Science.gov

Sample records for apoptosis related genes

  1. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    PubMed Central

    Wang, Baoman; Yuan, Fei; Kong, Xiangyin; Hu, Lan-Dian; Cai, Yu-Dong

    2015-01-01

    Apoptosis is the process of programmed cell death (PCD) that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature. PMID:26543496

  2. Tributyltin increases the expression of apoptosis- and adipogenesis-related genes in rat ovaries

    PubMed Central

    Lee, Hyojin; Lim, Sojeong; Yun, Sujin; Yoon, Ayoung; Park, Gayoung

    2012-01-01

    Objective Tributyltin (TBT), an endocrine disrupting chemical, has been reported to decrease ovarian function by causing apoptosis in the ovary, but the mechanism is not fully understood. Therefore, we examined whether TBT increases the expression of adipogenesis-related genes in the ovary and the increased expression of these genes is associated with apoptosis induction. Methods Three-week-old Sprague-Dawley rats were orally administered TBT (1 or 10 mg/kg body weight) or sesame oil as a control for 7 days. The ovaries were obtained and weighed on day 8, and then they were fixed for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) or frozen for RNA extraction. Using the total RNA of the ovaries, adipogenesis- and apoptosis-related genes were analyzed by real-time polymerase chain reaction (PCR). Results The ovarian weight was significantly decreased in rats administered 10 mg/kg TBT compared to that in control rats. As determined by the TUNEL assay, the number of apoptotic follicles in ovary was significantly increased in rats administered 10 mg/kg TBT. The real-time PCR results showed that the expression of adipogenesis-related genes such as PPARγ, aP2, CD36, and PEPCK was increased after TBT administration. In addition, apoptosis-related genes such as TNFα and TNFR1 were expressed more in the TBT-administered rats compared with the control rats. Conclusion The present study demonstrates that TBT induces the expression of adipogenesis- and apoptosis-related genes in the ovary leading to apoptosis in the ovarian follicles. These results suggest that the increased expression of adipogenesis-related genes in the ovary by TBT exposure might induce apoptosis resulting in a loss of ovarian function. PMID:22563546

  3. Data on four apoptosis-related genes in the colonial tunicate Botryllus schlosseri.

    PubMed

    Franchi, Nicola; Ballin, Francesca; Manni, Lucia; Schiavon, Filippo; Ballarin, Loriano

    2016-09-01

    The data described are related to the article entitled "Recurrent phagocytosis-induced apoptosis in the cyclical generation change of the compound ascidian Botryllus schlosseri" (Franchi et al., 2016) [1]. Four apoptosis-related genes, showing high similarity with mammalian Bax (a member of the Bcl-2 protein family), AIF1 (apoptosis-inducing factor-1), PARP1 (poly ADP ribose polymerase-1) and IAP7 (inhibitor of apoptosis-7) were identified from the analysis of the trascriptome of B. schlosseri. They were named BsBax, BsAIF1, BsPARP1 and BsIAP7. Here, their deduced amino acid sequence were compared with known sequences of orthologous genes from other deuterostome species together with a study of their identity/similarity. PMID:27294183

  4. [Viral transfer of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in gene therapy].

    PubMed

    Wędrowska, Ewelina; Wandtke, Tomasz; Dyczek, Andrzej; Woźniak, Joanna

    2015-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces carcinoma cell death through the extrinsic pathway of apoptosis. Preclinical trials of gene therapy have been conducted using viral transfer of the TRAIL transgene into prostate, bladder, breast, kidney, liver, non-small cell lung cancer and also glioblastoma cells. Experiments in vitro demonstrated the extensive apoptosis of target cells as well as frequent disease regression or remission. TRAIL transfer did not show any side effects, opposite to chemotherapy. Encouraging results of TRAIL-related gene therapy were observed in rheumatoid arthritis and type 1 diabetes. Adenoviral vectors (AdV) encoding TRAIL are the most promising tool in anti-tumor therapy. They have undergone numerous modifications by increasing transfection efficiency and transgene expression in target cells. However, only one clinical phase I trial has been performed. AdV encoding the TRAIL transgene caused local inflammation and apoptosis in patients with prostate cancer. PMID:27259213

  5. Differential expression of apoptosis-related genes in the cochlea of noise-exposed rats

    PubMed Central

    Hu, Bo Hua; Cai, Qunfeng; Manohar, Senthilvelan; Jiang, Haiyan; Ding, Dalian; Coling, Donald E.; Zheng, Guiliang; Salvi, Richard

    2009-01-01

    Exposure to intense noise induces apoptosis in hair cells in the cochlea. To identify the molecular changes associated with noise-induced apoptosis, we used quantitative real-time PCR to evaluate the changes in 84 apoptosis related genes in cochlear samples from the sensory epithelium and lateral wall. Sprague Dawley rats exposed to a continuous noise at 115 dB SPL for 2 h. The exposure caused a 40–60 dB threshold shift 4 h post-exposure that decreased to 20–30 dB 7 days post-exposure. These functional changes were associated with apoptotic markers including nuclear condensation and fragmentation and TUNEL staining. Immediately after the noise exposure, 12 genes were downregulated, whereas only one gene (Traf4) was upregulated. At 4 h post-exposure, 8 genes were upregulated; 3 (Tnrsf1a, Tnfrsf1b, Tnfrst5) belonged to the Tnfrsf family, 3 (Bir3, Mcl1 and Prok2) have anti-apoptotic properties and 1 (Gadd45a) is a target of p53. At 7 d post-exposure, all the upregulated genes returned to pre-noise levels. Interestingly, the normal control cochlea had high constitutive levels of several apoptosis-related genes. These constitutively expressed genes, together with the inducible genes, may participate in the induction of cochlear apoptotic activity. PMID:19348871

  6. Oxyphilic and non-oxyphilic thyroid carcinoma cell lines differ in expressing apoptosis-related genes.

    PubMed

    Allìa, E; Cassoni, P; Marrocco, T; Volante, M; Bussolati, B; Wong, M; Clark, O H; Papotti, M

    2003-07-01

    Oxyphilic tumors of the thyroid are characterized by mitochondrion-rich cells and extensive DNA fragmentation. In order to clarify if a different expression of apoptosis-related genes could be responsible for DNA fragmentation in oxyphilic cell tumors, two thyroid follicular carcinoma-derived cell lines, having oxyphilic (XTC.UC1) and non-oxyphilic (WRO) features, were compared applying a gene array technique. Under basal culture conditions, several pro-apoptotic genes [caspases 3 and 10, Fas and the tumor necrosis factor-related apoptosis-inducing ligand (trail) genes] were switched on in oxyphilic, but not in non-oxyphilic cells. No difference in the mitochondrial apoptosis-related genes (bax, bad, bcl family etc.) was observed. Using the ISEL technique, the extent of DNA fragmentation did not differ under basal conditions in the two cell lines. Conversely, following an oxidative pro-apoptotic stress (6-h methylene blue treatment and light exposure), XTC.UC1 cells showed an extensive DNA fragmentation (up to 70% of cells), dramatically exceeding that observed in WRO cells (up to 20% of cells). In contrast, the oxidative stimulus induced a remarkable apoptosis gene activation in non-oxyphilic WRO cells only. These results suggest that oxyphilic cells may have a unique silent activation of a pro-apoptotic phenotype, which could be responsible for DNA instability and lead to cell death as the consequence of an increased sensitivity to ischemic stresses, as frequently observed in vivo. PMID:14594119

  7. Dynamic changes in the expression of apoptosis-related genes in differentiating gonocytes and in seminomas.

    PubMed

    Manku, Gurpreet; Culty, Martine

    2015-01-01

    Apoptosis is an integral part of the spermatogenic process, necessary to maintain a proper ratio of Sertoli to germ cell numbers and provide an adequate microenvironment to germ cells. Apoptosis may also represent a protective mechanism mediating the elimination of abnormal germ cells. Extensive apoptosis occurs between the first and second postnatal weeks, at the point when gonocytes, precursors of spermatogonial stem cells, should have migrated toward the basement membrane of the tubules and differentiated into spermatogonia. The mechanisms regulating this process are not well-understood. Gonocytes undergo phases of proliferation, migration, and differentiation which occur in a timely and closely regulated manner. Gonocytes failing to migrate and differentiate properly undergo apoptosis. Inadequate gonocyte differentiation has been suggested to lead to testicular germ cell tumor (TGCT) formation. Here, we examined the expression levels of apoptosis-related genes during gonocyte differentiation by quantitative real-time polymerase chain reaction, identifying 48 pro- and anti-apoptotic genes increased by at least two-fold in rat gonocytes induced to differentiate by retinoic acid, when compared to untreated gonocytes. Further analysis of the most highly expressed genes identified the pro-apoptotic genes Gadd45a and Cycs as upregulated in differentiating gonocytes and in spermatogonia compared with gonocytes. These genes were also significantly downregulated in seminomas, the most common type of TGCT, compared with normal human testicular tissues. These results indicate that apoptosis-related genes are actively regulated during gonocyte differentiation. Moreover, the down-regulation of pro-apoptotic genes in seminomas suggests that they could represent new therapeutic targets in the treatment of TGCTs. PMID:25677133

  8. Dynamic changes in the expression of apoptosis-related genes in differentiating gonocytes and in seminomas

    PubMed Central

    Manku, Gurpreet; Culty, Martine

    2015-01-01

    Apoptosis is an integral part of the spermatogenic process, necessary to maintain a proper ratio of Sertoli to germ cell numbers and provide an adequate microenvironment to germ cells. Apoptosis may also represent a protective mechanism mediating the elimination of abnormal germ cells. Extensive apoptosis occurs between the first and second postnatal weeks, at the point when gonocytes, precursors of spermatogonial stem cells, should have migrated toward the basement membrane of the tubules and differentiated into spermatogonia. The mechanisms regulating this process are not well-understood. Gonocytes undergo phases of proliferation, migration, and differentiation which occur in a timely and closely regulated manner. Gonocytes failing to migrate and differentiate properly undergo apoptosis. Inadequate gonocyte differentiation has been suggested to lead to testicular germ cell tumor (TGCT) formation. Here, we examined the expression levels of apoptosis-related genes during gonocyte differentiation by quantitative real-time polymerase chain reaction, identifying 48 pro- and anti-apoptotic genes increased by at least two-fold in rat gonocytes induced to differentiate by retinoic acid, when compared to untreated gonocytes. Further analysis of the most highly expressed genes identified the pro-apoptotic genes Gadd45a and Cycs as upregulated in differentiating gonocytes and in spermatogonia compared with gonocytes. These genes were also significantly downregulated in seminomas, the most common type of TGCT, compared with normal human testicular tissues. These results indicate that apoptosis-related genes are actively regulated during gonocyte differentiation. Moreover, the down-regulation of pro-apoptotic genes in seminomas suggests that they could represent new therapeutic targets in the treatment of TGCTs. PMID:25677133

  9. Transient axonal glycoprotein-1 induces apoptosis-related gene expression without triggering apoptosis in U251 glioma cells

    PubMed Central

    Chang, Haigang; Song, Shanshan; Chen, Zhongcan; Wang, Yaxiao; Yang, Lujun; Du, Mouxuan; Ke, Yiquan; Xu, Ruxiang; Jin, Baozhe; Jiang, Xiaodan

    2014-01-01

    Previous studies show that transient axonal glycoprotein-1, a ligand of amyloid precursor protein, increases the secretion of amyloid precursor protein intracellular domain and is involved in apoptosis in Alzheimer's disease. In this study, we examined the effects of transient axonal glycoprotein-1 on U251 glioma cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that transient axonal glycoprotein-1 did not inhibit the proliferation of U251 cells, but promoted cell viability. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that transient axonal glycoprotein-1 did not induce U251 cell apoptosis. Real-time PCR revealed that transient axonal glycoprotein-1 substantially upregulated levels of amyloid precursor protein intracellular C-terminal domain, and p53 and epidermal growth factor receptor mRNA expression. Thus, transient axonal glycoprotein-1 increased apoptosis-related gene expression in U251 cells without inducing apoptosis. Instead, transient axonal glycoprotein-1 promoted the proliferation of these glioma cells. PMID:25206849

  10. Apoptosis-Related Gene Expression in an Adult Cohort with Crimean-Congo Hemorrhagic Fever

    PubMed Central

    Guler, Nil; Eroglu, Cafer; Yilmaz, Hava; Karadag, Adil; Alacam, Hasan; Sunbul, Mustafa; Fletcher, Tom E.; Leblebicioglu, Hakan

    2016-01-01

    Crimean-Congo Hemorrhagic Fever (CCHF) is a life threatening acute viral infection characterized by fever, bleeding, leukopenia and thrombocytopenia. It is a major emerging infectious diseases threat, but its pathogenesis remains poorly understood and few data exist for the role of apoptosis in acute infection. We aimed to assess apoptotic gene expression in leukocytes in a cross-sectional cohort study of adults with CCHF. Twenty participants with CCHF and 10 healthy controls were recruited at a tertiary CCHF unit in Turkey; at admission baseline blood tests were collected and total RNA was isolated. The RealTime ready Human Apoptosis Panel was used for real-time PCR, detecting differences in gene expression. Participants had CCHF severity grading scores (SGS) with low risk score (10 out of 20) and intermediate or high risk scores (10 out of 20) for mortality. Five of 20 participants had a fatal outcome. Gene expression analysis showed modulation of pro-apoptotic and anti-apoptotic genes that facilitate apoptosis in the CCHF patient group. Dominant extrinsic pathway activation, mostly related with TNF family members was observed. Severe and fatal cases suggest additional intrinsic pathway activation. The clinical significance of relative gene expression is not clear, and larger longitudinal studies with simultaneous measurement of host and viral factors are recommended. PMID:27304063

  11. Apoptosis-Related Gene Expression in an Adult Cohort with Crimean-Congo Hemorrhagic Fever.

    PubMed

    Guler, Nil; Eroglu, Cafer; Yilmaz, Hava; Karadag, Adil; Alacam, Hasan; Sunbul, Mustafa; Fletcher, Tom E; Leblebicioglu, Hakan

    2016-01-01

    Crimean-Congo Hemorrhagic Fever (CCHF) is a life threatening acute viral infection characterized by fever, bleeding, leukopenia and thrombocytopenia. It is a major emerging infectious diseases threat, but its pathogenesis remains poorly understood and few data exist for the role of apoptosis in acute infection. We aimed to assess apoptotic gene expression in leukocytes in a cross-sectional cohort study of adults with CCHF. Twenty participants with CCHF and 10 healthy controls were recruited at a tertiary CCHF unit in Turkey; at admission baseline blood tests were collected and total RNA was isolated. The RealTime ready Human Apoptosis Panel was used for real-time PCR, detecting differences in gene expression. Participants had CCHF severity grading scores (SGS) with low risk score (10 out of 20) and intermediate or high risk scores (10 out of 20) for mortality. Five of 20 participants had a fatal outcome. Gene expression analysis showed modulation of pro-apoptotic and anti-apoptotic genes that facilitate apoptosis in the CCHF patient group. Dominant extrinsic pathway activation, mostly related with TNF family members was observed. Severe and fatal cases suggest additional intrinsic pathway activation. The clinical significance of relative gene expression is not clear, and larger longitudinal studies with simultaneous measurement of host and viral factors are recommended. PMID:27304063

  12. Pretransplant Immune- and Apoptosis-Related Gene Expression Is Associated with Kidney Allograft Function

    PubMed Central

    Kamińska, Dorota; Kościelska-Kasprzak, Katarzyna; Chudoba, Paweł; Mazanowska, Oktawia; Banasik, Mirosław; Żabinska, Marcelina; Boratyńska, Maria; Lepiesza, Agnieszka; Gomółkiewicz, Agnieszka; Dzięgiel, Piotr; Klinger, Marian

    2016-01-01

    Renal transplant candidates present immune dysregulation, caused by chronic uremia. The aim of the study was to investigate whether pretransplant peripheral blood gene expression of immune factors affects clinical outcome of renal allograft recipients. Methods. In a prospective study, we analyzed pretransplant peripheral blood gene expression in87 renal transplant candidates with real-time PCR on custom-designed low density arrays (TaqMan). Results. Immediate posttransplant graft function (14-day GFR) was influenced negatively by TGFB1 (P = 0.039) and positively by IL-2 gene expression (P = 0.040). Pretransplant blood mRNA expression of apoptosis-related genes (CASP3, FAS, and IL-18) and Th1-derived cytokine gene IFNG correlated positively with short- (6-month GFR CASP3: P = 0.027, FAS: P = 0.021, and IFNG: P = 0.029) and long-term graft function (24-month GFR CASP3: P = 0.003, FAS: P = 0.033, IL-18: P = 0.044, and IFNG: P = 0.04). Conclusion. Lowered pretransplant Th1-derived cytokine and apoptosis-related gene expressions were a hallmark of subsequent worse kidney function but not of acute rejection rate. The pretransplant IFNG and CASP3 and FAS and IL-18 genes' expression in the recipients' peripheral blood is the possible candidate for novel biomarker of short- and long-term allograft function. PMID:27382192

  13. Expression of apoptosis-related genes in liver-specific growth hormone receptor gene-disrupted mice is sex dependent.

    PubMed

    Gesing, Adam; Wang, Feiya; List, Edward O; Berryman, Darlene E; Masternak, Michal M; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Kopchick, John J; Bartke, Andrzej

    2015-01-01

    Apoptosis is a process that affects life span and health. Mice with liver-specific disruption of the growth hormone receptor (GHR) gene (ie, Ghr gene) liver-specific growth hormone receptor knockout [LiGHRKO] mice), as opposed to mice with global deletion of the Ghr gene (GHRKO; Ghr-/-), are characterized by severe hepatic steatosis and lack of improved insulin sensitivity. We have previously shown that levels of proapoptotic factors are decreased in long-lived and insulin-sensitive GHRKO mice. In the current study, expression of specific apoptosis-related genes was assessed in brains, kidneys, and livers of male and female LiGHRKO and wild-type mice using real-time PCR. In the brain, expression of Caspase 3, Caspase 9, Smac/DIABLO, and p53 was decreased in females compared with males. Renal expression of Caspase 3 and Noxa also decreased in female mice. In the liver, no differences were seen between males and females. Also, no significant genotype effects were detected in the examined organs. Lack of significant genotype effect in kidneys contrasts with previous observations in GHRKO mice. Apparently, global GHR deletion induces beneficial changes in apoptotic factors, whereas liver-specific GHR disruption does not. Furthermore, sexual dimorphism may play an important role in regulating apoptosis during liver-specific suppression of the somatotrophic signaling. PMID:24550353

  14. Identification of Aadnr1, a novel gene related to innate immunity and apoptosis in Aedes albopictus.

    PubMed

    Li, Xiaomei; Meng, Kun; Qiao, Jialu; Liu, Hao; Zhong, Chunyan; Liu, Qingzhen

    2016-08-01

    Innate immunity and apoptosis play critical roles in defending pathogens in insects. In Drosophila, Dnr1 was reported as a negative regulator of apoptosis and immune deficiency (Imd) pathway which belongs to innate immunity. Aedes albopictus is an important kind of arbovirus vector and becoming a significant threat to public health due to its rapid global expansion. Here we identified an ortholog of dnr1 from A. albopictus, named as Aadnr1. Aadnr1 encoded a putative protein containing an N-terminal FERM domain and a C-terminal RING domain. AaDnr1 shared high identity with dipteran insects Dnr1 orthologs. Phylogenetic analyses showed that the closest relative of AaDnr1 was Aedes aegypti Dnr1. Real-time PCR proved that Aadnr1 mRNA was expressed ubiquitously during developmental and adult stages. Transcriptional levels of Aadnr1 were decreased drastically in C6/36 cells underwent apoptosis induced by Actinomycin D (Act D) treatment. Partial silence of Aadnr1 enhanced Act D-induced caspase activity. When challenged by heat-inactivated E. coli, transcriptional level of Aadnr1 was also decreased dramatically in C6/36 cells. While when C6/36 cells were infected with Sindbis virus TE/GFP, transcriptional level of Aadnr1 was reduced and recovered repeatedly, with an overall decreasing trend. It was also shown in this study that similar to Drosophila Dnr1, RING domain destabilized AaDnr1 protein. Taken together, the study identified an innate immunity and apoptosis related gene Aadnr1 in A. albopictus. PMID:27045774

  15. Chinese herb related molecules of cancer-cell-apoptosis: a minireview of progress between Kanglaite injection and related genes.

    PubMed

    Lu, Yun; Li, Chang-Sheng; Dong, Qian

    2008-01-01

    Many kinds of Chinese herb had been confirmed to have the character of anti-tumor, clinical reports about anti-tumor effects of Chinese herb had also been found in recent years, but most of the reports were focused on the clinical treatment of effectiveness for Chinese herb, on the other hand, review about Chinese herbal related with molecules on cancer-cell-apoptosis was seldom, many scientists could not believe such kinds of clinical describes about anti-tumor effects for Chinese herb, because these describes were lack of molecular biology evidence. Kanglaite(KLT) injection is an anti-tumor new drug which extracts from Chinese medicine-coix seed with modern advanced pharmaceutical technology, it is also a new biphase extended-spectrum anticancer medicine, the food and drug administration(FDA) of United States also approved a phase II trial of KLT to test its efficacy in treating non-small-cell lung cancer. Some studies show it could inhibit some anti-apoptotic gene and activate some pro-apoptotic gene, its injection solution is one of the new anticancer medicine that can significantly inhibit a various kinds of tumor cells, so it has become the core of research that how to further explore KLT injection to promote tumor cell apoptosis by impacting on related genes. In this review, the relationship between KLT and some tumor cell apoptosis molecules had been discussed and reviewed generally. PMID:18718024

  16. Apoptosis-related genes confer resistance to Fusarium wilt in transgenic 'Lady Finger' bananas.

    PubMed

    Paul, Jean-Yves; Becker, Douglas K; Dickman, Martin B; Harding, Robert M; Khanna, Harjeet K; Dale, James L

    2011-12-01

    Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most devastating diseases of banana (Musa spp.). Apart from resistant cultivars, there are no effective control measures for the disease. We investigated whether the transgenic expression of apoptosis-inhibition-related genes in banana could be used to confer disease resistance. Embryogenic cell suspensions of the banana cultivar, 'Lady Finger', were stably transformed with animal genes that negatively regulate apoptosis, namely Bcl-xL, Ced-9 and Bcl-2 3' UTR, and independently transformed plant lines were regenerated for testing. Following a 12-week exposure to Foc race 1 in small-plant glasshouse bioassays, seven transgenic lines (2 × Bcl-xL, 3 × Ced-9 and 2 × Bcl-2 3' UTR) showed significantly less internal and external disease symptoms than the wild-type susceptible 'Lady Finger' banana plants used as positive controls. Of these, one Bcl-2 3' UTR line showed resistance that was equivalent to that of wild-type Cavendish bananas that were included as resistant negative controls. Further, the resistance of this line continued for 23-week postinoculation at which time the experiment was terminated. Using TUNEL assays, Foc race 1 was shown to induce apoptosis-like features in the roots of wild-type 'Lady Finger' plants consistent with a necrotrophic phase in the life cycle of this pathogen. This was further supported by the observed reduction in these effects in the roots of the resistant Bcl-2 3' UTR-transgenic line. This is the first report on the generation of transgenic banana plants with resistance to Fusarium wilt. PMID:21819535

  17. Emodin induces apoptosis of human breast cancer cells by modulating the expression of apoptosis-related genes

    PubMed Central

    ZU, CONG; ZHANG, MINGDI; XUE, HUI; CAI, XIAOPENG; ZHAO, LEI; HE, ANNING; QIN, GUANGYUAN; YANG, CHUNSHU; ZHENG, XINYU

    2015-01-01

    The aim of this study was to investigate the effects of emodin on the proliferation of human breast cancer cells Bcap-37 and ZR-75-30. Cell viability following emodin treatment was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of emodin on apoptosis were determined by flow cytometry using Annexin V-fluorescein isothiocyanate and propidium iodide staining. Quantitative polymerase chain reaction and western blot analysis were used to determine changes in the expression of apoptotic genes and protein, respectively. The effect of emodin on the invasiveness of breast cancer cells was evaluated by Matrigel invasion assay. Treatment of breast cancer cells Bcap-37 and ZR-75-30 with emodin was observed to inhibit the growth and induced apoptosis in a time- and dose-dependent manner. Emodin reduced the level of Bcl-2 and increased levels of cleaved caspase-3, PARP, p53 and Bax. These findings indicate that emodin induces growth inhibition and apoptosis in human breast cancer cells. Emodin may be a potential therapeutic agent for the treatment of breast cancer. PMID:26722264

  18. Dendrosomal curcumin nanoformulation modulate apoptosis-related genes and protein expression in hepatocarcinoma cell lines.

