation, lunar remote sensing missions and lunar meteorites. Much sample information is available to researchers at curator.jsc.nasa.gov. Decades of analyses on lunar samples are published in LPSC proceedings volumes and other peer-reviewed journals, and tabulated in lunar sample compendia entries. However, for much of the 1969-1995 period, the processing documentation, individual and consortia analyses, and unpublished results exist only in analog forms or primitive digital formats that are either inaccessible or at risk of being lost forever because critical data from early investigators remain unpublished.

  16. Apollo 8 Mission image,Farside of Moon

    NASA Image and Video Library

    1968-12-21

    Apollo 8,Farside of Moon. Image taken on Revolution 4. Camera Tilt Mode: Vertical Stereo. Sun Angle: 13. Original Film Magazine was labeled D. Camera Data: 70mm Hasselblad. Lens: 80mm; F-Stop: F/2.8; Shutter Speed: 1/250 second. Film Type: Kodak SO-3400 Black and White,ASA 40. Flight Date: December 21-27,1968.

  17. Apollo astronaut supports return to the Moon

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-12-01

    Nearly 40 years after the Apollo 17 Moon launch on 7 December 1972, former NASA astronaut Harrison Schmitt said there is "no question" that the Moon is still worth going to, "whether you think about the science of the Moon or the resources of the Moon, or its relationship to accelerating our progress toward Mars." Schmitt, a geologist and the lunar module pilot for that final Apollo mission, was speaking at a 6 December news briefing about lunar science at the AGU Fall Meeting. "By going back to the Moon, you accelerate your ability to go anywhere else," Schmitt said, because of the ability to gain experience on a solar system body just a 3-day journey from Earth; test new hardware and navigation and communication techniques; and utilize lunar resources such as water, hydrogen, methane, and helium-3. He said lunar missions also would be a way "to develop new generations of people who know how to work in deep space. The people who know how to work [there] are my age, if not older, and we need young people to get that kind of experience." Schmitt, 77, said that a particularly interesting single location to explore would be the Aitken Basin at the Moon's south pole, where a crater may have reached into the Moon's upper mantle. He also said a longer duration exploration program might be able to explore multiple sites.

  18. APOLLO XIII CREW - MISSION OPERATIONS CONTROL ROOM (MOCR) - APOLLO XII - LUNAR EXTRAVEHICULAR ACTIVITY (EVA) - MSC

    NASA Image and Video Library

    1969-11-21

    S69-59525 (19 Nov. 1969) --- Overall view of activity in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, during the Apollo 12 lunar landing mission. When this picture was made the first Apollo 12 extravehicular activity (EVA) was being televised from the surface of the moon. Photo credit: NASA

  19. On the Moon with Apollo 15, A Guidebook to Hadley Rille and the Apennine Mountains.

    ERIC Educational Resources Information Center

    Simmons, Gene

    The booklet, published before the Apollo 15 mission, gives a timeline for the mission; describes and illustrates the physiography of the landing site; and describes and illustrates each lunar surface scientific experiment. Separate timelines are included for all traverses (the traverses are the Moon walks and, for Apollo 15, the Moon rides in the…

  20. Moon Rock Presented to Smithsonian Institute by Apollo 11 Crew

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 astronauts, (left to right) Edwin E. Aldrin Jr., Lunar Module pilot; Michael Collins, Command Module pilot; and Neil A. Armstrong, commander, are showing a two-pound Moon rock to Frank Taylor, director of the Smithsonian Institute in Washington D.C. The rock was picked up from the Moon's surface during the Extra Vehicular Activity (EVA) of Aldrin and Armstrong following man's first Moon landing and was was presented to the Institute for display in the Art and Industries Building. The Apollo 11 mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  1. Apollo 8, Man Around the Moon.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This pamphlet presents a series of photographs depicting the story of the Apollo 8 mission around the moon and includes a brief description as well as quotes from the astronauts. The photographs show scenes of the astronauts training, the Saturn V rocket, pre-flight preparation, blast off, the earth from space, the lunar surface, the earth-based…

  2. Cameras on the moon with Apollos 15 and 16.

    NASA Technical Reports Server (NTRS)

    Page, T.

    1972-01-01

    Description of the cameras used for photography and television by Apollo 15 and 16 missions, covering a hand-held Hasselblad camera for black and white panoramic views at locations visited by the astronauts, a special stereoscopic camera designed by astronomer Tom Gold, a 16-mm movie camera used on the Apollo 15 and 16 Rovers, and several TV cameras. Details are given on the far-UV camera/spectrograph of the Apollo 16 mission. An electronographic camera converts UV light to electrons which are ejected by a KBr layer at the focus of an f/1 Schmidt camera and darken photographic films much more efficiently than far-UV. The astronomical activity of the Apollo 16 astronauts on the moon, using this equipment, is discussed.

  3. View of plaque Apollo 11 astronauts left on moon

    NASA Image and Video Library

    1969-07-20

    AS11-40-5899 (20 July 1969) --- Close-up view of the plaque which the Apollo 11 astronauts left on the moon in commemoration of the historic lunar landing mission. The plaque was attached to the ladder on the landing gear strut on the descent stage of the Apollo 11 Lunar Module (LM). The plaque was covered with a thin sheet of stainless steel during flight. Astronaut Michael Collins, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit while astronauts Neil A. Armstrong, commander, and Edwin E. Aldrin Jr., lunar module pilot, explored the moon.

  4. Apollo 11 Mission Audio - Day 1

    NASA Image and Video Library

    1969-07-16

    Audio from mission control during the launch of Apollo 11, which was the United States' first lunar landing mission. While astronauts Armstrong and Aldrin descended in the Lunar Module "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules "Columbia" in lunar orbit.

  5. MISSION CONTROL CENTER (MCC) - APOLLO 16 - MSC

    NASA Image and Video Library

    1972-05-08

    S72-37010 (20 April 1972) --- NASA officials gather around a console in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC) prior to the making of a decision whether to land Apollo 16 on the moon or to abort the landing. Seated, left to right, are Dr. Christopher C. Kraft Jr., Director of the Manned Spacecraft Center (MSC), and Brig. Gen. James A. McDivitt (USAF), Manager, Apollo Spacecraft Program Office, MSC; and standing, left to right, are Dr. Rocco A. Petrone, Apollo Program Director, Office Manned Space Flight (OMSF), NASA HQ.; Capt. John K. Holcomb (U.S. Navy, Ret.), Director of Apollo Operations, OMSF; Sigurd A. Sjoberg, Deputy Director, MSC; Capt. Chester M. Lee (U.S. Navy, Ret.), Apollo Mission Director, OMSF; Dale D. Myers, NASA Associate Administrator for Manned Space Flight; and Dr. George M. Low, NASA Deputy Administrator. Photo credit: NASA

  6. Plaque the Apollo 14 crew will leave on the Moon

    NASA Image and Video Library

    1971-01-27

    S71-16637 (January 1971) --- A close-up view of the plaque which the Apollo 14 astronauts will leave behind on the moon during their lunar landing mission. Astronauts Alan B. Shepard Jr., commander, and Edgar D. Mitchell, lunar module pilot, will descend to the lunar surface in the Lunar Module (LM) "Antares". Astronaut Stuart A. Roosa, command module pilot, will remain with the Command and Service Modules (CSM) in lunar orbit. The seven by nine inch stainless steel plaque will be attached to the ladder on the landing gear strut on the LM's descent stage. Commemorative plaques were also left on the moon by the Apollo 11 and Apollo 12 astronauts.

  7. Apollo Missions to the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Graff, Paige V.

    2018-01-01

    Six Apollo missions to the Moon, from 1969-1972, enabled astronauts to collect and bring lunar rocks and materials from the lunar surface to Earth. Apollo lunar samples are curated by NASA Astromaterials at the NASA Johnson Space Center in Houston, TX. Samples continue to be studied and provide clues about our early Solar System. Learn more and view collected samples at: https://curator.jsc.nasa.gov/lunar.

  8. Apollo 15 Mission Report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A detailed discussion is presented of the Apollo 15 mission, which conducted exploration of the moon over longer periods, greater ranges, and with more instruments of scientific data acquisition than previous missions. The topics include trajectory, lunar surface science, inflight science and photography, command and service module performance, lunar module performance, lunar surface operational equipment, pilot's report, biomedical evaluation, mission support performance, assessment of mission objectives, launch phase summary, anomaly summary, and vehicle and equipment descriptions. The capability of transporting larger payloads and extending time on the moon were demonstrated. The ground-controlled TV camera allowed greater real-time participation by earth-bound personnel. The crew operated more as scientists and relied more on ground support team for systems monitoring. The modified pressure garment and portable life support system provided better mobility and extended EVA time. The lunar roving vehicle and the lunar communications relay unit were also demonstrated.

  9. Artist's concept of Apollo 8 command/service module heading for the moon

    NASA Technical Reports Server (NTRS)

    1968-01-01

    North American Rockwell artist's concept illustrating a phase of the scheduled Apollo 8 lunar orbit mission. Here, the Apollo 8 spacecraft command and service modules, still attached to the Satury V third (S-IVB) stage, heads for the moon at a speed of about 24,300 miles an hour.

  10. MISSION CONTROL CENTER (MCC) - MSC - during Apollo 16

    NASA Image and Video Library

    1972-05-08

    S72-37009 (20 April 1972) --- NASA officials gather around a console in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC) prior to the making of a decision whether to land Apollo 16 on the moon or to abort the landing. Seated, left to right, are Dr. Christopher C. Kraft Jr., Director of the Manned Spacecraft Center (MSC), and Brig. Gen. James A. McDivitt (USAF), Manager, Apollo Spacecraft Program Office, MSC; and standing, left to right, are Dr. Rocco A. Petrone, Apollo Program Director, Office Manned Space Flight (OMSF), NASA HQ.; Capt. John K. Holcomb (U.S. Navy, Ret.), Director of Apollo Operations, OMSF; Sigurd A. Sjoberg, Deputy Director, MSC; Capt. Chester M. Lee (U.S. Navy, Ret.), Apollo Mission Director, OMSF; Dale D. Myers, NASA Associate Administrator for Manned Space Flight; and Dr. George M. Low, NASA Deputy Administrator. Photo credit: NASA

  11. Photographic replica of the plaque Apollo 13 astronauts will leave on moon

    NASA Image and Video Library

    1970-04-13

    S70-34685 (April 1970) --- A photographic replica of the plaque which the Apollo 13 astronauts will leave behind on the moon during their lunar landing mission. Astronauts James A. Lovell Jr., commander; and Fred W. Haise Jr., lunar module pilot, will descend to the lunar surface in the Lunar Module (LM) "Aquarius". Astronaut John L. Swigert Jr., command module pilot, will remain with the Command and Service Modules (CSM) in lunar orbit. The plaque will be attached to the ladder of the landing gear strut on the LM?s descent stage. Commemorative plaques were also left on the moon by the Apollo 11 and Apollo 12 astronauts.

  12. The micron- to kilometer-scale Moon: linking samples to orbital observations, Apollo to LRO

    NASA Astrophysics Data System (ADS)

    Crites, S.; Lucey, P. G.; Taylor, J.; Martel, L.; Sun, L.; Honniball, C.; Lemelin, M.

    2017-12-01

    The Apollo missions have shaped the field of lunar science and our understanding of the Moon, from global-scale revelations like the magma ocean hypothesis, to providing ground truth for compositional remote sensing and absolute ages to anchor cratering chronologies. While lunar meteorite samples can provide a global- to regional-level view of the Moon, samples returned from known locations are needed to directly link orbital-scale observations with laboratory measurements-a link that can be brought to full fruition with today's extremely high spatial resolution observations from Lunar Reconnaissance Orbiter and other recent missions. Korotev et al. (2005) described a scenario of the Moon without Apollo to speculate about our understanding of the Moon if our data were confined to lunar meteorites and remote sensing. I will review some of the major points discussed by Korotev et al. (2005), and focus on some of the ways in which spectroscopic remote sensing in particular has benefited from the Apollo samples. For example, could the causes and effects of lunar-style space weathering have been unraveled without the Apollo samples? What would be the limitations on remote sensing compositional measurements that rely on Apollo samples for calibration and validation? And what new opportunities to bring together orbital and sample analyses now exist, in light of today's high spatial and spectral resolution remote sensing datasets?

  13. Bonus: Apollo's Amazing Mission and Spin-Offs from Space.

    ERIC Educational Resources Information Center

    Learning, 1994

    1994-01-01

    Two posters examine the 1969 Apollo moon mission. The first tracks the stages and path of the mission, suggesting that students create their own diagrams or models. The second presents a puzzle that helps student understand how many items developed for the mission are useful to today's everyday life. (SM)

  14. Apollo 11 Moon Landing

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The crowning achievement for the Saturn V rocket came when it launched Apollo 11 astronauts, Neil Armstrong, Edwin (Buzz) Aldrin, and Michael Collins, to the Moon in July 1969. In this photograph, astronaut Aldrin takes his first step onto the surface of the Moon.

  15. Apollo Mission Techniques Lunar Orbit Activities - Part 1a

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael A.

    2009-01-01

    This slide presentation reviews the planned sequence of events and the rationale for all lunar missions, and the flight experiences and lessons learned for the lunar orbit activities from a trajectory perspective. Shown are trajectories which include the moon's position at the various stages in the complete trip from launch, to the return and reentry. Included in the presentation are objectives and the sequence of events,for the Apollo 8, and Apollo 10. This is followed by a discussion of Apollo 11, including: the primary mission objective, the sequence of events, and the flight experience. The next mission discussed was Apollo 12. It reviews the objectives, the ground tracking, procedure changes, and the sequence of events. The aborted Apollo 13 mission is reviewed, including the objectives, and the sequence of events. Brief summaries of the flight experiences for Apollo 14-16 are reviewed. The flight sequence of events of Apollo 17 are discussed. In summary each mission consistently performing precision landings required that Apollo lunar orbit activities devote considerable attention to: (1) Improving fidelity of lunar gravity models, (2) Maximizing availability of ground tracking, (3) Minimizing perturbations on the trajectory, (4) Maximizing LM propellant reserves for hover time. Also the use of radial separation maneuvers (1) allows passive re-rendezvous after each rev, but ... (2) sensitive to small dispersions in initial sep direction

  16. Mission Control Center (MCC): Apollo XV - MSC

    NASA Image and Video Library

    1971-08-02

    S71-41759 (2 Aug. 1971) --- A partial view of activity in the Mission Operations Control Room in the Mission Control Center during the liftoff of the Apollo 15 Lunar Module "Falcon" ascent stage from the lunar surface. An RCA color television camera mounted on the Lunar Roving Vehicle made it possible for people on Earth to watch the LM's spectacular launch from the moon. The LM liftoff was at 171:37 ground elapsed time. The LRV was parked about 300 feet east of the LM. The TV camera was remotely controlled from a console in the MOCR. Seated in the right foreground is astronaut Edgar D. Mitchell, a spacecraft communicator. Mitchell was lunar module pilot of the Apollo 14 lunar landing mission. Note liftoff on the television monitor in the center background.

  17. Rock sample brought to earth from the Apollo 12 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Charles Conrad Jr., commander of the Apollo 12 lunar landing mission, holds two lunar rocks which were among the samples brought back from the Moon by the Apollo 12 astronauts. The samples are under scientific examination in the Manned Spacecraft Center's Lunar Receiving Laboratory.

  18. Correction to “Apollo 11 Mission Commemorated”

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-08-01

    In the 28 July 2009 issue of Eos (90(30), 258), a date was incorrect in the news item entitled “Apollo 11 Mission Commemorated.” NASA astronaut Eugene Cernan was referring to the 1970s, not the 1960s, in talking about his expectation of when humans would be back on the Moon. Eos regrets this error.

  19. Emblem - Apollo 17 Lunar Landing Mission

    NASA Image and Video Library

    1972-09-13

    S72-49079 (8 Sept. 1972) --- This is the official emblem of the Apollo 17 lunar landing mission which will be flown by astronauts Eugene A. Cernan, Ronald E. Evans and Harrison H. Schmitt. The insignia is dominated by the image of Apollo, the Greek sun god. Suspended in space behind the head of Apollo is an American eagle of contemporary design, the red bars of the eagle's wing represent the bars in the United States flag; the three white stars symbolize the three astronaut crewmen. The background is deep blue space and within it are the moon, the planet Saturn and a spiral galaxy or nebula. The moon is partially overlaid by the eagle's wing suggesting that this is a celestial body that man has visited and in that sense conquered. The thrust of the eagle and the gaze of Apollo to the right and toward Saturn and the galaxy is meant to imply that man's goals in space will someday include the planets and perhaps the stars. The colors of the emblem are red, white and blue, the colors of our flag; with the addition of gold, to symbolize the golden age of space flight that will begin with this Apollo 17 lunar landing. The Apollo image used in this emblem was the famous Apollo of Belvedere sculpture now in the Vatican Gallery in Rome. This emblem was designed by artist Robert T. McCall in collaboration with the astronauts. This is the official Apollo 17 emblem, a property of the government of the United States. It has been authorized only for use by the astronauts. Its reproduction in any form other than in news, information and education media is not authorized without approval. Unauthorized use is subject to the provisions of Title 18, U.S. Code, Section 701.

  20. Apollo 8 Mission image,Moon, farside near terminator

    NASA Image and Video Library

    2009-02-19

    AS08-14-2400 (21-27 Dec. 1968) --- This near vertical photograph of the lunar surface taken with a telephoto lens during the Apollo 8 lunar orbit mission. The area covered by the photograph is approximately 20 miles on a side, and the photographed area is located at about 3 degrees south latitude and 160 degrees west longitude on the lunar farside. The lunar surface probably had less pronounced color than indicated by this print.

  1. Emblem of the Apollo 17 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This is the Official emblem of the Apollo 17 lunar landing mission which will be flown by Astronauts Eugene A. Cernan, Ronald E. Evans and Harrison H. Schmitt. The insignia is dominated by the image of Apollo, the Greek sun god. Suspended in space behind the head of Apollo is an American eagle of contemporary design, the red bars of the eagle's wing represent the bars in the U.S. flag; the three white stars symbolize the three astronaut crewmen. The background is deep blue space and within it are the Moon, the planet Saturn and a spiral galaxy or nebula. The Moon is partially overlaid by the eagle's wing suggesting that this is a celestial body that man has visited and in that sense conquered. The thrust of the eagle and the gaze of Apollo to the right and toward Saturn and the galaxy is meant to imply that man's goals in space will someday include the planets and perhaps the stars. The colors of the emblem are red, white and blue, the colors of our flag; with the addition of gold, to

  2. View of the Earth seen by the Apollo 17 crew traveling toward the moon

    NASA Image and Video Library

    1972-12-07

    AS17-148-22727 (7 Dec. 1972) --- This view of Earth was seen by the Apollo 17 crew as they traveled toward the moon on their NASA lunar landing mission. This outstanding trans-lunar coast photograph extends from the Mediterranean Sea area to the Antarctica south polar ice cap. This is the first time the Apollo trajectory made it possible to photograph the south polar ice cap. Note the heavy cloud cover in the Southern Hemisphere. Almost the entire coastline of Africa is clearly visible. The Arabian Peninsula can be seen at the northeastern edge of Africa. The large island off the coast of Africa is the Malagasy Republic. The Asian mainland is on the horizon toward the northeast. The Apollo 17 crew consisted of astronauts Eugene A. Cernan, mission commander; Ronald E. Evans, command module pilot; and Harrison H. Schmitt, lunar module pilot. While astronauts Cernan and Schmitt descended in the Lunar Module (LM) to explore the moon, astronaut Evans remained with the Command and Service Modules (CSM) in lunar orbit.

  3. Liftoff of the Apollo 11 lunar landing mission

    NASA Image and Video Library

    1969-07-16

    S69-39961 (16 July 1969) --- The huge, 363-feet tall Apollo 11 (Spacecraft 107/Lunar Module S/Saturn 506) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), at 9:32 a.m. (EDT), July 16, 1969. Onboard the Apollo 11 spacecraft are astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 is the United States' first lunar landing mission. While astronauts Armstrong and Aldrin descend in the Lunar Module (LM) "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins will remain with the Command and Service Modules (CSM) "Columbia" in lunar orbit. Photo credit: NASA

  4. FLAG - APOLLO XI - ASTRONAUTS - MOON

    NASA Image and Video Library

    1969-07-14

    S69-39333 (July 1969) --- This is a photographic illustration of how the flag of the United States will be implanted on the moon by the Apollo 11 astronauts. The flag is three by five feet, and is made of nylon. It will be erected on an eight-foot aluminum staff, and tubing along its top edge will unfurl it in the airless environment of the moon. The implanting of the flag is symbolic of the first time man has landed on another celestial body, and does not constitute a territorial claim by the United States. The photograph on the right shows the flag in a furled condition. Apollo 11 astronauts Neil A. Armstrong, commander; and Edwin E. Aldrin Jr., lunar module pilot, will implant the flag after their Lunar Module (LM) sets down on the moon. Astronaut Michael Collins, command module pilot, will remain with the Command and Service Modules (CSM) in lunar orbit while Armstrong and Aldrin explore the lunar surface.

  5. Liftoff - Apollo XI - Lunar Landing Mission - KSC

    NASA Image and Video Library

    1969-07-16

    S69-39962 (16 July 1969) --- The huge, 363-feet tall Apollo 11 (Spacecraft 107/Lunar Module 5/Saturn 506) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), at 9:32 a.m. (EDT), July 16, 1969. Aboard the Apollo 11 spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 is the United States' first lunar landing mission. This view of the liftoff was taken by a camera mounted on the mobile launch tower. While astronauts Armstrong and Aldrin descend in the Lunar Module (LM) "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins will remain with the Command and Service Modules (CSM) "Columbia" in lunar orbit.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1972-04-18

    This view of the back side of the Moon was captured by the Apollo 16 mission crew. The sixth manned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission Commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 continued the broad-scale geological, geochemical, and geophysical mapping of the Moon’s crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used. The mission ended on April 27, 1972.

  7. Where No Man Has Gone Before: A History of Apollo Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Compton, William David

    1988-01-01

    This book is a narrative account of the development of the science program for the Apollo lunar landing missions. It focuses on the interaction between scientific interests and operational considerations in such matters as landing site selection and training of crews, quarantine and back contamination control, and presentation of results from scientific investigations. Scientific exploration of the moon on later flights, Apollo 12 through Apollo 17 is emphasized.

  8. Activity in the Mission Control Center during Apollo 14

    NASA Image and Video Library

    1971-02-04

    S71-17609 (4 Feb. 1971) --- These two individuals are examining a seismic reading in the Mission Control Center's ALSEP Room during the Apollo 14 S-IVB impact on the moon. Dr. Maurice Ewing (left) is the director of the Lamont-Doherty Geological Observatory at Columbia University. David Lammlein, a Columbia graduate student, is on the right. The Apollo 14 Saturn IVB stage impacted on the lunar surface at 1:40:54 a.m. (CST), Feb. 4, 1971, about 90 nautical miles south-southwest of the Apollo 12 passive seismometer. The energy release was comparable to 11 tons of TNT. Dr. Gary Latham of the Lamont-Doherty Geological Observatory is the principal investigator for the Passive Seismic Experiment, a component of the Apollo Lunar Surface Experiments Package.

  9. Saturn Apollo Program

    NASA Image and Video Library

    1972-04-16

    The sixth marned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 continued the broad-scale geological, geochemical, and geophysical mapping of the Moon's crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph. It photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle was also used. The mission ended on April 27, 1972.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1972-04-01

    The Lunar Roving Vehicle (LRV) was designed to transport astronauts and materials on the Moon. An LRV was used on each of the last three Apollo missions; Apollo 15, Apollo 16, and Apollo 17, in 1971 and 1972, to permit the crew to travel several miles from the lunar landing site. This photograph was taken during the Apollo 16 mission.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1979-05-01

    This montage depicts the flight crew patches for the manned Apollo 7 thru Apollo 17 missions. The Apollo 7 through 10 missions were basically manned test flights that paved the way for lunar landing missions. Primary objectives met included the demonstration of the Command Service Module (CSM) crew performance; crew/space vehicle/mission support facilities performance and testing during a manned CSM mission; CSM rendezvous capability; translunar injection demonstration; the first manned Apollo docking, the first Apollo Extra Vehicular Activity (EVA), performance of the first manned flight of the lunar module (LM); the CSM-LM docking in translunar trajectory, LM undocking in lunar orbit, LM staging in lunar orbit, and manned LM-CSM docking in lunar orbit. Apollo 11 through 17 were lunar landing missions with the exception of Apollo 13 which was forced to circle the moon without landing due to an onboard explosion. The craft was,however, able to return to Earth safely. Apollo 11 was the first manned lunar landing mission and performed the first lunar surface EVA. Landing site was the Sea of Tranquility. A message for mankind was delivered, the U.S. flag was planted, experiments were set up and 47 pounds of lunar surface material was collected for analysis back on Earth. Apollo 12, the 2nd manned lunar landing mission landed in the Ocean of Storms and retrieved parts of the unmanned Surveyor 3, which had landed on the Moon in April 1967. The Apollo Lunar Surface Experiments Package (ALSEP) was deployed, and 75 pounds of lunar material was gathered. Apollo 14, the 3rd lunar landing mission landed in Fra Mauro. ALSEP and other instruments were deployed, and 94 pounds of lunar materials were gathered, using a hand cart for first time to transport rocks. Apollo 15, the 4th lunar landing mission landed in the Hadley-Apennine region. With the first use of the Lunar Roving Vehicle (LRV), the crew was bale to gather 169 pounds of lunar material. Apollo 16, the 5th lunar

  12. Saturn Apollo Program

    NASA Image and Video Library

    1972-04-27

    The Apollo 16 Command Module splashed down in the Pacific Ocean on April 27, 1972 after an 11-day moon exploration mission. The sixth manned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission Commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 continued the broad-scale geological, geochemical, and geophysical mapping of the Moon’s crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used.

  13. Moon tree ceremony

    NASA Image and Video Library

    2011-02-03

    Apollo 13 astronaut Fred Haise stands with Rosemary Roosa, daughter of late Apollo 14 astronaut Stuart Roosa, beside a 'moon tree' planted at the INFINITY science center on Feb. 3, 2011. The moon tree is a descendent of seeds carried into space by Stuart Roosa on the Apollo 14 mission in 1971.

  14. Apollo experience report: Mission planning for Apollo entry

    NASA Technical Reports Server (NTRS)

    Graves, C. A.; Harpold, J. C.

    1972-01-01

    The problems encountered and the experience gained in the entry mission plans, flight software, trajectory-monitoring procedures, and backup trajectory-control techniques of the Apollo Program should provide a foundation upon which future spacecraft programs can be developed. Descriptions of these entry activities are presented. Also, to provide additional background information needed for discussion of the Apollo entry experience, descriptions of the entry targeting for the Apollo 11 mission and the postflight analysis of the Apollo 10 mission are presented.

  15. View - Mission Control Center (MCC) - Lunar Surface - Apollo XI Extravehicular Activity (EVA) - MSC

    NASA Image and Video Library

    1969-07-20

    S69-39815 (20 July 1969) --- Interior view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC) during the Apollo 11 lunar extravehicular activity (EVA). The television monitor shows astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. on the surface of the moon.

  16. Moon Age and Regolith Explorer (MARE) Mission Design and Performance

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.; Lee, David E.; Carson, John M., III

    2017-01-01

    On December 11, 1972, Apollo 17 marked the last controlled U.S. lunar landing and was followed by an absence of methodical in-situ investigation of the lunar surface. The Moon Age and Regolith Explorer (MARE) proposal provides scientific measurement of the age and composition of a relatively young portion of the lunar surface near Aristarchus Plateau and the first post-Apollo U.S. soft lunar landing. It includes the first demonstration of a crew survivability-enhancing autonomous hazard detection and avoidance system. This report focuses on the mission design and performance associated with the MARE robotic lunar landing subject to mission and trajectory constraints.

  17. Liftoff of the Apollo 11 lunar landing mission

    NASA Image and Video Library

    1969-07-16

    S69-39959 (16 July 1969) --- The huge, 363-feet tall Apollo 11 (Spacecraft 107/Lunar Module 5/ Saturn 506) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), at 9:32 a.m. (EDT), July 16, 1969. Aboard the Apollo 11 spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 is the United States' first lunar landing mission. This view of the liftoff was taken by a camera mounted on the mobile launch tower. While astronauts Armstrong and Aldrin descend in the Lunar Module (LM) "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins will remain with the Command and Service Modules (CSM) "Columbia" in lunar orbit. Photo credit: NASA

  18. Moon Exploration from "apollo" Magnetic and Gravity Field Data

    NASA Astrophysics Data System (ADS)

    Kharitonov, Andrey

    Recently, the great value is given to various researches of the Moon, as nearest nature satellite of the Earth, because there is preparation for forthcoming starts on the Moon of the American, European, Russian, Chinese, Indian new Orbiters and Landers. Designing of International Lu-nar bases is planned also. Therefore, in the near future the series of the questions connected with placing of International Lunar bases which coordinates substantially should to be connected with heterogeneity of the internal structure of the Moon can become especially interesting. If in the Moon it will be possible to find large congestions of water ice and those chemical elements which stocks in the Earth are limited this area of the Moon can become perspective for Inter-national Lunar bases. To solve a question of research of the deep structure of the Moon in the locations of International Lunar bases, competently, without excessive expenses for start new various under the form of the Lunar orbit of automatic space vehicles (polar, equatorial, inclined to the rotation axis) and their altitude of flight, which also not always were connected with investigation programs of measured fields (video observation, radio-frequency sounding, mag-netic, gravity), is possible if already from the available information of space vehicles APOLLO, SMART1, KAGUYA, LCROSS, LRO, CHANDRAYAAN-1, CHANG'E-1 it will be possible to analyse simultaneously some various fields, at different altitudes of measuring over the surface (20-300 km) of the Moon. The experimental data of the radial component magnetic field and gravity field the Moon measured at different altitudes, in its equatorial part have been analysed for the research of the deep structure of the Moon. This data has been received as a result of start of space vehicles -APOLLO-15 and APOLLO-16 (USA), and also the Russian space vehicles "LUNOHOD". Authors had been used the data of a magnetic field of the Moon at flight altitude 160, 100, 75, 30, 0 km

  19. Working on the moon: The Apollo experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, E.M.

    1989-01-01

    The successful completion of any scientific or engineering project on the Moon will depend, in part, on human ability to do useful work under lunar conditions. In making informed decisions about such things as the use of humans rather than robots for specific tasks, the scheduling of valuable human time, and the design and selection of equipment and tools, good use can be made of the existing experience base. During the six completed landing missions, Apollo lunar surface crews conducted 160 astronaut-hours of extra-vehicular activities (EVAs) and also spent a similar sum of waking hours working in the cramped confinesmore » of the Lunar Module. The first three missions were primarily proof-tests of flight hardware and procedures. The ability to land equipment and consumables was very modest but, despite stay times of no more than 32 hours, the crews of Apollos 11, 12, and 14 were able to test their mobility and their capability of doing useful work outside the spacecraft. For the last three missions, thanks to LM modifications which enabled landings with significant amounts of cargo, stay times more than doubled to three days. The crews were able to use Lunar Rovers to conduct extensive local exploration and to travel up to 10 kilometers away from their immediate landing sites. During these final missions, the astronauts spent enough time doing work of sufficient complexity that their experience should be of use in the formulation early-stage lunar base operating plans. 2 refs.« less

  20. Managing the Moon Program: Lessons Learned from Project Apollo

    NASA Technical Reports Server (NTRS)

    1999-01-01

    There have been many detailed historical studies of the process of deciding on and executing the Apollo lunar landing during the 1960s and early 1970s. From the announcement of President John F Kennedy on May 25, 1961, of his decision to land an American on the Moon by the end of the decade, through the first lunar landing on July 20, 1969, on to the last of six successful Moon landings with Apollo 17 in December 1972, NASA carried out Project Apollo with enthusiasm and aplomb. While there have been many studies recounting the history of Apollo, at the time of the 30th anniversary of the first lunar landing by Apollo 11, it seems appropriate to revisit the process of large-scale technological management as it related to the lunar mission. Consequently, the NASA History Office has chosen to publish this monograph containing the recollections of key partcipants in the management process. The collective oral history presented here was recorded in 1989 at the Johnson Space Center's Gilruth Recreation Center in Houston, Texas. It includes the recollections of key participants in Apollo's administration, addressing issues such as communication between field centers, the prioritization of technological goals, and the delegation of responsibility. The following people participated: George E. Muller, Owen W. Morris, Maxime A. Faget, Robert R. Gilruth, Christopher C. Kraft, and Howard W. (Bill) Tindall. The valuable perspectives of these individuals deepen and expand our understanding of this important historical event. This is the 14th in a series of special studies prepared by the NASA History Office. The Monographs in Aerospace History series is designed to provide a wide variety of investigations relative to the history of aeronautics and space. These publications are intended to be tightly focused in terms of subject, relatively short in length, and reproduced in an inexpensive format to allow timely and broad dissemination to researchers in aerospace history.

  1. View of Mission Control Center (MCC) - Lunar Surface - Apollo XI - Extravehicular Activity (EVA) - MSC

    NASA Image and Video Library

    1969-07-20

    S69-39817 (20 July 1969) --- Interior view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, during the Apollo 11 lunar extravehicular activity (EVA). The television monitor shows astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. on the surface of the moon.

  2. Montage of Apollo Crew Patches

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This montage depicts the flight crew patches for the manned Apollo 7 thru Apollo 17 missions. The Apollo 7 through 10 missions were basically manned test flights that paved the way for lunar landing missions. Primary objectives met included the demonstration of the Command Service Module (CSM) crew performance; crew/space vehicle/mission support facilities performance and testing during a manned CSM mission; CSM rendezvous capability; translunar injection demonstration; the first manned Apollo docking, the first Apollo Extra Vehicular Activity (EVA), performance of the first manned flight of the lunar module (LM); the CSM-LM docking in translunar trajectory, LM undocking in lunar orbit, LM staging in lunar orbit, and manned LM-CSM docking in lunar orbit. Apollo 11 through 17 were lunar landing missions with the exception of Apollo 13 which was forced to circle the moon without landing due to an onboard explosion. The craft was,however, able to return to Earth safely. Apollo 11 was the first manned lunar landing mission and performed the first lunar surface EVA. Landing site was the Sea of Tranquility. A message for mankind was delivered, the U.S. flag was planted, experiments were set up and 47 pounds of lunar surface material was collected for analysis back on Earth. Apollo 12, the 2nd manned lunar landing mission landed in the Ocean of Storms and retrieved parts of the unmanned Surveyor 3, which had landed on the Moon in April 1967. The Apollo Lunar Surface Experiments Package (ALSEP) was deployed, and 75 pounds of lunar material was gathered. Apollo 14, the 3rd lunar landing mission landed in Fra Mauro. ALSEP and other instruments were deployed, and 94 pounds of lunar materials were gathered, using a hand cart for first time to transport rocks. Apollo 15, the 4th lunar landing mission landed in the Hadley-Apennine region. With the first use of the Lunar Roving Vehicle (LRV), the crew was bale to gather 169 pounds of lunar material. Apollo 16, the 5th lunar

  3. Apollo experience report: Guidance and control systems. Mission control programmer for unmanned missions AS-202, Apollo 4, and Apollo 6

    NASA Technical Reports Server (NTRS)

    Holloway, G. F.

    1975-01-01

    An unmanned test flight program required to evaluate the command module heat shield and the structural integrity of the command and service module/Saturn launch vehicle is described. The mission control programer was developed to provide the unmanned interface between the guidance and navigation computer and the other spacecraft systems for mission event sequencing and real-time ground control during missions AS-202, Apollo 4, and Apollo 6. The development of this unmanned programer is traced from the initial concept through the flight test phase. Detailed discussions of hardware development problems are given with the resulting solutions. The mission control programer functioned correctly without any flight anomalies for all missions. The Apollo 4 mission control programer was reused for the Apollo 6 flight, thus being one of the first subsystems to be reflown on an Apollo space flight.

  4. Apollo experience report: The application of a computerized visualization capability to lunar missions

    NASA Technical Reports Server (NTRS)

    Hyle, C. T.; Lunde, A. N.

    1972-01-01

    The development of a computerized capability to depict views from the Apollo spacecraft during a lunar mission was undertaken before the Apollo 8 mission. Such views were considered valuable because of the difficulties in visualizing the complex geometry of the Earth, Moon, Sun, and spacecraft. Such visualization capability originally was desired for spacecraft attitude verification and contingency situations. Improvements were added for later Apollo flights, and results were adopted for several real time and preflight applications. Some specific applications have included crewmember and ground control personnel familiarization, nominal and contingency mission planning, definition of secondary attitude checks for all major thrust maneuvers, and preflight star selection for navigation and for platform alinement. The use of this computerized visualization capability should prove valuable for any future space program as an aid to understanding the geometrical relationships between the spacecraft and the celestial surroundings.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-16

    Chief astronaut and director of flight crew operations, Donald K. Slayton (right front) reviews lunar charts with Apollo 11 astronauts Michael Collins (left), Neil Armstrong, and Edwin Aldrin (next to Slayton) during breakfast a short time before the three men launched for the first Moon landing mission. Sharing breakfast with the crew was William Anders (left rear), Lunar Module pilot for the Apollo 8 lunar orbit mission. The Apollo 11 mission launched from the NASA Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1969-03-05

    The third stage (S-IVB) of the Saturn V launch vehicle for the Apollo 11 lunar landing mission is hoisted in the vehicle assembly building at the NASA Kennedy Space Center (KSC) for mating with the second stage (S-II). The vehicle, designated as AS-506, projected the first lunar landing mission, Apollo 11, on a trajectory for the Moon. The Apollo 11 mission launched from KSC in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Astronauts onboard included Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  7. Apollo 13 emblem

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is the insignia of the Apollo 13 lunar landing mission. Represented in the Apollo 13 emblem is Apollo, the sun god of Greek mythology, symbolizing how the Apollo flights have extended the light of knowledge to all mankind. The Latin phrase Ex Luna, Scientia means 'From the Moon, Knowledge'.

  8. MoonNEXT: A European Mission to the Moon

    NASA Astrophysics Data System (ADS)

    Carpenter, J. D.; Koschny, D.; Crawford, I.; Falcke, H.; Kempf, S.; Lognonne, P.; Ricci, C.; Houdou, B.; Pradier, A.