    PubMed

    Montazeri, Maryam; Sadeghizadeh, Majid; Pilehvar-Soltanahmadi, Yones; Zarghami, Faraz; Khodi, Samaneh; Mohaghegh, Mina; Sadeghzadeh, Hadi; Zarghami, Nosratollah

    2016-07-25

    The side-effects observed in conventional therapies have made them unpromising in curing Hepatocellular carcinoma; therefore, developing novel treatments can be an overwhelming significance. One of such novel agents is curcumin which can induce apoptosis in various cancerous cells, however, its poor solubility is restricted its application. To overcome this issue, this paper employed dendrosomal curcumin (DNC) was employed to in prevent hepatocarcinoma in both RNA and protein levels. Hepatocarcinoma cells, p53 wild-type HepG2 and p53 mutant Huh7, were treated with DNC and investigated for toxicity study using MTT assay. Cell cycle distribution and apoptosis were analyzed using Flow-cytometry and Annexin-V-FLUOS/PI staining. Real-time PCR and Western blot were employed to analyze p53, BAX, Bcl-2, p21 and Noxa in DNC-treated cells. DNC inhibited the growth in the form of time-dependent manner, while the carrier alone was not toxic to the cell. Flow-cytometry data showed the constant concentration of 20μM DNC during the time significantly increases cell population in SubG1 phase. Annexin-V-PI test showed curcumin-induced apoptosis was enhanced in Huh7 as well as HepG2, compared to untreated cells. Followed by treatment, mRNA expression of p21, BAX, and Noxa increased, while the expression of Bcl-2 decreased, and unlike HepG2, Huh7 showed down-regulation of p53. In summary, DNC-treated hepatocellular carcinoma cells undergo apoptosis by changing the expression of genes involved in the apoptosis and proliferation processes. These findings suggest that DNC, as a plant-originated therapeutic agent, could be applied in cancer treatment. PMID:27234697

  19. Expression of TNF-Alpha-Dependent Apoptosis-Related Genes in the Peripheral Blood of Malagasy Subjects with Tuberculosis

    PubMed Central

    Rakotosamimanana, Niaina; Doherty, T. Mark; Andriamihantasoa, Lova H.; Richard, Vincent; Gicquel, Brigitte; Soares, Jean-Louis; Zumla, Alimuddin; Razanamparany, Voahangy Rasolofo

    2013-01-01

    The majority of Mycobacterium tuberculosis (Mtb) infections remain asymptomatic with only up to 10% progressing to clinical tuberculosis. However, the constituents of the effective “protective immunity” against tuberculosis responsible for containing most infections remain unknown. Evaluating gene transcriptional profiles in tuberculosis clinical cohorts is one approach to understanding the spectrum of tuberculosis progression. It is clear that apoptosis plays a role in the control of tuberculosis but the utility of apoptosis-related genes as surrogate markers of protection against tuberculosis has not been well investigated. To characterize potential surrogate markers that could discriminate different phases of the clinical tuberculosis spectrum, we investigated gene expression of several TNF-alpha dependent apoptotic genes (TNFR1, TNFR2, FLICE, FLIPs) by real-time RT-PCR of peripheral blood cells from cohorts of individuals with active tuberculosis or potential exposure to tuberculosis. Newly diagnosed tuberculosis patients (n = 23), their close household contacts (n = 80), and community controls (n = 46) were tested at intervals over a period of up to two years. Latent infection or previous Mtb contact was assessed by ELISPOT and TST and complete blood counts were performed during the follow up. Results showed significant upregulation of FLIPs expression by infected individuals regardless of clinical status at entry to the study. A higher percentage of lymphocytes was found in the infected household contacts that remained healthy. In contrast, in individuals with active TB, a significant upregulation of TNFR2 expression, a significantly higher percentage of monocytes and a significantly decreased lymphocyte count were seen, compared to subjects that remained healthy. Moreover, the household contacts who subsequently developed signs of TB also had a significantly high number of monocytes. These data suggest tuberculosis may be associated with

  20. Role of serum TRAIL level and TRAIL apoptosis gene expression in multiple sclerosis and relation to brain atrophy.

    PubMed

    Tawdy, Mohamed H; Abd El Nasser, Maged M; Abd El Shafy, Sanaa S; Nada, Mona A F; El Sirafy, Mohamed Nasr I; Magd, Amany Hussien Abol

    2014-09-01

    One of the presumed pathological mechanisms of multiple sclerosis (MS) is the failure of apoptosis of autoreactive T lymphocytes. This study aimed to determine the relationship of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA gene expression ratio and serum TRAIL levels with MS and brain atrophy. This study was conducted on 53 relapsing-remitting Egyptian MS patients and 25 matched healthy volunteers. The expression of TRAIL in peripheral blood lymphocytes was analyzed by reverse transcription polymerase chain reaction, serum levels of soluble TRAIL (sTRAIL) were determined by enzyme-linked immunosorbent assay and brain MRI measured "black holes" and the bicaudate ratio as a measure of brain atrophy in all patients. The serum TRAIL level was lower in MS patients compared to controls but no difference was seen in the TRAIL mRNA gene expression ratio. No significant correlation was detected between the serum TRAIL level and the TRAIL mRNA expression ratio in either group. No statistically significant correlation was found between serum TRAIL levels or the TRAIL mRNA expression ratio with the number of black holes or the bicaudate ratio on MRI. Apoptosis of T lymphocytes is decreased in MS patients, which could be useful when designing treatments. There was no difference in the TRAIL mRNA gene expression ratio between MS patients and controls. PMID:24913933

  1. Differential Expression of Apoptosis Related Genes in Selected Strains of Aedes aegypti with Different Susceptibilities to Dengue Virus

    PubMed Central

    Ocampo, Clara B.; Caicedo, Paola A.; Jaramillo, Gloria; Ursic Bedoya, Raul; Baron, Olga; Serrato, Idalba M.; Cooper, Dawn M.; Lowenberger, Carl

    2013-01-01

    Aedes aegypti is the principal vector of Dengue viruses worldwide. We identified field collected insects with differential susceptibility to Dengue-2 virus (DENv-2) and used isofemale selection to establish susceptible and refractory strains based on midgut infection barriers. Previous experiments had identified higher expression of apoptosis-related genes in the refractory strain. To identify potential molecular mechanisms associated with DENv susceptibility, we evaluated the differential expression of Caspase-16, Aedronc, Aedredd, Inhibitor of apoptosis (AeIAP1) and one member of the RNAi pathway, Argonaute-2 in the midguts and fat body tissues of the selected strains at specific times post blood feeding or infection with DENv-2. In the refractory strain there was significantly increased expression of caspases in midgut and fatbody tissues in the presence of DENv-2, compared to exposure to blood alone, and significantly higher caspase expression in the refractory strain compared with the susceptible strain at timepoints when DENv was establishing in these tissues. We used RNAi to knockdown gene expression; knockdown of AeIAP1 was lethal to the insects. In the refractory strain, knockdown of the pro-apoptotic gene Aedronc increased the susceptibility of refractory insects to DENv-2 from 53% to 78% suggesting a contributing role of this gene in the innate immune response of the refractory strain. PMID:23593426

  2. SO2 inhalation modulates the expression of apoptosis-related genes in rat hippocampus via its derivatives in vivo.

    PubMed

    Yun, Yang; Li, Hongyan; Li, Guangke; Sang, Nan

    2010-09-01

    The possible neurotoxicity of SO(2) has been implicated by determining morphological change, oxidative stress, DNA damage and membrane channel alteration in previous studies, however, its detailed mechanisms remain unclear. In the present study, we investigated SO(2) inhalation-induced effects on the transcription and translation of several apoptosis-related genes (p53, bax, bcl-2, c-fos, and c-jun) in rat hippocampus, using real-time RT-PCR analysis and western blotting technique, respectively. The results demonstrate that SO(2) statistically increased p53 expression and the ratio of bax to bcl-2 in a concentration-dependent manner. Also, mRNA and protein levels of c-fos and c-jun significantly elevated in proportion to exposure concentration. Then, we treated primary cultured hippocampal neurons with SO(2) derivatives (bisulfite and sulfite, 3:1 M/M), and examined mRNA levels of above genes. The results show that P53, c-fos, c-jun mRNA expression and the ratio of bax to bcl-2 augmented as functions of SO(2) derivative concentration and exposure time, and confirm that SO(2) affected the transcription and translation process of apoptosis-related genes in central nervous system via its derivatives in vivo. The present data provide further evidence for SO(2)-caused neurological insults, and imply that two major pathways associated with p53 and AP-1 might play important roles in the pathogenesis. PMID:20545484

  3. Nature promises new anticancer agents: Interplay with the apoptosis-related BCL2 gene family.

    PubMed

    Christodoulou, Maria-Ioanna; Kontos, Christos K; Halabalaki, Maria; Skaltsounis, Alexios-Leandros; Scorilas, Andreas

    2014-03-01

    Natural products display special attributes in the treatment and prevention of a variety of human disorders including cancer. Their therapeutic capacities along with the fact that nature comprises a priceless pool of new compounds have attracted the interest of researchers worldwide. A significant number of organic compounds from terrestrial and marine organisms exhibit anticancer properties as attested by both in vitro and in vivo studies. Emerging evidence supporting the antineoplastic activity of natural compounds has rendered them promising agents in the fight against cancer. As a result, numerous natural compounds or their derivatives have entered clinical practice and are currently in the forefront of chemotherapeutics, showing beneficial effects for cancer patients. Induction of apoptosis seems to be the major mechanism of action induced by these natural agents in the race against cancer. This is mainly achieved through modulations of the expression of B-cell CLL/lymphoma 2 (BCL2) family members. These molecules appear to be the pivotal players determining cellular fate. In the current review, we provide a comprehensive overview of the major alterations in the gene and/or protein levels of BCL2-family members evoked in cancer cells after treatment with a gamut of natural compounds. The data cited suggest the need for exploitation of newly discovered natural products that, along with the improvement of currently employed chemotherapeutics, will significantly enrich the anticancer armamentarium. PMID:23848203

  4. Expression of cytokine and apoptosis-related genes in bovine peripheral blood mononuclear cells stimulated with Brucella abortus recombinant proteins.

    PubMed

    Im, Young Bin; Jung, Myunghwan; Shin, Min-Kyoung; Kim, Suk; Yoo, Han Sang

    2016-01-01

    Brucellosis is a clinically and economically important disease. Therefore, eradication programs of the disease have been implemented in several countries. One hurdle in these programs is the detection of infected animals at the early stage. Although the protein antigens as diagnostic antigens have recently received attention, the exact mechanisms at the beginning of immune responses are not yet known. Therefore, genes encoding five B. abortus cellular proteins were cloned and the expressed recombinant proteins were purified. The expression of several cytokine genes (IL-1β, IL-4, IL-6, IL-12p40, IFN-γ, TNF-α, and iNOS) was analyzed in bovine peripheral blood mononuclear cells (bPBMC) after stimulation with the recombinant proteins. Three apoptosis-related genes, Bax, Bcl-2, and TLR4, were also included in the analysis to find out the adverse effects of the proteins to the cells. Each protein induced different patterns of cytokine expression depending on the stimulation time and antigen dose. Expression of IL-6, IL-12p40, and IFN-γ was induced with all of the proteins while IL-1β, IL-4, TNF-α, and iNOS gene expression was not. Expression of apoptosis-related genes was not altered except TLR4. These results suggest that the cellular antigens of B. abortus induce both humoral and cellular immunity via the production of IL-6, IL-12p40, and IFN-γ in bPBMC without exerting any adverse effects on the cells. PMID:26864657

  5. Parental exposure to natural mixtures of persistent organic pollutants (POP) induced changes in transcription of apoptosis-related genes in offspring zebrafish embryos.

    PubMed

    Lyche, Jan L; Grześ, Irena M; Karlsson, Camilla; Nourizadeh-Lillabadi, Rasoul; Aleström, Peter; Ropstad, Erik

    2016-01-01

    Apoptosis is an integral element of development that may also be initiated by environmental contaminants. The aim of the present study was to assess potential changes in the regulation of apoptotic genes in zebrafish embryos following parental exposure to two natural mixtures of persistent organic pollutants (POP). The mixture from Lake Mjøsa contained exceptionally high concentrations of polybrominated diphenyl ethers (PBDE), as well as relatively high levels of polychlorinated biphenyls (PCB) and dichlorodiphenyltrichloroethane (DDT). The mixture from Lake Losna contained background concentrations of POP. Genes involved in the apoptotic machinery were screened for their expression profile at four time points during embryonic development. Thirteen and 15 genes involved in apoptosis were found to be significantly upregulated in the high-exposure and background exposure groups, respectively, compared with controls. Modulation of apoptotic genes was restricted only to the first time point, which corresponds with the blastula stage. Although there were substantial differences in POP concentrations between mixtures, genes underlying the apoptosis process showed almost similar responses to the two mixtures. In both exposure groups the main executors of apoptosis p53, casp 2, casp 6, cassp 8, and BAX displayed upregulation compared to controls, suggesting that these POP induce apoptosis via a p53-dependent mechanism. Upregulation of genes that play a critical role in apoptosis suggests that disturbance of normal apoptotic signaling during gametogenesis and embryogenesis may be one of the central mechanisms involved in adverse reproductive effects produced by POP in zebrafish. PMID:27484141

  6. Embryonic exposure to carbendazim induces the transcription of genes related to apoptosis, immunotoxicity and endocrine disruption in zebrafish (Danio rerio).

    PubMed

    Jiang, Jinhua; Wu, Shenggan; Wu, Changxing; An, Xuehua; Cai, Leiming; Zhao, Xueping

    2014-12-01

    Carbendazim is one of the most widespread environmental contaminant that can cause major concern to human and animal reproductive system. To date, very few studies have been conducted on the toxic effect of carbendazim in the non-target organism zebrafish (Danio rerio). The study presented here aimed to assess how carbendazim triggers apoptosis, immunotoxicity and endocrine disruption pathways in zebrafish during its embryo development. Our results demonstrated that the expression patterns of many key genes involved in cell apoptosis pathway (e.g. P53, Mdm2, Bbc3 and Cas8) were significantly up-regulated upon the exposure to carbendazim at the concentration of 500 μg/L, while the Bcl2 and Cas3 were down-regulated at the same concentration, interestingly, the expression level of Ogg1 decreased at all the exposure concentrations. It was also observed that the mRNA levels of CXCL-C1C, CCL1, IL-1b and TNFα which were closely related to the innate immune system, were affected in newly hatched zebrafish after exposed to different concentrations of carbendazim. Moreover, the expression of genes that are involved in the hypothalamic-pituitary-gonadal/thyroid (HPG/HPT) axis including VTG, ERα, ERβ2, Dio1, Dio2, Thraa and Thrb were all down-regulated significantly after the exposure to carbendazim. The expression levels of two cytochrome P450 aromatases CYP19a and CYP19b were increased significantly after 20 and 100 μg/L carbendazim exposure, respectively. Taken together, our results indicated that carbendazim had the potential to induce cell apoptosis and cause immune toxicity as well as endocrine disruption in zebrafish during the embryo developmental stage. The information presented here also help to elucidate the environmental risks caused by the carbendazim-induced toxicity in aquatic organisms. PMID:25304545

  7. Assessment of apoptosis in relation to proliferation and mutational status of p53 gene in head and neck cancers.

    PubMed

    Mundle, S; Kotelnikov, V; Wood, N; Coon, J; Horvath, E; Taylor, S; Lafollette, S; Caldarelli, D; Hutchinson, J; Panje, W; Preisler, H; Raza, A

    1996-06-01

    The present studies were undertaken to determine the incidence of apoptosis in plastic embedded head and neck (HN) tumor biopsies (n=31) using in situ end labeling (ISEL) of fragmented DNA. The extent of spontaneous apoptosis in untreated tumors was correlated with histological grade, percent S-phase cells (Labeling Index, LI) and with the mutational status of p53 gene in these tumors. Additionally, the in vivo effects of chemo- and/or radiotherapy on apoptosis were evaluated in seven patients. In the majority of tumors studied (25/31) spontaneous apoptosis was virtually undetectable or was very low (1-15% positively labeled cells). Only 6 tumors showed intermediate to high apoptosis (>15% positively labeled cells). High apoptosis was more frequent in poorly differentiated tumors (similar to 50%), as compared to well and moderately differentiated tumors. The median LI for 31 tumors studied was 20.2%. The mean LI for moderately differentiated tumors (23.7+/-1.7%) was significantly higher than that in well differentiated (15.1+/-2.1%, p=0.005) and was comparable in poorly differentiated tumors (24.5%). Cytotoxic therapy significantly increased the degree of apoptosis in 5/7 specimens studied (p=0.03). Double labeling of 5 of these tumors before and after the therapy, combining ISEL with detection of IUdR/BrdU, showed compartmentalized apoptosis and proliferation with virtually no double labeled cells in any specimen. Interestingly, tumors with a mutated p53 gene (n=6) showed intermediate to high degree of pretherapy, baseline apoptosis in contrast to low or undetectable levels of apoptosis in tumors bearing wild-type p53 (n=13, p=0.034). It appears that low levels of apoptosis and high proliferation may be characteristic of HN tumors. The spontaneous apoptosis in HN tumors seems unrelated to mutations in the p53 gene. Moreover, our data also show that despite overall increase in apoptosis induced by cytotoxic therapy, some proliferating tumor cells escaped the

  8. Effect of alpha-tocopherol supplementation during boar semen cryopreservation on sperm characteristics and expression of apoptosis related genes.

    PubMed

    Jeong, Yeon-Ji; Kim, Mi-Kyeong; Song, Hye-Jin; Kang, Eun-Ju; Ock, Sun-A; Kumar, B Mohana; Balasubramanian, S; Rho, Gyu-Jin

    2009-04-01

    Boar semen is extremely vulnerable to cold shock and sensitive to peroxidative damage due to high content of unsaturated fatty acids in the phospholipids of the plasma membrane and the relatively low antioxidant capacity of seminal plasma. The present study evaluated the influence of alpha-tocopherol supplementation at various concentrations in the boar semen extender during cryopreservation on post-thawed sperm motility characteristics (total sperm motility, MOT; local motility, LCM; curvilinear velocity, VCL; straight linear velocity, VSL; and average path velocity, VAP), sperm qualities (viability, acrosomal integrity and apoptosis), expression of stress protein (HSP70), and the expression of pro-apoptotic (Bax and Bak) and anti-apoptotic (Bcl-2l and Bcl-xl) genes. Semen collected from 10 Duroc boars was cryopreserved in lactose-egg yolk buffer supplemented with various concentrations of alpha-tocopherol (0, 100, 200, 400, 600 and 800 microM) using the straw-freezing procedure and stored at -196 degrees C for a minimum period of one month. In frozen-thawed groups, sperm motility was significantly (P<0.05) lower than that of fresh sperm. In fresh sperm, HSP70 immunoreactivity expression was observed in the equatorial region, but in frozen-thawed groups, expressions were mostly observed in the sperm head. Higher apoptosis rates were observed in 600 and 800 microM alpha-tocopherol supplemented frozen-thawed groups. In alpha-tocopherol supplemented frozen-thawed groups immediately after thawing, the expression was similar to that of fresh group. But after incubation at 37 degrees C for 3h, the expression in 200 and 800 microM alpha-tocopherol supplemented groups was higher than that of others. Expression of pro-apoptotic genes was significantly higher and anti-apoptotic genes was significantly (P<0.01) lower in alpha-tocopherol supplemented frozen-thawed groups compared to fresh sperm group. In conclusion, alpha-tocopherol, supplemented at 200 microM concentration

  9. Deletion of growth hormone receptor gene but not visceral fat removal decreases expression of apoptosis-related genes in the kidney-potential mechanism of lifespan extension.

    PubMed

    Gesing, Adam; Masternak, Michal M; Wang, Feiya; Karbownik-Lewinska, Malgorzata; Bartke, Andrzej

    2012-04-01

    Mice homozygous for the targeted disruption of the growth hormone (GH) receptor (Ghr) gene (GH receptor knockout; GHRKO; KO) are hypoinsulinemic, highly insulin sensitive, normoglycemic, and long-lived. Visceral fat removal (VFR) is a surgical intervention which improves insulin signaling in normal (N) mice and rats and extends longevity in rats. We have previously demonstrated decreased expression level of certain pro-apoptotic genes in skeletal muscles and suggested that this may contribute to the regulation of longevity in GHRKO mice. Alterations in apoptosis-related genes expression in the kidneys also may potentially lead to lifespan extension. In this context, we decided to examine the renal expression of the following genes: caspase-3, caspase-9, caspase-8, bax, bad, bcl-2, Smac/DIABLO, Apaf-1, p53, and cytochrome c1 (cyc1) in male GHRKO and N mice subjected to VFR or sham surgery, at approximately 6 months of age. The kidneys were collected 2 months after VFR. As a result, caspase-3, caspase-9, and bax expressions were decreased in KO mice as compared to N animals. Expressions of Smac/DIABLO, caspase-8, bcl-2, bad, and p53 did not differ between KOs and N mice. VFR did not change the expression of the examined genes in KO or N mice. In conclusion, endocrine abnormalities in GHRKO mice result in decreased expression of pro-apoptotic genes and VFR did not alter the examined genes expression in N and KO mice. These data are consistent with a model in which alterations of GH signaling and/or insulin sensitivity lead to increased lifespan mediated by decreased renal expression of pro-apoptotic genes. PMID:21431351

  10. Overexpression of the hydatidiform mole-related gene F10 inhibits apoptosis in A549 cells through downregulation of BCL2-associated X protein and caspase-3.

    PubMed

    Song, Yali; Zhang, Gong; Zhu, Xiulan; Pang, Zhanjun; Xing, Fuqi; Quan, Song

    2012-09-01

    The aim of this study was to investigate how the overexpression of the hydatidiform mole-related gene F10 affects apoptosis in human lung cancer A549 cells. A549 cells were transfected with pEGFP-N1-F10 (A549-F10) or pEGFP-N1 empty vector (A549-empty). Untransfected A549, A549-F10 or A549-empty cells were examined using the MTT cell proliferation assay and the TUNEL-FITC/Hoechst 33258 apoptosis assay. Western blotting was used to examine the expression levels of the pro-apoptotic genes, BCL2-associated X protein (BAX) and caspase-3. F10 was stably expressed in A549 cells. From 12 h, A549-F10 cells proliferated markedly faster than the untransfected and A549-empty cells. F10 overexpression also significantly inhibited apoptosis, as shown by the reduced number of TUNEL and Hoechst 33258 double-positive cells. This inhibition was likely due to an F10-induced reduction in the BAX and caspase-3 levels. The results of this study indicate that F10 overexpression inhibits apoptosis in A549 cells through the downregulation of the pro-apoptotic genes BAX and caspase-3. PMID:23741243

  11. Analysis of apoptosis-related genes in patients with clinically isolated syndrome and their association with conversion to multiple sclerosis.