    2008-09-01

    MoonNEXT is a mission currently being studied, under the direction of the European Space Agency, whose launch is foreseen between 2015 and 2018. MoonNEXT is intended to prepare the way for future exploration activities on the Moon, while addressing key science questions. Exploration Objectives The primary goal for the MoonNEXT mission is to demonstrate autonomous soft precision landing with hazard avoidance; a key capability for future exploration missions. The nominal landing site is at the South Pole of the Moon, at the edge of the Aitken basin and in the region of Shackleton crater, which has been identified as an optimal location for a future human outpost by the NASA lunar architecture team [1]. This landing site selection ensures a valuable contribution by MoonNEXT to the Global Exploration Strategy [2]. MoonNEXT will also prepare for future lunar exploration activities by characterising the environment at the lunar surface. The potentially hazardous radiation environment will me monitored while a dedicated instrument package will investigate the levitation and mobility of lunar dust. Experience on Apollo demonstrated the potentially hazardous effects of dust for surface operations and human activities and so an understanding of these processes is important for the future. Life sciences investigations will be carried out into the effects of the lunar environment (including radiation, gravity and illumination conditions) on a man made ecosystem analogous to future life support systems. In doing so MoonNEXT will demonstrate the first extraterrestrial man made ecosystem and develop valuable expertise for future missions. Geological and geochemical investigations will explore the possibilities for In Situ Resource Utilisation (ISRU), which will be essential for long term human habitation on the Moon and is of particular importance at the proposed landing site, given its potential as a future habitat location. Science Objectives In addition to providing extensive

  9. Apollo 13 - Mission Control Console

    NASA Image and Video Library

    1970-04-15

    S70-35096 (16 April 1970) --- As the problem-plagued Apollo 13 crewmen entered their final 24 hours in space, several persons important to the mission remained attentive at consoles in the Mission Operations Control Room of the Mission Control Center at Manned Spacecraft Center. Among those monitoring communications and serving in supervisory capacities were these four officials from National Aeronautics and Space Administration Headquarters, Washington, D.C.: (from left) Thomas H. McMullen, Office of Manned Space Flight, who served as Shift 1 mission director; Dale Myers, associate administrator, Manned Space Flight; Chester M. Lee of the Apollo Program Directorate, OMSF, Apollo 13 mission director; and Dr. Rocco A. Petrone, Apollo program director, OMSF.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1971-07-31

    This is a photo of the Apollo 15 Lunar Module, Falcon, on the lunar surface. Apollo 15 launched from Kennedy Space Center (KSC) on July 26, 1971 via a Saturn V launch vehicle. Aboard was a crew of three astronauts including David R. Scott, Mission Commander; James B. Irwin, Lunar Module Pilot; and Alfred M. Worden, Command Module Pilot. The first mission designed to explore the Moon over longer periods, greater ranges and with more instruments for the collection of scientific data than on previous missions, the mission included the introduction of a $40,000,000 lunar roving vehicle (LRV) that reached a top speed of 16 kph (10 mph) across the Moon's surface. The successful Apollo 15 lunar landing mission was the first in a series of three advanced missions planned for the Apollo program. The primary scientific objectives were to observe the lunar surface, survey and sample material and surface features in a preselected area of the Hadley-Apennine region, setup and activation of surface experiments and conduct in-flight experiments and photographic tasks from lunar orbit. Apollo 15 televised the first lunar liftoff and recorded a walk in deep space by Alfred Worden. Both the Saturn V rocket and the LRV were developed at the Marshall Space Flight Center.

  11. Apollo 13 Emblem

    NASA Image and Video Library

    1969-12-01

    S69-60662 (December 1969) --- This is the insignia of the Apollo 13 lunar landing mission. The Apollo 13 prime crew will be astronauts James A. Lovell Jr., commander; Thomas K. Mattingly II, command module pilot; and Fred W. Haise Jr., lunar module pilot. Represented in the Apollo 13 emblem is Apollo, the sun god of Greek mythology, symbolizing how the Apollo flights have extended the light of knowledge to all mankind. The Latin phrase Ex Luna, Scientia means "From the Moon, Knowledge." Apollo 13 will be the National Aeronautics and Space Administration's (NASA) third lunar landing mission.

  12. Prime crew photographed during Apollo 7 mission

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut Walter M. Schirra Jr., Apollo 7 commander, is photographed during the Apollo 7 mission (1582); Astronaut Donn F. Eisele, Apollo 7 command module pilot, is photographed during the mission (1583); Astronaut Walter Cunningham, Apollo 7 lunar module pilot, is photographed during mission (1584).

  13. Prime crew photographed during Apollo 7 mission

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut Walter M. Schirra Jr., Apollo 7 commander, is photographed during the Apollo 7 mission (1582); Astronaut Donn F. Eisele, Apollo 7 command module pilot, is phtographed during the mission (1583); Astronaut Walter Cunningham, Apollo 7 lunar module pilot, is photographed during mission (1584).

  14. Apollo 16 astronauts in Apollo Command Module Mission Simulator

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in bldg 5 at the Manned Spacecraft Center (MSC). In the right background is Astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator (31046); Mattingly (right foreground) and Duke (right backgroung) in the Apollo Command Module Mission Simulator for EVA simulation and training. Astronaut John W. Young, commander, can be seen in the left background (31047).

  15. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-31

    The moon bound Apollo 14, carrying a crew of three astronauts: Mission commander Alan B. Shepard Jr., Command Module pilot Stuart A. Roosa, and Lunar Module pilot Edgar D. Mitchell, lifted off from launch complex 39A at the Kennedy Space Center on January 31, 1971. It was the third manned lunar landing, the first manned landing in exploration of the lunar highlands, and it demonstrated pinpoint landing capability. The major goal of Apollo 14 was the scientific exploration of the Moon in the foothills of the rugged Fra Mauro region. The lunar surface extravehicular activity (EVA) of astronauts Shepard and Mitchell included setting up an automated scientific laboratory called Apollo Lunar Scientific Experiments Package (ALSEP), and collecting a total of about 95 pounds (43 kilograms) of Moon rock and soil for a geological investigation back on the Earth. The mission safely returned to Earth on February 9, 1971.

  16. Apollo 12 crewmembers shown in Apollo Lunar Module Mission Simulator

    NASA Image and Video Library

    1969-11-04

    S69-56699 (22 Oct. 1969) --- Astronauts Charles Conrad Jr. (left), Apollo 12 commander; and Alan L. Bean, lunar module pilot, are shown in the Apollo Lunar Module Mission Simulator during simulator training at the Kennedy Space Center (KSC). Apollo 12 will be the National Aeronautics and Space Administration's (NASA) second lunar landing mission. The third Apollo 12 crewmember will be astronaut Richard F. Gordon Jr., command module pilot.

  17. Crew Training - Apollo X (Apollo Mission Simulator [AMS]) - KSC

    NASA Image and Video Library

    1969-04-05

    S69-32788 (3 April 1969) --- Astronaut John W. Young, Apollo 10 prime crew command module pilot, participates in simulation activity in the Apollo Mission Simulator at the Kennedy Space Center during preparations for his scheduled lunar orbit mission.

  18. CREW TRAINING - APOLLO X (APOLLO MISSION SIMULATOR [AMS]) - KSC

    NASA Image and Video Library

    1969-04-05

    S69-32789 (3 April 1969) --- Astronaut John W. Young, Apollo 10 prime crew command module pilot, participates in simulation activity in the Apollo Mission Simulator at the Kennedy Space Center during preparations for his scheduled lunar orbit mission.

  19. Apollo 1 Tribute

    NASA Image and Video Library

    2017-01-24

    A gateway featuring the Apollo 1 mission logo over the moon is shown inside the new tribute to the crew of Apollo 1 who perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. Astronauts Gus Grissom, Ed White II and Roger Chaffee were lost during the fire. The tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017, 50 years after the crew of three was lost. It features numerous items recalling the lives of the three astronauts. The tribute also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  20. Apollo Expeditions to the Moon

    NASA Technical Reports Server (NTRS)

    Cortright, E. M. (Editor)

    1975-01-01

    The Apollo program is described from the planning stages through Apollo 17. The organization of the program is discussed along with the development of the spacecraft and related technology. The objectives and accomplishments of each mission are emphasized along with personal accounts of the major figures involved. Other topics discussed include: ground support systems and astronaut selection.

  1. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-16

    From the right, NASA administrator, Dr. Thomas O. Paine talks with U.S. Vice President Spiro T. Agnew while awaiting the launch of Saturn V (AS-506) that carried the Apollo 11 spacecraft to the Moon for man’s historic first landing on the lunar surface. At center is astronaut William Anders, a member of the first crew to orbit the moon during the Apollo 8 mission. At left is Lee B. James, director of Program Management at the NASA Marshall Space Flight Center (MSFC) where the Saturn V was developed. The craft lifted off from launch pad 39 at Kennedy Space Flight Center (KSC) on July 16, 1969. The moon bound crew included astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (M) pilot. The mission finalized with splashdown in the Pacific Ocean on July 24, 1969. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  2. Apollo 12 crewmembers shown in Apollo Lunar Module Mission Simulator

    NASA Image and Video Library

    1969-11-04

    S69-56700 (22 Oct. 1969) --- A fish-eye lens view of astronauts Charles Conrad Jr. (on left), Apollo 12 commander, and Alan L. Bean, lunar module pilot, inside the Apollo Lunar Module Mission Simulator during simulator training at the Kennedy Space Center (KSC). Apollo 12 will be the National Aeronautics and Space Administration's (NASA) second lunar landing mission. The third Apollo 12 crewmember will be astronaut Richard F. Gordon Jr., command module pilot.

  3. Apollo 4 launch

    NASA Image and Video Library

    1967-09-11

    S67-50903 (9 Nov. 1967) --- The Apollo 4 (Spacecraft 017/Saturn 501) space mission was launched from Pad A, Launch Complex 39, Kennedy Space Center, Florida. The liftoff of the huge 363-feet tall Apollo/Saturn V space vehicle was at 7:00:01 a.m. (EST), Nov. 9, 1967. The successful objectives of the Apollo 4 Earth-orbital unmanned space mission obtained included (1) flight information on launch vehicle and spacecraft structural integrity and compatibility, flight loads, stage separation, subsystem operation, emergency detection subsystem, and (2) evaluation of the Apollo Command Module heat shield under conditions encountered on return from a moon mission.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-16

    This photograph shows the Saturn V launch vehicle (SA-506) for the Apollo 11 mission liftoff at 8:32 am CDT, July 16, 1969, from launch complex 39A at the Kennedy Space Center. Apollo 11 was the first manned lunar landing mission with a crew of three astronauts: Mission commander Neil A. Armstrong, Command Module pilot Michael Collins, and Lunar Module pilot Edwin E. Aldrin, Jr. It placed the first humans on the surface of the moon and returned them back to Earth. Astronaut Armstrong became the first man on the lunar surface, and astronaut Aldrin became the second. Astronaut Collins piloted the Command Module in a parking orbit around the Moon.

  5. Moon Age and Regolith Explorer (MARE) Mission Design and Performance

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.; Lee, David E.

    2016-01-01

    The moon’s surface last saw a controlled landing from a U.S. spacecraft on December 11, 1972 with Apollo 17. Since that time, there has been an absence of methodical in-situ investigation of the lunar surface. In addition to the scientific value of measuring the age and composition of a relatively young portion of the lunar surface near Aristarchus Plateau, the Moon Age and Regolith Explorer (MARE) proposal provides the first U.S. soft lunar landing since the Apollo Program and the first ever robotic soft lunar landing employing an autonomous hazard detection and avoidance system, a system that promises to enhance crew safety and survivability during a manned lunar (or other) landing. This report focuses on the mission design and performance associated with the MARE robotic lunar landing subject to mission and trajectory constraints.

  6. Apollo 14 - Press Kit

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Apollo 14, the sixth United States manned flight to the Moon and fourth Apollo mission with an objective of landing men on the Moon, is scheduled for launch Jan. 31 at 3:23 p.m. EST from Kennedy Space Center, Fla. The Apollo 14 lunar module is to land in the hilly upland region north of the Fra Mauro crater for a stay of about 33 hours, during which the landing crew will leave the spacecraft twice to set up scientific experiments on the lunar surface and to continue geological explorations. The two earlier Apollo lunar landings were Apollo 11 at Tranquility Base and Apollo 12 at Surveyor 3 crater in the Ocean of Storms.

  7. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-09

    In preparation of the nation’s first lunar landing mission, Apollo 11, crew members underwent training to practice activities they would be performing during the mission. In this photograph Neil Armstrong approaches the helicopter he flew to practice landing the Lunar Module (LM) on the Moon. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished

  8. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-24

    U.S. President Richard Milhous Nixon (center), aboard the U.S.S. Hornet aircraft carrier, used binoculars to watch the Apollo 11 Lunar Mission Recovery. Standing next to the President is astronaut Frank Borman, Apollo 8 Commander. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet where they were quartered in a Mobile Quarantine Facility (MQF) for 21 days post mission. The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  9. Saturn Apollo Program

    NASA Image and Video Library

    1968-12-19

    Pictured from left to right, the Apollo 9 astronauts, James A. McDivitt, David R. Scott, and Russell L. Schweickart, pause in front of the Apollo/Saturn V space vehicle that would launch the Apollo 8 crew. The launch of the Apollo 9 (Saturn V launch vehicle, SA-504) took place on March 3, 1968. The Apollo 9 spacecraft, in the lunar mission configuration, was tested in Earth orbit. The mission was designed to rehearse all the steps and reproduce all the events of the Apollo 11 mission with the exception of the lunar touchdown, stay, and liftoff. The command and service modules, and the lunar module were used in flight procedures identical to those that would later take similar vehicles to the Moon, and a landing. The flight mechanics, mission support systems, communications, and recording of data were tested in a final round of verification. Astronauts Scott and Schweickart conducted Extravehicular Activity during this mission.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1972-04-16

    The sixth manned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission Commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 mission continued the broad-scale geological, geochemical, and geophysical mapping of the Moon’s crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used. The mission ended on April 27, 1972.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-24

    U.S. President Richard Milhous Nixon, aboard the U.S.S. Hornet aircraft carrier, used binoculars to watch the Apollo 11 Lunar Mission recovery. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) for 21 days post mission. The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  12. Apollo 40th Anniversary Press Conference

    NASA Image and Video Library

    2009-07-19

    Astronaut James Lovell (Apollo 8 Apollo 13), center, flanked by Walt Cunningham (Apollo 7), left, and David Scott (Apollo 9 Apollo 15) responds during the 40th anniversary of the Apollo 11 mission and the walk on the moon press conference, Monday, July 20, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  13. Saturn Apollo Program

    NASA Image and Video Library

    1989-03-09

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. This logo represents the Commemorative 20th Anniversary of the Apollo 11 Lunar mission. Housed inside the zero of the numeral twenty is the original flight insignia in which an Eagle descending upon the lunar surface depicts the LM, named “Eagle’’.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-15

    Dr. Kurt Debus, director of the Kennedy Space Flight Center (KSC), participated in the countdown demonstration test for the Apollo 11 mission in firing room 1 of the KSC control center. The Apollo 11 mission, the first lunar landing mission, launched from KSC in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  15. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-15

    Lee B. James (left), manager of the Saturn Program at the Marshall Space flight Center (MSFC), talks with Isom Pigell in the firing room 1 of the Kennedy Space Center (KSC) control center during the countdown demonstration test for the Apollo 11 mission. The Apollo 11 mission, the first lunar landing mission, launched from the KSC in Florida via the MSFC developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  16. Apollo 40th Anniversary Press Conference

    NASA Image and Video Library

    2009-07-19

    Astronaut James Lovell (Apollo 8 Apollo 13) gestures during the 40th anniversary of the Apollo 11 mission and the walk on the moon press conference, Monday, July 20, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  17. Apollo 13 - Press Kit

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Apollo 13, the third U.S. manned lunar landing mission, will be launched April 11 from Kennedy Space Center, Fla., to explore a hilly upland region of the Moon and bring back rocks perhaps five billion years old. The Apollo 13 lunar module will stay on the Moon more than 33 hours and the landing crew will leave the spacecraft twice to emplace scientific experiments on the lunar surface and to continue geological investigations. The Apollo 13 landing site is in the Fra Mauro uplands; the two National Aeronautics and Space Administration previous landings were in mare or 'sea' areas, Apollo 11 in the Sea of Tranquility and Apollo 12 in the Ocean of Storms.

  18. Apollo 12 Mission image - Dark view of Astronaut Alan L. Bean climbing down the ladder of the Lunar Module (LM)

    NASA Image and Video Library

    1969-11-19

    AS12-46-6728 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 mission, is about to step off the ladder of the Lunar Module to join astronaut Charles Conrad Jr., mission commander, in extravehicular activity (EVA). Conrad and Bean descended in the Apollo 12 LM to explore the moon while astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules in lunar orbit.

  19. Apollo 40th Anniversary Press Conference

    NASA Image and Video Library

    2009-08-11

    Eugene Cernan (Apollo 10, Apollo 17) , right, speaks, as Thomas Stafford (Apollo 10) looks on during the 40th anniversary of the Apollo 11 mission and the walk on the moon press conference, Monday, July 20, 2009, at NASA Headquarters in Washington Photo Credit: (NASA/Paul E. Alers)

  20. Apollo 1 Tribute

    NASA Image and Video Library

    2017-01-24

    The crew access arm that astronauts walked across to reach the Apollo spacecraft for missions to the moon serves as the exit for the new tribute to the crew of Apollo 1 who perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. The tribute highlights the lives and careers of astronauts Gus Grissom, Ed White II and Roger Chaffee who were lost during the fire. The tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017, 50 years after the crew of three was lost. It features numerous items recalling the lives of the three astronauts. The tribute also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  1. Astronaut Alan Bean deploys ALSEP during first Apollo 12 EVA on moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, Apollo 12 lunar module pilot, deploys components of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA) on the moon. The photo was made by Astronaut Charles Conrad Jr., Apollo 12 commander, using a 70mm handheld Haselblad camera modified for lunar surface usage.

  2. Origin of the moon: New data from old rocks

    NASA Technical Reports Server (NTRS)

    French, B. M.

    1972-01-01

    Knowledge of the moon is reviewed, particularly that obtained from Apollo 11 and 12 samples, to provide a framework for the geological results from the Apollo 15 mission. The three main theories that have resulted from the Apollo data are briefly discussed, and a review of modern lunar exploration is presented. The knowledge acquired from the Apollo missions is summarized and includes: (1) The rocks of the maria are from 3.3 to 3.7 billion years old, and the highlands are probably 4.6 billion years old. (2) Only small moonquakes are detected, and these appear related to tidal stresses produced by moon swings in its orbit. (3) The moon has a very weak magnetic field. (4) The moon was once hot enough to melt its interior.

  3. Review of measurements of dust movements on the Moon during Apollo

    NASA Astrophysics Data System (ADS)

    O'Brien, Brian J.

    2011-11-01

    This is the first review of 3 Apollo experiments, which made the only direct measurements of dust on the lunar surface: (i) minimalist matchbox-sized 270 g Dust Detector Experiments (DDEs) of Apollo 11, 12, 14 and 15, produced 30 million Lunar Day measurements 21 July 1969-30 September, 1977; (ii) Thermal Degradation Samples (TDS) of Apollo 14, sprinkled with dust, photographed, taken back to Earth into quarantine and lost; and (iii) the 7.5 kg Lunar Ejecta and Meteoroids (LEAM) experiment of Apollo 17, whose original tapes and plots are lost. LEAM, designed to measure rare impacts of cosmic dust, registered scores of events each lunation most frequently around sunrise and sunset. LEAM data are accepted as caused by heavily-charged particles of lunar dust at speeds of <100 m/s, stimulating theoretical models of transporting lunar dust and adding significant motivation for returning to the Moon. New analyses here show some raw data are sporadic bursts of 1, 2, 3 or more events within time bubbles smaller than 0.6 s, not predicted by theoretical dust models but consistent with noise bits caused by electromagnetic interference (EMI) from switching of large currents in the Apollo 17 Lunar Surface Experiment Package (ALSEP), as occurred in pre-flight LEAM-acceptance tests. On the Moon switching is most common around sunrise and sunset in a dozen heavy-duty heaters essential for operational survival during 350 h of lunar night temperatures of minus 170 °C. Another four otherwise unexplained features of LEAM data are consistent with the "noise bits" hypothesis. Discoveries with DDE and TDS reported in 1970 and 1971, though overlooked, and extensive DDE discoveries in 2009 revealed strengths of adhesive and cohesive forces of lunar dust. Rocket exhaust gases during Lunar Module (LM) ascent caused dust and debris to (i) contaminate instruments 17 m distant (Apollo 11) as expected, and (ii) unexpectedly cleanse Apollo hardware 130 m (Apollo 12) and 180 m (Apollo 14) from LM

  4. Apollo and the geology of the moon /Twenty-eighth William Smith Lecture/

    NASA Technical Reports Server (NTRS)

    Schmitt, H. H.

    1975-01-01

    Lunar geology evidence is examined for clues to the origin and evolution of the moon and earth. Seven evolutionary episodes, the last covering three billion years to the present day, are constructed for the moon. Parallel episodes in the earth's evolution are masked by the dynamic continuing evolution of the earth over a 4.5 billion year span, in contrast to the moon's quiescence and inability to retain fluids. Comparisons are drawn between the geochemistry and tectonics of the lunar basaltic maria and the earth's ocean basins. Lunar maria rocks differ strikingly in chemical composition from meteoritic matter and solar material. Inundation of frontside lunar maria basins by vast oceans of dark basalt mark the last of the major internally generated evolutionary episodes, and is attributed to consequences of meltdown of the lunar mantle and crust by radioisotope decay from below. Data are drawn primarily from Apollo missions 11-17, supplemented by other sources.

  5. Apollo 40th Anniversary Press Conference

    NASA Image and Video Library

    2009-07-19

    Apollo astronauts from left, Walt Cunningham (Apollo 17), James Lovell (Apollo 8 Apollo 13), David Scott (Apollo 9 Apollo 15), Buzz Aldrin (Apollo 11), Charles Duke (Apollo 16), Thomas Stafford (Apollo 10) and Eugene Cernan (Apollo 17) are seen during the 40th anniversary of the Apollo 11 mission and the walk on the moon press conference, Monday, July 20, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  6. Endocrine Laboratory Results Apollo Missions 14 and 15

    NASA Technical Reports Server (NTRS)

    Leach, C. S.

    1972-01-01

    Endocrine/metabolic responses to space flight have been measured on the crewmen of Apollo missions 14 and 15. There were significant biochemical changes in the crewmen of both missions immediately postflight. However, the Apollo 15 mission results differed from Apollo 14 and preflight shown by a normal to increased urine volume with slight increases in antidiuretic hormone. Although Apollo 15 was the first mission in which the exchangeable potassium measurement was made (a decrease), results from other missions were indicative of similar conclusions.

  7. Apollo 8 Mission Report

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Postflight analysis of Apollo 8 mission. Apollo 8 was the second manned flight in the program and the first manned lunar orbit mission. The crew were Frank Borman, Commander; James A. Lovell, Command Module Pilot; and William A. Anders, Lunar Module Pilot. The Apollo 8 space vehicle was launched on time from Kennedy Space Center, Florida, at 7:51:00 AM, EST, on December 21, 1968. Following a nominal boost phase, the spacecraft and S-IVB combination was inserted - into a parking orbit of 98 by 103 nautical miles. After a post-insertion checkout of spacecraft systems, the 319-second translunar injection maneuver was initiated at 2:50:37 by reignition of the S-IVB engine.

  8. Engineering potential for lunar missions after Apollo.

    NASA Technical Reports Server (NTRS)

    Burke, J. D.

    1972-01-01

    The need for continuing post-Apollo lunar research is defined by outlining problems in stellar, planetary, biological, and social evolution which require specific studies of the moon. Engineering capabilities existing immediately after the Apollo program are described in the areas of launch vehicles and spacecraft, lunar surface mobility, instrumentation, and communications.

  9. View of Mission Control during Apollo 9 earth orbital mission

    NASA Image and Video Library

    1969-03-03

    S69-26301 (March 1969) --- Overall view of the Mission Operations Control Room in the Mission Control Center, Building 30, during the Apollo 9 Earth-orbital mission. When this photograph was taken a live television transmission was being received from Apollo 9 as it orbited Earth.

  10. Mission Control Center (MCC) - Apollo 8

    NASA Image and Video Library

    1968-12-25

    S68-56007 (23 Dec. 1968) --- Overall view of the Mission Operations Control Room in the Mission Control Center, Building 30, on the third day of the Apollo 8 lunar orbit mission. Seen on the television monitor is a picture of Earth which was telecast from the Apollo 8 spacecraft 176,000 miles away.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-21

    Millions of people on Earth watched via television as a message for all mankind was delivered to the Mare Tranquilitatis (Sea of Tranquility) region of the Moon during the historic Apollo 11 mission, where it still remains today. A commemorative plaque was attached to the leg of the Lunar Module (LM), Eagle, engraved with the following words: “Here men from the planet Earth first set foot upon the Moon July, 1969 A.D. We came in peace for all of mankind.” It bears the signatures of the Apollo 11 astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) pilot along with the signature of the U.S. President Richard M. Nixon. The plaque, as shown here, covered with protective steel for the launch and journey to the moon, was uncovered by crew members after landing. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  12. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-03

    Millions of people on Earth watched via television as a message for all mankind was delivered to the Mare Tranquilitatis (Sea of Tranquility) region of the Moon during the historic Apollo 11 mission, where it still remains today. This photograph is a reproduction of the commemorative plaque that was attached to the leg of the Lunar Module (LM), Eagle, engraved with the following words: “Here men from the planet Earth first set foot upon the Moon July, 1969 A.D. We came in peace for all of mankind.” It bears the signatures of the Apollo 11 astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) pilot along with the signature of the U.S. President Richard M. Nixon. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  13. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-07

    Millions of people on Earth watched via television as a message for all mankind was delivered to the Mare Tranquilitatis (Sea of Tranquility) region of the Moon during the historic Apollo 11 mission, where it still remains today. A technician holds the commemorative plaque that was later attached to the leg of the Lunar Module (LM), Eagle, engraved with the following words: “Here men from the planet Earth first set foot upon the Moon July, 1969 A.D. We came in peace for all of mankind.” It bears the signatures of the Apollo 11 astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) pilot along with the signature of the U.S. President Richard M. Nixon. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1959-07-21

    Millions of people on Earth watched via television as a message for all mankind was delivered to the Mare Tranquilitatis (Sea of Tranquility) region of the Moon during the historic Apollo 11 mission, where it still remains today. This commemorative plaque, attached to the leg of the Lunar Module (LM), Eagle, is engraved with the following words: “Here men from the planet Earth first set foot upon the Moon July, 1969 A.D. We came in peace for all of mankind.” It bears the signatures of the Apollo 11 astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) pilot along with the signature of the U.S. President Richard M. Nixon. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  15. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-09

    In preparation of the nation’s first Lunar landing mission, Apollo 11 crew members underwent training activities to practice activities they would be performing during the mission. In this photograph, Neil Armstrong, donned in his space suit, practices getting back to the first rung of the ladder on the Lunar Module (LM). The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  16. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-15

    Lee B. James (left), manager of the Saturn Program at the Marshall Space flight Center (MSFC), talks with Isom Pigell in the firing room 1 of the Kennedy Space Center (KSC) control center during the countdown demonstration test for the Apollo 11 mission. At left is Dr. Hans C. Gruen of KSC. The Apollo 11 mission, the first lunar landing mission, launched from the KSC in Florida via the MSFC developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  17. Apollo 17

    NASA Technical Reports Server (NTRS)

    Garrett, David

    1972-01-01

    This is the Press Kit that was given to the various media outlets that were interested in covering the Apollo 17 mission. It includes information about the moon, lunar science, concentrating on the planned mission. The kit includes information about the flight, and the trajectory, planned orbit insertion maneuvers, the extravehicular mission events, a comparison with the Apollo 16, a map of the lunar surface, and the surface activity, information about the Taurus-Littrow landing site, the planned science experiments, the power source for the experiment package and diagrams of some of the instrumentation that was used to perform the experiments.

  18. Apollo 13 MCC - MSC

    NASA Image and Video Library

    1970-04-14

    S70-34986 (14 April 1970) --- A group of six astronauts and two flight controllers monitor the console activity in the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC) during the problem-plagued Apollo 13 lunar landing mission. Seated, left to right, are MOCR Guidance Officer Raymond F. Teague; astronaut Edgar D. Mitchell, Apollo 14 prime crew lunar module pilot; and astronaut Alan B. Shepard Jr., Apollo 14 prime crew commander. Standing, left to right, are scientist-astronaut Anthony W. England; astronaut Joe H. Engle, Apollo 14 backup crew lunar module pilot; astronaut Eugene A. Cernan, Apollo 14 backup crew commander; astronaut Ronald E. Evans, Apollo 14 backup crew command module pilot; and M.P. Frank, a flight controller. When this picture was made, the Apollo 13 moon landing had already been canceled, and the Apollo 13 crew men were in trans-Earth trajectory attempting to bring their damaged spacecraft back home.

  19. Saturn Apollo Program

    NASA Image and Video Library

    1968-03-03

    The launch of the Apollo 9 (Saturn V launch vehicle, SA-504), with astronauts James A. McDivitt, David R. Scott, and Russell L. Schweickart, took place on March 3, 1968. The Apollo 9 spacecraft, in the lunar mission configuration, was tested in Earth orbit. The mission was designed to rehearse all the steps and reproduce all the events of the Apollo 11 mission with the exception of the lunar touchdown, stay, and liftoff. The command and service modules, and the lunar module were used in flight procedures identical to those that would later take similar vehicles to the Moon, and a landing. The flight mechanics, mission support systems, communications, and recording of data were tested in a final round of verification. Astronauts Scott and Schweickart conducted Extravehicular Activity during this mission.

  20. Project: Apollo 15

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The 12-day Apollo 15 mission, scheduled for launch on July 26 to carry out the fourth United States manned exploration of the Moon, will: Double the time and extend tenfold the range of lunar surface exploration as compared with earlier missions; Deploy the third in a network of automatic scientific stations; Conduct a new group of experiments in lunar orbit; and Return to Earth a variety of lunar rock and soil samples. Scientists expect the results will greatly increase man's knowledge both of the Moon's history and composition and of the evolution and dynamic interaction of the Sun-Earth system. This is so because the dry, airless, lifeless Moon still bears records of solar radiation and the early years of solar system history that have been erased from Earth. Observations of current lunar events also may increase understanding of similar processes on Earth, such as earthquakes. The Apollo 15 Lunar module will make its descent over the Apennine peaks, one of the highest mountain ranges on the Moon, to land near the rim of the canyon-like Hadley Rille. From this Hadley-Apennine lunar base, between the mountain range and the rille, Commander David R. Scott and Lunar Module Pilot James B. Irwin will explore several kilometers from the lunar module, driving an electric-powered lunar roving vehicle for the first time on the Moon. Scott and Irwin will leave the lunar module for three exploration periods to emplace scientific experiments on the lunar surface and to make detailed geologic investigations of formations in the Apennine foothills, along the Hadley Rille rim, and to other geologic structures. The three previous manned landings were made by Apollo 11 at Tranquillity Base, Apollo 12 in the Ocean of Storms and Apollo 14 at Fra Mauro.

  1. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-20

    This is a detailed view of the back side of Moon in the vicinity of Crater No. 308 taken during the Apollo 11 mission. Apollo 11, the first manned lunar mission, launched from The Kennedy Space Center, Florida via a Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The 3-man crew aboard the flight consisted of Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. The Lunar Module (LM), named “Eagle, carrying astronauts Neil Armstrong and Edwin Aldrin, was the first crewed vehicle to land on the Moon. Meanwhile, astronaut Collins piloted the Command Module in a parking orbit around the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. The crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. The surface exploration was concluded in 2½ hours. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-23

    Sitting on the lunar surface, this magnetometer provided new data on the Moon’s magnetic field. This was one of the instruments used during the Apollo 12 mission. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  3. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-24

    Sitting in the life raft, during the Apollo 12 Pacific recovery, are the three mission astronauts; Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms, while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1969-09-15

    Apollo 11 astronauts, (left to right) Edwin E. Aldrin Jr., Lunar Module pilot; Michael Collins, Command Module pilot; and Neil A. Armstrong, commander, are showing a two-pound Moon rock to Frank Taylor, director of the Smithsonian Institute in Washington D.C. The rock was picked up from the Moon’s surface during the Extra Vehicular Activity (EVA) of Aldrin and Armstrong following man’s first Moon landing and was was presented to the Institute for display in the Art and Industries Building. The Apollo 11 mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  5. To the Moon and back

    NASA Astrophysics Data System (ADS)

    Gardner, Kate

    2017-12-01

    The brief era of manned missions to the Moon retains to this day a gloss of excitement that other space ventures have never quite equalled. Apollo by Zack Scott is a beautifully designed coffee-table book full of every fact you might ever want to know about the Apollo missions, including details only recently released by NASA.

  6. Sunrise-driven movements of dust on the Moon: Apollo 12 Ground-truth measurements

    NASA Astrophysics Data System (ADS)

    O'Brien, Brian J.; Hollick, Monique

    2015-12-01

    The first sunrise after Apollo 12 astronauts left the Moon caused dust storms across the site where rocket exhausts had disrupted about 2000 kg of smooth fine dust. The next few sunrises started progressively weaker dust storms, and the Eastern horizon brightened, adding to direct sunlight for half an hour. These Ground truth measurements were made 100 cm above the surface by the 270 g Apollo 12 Dust Detector Experiment we invented in 1966. Dust deposited on the horizontal solar cell during two lunar days after the first sunrise was almost 30% of the total it then measured over 6 years. The vertical east-facing solar cell measured horizon brightening on 14 of the first 17 lunations, with none detected on the following 61 Lunar Days. Based on over 2 million such measurements we propose a new qualitative model of sunrise-driven transport of individual dust particles freed by Apollo 12 activities from strong particle-to-particle cohesive forces. Each sunrise caused sudden surface charging which, during the first few hours, freshly mobilised and lofted the dust remaining free, microscopically smoothing the disrupted local areas. Evidence of reliability of measurements includes consistency among all 6 sensors in measurements throughout an eclipse. We caution Google Lunar XPrize competitors and others planning missions to the Moon and large airless asteroids that, after a spacecraft lands, dust hazards may occur after each of the first few sunrises. Mechanical problems in its first such period stranded Chinese lunar rover Yutu in 2014, although we would not claim yet that the causes were dust. On the other hand, sunrise-driven microscopic smoothing of disturbed areas may offer regular natural mitigations of dust consequences of mining lunar resources and reduce fears that many expeditions might cause excessive fine dust globally around the Moon.

  7. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-24

    U.S. President Richard Milhous Nixon (center), is saluted by the honor guard of flight deck crewmen when he arrives aboard the U.S.S. Hornet, prime recovery ship for the Apollo 11 mission, to watch recovery operations and welcome the astronauts home. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) for 21 days following the mission. The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun.

  8. Towards a Selenographic Information System: Apollo 15 Mission Digitization

    NASA Astrophysics Data System (ADS)

    Votava, J. E.; Petro, N. E.

    2012-12-01

    The Apollo missions represent some of the most technically complex and extensively documented explorations ever endeavored by mankind. The surface experiments performed and the lunar samples collected in-situ have helped form our understanding of the Moon's geologic history and the history of our Solar System. Unfortunately, a complication exists in the analysis and accessibility of these large volumes of lunar data and historical Apollo Era documents due to their multiple formats and disconnected web and print locations. Described here is a project to modernize, spatially reference, and link the lunar data into a comprehensive SELENOGRAPHIC INFORMATION SYSTEM, starting with the Apollo 15 mission. Like its terrestrial counter-parts, Geographic Information System (GIS) programs, such as ArcGIS, allow for easy integration, access, analysis, and display of large amounts of spatially-related data. Documentation in this new database includes surface photographs, panoramas, samples and their laboratory studies (major element and rare earth element weight percents), planned and actual vehicle traverses, and field notes. Using high-resolution (<0.25 m/pixel) images from the Lunar Reconnaissance Orbiter Camera (LROC) the rover (LRV) tracks and astronaut surface activities, along with field sketches from the Apollo 15 Preliminary Science Report (Swann, 1972), were digitized and mapped in ArcMap. Point features were created for each documented sample within the Lunar Sample Compendium (Meyer, 2010) and hyperlinked to the appropriate Compendium file (.PDF) at the stable archive site: http://curator.jsc.nasa.gov/lunar/compendium.cfm. Historical Apollo Era photographs and assembled panoramas were included as point features at each station that have been hyperlinked to the Apollo Lunar Surface Journal (ALSJ) online image library. The database has been set up to allow for the easy display of spatial variation of select attributes between samples. Attributes of interest that have

  9. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-15

    Seriousness exudes from launch official Miles Ross (left) of Kennedy Space Flight Center (KSC) and Major General E.F. O’Conner, director of program management of the Marshall Space Flight Center (MSFC), as they participate in the Apollo 11 countdown demonstration test. The Apollo 11 mission, the first lunar landing mission, launched from the KSC in Florida via the MSFC developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1968-07-09

    In this photograph, Apollo 11 astronaut Michael Collins carries his coffee with him as he arrives at the flight crew training building of the NASA Kennedy Space Center (KSC) in Florida, one week before the nation’s first lunar landing mission. The Apollo 11 mission launched from KSC via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1969-06-24

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard he space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. Splashdown occurred in the Pacific Ocean on July 24, 1969. This overall view of the Mission Operations Control Room in the Mission Control Center at the NASA Manned Spacecraft Center (MSC) in Houston Texas shows the jubilation of the celebration of mission success. Mission controllers wave their American flags just after Apollo 11 had been recovered from the Pacific Ocean.

  12. Dignitaries Await Apollo 11 Lift Off

    NASA Technical Reports Server (NTRS)

    1969-01-01

    From the right, NASA administrator, Dr. Thomas O. Paine talks with U.S. Vice President Spiro T. Agnew while awaiting the launch of Saturn V (AS-506) that carried the Apollo 11 spacecraft to the Moon for man's historic first landing on the lunar surface. At center is astronaut William Anders, a member of the first crew to orbit the moon during the Apollo 8 mission. At left is Lee B. James, director of Program Management at the NASA Marshall Space Flight Center (MSFC) where the Saturn V was developed. The craft lifted off from launch pad 39 at Kennedy Space Flight Center (KSC) on July 16, 1969. The moon bound crew included astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (M) pilot. The mission finalized with splashdown in the Pacific Ocean on July 24, 1969. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  13. Log of Apollo 11.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The major events of the first manned moon landing mission, Apollo 11, are presented in chronological order from launch time until arrival of the astronauts aboard the U.S.S. Hornet. The log is descriptive, non-technical, and includes numerous color photographs of the astronauts on the moon. (PR)

  14. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-24

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via a Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. The Command Module (CM), piloted by Michael Collins remained in a parking orbit around the Moon while the Lunar Module (LM), named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. The surface exploration was concluded in 2½ hours, in which the crew collected 47 pounds of lunar surface material for analysis back on Earth. Upon splash down in the Pacific Ocean, Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was taken to safety aboard the USS Hornet, where they were quartered in a mobile quarantine facility. Shown here is the Apollo 11 crew inside the quarantine facility. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  15. NASA's Lunar Polar Ice Prospector, RESOLVE: Mission Rehearsal in Apollo Valley

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Picard, Martin; Quinn, Jacqueline; Sanders, Gerald B.; Colaprete, Anthony; Elphic, Richard C.