    PubMed

    Hagman, Sanna; Kolasa, Marcin; Basnyat, Pabitra; Helminen, Mika; Kähönen, Mika; Dastidar, Prasun; Lehtimäki, Terho; Elovaara, Irina

    2015-03-15

    To analyse whether the expression of apoptotic transcripts is associated with the conversion from clinically isolated syndrome (CIS) to multiple sclerosis (MS). Eleven candidate transcripts belonging to the death receptor pathway, BCL-2, the inflammasome complex and NF-ΚB family were studied in the nonconverting and converting CIS patients during the four-year follow-up period. Conversion to MS was associated with marked variability in the expression of proapoptotic genes that were linked to TGF-B1 gene levels. The predominant expression of proapoptotic genes in patients with CIS suggests an increased potential to undergo apoptosis with the goal of terminating immune responses and regulating immune system homeostasis. PMID:25773154

  12. Expression levels of the BAK1 and BCL2 genes highlight the role of apoptosis in age-related hearing impairment.

    PubMed

    Falah, Masoumeh; Najafi, Mohammad; Houshmand, Massoud; Farhadi, Mohammad

    2016-01-01

    Age-related hearing impairment (ARHI) is a progressive and a common sensory disorder in the elderly and will become an increasingly important clinical problem given the growing elderly population. Apoptosis of cochlear cells is an important factor in animal models of ARHI. As these cells cannot regenerate, their loss leads to irreversible hearing impairment. Identification of molecular mechanisms can facilitate disease prevention and effective treatment. In this study, we compared the expression of the genes BAK1 and BCL2 as two arms of the intrinsic apoptosis pathway between patients with ARHI and healthy subjects. ARHI and healthy subjects were selected after an ear nose throat examination, otoscopic investigation, and pure tone audiometry. RNA was extracted from peripheral blood samples, and relative gene expression levels were measured using quantitative real-time polymerase chain reaction. BAK1 and the BAK1/BCL2 ratio were statistically significantly upregulated in the ARHI subjects. The BAK1/BCL2 ratio was positively correlated with the results of the audiometric tests. Our results indicate that BAK-mediated apoptosis may be a core mechanism in the progression of ARHI in humans, similar to finding in animal models. Moreover, the gene expression changes in peripheral blood samples could be used as a rapid and simple biomarker for early detection of ARHI. PMID:27555755

  13. Expression levels of the BAK1 and BCL2 genes highlight the role of apoptosis in age-related hearing impairment

    PubMed Central

    Falah, Masoumeh; Najafi, Mohammad; Houshmand, Massoud; Farhadi, Mohammad

    2016-01-01

    Age-related hearing impairment (ARHI) is a progressive and a common sensory disorder in the elderly and will become an increasingly important clinical problem given the growing elderly population. Apoptosis of cochlear cells is an important factor in animal models of ARHI. As these cells cannot regenerate, their loss leads to irreversible hearing impairment. Identification of molecular mechanisms can facilitate disease prevention and effective treatment. In this study, we compared the expression of the genes BAK1 and BCL2 as two arms of the intrinsic apoptosis pathway between patients with ARHI and healthy subjects. ARHI and healthy subjects were selected after an ear nose throat examination, otoscopic investigation, and pure tone audiometry. RNA was extracted from peripheral blood samples, and relative gene expression levels were measured using quantitative real-time polymerase chain reaction. BAK1 and the BAK1/BCL2 ratio were statistically significantly upregulated in the ARHI subjects. The BAK1/BCL2 ratio was positively correlated with the results of the audiometric tests. Our results indicate that BAK-mediated apoptosis may be a core mechanism in the progression of ARHI in humans, similar to finding in animal models. Moreover, the gene expression changes in peripheral blood samples could be used as a rapid and simple biomarker for early detection of ARHI. PMID:27555755

  14. Fish oil supplementation induces expression of genes related to cell cycle, endoplasmic reticulum stress and apoptosis in peripheral blood mononuclear cells: a transcriptomic approach

    PubMed Central

    Myhrstad, M C W; Ulven, S M; Günther, C-C; Ottestad, I; Holden, M; Ryeng, E; Borge, G I; Kohler, A; Brønner, K W; Thoresen, M; Holven, K B

    2014-01-01

    Background Fish oil supplementation has been shown to alter gene expression of mononuclear cells both in vitro and in vivo. However, little is known about the total transcriptome profile in healthy subjects after intake of fish oil. We therefore investigated the gene expression profile in peripheral blood mononuclear cells (PBMCs) after intake of fish oil for 7 weeks using transcriptome analyses. Design In a 7-week, double-blinded, randomized, controlled, parallel-group study, healthy subjects received 8 g day−1 fish oil (1.6 g day−1 eicosapentaenoic acid + docosahexaenoic acid) (n = 17) or 8 g day−1 high oleic sunflower oil (n = 19). Microarray analyses of RNA isolated from PBMCs were performed at baseline and after 7 weeks of intervention. Results Cell cycle, DNA packaging and chromosome organization are biological processes found to be upregulated after intake of fish oil compared to high oleic sunflower oil using a moderated t-test. In addition, gene set enrichment analysis identified several enriched gene sets after intake of fish oil. The genes contributing to the significantly different gene sets in the subjects given fish oil compared with the control group are involved in cell cycle, endoplasmic reticulum (ER) stress and apoptosis. Gene transcripts with common motifs for 35 known transcription factors including E2F, TP53 and ATF4 were upregulated after intake of fish oil. Conclusion We have shown that intake of fish oil for 7 weeks modulates gene expression in PBMCs of healthy subjects. The increased expression of genes related to cell cycle, ER stress and apoptosis suggests that intake of fish oil may modulate basic cellular processes involved in normal cellular function. PMID:24641624

  15. GENETIC ANALYSIS OF INTERFERON INDUCED THYROIDITIS (IIT): EVIDENCE FOR A KEY ROLE FOR MHC AND APOPTOSIS RELATED GENES AND PATHWAYS

    PubMed Central

    Hasham, Alia; Zhang, Weijia; Lotay, Vaneet; Haggerty, Shannon; Stefan, Mihaela; Concepcion, Erlinda; Dieterich, Douglas T.; Tomer, Yaron

    2013-01-01

    Autoimmune thyroid diseases (AITD) have become increasingly recognized as a complication of interferon-alpha (IFNα) therapy in patients with chronic Hepatitis C virus (HCV) infection. Interferon-induced thyroiditis (IIT) can manifest as clinical thyroiditis in approximately 15% of HCV patients receiving IFNα and subclinical thyroiditis in up to 40% of patients, possibly resulting in either dose reduction or discontinuation of IFNα treatment. However, the exact mechanisms that lead to the development of IIT are unknown and may include IFNα-mediated immune-recruitment as well as direct toxic effects on thyroid follicular cells. We hypothesized that IIT develops in genetically predisposed individuals whose threshold for developing thyroiditis is lowered by IFNα. Therefore, our aim was to identify the susceptibility genes for IIT. We used a genomic convergence approach combining genetic association data with transcriptome analysis of genes upregulated by IFNα. Integrating results of genetic association, transcriptome data, pathway, and haplotype analyses enabled the identification of 3 putative loci, SP100/110/140 (2q37.1), HLA (6p21.3), and TAP1 (6p21.3) that may be involved in the pathogenesis of IIT. Immune-regulation and apoptosis emerged as the predominant mechanisms underlying the etiology of IIT. PMID:23683877

  16. Exposure in utero to 2,2',3,3',4,6'-hexachlorobiphenyl (PCB 132) impairs sperm function and alters testicular apoptosis-related gene expression in rat offspring

    SciTech Connect

    Hsu, P.-C.; Pan, M.-H.; Li, L.-A.; Chen, C.-J.; Tsai, S.-S.; Guo, Y.L. . E-mail: leonguo@ha.mc.ntu.edu.tw

    2007-05-15

    Toxicity of the polychlorinated biphenyls (PCBs) depends on their molecular structure. Mechanisms by prenatal exposure to a non-dioxin-like PCB, 2,2',3,4',5',6-hexachlorobiphenyl (PCB 132) that may act on reproductive pathways in male offspring are relatively unknown. The purpose was to determine whether epididymal sperm function and expression of apoptosis-related genes were induced or inhibited by prenatal exposure to PCB 132. Pregnant rats were treated with a single dose of PCB 132 at 1 or 10 mg/kg on gestational day 15. Male offspring were killed and the epididymal sperm counts, motility, velocity, reactive oxygen species (ROS) generation, sperm-oocyte penetration rate (SOPR), testicular histopathology, apoptosis-related gene expression and caspase activation were assessed on postnatal day 84. Prenatal exposure to PCB 132 with a single dose of 1 or 10 mg/kg decreased cauda epididymal weight, epididymal sperm count and motile epididymal sperm count in adult offspring. The spermatozoa of PCB 132-exposed offspring produced significantly higher levels of ROS than the controls; ROS induction and SOPR reduction were dose-related. In the low-dose PCB 132 group, p53 was significantly induced and caspase-3 was inhibited. In the high-dose group, activation of caspase-3 and -9 was significantly increased, while the expressions of Fas, Bax, bcl-2, and p53 genes were significantly decreased. Gene expression and caspase activation data may provide insight into the mechanisms by which exposure to low-dose or high-dose PCB 132 affects reproduction in male offspring in rats. Because the doses of PCB 132 administered to the dams were approximately 625-fold in low-dose group and 6250-fold higher in high-dose group than the concentration in human tissue levels, the concentrations are not biologically or environmentally relevant. Further studies using environmentally relevant doses are needed for hazard identification.

  17. Impact of broiler egg storage on the relative expression of selected blastoderm genes associated with apoptosis, oxidative stress, and fatty acid metabolism.

    PubMed

    Bakst, M R; Welch, G R; Fetterer, R; Miska, K

    2016-06-01

    Cool temperature storage of eggs prior to incubation is a frequent practice by commercial broiler hatcheries. However, continued storage beyond 7 d leads to a progressive increase in the rate of early embryonic mortality. In this study, we examined the relative expression of 31 genes associated with fatty acid metabolism (8), apoptosis (7), and oxidative stress (16) pathways to better understand the basis of embryo mortality during egg storage. A total of 642 broiler eggs in 2 separate trials were subjected to the following egg treatments: stored 4 d (Control 1, C1); stored 21 d but subjected to short periods of incubation during egg storage (SPIDES); stored un-manipulated 21 d (NonSPIDES, NS); and stored 4 d then incubated for 10 h to advance the embryos to the same developmental stages as the SPIDES embryos (Control 2, C2). Hatchability trials (277 eggs) confirmed the efficacy of SPIDES compared to NS treatments in both trials. To determine relative expression of 31 selected genes, 365 blastoderms were isolated, staged, and flash frozen in batches of 5 to 10 blastoderms per vial (7 vials per egg treatment) prior to RNA extractions. Analysis of gene expression was performed using qRT-PCR and the results presented as relative expression normalized to C1. The relative expression of genes in which the SPIDES and C2 treatments were significantly up- or down-regulated in tandem indicated that the stage-specific expression of those genes was maintained by the SPIDES treatment. This study provides the relative gene expressions of blastodermal cells before and after prolonged egg storage as well as insight as to how SPIDES impacts blastodermal cell gene expression. PMID:26944957

  18. MicroRNA-related polymorphisms in apoptosis pathway genes are predictive of clinical outcome in patients with limited disease small cell lung cancer

    PubMed Central

    Jiang, Wei; Bi, Nan; Zhang, Wen-Jue; Wu, Li-Hong; Liu, Li-Pin; Men, Yu; Wang, Jing-Bo; Liang, Jun; Hui, Zhou-Guang; Zhou, Zong-Mei; Wang, Lu-Hua

    2016-01-01

    We examined the impact of single nucleotide polymorphisms (SNPs) at miRNA binding sites in the 3′-UTRs of genes in the apoptosis pathway on the prognosis of patients with limited disease-small cell lung cancer (LD-SCLC). Twelve tagSNPs in seven genes were genotyped using blood samples from 146 LD-SCLC patients treated with chemoradiotherapy. Cox proportional hazard regression models and recursive partitioning analysis were performed to identify SNPs significantly associated with overall survival. Three SNPs, CASP8: rs1045494 (C > T), PIK3R1: rs3756668 (A > G) and CASP7: rs4353229 (T > C), were associated with longer overall survival in LD-SCLC patients after chemoradiotherapy. The adjusted hazard ratios (95% confidence intervals) were 0.480 (0.258–0.894), 0.405 (0.173–0.947) and 0.446 (0.247–0.802), respectively, and remained significant after multiple comparison correction. Moreover, subset analysis showed these SNPs were still predictive of overall survival in stage III patients. Recursive partitioning analysis enabled patients to be classified into three risk subgroups based on unfavorable genotype combinations of the rs1045494 and rs4353229 SNPs. These findings suggest miRNA-related polymorphisms in the apoptosis pathway may be useful biomarkers for selection of LD-SCLC patients likely to benefit from chemoradiotherapy. PMID:26988918

  19. Expression of genes related to apoptosis, cell cycle and signaling pathways are independent of TP53 status in urinary bladder cancer cells.

    PubMed

    da Silva, Glenda N; Evangelista, Adriane F; Magalhães, Danielle A; Macedo, Cláudia; Búfalo, Michelle C; Sakamoto-Hojo, Elza T; Passos, Geraldo A S; Salvadori, Daisy M F

    2011-08-01

    Urinary bladder cancer is the fourth most common malignancy in the Western world. Transitional cell carcinoma (TCC) is the most common subtype, accounting for about 90% of all bladder cancers. The TP53 gene plays an essential role in the regulation of the cell cycle and apoptosis and therefore contributes to cellular transformation and malignancy; however, little is known about the differential gene expression patterns in human tumors that present with the wild-type or mutated TP53 gene. Therefore, because gene profiling can provide new insights into the molecular biology of bladder cancer, the present study aimed to compare the molecular profiles of bladder cancer cell lines with different TP53 alleles, including the wild type (RT4) and two mutants (5637, with mutations in codons 280 and 72; and T24, a TP53 allele encoding an in-frame deletion of tyrosine 126). Unsupervised hierarchical clustering and gene networks were constructed based on data generated by cDNA microarrays using mRNA from the three cell lines. Differentially expressed genes related to the cell cycle, cell division, cell death, and cell proliferation were observed in the three cell lines. However, the cDNA microarray data did not cluster cell lines based on their TP53 allele. The gene profiles of the RT4 cells were more similar to those of T24 than to those of the 5637 cells. While the deregulation of both the cell cycle and the apoptotic pathways was particularly related to TCC, these alterations were not associated with the TP53 status. PMID:21116856

  20. Differential Expression of Tyrosine Hydroxylase Protein and Apoptosis-Related Genes in Differentiated and Undifferentiated SH-SY5Y Neuroblastoma Cells Treated with MPP+

    PubMed Central

    Khwanraj, Kawinthra; Phruksaniyom, Chareerut; Madlah, Suriyat; Dharmasaroja, Permphan

    2015-01-01

    The human neuroblastoma SH-SY5Y cell line has been used as a dopaminergic cell model for Parkinson's disease research. Whether undifferentiated or differentiated SH-SY5Y cells are more suitable remains controversial. This study aims to evaluate the expression of apoptosis-related mRNAs activated by MPP+ and evaluate the differential expression of tyrosine hydroxylase (TH) in undifferentiated and retinoic acid- (RA-) induced differentiated cells. The western blot results showed a gradual decrease in TH in undifferentiated cells and a gradual increase in TH in differentiated cells from days 4 to 10 after cell plating. Immunostaining revealed a gradual increase in TH along with neuritic outgrowth in differentiated cells on days 4 and 7 of RA treatment. For the study on cell susceptibility to MPP+ and the expression of apoptosis-related genes, MTT assay showed a decrease in cell viability to approximately 50% requiring 500 and 1000 μM of MPP+ for undifferentiated and RA-differentiated cells, respectively. Using real-time RT-PCR, treatment with 500 μM MPP+ led to significant increases in the Bax/Bcl-2 ratio, p53, and caspase-3 in undifferentiated cells but was without significance in differentiated cells. In conclusion, differentiated cells may be more suitable, and the shorter duration of RA differentiation may make the SH-SY5Y cell model more accessible. PMID:26634154

  1. Association between breast cancer and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) gene 1595C/T SNP in a Pakistani population

    PubMed Central

    Rehman, Saima F.; Mansoor, Qaisar; Nazir, Nusrat; Kausar, Rukhsana; Jabeen, Nyla; Ismail, Muhammad

    2015-01-01

    Aim of the Study TRAIL-mediated signalling has emerged as an extensively studied biological mechanism reported to differentially induce apoptosis in cancer cells. However, overwhelmingly increasing experimentally verified data is shedding light on resistance against TRAIL-induced apoptosis in cancer cells. Moreover, genetic and epigenetic mutations also exert effects on the functionality of TRAIL and its receptors. In this study we investigated the association between breast cancer and polymorphisms in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) in a Pakistani Population. Material and methods Genotyping for TRAIL gene 1595 C/T polymorphism was done for 363 breast cancer patients and 193 age- and sex-matched healthy controls. DNA was extracted using standard organic methods. PCR-RFLP analysis was done for C/T polymorphism at position 1595 in exon 5 of the TRAIL gene using site-specific primers and restriction enzyme. The results were statistically evaluated by SPSS14. Results In this study, CC homozygotes were 46.3% in patients and 49.7% in controls, p = 0.729 with OR value 0.8705 (95% CI: 0.6137–1.2348). CT was statistically insignificant, p = 0.837 with OR value 0.9242 (95% CI: 0.6494–1.3154). However, the minor allele or risk allele genotype TT had a higher percentage among breast cancer patients (12.1%) than in the control group (6.7%). Since there was a statistically insignificant difference (p = 0.212, OR value 1.9098 with 95% CI 1.0019 to 3.6406) of TT genotype between the two groups, the contrastingly higher percentage of TT genotype in breast cancer patients seems to be a risk factor for the disease. Moreover, the frequency of minor allele T was also found to be higher in the patients (0.329) than in the controls (0.285). Conclusions The TRAIL gene 1595 C/T SNP has a contradictory role in cancer development in different populations. In our population group although the percentage of homozygous risk allele TT was higher in patients

  2. Calcitonin gene-related peptide cooperates with substance P to inhibit melanogenesis and induces apoptosis of B16F10 cells.

    PubMed

    Zhou, Jia; Feng, Jun-Yi; Wang, Qian; Shang, Jing

    2015-07-01

    Skin is the largest organ in human body and works as biologically active barrier to provide critical preservation of body homeostasis. The skin is highly innervated by a plenitude of nerve fiber subpopulations, each carrying one or more neuronal mediators. Melanocyte itself also intimately contact with nerve fibers to form 'synaptic-like structure' and its functions may be directly regulated by the mediators contained in terminals of intra-epidermal nerve fibers. Clinical and biochemical studies have suggested that calcitonin gene-related peptide (CGRP) is involved in vitiligo skin. The present study was designed to investigate the effect of CGRP on epidermal melanocytes. After treatment with CGRP ranging from 0 to 500 ng/mL for 48 h, tyrosinase activity and melanogenesis were with little changes compared to treatment with medium only in B16F10 cells. Treatment with 500 ng/mL of CGRP cooperates with substance P (SP) (0.1-10 nM) to decrease tyrosinase activity and decrease melanin biosynthesis in B16F10 cells in a concentration-dependent manner. Furthermore, CGRP (8-37) antagonizes the synergistic effect of CGRP. The effect of CGRP on the cell apoptosis was examined. Treatments with 0-500 ng/mL of CGRP for 24 h, the expression levels of cleaved caspase-3, total caspase-3, cleaved caspase-9 and total caspase-9 were increased in a concentration-dependent manner. And 500 ng/mL of CGRP induced B16F10 cell apoptosis showed by TUNEL assay. In addition, Bax expression was up-regulated and Bcl-2 down-regulated in response to CGRP treatment. Hence, the Bax/Bcl-2 ratio was significantly increased. These in vitro observations indicate the pro-apoptotic impact of CGRP on B16F10 cell. PMID:25982845

  3. Apoptosis Induction by Polygonum minus Is Related to Antioxidant Capacity, Alterations in Expression of Apoptotic-Related Genes, and S-Phase Cell Cycle Arrest in HepG2 Cell Line

    PubMed Central

    Mohd Ghazali, Mohd Alfazari; Al-Naqeb, Ghanya; Krishnan Selvarajan, Kesavanarayanan; Hazizul Hasan, Mizaton; Adam, Aishah

    2014-01-01

    Polygonum minus (Polygonaceae) is a medicinal herb distributed throughout eastern Asia. The present study investigated antiproliferative effect of P. minus and its possible mechanisms. Four extracts (petroleum ether, methanol, ethyl acetate, and water) were prepared by cold maceration. Extracts were subjected to phytochemical screening, antioxidant, and antiproliferative assays; the most bioactive was fractionated using vacuum liquid chromatography into seven fractions (F1–F7). Antioxidant activity was measured via total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. Antiproliferative activity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Most active fraction was tested for apoptosis induction and cell cycle arrest in HepG2 cells using flow cytometry and confocal microscopy. Apoptotic-related gene expression was studied by RT-PCR. Ethyl acetate extract was bioactive in initial assays. Its fraction, F7, exhibited highest antioxidant capacity (TPC; 113.16 ± 6.2 mg GAE/g extract, DPPH; EC50: 30.5 ± 3.2 μg/mL, FRAP; 1169 ± 20.3 μmol Fe (II)/mg extract) and selective antiproliferative effect (IC50: 25.75 ± 1.5 μg/mL). F7 induced apoptosis in concentration- and time-dependent manner and caused cell cycle arrest at S-phase. Upregulation of proapoptotic genes (Bax, p53, and caspase-3) and downregulation of antiapoptotic gene, Bcl-2, were observed. In conclusion, F7 was antiproliferative to HepG2 cells by inducing apoptosis, cell cycle arrest, and via antioxidative effects. PMID:24955361

  4. Apoptosis Induction by Polygonum minus is related to antioxidant capacity, alterations in expression of apoptotic-related genes, and S-phase cell cycle arrest in HepG2 cell line.

    PubMed

    Mohd Ghazali, Mohd Alfazari; Al-Naqeb, Ghanya; Krishnan Selvarajan, Kesavanarayanan; Hazizul Hasan, Mizaton; Adam, Aishah

    2014-01-01

    Polygonum minus (Polygonaceae) is a medicinal herb distributed throughout eastern Asia. The present study investigated antiproliferative effect of P. minus and its possible mechanisms. Four extracts (petroleum ether, methanol, ethyl acetate, and water) were prepared by cold maceration. Extracts were subjected to phytochemical screening, antioxidant, and antiproliferative assays; the most bioactive was fractionated using vacuum liquid chromatography into seven fractions (F1-F7). Antioxidant activity was measured via total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. Antiproliferative activity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Most active fraction was tested for apoptosis induction and cell cycle arrest in HepG2 cells using flow cytometry and confocal microscopy. Apoptotic-related gene expression was studied by RT-PCR. Ethyl acetate extract was bioactive in initial assays. Its fraction, F7, exhibited highest antioxidant capacity (TPC; 113.16 ± 6.2 mg GAE/g extract, DPPH; EC50: 30.5 ± 3.2 μg/mL, FRAP; 1169 ± 20.3 μmol Fe (II)/mg extract) and selective antiproliferative effect (IC50: 25.75 ± 1.5 μg/mL). F7 induced apoptosis in concentration- and time-dependent manner and caused cell cycle arrest at S-phase. Upregulation of proapoptotic genes (Bax, p53, and caspase-3) and downregulation of antiapoptotic gene, Bcl-2, were observed. In conclusion, F7 was antiproliferative to HepG2 cells by inducing apoptosis, cell cycle arrest, and via antioxidative effects. PMID:24955361

  5. Dioxinodehydroeckol protects human keratinocyte cells from UVB-induced apoptosis modulated by related genes Bax/Bcl-2 and caspase pathway.

    PubMed

    Ryu, BoMi; Ahn, Byul-Nim; Kang, Kyong-Hwa; Kim, Young-Sang; Li, Yong-Xin; Kong, Chang-Suk; Kim, Se-Kwon; Kim, Dong Gyu

    2015-12-01

    Although ultraviolet B (UVB) has a low level of skin penetration, it readily results in epidermal sunburn of keratinocytes that are destined to apoptosis after sun expose, and leads to DNA damage. Dioxinodehydroeckol (DHE), a phlorotannin from Ecklonia cava has been explored for its preventive activity against UVB-induced apoptosis in human keratinocyte (HaCaT) cells; however, the protective effects of treatment with low doses of DHE on UVB-damaged cells post-UVB exposure and their underlying mechanisms still remain unclear. The HaCaT cells were exposed to 20 mJcm(-2) of UVB irradiation which is the minimal erythema dose (MED) for individuals to be able to tan, and the expression levels of Bax/Bcl-2 and caspase-3,-8, -9 which are associated genes with apoptosis were investigated when we either treated cells with DHE doses after UVB irradiation or exposed them to UVB only. Our results suggest insight into proposed mechanistic pathway of protective activity of DHE on the HaCaT cells from UVB-induced apoptosis, indicating the benefit of DHE as a repair agent for skin damage against UVB. PMID:26529485

  6. Concentrate diet modulation of ruminal genes involved in cell proliferation and apoptosis is related to combined effects of short-chain fatty acid and pH in rumen of goats.

    PubMed

    Gui, Hongbing; Shen, Zanming

    2016-08-01

    Short-chain fatty acids (SCFA) regulate cell proliferation and cell apoptosis in gastrointestinal tissue in vitro and in vivo. We have tested the hypothesis that a medium-concentrate intake induces mRNA abundance alterations of genes involved in cell proliferation and cell apoptosis in the rumen epithelium of goats, and that these changes in mRNA abundance are related to ruminal SCFA concentration and ruminal pH. Goats (n=16) were randomly allocated to 2 groups and fed either a low-concentrate (LC) diet (10% concentrate; n=8) or a medium-concentrate (MC) diet (35% concentrate; n=8) in 2 equal portions daily. The individually housed goats were fed separately with their respective diet for 3wk and were slaughtered 6h after the morning feed on d 22. In vivo, goats receiving the MC treatment exhibited a greater ruminal SCFA concentration (73.7mM) compared with those receiving the LC treatment (53.2mM), and the pH decreased from 6.9 to 6.5. The expression of proliferative genes of cyclin A, cyclin B1, cyclin D1, cyclin E1, CDK1, CDK2, CDK4, and CDK6 mRNA in the MC group was enhanced. The gene expression of apoptosis genes (caspase 3, caspase 8, caspase 9, p53, and Bax) was significantly higher, and the ratio of Bcl-2 to Bax (Bcl-2/Bax) expression was lower in the MC group than in the LC group. The same trend was observed in the population of apoptotic cells analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. The cell density in the stratum germinativum of the MC group was significantly increased compared with that in the LC group. During primary culture of rumen epithelial cells, SCFA or pH treatment alone of the culture medium had significant effects on the expression of most of the genes tested in the present study. Furthermore, SCFA and pH exerted combined effects on the expression of cyclin A, cyclin B1, cyclin E1, CDK6, p53, Bcl-2, and Bcl-2/Bax. Thus, the MC diet induces alteration of gene expression of the genes that regulate

  7. Effect of sub-chronic intraperitoneal administration of aminoguanidine on the memory and hippocampal apoptosis-related genes in diabetic rats.

    PubMed

    Alipour, M; Amini, B; Adineh, F; Feizi, H; Jafari, M R

    2016-01-01

    Memory impairment is a common disorder in diabetes mellitus which is associated with hippocampal neuronal apoptosis. The present study was conducted to examine the effect of one-week intraperitoneal (ip), administration of aminoguanidine (AG) on passive avoidance learning (PAL) and Bcl-2 family gene expression in the hippocampus of rats. Sixty male rats were divided into ten groups: non-diabetic/diabetic animals with/without AG (50, 100, 200 and 400 mg/kg, ip) treatment for one week. PAL and Bcl-2 family genes were examined. AG (100 and 200 mg/kg) improved both memory and Bax, Bak, Bcl-2 and Bcl-xl deficiency significantly in diabetic rats. AG treatment also ameliorated the diabetes-induced changes in (Bcl-2+Bcl-xl)/(Bak+Bax) ratios considerably. These results propose that one-week ip administration of AG may recover the deficit cognition in diabetic rats via enhancing (Bcl-2+Bcl-xl)/(Bak+Bax) proportions (Tab. 2, Fig. 4, Ref. 55). PMID:27546701

  8. Validation of the Antiproliferative Effects of Organic Extracts from the Green Husk of Juglans regia L. on PC-3 Human Prostate Cancer Cells by Assessment of Apoptosis-Related Genes

    PubMed Central

    Alshatwi, Ali A.; Hasan, Tarique N.; Shafi, Gowhar; Syed, Naveed Ahmed; Al-Assaf, Abdullah H.; Alamri, Mohammed S.; Al-Khalifa, Abdrohman S.