    2012-01-01

    After the completion of the Apollo Program, space agencies didn't visit the moon for many years. But then in the 90's, the Clementine and Lunar Prospector missions returned and showed evidence of water ice at the poles. Then in 2009 the Lunar Crater Observation and Sensing Satellite indisputably showed that the Cabeus crater contained water ice and other useful volatiles. Furthermore, instruments aboard the Lunar Reconnaissance Orbiter (LRO) show evidence that the water ice may also be present in areas that receive several days of continuous sunlight each month. However, before we can factor this resource into our mission designs, we must understand the distribution and quantity of ice or other volatiles at the poles and whether it can be reasonably harvested for use as propellant or mission consumables. NASA, in partnership with the Canadian Space Agency (CSA), has been developing a payload to answer these questions. The payload is named RESOLVE. RESOLVE is on a development path that will deliver a tested flight design by the end of 2014. The team has developed a Design Reference Mission using LRO data that has RESOLVE landing near Cabeus Crater in May of2016. One of the toughest obstacles for RESOLVE's solar powered mission is its tight timeline. RESOLVE must be able to complete its objectives in the 5-7 days of available sunlight. The RESOLVE team must be able to work around obstacles to the mission timeline in real time. They can't afford to take a day off to replan as other planetary missions have done. To insure that this mission can be executed as planned, a prototype version of RESOLVE was developed this year and tested at a lunar analog site on Hawaii, known as Apollo Valley, which was once used to train the Apollo astronauts. The RESOLVE team planned the mission with the same type of orbital imagery that would be available from LRO. The simulation team prepositioned a Lander in Apollo Valley with RESOLVE on top mounted on its CSA rover. Then the mission

  16. Emblem - Apollo 9 Space Mission

    NASA Image and Video Library

    1969-02-06

    S69-18569 (February 1969) --- The insignia of the Apollo 9 space mission. The crew consist of astronauts James A. McDivitt, commander; David R. Scott, command module pilot; and Russell L. Schweickart, lunar module pilot. The Apollo 9 mission will evaluate spacecraft lunar module systems performance during manned Earth-orbital flight. The NASA insignia design for Apollo flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced.

  17. View of near full Moon photographed by Apollo 13 during transearth journey

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This view of a near full Moon was photographed from the Apollo 13 spacecraft during its transearth journey homeward. Though the explosion of the oxygen tank in the Service Module forced the cancellation of the scheduled lunar landing, Apollo 13 made a pass around the Moon prior to returning to Earth. Some of the conspicuous lunar features include the Sea of Crisis, the Sea of Fertility, the Sea of Tranquility, the Sea of Serenity, The Sea of Nector, the Sea of Vapors, the Border Sea, Smyth's Sea, the crater Langenus, and the crater Tsiolkovsky.

  18. View of Mission Control Center celebrating conclusion of Apollo 11 mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Overall view of the Mission Operations Control Room in the Mission Control Center, bldg 30, Manned Spacecraft Center (MSC), at the conclusion of the Apollo 11 lunar landing mission. The television monitor shows President Richard M. Nixon greeting the Apollo 11 astronauts aboard the U.S.S. Hornet in the Pacific recovery area (40301); NASA and MSC Officials join the flight controllers in celebrating the conclusion of the Apollo 11 mission. From left foreground Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director fo Flight Operations; Julian Scheer (in back), Assistant Adminstrator, Offic of Public Affairs, NASA HQ.; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA HQ (40302).

  19. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-23

    Sitting on the lunar surface, this Solar Wind Spectrometer is measuring the energies of the particles that make up the solar wind. This was one of the instruments used during the Apollo 12 mission. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  20. Apollo Soyuz, mission evaluation report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Apollo Soyuz mission was the first manned space flight to be conducted jointly by two nations - the United States and the Union of Soviet Socialist Republics. The primary purpose of the mission was to test systems for rendezvous and docking of manned spacecraft that would be suitable for use as a standard international system, and to demonstrate crew transfer between spacecraft. The secondary purpose was to conduct a program of scientific and applications experimentation. With minor modifications, the Apollo and Soyuz spacecraft were like those flown on previous missions. However, a new module was built specifically for this mission - the docking module. It served as an airlock for crew transfer and as a structural base for the docking mechanism that interfaced with a similar mechanism on the Soyuz orbital module. The postflight evaluation of the performance of the docking system and docking module, as well as the overall performance of the Apollo spacecraft and experiments is presented. In addition, the mission is evaluated from the viewpoints of the flight crew, ground support operations, and biomedical operations. Descriptions of the docking mechanism, docking module, crew equipment and experiment hardware are given.

  1. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-31

    Stuart A. Roosa, Apollo 14 Command Module pilot, undergoes a final space suit check prior to liftoff. The Apollo 14, carrying a crew of three astronauts: Roosa; Alan B. Shepard, Jr., Mission Commander; and Edgar D. Mitchell, Lunar Module pilot, lifted off from launch complex 39A at KSC on January 31, 1971. It was the third manned lunar landing, the first manned landing in exploration of the lunar highlands, and it demonstrated pinpoint landing capability. The major goal of Apollo 14 was the scientific exploration of the Moon in the foothills of the rugged Fra Mauro region. The lunar surface extravehicular activity (EVA) of astronauts Shepard and Mitchell included setting up an automated scientific laboratory called Apollo Lunar Scientific Experiments Package (ALSEP), and collecting a total of about 95 pounds (43 kilograms) of Moon rock and soil for a geological investigation back on the Earth. Apollo 14 safely returned to Earth on February 9, 1971.

  2. Apollo 11 Earth Training Exercises

    NASA Technical Reports Server (NTRS)

    1969-01-01

    In preparation of the nation's first lunar landing mission, Apollo 11 crew members underwent training to practice activities they would be performing during the mission. In this photograph, taken at the Manned Spacecraft Center in Houston, Texas, an engineer, Bob Mason, donned in a space suit, goes through some of those training exercises on the mock lunar surface. He performed activites similar to those planned for astronauts Neil Armstrong and Edwin Aldrin during their moon walk. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  3. Saturn Apollo Program

    NASA Image and Video Library

    1969-03-30

    This is the official crew portrait of the Apollo 11 astronauts. Pictured from left to right are: Neil A. Armstrong, Commander; Michael Collins, Module Pilot; Edwin E. "Buzz" Aldrin, Lunar Module Pilot. Apollo 11 was the first marned lunar landing mission that placed the first humans on the surface of the moon and returned them back to Earth. Astronaut Armstrong became the first man on the lunar surface, and astronaut Aldrin became the second. Astronaut Collins piloted the Command Module in a parking orbit around the Moon. Launched aboard the Saturn V launch vehicle (SA-506), the three astronauts began their journey to the moon with liftoff from launch complex 39A at the Kennedy Space Center at 8:32 am CDT, July 16, 1969.

  4. Apollo program flight summary report: Apollo missions AS-201 through Apollo 16, revision 11

    NASA Technical Reports Server (NTRS)

    Holcomb, J. K.

    1972-01-01

    A summary of the Apollo flights from AS-201 through Apollo 16 is presented. The following subjects are discussed for each flight: (1) mission primary objectives, (2) principle objectives of the launch vehicle and spacecraft, (3) secondary objectives of the launch vehicle and spacecraft, (4) unusual features of the mission, (5) general information on the spacecraft and launch vehicle, (6) space vehicle and pre-launch data, and (7) recovery data.

  5. Apollo 8 Mission image

    NASA Image and Video Library

    1968-12-21

    Apollo 8,Moon, Latitude 15 degrees South,Longitude 170 degrees West. Camera Tilt Mode: High Oblique. Direction: Southeast. Sun Angle 17 degrees. Original Film Magazine was labeled E. Camera Data: 70mm Hasselblad; F-Stop: F-5.6; Shutter Speed: 1/250 second. Film Type: Kodak SO-3400 Black and White,ASA 40. Other Photographic Coverage: Lunar Orbiter 1 (LO I) S-3. Flight Date: December 21-27,1968.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1971-02-05

    The moon bound Apollo 14, carrying a crew of three astronauts: Mission commander Alan B. Shepard Jr., Command Module pilot Stuart A. Roosa, and Lunar Module pilot Edgar D. Mitchell, lifted off from launch complex 39A at the Kennedy Space Center on January 31, 1971, and safely returned to Earth on February 9, 1971. It was the third manned lunar landing, the first manned landing in exploration of the lunar highlands, and it demonstrated pinpoint landing capability. The major goal of Apollo 14 was the scientific exploration of the Moon in the foothills of the rugged Fra Mauro region. The extravehicular activity (EVA) of astronauts Shepard and Mitchell included setting up an automated scientific laboratory called Apollo Lunar Scientific Experiments Package (ALSEP), shown here fully deployed. In addition, they collected a total of about 95 pounds (43 kilograms) of Moon rock and soil for a geological investigation back on the Earth.

  7. Mission Control Center (MCC) - Celebration - Conclusion - Apollo XI Mission - MSC

    NASA Image and Video Library

    1969-07-24

    S69-40301 (24 July 1969) --- Overall view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, Manned Spacecraft Center (MSC), at the conclusion of the Apollo 11 lunar landing mission. The television monitor shows President Richard M. Nixon greeting the Apollo 11 astronauts aboard the USS Hornet in the Pacific recovery area. Astronauts Neil A. Armstrong, Michael Collins, and Edwin E. Aldrin Jr. are inside the Mobile Quarantine Facility (MQF).

  8. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-24

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard the craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF). Donned in biological isolation garments, the Apollo 11 crew members (front to rear) Armstrong, Collins, and Aldrin leave the pick up helicopter making their way to the MQF. This portable facility served as their home until they reached the NASA Manned Spacecraft Center Lunar Receiving Laboratory in Houston, Texas. With the success of Apollo 11 mission the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  9. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-24

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet recovery ship, where they were quartered in a Mobile Quarantine Facility (MQF). In this photograph, the U.S.S. Hornet crew looks on as the quarantined Apollo 11 crew is addressed by U.S. President Richard Milhous Nixon via microphone and intercom. The president was aboard the recovery vessel awaiting return of the astronauts. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-24

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via a Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was taken to safety aboard the USS Hornet, where they were quartered in a mobile quarantine facility. Shown here is the Apollo 11 crew inside the quarantine facility as prayer is offered by Lt. Commander John Pirrto, USS Hornet Chaplain accompanied by U.S. President Richard Nixon (front right). With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  11. Apollo 12 Mission image - Photo of Al Bean and the TV taken from just inside the rim of Surveyor Crater

    NASA Image and Video Library

    1969-11-19

    AS12-46-6780 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, walks from the color lunar surface television camera (center) toward the Apollo 12 Lunar Module (LM - out of frame). The photograph was taken by astronaut Charles Conrad Jr., commander, during the first extravehicular activity (EVA) of the mission. While astronauts Conrad and Bean descended in the LM "Intrepid" to explore the Ocean of Storms region of the moon, astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) "Yankee Clipper" in lunar orbit.

  12. Apollo mission experience

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1972-01-01

    Dosimetric implications for manned space flight are evaluated by analyzing the radiation field behind the heavy shielding of a manned space vehicle on a near-earth orbital mission and how it compares with actual exposure levels recorded on Apollo missions. Emphasis shifts from flux densities and energy spectra to incident radiation and absorbed doses and dose equivalents as they are recorded within the ship at locations close to crew members.

  13. Apollo 7 Mission,Apollo Commander Walter Schirra Jr. inside Co

    NASA Image and Video Library

    1968-10-20

    AS07-04-1596 (20 Oct. 1968) --- A heavy beard covers the face of astronaut Walter M. Schirra Jr., Apollo 7 commander, as he looks out the rendezvous window in front of the commander's station on the ninth day of the Apollo 7 mission.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-15

    The night before launch day, Apollo 11 crew members (R-L) Michael Collins, Neil Armstrong, and Edwin Aldrin, participated in a closed circuit press conference the night before they began their historic lunar landing mission. At far left is chief astronaut and director of flight crew operations, Donald K. Slayton. The press conference with questions via intercom, was held under semi-isolation conditions to avoid exposing the astronauts to possible illness at the last minute. The Apollo 11 mission, the first lunar landing mission, launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  15. Apollo Seals: A Basis for the Crew Exploration Vehicle Seals

    NASA Technical Reports Server (NTRS)

    Finkbeiner, Joshua R.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Daniels, Christopher C.

    2006-01-01

    The National Aeronautics and Space Administration is currently designing the Crew Exploration Vehicle (CEV) as a replacement for the Space Shuttle for manned missions to the International Space Station, as a command module for returning astronauts to the moon, and as an earth reentry vehicle for the final leg of manned missions to the moon and Mars. The CEV resembles a scaled-up version of the heritage Apollo vehicle; however, the CEV seal requirements are different than those from Apollo because of its different mission requirements. A review is presented of some of the seals used on the Apollo spacecraft for the gap between the heat shield and backshell and for penetrations through the heat shield, docking hatches, windows, and the capsule pressure hull.

  16. Apollo Seals: A Basis for the Crew Exploration Vehicle Seals

    NASA Technical Reports Server (NTRS)

    Finkbeiner, Joshua R.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Daniels, Christopher C.

    2007-01-01

    The National Aeronautics and Space Administration is currently designing the Crew Exploration Vehicle (CEV) as a replacement for the Space Shuttle for manned missions to the International Space Station, as a command module for returning astronauts to the moon, and as an earth reentry vehicle for the final leg of manned missions to the moon and Mars. The CEV resembles a scaled-up version of the heritage Apollo vehicle; however, the CEV seal requirements are different than those from Apollo because of its different mission requirements. A review is presented of some of the seals used on the Apollo spacecraft for the gap between the heat shield and backshell and for penetrations through the heat shield, docking hatches, windows, and the capsule pressure hull.

  17. Apollo 11 Launch HD SILENT

    NASA Image and Video Library

    2017-03-08

    On July 16, 1969, the huge, 363-feet tall Saturn V rocket launches on the Apollo 11 mission from Pad A, Launch Complex 39, Kennedy Space Center, at 9:32 a.m. EDT. Onboard the Apollo 11 spacecraft are astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 was the United States' first lunar landing mission. While astronauts Armstrong and Aldrin descended in the Lunar Module "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules "Columbia" in lunar orbit.

  18. Apollo 12 Mission image - View of part of the deployed Apollo Lunar Surface Experiment Package (ALSEP)

    NASA Image and Video Library

    1969-11-19

    AS12-47-6918 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot, took this photograph of three of the components of the Apollo Lunar Surface Experiments Package (ALSEP) which was deployed on the moon during the first Apollo 12 extravehicular activity (EVA). The Passive Seismic Experiment (PSE) is in the center foreground. The largest object is the Central Station; and the white object on legs is the Suprathermal Ion Detector Experiment (SIDE). A portion of the shadow of astronaut Charles Conrad Jr., commander, can be seen at the left center edge of the picture. Astronaut Richard F. Gordon Jr., command module pilot, remained with the Apollo 12 Command and Service Modules (CSM) in lunar orbit while Conrad and Bean descended in the Lunar Module (LM) to explore the moon.

  19. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-01

    This artist's concept illustrates the deployment sequence of the Lunar Roving Vehicle (LRV) on the Moon. The LRV was designed to transport astronauts and materials on the Moon. It was a collapsible open-space vehicle about 10 feet long with large mesh wheels, anterna, appendages, tool caddies, and cameras. Powered by two 36-volt batteries, it has four 1/4-hp drive motors, one for each wheel. The vehicle was designed to travel in forward or reverse, negotiate obstacles about 1 foot high, cross crevasses about 2 feet wide, and climb or descend moderate slopes. Its speed limit was about 9 miles (14 kilometers) per hour. An LRV was used on each of the last three Apollo missions (Apollo 15, Apollo 16, and Apollo 17) and permitted the crew to travel several miles from the Lunar Module. The LRV was designed, developed, and tested by the Marshall Space Flight Center, and built by the Boeing Plant in Kent, Washington.

  20. Lunar and Planetary Science XXXV: Future Missions to the Moon

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This document contained the following topics: A Miniature Mass Spectrometer Module; SELENE Gamma Ray Spectrometer Using Ge Detector Cooled by Stirling Cryocooler; Lunar Elemental Composition and Investigations with D-CIXS X-Ray Mapping Spectrometer on SMART-1; X-Ray Fluorescence Spectrometer Onboard the SELENE Lunar Orbiter: Its Science and Instrument; Detectability of Degradation of Lunar Impact Craters by SELENE Terrain Camera; Study of the Apollo 16 Landing Site: As a Standard Site for the SELENE Multiband Imager; Selection of Targets for the SMART-1 Infrared Spectrometer (SIR); Development of a Telescopic Imaging Spectrometer for the Moon; The Lunar Seismic Network: Mission Update.

  1. Forward Contamination of the Moon and Mars: Implications for Future Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2004-01-01

    NASA and ESA have outlined new visions for solar system exploration that will include a series of lunar robotic missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under COSPAR's current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft. Nonetheless, future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  2. Astronaut Alan Bean deploys ALSEP during first Apollo 12 EVA on moon

    NASA Image and Video Library

    1969-11-19

    AS12-47-6919 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot, deploys components of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA) on the moon. The photo was made by astronaut Charles Conrad Jr., commander, using a 70mm handheld Hasselblad camera modified for lunar surface usage.

  3. View of near full Moon photographed by Apollo 13 during transearth journey

    NASA Image and Video Library

    1970-04-14

    AS13-60-8703 (11-17 April 1970) --- This outstanding view of a near full moon was photographed from the Apollo 13 spacecraft during its trans-Earth journey homeward. Though the explosion of the oxygen tank in the Service Module (SM) forced the cancellation of the scheduled lunar landing, Apollo 13 made a pass around the moon prior to returning to Earth. Some of the conspicuous lunar features include the Sea of Crisis, the Sea of Fertility, the Sea of Tranquility, the Sea of Serenity, the Sea of Nectar, the Sea of Vapors, the Border Sea, Smyth's Sea, the crater Langrenus, and the crater Tsiolkovsky.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-24

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet recovery ship, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home for 21 days following the mission. In this photograph, the Hornet crew and honor guard snap to attention to begin the official cake cutting ceremony for the Apollo 11 astronauts. Astronauts Armstrong and Aldrin are visible in the window of the MQF.

  5. Apollo 11 Lunar Message For Mankind

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Millions of people on Earth watched via television as a message for all mankind was delivered to the Mare Tranquilitatis (Sea of Tranquility) region of the Moon during the historic Apollo 11 mission, where it still remains today. A commemorative plaque was attached to the leg of the Lunar Module (LM), Eagle, engraved with the following words: 'Here men from the planet Earth first set foot upon the Moon July, 1969 A.D. We came in peace for all of mankind.' It bears the signatures of the Apollo 11 astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) pilot along with the signature of the U.S. President Richard M. Nixon. The plaque, as shown here, covered with protective steel for the launch and journey to the moon, was uncovered by crew members after landing. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  6. NASA honors Apollo 13 astronaut Fred Haise Jr.

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA Administrator Charles Bolden (left) presents the Ambassador of Exploration Award (an encased moon rock) to Biloxi native and Apollo 13 astronaut Fred Haise Jr. (right) for his contributions to space exploration. During a Dec. 2 ceremony at Gorenflo elementary School in Biloxi, Miss., Bolden praised Haise for his overall space career and his performance on the Apollo 13 mission that was crippled two days after launch. Haise and fellow crewmembers nursed the spacecraft on a perilous trip back to Earth. 'The historic Apollo 13 mission was as dramatic as any Hollywood production,' Bolden said. 'When an explosion crippled his command module, Fred and his crewmates, Jim Lovell and Jack Swigert, guided their spacecraft around the moon and back to a successful splashdown in the Pacific Ocean - all while the world held its breath. While Fred didn't have the chance to walk on the moon, the cool courage and concentration in the face of crisis is among NASA's most enduring legacies.'

  7. NASA honors Apollo 13 astronaut Fred Haise Jr.

    NASA Image and Video Library

    2009-12-02

    NASA Administrator Charles Bolden (left) presents the Ambassador of Exploration Award (an encased moon rock) to Biloxi native and Apollo 13 astronaut Fred Haise Jr. (right) for his contributions to space exploration. During a Dec. 2 ceremony at Gorenflo elementary School in Biloxi, Miss., Bolden praised Haise for his overall space career and his performance on the Apollo 13 mission that was crippled two days after launch. Haise and fellow crewmembers nursed the spacecraft on a perilous trip back to Earth. 'The historic Apollo 13 mission was as dramatic as any Hollywood production,' Bolden said. 'When an explosion crippled his command module, Fred and his crewmates, Jim Lovell and Jack Swigert, guided their spacecraft around the moon and back to a successful splashdown in the Pacific Ocean - all while the world held its breath. While Fred didn't have the chance to walk on the moon, the cool courage and concentration in the face of crisis is among NASA's most enduring legacies.'

  8. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-31

    In the launch control center at Kennedy Space Flight Center (KSC), Walter J. Kapryan, Director of Launch Operations (center), discusses an aspect of the Apollo 14 flight with Marshall Space Flight Center’s (MSFC) Dr. Rocco A. Petrone, Apollo Program Director (right). The Apollo 14, carrying a crew of three astronauts: Mission commander Alan B. Shepard Jr., Command Module pilot Stuart A. Roosa, and Lunar Module pilot Edgar D. Mitchell, lifted off from launch complex 39A at KSC on January 31, 1971. It was the third manned lunar landing, the first manned landing in exploration of the lunar highlands, and it demonstrated pinpoint landing capability. The major goal of Apollo 14 was the scientific exploration of the Moon in the foothills of the rugged Fra Mauro region. The extravehicular activity (EVA) of astronauts Shepard and Mitchell included setting up an automated scientific laboratory called Apollo Lunar Scientific Experiments Package (ALSEP), and collecting a total of about 95 pounds (43 kilograms) of Moon rock and soil for a geological investigation back on the Earth. Apollo 14 safely returned to Earth on February 9, 1971.

  9. NASA honors Apollo 13 astronaut Fred Haise Jr.

    NASA Image and Video Library

    2009-12-02

    Apollo 13 astronaut and Biloxi native Fred Haise Jr. smiles during a Dec. 2 ceremony at Gorenflo Elementary School in Biloxi honoring his space career. During the ceremony, Haise was presented with NASA's Ambassador of Exploration Award (an encased moon rock). He subsequently presented the moon rock to Gorenflo officials for display at the school. Haise is best known as one of three astronauts who nursed a crippled Apollo 13 spacecraft back to Earth during a perilous 1970 mission. Although he was unable to walk on the moon as planned for that mission, Haise ended his astronaut career having logged 142 hours and 54 minutes in space. During the ceremony, he praised all those who contributed to the space program.

  10. Apollo 14 Mission image - Astronaut Edgar D. Mitchell, lunar module pilot for the Apollo 14 lunar landing mission, stands by the deployed U.S. flag on the lunar surface during the early moments of the first extravehicular activity (EVA-1) of the mission.

    NASA Image and Video Library

    1971-02-05

    AS14-66-9233 (5 Feb. 1971) --- Astronaut Edgar D. Mitchell, lunar module pilot for the Apollo 14 lunar landing mission, stands by the deployed U.S. flag on the lunar surface during the early moments of the first extravehicular activity (EVA) of the mission. He was photographed by astronaut Alan B. Shepard Jr., mission commander, using a 70mm modified lunar surface Hasselblad camera. While astronauts Shepard and Mitchell descended in the Lunar Module (LM) "Antares" to explore the Fra Mauro region of the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) "Kitty Hawk" in lunar orbit.

  11. Air and Space Museum Apollo 40th Celebration

    NASA Image and Video Library

    2009-07-19

    NASA Apollo 11 Mission Commander and first man to set foot on the Moon, Neil Armstrong speaks at the Apollo 40th anniversary celebration held at the National Air and Space Museum, Monday, July 20, 2009 in Washington. Photo Credit: (NASA/Bill Ingalls)

  12. Air and Space Museum Apollo 40th Celebration

    NASA Image and Video Library

    2009-07-19

    NASA Apollo 11 Mission Commander and first man to set foot on the Moon, Neil Armstrong speaks at the Apollo 40th anniversary celebration held at the National Air and Space Museum, Monday, July 20, 2009 in Washington. Photo Credit: (NASA/Carla Cioffi)

  13. Apollo 11 Lunar Message For Mankind

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Millions of people on Earth watched via television as a message for all mankind was delivered to the Mare Tranquilitatis (Sea of Tranquility) region of the Moon during the historic Apollo 11 mission, where it still remains today. This commemorative plaque, attached to the leg of the Lunar Module (LM), Eagle, is engraved with the following words: 'Here men from the planet Earth first set foot upon the Moon July, 1969 A.D. We came in peace for all of mankind.' It bears the signatures of the Apollo 11 astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) pilot along with the signature of the U.S. President Richard M. Nixon. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  14. Apollo 11 Lunar Message For Mankind

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Millions of people on Earth watched via television as a message for all mankind was delivered to the Mare Tranquilitatis (Sea of Tranquility) region of the Moon during the historic Apollo 11 mission, where it still remains today. A technician holds the commemorative plaque that was later attached to the leg of the Lunar Module (LM), Eagle, engraved with the following words: 'Here men from the planet Earth first set foot upon the Moon July, 1969 A.D. We came in peace for all of mankind.' It bears the signatures of the Apollo 11 astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) pilot along with the signature of the U.S. President Richard M. Nixon. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  15. Apollo 9 Mission image - Lunar Module

    NASA Image and Video Library

    1969-03-07

    AS09-21-3183 (7 March 1969) --- A view of the Apollo 9 Lunar Module (LM) "Spider" in a lunar landing configuration, as photographed from the Command and Service Modules (CSM) on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module (CM), "Gumdrop," while the other two astronauts checked out the LM. Schweickart, lunar module pilot, is photographed from the CM "Gumdrop" during his extravehicular activity (EVA) on the fourth day of the Apollo 9 Earth-orbital mission. The CSM is docked with the LM. Astronaut James A. McDivitt, Apollo 9 commander, was inside the LM "Spider." Astronaut David R. Scott, command module pilot, remained at the controls in the CM.

  16. Apollo 9 Mission image - Lunar Module

    NASA Image and Video Library

    1969-03-07

    AS09-21-3197 (7 March 1969) --- A view of the Apollo 9 Lunar Module (LM) "Spider" in a lunar landing configuration, as photographed from the Command and Service Modules (CSM) on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module (CM), "Gumdrop," while the other two astronauts checked out the LM. Schweickart, lunar module pilot, is photographed from the CM "Gumdrop" during his extravehicular activity (EVA) on the fourth day of the Apollo 9 Earth-orbital mission. The CSM is docked with the LM. Astronaut James A. McDivitt, Apollo 9 commander, was inside the LM "Spider." Astronaut David R. Scott, command module pilot, remained at the controls in the CM.

  17. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-24

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) for 21 days. Here, U.S. President Richard Milhous Nixon gets a good laugh at something being said by Astronaut Collins (center) as astronauts Armstrong (left), and Aldrin (right) listen. The president was aboard the recovery vessel awaiting return of the astronauts. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1968-07-15

    Apollo 11 crew members (L-R) Edwin Aldrin, Neil Armstrong, and Michael Collins were amused by a question posed during a closed circuit press conference the night before they began their historic first lunar landing mission. The press conference with questions via intercom, was held under semi-isolation conditions to avoid exposing the astronauts to possible illness at the last minute. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  19. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-24

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF). Donned in biological isolation garments, the Apollo 11 crew members wave to well wishers as they leave the pick up helicopter making their way to the MQF. This portable facility served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  20. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-16

    Every console was manned in firing room 1 of the Kennedy Space Flight Center (KSC) control center during the launch countdown for Apollo 11. Apollo 11, the first lunar landing mission, launched from KSC in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  1. Moon and Mars Analog Mission Activities for Mauna Kea 2012

    NASA Technical Reports Server (NTRS)

    Graham, Lee D.; Morris, Richard V.; Graff, Trevor G.; Yingst, R. Aileen; tenKate, I. L.; Glavin, Daniel P.; Hedlund, Magnus; Malespin, Charles A.; Mumm, Erik

    2012-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were recently completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Initial science operations were planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred as the analog mission progressed. We report here on the preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering and science trades discussions and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as "Apollo Valley".

  2. Topographic mapping of the Moon

    USGS Publications Warehouse

    Wu, S.S.C.

    1985-01-01

    Contour maps of the Moon have been compiled by photogrammetric methods that use stereoscopic combinations of all available metric photographs from the Apollo 15, 16, and 17 missions. The maps utilize the same format as the existing NASA shaded-relief Lunar Planning Charts (LOC-1, -2, -3, and -4), which have a scale of 1:2 750 000. The map contour interval is 500m. A control net derived from Apollo photographs by Doyle and others was used for the compilation. Contour lines and elevations are referred to the new topographic datum of the Moon, which is defined in terms of spherical harmonics from the lunar gravity field. Compilation of all four LOC charts was completed on analytical plotters from 566 stereo models of Apollo metric photographs that cover approximately 20% of the Moon. This is the first step toward compiling a global topographic map of the Moon at a scale of 1:5 000 000. ?? 1985 D. Reidel Publishing Company.

  3. Crew Training - Apollo X (Apollo Mission Simulator [AMS])

    NASA Image and Video Library

    1969-04-05

    S69-32787 (3 April 1969) --- Two members of the Apollo 10 prime crew participate in simulation activity at the Kennedy Space Center during preparations for their scheduled lunar orbit mission. Astronaut Thomas P. Stafford, commander, is in the background; and in the foreground is astronaut Eugene A. Cernan, lunar module pilot. The two crewmen are in the Lunar Module Mission Simulator.

  4. Apollo 8 crew shown during intravehicular activity during mission

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut Frank Borman, commander, is shown during intravehicular activity on the Apollo 8 lunar orbit mission. This still print was made from movie film taken by an on-board 16mm motion picture camera (56531); Astronaut William A. Anders, lunar module pilot, is shown during intravehicular activity on the Apollo 8 lunar orbit mission (56532); Astronaut James A. Lovell Jr., command module milot, is shown during intravehicular activity on the Apollo 8 lunar orbit mission (56533).

  5. Future lunar missions and investigation of dusty plasma processes on the Moon

    NASA Astrophysics Data System (ADS)

    Popel, Sergey I.; Zelenyi, Lev M.; Zelenyi

    2013-08-01

    From the Apollo era of exploration, it was discovered that sunlight was scattered at the terminators giving rise to ``horizon glow'' and ``streamers'' above the lunar surface. Subsequent investigations have shown that the sunlight was most likely scattered by electrostatically charged dust grains originating from the surface. A renaissance is being observed currently in investigations of the Moon. The Luna-Glob and Luna-Resource missions (the latter jointly with India) are being prepared in Russia. Some of these missions will include investigations of lunar dust. Here we discuss the future experimental investigations of lunar dust within the missions of Luna-Glob and Luna-Resource. We consider the dusty plasma system over the lunar surface and determine the maximum height of dust rise. We describe mechanisms of formation of the dusty plasma system over the Moon and its main properties, determine distributions of electrons and dust over the lunar surface, and show a possibility of rising dust particles over the surface of the illuminated part of the Moon in the entire range of lunar latitudes. Finally, we discuss the effect of condensation of micrometeoriod substance during the expansion of the impact plume and show that this effect is important from the viewpoint of explanation of dust particle rise to high altitudes in addition to the dusty plasma effects.

  6. Using Technology to Better Characterize the Apollo Sample Suite: A Retroactive PET Analysis and Potential Model for Future Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.

    2015-01-01

    From 1969-1972 the Apollo missions collected 382 kg of lunar samples from six distinct locations on the Moon. Studies of the Apollo sample suite have shaped our understanding of the formation and early evolution of the Earth-Moon system, and have had important implications for studies of the other terrestrial planets (e.g., through the calibration of the crater counting record) and even the outer planets (e.g., the Nice model of the dynamical evolution of the Solar System). Despite nearly 50 years of detailed research on Apollo samples, scientists are still developing new theories about the origin and evolution of the Moon. Three areas of active research are: (1) the abundance of water (and other volatiles) in the lunar mantle, (2) the timing of the formation of the Moon and the duration of lunar magma ocean crystallization, (3) the formation of evolved lunar lithologies (e.g., granites) and implications for tertiary crustal processes on the Moon. In order to fully understand these (and many other) theories about the Moon, scientists need access to "new" lunar samples, particularly new plutonic samples. Over 100 lunar meteorites have been identified over the past 30 years, and the study of these samples has greatly aided in our understanding of the Moon. However, terrestrial alteration and the lack of geologic context limit what can be learned from the lunar meteorites. Although no "new" large plutonic samples (i.e., hand-samples) remain to be discovered in the Apollo sample collection, there are many large polymict breccias in the Apollo collection containing relatively large (approximately 1 cm or larger) previously identified plutonic clasts, as well as a large number of unclassified lithic clasts. In addition, new, previously unidentified plutonic clasts are potentially discoverable within these breccias. The question becomes how to non-destructively locate and identify new lithic clasts of interest while minimizing the contamination and physical degradation of

  7. Plaque which Apollo 11 astronauts will leave on the moon

    NASA Image and Video Library

    1969-07-14

    S69-39334 (July 1969) --- This is a replica of the plaque which the Apollo 11 astronauts will leave behind on the moon in commemoration of the historic event. The plaque is made of stainless steel, measuring nine by seven and five-eighths inches, and one-sixteenth inch thick. The plaque will be attached to the ladder on the landing gear strut on the descent stage of the Apollo 11 Lunar Module (LM). Covering the plaque during the flight will be a thin sheet of stainless steel which will be removed on the lunar surface.

  8. Paradigm shifts about dust on the Moon: From Apollo 11 to Chang'e-4

    NASA Astrophysics Data System (ADS)

    O'Brien, Brian J.

    2018-07-01

    that Apollo dust is the major surface problem for risk management plans of lunar expeditions. As of 1 February 2018, a second paradigm change awaits transparent authoritative Ground truth measurements by Chang'e-4 or other relevant dust detectors to compare with Apollo 12 DDE measurements. Re-examination of risk management of effects of Apollo dust is essential for international expeditions including a Moon Village and Google Lunar XMedal competitors. Future DAPs could refine a third paradigm shift for Moon, moving from the past and present Earth-centric cultures of an inert Moon to cultures with visions of Moon as an active and close Extraterrestrial neighbour, because its outermost sunlit two cm of dusty plasmas are a variable soup of lunar and Extraterrestrial plasmas. An emphasis on its research seems a neat fit with the Directive of President Trump on 11 December 2017 to "Lead an innovative and sustainable program of exploration with commercial and international partners" to "lead the return of humans to the Moon for long-term exploration and utilization". It would also be measurement-based now thus less costly, more safe and quicker than any human visit to Mars.

  9. Teaching Chemistry Using From the Earth to the Moon

    NASA Astrophysics Data System (ADS)

    Goll, James G.; Mundinger, Stacie L.

    2003-03-01

    The space program and media based on it have provided fascinating examples that can be used to expore chemical principles. The HBO series From the Earth to the Moon and a documentary Moonshot provide examples for teaching chemical principles from the Apollo missions. A docking problem between two spacecrafts occurred during the Apollo 14 mission. This situation can be used to discuss the conditions necessary for a chemical reaction. A catastrophic fire on Apollo 1 can be used to illustrate the influence of different conditions on the rate of a reaction. Lightning striking Apollo 12 during liftoff showed the consequence of adding ions to solution. The landing of Apollo 12, which touched down only 535 feet from Surveyor 3, can be used to teach accuracy and absolute and relative error. The astronauts of Apollo 15 discovered a sample of the primordial lunar crust, and during Apollo 17, astronauts discovered orange dust on the moon. These discoveries can be used to demonstrate the importance of trained observation skills and analytical thinking.

  10. Mission Control Center (MCC) View - Apollo 13 Splashdown - MSC

    NASA Image and Video Library

    1970-04-17

    S70-35145 (17 April 1970) --- Overall view of Mission Operations Control Room in Mission Control Center at the Manned Spacecraft Center (MSC) during the ceremonies aboard the USS Iwo Jima, prime recovery ship for the Apollo 13 mission. Dr. Donald K. Slayton (in black shirt, left of center), director of Flight Crew Operations at MSC, and Chester M. Lee of the Apollo Program Directorate, Office of Manned Space Flight, NASA Headquarters, shake hands, while Dr. Rocco A. Petrone, Apollo program director, Office of Manned Space Flight, NASA Headquarters (standing, near Lee), watches the large screen showing astronaut James A. Lovell Jr., Apollo 13 commander, during the onboard ceremonies. In the foreground, Glynn S. Lunney (extreme left) and Eugene F. Kranz (smoking a cigar), two Apollo 13 flight directors, view the activity from their consoles.

  11. View of Mission Control Center during Apollo 13 splashdown

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Overall view of Mission Operations Control Room in Mission Control Center at the Manned Spacecraft Center (MSC) during the ceremonies aboard the U.S.S. Iwo Jima, prime recovery ship for the Apollo 13 mission. Dr. Donald K. Slayton (in black shirt, left of center), Director of Flight Crew Operations at MSC, and Chester M. Lee of the Apollo Program Directorate, Office of Manned Space Flight, NASA Headquarters, shake hands, while Dr. Rocco A. Petrone, Apollo Program Director, Office of Manned Space Flight, NASA Headquarters (standing, near Lee), watches the large screen showing Astronaut James A. Lovell Jr., Apollo 13 commander, during the on-board ceremonies. In the foreground, Glynn S. Lunney (extreme left) and Eugene F. Kranz (smoking a cigar), two Apollo 13 Flight Directors, view the activity from their consoles.

  12. Apollo 14 Mission image - View of the ALSEP Station

    NASA Image and Video Library

    1971-02-05

    AS14-67-9361 (5 Feb. 1971) --- A close-up view of two components of the Apollo lunar surface experiments package (ALSEP) which the Apollo 14 astronauts deployed on the moon during their first extravehicular activity (EVA). In the center background is the ALSEP's central station (CS); and in the foreground is the mortar package assembly of the ALSEP's active seismic experiment (ASE). The modularized equipment transporter (MET) can be seen in the right background. While astronauts Alan B. Shepard Jr., commander, and Edgar D. Mitchell, lunar module pilot, descended in the Lunar Module (LM) to explore the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  13. PDS Lunar Data Node Restoration of Apollo In-Situ Surface Data

    NASA Technical Reports Server (NTRS)

    Williams, David R.; Hills, H. Kent; Guinness, Edward A.; Lowman, Paul D.; Taylor, Patrick T.