    2012-01-01

    With the increased use of plant-based cancer chemotherapy, exploring the antiproliferative effects of phytochemicals for anticancer drug design has gained considerable attention worldwide. This study was undertaken to investigate the effect of walnut green husk extracts on cell proliferation and to determine the possible molecular mechanism of extract-induced cell death by quantifying the expression of Bcl-2, Bax, caspases-3, and Tp53. PC-3 human prostate cancer cells. In this study, we found that green husk extracts suppressed proliferation and induced apoptosis in a dose- and time-dependent manner by modulating expression of apoptosis-related genes. This involved DNA fragmentation (determined by TUNEL assay) and significant changes in levels of mRNA and the expression of corresponding proteins. An increase in expressions of Bax, caspase-3, and tp53 genes and their corresponding proteins was detected using real-time PCR and western blot analysis in PC-3 cells treated with the green husk organic extracts. In contrast, Bcl2 expression was downregulated after exposure to the extracts. Our data suggest the presence of bioactive compound(s) in walnut green husks that are capable of killing prostate carcinoma cells by inducing apoptosis and that the husks are a candidate source of anticancer drugs. PMID:22454652

  9. Association of Single Nucleotide Polymorphisms in the Apoptosis-Related Genes TP63 and CD40 with Risk for Lung Cancer in a Chinese Han Population.

    PubMed

    Tang, WenJun; Xue, Li; Yan, QiXing; Cai, ShaoXi; Bai, YuJie; Lin, Li; Lin, BiLin; Huang, MingLong; Yi, GuoHui; Li, Hui

    2016-01-01

    Apoptosis plays a critical role in tumorigenesis. TP63 inhibits the pro-apoptosis function of TP53, and CD40 increases expression of anti-apoptotic proteins. Two single nucleotide polymorphisms (SNPs), rs6790167 (g243059A>G) in intron 9 of TP63 and rs1535045 (g6194C>T) in intron 1 of CD40 respectively, may affect the susceptibility of lung cancer. To evaluate the association of these SNPs with lung cancer, we performed a case-control study with 258 patients, including 149 adenocarcinoma and 47 small cell lung cancer, and 270 controls. Genotyping was conducted using allele-specific polymerase chain reaction and pyrosequencing. We found that rs6790167 and rs1535045 are associated with the risk of lung adenocarcinoma (P = 0.048) and small cell lung cancer (P = 0.019), respectively. Non-smoking males carrying the GG genotype of rs6790167 had higher risk for lung adenocarcinoma than individuals carrying the AA genotype (OR = 7.58, 95% CI: 2.43-23.65). Compared to the TT genotype of rs1535045, non-smoking women with the CC genotype had higher risk for lung adenocarcinoma (OR = 4.20, 95% CI: 1.34-13.12). After stratified analysis based on clinical characteristics, the frequency of the CC genotype of rs1535045 was higher in patients at I-II stages (P = 0.013) or patients whose tumor markers were negative (P = 0.003). Individuals carrying both the GG genotype of rs6790167 and the CC genotype of rs1535045 were associated with significantly higher risk for lung adenocarcinoma. Thus, the polymorphisms in the TP63 and CD40 genes are associated with lung cancer in a Chinese Han population. PMID:27063419

  10. [Ice/ced-3 family gene and apoptosis].

    PubMed

    Miura, M

    1996-07-01

    Apoptosis is a process by which cells carry out their own execution by activating an orderly set of genetic and biochemical program. A genetic pathway of apoptosis has been identified in the nematode Caenorhabditis elegans. The ced-3 gene is required for all programmed cell death in C. elegans. Mammalian homolog of ced-3 has been identified as Ice family which is newly identified cysteine protease. Overexpression of Ice/ced-3 family gene can induce apoptosis in a variety of mammalian cells, and inhibitors of Ice/ced-3 family effectively prevent apoptosis induced by a variety of stimulus. Several housekeeping genes have been shown to be targets of Ice/ced-3 family gene, indicating that activation of Ice/ced-3 can induce irreversible fatal changes of cells. PMID:8741679

  11. Molecular mechanism of ER stress-induced gene expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in macrophages.

    PubMed

    Huang, Yan; Wang, Yarui; Li, Xiaofeng; Chen, Zhaolin; Li, Xiaohui; Wang, Huan; Ni, Mingming; Li, Jun

    2015-06-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, whose members are capable of inducing apoptosis and inflammation. Endoplasmic reticulum stress (ERS) plays a key role in immune surveillance in macrophages. TRAIL mRNA and protein expression have previously been detected in macrophages; however, whether ERS has any effects on TRAIL expression in macrophages has not yet been determined. Here, we demonstrate that thapsigargin (TG) and tunicamycin (TM), two ERS inducers activated macrophages were able to increase TRAIL mRNA and protein expression in RAW264.7 macrophages, the culture supernatant of THP-1 cells, and mouse peritoneal macrophages, indicating that ERS as a potent inducer of TRAIL transcription and expression in macrophages. This effect was blocked by the specific JNK inhibitor SP600125 and transcription factor AP-1 inhibitor SR 1130. Interestingly, at the molecular level, regulation of TRAIL expression by ERS was accompanied by a significant decrease in cytokine signaling suppressor 3 (SOCS3). SOCS3 siRNA clearly increased the expression of TRAIL mRNA and protein under ERS by activating the AP-1 components phosphorylated c-Jun and phosphorylated c-Fos in RAW264.7 cells. In contrast, over-expression of SOCS3 reversed ERS-induced TRAIL expression. These findings provide in vitro evidence that SOCS3 plays a critical negative role in the regulation of ERS-induced TRAIL expression via the Jun N-terminal kinase/AP-1 signaling pathway in macrophages. PMID:25827060

  12. CoCr wear particles generated from CoCr alloy metal-on-metal hip replacements, and cobalt ions stimulate apoptosis and expression of general toxicology-related genes in monocyte-like U937 cells

    SciTech Connect

    Posada, Olga M.; Gilmour, Denise; Tate, Rothwelle J.; Grant, M. Helen

    2014-11-15

    Cobalt-chromium (CoCr) particles in the nanometre size range and their concomitant release of Co and Cr ions into the patients' circulation are produced by wear at the articulating surfaces of metal-on-metal (MoM) implants. This process is associated with inflammation, bone loss and implant loosening and led to the withdrawal from the market of the DePuy ASR™ MoM hip replacements in 2010. Ions released from CoCr particles derived from a resurfacing implant in vitro and their subsequent cellular up-take were measured by ICP-MS. Moreover, the ability of such metal debris and Co ions to induce both apoptosis was evaluated with both FACS and immunoblotting. qRT-PCR was used to assess the effects on the expression of lymphotoxin alpha (LTA), BCL2-associated athanogene (BAG1), nitric oxide synthase 2 inducible (NOS2), FBJ murine osteosarcoma viral oncogene homolog (FOS), growth arrest and DNA-damage-inducible alpha (GADD45A). ICP-MS showed that the wear debris released significant (p < 0.05) amounts of Co and Cr ions into the culture medium, and significant (p < 0.05) cellular uptake of both ions. There was also an increase (p < 0.05) in apoptosis after a 48 h exposure to wear debris. Analysis of qRT-PCR results found significant up-regulation (p < 0.05) particularly of NOS2 and BAG1 in Co pre-treated cells which were subsequently exposed to Co ions + debris. Metal debris was more effective as an inducer of apoptosis and gene expression when cells had been pre-treated with Co ions. This suggests that if a patient receives sequential bilateral CoCr implants, the second implant may be more likely to produce adverse effects than the first one. - Highlights: • Effects of CoCr nanoparticles and Co ions on U937 cells were investigated. • Ions released from wear debris play an important role in cellular response, • Toxicity of Co ions could be related to NO metabolic processes and apoptosis. • CoCr particles were a more effective inducer of apoptosis after cell

  13. Gene Network Exploration of Crosstalk between Apoptosis and Autophagy in Chronic Myelogenous Leukemia

    PubMed Central

    Cho, William C. S.; Chan, Lawrence W. C.; Wong, S. C. Cesar; Tsui, Nancy B. Y.; Siu, Parco M.; Yip, S. P.; Yung, Benjamin Y. M.

    2015-01-01

    Background. Gene expression levels change to adapt the stress, such as starvation, toxin, and radiation. The changes are signals transmitted through molecular interactions, eventually leading to two cellular fates, apoptosis and autophagy. Due to genetic variations, the signals may not be effectively transmitted to modulate apoptotic and autophagic responses. Such aberrant modulation may lead to carcinogenesis and drug resistance. The balance between apoptosis and autophagy becomes very crucial in coping with the stress. Though there have been evidences illustrating the apoptosis-autophagy interplay, the underlying mechanism and the participation of the regulators including transcription factors (TFs) and microRNAs (miRNAs) remain unclear. Results. Gene network is a graphical illustration for exploring the functional linkages and the potential coordinate regulations of genes. Microarray dataset for the study of chronic myeloid leukemia was obtained from Gene Expression Omnibus. The expression profiles of those genes related to apoptosis and autophagy, including MCL1, BCL2, ATG, beclin-1, BAX, BAK, E2F, cMYC, PI3K, AKT, BAD, and LC3, were extracted from the dataset to construct the gene networks. Conclusion. The network analysis of these genes explored the underlying mechanisms and the roles of TFs and miRNAs for the crosstalk between apoptosis and autophagy. PMID:25821802

  14. Retinoid receptor-specific agonists regulate bovine in vitro early embryonic development, differentiation and expression of genes related to cell cycle arrest and apoptosis.

    PubMed

    Rodríguez, A; Díez, C; Caamaño, J N; de Frutos, C; Royo, L J; Muñoz, M; Ikeda, S; Facal, N; Alvarez-Viejo, M; Gómez, E

    2007-11-01

    A major goal in reproductive biotechnology is the identification of pathways that regulate early embryonic development and the allocation of cells to the inner cell mass (ICM) and trophectoderm (TE). Retinoids regulate the development and differentiation of the bovine blastocyst in vitro, although the involvement of the retinoid X receptors (RXRs) remains to be clarified. This paper compares the effect of a synthetic RXR agonist (LG100268; LG) with that of the retinoic acid receptor (RAR) agonist all-trans retinoic acid (ATRA) on blastulation. In vitro-produced morulae were treated for 48 h with LG (0.1 microM, 1 microM and 10 microM), ATRA 0.7 microM, or no additives. Treatment with ATRA did not increase the rate of development; however, the LG 0.1 microM treatment increased both the blastocyst development and hatching rate. Cell numbers increased in the ICM with LG 10 microM, while a dose-dependent reduction was observed in the TE in the presence of LG. Gene expression levels of p53 and p66 did not vary with LG but increased with ATRA. Both LG and ATRA activated bax, a pro-apoptotic gene and H2A.Z, a cell cycle-related gene. The above effects suggest the existence of active p53-dependent and -independent apoptotic pathways for ATRA and LG, respectively, in the bovine embryo. The expression of p53 and H2A.Z showed a strong, positive correlation (r=0.93; p<0.0001) in all experimental groups; both proteins are linked through the cell cycle. Agonists of RXR could be used to control blastocyst development and differentiation. PMID:17869331

  15. Genes related to growth regulation, DNA repair and apoptosis in an oestrogen receptor-negative (MDA-231) versus an oestrogen receptor-positive (MCF-7) breast tumour cell line.

    PubMed

    Skog, Sven; He, Qimin; Khoshnoud, Reza; Fornander, Tommy; Rutqvist, Lars-Erik

    2004-01-01

    The molecular mechanism(s) behind the development of endocrine resistance in breast cancer remains controversial. Here, we compare the capability of oestrogen receptor (ER)-negative cells (MDA-231) versus ER-positive tamoxifen-sensitive cells (MCF-7) to handle DNA repair, transmit signals from damaged DNA, initiate cell death via apoptosis, and then to control transmitted signals from the cell cycle and to synthesize growth factors and receptors. Genes related to these events were studied by cDNA micro-array. Normal human breast cells (H2F) and human lymphoblastoid tumour cells (CEM) were used as controls. Of the 18 genes investigated, 10 genes showed differences in their expression between the cell types. The ER-negative cells showed higher expressions of BRCA1, BRCA2, cdc2, cyclin B1, cyclin D1, cyclin E, IGFBP-3, TGF-alpha, TGF beta 2 and a lower expression of TGF beta R1. No differences in the expressions of bax, bcl-2, p53, p21 and GADD45 were found between the two cell lines. We found that the ER-negative cells were characterized by: (1) a stimulated expression of growth factors and cell cycle regulation compounds, (2) improved DNA repair capacity, but (3) no change in DNA damage signals and apoptotic pathways. Improved DNA repair capacity of ER-negative cells would have a growth advantage over ER-positive tumours when receiving antitumour therapy. PMID:15192311

  16. Identification of genes regulating TRAIL-induced apoptosis in rheumatoid arthritis fibroblasts-like synoviocytes.

    PubMed

    Audo, R; Hegglin, A; Severac, D; Dantec, C; Combe, B; Hahne, M; Morel, J

    2015-10-01

    We previously described that sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis varied in rheumatoid arthritis fibroblasts-like synoviocytes (RAFLS) from one patient to another and was correlated with disease severity. Therefore, we screened for genes differentially expressed in RAFLS sensitive and resistant to TRAIL-induced apoptosis. The sensitivity of RAFLS was defined based on the percentage of TRAIL-induced apoptosis: 0-10% for resistant cells and >25% for sensitive RAFLS. We performed transcriptomic comparison between RAFLS-S (n=6) and RAFLS-R (n=6) and then examined the implication of identified candidates in the regulation of apoptosis using small interference RNA (siRNA). Microarray analysis revealed 10 functional genes differentially expressed according to TRAIL sensitivity. These factors are implicated in different functions, such as the respiratory chain (ND3), the transport of lipids (OSBP2, PLTP), the regulation of signaling linked to extracellular factors (SULF2, GALNT1, SIAE) or the regulation of gene expression (TET2 and LARP6). We confirmed differential expression for GALNT1 and LARP6 by quantitative reverse transcriptase-PCR. Using siRNA extinction, we demonstrated the implication of GALNT1, SULF2 and LARP6 in the control of TRAIL-induced responses. These results are of particular interest as GALNT1 and LARP6 have been implicated in the regulation of cell death and may represent interesting targets to induce apoptosis of RAFLS. PMID:26247836

  17. Effect of Stress from Cadmium Combined with Different Levels of Molybdenum on Serum Free Radical and Expression of Related Apoptosis Genes in Goat Livers.

    PubMed

    Cao, Huabin; Xing, Chenghong; Zhuang, Yu; Gu, Xiaolong; Luo, Junrong; Guo, Xiaoquan; Liu, Ping; Zhang, Caiying; Hu, Guoliang

    2016-08-01

    Molybdenum (Mo) is an essential element for human beings and animals; however, high dietary intake of Mo can lead to adverse reactions. Cadmium (Cd) is one of the major transitional metals which have toxic effects in animals. The toxicity of simple Cd or Mo has been researched frequently. However, the toxicity of Mo combined with Cd was rarely studied. To investigate the toxicity of Mo combined with Cd in liver of goats, 36 Boer goats were randomly divided into four groups and assigned with one of the three oral treatments of CdCl2 (0.5 mg kg(-1) Cd) and [(NH4)6Mo7O24·4H2O] (15 mg kg(-1) Mo, group I; 30 mg kg(-1) Mo, group II; 45 mg kg(-1) Mo, group III), while the control group received deionized water. Blood samples were collected on days 0, 10, 20, 30, 40, and 50 to determine antioxidant indices in serum. In addition, liver tissues were collected on days 0, 25, and 50 for detecting the messenger RNA (mRNA) expression levels of Bcl-2 and Bax. Moreover, liver tissues at 50 days were subjected to histopathological analysis with the optical microscope. The results revealed a significant increase (P < 0.05 or P < 0.01) in the levels of nitric oxide (NO), malonaldehyde (MDA), and the activity of nitrix oxide synthase (NOS) and a significant decline (P < 0.05) in the activities of total superoxide dismutase (T-SOD) and total antioxidative capacity (T-AOC). The mRNA expression level of Bcl-2 was suppressed (P < 0.05), while the expression of Bax was increased (P < 0.05) in liver. The histopathological changes were observed in the liver of goats including a small amount of erythrocyte, the unclear structure of hepatic cord and hepatic sinusoid, granular degeneration, vacuolar degeneration, and steatosis. In conclusion, combined chronic toxicity of Cd with different levels of Mo might induce goat liver cell apoptosis and cause oxidative stress in serum, and it showed a possible synergistic relationship between the two elements. PMID:26758867

  18. Changes in barrier health status of the gill for grass carp (Ctenopharyngodon idella) during valine deficiency: Regulation of tight junction protein transcript, antioxidant status and apoptosis-related gene expression.

    PubMed

    Feng, Lin; Luo, Jian-Bo; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Zhang, Yong-An; Zhou, Xiao-Qiu

    2015-08-01

    enzymes, NF-κB p65, IκBα, TOR, Nrf2, Keap1 and apoptosis-related genes in the fish gill. PMID:25917968

  19. p53 mediated apoptosis in osteosarcoma MG-63 cells by inhibition of FANCD2 gene expression

    PubMed Central

    Xia, Peng; Sun, Yifu; Zheng, Changjun; Hou, Tingting; Kang, Mingyang; Yang, Xiaoyu

    2015-01-01

    Purpose: The aim of this study was to investigate the association between osteosarcoma (OS) and Fanconi anemia (FA) related pathways and the molecular mechanisms. Methods: siRNA for Fanconi anemia complementation group D2 (FANCD2) was constructed and transfected into the osteosarcoma cell line MG-63 cells. Expression of TP53INP1, p53, p21, caspase-9, and caspase-3 mRNA in MG-63 cells were examined by real-time fluorescence quantitative PCR, and the protein levels were also determined by western blot. Results: After silence of the FANCD2 gene in MG-63 cells, cell proliferation was inhibited, cell cycle was arrested and cell apoptosis was induced. The apoptosis was mediated by the p53 signaling pathway. After FANCD2 expression was inhibited, TP53INP1 gene expression was up-regulated, phosphorylation of p53 was promoted and the p21 protein was activated, leading to cell cycle arrested in G1, finally resulted in caspase-dependent cell apoptosis. Conclusions: Inhibition of FANCD2 gene expression can induce apoptosis of osteosarcoma cells, which indicated that FANCD2 played an important role in the development of osteosarcoma and it might be a potential target for treatment of osteosarcoma. PMID:26379910

  20. Tetranectin gene deletion induces Parkinson's disease by enhancing neuronal apoptosis.

    PubMed

    Chen, Zhifeng; Wang, Ersong; Hu, Rong; Sun, Yu; Zhang, Lei; Jiang, Jue; Zhang, Ying; Jiang, Hong

    Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). We previously identified tetranectin (TET) as a potential biomarker for PD whose expression is downregulated in the cerebrospinal fluid of PD patients. In the present study, we investigate the role of TET in neurodegeneration in vitro and in vivo. Our results showed that siRNA knockdown of TET decreased cell viability and the number of tyrosine hydroxylase (TH) positive cells, whereas it increased caspase-3 activity and the Bax/Bcl-2 ratio in cultured primary dopaminergic neurons. Overexpression of TET protected dopaminergic neurons against neuronal apoptosis in 1-methyl-4-phenylpyridinium cell culture model in vitro. In TET knockdown mouse model of PD, TET gene deletion decreased the number of TH positive cells in the SNpc, induced apoptosis via the p53/Bax pathway, and significantly impaired the motor behavior of transgenic mice. The findings suggest that TET plays a neuroprotective role via reducing neuron apoptosis and could be a valuable biomarker or potential therapeutic target for the treatment of patients with PD. PMID:26597345

  1. Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis

    PubMed Central

    2011-01-01

    Background Runt-related transcription factor 3 (RUNX3) is known as a tumor suppressor gene for gastric cancer and other cancers, this gene may be involved in the development of hepatocellular carcinoma (HCC). Methods RUNX3 expression was analyzed by immunoblot and immunohistochemistry in HCC cells and tissues, respectively. Hep3B cells, lacking endogenous RUNX3, were introduced with RUNX3 constructs. Cell proliferation was measured using the MTT assay and apoptosis was evaluated using DAPI staining. Apoptosis signaling was assessed by immunoblot analysis. Results RUNX3 protein expression was frequently inactivated in the HCC cell lines (91%) and tissues (90%). RUNX3 expression inhibited 90 ± 8% of cell growth at 72 h in serum starved Hep3B cells. Forty-eight hour serum starvation-induced apoptosis and the percentage of apoptotic cells reached 31 ± 4% and 4 ± 1% in RUNX3-expressing Hep3B and control cells, respectively. Apoptotic activity was increased by Bim expression and caspase-3 and caspase-9 activation. Conclusion RUNX3 expression enhanced serum starvation-induced apoptosis in HCC cell lines. RUNX3 is deleted or weakly expressed in HCC, which leads to tumorigenesis by escaping apoptosis. PMID:21205319

  2. Selenoprotein X Gene Knockdown Aggravated H2O2-Induced Apoptosis in Liver LO2 Cells.

    PubMed

    Tang, Jiayong; Cao, Lei; Li, Qiang; Wang, Longqiong; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Cai, Jingyi; Shang, Haiying; Zhao, Hua

    2016-09-01

    To determine the roles of selenoprotein X gene (Selx) in protecting liver cells against oxidative damage, the influences of Selx knockdown on H2O2-induced apoptosis in human normal hepatocyte (LO2) cells were studied. pSilencer 3.1 was used to develop knockdown vector targeting the 3'-UTR of human Selx. The Selx knockdown and control cells were further exposed to H2O2, and cell viability, cell apoptosis rate, and the expression levels of mRNA and protein of apoptosis-related genes were detected. The results showed that vector targeting the 3'-UTR of Selx successfully silenced mRNA or protein expression of SelX in LO2 cells. Selx knockdown resulted in decreased cell viability, increased percentage of early apoptotic cells, decreased Bcl2A1 and Bcl-2 expression, and increased phosphorylation of P38 in LO2 cells. When Selx knockdown LO2 cells were exposed to H2O2, characteristics of H2O2-induced cell dysfunctions were further exacerbated. Taken together, our findings suggested that SelX played important roles in protecting LO2 cells against oxidative damage and reducing H2O2-induced apoptosis in liver cells. PMID:26899321

  3. Kallistatin protects against sepsis-related acute lung injury via inhibiting inflammation and apoptosis

    PubMed Central

    Lin, Wei-Chieh; Chen, Chang-Wen; Huang, Yu-Wen; Chao, Lee; Chao, Julie; Lin, Yee-Shin; Lin, Chiou-Feng

    2015-01-01

    Kallistatin, an endogenous plasma protein, exhibits pleiotropic properties in inhibiting inflammation, oxidative stress and apoptosis, as evidenced in various animal models and cultured cells. Here, we demonstrate that kallistatin levels were positively correlated with the concentration of total protein in bronchoalveolar lavage fluids (BALF) from patients with sepsis-related acute respiratory distress syndrome (ARDS), indicating a compensatory mechanism. Lower ratio of kallistatin to total protein in BALF showed a significant trend toward elevated neutrophil counts (P = 0.002) in BALF and increased mortality (P = 0.046). In lipopolysaccharide (LPS)-treated mice, expression of human kallistatin in lung by gene transfer with human kallistatin-encoding plasmid ameliorated acute lung injury (ALI) and reduced cytokine/chemokine levels in BALF. These mice exhibited attenuated lung epithelial apoptosis and decreased Fas/FasL expression compared to the control mice. Mouse survival was improved by kallistatin gene transfer or recombinant human kallistatin treatment after LPS challenge. In LPS-stimulated A549 human lung epithelial cells, kallistatin attenuated apoptosis, down-regulated Fas/FasL signaling, suppressed intracellular reactive oxygen species (ROS) and inhibited ROS-mediated NF-κB activation and inflammation. Furthermore, LPS-induced apoptosis was blocked by antioxidant N-acetylcysteine or NF-κB inhibitor via down-regulating Fas expression. These findings suggest the therapeutic potential of kallistatin for sepsis-related ALI/ARDS. PMID:26198099

  4. CoCr wear particles generated from CoCr alloy metal-on-metal hip replacements, and cobalt ions stimulate apoptosis and expression of general toxicology-related genes in monocyte-like U937 cells.

    PubMed

    Posada, Olga M; Gilmour, Denise; Tate, Rothwelle J; Grant, M Helen

    2014-11-15

    Cobalt-chromium (CoCr) particles in the nanometre size range and their concomitant release of Co and Cr ions into the patients' circulation are produced by wear at the articulating surfaces of metal-on-metal (MoM) implants. This process is associated with inflammation, bone loss and implant loosening and led to the withdrawal from the market of the DePuy ASR™ MoM hip replacements in 2010. Ions released from CoCr particles derived from a resurfacing implant in vitro and their subsequent cellular up-take were measured by ICP-MS. Moreover, the ability of such metal debris and Co ions to induce both apoptosis was evaluated with both FACS and immunoblotting. qRT-PCR was used to assess the effects on the expression of lymphotoxin alpha (LTA), BCL2-associated athanogene (BAG1), nitric oxide synthase 2 inducible (NOS2), FBJ murine osteosarcoma viral oncogene homolog (FOS), growth arrest and DNA-damage-inducible alpha (GADD45A). ICP-MS showed that the wear debris released significant (p<0.05) amounts of Co and Cr ions into the culture medium, and significant (p<0.05) cellular uptake of both ions. There was also an increase (p<0.05) in apoptosis after a 48h exposure to wear debris. Analysis of qRT-PCR results found significant up-regulation (p<0.05) particularly of NOS2 and BAG1 in Co pre-treated cells which were subsequently exposed to Co ions+debris. Metal debris was more effective as an inducer of apoptosis and gene expression when cells had been pre-treated with Co ions. This suggests that if a patient receives sequential bilateral CoCr implants, the second implant may be more likely to produce adverse effects than the first one. PMID:25281833

  5. Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)

    PubMed Central

    Elmallah, Mohammed I. Y.; Micheau, Olivier

    2015-01-01

    Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells. PMID:26580630

  6. Differential Effects of Alpha-Particle Radiation and X-Irradiation on Genes Associated with Apoptosis

    PubMed Central

    Chauhan, Vinita; Howland, Matthew; Chen, Jeremy; Kutzner, Barbara; Wilkins, Ruth C.

    2011-01-01

    This study examined differential effects of alpha-(α-) particle radiation and X-rays on apoptosis and associated changes in gene expression. Human monocytic cells were exposed to α-particle radiation and X-rays from 0 to 1.5 Gy. Four days postexposure, cell death was measured by flow cytometry and 84 genes related to apoptosis were analyzed using real-time PCR. On average, 33% of the cells were apoptotic at 1.5 Gy of α-particle radiation. Transcript profiling showed statistical expression of 15 genes at all three doses tested. Cells exposed to X-rays were <5% apoptotic at ~1.5 Gy and induced less than a 2-fold expression in 6 apoptotic genes at the higher doses of radiation. Among these 6 genes, Fas and TNF-α were common to the α-irradiated cells. This data suggests that α-particle radiation initiates cell death by TNF-α and Fas activation and through intermediate signalling mediators that are distinct from X-irradiated cells. PMID:22091383

  7. Overcoming of multidrug resistance by introducing the apoptosis gene, bcl-Xs, into MRP-overexpressing drug resistant cells.

    PubMed

    Ohi, Y; Kim, R; Toge, T

    2000-05-01

    Multidrug resistance associated protein (MRP) is one of drug transport membranes that confer multidrug resistance in cancer cells. Multidrug resistance has been known to be associated with resistance to apoptosis. In this study, using MRP overexpressing multidrug resistant nasopharyngeal cancer cells, we examined the expression of apoptosis related genes including p53, p21WAF1, bax and bcl-Xs between drug sensitive KB and its resistant KB/7D cells. We also examined whether the introduction of apoptosis related gene could increase the sensitivity to anticancer drugs in association with apoptotic cell death. The relative resistances to anticancer drugs in KB/7D cells evaluated by IC50 values were 3.6, 61.3, 10.4 and 10.5 to adriamycin (ADM), etoposide (VP-16), vincristine (VCR) and vindesine (VDS), respectively. The resistance to anticancer drugs in KB/7D cells was associated with the attenuation of internucleosomal DNA ladder formation in apoptosis. Of important, the mRNA expression of bcl-Xs gene in KB/7D cells was decreased in one-fourth as compared to that of KB cells among the apoptosis genes. The mRNA expression of bcl-Xs gene in a bcl-Xs transfected clone (KB/7Dbcl-Xs) was increased about 2-fold compared to that of KB/7Dneo cells, while the mRNA expression of MRP gene was not significantly different in KB/7bcl-Xs and KB/7Dneo cells. The sensitivities to anticancer drugs including ADM, VCR and VDS except VP-16 were increased in KB/7Dbcl-Xs cells, in turn, the relative resistance in KB/7Dbcl-Xs cells was decreased to 1.4, 4.0, and 3.0 in ADM, VCR and VDS, respectively, as compared to those of KB/7Dneo cells. Of interest, the studies on the accumulation of [3H]VCR showed that the decrease of [3H]VCR accumulation in KB/7Dbcl-Xs was not significantly different from that of KB/7Dneo cells. Collectively, these results indicated that the mechanism(s) of drug resistance in KB/7D cells could be explained at least by two factors: a) reduced drug accumulation mediated by

  8. Identification of novel molecular regulators of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in breast cancer cells by RNAi screening

    PubMed Central

    2014-01-01

    Introduction Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) binds to its receptors, TRAIL-receptor 1 (TRAIL-R1) and TRAIL-receptor 2 (TRAIL-R2), leading to apoptosis by activation of caspase-8 and the downstream executioner caspases, caspase-3 and caspase-7 (caspase-3/7). Triple-negative breast cancer (TNBC) cell lines with a mesenchymal phenotype are sensitive to TRAIL, whereas other breast cancer cell lines are resistant. The underlying mechanisms that control TRAIL sensitivity in breast cancer cells are not well understood. Here, we performed small interfering RNA (siRNA) screens to identify molecular regulators of the TRAIL pathway in breast cancer cells. Methods We conducted siRNA screens of the human kinome (691 genes), phosphatome (320 genes), and about 300 additional genes in the mesenchymal TNBC cell line MB231. Forty-eight hours after transfection of siRNA, parallel screens measuring caspase-8 activity, caspase-3/7 activity, or cell viability were conducted in the absence or presence of TRAIL for each siRNA, relative to a negative control siRNA (siNeg). A subset of genes was screened in cell lines representing epithelial TNBC (MB468), HER2-amplified breast cancer (SKBR3), and estrogen receptor-positive breast cancer (T47D). Selected putative negative regulators of the TRAIL pathway were studied by using small-molecule inhibitors. Results The primary screens in MB231 identified 150 genes, including 83 kinases, 4 phosphatases, and 63 nonkinases, as potential negative regulators of TRAIL. The identified genes are involved in many critical cell processes, including apoptosis, growth factor-receptor signaling, cell-cycle regulation, transcriptional regulation, and DNA repair. Gene-network analysis identified four genes (PDPK1, IKBKB, SRC, and BCL2L1) that formed key nodes within the interaction network of negative regulators. A secondary screen of a subset of the genes identified in additional cell lines representing different breast cancer

  9. TNF-related apoptosis-inducing ligand (TRAIL): A new path to anti-cancer therapies

    PubMed Central

    Holoch, Peter A.; Griffith, Thomas S.

    2009-01-01

    Since its discovery in 1995, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of the tumor necrosis factor super family, has been under intense focus because of its remarkable ability to induce apoptosis in malignant human cells while leaving normal cells unscathed. Consequently, activation of the apoptotic signaling pathway from the death-inducing TRAIL receptors provides an attractive, biologically-targeted approach to cancer therapy. A great deal of research has focused on deciphering the TRAIL receptor signaling cascade and intracellular regulation of this pathway, as many human tumor cells possess mechanisms of resistance to TRAIL-induced apoptosis. This review focuses on the currently state of knowledge regarding TRAIL signaling and resistance, the preclinical development of therapies targeted at TRAIL receptors and modulators of the pathway, and the results of clinical trials for cancer treatment that have emerged from this base of knowledge. TRAIL-based approaches to cancer therapy vary from systemic administration of recombinant, soluble TRAIL protein with or without the combination of traditional chemotherapy, radiation or novel anticancer agents to agonistic monoclonal antibodies directed against functional TRAIL receptors to TRAIL gene transfer therapy. A better understanding of TRAIL resistance mechanisms may allow for the development of more effective therapies that exploit this cell-mediated pathway to apoptosis. PMID:19836385

  10. Glycogen synthase kinase-3β regulates tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis via the NF-κB pathway in hepatocellular carcinoma

    PubMed Central

    FU, KAI; PAN, HUAZHENG; LIU, SHIHAI; LV, JING; WAN, ZHAOJUN; LI, JIAO; SUN, QING; LIANG, JUN

    2015-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known for its ability to selectively induce apoptosis in malignant cells. However, human hepatocellular carcinoma (HCC) cells display resistance to TRAIL-induced cell death. The present study investigated whether TRAIL-induced apoptosis in HCC cells was enhanced by the administration of an inhibitor of glycogen synthase kinase-3β (GSK-3β) or by short hairpin RNA-mediated inhibition of GSK-3β. The results of the current study demonstrated that inhibition of GSK-3β significantly impairs the expression of the nuclear factor-κB (NF-κB) target genes Bcl-xL and clAP2 in HCC cells (P<0.05). This indicates that GSK-3β may regulate NF-κB target genes involved in cell survival. Furthermore, knockdown of Bcl-xL significantly enhanced the sensitizing effect of GSK-3β inhibitor on TRAIL-induced apoptosis (P<0.05). Overall, the present study provides a rationale for further exploration of GSK-3β inhibition combined with TRAIL as a novel treatment for HCC. PMID:26788169

  11. Effects of parathyroid hormone-related protein and macrophage inflammatory protein-1α in Jurkat T-cells on tumor formation in vivo and expression of apoptosis regulatory genes in vitro

    PubMed Central

    Shu, Sherry T.; Dirksen, Wessel P.; Lanigan, Lisa G.; Martin, Chelsea K.; Thudi, Nanda K.; Werbeck, Jillian L.; Fernandez, Soledad A.; Hildreth, Blake E.; Rosol, Thomas J.

    2012-01-01

    Parathyroid hormone-related protein (PTHrP) and macrophage inflammatory protein-1α (MIP-1α) have been implicated in the pathogenesis of adult T-cell leukemia/lymphoma, but their effects on T-cells have not been well studied. Here we analyzed the functions of PTHrP and MIP-1α on T-cell growth and death both in vitro and in vivo by overexpressing either factor in human Jurkat T-cells. PTHrP or MIP-1α did not affect Jurkat cell growth in vitro, but PTHrP increased their sensitivity to apoptosis. Importantly, PTHrP and MIP-1α decreased both tumor incidence and growth in vivo. To investigate possible mechanisms, polymerase chain reaction (PCR) arrays and real-time reverse transcription (RT)-PCR assays were performed. Both PTHrP and MIP-1α increased the expression of several factors including signal transducer and activator of transcription 4, tumor necrosis factor α, receptor activator of nuclear factor κB ligand and death-associated protein kinase 1, and decreased the expression of inhibitor of DNA binding 1, interferon γ and CD40 ligand in Jurkat cells. In addition, MIP-1α also increased the expression of transcription factor AP-2α and PTHrP increased expression of the vitamin D3 receptor. These data demonstrate that PTHrP and MIP-1α exert a profound antitumor effect presumably by increasing the sensitivity to apoptotic signals through modulation of transcription and apoptosis factors in T-cells. PMID:21942940

  12. Trauma patients’ elevated Tumor Necrosis Related Apoptosis Inducing Ligand (TRAIL) contributes to increased T cell apoptosis

    PubMed Central

    Bandyopadhyay, Gautam; Bankey, Paul E.; Miller-Graziano, Carol L.

    2012-01-01

    Immunosuppression resulting from excessive post-trauma apoptosis of hyperactivated Tcells is controversial. TRAIL mediated Tcell apoptosis decreases highly activated Tcells’ responses. Caspase-10, a particular TRAIL target, was increased in trauma patients’ Tcells with concomitantly elevated plasma TRAIL levels. These patients’ Tcells developed anergy, implicating increased TRAIL-mediated Tcell apoptosis in post-trauma Tcell anergy. Control Tcells cultured with patients’ sera containing high TRAIL levels increased their Caspase-10 activity and apoptosis. Stimulated primary Tcells are TRAIL apoptosis resistant. Increased plasma Thrombospondin-1 and Tcell expression of CD47, a Thrombospondin-1 receptor, preceded patients’ Tcell anergy. CD47 triggering of Tcells increased their sensitivity to TRAIL-induced apoptosis. Augmentation of Tcell TRAIL-induced apoptosis was secondary to CD47 triggered activation of the Src homology-containing phosphatase-1(SHP-1) and was partially blocked by a SHP-1 inhibitor. We suggest that combined post-trauma CD47 triggering, SHP-1 mediated NFκB suppression, and elevated TRAIL levels increase patients’ CD47 expressing Tcell apoptosis, thus contributing to subsequent Tcell anergy. PMID:22926077

  13. Multiwall Carbon Nanotube-Induced Apoptosis and Antioxidant Gene Expression in the Gills, Liver, and Intestine of Oryzias latipes

    PubMed Central

    Lee, Jin Wuk; Choi, Young Chul; Kim, Rosa; Lee, Sung Kyu

    2015-01-01

    Multiwall carbon nanotubes (MWCNTs) have many attractive properties with potential applications in various fields. Despite their usefulness, however, the associated waste can be hazardous to the environment. To examine adverse effects in aquatic environments, Oryzias latipes were exposed to MWCNTs dispersed in water for 14 days and apoptosis and antioxidant gene expression were observed. This work showed that in gills exposed to 100 mg/L MWCNTs for 4 days, there was significant p53, caspase-3 (Cas3), caspase-8 (Cas8), and caspase-9 (Cas9) gene expression relative to the controls, while catalase (CAT) and glutathione-S-transferase (GST) expression were reduced. At 14 days, CAT, GST, and metallothionein (MT) were induced significantly in the gills and Cas3, Cas8, and Cas9 were induced in the liver. No significant gene induction was seen in intestine. Intracellular reactive oxygen species (ROS) were increased significantly only at 14 days. Histologically, no apoptosis was observed with exposure to 100 mg/L MWCNTs for 21 days. The gills were more sensitive to MWCNT toxicity than the other organs. Males had higher apoptosis gene induction than females. These results demonstrated that MWCNTs could cause apoptosis in a manner influenced by tissue and gender in aqueous environments. PMID:26146619

  14. The effect of heat stress on gene expression, synthesis of steroids, and apoptosis in bovine granulosa cells.

    PubMed

    Li, Lian; Wu, Jie; Luo, Man; Sun, Yu; Wang, Genlin

    2016-05-01

    Summer heat stress (HS) is a major contributing factor in low fertility in lactating dairy cows in hot environments. Heat stress inhibits ovarian follicular development leading to diminished reproductive efficiency of dairy cows during summer. Ovarian follicle development is a complex process. During follicle development, granulosa cells (GCs) replicate, secrete hormones, and support the growth of the oocyte. To obtain an overview of the effects of heat stress on GCs, digital gene expression profiling was employed to screen and identify differentially expressed genes (DEGs; false discovery rate (FDR) ≤ 0.001, fold change ≥2) of cultured GCs during heat stress. A total of 1211 DEGs including 175 upregulated and 1036 downregulated ones were identified, of which DEGs can be classified into Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The results suggested that heat stress triggers a dramatic and complex program of altered gene expression in GCs. We hypothesized that heat stress could induce the apoptosis and dysfunction of GCs. Real-time reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the expression of steroidogenic genes (steroidogenic acute regulatory protein (Star), cytochrome P-450 (CYP11A1), CYP19A1, and steroidogenic factor 1 (SF-1)) and apoptosis-related genes (caspase-3, BCL-2, and BAX). Radio immunoassay (RIA) was used to analyze the level of 17β-estradiol (E2) and progesterone (P4). We also assessed the apoptosis of GCs by flow cytometry. Our data suggested that heat stress induced GC apoptosis through the BAX/BCL-2 pathway and reduced the steroidogenic gene messenger RNA (mRNA) expression and E2 synthesis. These results suggest that the decreased function of GCs may cause ovarian dysfunction and offer an improved understanding of the molecular mechanism responsible for the low fertility in cattle in summer. PMID:26847372

  15. MicroRNA-322 protects hypoxia-induced apoptosis in cardiomyocytes via BDNF gene

    PubMed Central

    Yang, Liguo; Song, Shigang; Lv, Hang

    2016-01-01

    Background: Cardiomyocytes apoptosis under hypoxia condition contributes significantly to various cardiovascular diseases. In this study, we investigated the role of microRNA-322 (miR-322) in regulating hypoxia-induced apoptosis in neonatal murine cardiomyocytes in vitro. Method: Cardiomyocytes of C57BL/6J mice were treated with hypoxia condition in vitro. Cardiomyocyte apoptosis was measured by TUNEL assay. Gene expression pattern of miR-322 was measured by qRT-PCR. Stable downregulation of miR-322 in cardiomyocytes were achieved by lentiviral transduction, and the effect of miR-322 downregulation on hypoxia-induced cardiomyocyte apoptosis was investigated. Possible regulation of miR-322 on its downstream target gene, brain derived neurotrophic factor (BDNF) was investigated in cardiomyocytes. BDNF was then genetically silenced by siRNA to evaluate its role in miR-137 mediated cardiomyocyte apoptosis protection under hypoxia condition. Results: Under hypoxia condition, significant apoptosis was induced and miR-322 was significantly upregulated in cardiomyocytes in vitro. Through lentiviral transduction, miR-322 was efficiently knocked down in cardiomyocytes. Downregulation of miR-322 protected hypoxia-induced cardiomyocyte apoptosis. Luciferase assay showed BDNF was the target gene of miR-322. QRT-PCR showed BDNF expression was associated with miR-322 regulation on hypoxia-induced cardiomyocyte apoptosis. Silencing BDNF in cardiomyocyte through siRNA transfection reversed the protective effect of miR-322 downregulation on hypoxia-induced apoptosis. Conclusion: Our study revealed that miR-322, in association with BDNF, played important role in regulating hypoxia-induced apoptosis in cardiomyocyte. PMID:27398164

  16. In vitro study on shRNA-mediated reduction of testis developmental related gene 1 expression and its effects on the proliferation, invasion and apoptosis of NTERA-2 cells

    PubMed Central

    GAN, YU; YANG, JIANFU; WANG, YONG; TAN, ZHENGYU; JIANG, XIANZHEN; TANG, YUXIN

    2015-01-01

    Testis developmental related gene 1 (TDRG1) is a novel human testis-specific gene. TDRG1 is differentially expressed in cancerous tissue compared with normal testicular tissue and demonstrates a unique expression pattern in normal testes; therefore, this gene may be involved in the occurrence and development of testicular germ cell tumors (TGCT). In the present study, the expression level of TDRG1 was downregulated in human TGCT NTERA-2 cells by RNA interference (RNAi) in order to investigate the association between TDRG1 and TGCT. The TDRG1 mRNA and protein expression levels in NTERA-2 cells were significantly inhibited following transfection with specific RNAi plasmids. The ability to proliferate (inhibited by 15.4% at day 3 and 26.1% at day 5; P<0.001) and invade (reduced by 49.1%; P=0.01) in vitro was suppressed in cells in which the expression level of TDRG1 was reduced, and a corresponding increase in the apoptotic potential was observed (the early apoptotic potential and total apoptotic potential were increased by 75%; P=0.019 and 54.8%; P=0.009, respectively). The results of the present study indicated that the biological behavior of NTERA-2 cells is associated with TDRG1 expression levels, and that this gene may be a novel target candidate in the treatment of TGCT. PMID:26170977

  17. [Protection of corneal endothelium from apoptosis by gene and cell therapy].

    PubMed

    Fuchsluger, T A

    2016-06-01

    Protection of corneal endothelium from apoptosis using gene and cell therapy is in a translational phase. This approach offers advantages for eye banking and after transplantation. Safe vehicles for gene or cell therapeutic transduction of corneal endothelium with nucleic acids are available. This strategy will be further developed in consultation with the Paul Ehrlich Institute and European regulatory authorities. PMID:27260626

  18. Determining Semantically Related Significant Genes.

    PubMed

    Taha, Kamal

    2014-01-01

    GO relation embodies some aspects of existence dependency. If GO term xis existence-dependent on GO term y, the presence of y implies the presence of x. Therefore, the genes annotated with the function of the GO term y are usually functionally and semantically related to the genes annotated with the function of the GO term x. A large number of gene set enrichment analysis methods have been developed in recent years for analyzing gene sets enrichment. However, most of these methods overlook the structural dependencies between GO terms in GO graph by not considering the concept of existence dependency. We propose in this paper a biological search engine called RSGSearch that identifies enriched sets of genes annotated with different functions using the concept of existence dependency. We observe that GO term xcannot be existence-dependent on GO term y, if x- and y- have the same specificity (biological characteristics). After encoding into a numeric format the contributions of GO terms annotating target genes to the semantics of their lowest common ancestors (LCAs), RSGSearch uses microarray experiment to identify the most significant LCA that annotates the result genes. We evaluated RSGSearch experimentally and compared it with five gene set enrichment systems. Results showed marked improvement. PMID:26357049

  19. Targeting the tumor necrosis factor-related apoptosis-inducing ligand path in neuroblastoma.

    PubMed

    Yang, Xuezhong; Thiele, Carol J

    2003-07-18

    The identification of the tumor necrosis factor (TNF) superfamily member TNF-related apoptosis-inducing ligand (TRAIL) a few years ago generated considerable enthusiasm for it as a potential cancer therapeutic agent. This is because TRAIL shows potent apoptosis inducing activity in a wide spectrum of transformed cell lines but not in cell lines derived from normal tissue origin. As the details in the signal transduction pathway of TRAIL-induced apoptosis are clarified, various defects of TRAIL pathway have been identified in TRAIL resistant cancer cells. Neuroblastoma is the most common extracranial solid tumor in children and those with a poor prognosis require more sensitive therapies. Unlike other cancer cells, most neuroblastoma cell lines are resistant to TRAIL induced apoptosis and the resistance correlates with caspase 8 deficiency, which is attributed to the methylation of the gene. Interferon (IFN)-gamma induces caspase 8 expression in most neuroblastoma cell lines regardless of the methylation status but fails to sensitize most NB to TRAIL. Further analysis indicates a TRAIL receptor deficiency contributes to TRAIL resistance in NB. Multiple lesions suggest that this path may play an important role in tumorigenesis and/ or evasion from therapies. Furthermore it indicates that the clinical application of TRAIL in NB will require a multi-modality approach. Important questions remain unanswered: How does IFN-gamma induce caspase 8 and why is the induction heterogeneous? How to stimulate the caspase 8 induction in cells that fail to respond to IFN-gamma? How to target other TRAIL pathway lesions with the clinically feasible approaches? PMID:12880973

  20. Relation between microRNAs and Apoptosis in Hepatocellular Carcinoma

    PubMed Central

    Kamel, Refaat R.; Amr, Khalda Said; Afify, Mie; Elhosary, Yasser A.; Hegazy, Abdelfattah E.; Fahim, Hoda H.; Ezzat, Wafaa M.

    2016-01-01

    AIM: To determine the relation between serum microRNAs and apoptotic markers as regards development of HCC to understand the underlying mechanism of HCV related hepatocarcinogenesis. PATIENTS AND METHODS: A total of 65 serum samples (25 samples from controls, 20 samples from hepatitis and 20 samples from HCC patients) were collected for miRNAs (mir 21, mir 199-a, and mir 155) detection. Human Programmed cell death protein-4 (PDCD-4) and Human Cytochrome-C (CYT-C) were determined. RESULTS: miRNAs 21 and 155 were over expressed in sera of patients with HCC compared to patients with chronic hepatitis (p < 0.0001). While serum means values of miR 199a was significantly decreased among HCC group patients when compared to patients with chronic hepatitis (p < 0.0001). The serum levels of PCDC4 and CYTC were increased in patients with HCC when compared to chronic hepatitis patients. They were also increased in patients with chronic hepatitis when compared to controls (p < 0.05, significant). There was direct correlations between apoptotic markers and oncomirs miRNAs 21 and 155 while apoptotic markers were inversely correlated with miRNA 199-a. CONCLUSION: Both microRNAs and apoptotic markers have roles in HCC pathogenesis. It seems that oncogenic microRNAs induce liver carcinogenesis in HCV patients irrespective of suppression of apoptosis. PMID:27275325

  1. 20-hydroxyecdysone upregulates apoptotic genes and induces apoptosis in the Bombyx fat body.

    PubMed

    Tian, Ling; Liu, Shumin; Liu, Hanhan; Li, Sheng

    2012-04-01

    During insect metamorphosis, obsolete larval tissues are removed by programed cell death (PCD), mainly apoptosis and autophagy, which is directed by the molting hormone, 20-hydroxyecdysone (20E) and the 20E-triggered transcriptional cascade. Here, we investigated how 20E regulates apoptosis at the transcriptional level in the fat body of the silkworm, Bombyx mori. As detected by TdT-mediated dUTP Nick-End Labeling (TUNEL), apoptosis weakly occurred during the fourth larval molting, decreased to undetected levels during the early fifth instar, and gradually increased from day 4 of fifth instar to the wandering stage to the prepupal stage. Meanwhile, as determined by quantitative real-time PCR, eight genes involved in apoptosis, including Apaf-1, Nedd2 like1, Nedd2 like2, ICE1, ICE3, ICE5, Arp, and IAP, were highly expressed during molting and pupation, when the 20E titer is high. Injection of 20E into day 2 of fifth instar larvae significantly induced apoptosis and upregulated apoptotic genes after 6 h of treatment, and in vitro treatment of larval fat body tissues with 20E upregulated all the eight apoptotic genes. Moreover, RNAi knockdown of USP, a component of the 20E receptor complex EcR-USP, at the early-wandering stage reduced apoptosis and downregulated apoptotic genes after 24 h of treatment. Taken together, we infer that 20E upregulates apoptotic genes and thus induces apoptosis in the Bombyx fat body during larval molting and the larval-pupal transition. PMID:22517444

  2. Expression of the multidrug transporter P-glycoprotein is inversely related to that of apoptosis-associated endogenous TRAIL.