    2010-01-01

    The Apollo missions between 1969 and 1972 deployed scientific instruments on the Moon's surface which made in-situ measurements of the lunar environment. Apollo II had the short-term Early Apollo Surface Experiments Package (EASEP) and Apollos 12, 14, 15, 16, and 17 each set up an Apollo Lunar Surface Experiments Package (ALSEP). Each ALSEP package contained a different suite of instruments which took measurements and radioed the results back to Earth over periods from 5 to 7 years until they were turned off on 30 September 1977. To this day the ALSEP data remain the only long-term in-situ information on the Moon's surface environment. The Lunar Data Node (LDN) has been formed under the auspices of the Planetary Data System (PDS) Geosciences Node to put relevant, scientifically important Apollo data into accessible digital form for use by researchers and mission planners. We will report on progress made since last year and plans for future data restorations.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-16

    The Apollo 11 mission, the first lunar landing mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man’s first lunar landing. This high angle view of the launch was provided by a ‘fisheye’ camera mounted on the launch tower. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  15. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-16

    At the press site, thousands of news reporters from the world over watched, taking many pictures, as the Saturn V launch vehicle (AS-506) lifted off to start Apollo 11 on its historic mission to land on the Moon. The total number of news people officially registered to cover the launch was 3,497. The craft lifted off from launch pad 39 at Kennedy Space Flight Center (KSC) on July 16, 1969. A three man crew included astronauts Neil A. Armstrong, commander; Michael Collins, Command Module(CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The mission finalized with splashdown into the Pacific Ocean on July 24, 1969. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Werher von Braun.

  16. Apollo 6 unmanned space mission launch

    NASA Image and Video Library

    1968-04-04

    S68-27364 (4 April 1968) --- The Apollo 6 (Spacecraft 020/Saturn 502) unmanned space mission was launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida. The liftoff of the huge Apollo/Saturn V space vehicle occurred at 7:00:01.5 a.m. (EST), April 4, 1968.

  17. Apollo 11 Lunar Message For Mankind- Reproduction

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Millions of people on Earth watched via television as a message for all mankind was delivered to the Mare Tranquilitatis (Sea of Tranquility) region of the Moon during the historic Apollo 11 mission, where it still remains today. This photograph is a reproduction of the commemorative plaque that was attached to the leg of the Lunar Module (LM), Eagle, engraved with the following words: 'Here men from the planet Earth first set foot upon the Moon July, 1969 A.D. We came in peace for all of mankind.' It bears the signatures of the Apollo 11 astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) pilot along with the signature of the U.S. President Richard M. Nixon. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-23

    This is a view of astronaut Richard F. Gordon attaching a high resolution telephoto lens to a camera aboard the Apollo 12 Command Module (CM) Yankee Clipper. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Apollo 12 safely returned to Earth on November 24, 1969.

  19. Activity Book. Celebrate Apollo 11.

    ERIC Educational Resources Information Center

    Barchert, Linda; And Others

    1994-01-01

    An activity book helps students learn about the 1969 Apollo 11 mission to the moon as they get a sense of the mission's impact on their lives. The activities enhance understanding of science, math, social studies, and language arts. A teacher's page offers information on books, magazines, computer materials, and special resources. (SM)

  20. Saturn Apollo Program

    NASA Image and Video Library

    1969-12-14

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples, some of which can be seen in this photograph. Apollo 12 safely returned to Earth on November 24, 1969.

  1. MISSION CONTROL CENTER (MCC) - CELEBRATION - CONCLUSION - APOLLO 11 MISSION - MSC

    NASA Image and Video Library

    1969-07-25

    S69-40023 (24 July 1969) --- Overall view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, Manned Spacecraft Center (MSC), showing the flight controllers celebrating the successful conclusion of the Apollo 11 lunar landing mission.

  2. How the Apollo Program Changed the Geology of the Moon

    ERIC Educational Resources Information Center

    Smith, J. V.; Steele, I. M.

    1973-01-01

    Evaluates the effect of the Apollo program on the geology of the Moon to determine further study problems. Concludes that the National Aeronautics and Space Administration can provide excellent justification for its extension since human beings have the possibility of using the rocks in ways not currently conceived. (CC)

  3. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-24

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted by helicopter and taken to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF). Shown here are the Apollo 11 crew members (L to R) Neil Armstrong, Michael Collins, and Edwin Aldrin inside the MQF as U.S. President Richard Milhous Nixon speaks to them via intercom. The president was aboard the recovery vessel awaiting return of the astronauts. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-24

    Donned in biological isolation garments, the Apollo 11 crew members, (L-R) Edwin Aldrin, Neil Armstrong (waving), and Michael Collins exit the recovery pick up helicopter to board the U.S.S. Hornet aircraft carrier after splashdown. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF). This portable facility served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center (KSC), Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Werher von Braun.

  5. Field Trip to the Moon

    ERIC Educational Resources Information Center

    Lowman, Paul D., Jr.

    2004-01-01

    This article focuses on the geology of a single area of the Moon, the Imbrium Basin, and shows how geologists have combined basic geologic principles with evidence collected by the Apollo missions to learn more about the history of the Moon as a whole. In this article, the author discusses lunar geology teaching tips and mapping the Imbrium Basin…

  6. Glenn Lecture With Crew of Apollo 11

    NASA Image and Video Library

    2009-07-18

    On the eve of the fortieth anniversary of Apollo 11's first human landing on the Moon, Apollo 11 crew member, Michael Collins speaks during a lecture in honor of Apollo 11 at the National Air and Space Museum in Washington, Sunday, July 19, 2009. Guest speakers included Former NASA Astronaut and U.S. Senator John Glenn, NASA Mission Control creator and former NASA Johnson Space Center director Chris Kraft and the crew of Apollo 11. Photo Credit: (NASA/Bill Ingalls)

  7. Glenn Lecture With Crew of Apollo 11

    NASA Image and Video Library

    2009-07-18

    On the eve of the fortieth anniversary of Apollo 11's first human landing on the Moon, Apollo 11 crew member, Buzz Aldrin speaks during a lecture in honor of Apollo 11 at the National Air and Space Museum in Washington, Sunday, July 19, 2009. Guest speakers included Former NASA Astronaut and U.S. Senator John Glenn, NASA Mission Control creator and former NASA Johnson Space Center director Chris Kraft and the crew of Apollo 11. Photo Credit: (NASA/Bill Ingalls)

  8. Apollo Soyuz Mission: 5-Day Report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Apollo Soyuz Test Project mission objectives and technical investigations are summarized. Topics discussed include: spacecraft and crew systems performance; joint flight activities; scientific and applications experiments; in-flight demonstrations; biomedical considerations; and mission support performance.

  9. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-24

    Dr. Thomas Paine, NASA administrator (left) and U.S. President Richard Milhous Nixon wait aboard the recovery ship, the U.S.S. Hornet, for splashdown of the Apollo 11 in the Pacific Ocean. Navy para-rescue men recovered the capsule housing the 3-man crew. The crew was taken to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF). The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  10. Petrologic constraints on the origin of the Moon: Evidence from Apollo 14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shervais, J.W.; Taylor, L.A.

    1984-01-01

    The Fra Mauro breccias at Apollo 14 contain distinctive suites of mare basalts and highland crustal rocks that contrast significantly with equivalent rocks from other Apollo sites. These contrasts imply lateral heterogeneity of the lunar crust and mantle on a regional scale. This heterogeneity may date back to the earliest stages of lunar accretion and differentiation. Current theories requiring a Moon-wide crust of Ferroan Anorthosite are based largely on samples from Apollo 16, where all but a few samples represent the FAN suite. However, at the nearside sites, FAN is either scarce (A-15) or virtually absent (A-12, A-14, A-17). Itmore » is suggested that the compositional variations could be accounted for by the acceleration of a large mass of material (e.g., 0.1 to 0.2 moon masses) late in the crystallization history of the magma ocean. Besides adding fresh, primordial material, this would remelt a large pocket of crust and mantle, thereby allowing a second distillation to occur in the resulting magma sea.« less

  11. Code-Name: Spider, Flight of Apollo 9.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Apollo 9, an earth orbiting mission during which the Lunar Module was first tested in space flight in preparation for the eventual moon landing missions, is the subject of this pamphlet. Many color photographs and diagrams of the Lunar Module and flight activities are included with a brief description of the mission. (PR)

  12. Apollo XVI TV TRANSMISSION - POOR QUALITY

    NASA Image and Video Library

    1972-04-22

    S72-35611 (21 April 1972) --- Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the U.S. flag, during the first Apollo 16 extravehicular activity (EVA) on the moon, as seen in this reproduction taken from a color television transmission made by the color television camera mounted on the Lunar Roving Vehicle (LRV). Astronaut Charles M. Duke Jr., lunar module pilot, is standing in the background. While astronauts Young and Duke descended in the Apollo 16 Lunar Module (LM) "Orion" to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  13. U.S. President Richard Milhous Nixon Watches Apollo 11 Recovery

    NASA Technical Reports Server (NTRS)

    1969-01-01

    U.S. President Richard Milhous Nixon (center), aboard the U.S.S. Hornet aircraft carrier, used binoculars to watch the Apollo 11 Lunar Mission Recovery. Standing next to the President is astronaut Frank Borman, Apollo 8 Commander. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet where they were quartered in a Mobile Quarantine Facility (MQF) for 21 days post mission. The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  14. Apollo 16 Mission Report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Information is provided on the operational and engineering aspects of the Apollo 16 mission. Customary units of measurement are used in those sections of the report pertaining to spacecraft systems and trajectories. The International System of Units is used in sections pertaining to science activities.

  15. Astronaut Frank Borman during training exercise in Apollo Mission simulator

    NASA Image and Video Library

    1967-08-01

    S67-50590 (1867) --- Astronaut Frank Borman, assigned duty as commander of the Apollo 8 mission, participates in a training exercise in the Apollo Mission simulator in the Mission Simulation and training Facility, Building 5, at the Manned Spacecraft Center, Houston, Texas. Photo credit: NASA

  16. Jupiter icy moons orbiteer mission design overview

    NASA Technical Reports Server (NTRS)

    Sims, Jon A.

    2006-01-01

    An overview of the design of a mission to three large moons of Jupiter is presented. the Jupiter Icy Moons Orbiter (JIMO) mission uses ion thrusters powered by a nuclear reactor to transfer from Earth to Jupiter and enter a low-altitude science orbit around each of the moons.

  17. View of Mission Control Center during the Apollo 13 liftoff

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Sigurd A. Sjoberg, Director of Flight Operations at Manned Spacecraft Center (MSC), views the Apollo 13 liftoff from a console in the MSC Mission Control Center, bldg 30. Apollo 13 lifted off at 1:13 p.m., April 11, 1970 (34627); Astronaut Thomas F. Mattingly II, who was scheduled as a prime crewman for the Apollo 13 mission but was replaced in the final hours when it was discovered he had been exposed to measles, watches the liftoff phase of the mission. He is seated at a console in the Mission Control Center's Mission Operations Control Room. Scientist-Astronaut Joseph P. Kerwin, a spacecraft communicator for the mission, looks on at right (34628).

  18. Apollo 16 Crew Portrait

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This is the Apollo 16 lunar landing mission crew portrait. Pictured from left to right are: Thomas K. Mattingly II, Command Module pilot; John W. Young, Mission Commander; and Charles M. Duke Jr., Lunar Module pilot. Launched from the Kennedy Space Center on April 16, 1972, Apollo 16 spent three days on Earth's Moon. The first study of the highlands area, the landing site for Apollo 16 was the Descartes Highlands. The fifth lunar landing mission out of six, Apollo 16 was famous for deploying and using an ultraviolet telescope as the first lunar observatory. The telescope photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used for collecting rocks and data on the mysterious lunar highlands. In this photo, astronaut John W. Young photographs Charles M. Duke, Jr. collecting rock samples at the Descartes landing site. Duke stands by Plum Crater while the Lunar Roving Vehicle waits parked in the background. High above, Thomas K. Mattingly orbits in the Command Module. The mission ended April 27, 1972 as the crew splashed down into the Pacific Ocean.

  19. Saturn Apollo Program

    NASA Image and Video Library

    1972-12-01

    This photograph taken during the Apollo 17 mission (the last mission of the Apollo Program), depicts stiff plasticized maps being taped together and fastened by clamps to patch a broken fender of the Lunar Roving Vehicle (LRV). Powered by battery, the lightweight electric car greatly increased the range of mobility and productivity on the scientific traverses for astronauts. It weighed 462 pounds (77 pounds on the Moon) and could carry two suited astronauts, their gear and cameras, and several hundred pounds of bagged samples. The LRV's mobility was quite high. It could climb and descend slopes of about 25 degrees. The LRV was designed and developed by the Marshall Space Flight Center and built by the Boeing Company.

  20. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-01

    This is the official three-member crew portrait of the Apollo 15 (SA-510). Pictured from left to right are: David R. Scott, Mission Commander; Alfred M. Worden Jr., Command Module pilot; and James B. Irwin, Lunar Module pilot. The fifth marned lunar landing mission, Apollo 15 (SA-510), lifted off on July 26, 1971. Astronauts Scott and Irwin were the first to use a wheeled surface vehicle, the Lunar Roving Vehicle (LRV), or the Rover, which was designed and developed by the Marshall Space Flight Center, and built by the Boeing Company. The astronauts spent 13 days, nearly 67 hours, on the Moon's surface to inspect a wide variety of its geological features.

  1. Official Emblem - Apollo 7 - First (1st) Manned Apollo Space Mission

    NASA Image and Video Library

    1968-06-01

    S68-26668 (June 1968) --- The official emblem of Apollo 7, the first manned Apollo space mission. The crew will consist of astronauts Walter M. Schirra Jr., Donn F. Eisele, and Walter Cunningham. The NASA insignia design for Apollo flights is reserved for use by the astronauts and for the official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced.

  2. Apollo 12 Mission image - View of lunar surface mound

    NASA Image and Video Library

    1969-11-19

    AS12-46-6825 (19 Nov. 1969) --- Close-up view of a lunar rock, small crater, and lunar mound as photographed during the Apollo 12 extravehicular activity (EVA). Astronaut Richard F. Gordon Jr., command module pilot, remained with the Apollo 12 Command and Service Modules (CSM) in lunar orbit while astronauts Charles Conrad Jr., commander, and Alan L. Bean, lunar module pilot, descended in the Lunar Module (LM) to explore the moon.

  3. Apollo 9 Mission image - Command Module

    NASA Image and Video Library

    1969-03-03

    The Apollo 9 Command/Service Modules photographed through the window from the Lunar Module,"Spider",on the fifth day of the Apollo 9 earth-orbital mission. Docking mechanism is visible in nose of the Command Module,"Gumdrop". Film magazine was F, film type was SO-368 Ektachrome with 0.460 - 0.710 micrometers film / filter transmittance response and haze filter,80mm lens

  4. Apollo 15 impact melts, the age of Imbrium, and the Earth-Moon impact cataclysm

    NASA Technical Reports Server (NTRS)

    Ryder, Graham; Dalrymple, G. Brent

    1992-01-01

    The early impact history of the lunar surface is of critical importance in understanding the evolution of both the primitive Moon and the Earth, as well as the corresponding populations of planetesimals in Earth-crossing orbits. Two endmember hypotheses call for greatly dissimilar impact dynamics. One is a heavy continuous (declining) bombardment from about 4.5 Ga to 3.85 Ga. The other is that an intense but brief bombardment at about 3.85 +/- Ga was responsible for producing the visible lunar landforms and for the common 3.8-3.9 Ga ages of highland rocks. The Apennine Front, the main topographic ring of the Imbrium Basin, was sampled on the Apollo 15 mission. The Apollo 15 impact melts show a diversity of chemical compositions, indicating their origin in at least several different impact events. The few attempts at dating them have generally not produced convincing ages, despite their importance. Thus, we chose to investigate the ages of melt rock samples from the Apennine Front, because of their stratigraphic importance yet lack of previous age definition.

  5. U.S. President Richard Milhous Nixon Watches Apollo 11 Recovery

    NASA Technical Reports Server (NTRS)

    1969-01-01

    U.S. President Richard Milhous Nixon, aboard the U.S.S. Hornet aircraft carrier, used binoculars to watch the Apollo 11 Lunar Mission recovery. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) for 21 days post mission. The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  6. Apollo Soyuz mission planning and operations

    NASA Technical Reports Server (NTRS)

    Frank, M. P., III

    1976-01-01

    The paper describes the Apollo Soyuz project from the points of view of working group organization, mission plan definition, joint operations concept, and mission preparation. The concept for joint operations considered contingency situations as well as nominal operations. Preparations for the joint flight included cooperative tracking tests and combined training of the flight crews and mission control personnel.

  7. Apollo 11 lunar sample

    NASA Image and Video Library

    2009-06-24

    ISS020-E-14200 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.

  8. Apollo 11 lunar sample

    NASA Image and Video Library

    2009-06-24

    ISS020-E-014193 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.

  9. Apollo 11 lunar sample

    NASA Image and Video Library

    2009-06-24

    ISS020-E-14196 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.

  10. Glenn Lecture With Crew of Apollo 11

    NASA Image and Video Library

    2009-07-18

    On the eve of the fortieth anniversary of the first human landing on the Moon, Apollo 11 Astronaut Neil Armstrong speaks during a lecture in honor of Apollo 11 at the National Air and Space Museum in Washington, Sunday, July 19, 2009. Guest speakers included Former NASA Astronaut and U.S. Senator John Glenn, NASA Mission Control creator and former NASA Johnson Space Center director Chris Kraft and the crew of Apollo 11. Photo Credit: (NASA/Bill Ingalls)

  11. Launch of Apollo 8 lunar orbit mission

    NASA Image and Video Library

    1968-12-21

    S68-56001 (21 Dec. 1968) --- The Apollo 8 (Spacecraft 103/Saturn 503) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center, at 7:51 a.m. (EST), Dec. 21, 1968. The crew of the Apollo 8 lunar orbit mission is astronauts Frank Borman, commander; James A. Lovell Jr., command module pilot; and William A. Anders, lunar module pilot. Apollo 8 was the first manned Saturn V launch. (Just after ignition)

  12. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-24

    Aboard the recovery ship, USS Hornet, Apollo 12 astronauts wave to the crowd as they enter the mobile quarantine facility. The recovery operation took place in the Pacific Ocean after the splashdown of the Command Module capsule. Navy para-rescue men recovered the capsule housing the 3-man Apollo 12 crew. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  13. View of Mission Control Center celebrating conclusion of Apollo 11 mission

    NASA Image and Video Library

    1969-07-25

    S69-40022 (24 July 1969) --- Overall view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, Manned Spacecraft Center (MSC), showing the flight controllers celebrating the successful conclusion of the Apollo 11 lunar landing mission.

  14. Apollo 14 Crew Receive Greetings Inside the Mobile Quarantine Facility

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Apollo 14 astronauts listen to official greetings from the Mobile Quarantine Facility aboard the USS New Orleans following their safe return from the third manned lunar landing mission. Pictured (from left to right) are Stuart A. Roosa, Command Module pilot ; Alan B. Shepard, Jr., Mission commander; and Edgar D. Mitchell, Lunar Module pilot. The Apollo 14 crew launched from launch complex 39A at the Kennedy Space Center on January 31, 1971 and safely returned to Earth on February 9, 1971. It was the first manned landing in exploration of the lunar highlands, and it demonstrated pinpoint landing capability. The major goal of Apollo 14 was the scientific exploration of the Moon in the foothills of the rugged Fra Mauro region. The extravehicular activity (EVA) of astronauts Shepard and Mitchell included setting up an automated scientific laboratory called Apollo Lunar Scientific Experiments Package (ALSEP), and collecting a total of about 95 pounds (43 kilograms) of Moon rock and soil for a geological investigation back on the Earth.

  15. Saturn Apollo Program

    NASA Image and Video Library

    1969-01-01

    The Apollo 12 three-man crew pictured left to right are: Astronauts Charles Conrad, Spacecraft Commander; Richard F. Gordon, pilot of the Command Module `Yankee Clipper'; and Alan L. Bean, pilot of the Lunar Module `Intrepid'. Activities of astronauts Conrad and Bean on the lunar soil included setting out experiments, finding the unmarned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. The second mission of the manned lunar landing and return to Earth, Apollo 12 lifted off on November 14, 1969.

  16. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    This image depicts the liftoff of the Apollo 12 on November 14, 1969. The second mission of the marned lunar landing and return to Earth, Apollo 12, carried a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module, Intrepid; Richard Gordon, pilot of the Command Module, Yankee Clipper; and Spacecraft Commander Charles Conrad. Activities of astronauts Conrad and Bean on the lunar soil included setting out experiments, finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples.

  17. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-24

    The smiling Apollo 12 astronauts peer out of the window of the mobile quarantine facility aboard the recovery ship, USS Hornet. Pictured (Left to right) are Spacecraft Commander, Charles Conrad; Command Module (CM) Pilot, Richard Gordon; and Lunar Module (LM) Pilot, Alan L. Bean. The crew were housed in the quarantine facility immediately after the Pacific recovery operation took place. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 returned safely to Earth on November 24, 1969.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-20

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn Five launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. In this photograph, one of the astronauts on the Moon’s surface is holding a container of lunar soil. The other astronaut is seen reflected in his helmet. Apollo 12 safely returned to Earth on November 24, 1969.

  19. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the fifteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  20. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the seventeenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  1. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the third of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the thirteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  3. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the fourteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the sixth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the seventh of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the twenty-fifth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  7. Saturn Apollo Program

    NASA Image and Video Library

    1968-11-04

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the fourth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  8. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the second of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  9. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the sixteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the eighteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1959-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the twenty-third of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  12. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the twenty-first of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  13. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the twenty-fourth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the fifth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  15. Apollo 13: Houston, We've Got a Problem

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video contains historical footage of the flight of Apollo-13, the fifth Lunar Mission and the third spacecraft that was to land on the Moon. Apollo-13's launch date was April 11, 1970. On the 13th of April, after docking with the Lunar Module, the astronauts, Jim Lovell, Fred Haise, and Jack Swiggert, discovered that their oxygen tanks had ruptured and ended up entering and returning to Earth in the Lunar Module instead of the Command Module. There is footage of inside module and Mission Control shots, personal commentary by the astronauts concerning the problems as they developed, national news footage and commentary, and a post-flight Presidential Address by President Richard Nixon. Film footage of the approach to the Moon and departing from Earth, and air-to-ground communication with Mission Control is included.

  16. Apollo 13: Houston, we've got a problem

    NASA Astrophysics Data System (ADS)

    1991-04-01

    This video contains historical footage of the flight of Apollo-13, the fifth Lunar Mission and the third spacecraft that was to land on the Moon. Apollo-13's launch date was April 11, 1970. On the 13th of April, after docking with the Lunar Module, the astronauts, Jim Lovell, Fred Haise, and Jack Swiggert, discovered that their oxygen tanks had ruptured and ended up entering and returning to Earth in the Lunar Module instead of the Command Module. There is footage of inside module and Mission Control shots, personal commentary by the astronauts concerning the problems as they developed, national news footage and commentary, and a post-flight Presidential Address by President Richard Nixon. Film footage of the approach to the Moon and departing from Earth, and air-to-ground communication with Mission Control is included.

  17. The Apollo Program and Lunar Science

    ERIC Educational Resources Information Center

    Kuiper, Gerard P.

    1973-01-01

    Discusses the history of the Vanguard project and the findings in Ranger records and Apollo missions, including lunar topography, gravity anomalies, figure, and chemistry. Presented are speculative remarks on the research of the origin of the Moon. (CC)

  18. Remembering Apollo 11: The 30th Anniversary Data Archive CD-ROM

    NASA Technical Reports Server (NTRS)

    Cortright, Edgar M. (Editor)

    1999-01-01

    On July 20, 1969, the human race accomplished its single greatest technological achievement of all time when a human first set foot on another celestial body. Six hours after landing at 4:17 p.m. Eastern Standard Time (with less than thirty seconds of fuel remaining), Neil A. Armstrong took the "small step" into our greater future when he stepped off the Lunar Module, named Eagle, onto the surface of the Moon, from which he could look up and see Earth in the heavens as no one had done before him. He was shortly joined by Edwin "Buzz" Aldrin, and the two astronauts spent twenty-one hours on the lunar surface and returned forty-six pounds of lunar rocks. After their historic walks on the Moon, they successfully docked with Michael Collins, patiently orbiting the cold but no longer lifeless Moon alone in the Command module Columbia. This CR-ROM is intended as a collection of hard to find technical data and other interesting information about the Apollo 11 mission, as well as the apollo program in general. It includes basic overviews, such as a retrospective analysis, an annotated bibliography, and history of the lunar-orbit rendezvous concept. It also contains technical data, such as mission operations reports, press kits, and news references for all of the Apollo missions, the Apollo spacecraft, and the Saturn V launch vehicle. Rounding out this CD-ROM are extensive histories of the lunar Orbiter program (the robotic predecessor to Apollo, biographies of the Apollo astronauts and other key individuals, and interesting audio-visual materials, such as video and audio clips, photo galleries, and blueprint-like diagrams of the Apollo spacecraft.

  19. Launch of Apollo 8 lunar orbit mission

    NASA Image and Video Library

    1968-12-21

    S68-56050 (21 Dec. 1968)--- The Apollo 8 (Spacecraft 103/Saturn 503) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), at 7:51 a.m. (EST), Dec. 21, 1968. The crew of the Apollo 8 lunar orbit mission is astronauts Frank Borman, commander; James A. Lovell Jr., command module pilot; and William A. Anders, lunar module pilot. Apollo 8 is the first manned Saturn V launch. (water in foreground, seagulls)

  20. Apollo 12 Mission image - Dark view of Astronaut Alan L. Bean climbing down the ladder of the Lunar Module (LM)

    NASA Image and Video Library

    1969-11-19

    AS12-46-6726 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 mission, starts down the ladder of the Lunar Module (LM) to join astronaut Charles Conrad Jr., mission commander, in extravehicular activity (EVA). While astronauts Conrad and Bean descended in the LM "Intrepid" to explore the Ocean of Storms region of the moon, astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) "Yankee Clipper" in lunar orbit.

  1. Apollo 13 - Prime Crew Portrait

    NASA Image and Video Library

    1969-12-11

    S69-62224 (December 1969) --- The members of the prime crew of the Apollo 13 lunar landing mission (left to right) are astronauts James A. Lovell Jr., commander; Thomas K. Mattingly II, command module pilot; and Fred W. Haise Jr., lunar module pilot. They are seated in front of a scene of the Lagoon Nebula, with the mission insignia and two items of early navigation in the foreground. Represented in the Apollo 13 emblem (center) is Apollo, the sun god of Greek mythology, symbolizing that the Apollo flights have extended the light of knowledge to all mankind. The Latin phrase Ex Luna, Scientia means "From the Moon, Knowledge." The Hindu astrolabe in Sanskrit (on right) was used to predict the position of celestial bodies before the invention of the octant (on left) was used in 1790 to determine the altitude of celestial bodies from aboard ship.

  2. Glenn Lecture With Crew of Apollo 11

    NASA Image and Video Library

    2009-07-18

    On the eve of the fortieth anniversary of Apollo 11's first human landing on the Moon, NASA Mission Control creator and former NASA Johnson Space Center director Chris Kraft speaks during a lecture in honor of Apollo 11 at the National Air and Space Museum in Washington, Sunday, July 19, 2009. Guest speakers included Former NASA Astronaut and U.S. Senator John Glenn, Apollo 11 crew members, Buzz Aldrin, Neil Armstrong, and Michael Collins. Photo Credit: (NASA/Bill Ingalls)

  3. Glenn Lecture With Crew of Apollo 11

    NASA Image and Video Library

    2009-07-18

    On the eve of the fortieth anniversary of Apollo 11's first human landing on the Moon, Former NASA Astronaut and U.S. Senator John Glenn speaks during a lecture in honor of Apollo 11 at the National Air and Space Museum in Washington, Sunday, July 19, 2009. Guest speakers included NASA Mission Control creator and former NASA Johnson Space Center director Chris Kraft, Apollo 11 crew members, Buzz Aldrin, Neil Armstrong, and Michael Collins. Photo Credit: (NASA/Bill Ingalls)

  4. Of time and the moon.

    PubMed

    Wetherill, G W

    1971-07-30

    Considerable information concerning lunar chronology has been obtained by the study of rocks and soil returned by the Apollo 11 and Apollo 12 missions. It has been shown that at the time the moon, earth, and solar system were formed, approximately 4.6 approximately 10(9) years ago, a severe chemical fractionation took place, resulting in depletion of relatively volatile elements such as Rb and Pb from the sources of the lunar rocks studied. It is very likely that much of this material was lost to interplanetary space, although some of the loss may be associated with internal chemical differentiation of the moon. It has also been shown that igneous processes have enriched some regions of the moon in lithophile elements such as Rb, U, and Ba, very early in lunar history, within 100 million years of its formation. Subsequent igneous and metamorphic activity occurred over a long period of time; mare volcanism of the Apollo 11 and Apollo 12 sites occurred at distinctly different times, 3.6 approximately 10(9) and 3.3 approximately 10(9) years ago, respectively. Consequently, lunar magmatism and remanent magnetism cannot be explained in terms of a unique event, such as a close approach to the earth at a time of lunar capture. It is likely that these phenomena will require explanation in terms of internal lunar processes, operative to a considerable depth in the moon, over a long period of time. These data, together with the low present internal temperatures of the moon, inferred from measurements of lunar electrical conductivity, impose severe constraints on acceptable thermal histories of the moon. Progress is being made toward understanding lunar surface properties by use of the effects of particle bombardment of the lunar surface (solar wind, solar flare particles, galactic cosmic rays). It has been shown that the rate of micrometeorite erosion is very low (angstroms per year) and that lunar rocks and soil have been within approximately a meter of the lunar surface

  5. Lunar surface radioactivity: preliminary results of the apollo 15 and apollo 16 gamma-ray spectrometer experiments.

    PubMed

    Metzger, A E; Trombka, J I; Peterson, L E; Reedy, R C; Arnold, J R

    1973-02-23

    Gamma-ray spectrometers on the Apollo 15 and Apollo 16 missions have been used to map the moon's radioactivity over 20 percent of its surface. The highest levels of natural radioactivity are found in Mare Imbrium and Oceanus Procellarum with contrastingly lower enhancements in the eastern maria. The ratio of potassium to uranium is higher on the far side than on the near side, although it is everywhere lower than commonly found on the earth.

  6. Lunar surface radioactivity - Preliminary results of the Apollo 15 and Apollo 16 gamma-ray spectrometer experiments.

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Trombka, J. I.; Peterson, L. E.; Reedy, R. C.; Arnold, J. R.

    1973-01-01

    Gamma-ray spectrometers on the Apollo 15 and Apollo 16 missions have been used to map the moon's radioactivity over 20 percent of its surface. The highest levels of natural radioactivity are found in Mare Imbrium and Oceanus Procellarum with contrastingly lower enhancements in the eastern maria. The ratio of potassium to uranium is higher on the far side than on the near side, although it is everywhere lower than commonly found on the earth.

  7. Astronaut Donn Eisele photographed during Apollo 7 mission

    NASA Image and Video Library

    1968-10-20

    AS07-04-1600 (20 Oct. 1968) --- Astronaut Donn F. Eisele, Apollo 7 command module pilot, smiles through a heavy growth of beard as he is photographed during a momentary pause on the ninth day of the Apollo 7 mission.

  8. Apollo 1 Tribute Opening

    NASA Image and Video Library

    2017-01-27

    The Apollo 1 tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017. Astronauts Gus Grissom, Ed White II and Chaffee perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. The tribute highlights the lives and careers of the astronauts. The tribute features numerous items recalling the lives of the three astronauts. The tribute also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  9. Apollo 1 Tribute

    NASA Image and Video Library

    2017-01-24

    A redesigned hatch for an Apollo spacecraft is shown inside the new tribute to the crew of Apollo 1 who perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. Astronauts Gus Grissom, Ed White II and Roger Chaffee were lost during the fire. The tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017, 50 years after the crew of three was lost. It features numerous items recalling the lives of the three astronauts. The tribute also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. The version of the hatch after it was redesigned was also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  10. Launch - Apollo XV Space Vehicle - KSC

    NASA Image and Video Library

    1971-07-26

    S71-41356 (26 July 1971) --- The huge, 363-feet tall Apollo 15 (Spacecraft 112/Lunar Module 10/Saturn 510) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida, at 9:34:00:79 a.m. (EDT), July 26, 1971, on a lunar landing mission. Aboard the Apollo 15 spacecraft were astronauts David R. Scott, commander; Alfred M. Worden, command module pilot; and James B. Irwin, lunar module pilot. Apollo 15 is the National Aeronautics and Space Administration's (NASA) fourth manned lunar landing mission. While astronauts Scott and Irwin will descend in the Lunar Module (LM) to explore the moon, astronaut Worden will remain with the Command and Service Modules (CSM) in lunar orbit.

  11. Apollo 13 Facts [Post Mission Honorary Ceremony

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Apollo 13 astronauts, James Lovell, Jr., John Swigert, Jr., and Fred Haise, Jr., are seen during this post mission honorary ceremony, led by President Richard Nixon. Lovell is shown during an interview, answering questions about the mission.

  12. In Situ Biological Contamination Studies of the Moon: Implications for Future Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there yet a planetary protection category for human missions. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  13. Mission Control Center at conclusion of Apollo 15 lunar landing mission

    NASA Image and Video Library

    1971-08-07

    An overall view of activity in the Mission Operations Control Room in the Mission Control Center at the conclusion of the Apollo 15 lunar landing mission. The television monitor in the right background shows the welcome ceremonies aboard the prime recovery ship, U.S.S. Okinawa, in the mid-Pacific Ocean.

  14. Apollo 12 Mission image - Alan Bean unloads ALSEP RTG fuel element

    NASA Image and Video Library

    1969-11-19

    AS12-46-6790 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot, is photographed at quadrant II of the Lunar Module (LM) during the first Apollo 12 extravehicular activity (EVA) on the moon. This picture was taken by astronaut Charles Conrad Jr., commander. Here, Bean is using a fuel transfer tool to remove the fuel element from the fuel cask mounted on the LM's descent stage. The fuel element was then placed in the Radioisotope Thermoelectric Generator (RTG), the power source for the Apollo Lunar Surface Experiments Package (ALSEP) which was deployed on the moon by the two astronauts. The RTG is next to Bean's right leg. While astronauts Conrad and Bean descended in the LM "Intrepid" to explore the Ocean of Storms region of the moon, astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) "Yankee Clipper" in lunar orbit.

  15. Apollo A-7L Spacesuit Tests and Certification, and Apollo 7 Through 14 Missions Experience

    NASA Technical Reports Server (NTRS)

    McBarron, James W., II

    2015-01-01

    As a result of his 50 years of experience and research, Jim McBarron shared his significant knowledge about Apollo A-7L spacesuit certification testing and Apollo 7 through 14 missions' spacesuit details.

  16. Apollo 14 Mission image - View of Astronaut Mitchell and the Modular Equipment Transporter with the Lunar Module in background.

    NASA Image and Video Library

    1971-02-06

    AS14-64-9140 (6 Feb. 1971) --- Astronaut Edgar D. Mitchell, lunar module pilot, participates in the mission's second extravehicular activity (EVA). He is standing near the modularized equipment transporter (MET). While astronauts Alan B. Shepard Jr., commander, and Mitchell descended in the Apollo 14 LM to explore the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  17. Apollo 12 Mission image - Astronaut Alan L. Bean,lunar module pilot,and two U.S. spacecraft

    NASA Image and Video Library

    1969-11-20

    AS12-48-7134 (20 Nov. 1969) --- This unusual photograph, taken during the second Apollo 12 extravehicular activity (EVA), shows two U.S. spacecraft on the surface of the moon. The Apollo 12 Lunar Module (LM) is in the background. The unmanned Surveyor 3 spacecraft is in the foreground. The Apollo 12 LM, with astronauts Charles Conrad Jr. and Alan L. Bean aboard, landed about 600 feet from Surveyor 3 in the Ocean of Storms. The television camera and several other pieces were taken from Surveyor 3 and brought back to Earth for scientific examination. Here, Conrad examines the Surveyor's TV camera prior to detaching it. Astronaut Richard F. Gordon Jr. remained with the Apollo 12 Command and Service Modules (CSM) in lunar orbit while Conrad and Bean descended in the LM to explore the moon. Surveyor 3 soft-landed on the moon on April 19, 1967.

  18. Apollo 11 Launched Via Saturn V Rocket

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Developed by the Marshall Space Flight Center (MSFC), the Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man's first lunar landing. Aboard the spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  19. Apollo 11 Launched Via Saturn V Rocket

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man's first lunar landing. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  20. Jupiter Icy Moons Orbiter Mission design overview

    NASA Technical Reports Server (NTRS)

    Sims, Jon A.

    2006-01-01

    An overview of the design of a possible mission to three large moons of Jupiter (Callisto, Ganymede, and Europa) is presented. The potential Jupiter Icy Moons Orbiter (JIMO) mission uses ion thrusters powered by a nuclear reactor to transfer from Earth to Jupiter and enter a low-altitude science orbit around each of the moons. The combination of very limited control authority and significant multibody dynamics resulted in some aspects of the trajectory design being different than for any previous mission. The results of several key trades, innovative trajectory types and design processes, and remaining issues are presented.

  1. Apollo 17 celebration

    NASA Image and Video Library

    2012-12-07

    Ariana Lyons from Escatawpa Elementary School in Moss Point, Miss., experiences what it feels like to view the world out of a spacesuit during a visit to INFINITY Science Center, a NASA visitors center, Dec. 7. Lyons joined other young visitors to the facility that day in celebrating the 40th anniversary of the Apollo 17 mission to the moon in 1972.

  2. Apollo 9 Mission image - Command Module

    NASA Image and Video Library

    1969-03-03

    The Apollo 9 Command/Service Modules photographed from the Lunar Module,"Spider",on the fifth day of the Apollo 9 earth-orbital mission. Docking mechanism is visible in nose of the Command Module,"Gumdrop". Object jutting out from the Service Module aft bulkhead is the high-gain S-Band antenna. Film magazine was F, film type was SO-368 Ektachrome with 0.460 - 0.710 micrometers film / filter transmittance response and haze filter,80mm lens.