    PubMed

    Souza, Paloma S; Madigan, James P; Gillet, Jean-Pierre; Kapoor, Khyati; Ambudkar, Suresh V; Maia, Raquel C; Gottesman, Michael M; Fung, King Leung

    2015-08-15

    Multidrug resistance (MDR) has been associated with expression of ABC transporter genes including P-glycoprotein (Pgp, MDR1, ABCB1). However, deregulation of apoptotic pathways also renders cells resistant to chemotherapy. To discover apoptosis-related genes affected by Pgp expression, we used the HeLa MDR-off system. We found that using doxycycline to control Pgp expression has a significant advantage over tetracycline, in that doxycycline caused less endogenous gene expression modification/perturbation, and was more potent than tetracycline in suppressing Pgp expression. Cells overexpressing Pgp have lower TNFSF10 (TRAIL) expression than their parental cells. Controlled downregulation of Pgp increased endogenous TRAIL protein expression. Also, ectopic overexpression of TRAIL in Pgp-positive cells was associated with a reduction in Pgp levels. However, cells expressing a functionally defective mutant Pgp showed an increase in TRAIL expression, suggesting that Pgp function is required for TRAIL suppression. Cells in which Pgp is knocked down by upregulation of TRAIL expression are less susceptible to TRAIL ligand (sTRAIL)-induced apoptosis. Our findings reveal an inverse correlation between functional Pgp and endogenous TRAIL expression. Pgp function plays an important role in the TRAIL-mediated apoptosis pathway by regulating endogenous TRAIL expression and the TRAIL-mediated apoptosis pathway in MDR cancer cells. PMID:26101157

  3. Taurine induces the apoptosis of breast cancer cells by regulating apoptosis-related proteins of mitochondria.

    PubMed

    Zhang, Xiali; Lu, Hongfei; Wang, Yibing; Liu, Chunju; Zhu, Weifeng; Zheng, Shuangyan; Wan, Fusheng

    2015-01-01

    Taurine (Tau), the most abundant free amino acid in humans has numerous potential health benefits through its antioxidant and anti-inflammatory properties. However, limited studies have assessed its effect on tumors and the antitumor mechanism remains unknown. The present study investigated the cellular and molecular changes induced by Tau, leading to the induction of apoptosis in human breast cancer cell lines MCF-7 and MDA-MB-231. MCF-7 is p53 proficient (p53+/+) and MDA-MB-231 is a p53 null mutant (p53-/-). Cell proliferation and viability were assessed by MTT. Flow cytometry and hoechst33342 fluorescent staining were employed to detect apoptosis. Spectrophotometry was used to detect caspase-3 activity. Reverse transcription-polymerase chain reaction and western blot analysis were used to detect the levels of mRNA and proteins of p53-upregulated modulator of apoptosis (PUMA), Bax and Bcl-2. Finally, the affect of Tau on the growth of MDA-MB-231-cell-nude mice xenografts was examined. In the study, Tau inhibited growth and induced apoptosis of the two cell lines in a concentration- and time-dependent manner. Notably, the inhibitory effect of Tau on p53-/- cancer cells was clearly significant compared to the p53+/+ cancer cells. Further studies showed that Tau promoted apoptosis in human breast cancer cells and inhibited the growth of tumor in nude mice by inducing the expression of PUMA, which further up- and downregulated the expression of Bax and Bcl-2 protein, giving rise to increased activation of caspase-3. Collectively, these results indicate that Tau is a potent candidate for the chemotherapy of breast cancer through increasing the PUMA expression independent of p53 status. PMID:25395275

  4. Effects of spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects on gene expression and late apoptosis induction

    PubMed Central

    Sønder, Søren Ulrik Salling; Mikkelsen, Marianne; Rieneck, Klaus; Hedegaard, Chris Juul; Bendtzen, Klaus

    2006-01-01

    Spironolactone (SPIR) binds to cytoplasmic mineralocorticoid receptors (MR) and functions as an aldosterone antagonist. Recently, the drug was shown to have an early suppressive effect on several immunoactive and proinflammatory cytokines. To elucidate the mechanism behind this, the four MR-binding steroids SPIR, canrenone, 7α-thiomethyl-spironolactone and aldosterone (ALDO) were investigated for effects on lipopolysaccharide- and phytohemagglutinin-A-activated human blood mononuclear cells. Gene expression was examined after 4 h using microarrays, and SPIR affected 1018 transcripts of the (=) 22,000 probed. In contrast, the SPIR-related steroids affected 17 or fewer transcripts. Combining SPIR and ALDO resulted in 940 affected transcripts, indicating that SPIR has an early gene-regulatory effect independent of MR. The affected genes encode a large number of signalling proteins and receptors, including immunoinflammatory response genes and apoptosis and antiapoptosis genes. Apoptosis was evident in CD3-, CD14- and CD19-positive cells, but only after 18 h of exposure to SPIR. The transcriptional network involving the differentially regulated genes was examined and the results indicate that SPIR affects genes controlled by the transcription factors NF-κB, CEBPβ and MYC. These observations provide new insight into the non-MR-mediated effects of SPIR. PMID:16520746

  5. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice

    PubMed Central

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  6. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice.

    PubMed

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  7. Biomolecular Effects of Low-Intensity Ultrasound: Apoptosis, Sonotransfection, and Gene Expression

    NASA Astrophysics Data System (ADS)

    Feril, Loreto B.; Kondo, Takashi; Tabuchi, Yoshiaki; Ogawa, Ryohei; Zhao, Qing-Li; Nozaki, Tetsuo; Yoshida, Toru; Kudo, Nobuki; Tachibana, Katsuro

    2007-07-01

    Biological effects of low-intensity ultrasound (US) focusing on US-induced programmed cell death (apoptosis), regulation of gene expression, and US-mediated gene transfection (sonotransfection) are reviewed. Studies have shown that US can induce apoptosis and that certain conditions can provide an optimal apoptosis induction. Sonotransfection of different cell lines in vitro and target tissues in vivo have been reported. Several genes can also be up-regulated or down-regulated by sonication. As to the potential therapeutic applications, apoptosis induction by US may induce direct and fast ways of treating tumor or cancer tissues. Systemic or local sonotransfection might also be a safe and effective gene therapy method in effecting the cure of local and systemic disorders. Gene regulation of target cells may be utilized in modifying cellular response to a treatment, such as increasing the sensitivity of diseased cells while making normal cells resistant to the side effects of the treatment. In addition, gene regulation by US may also play an important part in the enhanced healing of damaged tissues.

  8. Mycoplasma hyorhinis and Mycoplasma fermentans induce cell apoptosis and changes in gene expression profiles of 32D cells.

    PubMed

    Liu, Wenbin; Shou, Chengchao

    2011-01-01

    Infection of mycoplasmas has been linked to various human diseases including arthritis, pneumonia, infertility and cancer. While Mycoplasma hyorhinis and Mycoplasma fermentans have been detected in gastric adenocarcinomas, the mechanisms underlyine the pathogenesis are unknown. In this study, cell growth kinetics, Hoechst 33258 staining, DNA ladder assays, Western blotting analysis and cDNA microarray assays were performed to investigate the roles of M. hyorhinis and M. fermentans during infection of mammalian cells. Our data demonstrated that these mycoplasmas inhibid the growth of immortalised cell lines (32D and COS-7) ane tumor cell lines (HeLa and AGS). In addition, the infection of the 32D cell line with M. hyorhinis and M. fermentans induced compression of the nucleus, degradation of the cell genome and dysregulation of the expression of genes related to proliferation, apoptosis, tumorigenesis, signaling pathway and metabolism. Apoptosis related proteins Bcl-2, Bid and p53 were down-regulated, Fas was up-regulated and Bax was dysregulated in mycoplasma-infected 32D cells. Together, our data demonstrated that infection of mycoplasmas inhibitd cele growts through modification of gene expression profiles and post-translation modification of proliferation and apoptosis related proteins. PMID:22446603

  9. Increased metallothionein gene expression, zinc, and zinc-dependent resistance to apoptosis in circulating monocytes during HIV viremia

    PubMed Central

    Raymond, Andrea D.; Gekonge, Bethsebah; Giri, Malavika S.; Hancock, Aidan; Papasavvas, Emmanouil; Chehimi, Jihed; Kossevkov, Andrew V.; Nicols, Calen; Yousef, Malik; Mounzer, Karam; Shull, Jane; Kostman, Jay; Showe, Louise; Montaner, Luis J.

    2010-01-01

    Circulating monocytes exhibit an apoptotic resistance phenotype during HIV viremia in association with increased MT expression. MTs are known to play an important role in zinc metabolism and immune function. We now show, in a cross-sectional study using peripheral monocytes, that expression of MT1 isoforms E, G, H, and X is increased significantly in circulating monocyte cells from HIV+ subjects during chronic viremic episodes as compared with uninfected subjects. This increase in expression is also observed during acute viremia following interruption of suppressive ART. Circulating monocytes from HIV+ donors were also found to have elevated zinc importer gene Zip8 expression in conjunction with elevated intracellular zinc levels in contrast to CD4+T-lymphocytes. In vitro HIV-1 infection studies with elutriated MDM confirm a direct relation between HIV-1 infection and increased MDM MT1 (isoform G) gene expression and increased intracellular zinc levels. A direct link between elevated zinc levels and apoptosis resistance was established using a cell-permeable zinc chelator TPEN, which reversed apoptosis resistance effectively in monocytes from HIV-infected to levels comparable with uninfected controls. Taken together, increases in MT gene expression and intracellular zinc levels may contribute directly to maintenance of an immune-activated monocyte by mediating an increased resistance to apoptosis during active HIV-1 viremia. PMID:20551211

  10. Apoptosis and HIV infection: about molecules and genes.

    PubMed

    Cossarizza, Andrea

    2008-01-01

    During the evolution, the immune system has developed several strategies to fight viral infections. Apoptosis, autophagy and necrosis are different types of cell death that play a main role in the interactions between infective agents and the host, since they are often important defence mechanisms that have to avoid the spreading of the infection. In turn, viruses have evolved numerous ways to evade the host immune system by influencing the behaviour and functionality of several components. HIV infects and kills CD4+ T helper lymphocytes, preferentially those that are antigen-specific, but also encodes proteins with apoptotic capacities, including gp120, gp160, Tat, Nef, Vpr, Vpu, Vif and, last but not least, the viral protease. This latter protein can kill infected and uninfected lymphocytes through the action of several host molecules, mainly members of the tumor necrosis factor family, or via the mitochondrial apoptotic pathway. The proinflammatory state that is characteristic of both the acute and chronic phase of HIV infection facilitates cell death, and is an additional cause of immune damage. Potent antiretroviral drugs that are largely use in therapy can reduce apoptosis by different mechanisms, that not only include the diminished production of the virus by infected cells and the subsequent reduction of inflammation, but also a direct action on the viral protease. The role of the host genetic background is finally crucial in understanding the process of cell death in HIV infection. PMID:18220834

  11. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    PubMed Central

    2012-01-01

    Background Alcohol use disorders (AUDs) lead to alterations in central nervous system (CNS) architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs) produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs) of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP) assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1) was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5) showed a highly significant correlation with AUD-induced decreases in the volume of the left parietal supramarginal

  12. Antiaging Gene Klotho Attenuates Pancreatic β-Cell Apoptosis in Type 1 Diabetes.

    PubMed

    Lin, Yi; Sun, Zhongjie

    2015-12-01

    Apoptosis is the major cause of death of insulin-producing β-cells in type 1 diabetes mellitus (T1DM). Klotho is a recently discovered antiaging gene. We found that the Klotho gene is expressed in pancreatic β-cells. Interestingly, halplodeficiency of Klotho (KL(+/-)) exacerbated streptozotocin (STZ)-induced diabetes (a model of T1DM), including hyperglycemia, glucose intolerance, diminished islet insulin storage, and increased apoptotic β-cells. Conversely, in vivo β-cell-specific expression of mouse Klotho gene (mKL) attenuated β-cell apoptosis and prevented STZ-induced diabetes. mKL promoted cell adhesion to collagen IV, increased FAK and Akt phosphorylation, and inhibited caspase 3 cleavage in cultured MIN6 β-cells. mKL abolished STZ- and TNFα-induced inhibition of FAK and Akt phosphorylation, caspase 3 cleavage, and β-cell apoptosis. These promoting effects of Klotho can be abolished by blocking integrin β1. Therefore, these cell-based studies indicated that Klotho protected β-cells by inhibiting β-cell apoptosis through activation of the integrin β1-FAK/Akt pathway, leading to inhibition of caspase 3 cleavage. In an autoimmune T1DM model (NOD), we showed that in vivo β-cell-specific expression of mKL improved glucose tolerance, attenuated β-cell apoptosis, enhanced insulin storage in β-cells, and increased plasma insulin levels. The beneficial effect of Klotho gene delivery is likely due to attenuation of T-cell infiltration in pancreatic islets in NOD mice. Overall, our results demonstrate for the first time that Klotho protected β-cells in T1DM via attenuating apoptosis. PMID:26340932

  13. THE EFFECTS OF HYPERTHERMIA ON SPERMATOGENESIS, APOPTOSIS, GENE EXPRESSION AND FERTILITY IN ADULT MALE MICE

    EPA Science Inventory

    The effects of hyperthermia on spermatogenesis, apoptosis, gene expression and fertility in adult male mice
    John C. Rockett1, Faye L. Mapp1, J. Brian Garges1, J. Christopher Luft1, Chisato Mori2 and David J. Dix1.
    1Reproductive Toxicology Division, National Health and Envir...

  14. Comparison of the expression profile of apoptosis-associated genes in rheumatoid arthritis and osteoarthritis.

    PubMed

    Qingchun, Huang; Runyue, Huang; LiGang, Jie; Yongliang, Chu; Song, Wei; Shujing, Zhao

    2008-05-01

    The purpose of this study was to employ microarray analysis to evaluate differential gene expression in synovial tissue samples obtained from patients with rheumatoid arthritis (RA) or osteoarthritis (OA) to study the expression profile of apoptosis-associated genes in these tissues. Four samples were obtained from RA-affected patients and three from osteoarthritis patients. After total RNA was extracted from synovial tissue, the RNA was processed using two-cycle target labeling, followed by hybridization and scanning procedure. The GeneChip Human Genome U133 Plus 2.0 containing 900471 gene loci was used and eight genes associated with apoptosis were identified with a selected p value<0.05 and a twofold change in expression in rheumatoid samples compared to osteoarthritis tissues. Anti-apoptotic genes were generally upregulated whereas apoptotic genes were downregulated suggesting that these genes may play a role in the pathogenesis of RA. Furthermore, these genes may serve as novel therapeutic targets for the treatment of RA. PMID:18274751

  15. The duration of gastrin treatment affects global gene expression and molecular responses involved in ER stress and anti-apoptosis

    PubMed Central

    2013-01-01

    Background How cells decipher the duration of an external signal into different transcriptional outcomes is poorly understood. The hormone gastrin can promote a variety of cellular responses including proliferation, differentiation, migration and anti-apoptosis. While gastrin in normal concentrations has important physiological functions in the gastrointestine, prolonged high levels of gastrin (hypergastrinemia) is related to pathophysiological processes. Results We have used genome-wide microarray time series analysis and molecular studies to identify genes that are affected by the duration of gastrin treatment in adenocarcinoma cells. Among 403 genes differentially regulated in transiently (gastrin removed after 1 h) versus sustained (gastrin present for 14 h) treated cells, 259 genes upregulated by sustained gastrin treatment compared to untreated controls were expressed at lower levels in the transient mode. The difference was subtle for early genes like Junb and c-Fos, but substantial for delayed and late genes. Inhibition of protein synthesis by cycloheximide was used to distinguish between primary and secondary gastrin regulated genes. The majority of gastrin upregulated genes lower expressed in transiently treated cells were primary genes induced independently of de novo protein synthesis. This indicates that the duration effect of gastrin treatment is mainly mediated via post-translational signalling events, while a smaller fraction of the differentially expressed genes are regulated downstream of primary transcriptional events. Indeed, sustained gastrin treatment specifically induced prolonged ERK1/2 activation and elevated levels of the AP-1 subunit protein JUNB. Enrichment analyses of the differentially expressed genes suggested that endoplasmic reticulum (ER) stress and survival is affected by the duration of gastrin treatment. Sustained treatment exerted an anti-apoptotic effect on serum starvation-induced apoptosis via a PKC-dependent mechanism. In

  16. p53-related apoptosis resistance and tumor suppression activity in UVB-induced premature senescent human skin fibroblasts.

    PubMed

    Chen, Wenqi; Kang, Jian; Xia, Jiping; Li, Yanhua; Yang, Bo; Chen, Bin; Sun, Weiling; Song, Xiuzu; Xiang, Wenzhong; Wang, Xiaoyong; Wang, Fei; Wan, Yinsheng; Bi, Zhigang

    2008-05-01

    Chronic exposure to solar UV irradiation leads to photoaging, immunosuppression, and ultimately carcinogenesis. Cellular senescence is thought to play an important role in tumor suppression and apoptosis resistance. However, the relationships among stress-induced premature senescence (SIPS), tumorigenesis and apoptosis induced by UVB remain unknown. We developed a model of UVB-induced premature senescence in human skin fibroblasts (HSFs). After five repeated subcytotoxic UVB exposures at a dose of 10 mJ/cm2, the following biomarkers of senescence were markedly present: senescence-associated beta-galactosidase (SA beta-gal) activity, growth arrest, and the overexpression of senescence-associated genes. Firstly, there was an increase in the proportion of cells positive for SA beta-gal activity. Secondly, there was a loss of replicative potential as assessed by MTT assay. FACS analysis showed that UVB-stressed HSFs were blocked mostly in the G1 phase of the cell cycle, and replicative senescence, and protein expression of p53, p21(WAF-1) and p16(INK-4a) increased significantly. Thirdly, the mRNA levels of three senescence-associated genes, fibronectin, osteonectin and SM22, also increased. A real time PCR array to investigate the mRNA expression of p53-related genes involved in growth arrest, apoptosis and tumorigenesis indicated that p53, p21, p19, Hdm2, and Bax were up-regulated, and bcl, HIF-1alpha and VEGF were down-regulated. Collectively, our data suggest that UVB-induced SIPS plays an important role in p53-related apoptosis resistance and tumor suppression activity. PMID:18425358

  17. The apoptosis associated tyrosine kinase gene is frequently hypermethylated in human cancer and is regulated by epigenetic mechanisms

    PubMed Central

    Haag, Tanja; Herkt, Christina E.; Walesch, Sara K.; Richter, Antje M.; Dammann, Reinhard H.

    2014-01-01

    Epigenetic gene inactivation through promoter hypermethylation is an important aberration involved in the silencing of tumor-associated genes in cancer. Here we identified the apoptosis associated tyrosine kinase (AATK) as an epigenetically downregulated tumor related gene. We analyzed the epigenetic regulation of AATK in several human cancer cell lines and normal tissues by methylation and expression analysis. Hypermethylation of AATK was also analyzed in 25 primary lung tumors, 30 breast cancers and 24 matching breast tissues. In normal tissues the AATK CpG island promoter was unmethylated and AATK was expressed. Hypermethylation of AATK occurred frequently in 13 out of 14 (93%) human cancer cell lines. Methylation was reversed by 5-aza-2′-deoxycytidine treatment leading to re-expression of AATK in cancer cell lines. Aberrant methylation of AATK was also revealed in primary lung (40%) and breast (53%) cancers, but was found to be significantly less methylated in matching normal breast tissues (17%; p<0.01). In addition, we observed that AATK is epigenetically reactivated through the chromatin regulator CTCF. We further show that overexpression of Aatk significantly suppresses colony formation in cancer cell lines. Our findings suggest that the apoptosis associated tyrosine kinase is frequently inactivated in human cancers and acts as a tumor suppressive gene. PMID:25352953

  18. Repression of SRF target genes is critical for Myc-dependent apoptosis of epithelial cells

    PubMed Central

    Wiese, Katrin E; Haikala, Heidi M; von Eyss, Björn; Wolf, Elmar; Esnault, Cyril; Rosenwald, Andreas; Treisman, Richard; Klefström, Juha; Eilers, Martin

    2015-01-01

    Oncogenic levels of Myc expression sensitize cells to multiple apoptotic stimuli, and this protects long-lived organisms from cancer development. How cells discriminate physiological from supraphysiological levels of Myc is largely unknown. Here, we show that induction of apoptosis by Myc in breast epithelial cells requires association of Myc with Miz1. Gene expression and ChIP-Sequencing experiments show that high levels of Myc invade target sites that lack consensus E-boxes in a complex with Miz1 and repress transcription. Myc/Miz1-repressed genes encode proteins involved in cell adhesion and migration and include several integrins. Promoters of repressed genes are enriched for binding sites of the serum-response factor (SRF). Restoring SRF activity antagonizes Myc repression of SRF target genes, attenuates Myc-induced apoptosis, and reverts a Myc-dependent decrease in Akt phosphorylation and activity, a well-characterized suppressor of Myc-induced apoptosis. We propose that high levels of Myc engage Miz1 in repressive DNA binding complexes and suppress an SRF-dependent transcriptional program that supports survival of epithelial cells. PMID:25896507

  19. Fatty Acid Esters of Phloridzin Induce Apoptosis of Human Liver Cancer Cells through Altered Gene Expression

    PubMed Central

    Nair, Sandhya V. G.; Ziaullah; Rupasinghe, H. P. Vasantha

    2014-01-01

    Phloridzin (phlorizin or phloretin 2′-O-glucoside) is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin) using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA) ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2), growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR) and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK), cell cycle machinery (CDKs, TERT, TOP2A, TOP2B) as well as epigenetics regulators (HDACs). These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects mediated

  20. Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis

    SciTech Connect

    Chen, Pei-Lin; Easton, Alexander S.

    2010-01-01

    Tumor necrosis factor (TNF) and its related ligands TNF-related apoptosis inducing ligand (TRAIL) and Fas ligand (FasL) play roles in the regulation of vascular responses, but their effect on the formation of new blood vessels (angiogenesis) is unclear. Therefore, we have examined the effects of these ligands on angiogenesis modeled with primary cultures of human umbilical vein endothelial cells (HUVEC). To examine angiogenesis in the context of the central nervous system, we have also modeled cerebral angiogenesis with the human brain endothelial cell line hCMEC/D3. Parameters studied were bromodeoxyuridine (BrdU) incorporation and cell number (MTT) assay (to assess endothelial proliferation), scratch assay (migration) and networks on Matrigel (tube formation). In our hands, neither TRAIL nor FasL (1, 10, and 100 ng/ml) had an effect on parameters of angiogenesis in the HUVEC model. In hCMEC/D3 cells by contrast, TRAIL inhibited all parameters (10-100 ng/ml, 24 h). This was due to apoptosis, since its action was blocked by the pan-caspase inhibitor zVADfmk (5 x 10{sup -5} mol/l) and TRAIL increased caspase-3 activity 1 h after application. However FasL (100 ng/ml) increased BrdU uptake without other effects. We conclude that TRAIL has different effects on in vitro angiogenesis depending on which model is used, but that FasL is generally ineffective when applied in vitro. The data suggest that TRAIL primarily influences angiogenesis by the induction of vascular endothelial apoptosis, leading to vessel regression.

  1. Tissue transglutaminase-dependent posttranslational modification of the retinoblastoma gene product in promonocytic cells undergoing apoptosis.

    PubMed Central

    Oliverio, S; Amendola, A; Di Sano, F; Farrace, M G; Fesus, L; Nemes, Z; Piredda, L; Spinedi, A; Piacentini, M

    1997-01-01

    The retinoblastoma gene product (pRB) plays an important role in controlling both cell release from the G1 phase and apoptosis. We show here that in the early phases of apoptosis, pRB is posttranslationally modified by a tissue transglutaminase (tTG)-catalyzed reaction. In fact, by employing a novel haptenized lysis synthetic substrate which allows the isolation of glutaminyl-tTG substrates in vivo, we identified pRB as a potential tTG substrate in U937 cells undergoing apoptosis. In keeping with this finding, we showed that apoptosis of U937 cells is characterized by the rapid disappearance of the 105,000- to 110,000-molecular-weight pRB forms concomitantly with the appearance of a smear of immunoreactive products with a molecular weight of greater than 250,000. The shift in pRB molecular weight was reproduced by adding exogenous purified tTG to extracts obtained from viable U937 cells and was prevented by dansylcadaverine, a potent enzyme inhibitor. The effect of the pRB posttranslational modification during apoptosis was investigated by determining the E2F-1 levels and by isolating and characterizing pRB-null clones from U937 cells. Notably, the lack of pRB in these U937-derived clones renders these p53-null cells highly resistant to apoptosis induced by serum withdrawal, calphostin C, and ceramide. Taken together, these data suggest that tTG, acting on the pRB protein, might play an important role in the cell progression through the death program. PMID:9315663

  2. Differential Gene Expression Patterns in Chicken Cardiomyocytes during Hydrogen Peroxide-Induced Apoptosis

    PubMed Central

    Li, Youwen; Guo, Dingzong

    2016-01-01

    Hydrogen peroxide (H2O2) is both an exogenous and endogenous cytotoxic agent that can reliably induce apoptosis in numerous cell types for studies on apoptosis signaling pathways. However, little is known of these apoptotic processes in myocardial cells of chicken, a species prone to progressive heart failure. Sequencing of mRNA transcripts (RNA-Seq) allows for the identification of differentially expressed genes under various physiological and pathological conditions to elucidate the molecular pathways involved, including cellular responses to exogenous and endogenous toxins. We used RNA-seq to examine genes differentially expressed during H2O2-induced apoptosis in primary cultures of embryonic chicken cardiomyocytes. Following control or H2O2 treatment, RNA was extracted and sequencing performed to identify novel transcripts up- or downregulated in the H2O2 treatment group and construct protein−protein interaction networks. Of the 19,268 known and 2,160 novel transcripts identified in both control and H2O2 treatment groups, 4,650 showed significant differential expression. Among them, 55.63% were upregulated and 44.37% downregulated. Initiation of apoptosis by H2O2 was associated with upregulation of caspase-8, caspase-9, and caspase-3, and downregulation of anti-apoptotic genes API5 and TRIA1. Many other differentially expressed genes were associated with metabolic pathways (including ‘Fatty acid metabolism’, ‘Alanine, aspartate, and glutamate metabolism’, and ‘Biosynthesis of unsaturated fatty acids’) and cell signaling pathways (including ‘PPAR signaling pathway’, ‘Adipocytokine signaling pathway’, ‘TGF-beta signaling pathway’, ‘MAPK signaling pathway’, and ‘p53 signaling pathway’). In chicken cardiomyocytes, H2O2 alters the expression of numerous genes linked to cell signaling and metabolism as well as genes directly associated with apoptosis. In particular, H2O2 also affects the biosynthesis and processing of proteins and

  3. A Smac Mimetic Reduces TNF Related Apoptosis Inducing Ligand (TRAIL)-Induced Invasion and Metastasis of Cholangiocarcinoma Cells

    PubMed Central

    Fingas, Christian D.; Blechacz, Boris R. A.; Smoot, Rory L.; Guicciardi, Maria E.; Mott, Justin; Bronk, Steve F.; Werneburg, Nathan W.; Sirica, Alphonse E.; Gores, Gregory J.