  3. Apollo 1 Tribute

    NASA Image and Video Library

    2017-01-24

    The entrance to the tribute to Apollo 1 shows the three astronauts who perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. The astronauts are, from left, Gus Grissom, Ed White II and Roger Chaffee. The tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017, 50 years after the crew was lost. It features numerous items recalling the lives of the three astronauts. It also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  4. View of Mission Control Center during the Apollo 13 emergency return

    NASA Image and Video Library

    1970-04-16

    S70-35368 (16 April 1970) --- Overall view showing some of the feverish activity in the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC) during the final 24 hours of the problem-plagued Apollo 13 mission. Here, flight controllers and several NASA/MSC officials confer at the flight director's console. When this picture was made, the Apollo 13 lunar landing had already been canceled, and the Apollo 13 crewmembers were in trans-Earth trajectory attempting to bring their crippled spacecraft back home.

  5. Launch of the Apollo 17 lunar landing mission

    NASA Image and Video Library

    1972-12-07

    S72-55482 (7 Dec. 1972) --- The huge, 363-feet tall Apollo 17 (Spacecraft 114/Lunar Module 12/Saturn 512) space vehicle is launched from Pad A., Launch Complex 39, Kennedy Space Center (KSC), Florida, at 12:33 a.m. (EST), Dec. 7, 1972. Apollo 17, the final lunar landing mission in NASA's Apollo program, was the first nighttime liftoff of the Saturn V launch vehicle. Aboard the Apollo 17 spacecraft were astronaut Eugene A. Cernan, commander; astronaut Ronald E. Evans, command module pilot; and scientist-astronaut Harrison H. Schmitt, lunar module pilot. Flame from the five F-1 engines of the Apollo/Saturn first (S-1C) stage illuminates the nighttime scene. A two-hour and 40-minute hold delayed the Apollo 17 launching.

  6. Launch of the Apollo 17 lunar landing mission

    NASA Image and Video Library

    1972-09-07

    S72-55070 (7 Dec. 1972) --- The huge, 363-feet tall Apollo 17 (Spacecraft 114/Lunar Module 12/Saturn 512) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida, at 12:33 a.m. (EST), Dec. 7, 1972. Apollo 17, the final lunar landing mission in NASA's Apollo program, was the first nighttime liftoff of the Saturn V launch vehicle. Aboard the Apollo 17 spacecraft were astronaut Eugene A. Cernan, commander; astronaut Ronald E. Evans, command module pilot; and scientist-astronaut Harrison H. Schmitt, lunar module pilot. Flame from the five F-1 engines of the Apollo/Saturn first (S-1C) stage illuminates the nighttime scene. A two-hour and 40-minute hold delayed the Apollo 17 launching.

  7. Apollo 12 Mission image - View of lunar surface mound

    NASA Image and Video Library

    1969-11-19

    AS12-46-6795 (19-20 Nov. 1969) --- A view of the lunar surface in the vicinity of the Apollo 12 lunar landing site, photographed during the extravehicular activity (EVA) of astronauts Charles Conrad Jr., commander, and Alan L. Bean, lunar module pilot. Conrad and Bean encountered the odd, anthill-shaped mound during their lunar traverse. The two descended in the Apollo 12 Lunar Module (LM) to explore the moon, while astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  8. The impact history of the Moon: implications of new high-resolution U-Pb analyses of Apollo impact breccias

    NASA Astrophysics Data System (ADS)

    Snape, Joshua F.; Nemchin, Alexander A.; Thiessen, Fiona; Bellucci, Jeremy J.; Whitehouse, Martin J.

    2015-04-01

    Constraining the impact history of the Moon is a key priority, both for lunar science [1] and also for our understanding of how this fundamental geologic processes [2] has affected the evolution of planets in the inner solar system. The Apollo impact breccia samples provide the most direct way of dating impact events on the Moon. Numerous studies have dated samples from the Apollo landing sites by multiple different methods with varying degrees of precision [3]. This has led to an ongoing debates regarding the presence of a period of intense meteoritic bombardment (e.g. [4-8]). In this study we present high precision U-Pb analyses of Ca-phosphates in a variety of Apollo impact breccias. These data allow us to resolve the signatures of multiple different impact events in samples collected by the Apollo 12, 14 and 17 missions. In particular, the potential identification of three significant impact events between the period of ~3915-3940 Ma, is indicative of a high rate of meteorite impacts at this point in lunar history. A more fundamental problem with interpretations of Apollo breccia ages is that the samples originate from the lunar regolith and do not represent samples of actual bedrock exposures. As such, although improvements in analytical precision may allow us to continue identifying new impact signatures, the proposed links between these signatures and particular impact features remain highly speculative. This is a problem that will only be truly addressed with a more focused campaign of lunar exploration. Most importantly, this would include the acquisition of samples from below the lunar regolith, which could be confidently attributed to particular bedrock formations and provide a degree of geologic context that has been largely absent from studies of lunar geology to date. References: [1] National Research Council (2007) The scientific context for exploration of the Moon, National Academies Press. [2] Melosh H. J. (1989) Impact Cratering: A Geologic

  9. Scientific exploration of the moon

    NASA Technical Reports Server (NTRS)

    El-Baz, F.

    1979-01-01

    The paper reviews efforts undertaken to explore the moon and the results obtained, noting that such efforts have involved a successful interdisciplinary approach to solving a number of scientific problems. Attention is given to the interactions of astronomers, cartographers, geologists, geochemists, geophysicists, physicists, mathematicians and engineers. Earth based remote sensing and unmanned spacecraft such as the Ranger and Surveyor programs are discussed. Emphasis is given to the manned Apollo missions and the results obtained. Finally, the information gathered by these missions is reviewed with regards to how it has increased understanding of the moon, and future exploration is considered.

  10. Apollo 1 Tribute

    NASA Image and Video Library

    2017-01-24

    An Apollo spacecraft mockup marks the capstone of the new tribute to the crew of Apollo 1 who perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. The tribute highlights the lives and careers of astronauts Gus Grissom, Ed White II and Roger Chaffee who were lost during the fire. The tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017, 50 years after the crew of three was lost. It features numerous items recalling the lives of the three astronauts. The tribute also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  11. Apollo 1 Tribute

    NASA Image and Video Library

    2017-01-24

    The three-part hatch that was in place on the Apollo 1 spacecraft is shown in a tribute to the crew of Apollo 1 who perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. This is the first time any part of the Apollo 1 spacecraft has been displayed publicly. The tribute highlights the lives and careers of astronauts Gus Grissom, Ed White II and Roger Chaffee who were lost during the fire. The tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017, 50 years after the crew of three was lost. It features numerous items recalling the lives of the three astronauts. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  12. Parting Moon Shots from NASAs GRAIL Mission

    NASA Image and Video Library

    2013-01-10

    Video of the moon taken by the NASA GRAIL mission's MoonKam (Moon Knowledge Acquired by Middle School Students) camera aboard the Ebb spacecraft on Dec. 14, 2012. Features forward-facing and rear-facing views.

  13. In This Decade, Mission to the Moon.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The development and accomplishments of the National Aeronautics and Space Administration (NASA) from its inception in 1958 to the final preparations for the Apollo 11 mission in 1969 are traced in this brochure. A brief account of the successes of projects Mercury, Gemini, and Apollo is presented and many color photographs and drawings of the…

  14. Apollo 1 Tribute Opening

    NASA Image and Video Library

    2017-01-27

    Guests observe the gateway of the newly opened Apollo 1 tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017. Astronauts Gus Grissom, Ed White II and Chaffee perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. The tribute highlights the lives and careers of the astronauts. The tribute features numerous items recalling the lives of the three astronauts. The tribute also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  15. Apollo 1 Tribute Opening

    NASA Image and Video Library

    2017-01-27

    Guests observe areas of the newly opened Apollo 1 tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017. Astronauts Gus Grissom, Ed White II and Chaffee perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. The tribute highlights the lives and careers of the astronauts. The tribute features numerous items recalling the lives of the three astronauts. The tribute also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  16. Apollo 9 Mission image - Scott in CM cabin

    NASA Image and Video Library

    1969-03-03

    View of Astronaut David R.Scott ,Apollo 9 Command Module pilot, inside the Command Module "Gumdrop" during the Apollo 9 earth-orbital mission. . Film magazine was D,film type was SO-368 Ektachrome with 0.460 - 0.710 micrometers film / filter transmittance response and haze filter,80mm lens.

  17. Moon rock in JPM

    NASA Image and Video Library

    2009-06-07

    ISS020-E-007383 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth and a section of a station solar panel can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.

  18. Mission Control Center (MCC) - Apollo 13 - Fourth (4th) Television Signal - MSC

    NASA Image and Video Library

    1970-04-13

    S70-35139 (13 April 1970) --- Overall view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC) at Manned Spacecraft Center (MSC), during the fourth television transmission from the Apollo 13 mission in space. Eugene F. Kranz (foreground, back to camera), one of four Apollo 13 flight directors, views the large screen at front of MOCR, astronaut Fred W. Haise Jr., lunar module pilot, is seen on the screen. The fourth TV transmission from the Apollo 13 mission was on the evening of April 13, 1970.

  19. Apollo 11 Astronauts In Prayer Within Quarantine Facility

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via a Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was taken to safety aboard the USS Hornet, where they were quartered in a mobile quarantine facility. Shown here is the Apollo 11 crew inside the quarantine facility as prayer is offered by Lt. Commander John Pirrto, USS Hornet Chaplain accompanied by U.S. President Richard Nixon (front right). With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  20. View of earth during return from moon taken from Apollo 8 spacecraft

    NASA Image and Video Library

    1968-12-24

    AS8-15-2561 (21-27 Dec. 1968) --- View of Earth as photographed by the Apollo 8 astronauts on their return trip from the moon. Note that the terminator is straighter than on the outbound pictures. The terminator crosses Australia. India is visible. The sun reflection is within the Indian Ocean.

  1. View of Mission Control Center during the Apollo 13 oxygen cell failure

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Several persons important to the Apollo 13 mission, at consoles in the Mission Operations Control Room of the Mission Control Center (MCC). Seated at consoles, from left to right, are Astronaut Donald K. Slayton, Director of Flight Crew Operations; Astronaut Jack R. Lousma, Shift 3 spacecraft communicator; and Astronaut John W. Young, commander of the Apollo 13 back-up crew. Standing, left to right, are Astronaut Tom K. Mattingly, who was replaced as Apollo 13 command module pilot after it was learned he may come down with measles, and Astronaut Vance D. Brand, Shift 2 spacecraft communicator. Several hours earlier crew members of the Apollo 13 mission reported to MCC that trouble had developed with an oxygen cell in their spacecraft.

  2. Geologic Traverse Planning for Apollo Missions

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary

    2012-01-01

    The science on Apollo missions was overseen by the Science Working Panel (SWP), but done by multiple PIs. There were two types of science, packages like the Apollo Lunar Surface Experiment Package (ALSEP) and traverse science. Traverses were designed on Earth for the astronauts to execute. These were under direction of the Lunar Surface PI, but the agreed traverse was a cooperation between the PI and SWP. The landing sites were selected by a different designated committee, not the SWP, and were based on science and safety.

  3. Dr. Garry Latham - Seismometer Tracings Study - Moon - MSC

    NASA Image and Video Library

    1969-07-22

    S69-39588 (20 July 1969) --- Dr. Garry Latham, with the Lamont Geological Observatory, studies seismometer tracings in the Mission Control Center?s ASEP control room. The electronic data was coming from the Passive Seismic Experiments Package which the Apollo 11 astronauts had just deployed on the surface of the moon. Dr. Lamont is the principal investigator for the PSEP, a component of the Early Apollo Scientific Experiments Package (EASEP). PSEP uses three long-period seismometers and one short-period vertical seismometer for measuring meteoroid impacts and moonquakes. Such data will be useful in determining the interior structure of the moon; for example, does the moon have a core and mantle like Earth? Here, the center trace shows evidence of activity on the moon. The PSEP was sensitive enough to pick up the footsteps of astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. as they walked on the moon.

  4. Apollo 11 Launched Via Saturn V Rocket

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man's first lunar landing. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard the spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  5. Inflight - Apollo XI (Mission Control Center [MCC]) - MSC

    NASA Image and Video Library

    1969-07-24

    S69-40302 (24 July 1969) --- A group of NASA and Manned Spacecraft Center (MSC) officials join in with the flight controllers in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, in celebrating the successful conclusion of the Apollo 11 lunar landing mission. From left foreground are Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director of Flight Operations; Julian Scheer (in back), Assistant Administrator, Office of Public Affairs, NASA Headquarters; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA Headquarters.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-01

    The Lunar Roving Vehicle (LRV) was designed to transport astronauts and materials on the Moon. It was a collapsible open-space vehicle about 10 feet long with large mesh wheels, anterna, appendages, tool caddies, and cameras. Powered by two 36-volt batteries, it has four 1/4-hp drive motors, one for each wheel. The vehicle was designed to travel in forward or reverse, negotiate obstacles about 1 foot high, cross crevasses about 2 feet wide, and climb or descend moderate slopes. Its speed limit was about 9 miles (14 kilometers) per hour. An LRV was used on each of the last three Apollo missions (Apollo 15, Apollo 16, and Apollo 17) and permitted the crew to travel several miles from the Lunar Module. The LRV was designed, developed, and tested by the Marshall Space Flight Center, and built by the Boeing Plant in Kent, Washington.

  7. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-01

    The Lunar Roving Vehicle (LRV) was designed to transport astronauts and materials on the Moon. It was a collapsible open-space vehicle about 10 feet long with large mesh wheels, anterna, appendages, tool caddies, and cameras. Powered by two 36-volt batteries, it has four 1/4-hp drive motors, one for each wheel. The vehicle was designed to travel in forward or reverse, negotiate obstacles about 1 foot high, cross crevasses about 2 feet wide, and climb or descend moderate slopes. Its speed limit was about 9 miles (14 kilometers) per hour. An LRV was used on each of the last three Apollo missions (Apollo 15, Apollo 16, and Apollo 17) and permitted the crews to travel several miles from the Lunar Module. The LRV was designed, developed, and tested by the Marshall Space Flight Center, and built by the Boeing Plant in Kent, Washington.

  8. Apollo 1 Tribute

    NASA Image and Video Library

    2017-01-24

    A display case dedicated to astronaut Ed White II is shown inside the new tribute to the crew of Apollo 1 who perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. Gus Grissom, White and Roger Chaffee were lost during the fire. The tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017, 50 years after the crew of three was lost. It features numerous items recalling the lives of the three astronauts. It also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  9. Apollo 1 Tribute

    NASA Image and Video Library

    2017-01-24

    A display case dedicated to astronaut Gus Grissom is shown inside the new tribute to the crew of Apollo 1 who perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. Grissom, Ed White II and Roger Chaffee were lost during the fire. The tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017, 50 years after the crew of three was lost. It features numerous items recalling the lives of the three astronauts. It also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  10. Apollo 1 Tribute

    NASA Image and Video Library

    2017-01-24

    A display case dedicated to astronaut Roger Chaffee is shown inside the new tribute to the crew of Apollo 1 who perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. Gus Grissom, Ed White II and Chaffee were lost during the fire. The tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017, 50 years after the crew of three was lost. It features numerous items recalling the lives of the three astronauts. It also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-20

    The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins,Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins, remained in a parking orbit around the Moon, while the LM, named “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon in the Sea of Tranquility. The LM was a two part spacecraft. Its lower or descent stage had the landing gear, engines, and fuel needed for the landing. When the LM blasted off the Moon, the descent stage served as the launching pad for its companion ascent stage, which was also home for the two astronauts on the surface of the Moon. The LM was full of gear with which to communicate, navigate, and rendezvous. It also had its own propulsion system, and an engine to lift it off the Moon and send it on a course toward the orbiting CM. In this photograph, the shadow of one of the Apollo 11 astronauts can be seen (lower left) as the other snaps a shot of the LM on its landing site.

  12. Flight Controllers in Mission Control Center during splashdown of Apollo 14

    NASA Image and Video Library

    1971-02-09

    S71-18400 (9 Feb. 1971) --- Flight controllers in the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC) view a colorful display which signals the successful splashdown and recovery of the crew of the Apollo 14 lunar landing mission. The MOCR's large screen at right shows a television shot aboard the USS New Orleans, Apollo 14 prime recovery ship.

  13. MISSION CONTROL CENTER (MCC) - APOLLO-SOYUZ TEST PROJECT (ASTP) - JSC

    NASA Image and Video Library

    1975-07-17

    S75-28683 (17 July 1975) --- An overall view of the Mission Operations Control Room in the Mission Control Center during the joint U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit. M.P. Frank, the American senior ASTP flight director, is seated at his console in the right foreground. He is watching the large television monitor which shows a view of the Soyuz spacecraft as seen from the Apollo spacecraft during rendezvous and docking maneuvers.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-20

    This is a close-up view of an astronaut’s footprint in the lunar soil, photographed by a 70 mm lunar surface camera during the Apollo 11 lunar surface extravehicular activity. The first manned lunar mission, the Apollo 11 launched aboard a Saturn V launch vehicle from the Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of Neil A, Armstrong, mission commander; Edwin E. Aldrin, Jr., Lunar Module Pilot; and Michael Collins, Command Module pilot. The LM landed on the moon’s surface on July 20, 1969 in the region known as Mare Tranquilitatis (the Sea of Tranquility). Armstrong was the first human to ever stand on the lunar surface. As he stepped off the LM, Armstrong proclaimed, “That’s one small step for man, one giant leap for mankind”. He was followed by Edwin (Buzz) Aldrin, describing the lunar surface as Magnificent desolation. Astronaut Collins piloted the Command Module in a parking orbit around the Moon. The crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. The surface exploration was concluded in 2½ hours. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. von Braun.

  15. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-25

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. This photograph was taken as the mission’s first loaded sample return container arrived at Ellington Air Force Base by air from the Pacific recovery area. The rock box was immediately taken to the Lunar Receiving Laboratory at the Manned Spacecraft Center (MSC) in Houston, Texas. Happily posing for the photograph with the rock container are (L-R) Richard S. Johnston (back), special assistant to the MSC Director; George M. Low, MSC Apollo Spacecraft Program manager; George S. Trimble (back), MSC Deputy Director; Lt. General Samuel C. Phillips, Apollo Program Director, Office of Manned Spaceflight at NASA headquarters; Eugene G. Edmonds, MSC Photographic Technology Laboratory; Dr. Thomas O. Paine, NASA Administrator; and Dr. Robert R. Gilruth, MSC Director.

  16. Apollo 17: At Taurus Littrow

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1973-01-01

    A summation, with color illustrations, is presented on the Apollo 17 mission. The height, weight, and thrust specifications are given on the launch vehicle. Presentations are given on: the night launch; earth to moon ascent; separation and descent; EVA, the sixth lunar surface expedition; ascent from Taurus-Littrow; the America to Challenger rendezvous; return, reentry, and recovery; the scientific results of the mission; background information on the astronauts; and the future projects.

  17. In Situ Biological Contamination Studies of the Moon: Implications for Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.

  18. Artist's concept of Apollo 14 Command/Service Modules circling Moon

    NASA Image and Video Library

    1971-01-11

    S71-16574 (11 Jan. 1971) --- An artist's concept depicting the Apollo 14 Command and Service Modules (CSM) circling the moon as the Lunar Module (LM) heads toward a lunar landing. While astronaut Stuart A. Roosa, command module pilot, remains with the CSM in lunar orbit, astronauts Alan B. Shepard Jr., commander; and Edgar D. Mitchell, lunar module pilot, will descend in the LM to explore an area in the rugged Fra Mauro highlands.

  19. MISSION CONTROL CENTER (MCC) - APOLLO-SOYUZ TEST PROJECT (ASTP)

    NASA Image and Video Library

    1975-07-15

    S75-28519 (15 July 1975) --- An overall view of the Mission Operations Control Room in the Mission Control Center, Building 30, Johnson Space Center, on the first day of the Apollo-Soyuz Test Project docking mission in Earth orbit. This photograph was taken shortly before the American ASTP launch from the Kennedy Space Center. The television monitor in the center background shows the ASTP Apollo-Saturn 1B space vehicle on Pad B at KSC?s Launch Complex 39. The American ASTP liftoff followed the Soviet ASTP launch of the Soyuz space vehicle from Baikonur, Kazakhstan by seven and one-half hours.

  20. Saturn Apollo Program

    NASA Image and Video Library

    1972-12-07

    This is an Apollo 17 onboard photo of an astronaut beside the Lunar Roving Vehicle (LRV) on the lunar surface. Designed and developed by the Marshall Space Flight Center and built by the Boeing Company, the LRV was first used on the Apollo 15 mission and increased the range of astronauts' mobility and productivity on the lunar surface. This lightweight electric car had battery power sufficient for about 55 miles. It weighed 462 pounds (77 pounds on the Moon) and could carry two suited astronauts, their gear, cameras, and several hundred pounds of bagged samples. The LRV's mobility was quite high. It could climb and descend slopes of about 25 degrees.

  1. Apollo 13 Mission Report

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The Apollo 13 mission, planned as a lunar landing in the Fra Mauro area, was aborted because of an abrupt loss of service module cryogenic oxygen associated with a fire in one of the two tanks at approximately 56 hours. The lunar module provided the necessary support to sustain a minimum operational condition for a safe return to earth. A circumlunar profile was executed as the most efficient means of earth return, with the lunar module providing power and life support until transfer to the command module just prior to entry. Although the mission was unsuccessful as planned, a lunar flyby and several scientific experiments were completed.

  2. Apollo 9 Mission image - Command Module

    NASA Image and Video Library

    1969-03-03

    High Oblique photograph (taken over New Mexico) of the Apollo 9 Command/Service Modules taken from the Lunar Module,"Spider",on the fifth day of the Apollo 9 earth-orbital mission. Docking mechanism is visible in nose of the Command Module,"Gumdrop". Object jutting out from the Service Module aft bulkhead is the high-gain S-Band antenna. Film magazine was F, film type was SO-368 Ektachrome with 0.460 - 0.710 micrometers film / filter transmittance response and haze filter,80mm lens. Cloud cover over the Earth is 70%.

  3. Suprathermal ion detector results from Apollo missions.

    NASA Technical Reports Server (NTRS)

    Freeman, J. W., Jr.

    1972-01-01

    This paper reviews briefly the knowledge of the ion environment of the moon as obtained from the Apollo Lunar Surface Experiments Package, Suprathermal Ion Detector Experiment. Topics to be discussed include: an interplanetary shock as seen from the lunar surface; bow shock and magnetosheath ions; magnetotail plasma seen during a magnetic disturbance; suprathermal ions seen during passage of the sunset and sunrise terminators; and ions associated with neutral gas clouds in the vicinity of the moon, and in particular the low energy mono-energetic spectrum of these ions. It is believed that these low energy spectra and some terminator ions can be explained by ion acceleration by the interplanetary electric field. This paper serves as catalog to references to these and other related phenomena.

  4. LRO Finds Apollo 16 Booster Rocket Impact Site

    NASA Image and Video Library

    2017-12-08

    After decades of uncertainty, the Apollo 16 S-IVB impact site on the lunar surface has been identified. S-IVBs were portions of the Saturn V rockets that brought astronauts to the moon. The site was identified in imagery from the high-resolution LROC Narrow Angle Camera aboard NASA's Lunar Reconnaissance Orbiter. Beginning with Apollo 13, the S-IVB rocket stages were deliberately impacted on the lunar surface after they were used. Seismometers placed on the moon by earlier Apollo astronauts measured the energy of these impacts to shed light on the internal lunar structure. Locations of the craters that the boosters left behind were estimated from tracking data collected just prior to the impacts. Earlier in the LRO mission, the Apollo 13, 14, 15 and 17 impact sites were successfully identified, but Apollo 16's remained elusive. In the case of Apollo 16, radio contact with the booster was lost before the impact, so the location was only poorly known. Positive identification of the Apollo 16 S-IVB site took more time than the other four impact craters because the location ended up differing by about 30 km (about 19 miles) from the Apollo-era tracking estimate. (For comparison, the other four S-IVB craters were all within 7 km -- about four miles -- of their estimated locations.) Apollo 16's S-IVB stage is on Mare Insularum, about 160 miles southwest of Copernicus Crater (more precisely: 1.921 degrees north, 335.377 degrees east, minus 1,104 meters elevation). Credit: NASA/Goddard/Arizona State University NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Saturn Apollo Program

    NASA Image and Video Library

    1971-08-01

    This photograph was taken during the Apollo 15 mission on the lunar surface. Astronaut David R. Scott waits in the Lunar Roving Vehicle (LRV) for astronaut James Irwin for the return trip to the Lunar Module, Falcon, with rocks and soil collected near the Hadley-Apernine landing site. The Apollo 15 was the first mission to use the LRV. Powered by battery, the lightweight electric car greatly increased the range of mobility and productivity on the scientific traverses for astronauts. It weighed 462 pounds (77 pounds on the Moon) and could carry two suited astronauts, their gear and cameras, and several hundred pounds of bagged samples. The LRV's mobility was quite high. It could climb and descend slopes of about 25 degrees. The LRV was designed and developed by the Marshall Space Flight Center and built by the Boeing Company.

  6. Apollo 13 Debrief - Postflight

    NASA Image and Video Library

    1970-04-21

    S70-35747 (20 April 1970) --- The three crew men of the problem plagued Apollo 13 mission are photographed during the first day of their postflight debriefing activity at the Manned Spacecraft Center (MSC). Left to right, are astronauts James A. Lovell Jr., commander; John L. Swigert Jr., command module pilot; and Fred W. Haise Jr., lunar module pilot. The apparent rupture of oxygen tank number two in the Apollo 13 Service Module (SM) and the subsequent damage forced the three astronauts to use the Lunar Module (LM) as a "lifeboat" to return home safely after their moon landing was canceled.

  7. APOLLO SEPARATION - ART CONCEPTS

    NASA Image and Video Library

    1969-04-14

    S69-30520 (April 1969) --- A North American Rockwell Corporation artist's concept depicting the Apollo 10 Lunar Module descending to 50,000 feet for a close look at a lunar landing site. The Command and Service Modules remain in lunar orbit. The landing area is Site 2 on the east central part of the moon in southwestern Sea of Tranquility (Mare Tranquillitatis). The site is about 62 miles east of the rim of the crater Sabine and 118 miles west-southwest of the crater Maskelyne. Apollo 11 is scheduled to be the first lunar landing mission.

  8. Apollo 1 Tribute Opening

    NASA Image and Video Library

    2017-01-27

    Lowell Grissom, brother of Gus Grissom, observes areas of the newly opened Apollo 1 tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017. Astronauts Gus Grissom, Ed White II and Chaffee perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. The tribute highlights the lives and careers of the astronauts. The tribute features numerous items recalling the lives of the three astronauts. The tribute also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  9. Mission Control Center (MCC) - Apollo 15 Launch - MSC

    NASA Image and Video Library

    1971-07-26

    S71-41357 (26 July 1971) --- An overall, wide-angle lens view of activity in the Mission Operations Control Room in the Mission Control Center minutes after the launch of the Apollo 15 lunar landing mission. Ground elapsed time was 45 minutes and 42 seconds when this photograph was taken.

  10. Launch - Apollo 14 Lunar Landing Mission - KSC

    NASA Image and Video Library

    1971-01-31

    S71-17621 (31 Jan. 1971) --- The huge, 363-feet tall Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center, Florida, at 4:03:02 p.m. (EST), Jan. 31, 1981, on a lunar landing mission. Aboard the Apollo 14 spacecraft were astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.

  11. Apollo by the Numbers: A Statistical Reference

    NASA Technical Reports Server (NTRS)

    Orloff, Richard; Garber, Stephen (Technical Monitor)

    2000-01-01

    The purpose of this work is to provide researchers, students, and space enthusiasts with a comprehensive reference for facts about Project Apollo, America's effort to put humans in the Moon. Research for this work started in 1988, when the author discovered that, despite the number of excellent books that focused on the drama of events that highlighted Apollo, there were none that focused on the drama of the numbers. This book is separated into two parts. The first part contains narratives for the Apollo 1 fire and the 11 flown Apollo missions. Included after each narrative is a series of data tables, followed by a comprehensive timeline of events from just before liftoff to just after crew and spacecraft recovery. The second part contains more than 50 tables. These tables organize much of the data from the narratives in one place so they can be compared among all missions. The tables offer additional data as well. The reader can select a specific mission narrative or specific data table by consulting the Table of Contents.

  12. Apollo 11 Astronaut Collins Arrives at the Flight Crew Training Building

    NASA Technical Reports Server (NTRS)

    1968-01-01

    In this photograph, Apollo 11 astronaut Michael Collins carries his coffee with him as he arrives at the flight crew training building of the NASA Kennedy Space Center (KSC) in Florida, one week before the nation's first lunar landing mission. The Apollo 11 mission launched from KSC via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  13. View of Mission Control Center during the Apollo 13 oxygen cell failure

    NASA Image and Video Library

    1970-04-14

    S70-34902 (14 April 1970) --- Several persons important to the Apollo 13 mission, at consoles in the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC). Seated at consoles, from left to right, are astronauts Donald K. Slayton, director of flight crew operations; astronaut Jack R. Lousma, Shift 3 spacecraft communicator; and astronaut John W. Young, commander of the Apollo 13 backup crew. Standing, left to right, are astronaut Tom K. Mattingly II, who was replaced as Apollo 13 command module pilot after it was learned he may come down with measles, and astronaut Vance D. Brand, Shift 2 spacecraft communicator. Several hours earlier, in the late evening hours of April 13, crew members of the Apollo 13 mission reported to MCC that trouble had developed with an oxygen cell on their spacecraft.

  14. Apollo 1 Tribute Opening

    NASA Image and Video Library

    2017-01-27

    Former Gemini and Apollo astronaut Tom Stafford speaks during the opening of the tribute exhibition to the Apollo 1 astronauts who perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. The tribute highlights the lives and careers of astronauts Gus Grissom, Ed White II and Roger Chaffee who were lost during the fire. The tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017, 50 years after the crew of three was lost. It features numerous items recalling the lives of the three astronauts. The tribute also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  15. MISSION CONTROL CENTER (MCC) - APOLLO-SOYUZ TEST PROJECT (ASTP) - JSC

    NASA Image and Video Library

    1975-07-17

    S75-28682 (17 July 1975) --- An overall view of the Mission Operations Control Room in the Mission Control Center during the joint U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit. The large television monitor shows a view of the Soyuz spacecraft as seen from the Apollo spacecraft during rendezvous and docking maneuvers. Eugene F. Kranz, JSC Deputy Director of Flight Operations, is standing in the foreground. M.P. Frank, the American senior ASTP flight director, is partially obscured on the right.

  16. View of Mission Control Center during the Apollo 13 oxygen cell failure

    NASA Image and Video Library

    1970-04-14

    S70-34904 (14 April 1970) --- Astronaut Alan B. Shepard Jr., prime crew commander of the Apollo 14 mission, monitors communications between the Apollo 13 spacecraft and Mission Control Center. He is seated at a console in the Mission Operations Control Room of the MCC, Manned Spacecraft Center. The main concern of the moment was action taken by the three Apollo 13 crewmen - astronauts James A. Lovell Jr., John L. Swigert Jr. and Fred W. Haise Jr. - to make corrections inside the spacecraft following discovery of an oxygen cell failure several hours earlier.

  17. MISSION CONTROL CENTER (MCC) VIEW - CONCLUSION APOLLO 11 CELEBRATION - MSC

    NASA Image and Video Library

    1969-07-24

    S69-40024 (24 July 1969) --- NASA and Manned Spacecraft Center (MSC) officials join in with the flight controllers, in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), in celebrating the successful conclusion of the Apollo 11 lunar landing mission. Identifiable in the picture, starting in foreground, are Dr. Robert R. Gilruth, MSC Director; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Christopher C. Kraft Jr., MSC Director of Flight Operation; U.S. Air Force Lt. Gen. Samuel C. Phillips (with glasses, looking downward), Apollo Program Director, Office of Manned Space Flight, NASA Headquarters; and Dr. George E. Mueller (with glasses, looking toward left), Associate Administrator, Office of Manned Space Flight, NASA Headquarters. Former astronaut John H. Glenn Jr. is standing behind Mr. Low.

  18. Apollo 1 Tribute

    NASA Image and Video Library

    2017-01-24

    The new tribute to the crew of Apollo 1 who perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission is shown looking down the length of the area. The tribute highlights the lives and careers of astronauts Gus Grissom, Ed White II and Roger Chaffee who were lost during the fire. The tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017, 50 years after the crew of three was lost. It features numerous items recalling the lives of the three astronauts. The tribute also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  19. Apollo 1 Tribute

    NASA Image and Video Library

    2017-01-24

    A display screen showing the memorial plaque that is in place at Launch Complex 34 is shown inside the new tribute to the crew of Apollo 1 who perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. Astronauts Gus Grissom, Ed White II and Roger Chaffee were lost during the fire. The tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017, 50 years after the crew of three was lost. It features numerous items recalling the lives of the three astronauts. It also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  20. The Apollo 17 Lunar Surface Journal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, E.M.

    1995-08-01

    The material included in the Apollo 17 Lunar Surface Journal has been assembled so that an uninitiated reader can understand, in some detail, what happened during Apollo 17 and why and what was learned, particularly about living and working on the Moon. At its heart, the Journal consists a corrected mission transcript which is interwoven with commentary by the crew and by Journal Editor -- commentary which, we hope, will make the rich detail of Apollo 17 accessible to a wide audience. To make the Journal even more accessible, this CD-ROM publication contains virtually all of the Apollo 17 audio,more » a significant fraction of the photographs and a selection of drawings, maps, video clips, and background documents.« less

  1. Apollo experience report: Protection of life and health

    NASA Technical Reports Server (NTRS)

    Wooley, B. C.

    1972-01-01

    The development, implementation, and effectiveness of the Apollo Lunar Quarantine Program and the Flight Crew Health Stabilization Program are discussed as part of the broad program required for the protection of the life and health of U.S. astronauts. Because the goal of the Apollo Program has been the safe transport of men to the moon and back to earth, protection of the astronauts and of the biosphere from potentially harmful lunar contaminants has been required. Also, to ensure mission success, the continuing good health of the astronauts before and during a mission has been necessary. Potential applications of specific aspects of the health and quarantine programs to possible manned missions to other planets are discussed.

  2. Apollo 11 Astronauts Share Laughs With U.S. President Nixon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF). Here the quarantined Apollo 11 crew members (l to r) Armstrong, Collins, and Aldrin, and U.S. President Richard Milhous Nixon share laughs over a comment made by fellow astronaut Frank Borman, Apollo 8 commander. The president was aboard the recovery vessel awaiting return of the astronauts. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  3. Photograph of nearly full moon taken from Apollo 8

    NASA Image and Video Library

    1968-12-22

    AS08-14-2506 (21-27 Dec. 1968) --- This photograph of a nearly full moon was taken from the Apollo 8 spacecraft at a point above 70 degrees east longitude. (Hold picture with moon's dark portion at left). Mare Crisium, the circular, dark-colored area near the center, is near the eastern edge of the moon as viewed from Earth. Mare Nectaris is the circular mare near the terminator. The large, irregular maira are Tranquillitatis and Fecunditatis. The terminator at left side of picture crosses Mare Tranquillitatis and highlands to the south. Lunar farside features occupy most of the right half of the picture. The large, dark-colored crater Tsiolkovsky is near the limb at the lower right. Conspicuous bright rays radiate from two large craters, one to the north of Tsiolkovsky, the other near the limb in the upper half of the picture. These rayed craters were not conspicuous in Lunar Orbiter photography due to the low sun elevations when the Lunar Orbiter photography was made. The crater Langrenus is near the center of the picture at the eastern edge of Mare Fecunditatis. The lunar surface probably has less pronounced color that indicated by this print.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-27

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. In this close up of the MQF, commander Armstrong can be seen through the facility window after its arrival at the MSC.

  5. Apollo: A Retrospective Analysis

    NASA Technical Reports Server (NTRS)

    Launius, Roger D.

    2004-01-01

    The program to land an American on the Moon and return safely to Earth in the 1960s has been called by some observers a defining event of the twentieth century. Pulitzer Prize-winning historian Arthur M. Schlesinger, Jr., even suggested that when Americans two centuries hence study the twentieth century, they will view the Apollo lunar landing as the critical event of the century. While that conclusion might be premature, there can be little doubt but that the flight of Apollo 11 in particular and the overall Apollo program in general was a high point in humanity s quest to explore the universe beyond Earth. Since the completion of Project Apollo more than twenty years ago there have been a plethora of books, studies, reports, and articles about its origin, execution, and meaning. At the time of the twenty-fifth anniversary of the first landing, it is appropriate to reflect on the effort and its place in U.S. and NASA history. This monograph has been written as a means to this end. It presents a short narrative account of Apollo from its origin through its assessment. That is followed by a mission by mission summary of the Apollo flights and concluded by a series of key documents relative to the program reproduced in facsimile. The intent of this monograph is to provide a basic history along with primary documents that may be useful to NASA personnel and others desiring information about Apollo.

  6. Surface electrical properties experiment. [for Taurus-Littrow region of the moon on Apollo 17

    NASA Technical Reports Server (NTRS)

    Simmons, G.

    1974-01-01

    The Surface Electrical Properties Experiment (SEP) was flown to the moon in December 1972 on Apollo 17 and used to explore a portion of the Taurus-Littrow region. SEP used a relatively new technique, termed radio frequency interferometry (RFI). Electromagnetic waves were radiated from two orthogonal, horizontal electric dipole antennas on the surface of the moon at frequencies of 1, 2, 4, 8, 16, and 32 Mhz. The field strength of the EM waves was measured as a function of distance with a receiver mounted on the Lunar Roving Vehicle and using three orthogonal, electrically small, loops. The interference pattern produced by the waves that travelled above the moon's surface and those that travelled below the surface was recorded on magnetic tape. The tape was returned to earth for analysis and interpretation. Several reprints, preprints, and an initial draft of the first publication of the SEP results are included. These documents provide a rather complete account of the details of the theory of the RFI technique, of the terrestrial tests of the technique, and of the present state of our interpretation of the Apollo 17 data.

  7. Mission Control Center (MCC) View - Apollo 13 Oxygen Cell Failure - MSC

    NASA Image and Video Library

    1970-04-15

    S70-35012 (15 April 1970) --- Two phases of busy activity during critical moments of the Apollo 13 mission are reflected in this view in the Mission Control Center, Building 30, Manned Spacecraft Center. In the foreground, Henry Simmons (left) of Newsweek magazine and John E. Riley, public information specialist, Public Affairs Office, MSC, man their positions in the Press Room. At extreme left of photo, Gerald D. Griffin, Shift 2 flight director, talks on telephone in Mission Operations Control Room. When this photograph was taken, the Apollo 13 lunar landing had been canceled, and the problem-plagued Apollo 13 crewmen were in trans-Earth trajectory attempting to bring their crippled spacecraft back home.