    2010-01-01

    Cholangiocarcinoma (CCA) cells paradoxically express tumor necrosis factor–related apoptosis-inducing ligand (TRAIL), a death ligand that, failing to kill CCA cells, instead promotes their tumorigenicity and especially the metastatic behaviors of cell migration and invasion. Second mitochondria-derived activator of caspase (smac) mimetics are promising cancer therapeutic agents that enhance proapoptotic death receptor signaling by causing cellular degradation of inhibitor of apoptosis (IAP) proteins. Our aim was to examine the in vitro and in vivo effects of the smac mimetic JP1584 in CCA. Despite JP1584-mediated loss of cellular inhibitor of apoptosis-1 (cIAP-1) and cIAP-2, TRAIL failed to induce apoptosis in KMCH-1, TFK-1, and BDEneu CCA cells; a finding consistent with a downstream block in death signaling. Because cIAP-1 and cIAP-2 also promote nuclear factor kappa B (NF-κB) activation by the canonical pathway, the effect of JP1584 on this signaling pathway was examined. Treatment with JP1584 inhibited TRAIL-induced NF-κB activation as well as TRAIL-mediated up-regulation of the NF-κB target gene, matrix metalloproteinase 7 (MMP7). JP1584 also reduced TRAIL-mediated CCA cell migration and invasion in vitro. Finally, in a syngeneic rat orthotopic CCA model, JP1584 administration reduced MMP7 messenger RNA levels and extrahepatic metastases. Conclusion Although the smac mimetic JP1584 does not sensitize cells to apoptosis, it reduces TRAIL-induced CCA cell metastatic behavior. These data support the emerging concept that IAPs are prometastatic and represent targets for antimetastatic therapies. PMID:20683954

  4. TNF-α Gene Knockout in Triple Negative Breast Cancer Cell Line Induces Apoptosis

    PubMed Central

    Pileczki, Valentina; Braicu, Cornelia; Gherman, Claudia D.; Berindan-Neagoe, Ioana

    2013-01-01

    Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine involved in the promotion and progression of cancer, including triple negative breast cancer cells. Thus, there is significant interest in understanding the molecular signaling pathways that connect TNF-α with the survival of tumor cells. In our experiments, we used as an in vitro model for triple negative breast cancer the cell line Hs578T. The purpose of this study is to determine the gene expression profiling of apoptotic signaling networks after blocking TNF-α formation by using specially designed siRNA molecules to target TNF-α messenger RNA. Knockdown of TNF-α gene was associated with cell proliferation inhibition and apoptosis, as observed by monitoring the cell index using the xCELLigence RTCA System and flow cytometry. PCR array technology was used to examine the transcript levels of 84 genes involved in apoptosis. 15 genes were found to be relevant after comparing the treated group with the untreated one of which 3 were down-regulated and 12 up-regulated. The down-regulated genes are all involved in cell survival, whereas the up-regulated ones are involved in and interact with pro-apoptotic pathways. The results described here indicate that the direct target of TNF-α in the Hs578T breast cancer cell line increases the level of certain pro-apoptotic factors that modulate different cellular networks that direct the cells towards death. PMID:23263670

  5. Isolation of an Apoptosis Suppressor Gene of the Spodoptera littoralis Nucleopolyhedrovirus†

    PubMed Central

    Du, Quansheng; Lehavi, Dana; Faktor, Ouriel; Qi, Yipeng; Chejanovsky, Nor

    1999-01-01

    Spodoptera frugiperda SF9 cells infected with mutants of the Autographa californica nucleopolyhedrovirus (AcMNPV) which lack a functional p35 gene undergo apoptosis, aborting the viral infection. The Spodoptera littoralis nucleopolyhedrovirus (SlNPV) was able to suppress apoptosis triggered by vΔP35K/pol+, an AcMNPV p35 null mutant. To identify the putative apoptotic suppressor gene of SlNPV, overlapping cosmid clones representing the entire SlNPV genome were individually cotransfected along with genomic DNA of vΔP35K/pol+. Using this complementation assay, we isolated a SlNPV DNA fragment that was able to rescue the vΔP35K/pol+ infection in SF9 cells. By further subcloning and rescue, we identified a novel SlNPV gene, Slp49. The Slp49 sequence predicted a 49-kDa polypeptide with about 48.8% identity to the AcMNPV apoptotic suppressor P35. SLP49 displays a potential recognition site, TVTDG, for cleavage by death caspases. Recombinant AcMNPVs deficient in p35 bearing the Slp49 gene did not induce apoptosis and showed successful productive infections in SF9 cells, indicating that Slp49 is a functional homologue of p35. A 1.5-kbp Slp49-specific transcript was identified in SF9 cells infected with SlNPV or with vAc496, a vΔP35K/pol+-recombinant bearing Slp49. The discovery of Slp49 contributes to the identification of important functional motifs conserved in p35-like apoptotic suppressors and to the future isolation of p35-like genes from other baculoviruses. PMID:9882332

  6. Disruption of Smad5 gene induces mitochondria-dependent apoptosis in cardiomyocytes

    SciTech Connect

    Sun Yanxun; Zhou Jiang; Liao Xudong; Lue Yaxin; Deng Chuxia; Huang Peitang; Chen Quan; Yang Xiao . E-mail: yangx@nic.bmi.ac.cn

    2005-05-15

    Our previous studies have shown that SMAD5, an important intracellular mediator of transforming growth factor {beta} (TGF-{beta}) family, is required for normal development of the cardiovascular system in vivo. In the current study, we reported that the lack of the Smad5 gene resulted in apoptosis of cardiac myocytes in vivo. To further investigate the mechanism of the Smad5 gene in cardiomyocyte apoptosis, the embryonic stem (ES) cell differentiation system was employed. We found that the myotubes that differentiated from the homozygous Smad5 {sup ex6/ex6} mutant ES cells underwent collapse and degeneration during the late stages of in vitro differentiation, mimicking the in vivo observation. By electron microscopy, abnormal swollen mitochondria were observed in cardiomyocytes both from Smad5-deficient embryos and from ES-differentiated cells. There was also a significant reduction in mitochondrial membrane potential ({delta}{psi} {sub m}) and a leakage of cytochrome c from mitochondria into the cytosol of myocytes differentiated from Smad5 mutant ES cells. The expression of p53 and p21 was found to be elevated in the differentiated Smad5 mutant myocytes, and this was accompanied by an up-regulation in caspase 3 expression. These results suggest that the Smad5-mediated TGF-{beta} signals may protect cardiomyocytes from apoptosis by maintaining the integrity of the mitochondria, probably through suppression of p53 mediated pathways.

  7. miR-27b attenuates apoptosis induced by transmissible gastroenteritis virus (TGEV) infection via targeting runt-related transcription factor 1 (RUNX1)

    PubMed Central

    Bai, Xiaoyuan; Fei, Naijiao; Huang, Yong; Zhao, Zhimin; Du, Qian; Zhang, Hongling; Zhang, Liang

    2016-01-01

    Transmissible gastroenteritis virus (TGEV), belonging to the coronaviridae family, is the key cause of the fatal diarrhea of piglets and results in many pathological processes. microRNAs (miRNAs) play a key role in the regulation of virus-induced apoptosis. During the process of apoptosis induced by TGEV infection in PK-15 cells, the miR-27b is notably down-regulated. Thus, we speculate that miR-27b is involved in regulating the process of apoptosis in PK-15 cells. In this study we demonstrated that the over-expression of miR-27b led to the inhibition of TGEV-induced apoptosis, reduction of Bax protein level, and decrease of caspase-3 and −9 activities. Conversely, silencing of miR-27b by miR-27b inhibitors enhanced apoptosis via up-regulating Bax expression and promoting the activities of caspase-3 and −9 in TGEV-infected cells. Subsequently, the runt-related transcription factor 1 (RUNX1) is a candidate target of miR-27b predicted by bioinformatics search. We further identified that the miR-27b directly bound to the 3′ UTR of RUNX1 mRNA and suppressed RUNX1 expression, which indicates RUNX1 is the direct target gene of miR-27b. The over-expression of RUNX1 increased apoptosis and knockdown RUNX1blocked apoptosis of viral-infected cells via regulating Bax expression and the activities of caspase-3 and −9. Our data reveal that miR-27b may repress the mitochondrial pathway of apoptosis by targeting RUNX1, indicating that TGEV may induce apoptosis via down-regulating miR-27b and that miR-27b may act as a target for therapeutic intervention. PMID:26870610

  8. α–blockade, apoptosis, and prostate shrinkage: how are they related?

    PubMed Central

    Chłosta, Piotr; Kaplan, Steven

    2013-01-01

    Purpose The α1–adrenoreceptor antagonists, such as terazosin and doxazosin, induce prostate programmed cell death (apoptosis) within prostate epithelial and stromal cells in vitro. This treatment should cause prostate volume decrease, However, this has never been observed in clinical conditions. The aim of this paper is to review the disconnect between these two processes. Methods PubMed and DOAJ were searched for papers related to prostate, apoptosis, and stem cell death. The following key words were used: prostate, benign prostate hyperplasia, programmed cell death, apoptosis, cell death, α1–adrenoreceptor antagonist, α–blockade, prostate epithelium, prostate stroma, stem cells, progenitors, and in vitro models. Results We have shown how discoveries related to stem cells can influence our understanding of α–blockade treatment for BPH patients. Prostate epithelial and mesenchymal compartments have stem (progenitors) and differentiating cells. These compartments are described in relation to experimental in vitro and in vivo settings. Conclusions Apoptosis is observed within prostate tissue, but this effect has no clinical significance and cannot lead to prostate shrinkage. In part, this is due to stem cells that are responsible for prostate tissue regeneration and are resistant to apoptosis triggered by α1–receptor antagonists. PMID:24579025

  9. Growth phase-regulated induction of Salmonella-induced macrophage apoptosis correlates with transient expression of SPI-1 genes.

    PubMed

    Lundberg, U; Vinatzer, U; Berdnik, D; von Gabain, A; Baccarini, M

    1999-06-01

    Invasive Salmonella has been reported to induce apoptosis in a fraction of infected macrophages within 2 to 14 h from the time of infection by a mechanism involving the type III secretion machinery encoded by the Salmonella pathogenicity island 1 (SPI-1). Here, we show that bacteria in the transition from logarithmic to stationary phase cause 90% of the macrophages to undergo phagocytosis-independent, caspase-mediated apoptosis within 30 to 60 min of infection. The ability of Salmonella to induce this rapid apoptosis was growth phase regulated and cell type restricted, with epithelial cells being resistant. Apoptosis induction was also abrogated by disruption of the hilA gene (encoding a regulator of SPI-1 genes) and by the expression of a constitutively active PhoPQ. hilA itself and a subset of SPI-1 genes were transiently expressed during aerobic growth in liquid medium. Interestingly, however, hilA was found to be required only for the expression of the prgH gene, while sipB, invA, and invF were expressed in a hilA-independent manner. The expression of SPI-1 genes and the secretion of invasion-associated proteins correlated temporally with the induction of apoptosis and are likely to represent its molecular basis. Thus, growth phase transition regulates the expression and secretion of virulence determinants and represents the most efficient environmental cue for apoptosis induction reported to date. PMID:10348855

  10. Growth Phase-Regulated Induction of Salmonella-Induced Macrophage Apoptosis Correlates with Transient Expression of SPI-1 Genes

    PubMed Central

    Lundberg, Urban; Vinatzer, Ursula; Berdnik, Daniela; von Gabain, Alexander; Baccarini, Manuela

    1999-01-01

    Invasive Salmonella has been reported to induce apoptosis in a fraction of infected macrophages within 2 to 14 h from the time of infection by a mechanism involving the type III secretion machinery encoded by the Salmonella pathogenicity island 1 (SPI-1). Here, we show that bacteria in the transition from logarithmic to stationary phase cause 90% of the macrophages to undergo phagocytosis-independent, caspase-mediated apoptosis within 30 to 60 min of infection. The ability of Salmonella to induce this rapid apoptosis was growth phase regulated and cell type restricted, with epithelial cells being resistant. Apoptosis induction was also abrogated by disruption of the hilA gene (encoding a regulator of SPI-1 genes) and by the expression of a constitutively active PhoPQ. hilA itself and a subset of SPI-1 genes were transiently expressed during aerobic growth in liquid medium. Interestingly, however, hilA was found to be required only for the expression of the prgH gene, while sipB, invA, and invF were expressed in a hilA-independent manner. The expression of SPI-1 genes and the secretion of invasion-associated proteins correlated temporally with the induction of apoptosis and are likely to represent its molecular basis. Thus, growth phase transition regulates the expression and secretion of virulence determinants and represents the most efficient environmental cue for apoptosis induction reported to date. PMID:10348855

  11. Effect of Thymoquinone on P53 Gene Expression and Consequence Apoptosis in Breast Cancer Cell Line

    PubMed Central

    Dastjerdi, Mehdi Nikbakht; Mehdiabady, Ebrahim Momeni; Iranpour, Farhad Golshan; Bahramian, Hamid

    2016-01-01

    Background: Nigella sativa has been a nutritional flavoring factor and natural treatment for many ailments for so many years in medical science. Earlier studies have been reported that thymoquinone (TQ), an active compound of its seed, contains anticancer properties. Previous studies have shown that TQ induces apoptosis in breast cancer cells but it is unclear the role of P53 in the apoptotic pathway. Hereby, this study reports the potency of TQ on expression of tumor suppressor gene P53 and apoptosis induction in breast cancer cell line Michigan Cancer Foundation-7 (MCF-7). Methods: MCF-7 cell line was cultured and treated with TQ, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was carried out for evaluating the half-maximal inhibitory concentration (IC50) values after 24 h of treatment. The percentage of apoptotic cells was measured by flow cytometry. Real-time polymerase chain reaction (PCR) was performed to estimate the messenger RNA expression of P53 in MCF-7 cell line at different times. Results: The IC50 value for the TQ in MCF-7 cells was 25 μM that determined using MTT assay. The flow cytometry and real-time PCR results showed that TQ could induce apoptosis in MCF-7 cells, and the P53 gene expression was dramatically up-regulated by ascending time, respectively. Hence, there was significant difference in 48 and 72 h. Conclusions: Our results demonstrated that TQ could induce apoptosis in MCF-7 cells through up-regulation of P53 expression in breast cancer cell line (MCF-7) by time-dependent manner. PMID:27141285

  12. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    PubMed Central

    Wang, Likui; Gao, Shijuan; Jiang, Wei; Luo, Cheng; Xu, Maonian; Bohlin, Lars; Rosendahl, Markus; Huang, Wenlin

    2014-01-01

    Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2) called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE), which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix) polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen) and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair. PMID:25226533

  13. Tumor necrosis factor-related apoptosis-inducing ligand in vascular inflammation and atherosclerosis: a protector or culprit?

    PubMed

    Cheng, Wen; Zhao, Yuxia; Wang, Shuangxi; Jiang, Fan

    2014-12-01

    In addition to inducing tumor cell apoptosis, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) shows broad biological functions both in vitro and in vivo. TRAIL gene deletion enhanced atherogenesis in hyperlipidemic mice, supporting that endogenous TRAIL has protective actions in maintaining blood vessel homeostasis and repressing atherosclerosis. The mechanisms of this beneficial effect are not understood. It remains to be determined whether the athero-protective action of TRAIL is via direct impacts on residential vascular cells or indirectly by modulating systemic immune functions. However, in vitro experiments indicate that excessive TRAIL may stimulate endothelial cell apoptosis, smooth muscle proliferation and migration, and inflammatory responses. Moreover, TRAIL can stimulate lipid uptake and foam cell formation in cultured macrophages. Here we provide a critical review on the potential relationships between TRAIL and atherosclerosis. We propose that increased TRAIL production may also have potential detrimental effects on vascular inflammation and atherosclerosis. Further in vivo experiments are warranted to elucidate the effects of exogenous TRAIL on atherogenesis. PMID:25451562

  14. Changes of Gene Expression in the Apoptosis Pathway in Lncap and PC3 Cells Exposed to X-Rays or Protons

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. In our current studies, we investigated the expressions of apoptosis related gene expression profile (84 genes) in two distinct prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-) before and after exposure to X-rays or protons, using cDNA PCR arrays. In Lncap cells, 10Gy X-ray radiation significantly induced the expression of 19 out of 84 genes at 4h after irradiation. The changed genes were mostly in death and death receptor domain families, TNF ligand and receptor families, and apoptotic group of the BCL2 family, especially in P53 related genes, such as FAS, BAX, BAK1 and GADD45A. In PC3, X-rays only induced the expression of 3 genes, including an increased expression of BIRC3. There was no difference of the X-ray mediated cell killing in both cell lines using the cell cycle analysis. However, these X-ray-induced gene expression differences between PC3 and Lncap may explain the phenotype of PC3 cells that shows more tolerant not only to radiation, but also to other apoptosis inducing and sensitizing reagents. To compare the effectiveness of cell killing with X-rays, we also exposed PC3 cells to 10Gy protons at the Bragg peak region. Protons did not induce more apoptosis than X-rays for the same dose. In comparison to X-rays, protons significantly altered expressions of 13 genes in PC3, which included decreased expressions of anti-apoptosis genes (BCL2 and BCL2L2), and increased expressions of death and death receptor domain family genes, TNF ligand and receptor family and several kinases (FAS, DAPK1 and RIPK2). These data suggest that proton treatment is more effective in influencing the apoptosis pathways in PC3 cells than X-rays, thus protons may be more effective in the treatment of specific prostate tumor.

  15. Characterization and functional analysis of two inhibitor of apoptosis genes in Zhikong scallop Chlamys farreri.

    PubMed

    Miao, Guoying; Qi, Haigang; Li, Li; Que, Huayong; Zhang, Guofan

    2016-07-01

    The proteins of inhibitor of apoptosis (IAP) family play important roles in regulation of apoptosis, immunological response and cell proliferation. Here we reported two IAP genes (named CfIAP1 and CfIAP2) in Zhikong scallop Chlamys farreri. The full-length CfIAP1 cDNA contained 1552 nucleotides, encoding a predicted protein of 251 amino acids with two BIR domains. The full-length CfIAP2 cDNA contained 1243 nt, encoding a 356-aa protein with one BIR domain and one RING domain. The two genes are ubiquitously expressed in six types of tissue of C. farreri. The expression levels of CfIAP1 and CfIAP2 were significantly up-regulated after challenged with acute viral necrobiotic disease virus, lipopolysaccharide and exposure to air. Subcellular localization assay showed that CfIAP1 was mainly distributed in cytoplasm and CfIAP2 was in cytoplasm and nucleus. As assessed using a kit designed to test Caspase3 function in mammalian cells, the activity of CfCaspase3 was enhanced as a result of the down-regulation of CfIAP2 expression by dsRNA-mediated gene silencing. Our study indicated that CfIAP1 and CfIAP2 may participate in the innate immunity and stress responses and that CfIAP2 might block apoptosis via inhibiting CfCaspase3 indirectly through an unexplored mechanism in C. farreri. PMID:26875631

  16. Resveratrol triggers apoptosis through regulating ceramide metabolizing genes in human K562 chronic myeloid leukemia cells.

    PubMed

    Kartal, Melis; Saydam, Guray; Sahin, Fahri; Baran, Yusuf

    2011-01-01

    Resveratrol, an important phytoalexin in many plants, has been reported to have cytotoxic effects on various types of cancer. Ceramide is a bioactive sphingolipid that regulates many signaling pathways, including cell growth and proliferation, senescence and quiescence, apoptosis, and cell cycle. Ceramides are generated by longevity assurance genes (LASS). Glucosylceramide synthase (GCS) and sphingosine kinase-1 (SK-1) enzymes can convert ceramides to antiapoptotic molecules, glucosylceramide, and sphingosine-1-phosphate, respectively. C8:ceramide, an important cell-permeable analogue of natural ceramides, increases intracellular ceramide levels significantly, while 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and SK-1 inhibitor increase accumulation of ceramides by inhibiting GCS and SK-1, respectively. Chronic myelogenous leukemia (CML) is a hematological disorder resulting from generation of BCR/ABL oncogene. In this study, we examined the roles of ceramide metabolizing genes in resveratrol-induced apoptosis in K562 CML cells. There were synergistic cytotoxic and apoptotic effects of resveratrol with coadministration of C8:ceramide, PDMP, and SK-1 inhibitor. Interestingly, there were also significant increases in expression levels of LASS genes and decreases in expression levels of GCS and SK-1 in K562 cells in response to resveratrol. Our data, in total, showed for the first time that resveratrol might kill CML cells through increasing intracellular generation and accumulation of apoptotic ceramides. PMID:21500096

  17. Brg1 Enables Rapid Growth of the Early Embryo by Suppressing Genes That Regulate Apoptosis and Cell Growth Arrest.

    PubMed

    Singh, Ajeet P; Foley, Julie F; Rubino, Mark; Boyle, Michael C; Tandon, Arpit; Shah, Ruchir; Archer, Trevor K

    2016-08-01

    SWI/SNF (switching/sucrose nonfermenting)-dependent chromatin remodeling establishes coordinated gene expression programs during development, yet important functional details remain to be elucidated. We show that the Brg1 (Brahma-related gene 1; Smarca4) ATPase is globally expressed at high levels during postimplantation development and its conditional ablation, beginning at gastrulation, results in increased apoptosis, growth retardation, and, ultimately, embryonic death. Global gene expression analysis revealed that genes upregulated in Rosa26CreERT2; Brg1(flox/flox) embryos (here referred to as Brg1(d/d) embryos to describe embryos with deletion of the Brg1(flox/flox) alleles) negatively regulate cell cycle progression and cell growth. In addition, the p53 (Trp53) protein, which is virtually undetectable in early wild-type embryos, accumulated in the Brg1(d/d) embryos and activated the p53-dependent pathways. Using P19 cells, we show that Brg1 and CHD4 (chromodomain helicase DNA binding protein 4) coordinate to control target gene expression. Both proteins physically interact and show a substantial overlap of binding sites at chromatin-accessible regions adjacent to genes differentially expressed in the Brg1(d/d) embryos. Specifically, Brg1 deficiency results in reduced levels of the repressive histone H3 lysine K27 trimethylation (H3K27me3) histone mark and an increase in the amount of open chromatin at the regulatory region of the p53 and p21 (Cdkn1a) genes. These results provide insights into the mechanisms by which Brg1 functions, which is in part via the p53 program, to constrain gene expression and facilitate rapid embryonic growth. PMID:27185875

  18. TR4 orphan nuclear receptor functions as an apoptosis modulator via regulation of Bcl-2 gene expression

    SciTech Connect

    Kim, Eungseok; Ma, Wen-Lung; Lin, Din-Lii; Inui, Shigeki; Chen, Yuh-Ling; Chang, Chawnshang . E-mail: chang@urmc.rochester.edu

    2007-09-21

    While Bcl-2 plays an important role in cell apoptosis, its relationship to the orphan nuclear receptors remains unclear. Here we report that mouse embryonic fibroblast (MEF) cells prepared from TR4-deficient (TR4{sup -} {sup /-}) mice are more susceptible to UV-irradiation mediated apoptosis compared to TR4-Wildtype (TR4 {sup +/+}) littermates. Substantial increasing TR4{sup -} {sup /-} MEF apoptosis to UV-irradiation was correlated to the down-regulation of Bcl-2 RNA and protein expression and collaterally increased caspase-3 activity. Furthermore, this TR4-induced Bcl-2 gene expression can be suppressed by co-transfection with TR4 coregulators, such as androgen receptor (AR) and receptor-interacting protein 140 (RIP140) in a dose-dependent manner. Together, our results demonstrate that TR4 might function as an apoptosis modulator through induction of Bcl-2 gene expression.