  8. View of activity in Mission Control Center during Apollo 15 EVA

    NASA Image and Video Library

    1971-07-30

    S71-41836 (2 Aug. 1971) --- Scientist-astronaut Joseph P. Allen, left, directs the attention of astronaut Richard F. Gordon Jr., to an occurrence out of view at right in the Mission Control Center's (MCC) Mission Operations Control Room (MOCR), while Dr. Donald K. (Deke) Slayton, on right with back to camera, views activity of Apollo 15 on a large screen at the front of the MOCR. Astronauts David R. Scott and James B. Irwin are seen on the screen performing tasks of the mission's third extravehicular activity (EVA), on Aug. 2, 1971. Dr. Slayton is director of Flight Crew Operations, NASA-MSC; Gordon is Apollo 15 backup commander; and Dr. Allen is an Apollo 15 spacecraft communicator.

  9. Recovery - Apollo 11

    NASA Image and Video Library

    1969-07-24

    S69-21698 (24 July 1969) --- The three Apollo 11 crew men await pickup by a helicopter from the USS Hornet, prime recovery ship for the historic Apollo 11 lunar landing mission. The fourth man in the life raft is a United States Navy underwater demolition team swimmer. All four men are wearing biological isolation garments. Apollo 11, with astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot, onboard, splashed down at 11:49 a.m. (CDT), July 24, 1969, about 812 nautical miles southwest of Hawaii and only 12 nautical miles from the USS Hornet. While astronauts Armstrong and Aldrin descended in the Lunar Module (LM) "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules (CSM) "Columbia" in lunar orbit.

  10. Glenn Lecture With Crew of Apollo 11

    NASA Image and Video Library

    2009-07-18

    On the eve of the fortieth anniversary of Apollo 11's first human landing on the Moon, Apollo 11 crew members, Buzz Aldrin, left, Michael Collins, 2nd from left, Neil Armstrong and NASA Mission Control creator and former NASA Johnson Space Center director Chris Kraft, right, gathered at the National Air and Space Museum in Washington, Sunday, July 19, 2009. The four were speakers at the Museum's 2009 John H. Glenn lecture in space history. Photo Credit: (NASA/Bill Ingalls)

  11. Seismometer reading viewed in ALSEP Room in Misson Control during Apollo 17

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The seismometer readings from the impact made by the Apollo 17 Saturn S-IVB stage when it struck the lunar surface are viewed in the ALSEP Room in the Misson Control Center at Houston by Dr. Maurice Ewing, professor of geophysics of the Universtiy of Texas at Galveston. The seismic tracings are from sensings made by seismometers of Apollo Lunar Surface Experiments Packages left on the Moon during earlier Apollo lunar landing missions.

  12. Apollo 1 Tribute Opening

    NASA Image and Video Library

    2017-01-27

    A badge board and badges from launch support staff at Launch Complex 34 is observed inside the Apollo 1 tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center as it opened Jan. 27, 2017. Astronauts Gus Grissom, Ed White II and Chaffee perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. The tribute highlights the lives and careers of the astronauts. The tribute features numerous items recalling the lives of the three astronauts. The tribute also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  13. Apollo 1 Tribute Opening

    NASA Image and Video Library

    2017-01-27

    Lowell Grissom, brother of Gus Grissom, and Carly Sparks, granddaughter of Grissom, look at areas of the newly opened Apollo 1 tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017. Astronauts Gus Grissom, Ed White II and Chaffee perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. The tribute highlights the lives and careers of the astronauts. The tribute features numerous items recalling the lives of the three astronauts. The tribute also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  14. Apollo 1 Tribute Opening

    NASA Image and Video Library

    2017-01-27

    Martha Chaffee and Sheryl Chaffee, widow and daughter of astronaut Roger Chaffee, respectively, look at areas of the newly opened Apollo 1 tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017. Astronauts Gus Grissom, Ed White II and Chaffee perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. The tribute highlights the lives and careers of the astronauts. The tribute features numerous items recalling the lives of the three astronauts. The tribute also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  15. Return to the Moon: Lunar robotic science missions

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.

    1992-01-01

    There are two important aspects of the Moon and its materials which must be addressed in preparation for a manned return to the Moon and establishment of a lunar base. These involve its geologic science and resource utilization. Knowledge of the Moon forms the basis for interpretations of the planetary science of the terrestrial planets and their satellites; and there are numerous exciting explorations into the geologic science of the Moon to be conducted using orbiter and lander missions. In addition, the rocks and minerals and soils of the Moon will be the basic raw materials for a lunar outpost; and the In-Situ Resource Utilization (ISRU) of lunar materials must be considered in detail before any manned return to the Moon. Both of these fields -- planetary science and resource assessment -- will necessitate the collection of considerable amounts of new data, only obtainable from lunar-orbit remote sensing and robotic landers. For over fifteen years, there have been a considerable number of workshops, meetings, etc. with their subsequent 'white papers' which have detailed plans for a return to the Moon. The Lunar Observer mission, although grandiose, seems to have been too expensive for the austere budgets of the last several years. However, the tens of thousands of man-hours that have gone into 'brainstorming' and production of plans and reports have provided the precursor material for today's missions. It has been only since last year (1991) that realistic optimism for lunar orbiters and soft landers has come forth. Plans are for 1995 and 1996 'Early Robotic Missions' to the Moon, with the collection of data necessary for answering several of the major problems in lunar science, as well as for resource and site evaluation, in preparation for soft landers and a manned-presence on the Moon.

  16. Apollo 16 liftoff

    NASA Image and Video Library

    1972-04-16

    S72-35347 (16 April 1972) --- The huge, 363-feet tall Apollo 16 (Spacecraft 113/Lunar Module 11/ Saturn 511) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida, at 12:54:00.569 p.m. (EST), April 16, 1972, on a lunar landing mission. Aboard the Apollo 16 spacecraft were astronauts John W. Young, commander; Thomas K. Mattingly II, command module pilot; and Charles M. Duke Jr., lunar module pilot. While astronauts Young and Duke descended in the Lunar Module (LM) "Orion" to explore the Descartes highlands region of the moon, astronaut Mattingly remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  17. Overall view of Mission Control Center during Apollo 14

    NASA Image and Video Library

    1971-01-31

    S71-16879 (31 Jan. 1971) --- Overall view of activity in the Mission Operations Control Room in the Mission Control Center during the Apollo 14 transposition and docking maneuvers. The Apollo 14 Lunar Module, still attached to the Saturn IVB stage, can be seen on the large television monitor. Due to difficulty with the docking mechanism six attempts were made before a successful "hard dock" of the Command Module with the Lunar Module was accomplished. Aboard the Command Module were astronauts Alan B. Shepard Jr., Stuart A. Roosa, and Edgar D. Mitchell.

  18. View of Mission Control Center during Apollo 13 splashdown

    NASA Image and Video Library

    1970-04-17

    S70-35148 (17 April 1970) --- Staff members from NASA Headquarters (NASA HQ), Manned Spacecraft Center (MSC), and Dr. Thomas Paine (center of frame) applaud the successful splashdown of the Apollo 13 mission while Dr. George Low smokes a cigar (right), in the MSC Mission Control Center (MCC), located in Building 30. Apollo 13 crewmembers, astronauts James A. Lovell Jr., commander; John L. Swigert Jr., command module pilot; and Fred W. Haise Jr., lunar module pilot, splashed down at 12:07:44 p.m. (CST), April 17, 1970, in the south Pacific Ocean.

  19. Apollo 13 Debrief - Postflight

    NASA Image and Video Library

    1970-04-21

    S70-35748 (20 April 1970) --- Dr. Donald K. Slayton (center foreground), MSC director of flight crew operations, talks with Dr. Wernher von Braun (right), famed rocket expert, at an Apollo 13 postflight debriefing session. The three crewmen of the problem-plagued Apollo 13 mission (left to right) in the background are astronauts James A Lovell Jr., commander; John L. Swigert Jr., command module pilot; and Fred W. Haise Jr., lunar module pilot. The apparent rupture of oxygen tank number two in the Apollo 13 Service Module (SM) and the subsequent damage forced the three astronauts to use the Lunar Module (LM) as a "lifeboat" to return home safely after their moon landing was canceled. Dr. von Braun is the deputy associate administrator for planning of the National Aeronautics and Space Administration (NASA).

  20. The Moon Zoo citizen science project: Preliminary results for the Apollo 17 landing site

    NASA Astrophysics Data System (ADS)

    Bugiolacchi, Roberto; Bamford, Steven; Tar, Paul; Thacker, Neil; Crawford, Ian A.; Joy, Katherine H.; Grindrod, Peter M.; Lintott, Chris

    2016-06-01

    Moon Zoo is a citizen science project that utilises internet crowd-sourcing techniques. Moon Zoo users are asked to review high spatial resolution images from the Lunar Reconnaissance Orbiter Camera (LROC), onboard NASA's LRO spacecraft, and perform characterisation such as measuring impact crater sizes and identify morphological 'features of interest'. The tasks are designed to address issues in lunar science and to aid future exploration of the Moon. We have tested various methodologies and parameters therein to interrogate and reduce the Moon Zoo crater location and size dataset against a validated expert survey. We chose the Apollo 17 region as a test area since it offers a broad range of cratered terrains, including secondary-rich areas, older maria, and uplands. The assessment involved parallel testing in three key areas: (1) filtering of data to remove problematic mark-ups; (2) clustering methods of multiple notations per crater; and (3) derivation of alternative crater degradation indices, based on the statistical variability of multiple notations and the smoothness of local image structures. We compared different combinations of methods and parameters and assessed correlations between resulting crater summaries and the expert census. We derived the optimal data reduction steps and settings of the existing Moon Zoo crater data to agree with the expert census. Further, the regolith depth and crater degradation states derived from the data are also found to be in broad agreement with other estimates for the Apollo 17 region. Our study supports the validity of this citizen science project but also recommends improvements in key elements of the data acquisition planning and production.

  1. Apollo 16 mission report. Supplement 2: Service Propulsion system final flight evaluation

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Wood, S. C.

    1974-01-01

    The Apollo 16 Mission was the sixteenth in a series of flights using Apollo flight hardware and included the fifth lunar landing of the Apollo Program. The Apollo 16 Mission utilized CSM 113 which was equipped with SPS Engine S/N 66 (Injector S/N 137). The engine configuration and expected performance characteristics are presented. Since previous flight results of the SPS have consistently shown the existence of a negative mixture ratio shift, SPS Engine S/N 66 was reorificed to increase the mixture ratio for this mission. The propellant unbalance for the two major engine firings is compared with the predicted unbalance. Although the unbalance at the end of the TEI burn is significantly different than the predicted unbalance, the propellant mixture ratio was well within limits. The SPS performed six burns during the mission, with a total burn duration of 575.3 seconds. The ignition time, burn duration and velocity gain for each of the six SPS burns are reported.

  2. NASA Officials in MCC to decide whether to land Apollo 16 or cancel landing

    NASA Technical Reports Server (NTRS)

    1972-01-01

    NASA Officials gather around a console in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC) prior to the making of a decision whether to land Apollo 16 on the moon or to abort the landing. Seated, left to right, are Dr. Christopher C. Kraft Jr., Director of the Manned Spacecraft Center (MSC), and Brig. Gen. James A. McDivitt (USAF), Manager, Apollo Spacecraft Program Office, MSC; and standing, left to right, are Dr. Rocco A. Petrone, Apollo Program Director, Office Manned Space Flight (OMSF), NASA HQ.; Capt. John K. Holcolmb (U.S. Navy, Ret.), Director of Apollo Operations, OMSF; Sigurd A. Sjoberg, Deputy Director, MSC; Capt. Chester M. Lee (U.S. Navy, Ret.), Apollo Mission Director, OMSF; Dale D. Myers, NASA Associate Administrator for Manned Space Flight; and Dr. George M. Low, NASA Deputy Administrator.

  3. Saturn Apollo Program

    NASA Image and Video Library

    1971-07-26

    The fifth marned lunar landing mission, Apollo 15 (SA-510), carrying a crew of three astronauts: Mission commander David R. Scott, Lunar Module pilot James B. Irwin, and Command Module pilot Alfred M. Worden Jr., lifted off on July 26, 1971. Astronauts Scott and Irwin were the first to use a wheeled surface vehicle, the Lunar Roving Vehicle, or the Rover, which was designed and developed by the Marshall Space Flight Center, and built by the Boeing Company. Astronauts spent 13 days, nearly 67 hours, on the Moon's surface to inspect a wide variety of its geological features.

  4. Exploration of the Moon to Enable Lunar and Planetary Science

    NASA Astrophysics Data System (ADS)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  5. Crew Members - First Manned Apollo Flight - Unmanned Mission Launch - Cape

    NASA Image and Video Library

    1968-01-22

    S68-18700 (22 Jan. 1968) --- Two prime crew members of the first manned Apollo space flight were present at Cape Kennedy for the launch of the Apollo V (LM-1/Saturn 204) unmanned space mission. On left is astronaut Walter M. Schirra Jr.; and on right is astronaut R. Walter Cunningham. In background is the Apollo V stack at Launch Complex 37 ready for launch.

  6. LIFTOFF - APOLLO/SATURN (A/S)-202 MISSION - KSC

    NASA Image and Video Library

    1966-08-25

    A/S Mission 202 was launched from the KSC Launch Complex (LC)-34 at 12:15 p.m., 08/25/1966. The mission was a step toward qualifying the Apollo Command and Service Modules (CSM)'s and the uprated Saturn I launch vehicle for manned flight. KSC, FL

  7. Quarantined Apollo 11 Astronauts Addressed by U.S. President Richard Milhous Nixon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet recovery ship, where they were quartered in a Mobile Quarantine Facility (MQF). In this photograph, the U.S.S. Hornet crew looks on as the quarantined Apollo 11 crew is addressed by U.S. President Richard Milhous Nixon via microphone and intercom. The president was aboard the recovery vessel awaiting return of the astronauts. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  8. APOLLO 16 ASTRONAUTS JOHN YOUNG AND CHARLES DUKE EXAMINE FAR ULTRAVIOLET CAMERA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Apollo 16 Lunar Module Pilot Charles M. Duke, Jr., left and Mission Commander John W. Young examine Far Ultraviolet Camera they will take to the Moon in March. They will measure the universe's ultraviolet spectrum. They will be launched to the Moon no earlier than March 17, 1972, with Command Module Pilot Thomas K. Mattingly, II.

  9. Plans and objectives of the remaining Apollo missions.

    NASA Technical Reports Server (NTRS)

    Scherer, L. R.

    1972-01-01

    The three remaining Apollo missions will have significantly increased scientific capabilities. These result from increased payload, more time on the surface, improved range, and more sophisticated experiments on the surface and in orbit. Landing sites for the last three missions will be carefully selected to maximize the total scientific return.

  10. 2017 "Mission Success is in Our Hands" program with Apollo 17 as

    NASA Image and Video Library

    2017-12-07

    Apollo 17 lunar module pilot Harrison Schmitt, left, shared his experiences as an astronaut and lunar geologist during a visit to Marshall Dec. 7, as part of the Shared Experiences Forum. During an interactive Q&A moderated by Marshall Associate Director Jonathan Pettus, right, Schmitt spoke about launching on the Saturn V rocket, exploring the Moon and looking back at the Earth. The day of his visit was the 45th anniversary of the Apollo 17 launch.

  11. Clementine: An inexpensive mission to the Moon and Geographos

    NASA Astrophysics Data System (ADS)

    Shoemaker, Eugene M.; Nozette, Stewart

    1993-03-01

    The Clementine Mission, a joint project of the Strategic Defense Initiative Organization (SDIO) and NASA, has been planned primarily to test and demonstrate a suite of lightweight sensors and other lightweight spacecraft components under extended exposure to the space environment. Although the primary objective of the mission is to space-qualify sensors for Department of Defense applications, it was recognized in 1990 that such a mission might also be designed to acquire scientific observations of the Moon and of Apollo asteroid (1620) Geographos. This possibility was explored jointly by SDIO and NASA, including representatives from NASA's Discovery Program Science Working Group, in early 1991. Besides the direct return of scientific information, one of the benefits envisioned from a joint venture was the development of lightweight components for possible future use in NASA's Discovery-class spacecraft. In Jan. 1992, SDIO informed NASA of its intent to fly a 'Deep Space Program Science Experiment,' now popularly called Clementine; NASA then formed an advisory science working group to assist in the early development of the mission. The Clementine spacecraft is being assembled at the Naval Research Laboratory, which is also in charge of the overall mission design and mission operations. Support for mission design is being provided by GSFC and by JPL. NASA's Deep Space Network will be utilized in tracking and communicating with the spacecraft. Following a recommendation of the COMPLEX committee of the Space Science Board, NASA will issue an NRA and appoint a formal science team in early 1993. Clementine is a 3-axis stabilized, 200 kg (dry weight) spacecraft that will be launched on a refurbished Titan-2G. One of the goals has been to build two spacecraft, including the sensors, for $100M. Total time elapsed from the decision to proceed to the launch will be two years.

  12. Saturn Apollo Program

    NASA Image and Video Library

    1966-09-09

    This is the official NASA portrait of astronaut James Lovell. Captain Lovell was selected as an Astronaut by NASA in September 1962. He has since served as backup pilot for the Gemini 4 flight and backup Commander for the Gemini 9 flight, as well as backup Commander to Neil Armstrong for the Apollo 11 lunar landing mission. On December 4, 1965, he and Frank Borman were launched into space on the history making Gemini 7 mission. The flight lasted 330 hours and 35 minutes and included the first rendezvous of two manned maneuverable spacecraft. The Gemini 12 mission, commanded by Lovell with Pilot Edwin Aldrin, began on November 11, 1966 for a 4-day, 59-revolution flight that brought the Gemini program to a successful close. Lovell served as Command Module Pilot and Navigator on the epic six-day journey of Apollo 8, the first manned Saturn V liftoff responsible for allowing the first humans to leave the gravitational influence of Earth. He completed his fourth mission as Spacecraft Commander of the Apollo 13 flight, April 11-17, 1970, and became the first man to journey twice to the moon. The Apollo 13 mission was cut short due to a failure of the Service Module cryogenic oxygen system. Aborting the lunar course, Lovell and fellow crewmen, John L. Swigert and Fred W. Haise, working closely with Houston ground controllers, converted their lunar module, Aquarius, into an effective lifeboat that got them safely back to Earth. Captain Lovell held the record for time in space with a total of 715 hours and 5 minutes until surpassed by the Skylab flights. On March 1, 1973, Captain Lovell retired from the Navy and the Space Program.

  13. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    After the S-II (second) stage dropped away, the S-IVB (third) stage ignited and burned for about two minutes to place itself and the Apollo spacecraft into the desired Earth orbit. At the proper time during this Earth parking orbit, the S-IVB stage was re-ignited to speed the Apollo spacecraft to escape velocity, injecting it and the astronauts into a moon trajectory. Developed and manufactured by the Douglas Aircraft Company in Huntington, California, the S-IVB stage measures about 21.5 feet in diameter, about 58 feet in length and is powered by a single 200,000-pound-thrust J-2 engine with a re-start capability. The S-IVB stage was also used on the second stage of the Saturn IB launch vehicle. The fully-assembled S-IVB (third) stage for the AS-503 (Apollo 8 mission) launch vehicle is pictured in the Douglas' vertical checkout building.

  14. Launch - Apollo 14 Lunar Landing Mission - KSC

    NASA Image and Video Library

    1971-01-31

    S71-17620 (31 Jan. 1971) --- The huge, 363-feet tall Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center, Florida, at 4:03:02 p.m. (EST), Jan. 31, 1981, on a lunar landing mission. This view of the liftoff was taken by a camera mounted on the mobile launch tower. Aboard the Apollo 14 spacecraft were astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.

  15. Launch - Apollo XIV - Lunar Landing Mission - KSC

    NASA Image and Video Library

    1971-01-31

    S71-18398 (31 Jan. 1971) --- The huge, 363-feet tall Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida at 4:03:02 p.m. (EST), Jan. 31, 1971, on a lunar landing mission. This view is framed by moss-covered dead trees in the dark foreground. Aboard the Apollo 14 spacecraft were astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.

  16. Apollo 1 Tribute Opening

    NASA Image and Video Library

    2017-01-27

    Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, speaks during the opening of the tribute exhibition to the Apollo 1 astronauts who perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. The tribute highlights the lives and careers of astronauts Gus Grissom, Ed White II and Roger Chaffee who were lost during the fire. The tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017, 50 years after the crew of three was lost. It features numerous items recalling the lives of the three astronauts. The tribute also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  17. Apollo 1 Tribute Opening

    NASA Image and Video Library

    2017-01-27

    Therrin Protze, Chief Operating Officer, Delaware North Corporation Parks & Resorts at KSC, Inc., speaks during the opening of the tribute exhibition to the Apollo 1 astronauts who perished in a fire at the launch pad on Jan. 27, 1967, during training for the mission. The tribute highlights the lives and careers of astronauts Gus Grissom, Ed White II and Roger Chaffee who were lost during the fire. The tribute at the Apollo/Saturn V Center at NASA's Kennedy Space Center opened Jan. 27, 2017, 50 years after the crew of three was lost. It features numerous items recalling the lives of the three astronauts. The tribute also includes the three-part hatch to the spacecraft itself, the first time any part of the Apollo 1 spacecraft has been displayed publicly. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon.

  18. Moon Express Media Event

    NASA Image and Video Library

    2014-11-03

    Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface Systems Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.

  19. Moon Express Media Event

    NASA Image and Video Library

    2014-11-03

    Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.

  20. The Moon; twenty years later

    USGS Publications Warehouse

    Kerr, R. A.

    1989-01-01

    The 20th anniversary of the first landing on the Moon occurred on July 21, 1989. The vast majority of the Moon rocks collected by the Apollo mission astronauts await further study in the continuing effort to unravel the origin and evolution of Earth's nearest neighbor. Not that the 382-kilogram treasure trove of lunar samples has been gathering dust in the Planetary Materials Laboratory at the Johnson Space Center in Houston. It is just that lunar scientists are being very sparing in their use of the rocks. 

  1. View of Mission Control Center during Apollo 13 splashdown

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Dr. Thomas O. Paine (center), NASA Administrator, and other NASA Officials joined others in applauding the successful splashdown of the Apollo 13 crewmen. Others among the large crowd in the Mission Operations Control Room of the Mission Control Center, Manned Spacecraft Center (MSC) at the time of recovery were U.S. Air Force Lt. Gen. Samuel C. Phillips (extreme left), who formerly served as Apollo program Director, Office of Manned Space Flight, NASA Headquarters; Dr. Charles A. Berry (third from left), Director, Medical Research and Operations Directorate, MSC; and Dr. George M. Low, Associate NASA Administrator.

  2. Apollo 12 Mission image - Lunar surface near lunar module

    NASA Image and Video Library

    1969-11-19

    AS12-47-6949 (19-20 Nov. 1969) --- A photograph of the Apollo 12 lunar landing site taken during the extravehicular activity (EVA) of astronauts Charles Conrad Jr., commander; and Alan L. Bean, lunar module pilot. The Apollo 12 Lunar Module (LM) is on the left. Barely visible in the center of the picture, in the shadows on the farside of the crater, is the Surveyor 3 spacecraft. The two spacecraft are about 600 feet apart. Conrad and Bean walked over to Surveyor 3 during their second EVA. The television camera and several other pieces were taken from Surveyor 3 and brought back to Earth for scientific examination. Astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit, while astronauts Conrad and Bean descended in the LM to explore the moon. The considerable glare in the picture is caused by the position of the sun. The Apollo tool carrier is the object next to the LM footpad.

  3. Launch of the Apollo 14 lunar landing mission

    NASA Image and Video Library

    1971-01-31

    S71-18395 (31 Jan. 1971) --- The huge, 363-feet tall Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida at 4:03:02 p.m. (EST), Jan. 31, 1971, on a lunar landing mission. Aboard the Apollo 14 spacecraft were astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.

  4. Launching to the Moon, Mars, and Beyond

    NASA Technical Reports Server (NTRS)

    Sumrall, John P.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission today, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. Unlike the Apollo program of the 1960s, this phase of exploration will be a journey, not a race. In 1966, the NASA's budget was 4 percent of federal spending. Today, with 6/10 of 1 percent of the budget, NASA must incrementally develop the vehicles, infrastructure, technology, and organization to accomplish this goal. Fortunately, our knowledge and experience are greater than they were 40 years ago. NASA's goal is a return to the Moon by 2020. The Moon is the first step to America's exploration of Mars. Many questions about the Moon's history and how its history is linked to that of Earth remain even after the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment. The Moon also will serve as a training ground in several respects before embarking on the longer, more perilous trip to Mars. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit on the Ares I and a second launch to orbit the lunar lander and the Earth Departure Stage to send the lander and crew vehicle to the Moon. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on proven hardware and decades of experience derived from

  5. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-09

    In this photograph, laboratory technician Bart Ruark visually inspects a Japanese Qail confined within a class III cabinet in the Intervertebrae, Aves, and Fish Laboratory of the Lunar Receiving Laboratory, Building 37 of the Manned Spacecraft Center (MSC) in Houston, Texas. This laboratory was part of the overall physical, chemical, and biological test program of the Apollo 11 returned lunar samples. Aboard the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of astronauts Neil A. Armstrong, commander; Edwin Aldrin, Lunar Module (LM) pilot; and Michael Collins, Command Module (CM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. In 2 1/2 hours, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-09

    In this photograph, a laboratory technician handles a portion of the more than 20 different plant lines that were used within the Lunar Receiving Laboratory, Building 37 of the Manned Spacecraft Center (MSC) in Houston, Texas. This laboratory was part of the overall physical, chemical, and biological test program of the Apollo 11 returned lunar samples. Aboard the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of astronauts Neil A. Armstrong, commander; Edwin Aldrin, Lunar Module (LM) pilot; and Michael Collins, Command Module (CM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. In 2 1/2 hours, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis.

  7. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-09

    In this photograph, technicians are transferring mice from a support germ free isolator, through a hypochlorite dunk tank, into the class III cabinetry in the Germ-free and Conventional Animal Laboratories of the Lunar Receiving Laboratory, building 37, of the Manned Spacecraft Center in Houston, Texas. This laboratory was part of the overall physical, chemical, and biological test program of the Apollo 11 returned lunar samples. Aboard the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of astronauts Neil A. Armstrong, commander; Edwin Aldrin, Lunar Module (LM) pilot; and Michael Collins, Command Module (CM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. In 2 1/2 hours, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis.

  8. Artists concept of Apollo 11 Astronaut Neil Armstrong on the moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A Grumman Aircraft Engineering Corporation artist's concept depicting mankind's first walk on another celestianl body. Here, Astronaut Neil Armstrong, Apollo 11 commander, is making his first step onto the surface of the moon. In the background is the Earth, some 240,000 miles away. Armstrong. They are continuing their postflight debriefings. The three astronauts will be released from quarantine on August 11, 1969. Donald K. Slayton (right), MSC Director of Flight Crew Operations; and Lloyd Reeder, training coordinator.

  9. Robotic missions for the moon

    NASA Technical Reports Server (NTRS)

    Bourke, R. D.; Burke, J. D.

    1990-01-01

    In the course of the exploration and settlement of the moon, robotic missions will precede and accompany humans. These robotic missions are defined respectively as precursors and adjuncts. Their contribution is twofold: to generate information about the lunar environment (and system performance in that environment), and to emplace elements of infrastructure for subsequent use. This paper describes information that may be gathered by robotic missions and infrastructure elements that may be deployed by them during an early lunar program phase.

  10. Moon manned missions radiation safety analysis

    NASA Astrophysics Data System (ADS)

    Tripathi, R. K.; Wilson, J. W.; de Anlelis, G.; Badavi, F. F.

    An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to obtain mission scenarios minimizing the astronaut radiation exposure and at the same time controlling the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The optimization process has been realized through minimization of mass along all phases of a mission scenario, in terms of time frame (dates, transfer time length and trajectory, radiation environment), equipment (vehicles, in terms of shape, volume, onboard material choice, size and structure), location (if in space, on the surface, inside or outside a certain habitats), crew characteristics (number, gender, age, tasks) and performance required (spacecraft and habitat volumes), radiation exposure annual and career limit constraint (from NCRP 132), and implementation of the ALARA principle (shelter from the occurrence of Solar Particle Events). On the lunar surface the most important contribution to radiation exposure is given by background Galactic Cosmic Rays (GCR) particles, mostly protons, alpha particles, and some heavy ions, and by locally induced particles, mostly neutrons, created by the interaction between GCR and surface material and emerging from below the surface due to backscattering processes. In this environment manned habitats are to host future crews involved in the construction and/or in the utilization of moon based infrastructure. Three different kinds of lunar missions are considered in the analysis, Moon Base Construction Phase, during which astronauts are on the surface just to build an outpost for future resident crews, Moon Base Outpost Phase, during which astronaut crews are resident but continuing exploration and installation activities, and Moon Base Routine Phase, with long-term shifting resident crews. In each scenario various kinds of habitats

  11. Apollo 14 and 16 Active Seismic Experiments, and Apollo 17 Lunar Seismic Profiling

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Seismic refraction experiments were conducted on the moon by Apollo astronauts during missions 14, 16, and 17. Seismic velocities of 104, 108, 92, 114 and 100 m/sec were inferred for the lunar regolith at the Apollo 12, 14, 15, 16, and 17 landing sites, respectively. These data indicate that fragmentation and comminution caused by meteoroid impacts has produced a layer of remarkably uniform seismic properties moonwide. Brecciation and high porosity are the probable causes of the very low velocities observed in the lunar regolith. Apollo 17 seismic data revealed that the seismic velocity increases very rapidly with depth to 4.7 km/sec at a depth of 1.4 km. Such a large velocity change is suggestive of compositional and textural changes and is compatible with a model of fractured basaltic flows overlying anorthositic breccias. 'Thermal' moonquakes were also detected at the Apollo 17 site, becoming increasingly frequent after sunrise and reaching a maximum at sunset. The source of these quakes could possibly be landsliding.

  12. Apollo 9 Mission image - Earth Observation - Anticyclonic cloud pattern

    NASA Image and Video Library

    1969-03-03

    AS09-23-3592 (3-13 March 1969) --- Cyclonic storm system, located 1,200 miles north of Hawaii, as photographed from the Apollo 9 spacecraft during its 10-day, Earth-orbital space mission. This picture was made on the 124th revolution of Apollo 9. This cyclonic storm system can also be seen in the ESSA-7 photograph taken on March 11, 1969.

  13. Astronaut John Young during final suiting operations for Apollo 10 mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A technician attaches hose from test stand to spacesuit of Astronaut John W. Young, Apollo 10 command module pilot, during final suiting operations for the Apollo 10 lunar orbit mission. Another technician makes adjustment behind Young.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    This is a view of the Saturn V S-IVB (third) stage for the AS-209 (Apollo-Soyuz test project backup vehicle) on a transporter in the right foreground, and the S-IVB stage for AS-504 (Apollo 9 mission) being installed in the Beta Test Stand 1 at the SACTO facility in California. After the S-II (second) stage dropped away, the S-IVB (third) stage ignited and burned for about two minutes to place itself and the Apollo spacecraft into the desired Earth orbit. At the proper time during this Earth parking orbit, the S-IVB stage was re-ignited to speed the Apollo spacecraft to escape velocity and inject it and the astronauts into a moon trajectory. Developed and manufactured by the Douglas Aircraft Company in California, the S-IVB stage measures about 21.5 feet in diameter, about 58 feet in length, and is powered by a single 200,000-pound-thrust J-2 engine with a re-start capability. The S-IVB stage was also used on the second stage of the Saturn IB launch vehicle.

  15. APOLLO 16 ASTRONAUTS UNDERGO SIMULATED LUNAR TRAVERSE DURING TRAINING

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 16 flight crew, astronauts Charles M. Duke, Jr., and John W. Young, prepare to undergo a simulated lunar traverse in the training area. The National Aeronautics and Space Administration Apollo 16, the eighth Apollo Lunar landing, is scheduled to land in the mountainous highland region near the crater Descartes to explore the area for a three day period collecting surface material. Making geological observations, and deploying the fourth geophysical station on the Moon. The flight crew of the mission are: John W. Young, commander; Charles M. Duke, Jr., lunar module pilot; and Thomas K. Mattingly II, command module pilot.

  16. Apollo 16 Astronaut Salutes the U.S. Flag on Lunar Surface

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An Apollo 16 astronaut salutes the U.S. flag on the lunar surface. The Lunar Module (LM) and Lunar Roving Vehicle (LRV) can be seen behind him. Apollo 16 launched from the Kennedy Space Center on April 16, 1972 for a 3-day stay on Earth's Moon. It's 3-man crew consisted of Thomas K. Mattingly II, Command Module pilot; John W. Young, Mission Commander; and Charles M. Duke Jr., Lunar Module pilot. The first study of the highlands area, the landing site for Apollo 16 was the Descartes Highlands. The fifth lunar landing mission out of six, Apollo 16 was famous for deploying and using an ultraviolet telescope as the first lunar observatory. The telescope photographed ultraviolet light emitted by Earth and other celestial objects. The LRV, developed by the Marshall Space Flight Center, was also used for collecting rocks and data on the mysterious lunar highlands. The mission ended April 27, 1972 as the crew splashed down into the Pacific Ocean.

  17. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-27

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. In this photo taken at Pearl Harbor, Hawaii, the inhabited MQF is prepared for loading into an Air Force C-141 jet transport for the flight back to Ellington Air Force Base Texas and then on to the MSC.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1969-08-03

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. The three are seen here at the MSC, still inside the MQF, undergoing their first debriefing on Sunday, August 3, 1969. Behind the glass are (L-R): Edwin Aldrin, Michael Collins, and Neil Armstrong.

  19. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-27

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet recovery ship, where they were quartered in a Mobile Quarantine Facility (MQF) for 21 days. The recovery vessel docked in Pearl Harbor Hawaii, where the occupied MQF was transferred for transport to the to NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. In this photo the quarantined astronauts are addressed by Hawaiian Governor John Burns upon their arrival at Pearl Harbor.

  20. Lunar map showing traverse plans for Apollo 14 lunar landing mission

    NASA Image and Video Library

    1970-09-01

    This lunar map shows the traverse plans for the Apollo 14 lunar landing mission. Areas marked include Lunar module landing site, areas for the Apollo Lunar Surface Experiment Package (ALSEP) and areas for gathering of core samples.

  1. Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets

    NASA Technical Reports Server (NTRS)

    Jolliff, Brad L. (Editor); Ryder, Graham (Editor)

    1998-01-01

    It has been more than 25 years since Apollo 17 returned the last of the Apollo lunar samples. Since then, a vast amount of data has been obtained from the study of rocks and soils from the Apollo and Luna sample collections and, more recently, on a set of about a dozen lunar meteorites collected on Earth. Based on direct studies of the samples, many constraints have been established for the age, early differentiation, crust and mantle structure, and subsequent impact modification of the Moon. In addition, geophysical experiments at the surface, as well as remote sensing from orbit and Earth-based telescopic studies, have provided additional datasets about the Moon that constrain the nature of its surface and internal structure. Some might be tempted to say that we know all there is to know about the Moon and that it is time to move on from this simple satellite to more complex objects. However, the ongoing Lunar Prospector mission and the highly successful Clementine mission have provided important clues to the real geological complexity of the Moon, and have shown us that we still do not yet adequately understand the geologic history of Earth's companion. These missions, like Galileo during its lunar flyby, are providing global information viewed through new kinds of windows, and providing a fresh context for models of lunar origin, evolution, and resources, and perhaps even some grist for new questions and new hypotheses. The probable detection and characterization of water ice at the poles, the extreme concentration of Th and other radioactive elements in the Procellarum-Imbrium-Frigon's resurfaced areas of the nearside of the Moon, and the high-resolution gravity modeling enabled by these missions are examples of the kinds of exciting new results that must be integrated with the extant body of knowledge based on sample studies, in situ experiments, and remote-sensing missions to bring about the best possible understanding of the Moon and its history.

  2. Apollo-Soyuz US-USSR joint mission results

    NASA Technical Reports Server (NTRS)

    Bean, A. L.; Evans, R. E.

    1975-01-01

    The technical and nontechnical objectives of the Apollo-Soyuz mission are briefly considered. The mission demonstrated that Americans and Russians can work together to perform a very complex operation, including rendezvous in space, docking, and the conduction of joint experiments. Certain difficulties which had to be overcome were partly related to differences concerning the role of the astronaut in the basic alignment and docking procedures for space vehicles. Attention is also given to the experiments conducted during the mission and the approach used to overcome the language barrier.

  3. NASA Remembers Gemini, Apollo Astronaut Dick Gordon

    NASA Image and Video Library

    2017-11-07

    Astronaut Dick Gordon, command module pilot on Apollo 12, the second lunar landing mission, died on Monday, November 6 at the age of 88. A native of Seattle, Washington and 1951 graduate of the University of Washington, Gordon became an astronaut in 1963 after a career as a naval aviator. He spent more than 316 hours in space on two missions. He was the pilot for the three-day Gemini 11 mission in 1966 and performed two spacewalks. At the time of the flight, Gemini 11 set the world altitude record of 850 miles. Gordon made a second flight in 1969 as command pilot on Apollo 12 with spacecraft commander, Pete Conrad and lunar module pilot, Alan Bean. Throughout the 31-hour lunar surface stay by Conrad and Bean, Gordon remained in orbit around the moon on the command module, "Yankee Clipper." In November 2005, NASA honored Gordon with an Ambassador of Exploration award. NASA presented these prestigious awards to the astronauts who took part in the nation's Mercury, Gemini and Apollo space programs from 1961 to 1972.

  4. LUNETTE - A Discovery Class Mission to the Moon to Establish a Geophysical Network

    NASA Astrophysics Data System (ADS)

    Neal, C. R.; Banerdt, W. B.; Alkalai, L.

    2009-12-01

    Lunette is a Discovery mission concept that is designed to deliver three landed geophysical packages (“nodes”) to widely spaced (3000-5000 km) locations on the lunar surface. This mission will provide detailed information on the interior of the Moon through seismic, thermal, electromagnetic, and precision laser ranging measurements, and will substantially address the lunar interior science objectives set out in “The Scientific Context for the Exploration of the Moon” (NRC, 2008) and ”The Final Report for the International Lunar Network Anchor Nodes Science Definition Team” (NASA, 2009). Each node will contain: a very broad band seismometer that is at least an order of magnitude more sensitive over a wider frequency band than the seismometers used during Apollo; a heat flow probe, delivered via a self-penetrating “mole” device; a low-frequency electromagnetic sounding instrument, which will measure the electromagnetic properties of the outermost few hundred km of the Moon; and a corner-cube laser retroreflector for lunar laser ranging. These instruments will provide an enormous advance in our knowledge of the structure and processes of the lunar interior over that provided by Apollo-era data, allowing insights into the earliest history of the formation and evolution of the Moon. The instruments that comprise the individual nodes are all optimized for low power operation and this mission will not rely on a radioisotope power supply. Improvements in solar energy and battery technology, along with an Event Timer Module which allows the lander to shut down its electronics for most of the lunar night, enables a solar/battery mission architecture with continuous instrument operation and a two-year nominal lifetime. The instruments have a combined mass of <12 kg, and the dry mass of each lander will be on the order of 100 kg, including solar panels, batteries, and communications. The most power hungry instrument is the heat flow “mole”, which requires

  5. APOLLO 10 ASTRONAUT ENTERS LUNAR MODULE SIMULATOR

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 10 lunar module pilot Eugene A. Cernan prepares to enter the lunar module simulator at the Flight Crew Training Building at the NASA Spaceport. Cernan, Apollo 10 commander Thomas P. Stafford and John W. Young, command module pilot, are to be launched May 18 on the Apollo 10 mission, a dress rehearsal for a lunar landing later this summer. Cernan and Stafford are to detach the lunar module and drop to within 10 miles of the moon's surface before rejoining Young in the command/service module. Looking on as Cernan puts on his soft helmet is Snoopy, the lovable cartoon mutt whose name will be the lunar module code name during the Apollo 10 flight. The command/service module is to bear the code name Charlie Brown.

  6. Logo for the 20th Anniversary of the Apollo 11 mission

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Logo for the 20th Anniversary of the Apollo 11 mission. Logo is described as the numeral 20. Inside the zero is a representation of an eagle landing on the lunar surface with the title 'Apollo 11' above it.

  7. Logo for the 20th Anniversary of the Apollo 11 mission

    NASA Image and Video Library

    1989-02-06

    Logo for the 20th Anniversary of the Apollo 11 mission. Logo is described as the numeral 20. Inside the zero is a representation of an eagle landing on the lunar surface with the title "Apollo 11" above it.

  8. High Leverage Space Transportation System Technologies for Human Exploration Missions to the Moon and Beyond

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Dudzinski, Leonard A.

    1996-01-01

    The feasibility of returning humans to the Moon by 2004, the 35th anniversary of the Apollo 11 landing, is examined assuming the use of existing launch vehicles (the Space Shuttle and Titan 4B), a near term, advanced technology space transportation system, and extraterrestrial propellant--specifically 'lunar-derived' liquid oxygen or LUNOX. The lunar transportation system (LTS) elements consist of an expendable, nuclear thermal rocket (NTR)-powered translunar injection (TLI) stage and a combination lunar lander/Earth return vehicle (LERV) using cryogenic liquid oxygen and hydrogen (LOX/LH2) chemical propulsion. The 'wet' LERV, carrying a crew of 2, is configured to fit within the Shuttle orbiter cargo bay and requires only modest assembly in low Earth orbit. After Earth orbit rendezvous and docking of the LERV with the Titan 4B-launched NTR TLI stage, the initial mass in low Earth orbit (IMLEO) is approx. 40 t. To maximize mission performance at minimum mass, the LERV carries no return LOX but uses approx. 7 t of LUNOX to 'reoxidize' itself for a 'direct return' flight to Earth followed by an 'Apollo-style' capsule recovery. Without LUNOX, mission capability is constrained and the total LTS mass approaches the combined Shuttle-Titan 4B IMLEO limit of approx. 45 t even with enhanced NTR and chemical engine performance. Key technologies are discussed, lunar mission scenarios described, and LTS vehicle designs and characteristics are presented. Mission versatility provided by using a small 'all LH2' NTR engine or a 'LOX-augmented' derivative, either individually or in clusters, for outer planet robotic orbiter, small Mars cargo, lunar 'commuter', and human Mars exploration class missions is also briefly discussed.

  9. Dr. Garry Latham studies seismometer tracings from the moon

    NASA Image and Video Library

    1969-07-22

    S69-39587 (20 July 1969) --- Dr. Garry Latham (left) with the Lamont Geological Observatory, studies seismometer tracings in the Mission Control Center's (MCC) ALSEP control room. The electronic data was coming from the Passive Seismic Experiments Package (PSEP) which the Apollo 11 astronauts had just deployed on the surface of the moon. Dr. Lamont is the principal investigator for the PSEP, a component of the Early Apollo Scientific Experiments Package (EASEP). PSEP uses three long-period seismometers and one short-period vertical seismometer for measuring meteoroid impacts and moonquakes. Such data will be useful in determining the interior structure of the moon; for example, does the moon have a core and mantle like Earth? Here, the flapping of the PSEP's solar panels is picked up and registered as a tracing. The PSEP was sensitive enough to pick up the footsteps of astronauts Neil A. Armstrong and Edwin E. Aldrin Jr., as they walked on the moon.

  10. Tantalo-Niobate from the Apollo-17 Regolith

    NASA Astrophysics Data System (ADS)

    Mokhov, A. V.; Kartashov, P. M.; Rybchuk, A. P.; Gornostaeva, T. A.; Bogatikov, O. A.

    2018-01-01

    Particles of tantalo-niobate of the ferrotantalite-manganotantalite series are discovered for the first time in two lunar regolith fragments delivered by the Apollo-17 mission. Allochtonous and autochtonous mineralization that accompanies tantalo-niobate in the regolith is described. An attempt is made to explain the formation of tantalite in anorthosites of the continental region of the Moon.

  11. View of Mission Control during lunar surface Apollo 11 EVA

    NASA Image and Video Library

    1969-07-20

    Overall view of the Mission Operations Control Room in the Mission Control Center, bldg 30, during the lunar surface extravehicular activity (EVA) of Apollo 11 Astronauts Neil A. Armstrong and Edwin E. Aldrin Jr.

  12. Saturn V Vehicle for the Apollo 4 Mission in the Vehicle Assembly Building

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This photograph depicts the Saturn V vehicle (SA-501) for the Apollo 4 mission in the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC). After the completion of the assembly operation, the work platform was retracted and the vehicle was readied to rollout from the VAB to the launch pad. The Apollo 4 mission was the first launch of the Saturn V launch vehicle. Objectives of the unmanned Apollo 4 test flight were to obtain flight information on launch vehicle and spacecraft structural integrity and compatibility, flight loads, stage separation, and subsystems operation including testing of restart of the S-IVB stage, and to evaluate the Apollo command module heat shield. The Apollo 4 was launched on November 9, 1967 from KSC.

  13. Saturn Apollo Program

    NASA Image and Video Library

    1968-01-01

    This image depicts the Saturn V S-IVB (third) stage for the Apollo 10 mission being removed from the Beta Test Stand 1 after its acceptance test at the Douglas Aircraft Company's Sacramento Test Operations (SACTO) facility. After the S-II (second) stage dropped away, the S-IVB (third) stage was ignited and burned for about two minutes to place itself and the Apollo spacecraft into the desired Earth orbit. At the proper time during this Earth parking orbit, the S-IVB stage was re-ignited to speed the Apollo spacecraft to escape velocity injecting it and the astronauts into a moon trajectory. Developed and manufactured by the Douglas Aircraft Company in California, the S-IVB stage measures about 21.5 feet in diameter, about 58 feet in length, and powered by a single 200,000-pound-thrust J-2 engine with a re-start capability. The S-IVB stage was also used on the second stage of the Saturn IB launch vehicle.

  14. Water on the Moon

    NASA Astrophysics Data System (ADS)

    Pendleton, Yvonne

    2015-08-01

    After years of thinking the Moon is dry, we now know there are three ways in which water appears on the Moon today:1) The hypothesized buried deposits of volatiles at the lunar poles were found at Cabeus crater. There are questions about the origin of such volatiles (i.e., in-falling comets & meteorites, migrating surficial OH/H2O, and accumulated release from the interior), but there is no doubt the water is there. This long suspected polar water was the most recent form to be confirmed on the Moon.2) Widespread, thinly- distributed, surficial OH (or H2O) is the most recently formed lunar water, and its discovery was completely unexpected. It occurs across all types of lunar terrain, but is more difficult to detect in the warmer equatorial terrain where thermal emission is strongest. The consensus is that this OH is indeed derived from solar wind H linked to O from the surface silicate rocks. Although pervasive, we don’t know how quickly it forms, nor how mobile it is.3) The amount of water present when the Moon formed is now documented in lunar materials from Apollo samples (preserved in the lunar mantle material found in volcanic glass beads). Sample analyses made during the Apollo days were not sufficiently precise to distinguish between indigenous lunar water and terrestrial contamination. Measurements with modern equipment are not only more precise (both elemental and isotopic), but can be made in a manner to constrain a host of processes (e.g. diffusion, thermal cycling) that have acted on these samples during their residence on the Moon. The mysteries associated with all these ‘water’ forms are being pursued by teams and scientists around the world. The paradigm-shifting work that reported these discoveries in recent years are from: the NASA LCROSS (lunar impact mission) team (2010), M3 team/ on the Indian Chandrayan Mission (2009), and lunar sample chemists (2008). NASA Lunar Reconnaissance Orbiter, GRAIL, ESA Smart-1, Japanese Kaguya, and other

  15. View of Mission Control Center during the Apollo 13 liftoff

    NASA Image and Video Library

    1970-04-11

    S70-34627 (11 April 1970) --- Sigurd A. Sjoberg, director of flight operations, at the Manned Spacecraft Center (MSC), views the Apollo 13 liftoff from a console in the MSC Mission Control Center (MCC), Building 30. Apollo 13 lifted off at 1:13 p.m. (CST) April 11, 1970. Photo credit: NASA

  16. Food and Nutrition for the Moon Base: What we have Learned in 45 Years of Space Flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen; Kloeris, Vickie; Perchonok, Michele; Zwart, Sara; Smith, Scott M.

    2006-01-01

    The United States has a new human space flight mission to return to the Moon, this time to establish an outpost to continue research there and develop our ability to send humans to Mars and bring them back in good health. The Apollo missions were the first human expeditions to the Moon. Only 2 crew members landed on the lunar surface on each Apollo mission, and they spent a maximum of 72 hours there. Future trips will have at least 4 crew members, and the initial trips will include several days of surface activity. Eventually, these short (sortie) missions will extend to longer lunar surface times, on the order of weeks. Thus, the challenges of meeting the food and nutritional needs of crew members at a lunar outpost will be significantly different from those during the early Apollo missions. The U.S. has had humans in space beginning in 1961 with increasing lengths of time in space flight. Throughout these flights, the areas of particular concern for nutrition are body mass, bone health, and radiation protection. The development and refinement of the food systems over the last 30 years are discussed, as well as the plans for both the sortie and lunar. The articles briefly review what we know today about food and nutrition for space travelers and relate this knowledge to our planned human flights back to the Moon.

  17. APOLLO 17 PRELAUNCH ASTRONAUT TRAINING

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Apollo Command Module Pilot Evans, left, and Mission Commander Cernan, right, discuss their flight plans as each prepares to fly a T-38 jet aircraft at Patrick Air Force Base just south of the Spaceport. Astronauts Cernan and Evans flew the T-38 aircraft today on training flights over the Kennedy Space Center area to practice flying skills in preparation for upcoming launch to the Moon scheduled 12/06/72.

  18. Apollo Medical Operations Project: Recommendations for EVA and Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; Davis, J. R.; Duncan, J. M.; Polk, J. D.; Jones, J. A.; Gillis, D. B.; Novak, J.

    2013-01-01

    The potential risk of injury to crewmembers is inherent in aggressive surface activities, whether they be Moon-, Mars-, or asteroid-based. In December 2005, the Space Medicine Division at JSC requested a study to identify Apollo mission issues that had an impact to crew health or performance or both. This talk focused on the Apollo EVA suit and lunar surface operations concerning crew health and performance. There were roughly 20 recommendations from this study of Apollo for improving these two areas for future exploration missions, a few of which were incorporated into the Human Systems Integration Requirements (HSIR). Dr. Richard Scheuring covered these topics along with some of the analog work that has been done regarding surface operations and medical contingencies.

  19. View of activity in Mission Control Center during Apollo 15 EVA

    NASA Image and Video Library

    1971-08-02

    S71-41852 (2 Aug. 1971) --- Gerald D. Griffin, foreground, stands near his console in the Mission Operations Control Room (MOCR) during Apollo 15's third extravehicular activity (EVA) on the lunar surface. Griffin is Gold Team (Shift 1) flight director for the Apollo 15 mission. Astronauts David R. Scott and James B. Irwin can be seen on the large screen at the front of the MOCR as they participate in sample-gathering on the lunar surface.

  20. Lunar orbital photogaphic planning charts for candidate Apollo J-missions

    NASA Technical Reports Server (NTRS)

    Hickson, P. J.; Piotrowski, W. L.

    1971-01-01

    A technique is presented for minimizing Mapping Camera film usage by reducing redundant coverage while meeting the desired sidelap of greater than or equal to 55%. The technique uses the normal groundtrack separation determined as a function of the number of revolutions between the respective tracks, of the initial and final nodal azimuths (or orbital inclination), and of the lunar latitude. The technique is also applicable for planning Panoramic Camera photography such that photographic contiguity is attained but redundant coverage is minimized. Graphs are included for planning mapping camera (MC) and panoramic camera (PC) photographic passes for a specific mission (i.e., specific groundtracks) to Descartes (Apollo 16), for specific missions to potential Apollo 17 sites such as Alphonsus, Proclus, Gassendi, Davy, and Tycho, and for a potential Apollo orbit-only mission with a nodal azimuth of 85 deg. Graphs are also included for determining the maximum number of revolutions which can elapse between successive MC and PC passes, for greater than or equal 55% sidelap and rectified contiguity respectively, for nodal azimuths between 5 deg and 85 deg.

  1. Liftoff of the Apollo 11 lunar landing mission

    NASA Image and Video Library

    1969-07-16

    S69-39958 (16 July 1969) --- A 70mm Airborne Lightweight Optical Tracking System (ALOTS) camera, mounted in a pod on a cargo door of a U.S. Air Force EC-135N aircraft, photographed this event in the early moments of the Apollo 11 launch. The mated Apollo spacecraft and Saturn V second (S-II) and third (S-IVB) stages pull away from the expended first (S-1C) stage. Separation occurred at an altitude of about 38 miles, some 55 miles downrange from Cape Kennedy. The aircraft's pod is 20 feet long and 5 feet in diameter. The crew of the Apollo 11 lunar landing mission are astronauts Neil A. Armstrong, Michael Collins, and Edwin E. Aldrin Jr.

  2. Apollo experience report: Mission planning for lunar module descent and ascent

    NASA Technical Reports Server (NTRS)

    Bennett, F. V.

    1972-01-01

    The premission planning, the real-time situation, and the postflight analysis for the Apollo 11 lunar descent and ascent are described. A comparison between premission planning and actual results is included. A navigation correction capability, developed from Apollo 11 postflight analysis was used successfully on Apollo 12 to provide the first pinpoint landing. An experience summary, which illustrates typical problems encountered by the mission planners, is also included.

  3. President Richard Nixon visits MSC to award Apollo 13 Mission Operations team

    NASA Technical Reports Server (NTRS)

    1970-01-01

    President Richard M. Nixon introduces Sigurd A. Sjoberg (far right), Director of Flight Operations at Manned Spacecraft Center (MSC), and the four Apollo 13 Flight Directors during the Presidnet's post-mission visit to MSC. The Flight Directors are (l.-r.) Glynn S. Lunney, Eugene A. Kranz, Gerald D. Griffin and Milton L. Windler. Dr. Thomas O. Paine, NASA Administrator, is seated at left. President Nixon was on the site to present the Presidential Medal of Freedom -- the nation's highest civilian honor -- to the Apollo 13 Mission Operations Team (35600); A wide-angle, overall view of the large crowd that was on hand to see President Richard M. Nixon present the Presidnetial Medal of Freedom to the Apollo 13 Mission Operations Team. A temporary speaker's platform was erected beside bldg 1 for the occasion (35601).

  4. Apollo 11 Launched Via Saturn V Rocket - High Angle View

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon. This high angle view of the launch was provided by a `fisheye' camera mounted on the launch tower. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard the spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  5. Surveying the Newly Digitized Apollo Metric Images for Highland Fault Scarps on the Moon

    NASA Astrophysics Data System (ADS)

    Williams, N. R.; Pritchard, M. E.; Bell, J. F.; Watters, T. R.; Robinson, M. S.; Lawrence, S.

    2009-12-01

    The presence and distribution of thrust faults on the Moon have major implications for lunar formation and thermal evolution. For example, thermal history models for the Moon imply that most of the lunar interior was initially hot. As the Moon cooled over time, some models predict global-scale thrust faults should form as stress builds from global thermal contraction. Large-scale thrust fault scarps with lengths of hundreds of kilometers and maximum relief of up to a kilometer or more, like those on Mercury, are not found on the Moon; however, relatively small-scale linear and curvilinear lobate scarps with maximum lengths typically around 10 km have been observed in the highlands [Binder and Gunga, Icarus, v63, 1985]. These small-scale scarps are interpreted to be thrust faults formed by contractional stresses with relatively small maximum (tens of meters) displacements on the faults. These narrow, low relief landforms could only be identified in the highest resolution Lunar Orbiter and Apollo Panoramic Camera images and under the most favorable lighting conditions. To date, the global distribution and other properties of lunar lobate faults are not well understood. The recent micron-resolution scanning and digitization of the Apollo Mapping Camera (Metric) photographic negatives [Lawrence et al., NLSI Conf. #1415, 2008; http://wms.lroc.asu.edu/apollo] provides a new dataset to search for potential scarps. We examined more than 100 digitized Metric Camera image scans, and from these identified 81 images with favorable lighting (incidence angles between about 55 and 80 deg.) to manually search for features that could be potential tectonic scarps. Previous surveys based on Panoramic Camera and Lunar Orbiter images found fewer than 100 lobate scarps in the highlands; in our Apollo Metric Camera image survey, we have found additional regions with one or more previously unidentified linear and curvilinear features on the lunar surface that may represent lobate thrust

  6. Artist's concept of Apollo 10 Lunar Module descending for look at moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A North American Rockwell artist's concept depicting the Apollo 10 Lunar Module descending to 50,000 ft for a close look at a lunar landing site. The Command and Service modules remain in lunar orbit. The landing area is Site 2 on the east central part of the moon in southwestern Sea of Tranquility (Mare Tranquillitatis). The site is about 62 miles east of the rim of the crater Sabine and 118 miles west-southwest of the crater Maskelyne.

  7. Characterization of Apollo Regolith by X-Ray and Electron Microbeam Techniques: An Analog for Future Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan A.

    2015-01-01

    The Apollo missions collected 382 kg of rock and regolith from the Moon; approximately 1/3 of the sample mass collected was regolith. Lunar regolith consists of well mixed rocks, minerals, and glasses less than 1-centimeter n size. The majority of most surface regolith samples were sieved into less than 1, 1-2, 2-4, and 4-10- millimiter size fractions; a portion of most samples was re-served unsieved. The initial characterization and classification of most Apollo regolith particles was done primarily by binocular microscopy. Optical classification of regolith is difficult because (1) the finest fraction of the regolith coats and obscures the textures of the larger particles, and (b) not all lithologies or minerals are uniquely identifiable optically. In recent years, we have begun to use more modern x-ray beam techniques [1-3], coupled with high resolution 3D optical imaging techniques [4] to characterize Apollo and meteorite samples as part of the curation process. These techniques, particularly in concert with SEM imaging of less than 1-millimeter regolith grain mounts, allow for the rapid characterization of the components within a regolith.

  8. U.S. President Richard Milhous Nixon Arrives Aboard U.S.S. Hornet for Apollo 11 Recovery

    NASA Technical Reports Server (NTRS)

    1969-01-01

    U.S. President Richard Milhous Nixon (center), is saluted by the honor guard of flight deck crewmen when he arrives aboard the U.S.S. Hornet, prime recovery ship for the Apollo 11 mission, to watch recovery operations and welcome the astronauts home. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) for 21 days following the mission. The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun.

  9. Quarantined Apollo 11 Astronauts Addressed by U.S. President Nixon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted by helicopter and taken to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF). Shown here are the Apollo 11 crew members (L to R) Neil Armstrong, Michael Collins, and Edwin Aldrin inside the MQF as U.S. President Richard Milhous Nixon speaks to them via intercom. The president was aboard the recovery vessel awaiting return of the astronauts. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  10. Mission analysis for the Martian Moons Explorer (MMX) mission

    NASA Astrophysics Data System (ADS)

    Campagnola, Stefano; Yam, Chit Hong; Tsuda, Yuichi; Ogawa, Naoko; Kawakatsu, Yasuhiro

    2018-05-01

    Mars Moon eXplorer (MMX) is JAXA's next candidate flagship mission to be launched in the early 2020s. MMX will explore the Martian moons and return a sample from Phobos. This paper presents the mission analysis work, focusing on the transfer legs and comparing several architectures, such as hybrid options with chemical and electric propulsion modules. The selected baseline is a chemical-propulsion Phobos sample return, which is discussed in detail with the launch- and return-window analysis. The trajectories are optimized with the jTOP software, using planetary ephemerides for Mars and the Earth; Earth re-entry constraints are modeled with simple analytical equations. Finally, we introduce an analytical approximation of the three-burn capture strategy used in the Mars system. The approximation can be used together with a Lambert solver to quickly determine the transfer Δ v costs.

  11. LUNAR SAMPLES - APOLLO XVI - JSC

    NASA Image and Video Library

    1975-03-18

    S75-23543 (April 1972) --- This Apollo 16 lunar sample (moon rock) was collected by astronaut John W. Young, commander of the mission, about 15 meters southwest of the landing site. This rock weighs 128 grams when returned to Earth. The sample is a polymict breccia. This rock, like all lunar highland breccias, is very old, about 3,900,000,000 years older than 99.99% of all Earth surface rocks, according to scientists. Scientific research is being conducted on the balance of this sample at NASA's Johnson Space Center and at other research centers in the United States and certain foreign nations under a continuing program of investigation involving lunar samples collected during the Apollo program.

  12. Endocrine, electrolyte, and fluid volume changes associated with Apollo missions

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Alexander, W. C.; Johnson, P. C.

    1975-01-01

    The endocrine and metabolic results obtained before and after the Apollo missions and the results of the limited in-flight sampling are summarized and discussed. The studies were designed to evaluate the biochemical changes in the returning Apollo crewmembers, and the areas studied included balance of fluids and electrolytes, regulation of calcium metabolism, adaptation to the environment, and regulation of metabolic processes.

  13. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-27

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet recovery ship, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. The occupied MQF was unloaded from the U.S.S. Hornet in Pearl Harbor, Hawaii. In this photo, the facility is moved from the Hornet’s dock enroute to Hickam Field where it was loaded aboard an Air Force C-141 jet transport for the flight back to Ellington Air Force Base Texas, and then on to the MSC.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-27

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. On arrival at Ellington Air Force base near the MSC, the crew, still under a 21 day quarantine in the MQF are greeted by their wives. Looking out of the facility are (L-R) Armstrong, Aldrin, and Collins. Wives are (L-R) Pat Collins, Jan Armstrong, and Joan Aldrin.

  15. Mission description. [major mission events and data collection periods during Apollo 17 lunar exploration

    NASA Technical Reports Server (NTRS)

    Baldwin, R. R.

    1973-01-01

    The accomplishments of the Apollo 17 flight are discussed. The scientific objectives included geological surveying and sampling of materials and surface features in a preselected area of the Taurus-Littrow region, deploying and activating surface experiments, and conducting inflight experiments and photographic tasks during lunar orbit and transearth coast. The individual Apollo 17 experiments and photographic tasks are presented in outline form. Charts are developed to show the major mission events and data collection periods correlated to Greenwich Mean Time and ground elapsed time. Maps of the lunar surface ground track envelope for the Apollo 17 orbiting spacecraft for revolutions one to seventy-five is shown.

  16. Quarantined Apollo 11 Astronauts Addressed by U.S. President Richard Milhous Nixon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) for 21 days. Here, U.S. President Richard Milhous Nixon gets a good laugh at something being said by Astronaut Collins (center) as astronauts Armstrong (left), and Aldrin (right) listen. The president was aboard the recovery vessel awaiting return of the astronauts. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  17. LAPIS - LAnder Package Impacting a Seismometer - A Proposal for a Semi-Hard Lander Mission to the Moon

    NASA Astrophysics Data System (ADS)

    Lange, C.

    2009-04-01

    With an increased interest on the moon within the last years, at least with several missions in orbit or under development (SELENE/Japan, Chang'e/China, Chandrayaan/India and others), there is a strong demand within the German science community to participate in this initiative, building-up a national competence regarding lunar exploration. For this purpose, a Phase-0 analysis for a small lunar semi-hard landing scenario has been performed at DLR to foster future lunar exploration missions. This study's scope was to work out a more detailed insight into the design drivers and challenges and their impact on mass and cost budgets for such a mission. LAPIS has been dedicated to the investigation of the seismic activities of the moon, additionally to some other geophysical in-situ measurements at the lunar surface. In fact, the current status of the knowledge and understanding of lunar seismic activities leads to a range of open questions which have not been answered so far by the various Apollo missions in the past and could now possibly be answered by the studied LAPIS mission. Among these are the properties of the lunar core, the origin of deep and shallow moonquakes and the occurrence of micro-meteoroids. Therefore, as proposed first for LAPIS on the LEO mission, a payload of a short period micro-seismometer, based on European and American predevelopments, has been suggested. A staged mission scenario will be described, using a 2-module spacecraft with a propulsion part and a landing part, the so called LAPIS-PROP and LAPIS-LAND. In this scenario, the LAPIS-PROP module will do the cruise, until the spacecraft reaches an altitude of 100 m above the moon, after which the landing module will separate and continue to the actual semi-hard landing, which is based on deformable structures. Further technical details, e.g. considering the subsystem technologies, have been addressed within the performed study. These especially critical and uniquely challenging issues, such

  18. Lost moon, saved lives: using the movie Apollo 13 as a video primer in behavioral skills for simulation trainees and instructors.

    PubMed

    Halamek, Louis P

    2010-10-01

    Behavioral skills such as effective communication, teamwork, and leadership are critically important to successful outcomes in patient care, especially in resuscitation situations where correct decisions must be made rapidly. However, historically, these important skills have rarely been specifically addressed in learning programs directed at healthcare professionals. Not only have most healthcare professionals had little or no formal education and training in applying behavioral skills to their patient care activities but also many of those serving as instructors and content experts for training programs have few resources available that clearly illustrate what these skills are and how they may be used in the context of real clinical situations. This represents a serious shortcoming in the education and training of healthcare professionals and stands in distinct contrast to other industries.Aerospace, similar to other high-consequence industries, has a long history of the use of simulation to improve human performance and reduce risk: astronauts and the engineers in Mission Control spend hundreds of hours in simulated flight in preparation for every mission. The value of time spent in the simulator was clearly illustrated during the flight of Apollo 13, the third mission to land men on the moon. The Apollo 13 crew had to overcome a number of life-threatening technical and medical problems, and it was their simulation-based training that allowed them to display the teamwork, ingenuity, and determination needed to return to earth safely.The movie Apollo 13 depicts in a highly realistic manner the events that occurred during the flight, including the actions of the crew in space and those in Mission Control in Houston. Three scenes from this movie are described in this article; each serves as a useful example for healthcare professionals of the importance of simulation-based learning and the application of behavioral skills to successful resolution of crises. This

  19. Apollo 11 Launched Via the Saturn V Rocket-High Angle View

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first lunar landing mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man's first lunar landing. This high angle view of the launch was provided by a `fisheye' camera mounted on the launch tower. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  20. Planning for the Future, a Look from Apollo to the Present

    NASA Technical Reports Server (NTRS)

    Segrera, David

    2008-01-01

    Future missions out of low Earth orbit, returning to the moon and Mars, will be some of the most complicated endeavors ever attempted by mankind. It will require the wealth of nations and the dedicated efforts of thousand of individuals working in a concerted effort to take man to the moon, Mars and beyond. These missions will require new equipment and new approaches to optimize our limited resources and time in space. This daily planning and optimization which currently is being performed by scores of people in MCC Houston and around the world will need to adapt to the challenges faced far from Earth. By studying the processes, methodologies, and tools employed from Apollo, Skylab, Shuttle, ISS, and other programs such as NEEMO, we can learn from the past to plan for the future. This paper will explore the planning process used from Apollo onward and will discuss their relevancy in future applications.

  1. Re-Assessment of "Water on the Moon" after LCROSS

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K.; Pillinger, Colin T.

    2010-01-01

    The LCROSS Mission has produced information about the possible presence of water in a permanently shaded regions of the Moon. Without the opportunity to have a controlled impact into a sun-lite site on the Moon, the LCROSS information must be carefully evaluated. The Apollo samples have provided a large amount of information on the nature of lunar hydrogen, water and other volatiles and this information must be considered in any interpretation of the observed data from the LCROSS and other lunar missions. Perhaps the volatiles seen by the LRO/LCROSS mission might be identical to lunar volatiles within ordinary lunar equatorial materials. Until the control experiment of having an impactor strike an equatorially site is carried out, caution must be taken when interpreting the results from the LCROSS mission.

  2. Wide angle view of Mission Control Center during Apollo 14 transmission

    NASA Image and Video Library

    1971-01-31

    S71-17122 (31 Jan. 1971) --- A wide angle overall view of the Mission Operations Control Room (MOCR) in the Mission Control Center at the Manned spacecraft Center. This view was photographed during the first color television transmission from the Apollo 14 Command Module. Projected on the large screen at the right front of the MOCR is a view of the Apollo 14 Lunar Module, still attached to the Saturn IVB stage. The Command and Service Modules were approaching the LM/S-IVB during transposition and docking maneuvers.

  3. Prime crew of Apollo/Saturn Mission 204 prepares for water egress training

    NASA Image and Video Library

    1966-10-27

    S66-58501 (27 Oct. 1966) --- The prime crew of the first manned Apollo Space Flight, Apollo/Saturn (AS) mission 204, is suited up aboard the NASA Motor Vessel Retriever (MVR) in preparation for Apollo water egress training in the Gulf of Mexico. Left to right, are astronauts Edward H. White II, senior pilot; Virgil I. Grissom, command pilot; and Roger B. Chaffee, pilot.

  4. Estimates of the moon's geometry using lunar orbiter imagery and Apollo laser altimeter data

    NASA Technical Reports Server (NTRS)

    Jones, R. L.

    1973-01-01

    Selenographic coordinates for about 6000 lunar points identified on the Lunar Orbiter photographs are tabulated and have been combined with those lunar radii derived from the Apollo 15 laser altimeter data. These coordinates were used to derive that triaxial ellipsoid which best fits the moon's irregular surface. Fits were obtaind for different constraints on both the axial orientations and the displacement of the center of the ellipsoid. The semiaxes for the unconstrained ellipsoid were a = 1737.6 km, b = 1735.6 km, and c = 1735.0 km which correspond to a mean radius of about 1736.1 km. These axes were found to be nearly parallel to the moon's principal axes of inertia, and the origin was displaced about 2.0 km from the moon's center of gravity in a direction away from the earth and to the south of the lunar equator.

  5. Mission Control Center (MCC) View - Apollo 13 Oxygen Cell Failure - MSC

    NASA Image and Video Library

    1970-04-15

    S70-35014 (15 April 1970) --- A group of flight controllers gathers around the console of Glenn S. Lunney (seated, nearest camera), Shift 4 flight director, in the Mission Operations Control Room (MOCR) of Mission Control Center (MCC), located in Building 30 at the Manned Spacecraft Center (MSC). Their attention is drawn to a weather map of the proposed landing site in the South Pacific Ocean. Among those looking on is Dr. Christopher C. Kraft, deputy director, MSC, standing in black suit, on right. When this photograph was taken, the Apollo 13 lunar landing mission had been canceled, and the problem-plagued Apollo 13 crew members were in trans-Earth trajectory attempting to bring their crippled spacecraft back home.

  6. Long-lasting Science Returns from the Apollo Heat Flow Experiments

    NASA Astrophysics Data System (ADS)

    Nagihara, S.; Taylor, P. T.; Williams, D. R.; Zacny, K.; Hedlund, M.; Nakamura, Y.

    2012-12-01

    The Apollo astronauts deployed geothermal heat flow instruments at landing sites 15 and 17 as part of the Apollo Lunar Surface Experiments Packages (ALSEP) in July 1971 and December 1972, respectively. These instruments continuously transmitted data to the Earth until September 1977. Four decades later, the data from the two Apollo sites remain the only set of in-situ heat flow measurements obtained on an extra-terrestrial body. Researchers continue to extract additional knowledge from this dataset by utilizing new analytical techniques and by synthesizing it with data from more recent lunar orbital missions such as the Lunar Reconnaissance Orbiter. In addition, lessons learned from the Apollo experiments help contemporary researchers in designing heat flow instruments for future missions to the Moon and other planetary bodies. For example, the data from both Apollo sites showed gradual warming trends in the subsurface from 1971 to 1977. The cause of this warming has been debated in recent years. It may have resulted from fluctuation in insolation associated with the 18.6-year-cycle precession of the Moon, or sudden changes in surface thermal environment/properties resulting from the installation of the instruments and the astronauts' activities. These types of re-analyses of the Apollo data have lead a panel of scientists to recommend that a heat flow probe carried on a future lunar mission reach 3 m into the subsurface, ~0.6 m deeper than the depths reached by the Apollo 17 experiment. This presentation describes the authors' current efforts for (1) restoring a part of the Apollo heat flow data that were left unprocessed by the original investigators and (2) designing a compact heat flow instrument for future robotic missions to the Moon. First, at the conclusion of the ALSEP program in 1977, heat flow data obtained at the two Apollo sites after December 1974 were left unprocessed and not properly archived through NASA. In the following decades, heat flow data

  7. Long-Lasting Science Returns from the Apollo Heat Flow Experiments

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Taylor, P. T.; Williams, D. R.; Zacny, K.; Hedlund, M.; Nakamura, Y.

    2012-01-01

    The Apollo astronauts deployed geothermal heat flow instruments at landing sites 15 and 17 as part of the Apollo Lunar Surface Experiments Packages (ALSEP) in July 1971 and December 1972, respectively. These instruments continuously transmitted data to the Earth until September 1977. Four decades later, the data from the two Apollo sites remain the only set of in-situ heat flow measurements obtained on an extra-terrestrial body. Researchers continue to extract additional knowledge from this dataset by utilizing new analytical techniques and by synthesizing it with data from more recent lunar orbital missions such as the Lunar Reconnaissance Orbiter. In addition, lessons learned from the Apollo experiments help contemporary researchers in designing heat flow instruments for future missions to the Moon and other planetary bodies. For example, the data from both Apollo sites showed gradual warming trends in the subsurface from 1971 to 1977. The cause of this warming has been debated in recent years. It may have resulted from fluctuation in insolation associated with the 18.6-year-cycle precession of the Moon, or sudden changes in surface thermal environment/properties resulting from the installation of the instruments and the astronauts' activities. These types of reanalyses of the Apollo data have lead a panel of scientists to recommend that a heat flow probe carried on a future lunar mission reach 3 m into the subsurface, approx 0.6 m deeper than the depths reached by the Apollo 17 experiment. This presentation describes the authors current efforts for (1) restoring a part of the Apollo heat flow data that were left unprocessed by the original investigators and (2) designing a compact heat flow instrument for future robotic missions to the Moon. First, at the conclusion of the ALSEP program in 1977, heat flow data obtained at the two Apollo sites after December 1974 were left unprocessed and not properly archived through NASA. In the following decades, heat flow

  8. Apollo 12 Mission image - Modular Equipment Stowage Assemble (MESA) and the Fuel Cask on the Lunar Module (LM)

    NASA Image and Video Library

    1969-11-19

    AS12-48-7034 (19 Nov. 1969) --- A close-up view of a portion of quadrant II of the descent stage of the Apollo 12 Lunar Module (LM), photographed during the Apollo 12 extravehicular activity (EVA). At lower left is the LM's Y footpad. The empty Radioisotope Thermoelectric Generator (RTG) fuel cask is at upper right. The fuel capsule has already been removed and placed in the RTG. The RTG furnishes power for the Apollo Lunar Surface Experiments Package (ALSEP) which the Apollo 12 astronauts deployed on the moon. The LM's descent engine skirt is in the center background. The rod-like object protruding out from under the footpad is a lunar surface sensing probe. Astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit while astronauts Charles Conrad Jr., commander; and Alan L. Bean, lunar module pilot, descended in the LM to explore the moon.

  9. Astronomy from the Moon and International Lunar Observatory Missions

    NASA Astrophysics Data System (ADS)

    Durst, S.; Takahashi, Y. D.

    2018-04-01

    Astronomy from the Moon provides a promising new frontier for 21st century astrophysics and related science activity. International Lunar Observatory Association is an enterprise advancing missions to the Moon for observation and communication.

  10. Apollo 40th Anniversary Morning Television

    NASA Image and Video Library

    2009-07-19

    Apollo 11 astronaut Buzz Aldrin, the second man to walk on the Moon, seated left, responds to a question during a live television interview on Monday, July 20, 2009, at NASA Headquarters in Washington as Apollo 12 astronaut Alan Bean and Apollo 16 astronaut Charles Duke, right look on. The three sat in for interviews with morning talks shows covering the 40th Anniversary of the Apollo 11 landing on the Moon. Photo Credit: (NASA/Paul E. Alers)

  11. Liftoff of the Apollo 11 lunar landing mission

    NASA Image and Video Library

    1969-07-16

    S69-39957 (16 July 1969) --- A 70mm Airborne Lightweight Optical Tracking System (ALOTS) took this picture. ALOTS tracking camera mounted on an Air Force EC-135 aircraft flying at about 40,000 feet altitude photographed this event in the early moments of the Apollo 11 launch. The 7.6 million-pound thrust Saturn V (S-1C) first stage boosts the space vehicle to an altitude of 36.3 nautical miles at 50.6 nautical miles downrange in 2 minutes 40.8 seconds. The S-1C stage separates at 2 minutes 41.6 seconds after liftoff. The crew of the Apollo 11 NASA's first lunar landing mission are astronauts Neil A. Armstrong, Michael Collins, and Edwin E. Aldrin Jr. The Apollo 11 launch was at 9:32 a.m. (EDT), July 16, 1969.

  12. A mission to Mercury and a mission to the moons of Mars

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Two Advanced Design Projects were completed this academic year at Penn State - a mission to the planet Mercury and a mission to the moons of Mars (Phobos and Deimos). At the beginning of the fall semester the students were organized into six groups and given their choice of missions. Once a mission was chosen, the students developed conceptual designs. These designs were then evaluated at the end of the fall semester and combined into two separate mission scenarios. To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form two mission teams. An integration team consisting of two members from each group was formed for each mission team so that communication and exchange of information would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Lewis Research Center Advanced Projects Office. Robotic planetary missions throughout the solar system can be considered valuable precursors to human visits and test beds for innovative technology. For example, by studying the composition of the Martian moons, scientists may be able to determine if their resources may be used or synthesized for consumption during a first human visit.

  13. A mission to Mercury and a mission to the moons of Mars

    NASA Astrophysics Data System (ADS)

    1993-07-01

    Two Advanced Design Projects were completed this academic year at Penn State - a mission to the planet Mercury and a mission to the moons of Mars (Phobos and Deimos). At the beginning of the fall semester the students were organized into six groups and given their choice of missions. Once a mission was chosen, the students developed conceptual designs. These designs were then evaluated at the end of the fall semester and combined into two separate mission scenarios. To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form two mission teams. An integration team consisting of two members from each group was formed for each mission team so that communication and exchange of information would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Lewis Research Center Advanced Projects Office. Robotic planetary missions throughout the solar system can be considered valuable precursors to human visits and test beds for innovative technology. For example, by studying the composition of the Martian moons, scientists may be able to determine if their resources may be used or synthesized for consumption during a first human visit.

  14. Apollo 9 Mission image - Earth Observation - Georgia

    NASA Image and Video Library

    1969-03-03

    AS09-23-3567 (3-13 March 1969) --- Oblique view of the Atlanta, Georgia area as photographed from the Apollo 9 spacecraft during its Earth-orbital mission. The Chattahoochee River runs from Lake Sidney Lanier, near Gainesville (at upper left corner), south-westward by Atlanta and between Newnan and Carrollton (lower right). Allatoona Lake is at left center.

  15. Declaring the Republic of the Moon - Some artistic strategies for re-imagining the Moon.

    NASA Astrophysics Data System (ADS)

    La Frenais., R.

    2014-04-01

    Sooner or later, humans are going back to the Moonwhether to mine it, to rehearse for a Mars mission or to just live there. But how will human activity there reflect what has happened on Earth since the last moon mission, to reflect the diversity and political and social changes that have happened since? Can artists imagine what it would be like to live on the Moon? Artists are already taking part in many scientific endeavours, becoming involved in emerging fields such as synthetic bioloogy, nanotechology, ecological remediation and enthusiastically participating in citizen science. There are already artists in Antarctica. It should be inevitable that artists will sooner or later accompany the next visit by humans to the Moon. But why wait? Artists are already imagining how it would be to live on the Moon, whether in their imaginations or though rehearsals in lunar analogues. In the recent exhibition 'Republic of the Moon' a number of visionary strategies were employed, from the use of earth-moon-earth 'moonbouncing' (Katie Paterson) to the breeding and imprinting of real geese as imagined astronauts. (Agnes Meyer-Brandis). The Outer Space Treaty and the (unsigned) Moon treaty were re-analysed and debates and even small demonstrations were organised protesting (or demanding) the industrial exploitation of the Moon. Fortuitously, China's Chang-e mission landed during the exhibition and the life and death of the rover Jade Rabbit brought a real life drama to the Republic of the Moon. There have been other artistic interventions into lunar exploration, including Aleksandra Mir's First Woman on the Moon, Alicia Framis's Moonlife project and of course the historic inclusion of two artistic artefacts into the Apollo missions, Monument to the Fallen Astronaut (still on the Moon) and the Moon Museum, reportedly inserted by an engineer into the leg of the Lunar Exploration Module. With the worldwide race by the Global Lunar X Prize teams to land a rover independently of any

  16. The Moon's North Pole

    NASA Image and Video Library

    2017-12-08

    NASA image release September 7, 2011 The Earth's moon has been an endless source of fascination for humanity for thousands of years. When at last Apollo 11 landed on the moon's surface in 1969, the crew found a desolate, lifeless orb, but one which still fascinates scientist and non-scientist alike. This image of the moon's north polar region was taken by the Lunar Reconnaissance Orbiter Camera, or LROC. One of the primary scientific objectives of LROC is to identify regions of permanent shadow and near-permanent illumination. Since the start of the mission, LROC has acquired thousands of Wide Angle Camera images approaching the north pole. From these images, scientists produced this mosaic, which is composed of 983 images taken over a one month period during northern summer. This mosaic shows the pole when it is best illuminated, regions that are in shadow are candidates for permanent shadow. Image Credit: NASA/GSFC/Arizona State University NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. ArcGIS Digitization of Apollo Surface Traverses

    NASA Technical Reports Server (NTRS)

    Petro, N. E.; Bleacher, J. E.; Gladdis, L. R.; Garry, W. B.; Lam, F.; Mest, S. C.

    2012-01-01

    The Apollo surface activities were documented in extraordinary detail, with every action performed by the astronauts while on the surface recorded either in photo, audio, film, or by written testimony [1]. The samples and in situ measurements the astronauts collected while on the lunar surface have shaped our understanding of the geologic history of the Moon, and the earliest history and evolution of the inner Solar System. As part of an ongoing LASERfunded effort, we are digitizing and georeferencing data from astronaut traverses and spatially associating them to available, co-registered remote sensing data. Here we introduce the products produced so far for Apollo 15, 16, and 17 missions.

  18. Apollo rocks, fines and soil cores

    NASA Astrophysics Data System (ADS)

    Allton, J.; Bevill, T.

    Apollo rocks and soils not only established basic lunar properties and ground truth for global remote sensing, they also provided important lessons for planetary protection (Adv. Space Res ., 1998, v. 22, no. 3 pp. 373-382). The six Apollo missions returned 2196 samples weighing 381.7 kg, comprised of rocks, fines, soil cores and 2 gas samples. By examining which samples were allocated for scientific investigations, information was obtained on usefulness of sampling strategy, sampling devices and containers, sample types and diversity, and on size of sample needed by various disciplines. Diversity was increased by using rakes to gather small rocks on the Moon and by removing fragments >1 mm from soils by sieving in the laboratory. Breccias and soil cores are diverse internally. Per unit weight these samples were more often allocated for research. Apollo investigators became adept at wringing information from very small sample sizes. By pushing the analytical limits, the main concern was adequate size for representative sampling. Typical allocations for trace element analyses were 750 mg for rocks, 300 mg for fines and 70 mg for core subsamples. Age-dating and isotope systematics allocations were typically 1 g for rocks and fines, but only 10% of that amount for core depth subsamples. Historically, allocations for organics and microbiology were 4 g (10% for cores). Modern allocations for biomarker detection are 100mg. Other disciplines supported have been cosmogenic nuclides, rock and soil petrology, sedimentary volatiles, reflectance, magnetics, and biohazard studies . Highly applicable to future sample return missions was the Apollo experience with organic contamination, estimated to be from 1 to 5 ng/g sample for Apollo 11 (Simonheit &Flory, 1970; Apollo 11, 12 &13 Organic contamination Monitoring History, U.C. Berkeley; Burlingame et al., 1970, Apollo 11 LSC , pp. 1779-1792). Eleven sources of contaminants, of which 7 are applicable to robotic missions, were

  19. Saturn Apollo Program

    NASA Image and Video Library

    1969-01-09

    Neil Armstrong, donned in his space suit, poses for his official Apollo 11 portrait. Armstrong began his flight career as a naval aviator. He flew 78 combat missions during the Korean War. Armstrong joined the NASA predecessor, NACA (National Advisory Committee for Aeronautics), as a research pilot at the Lewis Laboratory in Cleveland and later transferred to the NACA High Speed Flight Station at Edwards AFB, California. He was a project pilot on many pioneering high speed aircraft, including the 4,000 mph X-15. He has flown over 200 different models of aircraft, including jets, rockets, helicopters, and gliders. In 1962, Armstrong was transferred to astronaut status. He served as command pilot for the Gemini 8 mission, launched March 16, 1966, and performed the first successful docking of two vehicles in space. In 1969, Armstrong was commander of Apollo 11, the first manned lunar landing mission, and gained the distinction of being the first man to land a craft on the Moon and the first man to step on its surface. Armstrong subsequently held the position of Deputy Associate Administrator for Aeronautics, NASA Headquarters Office of Advanced Research and Technology, from 1970 to 1971. He resigned from NASA in 1971.

  20. Apollo 12 - Bean - Conrad - during geological field trip

    NASA Image and Video Library

    1969-10-24

    S69-55667 (10 Oct. 1969) --- Astronauts Charles Conrad Jr. and Alan L. Bean train for their upcoming Apollo 12 lunar landing mission. Here they are entering a simulated lunar surface area near Flagstaff, Arizona. Both are wearing lunar surface cameras strapped to their bodies. Conrad (left), the Apollo 12 mission commander, is carrying some of the tools from the geological tool container. The geological tool container, being carried here by Bean, the lunar module pilot, is similar to the one which will be used during scheduled extravehicular activity (EVA) periods on Nov. 19 and 20, 1969, on the lunar surface. While astronauts Conrad and Bean conduct their scheduled EVA on the moon's surface, astronaut Richard F. Gordon Jr., command module pilot, will man the Command and Service Modules (CSM) in lunar orbit.

  1. Mission objectives for geological exploration of the Apollo 16 landing site

    NASA Technical Reports Server (NTRS)

    Muehlberger, W. R.; Horz, F.; Sevier, J. R.; Ulrich, G. E.

    1980-01-01

    The objectives of the Apollo 16 mission to delineate the nature and origin of two major physiographic units of the central lunar highlands are discussed. Surface exploration plans, specific sampling procedures, operational constraints, and suites of samples that were collected for specific local objectives are described. Pre-mission hypotheses that favored a volcanic origin for the Cayley plains as well as the Descartes mountains were proved to be wrong by the mission results, but not enough samples have been studied to draw any other definite conclusions. Two contrasting schools of thought about the origin of the Apollo fragmental impact deposits are described: one maintains that the samples are predominantly of local origin, while the other suggests more distant, basin-related sources.

  2. Dust Storm Impacts on Human Mars Mission Equipment and Operations

    NASA Technical Reports Server (NTRS)

    Rucker, M. A.

    2017-01-01

    Although it is tempting to use dust impacts on Apollo lunar exploration mission equipment and operations as an analog for human Mars exploration, there are a number of important differences to consider. Apollo missions were about a week long; a human Mars mission will start at least two years before crew depart from Earth, when cargo is pre-deployed, and crewed mission duration may be over 800 days. Each Apollo mission landed at a different site; although no decisions have been made, NASA is investigating multiple human missions to a single Mars landing site, building up capability over time and lowering costs by re-using surface infrastructure. Apollo missions used two, single-use spacecraft; a human Mars mission may require as many as six craft for different phases of the mission, most of which would be re-used by subsequent crews. Apollo crews never ventured more than a few kilometers from their lander; Mars crews may take "camping trips" a hundred kilo-meters or more from their landing site, utilizing pressurized rovers to explore far from their base. Apollo mission designers weren't constrained by human for-ward contamination of the Moon; if we plan to search for evidence of life on Mars we'll have to be more careful. These differences all impact how we will mitigate and manage dust on our human Mars mission equipment and operations.

  3. Apollo 13 creativity: in-the-box innovation.

    PubMed

    King, M J

    1997-01-01

    A study of the Apollo 13 mission, based on the themes showcased in the acclaimed 1995 film, reveals the grace under pressure that is the condition of optimal creativity. "Apollo 13 Creativity" is a cultural and creative problem-solving appreciation of the thinking style that made the Apollo mission succeed: creativity under severe limitations. Although creativity is often considered a "luxury good," of concern mainly for personal enrichment, the arts, and performance improvement, in life-or-death situations it is the critical pathway not only to success but to survival. In this case. the original plan for a moon landing had to be transformed within a matter of hours into a return to earth. By precluding failure as an option at the outset, both space and ground crews were forced to adopt a new perspective on their resources and options to solve for a successful landing. This now-classic problem provides a range of principles for creative practice and motivation applicable in any situation. The extreme situation makes these points dramatically.

  4. Apollo Video Photogrammetry Estimation of Plume Impingement Effects

    NASA Technical Reports Server (NTRS)

    Immer, Christopher; Lane, John; Metzger, Philip; Clements, Sandra

    2008-01-01

    Each of the six Apollo mission landers touched down at unique sites on the lunar surface. Aside from the Apollo 12 landing site located 180 meters from the Surveyor III lander, plume impingement effects on ground hardware during the landings were largely not an issue. The Constellation Project's planned return to the moon requires numerous landings at the same site. Since the top few centimeters are loosely packed regolith, plume impingement from the lander ejects the granular material at high velocities. With high vacuum conditions on the moon (10 (exp -14) to 10 (epx -12) torr), motion of all particles is completely ballistic. Estimates from damage to the Surveyor III show that the ejected regolith particles to be anywhere 400 m/s to 2500 m/s. It is imperative to understand the physics of plume impingement to safely design landing sites for the Constellation Program.

  5. Apollo 11 Facts Project [EVA Training/Washington, D. C. Tour

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Footage shows the crew of Apollo 11, Commander Neil Armstrong, Lunar Module Pilot Edwin Aldrin Jr., and Command Module Pilot Michael Collins, during various pre-mission activities. They are seen training for the extravehicular activity on the surface of the Moon, giving speeches in front of the White House, and during a parade in Houston.

  6. Apollo 12 Mission image - Astronaut Alan L. Bean,lunar module pilot,and two U.S. spacecraft

    NASA Image and Video Library

    1969-11-20

    AS12-48-7136 (20 Nov. 1969) --- Astronaut Charles Conrad Jr., commander, examines the unmanned Surveyor 3 spacecraft during the second Apollo 12 extravehicular activity (EVA). In the background is the lunar module, parked where the crew had landed it in the Ocean of Storms only 600 feet from Surveyor 3. This series of pictures documents the only occasion wherein Apollo astronauts landed near or had hands-on contact with another spacecraft which had arrived on the moon's surface well ahead of them. This picture was taken by astronaut Alan L. Bean, lunar module pilot. The television camera and several other pieces were taken from Surveyor 3 and brought back to Earth for scientific examination. Surveyor 3 soft-landed on the moon on April 19, 1967. Astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit while astronauts Conrad and Bean descended in the LM to explore the moon. Photo credit: NASA

  7. Apollo 12 Astronauts Peer Out of the Mobile Quarantine Facility

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The smiling Apollo 12 astronauts peer out of the window of the mobile quarantine facility aboard the recovery ship, USS Hornet. Pictured (Left to right) are Spacecraft Commander, Charles Conrad; Command Module (CM) Pilot, Richard Gordon; and Lunar Module (LM) Pilot, Alan L. Bean. The crew were housed in the quarantine facility immediately after the Pacific recovery operation took place. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 returned safely to Earth on November 24, 1969.

  8. Magnetism and the interior of the moon. [measured at Apollo landing sites

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    During the time period 1961-1972 eleven magnetometers were sent to the moon. The results of lunar magnetometer data analysis are reviewed, with emphasis on the lunar interior. Magnetic fields have been measured on the lunar surface at the Apollo 12, 14, 15, and 16 landing sites. The remanent field values at these sites are given. Satellite and surface measurements show strong evidence that the lunar crust is magnetized over much of the lunar globe. The origin of the lunar remanent field is not yet satisfactorily understood; several source models are presented. Simultaneous data from the Apollo 12 lunar surface magnetometer and the Explorer 35 Ames magnetometer are used to construct a wholemoon hysteresis curve, from which the global lunar permeability is determined. Total iron abundance is calculated for two assumed compositional models of the lunar interior. Other lunar models with a small iron core and with a shallow iron-rich layer are also discussed in light of the measured global permeability.

  9. Success Factors in Human Space Programs - Why Did Apollo Succeed Better Than Later Programs?

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2015-01-01

    The Apollo Program reached the moon, but the Constellation Program (CxP) that planned to return to the moon and go on to Mars was cancelled. Apollo is NASA's greatest achievement but its success is poorly understood. The usual explanation is that President Kennedy announced we were going to the moon, the scientific community and the public strongly supported it, and Congress provided the necessary funding. This is partially incorrect and does not actually explain Apollo's success. The scientific community and the public did not support Apollo. Like Apollo, Constellation was announced by a president and funded by Congress, with elements that continued on even after it was cancelled. Two other factors account for Apollo's success. Initially, the surprise event of Uri Gagarin's first human space flight created political distress and a strong desire for the government to dramatically demonstrate American space capability. Options were considered and Apollo was found to be most effective and technically feasible. Political necessity overrode both the lack of popular and scientific support and the extremely high cost and risk. Other NASA human space programs were either canceled, such as the Space Exploration Initiative (SEI), repeatedly threatened with cancellation, such as International Space Station (ISS), or terminated while still operational, such as the space shuttle and even Apollo itself. Large crash programs such as Apollo are initiated and continued if and only if urgent political necessity produces the necessary political will. They succeed if and only if they are technically feasible within the provided resources. Future human space missions will probably require gradual step-by-step development in a more normal environment.

  10. View of Mission Control Center during the Apollo 13 liftoff

    NASA Image and Video Library

    1970-04-11

    S70-34628 (11 April 1970) --- Astronaut Thomas K. (Ken) Mattingly II, who was scheduled as a prime crew member for the Apollo 13 lunar landing mission but was replaced in the final hours when it was discovered he had been exposed to measles, watches the liftoff phase of the mission. He is seated at a console in the Mission Control Center’s (MCC) Mission Operations Control Room (MOCR). Scientist-astronaut Joseph P. Kerwin, a spacecraft communicator for the mission, looks on at right.

  11. Activity in the Mission Control Center during Apollo 14

    NASA Image and Video Library

    1971-02-04

    S71-17610 (4 Feb. 1971) --- Partial view of activity in the Mission Operations Control Room in the Mission Control Center at the time the Apollo 14 S-IVB stage impacted on the lunar surface. The flight director's console is in the foreground. Eugene F. Kranz, chief of the MSC Flight Control Division, is in the right foreground. Seated at the console is Glynn S. Lunney, head of the Flight Director Office, Flight Control Division. Facing the camera is Gerald D. Griffin, flight director of the Third (Gold) Team. A seismic reading from the impact can be seen in the center background. The S-IVB impacted on the lunar surface at 1:40:54 a.m. (CST), Feb. 4, 1971, about 90 nautical miles south-southwest of the Apollo 12 passive seismometer. The energy release was comparable to 11 tons of TNT.

  12. Stennis engineer part of LCROSS moon mission

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Karma Snyder, a project manager at NASA's John C. Stennis Space Center, was a senior design engineer on the RL10 liquid rocket engine that powered the Centaur, the upper stage of the rocket used in NASA's Lunar CRater Observation and Sensing Satellite (LCROSS) mission in October 2009. Part of the LCROSS mission was to search for water on the moon by striking the lunar surface with a rocket stage, creating a plume of debris that could be analyzed for water ice and vapor. Snyder's work on the RL10 took place from 1995 to 2001 when she was a senior design engineer with Pratt & Whitney Rocketdyne. Years later, she sees the project as one of her biggest accomplishments in light of the LCROSS mission. 'It's wonderful to see it come into full service,' she said. 'As one of my co-workers said, the original dream was to get that engine to the moon, and we're finally realizing that dream.'

  13. Apollo 10 and 11 crews photographed during Apollo 10 debriefing

    NASA Image and Video Library

    1969-06-03

    S69-35504 (June 1969) --- The prime crews of the Apollo 10 lunar orbit mission and the Apollo 11 lunar landing mission are photographed during an Apollo 10 postflight de-briefing session. Clockwise, from left foreground, are astronauts Michael Collins, Apollo 11 command module pilot; Edwin E. Aldrin Jr., Apollo 11 lunar module pilot; Eugene A. Cernan, Apollo 10 lunar module pilot; Thomas P. Stafford, Apollo 10 commander; Neil A. Armstrong, Apollo 11 commander; and John W. Young, Apollo 10 command module pilot.

  14. Apollo 10 and 11 crews photographed during Apollo 10 debriefing

    NASA Image and Video Library

    1969-06-03

    S69-35507 (June 1969) --- The prime crews of the Apollo 10 lunar orbit mission and the Apollo 11 lunar landing mission are photographed during an Apollo 10 postflight de-briefing session. Clockwise, from left, are astronauts Michael Collins, Apollo 11 command module pilot; Edwin E. Aldrin Jr., Apollo 11 lunar module pilot; Eugene A. Cernan, Apollo 10 lunar module pilot; Thomas P. Stafford, Apollo 10 commander; Neil A. Armstrong, Apollo 11 commander; and John W. Young, Apollo 10 command module pilot.

  15. Apollo 8 Mission image,Target of Opportunity (T/O) 10

    NASA Image and Video Library

    1968-12-21

    Apollo 8,Moon,Target of Opportunity (T/O) 10, Various targets. Latitude 18 degrees South,Longitude 163.50 degrees West. Camera Tilt Mode: High Oblique. Direction: South. Sun Angle 12 degrees. Original Film Magazine was labeled E. Camera Data: 70mm Hasselblad; F-Stop: F-5.6; Shutter Speed: 1/250 second. Film Type: Kodak SO-3400 Black and White,ASA 40. Other Photographic Coverage: Lunar Orbiter 1 (LO I) S-3. Flight Date: December 21-27,1968.

  16. Saturn Apollo Program

    NASA Image and Video Library

    1971-08-01

    This photograph of the Lunar Roving Vehicle (LRV) was taken during the Apollo 15 mission. Powered by battery, the lightweight electric car greatly increased the range of mobility and productivity on the scientific traverses for astronauts. It weighed 462 pounds (77 pounds on the Moon) and could carry two suited astronauts, their gear and cameras, and several hundred pounds of bagged samples. The LRV's mobility was quite high. It could climb and descend slopes of about 25 degrees. The LRV was designed and developed by the Marshall Space Flight Center and built by the Boeing Company.

  17. NASA Administrator Dan Goldin speaks at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA Administrator Daniel S. Goldin addresses the audience at the Apollo 11 anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7.

  18. Orion Navigation Sensitivities to Ground Station Infrastructure for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Getchius, Joel; Kukitschek, Daniel; Crain, Timothy

    2008-01-01

    The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans to the International Space Station and back to the Moon for the first time since the Apollo program. As in the Apollo and Space Shuttle programs, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of the CEV. In the case of lunar missions, the ground station infrastructure consisting of approximately twelve stations distributed about the Earth and known as the Apollo Manned Spaceflight Network, no longer exists. Therefore, additional tracking resources will have to be allocated or constructed to support mission operations for Orion lunar missions. This paper examines the sensitivity of Orion navigation for lunar missions to the number and distribution of tracking sites that form the ground station infrastructure.

  19. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-20

    The first manned lunar landing mission, Apollo 11, launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins, remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon in the Sea of Tranquility. The LM was a two part spacecraft. Its lower or descent stage had the landing gear, engines, and fuel needed for the landing. When the LM blasted off the Moon, the descent stage served as the launching pad for its companion ascent stage, which was also home for the two astronauts on the surface of the Moon. The LM was full of gear with which to communicate, navigate, and rendezvous. It also had its own propulsion system, and an engine to lift it off the Moon and send it on a course toward the orbiting CM. This photograph shows a close up of the LM on the Lunar surface.

  20. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-20

    The first manned lunar landing mission, Apollo 11, launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins, remained in a parking orbit around the Moon, while the LM, named “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon in the Sea of Tranquility. The LM was a two part spacecraft. Its lower or descent stage had the landing gear, engines, and fuel needed for the landing. When the LM blasted off the Moon, the descent stage served as the launching pad for its companion ascent stage, which was also home for the two astronauts on the surface of the Moon. The LM was full of gear with which to communicate, navigate, and rendezvous. It also had its own propulsion system, and an engine to lift it off the Moon and send it on a course toward the orbiting CM. In this photograph Aldrin is seen near the leg of the LM.

  1. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-20

    The first manned lunar landing mission, Apollo 11, launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins, remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon in the Sea of Tranquility. The LM was a two part spacecraft. Its lower or descent stage had the landing gear, engines, and fuel needed for the landing. When the LM blasted off the Moon, the descent stage served as the launching pad for its companion ascent stage, which was also home for the two astronauts on the surface of the Moon. The LM was full of gear with which to communicate, navigate, and rendezvous. It also had its own propulsion system, and an engine to lift it off the Moon and send it on a course toward the orbiting CM. Aldrin is pictured here next to the LM on the lunar surface.

  2. A Simulated Geochemical Rover Mission to the Taurus-Littrow Valley of the Moon

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.; Haskin, Larry A.; Jolliff, Bradley L.

    1995-01-01

    We test the effectiveness of using an alpha backscatter, alpha-proton, X ray spectrometer on a remotely operated rover to analyze soils and provide geologically useful information about the Moon during a simulated mission to a hypothetical site resembling the Apollo 17 landing site. On the mission, 100 soil samples are "analyzed" for major elements at moderate analytical precision (e.g., typical relative sample standard deviation from counting statistics: Si[11%], Al[18%], Fe[6%], Mg[20%], Ca[5%]). Simulated compositions of soils are generated by combining compositions of components representing the major lithologies occurring at the site in known proportions. Simulated analyses are generated by degrading the simulated compositions according to the expected analytical precision of the analyzer. Compositions obtained from the simulated analyses are modeled by least squares mass balance as mixtures of the components, and the relative proportions of those components as predicted by the model are compared with the actual proportions used to generate the simulated composition. Boundary conditions of the modeling exercise are that all important lithologic components of the regolith are known and are represented by model components, and that the compositions of these components are well known. The effect of having the capability of determining one incompatible element at moderate precision (25%) is compared with the effect of the lack of this capability. We discuss likely limitations and ambiguities that would be encountered, but conclude that much of our knowledge about the Apollo 17 site (based on the return samples) regarding the distribution and relative abundances of lithologies in the regolith could be obtained. This success requires, however, that at least one incompatible element be determined.

  3. Eclipse - Apollo 12

    NASA Image and Video Library

    1980-08-05

    S80-37406 (14-24 Nov. 1969) --- This photograph of the eclipse of the sun was taken with a 16mm motion picture camera from the Apollo 12 spacecraft during its trans-Earth journey home from the moon. The fascinating view was created when the Earth moved directly between the sun and the Apollo 12 spacecraft. Aboard Apollo 12 were astronauts Charles Conrad Jr., commander; Richard F. Gordon Jr., command module pilot; and Alan L. Bean, lunar module pilot. While astronauts Conrad and Bean descended in the Lunar Module (LM) "Intrepid" to explore the Ocean of Storms region of the moon, astronaut Gordon remained with the Command and Service Modules (CSM) "Yankee Clipper" in lunar orbit.

  4. Pristine moon rocks - Apollo 17 anorthosites

    NASA Technical Reports Server (NTRS)

    Warren, P. H.; Jerde, E. A.; Kallemeyn, G. W.

    1991-01-01

    New chemical analyses and petrographic descriptions for 10 previously unanalyzed Apollo 17 rock samples are provided. Attention is focused on several that appear to be pristine. All samples were analyzed in INAA using a procedure based on that of Kallemeyn et al. (1989). One sample was found to be unambiguously pristine, and is the first pristine ferroan-anorthositic suite (FAS) sample from Apollo 17. It exhibits extremely low-mg(asterisk) mafic silicates, coupled with relatively sodic plagioclase. It has an unusually high augite/low-Ca pyroxene ratio and contains incompatible trace elements at levels unprecedentedly high compared to FAS anorthosites from the Apollo 14, 15, 16 sites. It is inferred that 74114.5, and Apollo 17 anorthosites in general, formed at a relatively late stage in the evolution of the primordial magmasphere.

  5. APOLLO X - CREW

    NASA Image and Video Library

    1969-06-03

    S69-35505 (June 1969) --- The prime crews of the Apollo 10 lunar orbit mission and the Apollo 11 lunar landing mission are photographed during an Apollo 10 postflight de-briefing session. Clockwise, from left foreground, are astronauts Michael Collins, Apollo 11 command module pilot; Edwin E. Aldrin Jr., Apollo 11 lunar module pilot; Eugene A. Cernan, Apollo 10 lunar module pilot; Thomas P. Stafford, Apollo 10 commander; Neil A. Armstrong, Apollo 11 commander; and John W. Young, Apollo 10 command module pilot.

  6. NASA Administrator Dan Goldin speaks at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA Administrator Daniel S. Goldin (right) addresses the audience at the Apollo 11 anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex, with seating under an unused Saturn V rocket like those that powered the Apollo launches . This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7.

  7. The Apollo Lunar Sample Image Collection: Digital Archiving and Online Access

    NASA Technical Reports Server (NTRS)

    Todd, Nancy S.; Lofgren, Gary E.; Stefanov, William L.; Garcia, Patricia A.

    2014-01-01

    The primary goal of the Apollo Program was to land human beings on the Moon and bring them safely back to Earth. This goal was achieved during six missions - Apollo 11, 12, 14, 15, 16, and 17 - that took place between 1969 and 1972. Among the many noteworthy engineering and scientific accomplishments of these missions, perhaps the most important in terms of scientific impact was the return of 382 kg (842 lb.) of lunar rocks, core samples, pebbles, sand, and dust from the lunar surface to Earth. Returned samples were curated at JSC (then known as the Manned Spacecraft Center) and, as part of the original processing, high-quality photographs were taken of each sample. The top, bottom, and sides of each rock sample were photographed, along with 16 stereo image pairs taken at 45-degree intervals. Photographs were also taken whenever a sample was subdivided and when thin sections were made. This collection of lunar sample images consists of roughly 36,000 photographs; all six Apollo missions are represented.

  8. Insignia for the Apollo program

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The insignia for the Apollo program is a disk circumscribed by a band displaying the words Apollo and NASA. The center disc bears a large letter 'A' with the constellation Orion positioned so its three central stars form the bar of the letter. To the right is a sphere of the earth, with a sphere of the moon in the upper left portion of the center disc. The face on the moon represents the mythical god, Apollo. A double trajectory passes behind both spheres and through the central stars.

  9. John F. Kennedy, Jr., speaks to the media at KSC's HBO premiere 'From the Earth to the Moon.'

    NASA Technical Reports Server (NTRS)

    1998-01-01

    John F. Kennedy, Jr., editor-in-chief of George Magazine, speaks with members of the national media at the Home Box Office (HBO) and Imagine Entertainment premiere of the 12-part miniseries 'From the Earth to the Moon' at Kennedy Space Center (KSC). The series was filmed in part on location at KSC and dramatizes the human aspects of NASA's efforts to launch Americans to the Moon. The miniseries highlights NASA's Apollo program and the events leading up to and including the six successful missions to the Moon. A special 500-seat theater was constructed next to the Apollo/Saturn V Center for the KSC premiere showing. Speakers at the event included KSC Director Roy Bridges (at right); Jeff Bewkes, chairman and CEO for HBO; and John F. Kennedy, Jr. Also attending the event, which featured the episode entitled '1968,' were Buzz Aldrin, Apollo 11 astronaut, and Al Worden, Apollo 15 astronaut. The original miniseries event, created for HBO by actor Tom Hanks and Imagine Entertainment, will premiere on HBO beginning April 5, 1998.

  10. John F. Kennedy, Jr., speaks to invited guests at KSC's HBO premiere 'From the Earth to the Moon.'

    NASA Technical Reports Server (NTRS)

    1998-01-01

    John F. Kennedy, Jr., editor-in-chief of George Magazine, greets invited guests at the Home Box Office (HBO) and Imagine Entertainment premiere of the 12-part miniseries 'From the Earth to the Moon' at Kennedy Space Center (KSC). The series was filmed in part on location at KSC and dramatizes the human aspects of NASA's efforts to launch Americans to the Moon. The miniseries highlights NASA's Apollo program and the events leading up to and including the six successful missions to the Moon. A special 500- seat theater was constructed next to the Apollo/Saturn V Center for the KSC premiere showing. Speakers at the event included KSC Director Roy Bridges (at right); Jeff Bewkes, chairman and CEO for HBO; and John F. Kennedy, Jr. Also attending the event, which featured the episode entitled '1968,' were Buzz Aldrin, Apollo 11 astronaut, and Al Worden, Apollo 15 astronaut. The original miniseries event, created for HBO by actor Tom Hanks and Imagine Entertainment, will premiere on HBO beginning April 5, 1998.

  11. Rock and Roll at the Apollo 17 Site

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2016-06-01

    Astronauts Eugene A. Cernan and Harrison H. (Jack) Schmitt collected 243 pounds (110 kg) of rock and regolith samples during 22 hours working on the lunar surface during the Apollo 17 mission in December 1972, while Astronaut Ronald Evans orbited in the command module. The field observations, audio descriptions, and photographs coupled with orbital data and detailed, laboratory analyses of Apollo samples provided unprecedented information about the Moon and its geologic history. The Apollo samples continue to inspire new questions and answers about the Moon. Debra Hurwitz and David Kring (Lunar and Planetary Institute and NASA Solar System Exploration Research Virtual Institute; Hurwitz now at NASA Goddard Space Flight Center) were particularly interested in solving the mystery of where the boulders came from at the base of the North Massif (station 6) and at the base of the South Massif (station 2) from which Apollo 17 astronauts collected samples of impact melt breccias. The breccias were unequivocally formed by impact processes, but forty years of analyses had not yet determined unambiguously which impact event was responsible. Was it the basin-forming event of the landing site's neighbor Serenitatis (possibly Nectarian age); the larger, nearby Imbrium basin (Imbrian age and one of the last large basins to form); a combination of these impacts or an impact event older or younger than all of the above. Tracking down the origin of the boulders would ideally unravel details of the formation age of the breccias and, ultimately, help with the historical record of basin formation on the Moon. Hurwitz and Kring verified the boulders rolled down from massif walls - Apollo 17 impact melt breccias originated in massif material, not from the Sculptured Hills, an overlying geologic unit. But the relative geologic context is easier to explain than the absolute age, at least until some discrepancies are resolved in existing Ar-Ar and U-Pb radiometric ages of the Apollo 17

  12. First Apollo 11 Lunar Samples Arrive at the Manned Spacecraft Center (MSC)

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. This photograph was taken as the mission's first loaded sample return container arrived at Ellington Air Force Base by air from the Pacific recovery area. The rock box was immediately taken to the Lunar Receiving Laboratory at the Manned Spacecraft Center (MSC) in Houston, Texas. Happily posing for the photograph with the rock container are (L-R) Richard S. Johnston (back), special assistant to the MSC Director; George M. Low, MSC Apollo Spacecraft Program manager; George S. Trimble (back), MSC Deputy Director; Lt. General Samuel C. Phillips, Apollo Program Director, Office of Manned Spaceflight at NASA headquarters; Eugene G. Edmonds, MSC Photographic Technology Laboratory; Dr. Thomas O. Paine, NASA Administrator; and Dr. Robert R. Gilruth, MSC Director.

  13. View of Africa and Madagascar from the Apollo 17 spacecraft

    NASA Image and Video Library

    1972-12-09

    AS17-148-22717 (7 Dec. 1972) --- This view of a portion of Earth was taken from the Apollo 17 spacecraft following trans-lunar insertion during the final lunar landing mission in NASA's Apollo Program. The visible land mass is the southern two-thirds of the African continent, with Madagascar at right. A portion of Antarctica is visible at bottom frame. Onboard the Apollo 17 spacecraft were astronauts Eugene A. Cernan, commander; Ronald E. Evans, command module pilot; and Harrison H. Schmitt, lunar module pilot. While astronauts Cernan and Schmitt descended in the Lunar Module (LM) "Challenger" to explore the Hadley-Apennine region of the moon, astronaut Evans remained with the Command and Service Modules (CSM) "America" in lunar orbit.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-16

    Aboard a Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The space vehicle is shown here during the rollout for launch preparation. The 3-man crew aboard the flight consisted of Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. The crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. The surface exploration was concluded in 2½ hours. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. The Saturn V launch vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun.

  15. Saturn Apollo Program

    NASA Image and Video Library

    1974-06-04

    On June 4, 1974, 5 years after the successful Apollo 11 lunar landing mission, commander Neil Armstrong (right) presented a plaque to U.S. President Richard Milhous Nixon (left) on behalf of all people who had taken part in the space program. In making the presentation, Armstrong said “Mr. President, you have proclaimed this week to be United States Space week in conjunction with the fifth anniversary of our first successful landing on the Moon. It is my privilege to represent my colleagues, the crewmen of projects Mercury, Gemini, Apollo, and Skylab, and the men and women of NASA, and the hundreds of thousands of Americans from across the land who contributed so mightily to the success of our efforts in space in presenting this plaque which bears the names of each individual who has had the privilege of representing this country” in a space flight. The presentation was made at the California white house in San Clemente.

  16. OFFICIAL EMBLEM - APOLLO 11 - FIRST (1st) SCHEDULED LUNAR LANDING MISSION

    NASA Image and Video Library

    1969-06-01

    S69-34875 (June 1969) --- The official emblem of Apollo 11, the United States' first scheduled lunar landing mission. The Apollo 11 crew will be astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. The NASA insignia design for Apollo flights is reserved for use by the astronauts and for the official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced.

  17. LAUNCH - APOLLO XIII - LUNAR LANDING MISSION - KSC

    NASA Image and Video Library

    1970-04-11

    S70-34855 (11 April 1970) --- The Apollo 13 (Spacecraft 109/Lunar Module 7/Saturn 508) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), at 2:13 p.m. (EST), April 11, 1970. The crew of the National Aeronautics and Space Administration's (NASA) third lunar landing mission are astronauts James A., Lovell Jr., commander; John L. Swigert Jr., command module pilot; and Fred W. Haise Jr., lunar module pilot.

  18. LAUNCH - APOLLO 13 - LUNAR LANDING MISSION - KSC

    NASA Image and Video Library

    1970-04-11

    S70-34852 (11 April 1970) --- The Apollo 13 (Spacecraft 109/Lunar Module 7/Saturn 508) space vehicle is launched from Pad A Launch Complex 39, Kennedy Space Center (KSC), at 2:13 p.m. (EST), April 11, 1970. The crew of the National Aeronautics and Space Administration's (NASA) third lunar landing mission are astronauts James A. Lovell Jr., commander; John L. Swigert Jr., command module pilot; and Fred W. Haise Jr., lunar module pilot.

  19. Moon Trek: An Interactive Web Portal for Current and Future Lunar Missions

    NASA Technical Reports Server (NTRS)

    Day, B; Law, Emily S.

    2017-01-01

    NASA's Moon Trek (https://moontrek.jpl.nasa.gov) is the successor to and replacement for NASA's Lunar Mapping and Modeling Portal (LMMP). Released in 2017, Moon Trek features a new interface with improved ways to access, visualize, and analyze data. Moon Trek provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped lunar data products from past and current lunar missions.

  20. Moon Trek: An Interactive Web Portal for Current and Future Lunar Missions

    NASA Astrophysics Data System (ADS)

    Day, B.; Law, E.

    2017-09-01

    NASA's Moon Trek (https://moontrek.jpl.nasa.gov) is the successor to and replacement for NASA's Lunar Mapping and Modeling Portal (LMMP). Released in 2017, Moon Trek features a new interface with improved ways to access, visualize, and analyse data. Moon Trek provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped lunar data products from past and current lunar missions.