  19. Modulation of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by chemotherapy in thyroid cancer cell lines.

    PubMed

    Park, Jin-Woo; Wong, Mariwil G; Lobo, Margaret; Hyun, William C; Duh, Quan-Yang; Clark, Orlo H

    2003-12-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in many human cancer cells but not in normal cells. Thyroid cancer cells, however, appear to be relatively resistant to TRAIL-induced apoptosis. We therefore investigated the effect of chemotherapy on TRAIL-induced apoptosis in thyroid cancer cells. We used six thyroid cancer cell lines: TPC-1, FTC-133, FTC-236, FTC-238, XTC-1, and ARO82-1. We used flow cytometry to measure apoptosis, dimethyl-thiazol-diphenyltetrazolium bromide (MTT) assay to measure antiproliferation effects and Western blot to determine the expression of Bcl family proteins. Troglitazone, paclitaxel, geldanamycin, and cycloheximide were used for pretreatment. We used the Student's t test and analysis of variance (ANOVA) for statistical analysis. All thyroid cancer cell lines, except the TPC-1 cell line, were resistant to TRAIL, and growth inhibition was less than 20% at concentration of 800 ng/mL of TRAIL. In both TPC-1 (TRAIL-sensitive) and FTC-133 (TRAIL-resistant) thyroid cancer cell lines, pretreatment with troglitazone, cycloheximide, and paclitaxel enhanced TRAIL-induced cell death significantly but pretreatment with geldanamycin did not. There were no significant changes in Bcl-2, Bcl-xl, and Bax protein expression after troglitazone treatment. In conclusion, TRAIL in combination with troglitazone, paclitaxel, and cycloheximide induces apoptosis in thyroid cancer cells at suboptimal concentrations that cannot be achieved using TRAIL alone. PMID:14751030

  20. Immunity-related genes and gene families in Anopheles gambiae.

    PubMed

    Christophides, George K; Zdobnov, Evgeny; Barillas-Mury, Carolina; Birney, Ewan; Blandin, Stephanie; Blass, Claudia; Brey, Paul T; Collins, Frank H; Danielli, Alberto; Dimopoulos, George; Hetru, Charles; Hoa, Ngo T; Hoffmann, Jules A; Kanzok, Stefan M; Letunic, Ivica; Levashina, Elena A; Loukeris, Thanasis G; Lycett, Gareth; Meister, Stephan; Michel, Kristin; Moita, Luis F; Müller, Hans-Michael; Osta, Mike A; Paskewitz, Susan M; Reichhart, Jean-Marc; Rzhetsky, Andrey; Troxler, Laurent; Vernick, Kenneth D; Vlachou, Dina; Volz, Jennifer; von Mering, Christian; Xu, Jiannong; Zheng, Liangbiao; Bork, Peer; Kafatos, Fotis C

    2002-10-01

    We have identified 242 Anopheles gambiae genes from 18 gene families implicated in innate immunity and have detected marked diversification relative to Drosophila melanogaster. Immune-related gene families involved in recognition, signal modulation, and effector systems show a marked deficit of orthologs and excessive gene expansions, possibly reflecting selection pressures from different pathogens encountered in these insects' very different life-styles. In contrast, the multifunctional Toll signal transduction pathway is substantially conserved, presumably because of counterselection for developmental stability. Representative expression profiles confirm that sequence diversification is accompanied by specific responses to different immune challenges. Alternative RNA splicing may also contribute to expansion of the immune repertoire. PMID:12364793

  1. Effect of the WWOX gene on the regulation of the cell cycle and apoptosis in human ovarian cancer stem cells.

    PubMed

    Yan, Hongchao; Tong, Jianye; Lin, Xiaoman; Han, Qiuyu; Huang, Hongxiang

    2015-08-01

    In order to examine new ideas for gene therapy in ovarian cancer, the specific mechanism underlying the effects of the WW domain containing oxidoreductase (WWOX) gene on cell cycle regulation and apoptosis in human ovarian cancer stem cells was investigated. Ovarian cancer stem cells were transfected with a eukaryotic expression vector carrying the WWOX gene in vitro (recombinant plasmid) and cells transfected with the empty plasmid (empty plasmid) or untransfected cells were used as controls. Stably transfected cells were screened and amplified in culture and the WWOX protein was detected by western blot analysis in the three groups of cells. Western blot analysis was performed to detect the expression of cell cycle regulatory proteins cyclin E, cyclin-dependent kinase (CDK) 2, cyclin D1, CDK4 and apoptosis-related protein Wnt-5α and c-Jun N-terminal kinase (JNK), while polymerase chain reaction (PCR) was used to detect alterations in the mRNA expression levels of caspase-3. The results demonstrated that the WWOX protein was stably expressed in cells of the recombinant plasmid group, but was not detected in cells of the empty plasmid group and the control group. Cell proliferation at each time point decreased significantly in the recombinant plasmid group compared with the empty plasmid group and the control group. Flow cytometric analysis demonstrated that the proportion of cells in the G0/G1 phase in the recombinant plasmid group was significantly higher than that of cells in the empty plasmid group and the control group. The rate of apoptosis in the recombinant plasmid group was significantly higher than that of cells in the empty plasmid group and the control group. Western blot analysis demonstrated that the expression levels of cyclin E, CDK2, cyclin D1 and CDK4 in the recombinant plasmid group were significantly lower than those in the empty plasmid group and the control group; however, the expression levels of Wnt-5α and JNK were significantly higher

  2. The relation between doses or post-plasma time points and apoptosis of leukemia cells induced by dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Haixia; Xue, Zhixiao; Yin, Huijuan; Niu, Qing; Chen, Hongli

    2015-12-01

    The dielectric barrier discharge (DBD) plasma was applied to induce apoptosis of LT-12 leukemia cells. Plasma effects on cell death was evaluated by MTT assay and FCM apoptosis assay with Annexin V/PI double staining, suggesting that plasma killing cells rate and inducing cell apoptosis rate both positively were related to the plasma doses or the post-plasma time points. The cell death rates increased from 15.2% to 33.1% and the apoptosis rate raise from 23.8% to 28% when the dose raise from 60s to 120 s at 8 h post-plasma, while they increased from 15.4% to 34.9% and from 48% to 55.3% respectively at the same doses at 12 h post-plasma. Furthermore, the production of reactive oxygen species (ROS), gene and protein expression for Caspases and Bcl-2 family members were measured for exploring the related apoptotic mechanisms phenomenon. We found ROS immediately increased to 1.24 times of the original amount, then increasing to 5.39-fold at 20 h after treatment. The gene and protein expression for Caspases and Bcl-2 family members are very active at 8-12 h post-plasma. Our results demonstrate that DBD plasma can effectively induce tumor cell death through primarily related apoptotic mechanisms.

  3. VMP1 related autophagy and apoptosis in colorectal cancer cells: VMP1 regulates cell death

    SciTech Connect

    Qian, Qinyi; Zhou, Hao; Chen, Yan; Shen, Chenglong; He, Songbing; Zhao, Hua; Wang, Liang; Wan, Daiwei; Gu, Wen

    2014-01-17

    Highlights: •This research confirmed VMP1 as a regulator of autophagy in colorectal cancer cell lines. •We proved the pro-survival role of VMP1-mediated autophagy in colorectal cancer cell lines. •We found the interaction between VMP1 and BECLIN1 also existing in colorectal cancer cell lines. -- Abstract: Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death.

  4. Algal sulfated carrageenan inhibits proliferation of MDA-MB-231 cells via apoptosis regulatory genes.

    PubMed

    Murad, Hossam; Ghannam, Ahmed; Al-Ktaifani, Mahmoud; Abbas, Assef; Hawat, Mohammad

    2015-03-01

    Marine algae are prolific sources of sulfated polysaccharides, which may explain the low incidence of certain cancers in countries that traditionally consume marine food. Breast cancer is one of the most common types of non‑skin cancer in females. In this study, extracted sulfated carrageenan (ESC), predominantly consisting of ι‑carrageenan extracted from the red alga Laurencia papillosa, was characterized using Fourier transform infrared spectrometry. The biological effects of the identified extract were investigated and its potential cytotoxic activity was tested against the MDA‑MB‑231 cancer cell line. The biological biometer of the inhibitory concentration of the polysaccharide‑treated MDA‑MB‑231 cells was determined as 50 µM. Treatment with 50 µM ESC inhibited cell proliferation and promptly induced cell death through nuclear condensation and DNA fragmentation. Characterization of polysaccharide‑treated MDA‑MB‑231 cell death revealed that induction of apoptosis occurred via the activation of the extrinsic apoptotic caspase‑8 gene. The apoptotic signaling pathway was regulated through caspase‑3, caspase‑9, p53, Bax and Bcl‑2 genes. These findings suggest that ESC may serve as a potential therapeutic agent to target breast cancer via prompting apoptosis. PMID:25384757

  5. TNF-related apoptosis-inducing ligand (TRAIL): a potential candidate for combined treatment of hematological malignancies.

    PubMed

    Secchiero, Paola; Vaccarezza, Mauro; Gonelli, Arianna; Zauli, Giorgio

    2004-01-01

    TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF gene superfamily, which induces apoptosis through engagement of death receptors. TRAIL is unusual as compared to the other cytokines of this family, as it interacts with a complex system of receptors consisting of two pro-apoptotic death receptors (TRAIL-R1 and TRAIL-R2) and three decoy receptors (TRAIL-R3, TRAIL-R4 and osteoprotegerin). Moreover, with respect to other members of the TNF superfamily, such as CD95L and TNF-alpha, TRAIL has generated great interest as a potential tumor-specific cancer therapeutic because as a stable soluble trimer it selectively induces apoptosis in many transformed cells but not in normal cells. Of note, TRAIL cytotoxicity is at least partially independent of the major systems involved in resistance to chemotherapy, such as p53 wild-type function and multidrug resistance (MDR) genes. Since one fundamental problem of most cancers is the development of multiple mechanisms of resistance, which progressively reduce or suppress the therapeutic efficacy of conventional chemotherapy, new therapeutic approaches that either restore the pro-apoptotic activity of chemotherapeutic drugs or by-pass the mechanisms of resistance are highly desirable. This review will focus on the potential of TRAIL for its application in the therapy of hematological malignancies, used either alone or in combination with chemotherapy. The scenario emerging from the literature is that the treatment and management of hematological malignancies will require the rational combination of TRAIL plus conventional or new drugs in a regimen that would optimize the anti-neoplastic activity in malignant cells resistant to chemotherapy through restoration of the pro-apoptotic activity of TRAIL. PMID:15579063

  6. Role of apoptosis in pathogenesis and treatment of bone-related diseases.

    PubMed

    Mollazadeh, Samaneh; Fazly Bazzaz, Bibi Sedigheh; Kerachian, Mohammad Amin

    2015-01-01

    In this article, bone cells and their intercellular communications have been reviewed. Gap junctions and hemichannels are the main routes of interactions in bone tissue. They play a substantial role in survival and cell death, since pro-apoptotic signals can propagate through them. Different adhesion molecules are required for apoptosis, particularly caspase family as well as noncaspase proteases. The disruption outcome of apoptosis could result in bone-related diseases such as osteonecrosis. Anti-apoptotic strategies include inhibition of caspase, poly [ADP-ribose] polymerase (PARP), and Bcl-2 proteins as well as induction of the PKB/Akt pathway and inhibitors of apoptosis (IAP) family of proteins. Thus, understanding the mechanism of apoptosis gives detailed insights of anti-apoptotic molecular targets. Based on these targets, different treatments were designed and produced such as estrogen replacement therapy, administration of different bisphosphonates, raloxifene, calcitonin, sodium fluoride, calcium, and vitamin D. As a result, new applicable drugs for treatment of related bone problems can be proposed for clinical approach especially in the early stage of diseases. PMID:25627748

  7. Synergistically combined gene delivery for enhanced VEGF secretion and anti-apoptosis

    PubMed Central

    Won, Young-Wook; Lee, Minhyung; Kim, Hyun Ah; Nam, Kihoon; Bull, David A.; Kim, Sung Wan

    2013-01-01

    With current pharmacological treatments, preventing the remodeling of the left ventricle and the progression to heart failure is a difficult task. Gene therapy is considered to provide a direct treatment to the long-term complications of ischemic heart diseases. Although current gene therapies that use single molecular targets seem potentially possible, they have not achieved a success in the treatment of ischemic diseases. With an efficient polymeric gene carrier, PAM-ABP, we designed a synergistically combined gene delivery strategy to enhance vascular endothelial growth factor (VEGF) secretion and prolong anti-apoptotic effects. A hypoxia-inducible plasmid expressing both hypoxia-inducible heme oxygenase-1 (HO-1) and the Src homology domain-2 containing tyrosine phosphatase-1 microRNA (miSHP 1) and a hypoxia-responsive VEGF plasmid were combined in this study. The positive feedback circuit between HO-1 and VEGF, and the negative regulatory role of SHP-1 in angiogenesis enhance VEGF secretion synergistically. The synergy in VEGF secretion as a consequence of the gene combination and the prolonged HO-1 activity was confirmed in hypoxic cardiomyocytes and cardiomyocyte apoptosis under hypoxia, and was decreased synergistically. These results suggest that the synergistic combination of VEGF, HO-1, and miSHP-1 may be promising for the clinical treatment of ischemic diseases. PMID:24007285

  8. Demethoxycurcumin alters gene expression associated with DNA damage, cell cycle and apoptosis in human lung cancer NCI-H460 cells in vitro.

    PubMed

    Ko, Yang-Ching; Hsu, Shu-Chun; Liu, Hsin-Chung; Hsiao, Yung-Ting; Hsia, Te-Chun; Yang, Su-Tso; Hsu, Wu-Huei; Chung, Jing-Gung

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths and new lung cancer cases are continuously emerging around the globe; however, treatment of lung cancer remains unsatisfactory. Demethoxycurcumin (DMC) has been shown to exert cytotoxic effects in human cancer cells via induction of apoptosis. However, the effects of DMC on genetic mechanisms associated with these actions have not been yet elucidated. Human lung cancer NCI-H460 cells were incubated with or without 35 μM of DMC for 24 h and total RNA was extracted for cDNA synthesis labeling and microarray hybridization, followed by fluor-labeled cDNA hybridization on chip. Expression Console software with default Robust Multichip Analysis (RMA) parameters were used for detecting and quantitating the localized concentrations of fluorescent molecules. The GeneGo software was used for investigating key genes involved and their possible interaction pathways. Genes associated with DNA damage and repair, cell-cycle check point and apoptosis could be altered by DMC; in particular, 144 genes were found up-regulated and 179 genes down-regulated in NCI-H460 cells after exposure to DMC. In general, DMC-altered genes may offer information to understand the cytotoxic mechanism of this agent at the genetic level since gene alterations can be useful biomarkers or targets for the diagnosis and treatment of human lung cancer in the future. PMID:25600535

  9. Ceramides promote apoptosis for virus-infected lymphoma cells through induction of ceramide synthases and viral lytic gene expression

    PubMed Central

    Dai, Lu; Trillo-Tinoco, Jimena; Bai, Aiping; Chen, Yihan; Bielawski, Jacek; Del Valle, Luis; Smith, Charles D.; Ochoa, Augusto C.; Qin, Zhiqiang; Parsons, Chris

    2015-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent for several human cancers including primary effusion lymphoma (PEL), a rapidly progressive malignancy arising preferentially in immunocompromised patients. With conventional chemotherapy, PEL continues to portend high mortality, dictating the development of novel therapeutic strategies. Sphingosine kinase 2 (SphK2) represents a key gatekeeper for sphingolipid metabolism, responsible for conversion of ceramides to sphingosine-1-phosphate (S1P). We have previously demonstrated that targeting SphK2 using a novel selective inhibitor, ABC294640, leads to intracellular accumulation of ceramides and induces apoptosis for KSHV-infected PEL cells, while suppressing tumor progression in vivo. In the current study, we sought to determine whether specific ceramide/dh-ceramide species and related ceramide synthases (CerS) impact viability for KSHV-infected PEL cells during targeting of SphK2. We found that several specific ceramide and dihydro(dh)-ceramide species and their associated CerS reduce PEL survival and tumor expansion in vitro and in vivo. Moreover, we found that dhC16-Cer induces PEL apoptosis in part through activation of KSHV lytic gene expression. These data further implicate bioactive sphingolipids in regulation of PEL survival, and provide justification for future studies evaluating clinically relevant ceramide analogs or mimetics for their potential as therapeutic agents for PEL. PMID:26327294

  10. Effects of aging on apoptosis gene expression in oral mucosal tissues.

    PubMed

    Gonzalez, Octavio A; Novak, M John; Kirakodu, Sreenatha; Stromberg, Arnold J; Shen, Shu; Orraca, Luis; Gonzalez-Martinez, Janis; Ebersole, Jeffrey L

    2013-03-01

    Apoptotic processes are important for physiologic renewal of an intact epithelial barrier and contribute some antimicrobial resistance for bacteria and viruses, as well as anti-inflammatory effects that benefits the mucosa. The oral cavity presents a model of host-bacterial interactions at mucosal surfaces, in which a panoply of microorganisms colonizes various niches in the oral cavity and creates complex multispecies biofilms that challenge the gingival tissues. This report details gene expression in apoptotic pathways that occur in oral mucosal tissues across the lifespan, using a nonhuman primate model. Macaca mulatta primates from 2 to 23 years of age (n = 23) were used in a cross-sectional study to obtain clinical healthy gingival tissues specimens. Further, mRNA was prepared and evaluated using the Affymetrix Rhesus GeneChip and 88 apoptotic pathway genes were evaluated. The results identified significant positive correlations with age in 12 genes and negative correlations with an additional five genes. The gene effects were predicted to alter apoptosis receptor levels, extrinsic apoptotic pathways through caspases, cytokine effects on apoptotic events, Ca(+2)-induced death signaling, cell cycle checkpoints, and potential effects of survival factors. Both the positively and negatively correlated genes within the apoptotic pathways provided evidence that healthy tissues in aging animals exhibit decreased apoptotic potential compared to younger animals. The results suggested that decreased physiologic apoptotic process in the dynamic septic environment of the oral mucosal tissues could increase the risk of aging tissues to undergo destructive disease processes through dysregulated inflammatory responses to the oral microbial burden. PMID:23334583

  11. MiR-133b Targets Antiapoptotic Genes and Enhances Death Receptor-Induced Apoptosis

    PubMed Central

    Bild, Matthias; Jung, Ulrike; Müller, Henrik; Arntzen, Magnus Ø.; Piso, Chloe; Stephan, Carsten; Thiede, Bernd; Mollenkopf, Hans-Joachim; Jung, Klaus; Kaufmann, Stefan H. E.; Schreiber, Jörg

    2012-01-01

    Despite the importance of microRNAs (miRs) for regulation of the delicate balance between cell proliferation and death, evidence for their specific involvement during death receptor (DR)-mediated apoptosis is scarce. Transfection with miR-133b rendered resistant HeLa cells sensitive to tumor necrosis factor-alpha (TNFα)-induced cell death. Similarly, miR-133b caused exacerbated proapoptotic responses to TNF-related apoptosis-inducing ligand (TRAIL) or an activating antibody to Fas/CD95. Comprehensive analysis, encompassing global RNA or protein expression profiling performed by microarray experiments and pulsed stable isotope labeling with amino acids in cell culture (pSILAC), led to the discovery of the antiapoptotic protein Fas apoptosis inhibitory molecule (FAIM) as immediate miR-133b target. Moreover, miR-133b impaired the expression of the detoxifying protein glutathione-S-transferase pi (GSTP1). Expression of miR-133b in tumor specimens of prostate cancer patients was significantly downregulated in 75% of the cases, when compared with matched healthy tissue. Furthermore, introduction of synthetic miR-133b into an ex-vivo model of prostate cancer resulted in impaired proliferation and cellular metabolic activity. PC3 cells were also sensitized to apoptotic stimuli after transfection with miR-133b similar to HeLa cells. These data reveal the ability of a single miR to influence major apoptosis pathways, suggesting an essential role for this molecule during cellular transformation, tumorigenesis and tissue homeostasis. PMID:22532850

  12. Comparison of oxycodone and morphine on the proliferation, apoptosis and expression of related molecules in the A549 human lung adenocarcinoma cell line

    PubMed Central

    Tian, Mi; Jin, Li; Li, Renqi; Zhu, Sihai; Ji, Muhuo; Li, Weiyan

    2016-01-01

    The present study aimed to compare the effects of oxycodone and morphine hydrochloride on the proliferation, apoptosis and migration of A549 lung cancer cells. A549 human lung cancer cells were cultured in vitro and treated with oxycodone or morphine at various concentrations (10, 20 and 40 µg/ml). Cell migration was determined using a wound healing assay, whereas apoptosis was detected using flow cytometry. Reverse transcription quantitative-polymerase chain reaction was performed in order to assess the apoptosis-related gene expression levels, including p53, B-cell lymphoma (Bcl)-2 and Bcl-2-associated X protein (Bax). The levels of vascular endothelial growth factor (VEGF) and urokinase-type plasminogen activator (uPA) were detected using enzyme-linked immunosorbent assays. The expression levels of intercellular cell adhesion molecule (ICAM)-1 were determined by immunofluorescence. In the present study, oxycodone and morphine induced apoptosis in A549 lung cancer cells with similar potency; however, >20 µg/ml oxycodone was more effective at inhibiting cell proliferation (P<0.05) and migration (P<0.05), as compared with morphine at the same concentration. Oxycodone induced a dose-dependent increase in the expression levels of p53 and Bax apoptosis-related genes, whereas it decreased the gene expression levels of Bcl-2. Furthermore, oxycodone decreased, whereas morphine increased, the expression levels of ICAM-1 in a concentration-dependent manner. In addition, at 40 µg/ml, the expression levels of VEGF and uPA in the morphine group were significantly higher than those demonstrated in the oxycodone group (P<0.05). In conclusion, oxycodone was more effective in inhibiting the proliferation and migration of A549 lung cancer cells, as compared with morphine. PMID:27446244

  13. A novel mechanism of dasatinib-induced apoptosis in chronic myeloid leukemia; ceramide synthase and ceramide clearance genes.

    PubMed

    Gencer, Emel B; Ural, Ali U; Avcu, Ferit; Baran, Yusuf

    2011-11-01

    Sphingolipids are bioeffector molecules that control various aspects of cell growth, proliferation, apoptosis, and drug resistance. Ceramides, the central molecule of sphingolipid metabolism, are inducer of apoptosis and inhibitors of proliferation. Sphingosine-1-phosphate (S1P) and glucosyleceramide, converted from ceramides by sphingosine kinase-1 (SK-1) and glucosyleceramide synthase (GCS) enzymes, respectively, inhibit apoptosis and develop resistance to chemotherapeutic drugs. In this study, we examined the therapeutic potentials of bioactive sphingolipids in chronic myeloid leukemia (CML) alone and in combination with dasatinib in addition to investigate the roles of ceramide-metabolizing genes in dasatinib-induced apoptosis. Cytotoxic effects of dasatinib, C8:ceramide, PDMP, and SK-1 inhibitor were determined by XTT cell proliferation assay. Changes in caspase-3 enzyme activity and mitochondrial membrane potential (MMP) were measured using caspase-3 colorimetric assay and JC-1 MMP detection kit. Expression levels of ceramide-metabolizing genes were examined by qRT-PCR. Application of ceramide analogs and inhibitors of ceramide clearance genes decreased cell proliferation and induced apoptosis. Targeting bioactive sphingolipids towards generation/accumulation of ceramides increased apoptotic effects of dasatinib, synergistically. It was shown for the first time that dasatinib induces apoptosis through downregulating expression levels of antiapoptotic SK-1 but not GCS, and upregulating expression levels of ceramide synthase (CerS) genes, especially CerS1, in K562 cells. On the other hand, dasatinib downregulates expression levels of both GCS and SK-1 and upregulate apoptotic CerS2, -5 and -6 genes in Meg-01 cells. Increasing endogenous ceramide levels and decreasing prosurvival lipids, S1P, and GC, can open the way of more effective treatment of CML. PMID:21455605

  14. Inhibition of Single Minded 2 gene expression mediates tumor-selective apoptosis and differentiation in human colon cancer cells.

    PubMed

    Aleman, Mireille J; DeYoung, Maurice Phil; Tress, Matthew; Keating, Patricia; Perry, Gary W; Narayanan, Ramaswamy

    2005-09-01

    A Down's syndrome associated gene, Single Minded 2 gene short form (SIM2-s), is specifically expressed in colon tumors but not in the normal colon. Antisense inhibition of SIM2-s in a RKO-derived colon carcinoma cell line causes growth inhibition, apoptosis, and inhibition of tumor growth in a nude mouse tumoriginicity model. The mechanism of cell death in tumor cells is unclear. In the present study, we investigated the pathways underlying apoptosis. Apoptosis was seen in a tumor cell-specific manner in RKO cells but not in normal renal epithelial cells, despite inhibition of SIM2-s expression in both of these cells by the antisense. Apoptosis was depended on WT p53 status and was caspase-dependent; it was inhibited by a pharmacological inhibitor of mitogen-activated protein kinase activity. Expression of a key stress response gene, growth arrest and DNA damage gene (GADD)45alpha, was up-regulated in antisense-treated tumor cells but not in normal cells. In an isogenic RKO cell line expressing stable antisense RNA to GADD45alpha, a significant protection of the antisense-induced apoptosis was seen. Whereas antisense-treated RKO cells did not undergo cell cycle arrest, several markers of differentiation were deregulated, including alkaline phosphatase activity, a marker of terminal differentiation. Protection of apoptosis and block of differentiation showed a correlation in the RKO model. Our results support the tumor cell-selective nature of SIM2-s gene function, provide a direct link between SIM2-s and differentiation, and may provide a model to identify SIM2-s targets. PMID:16129820

  15. Reproductive Toxicity of Endosulfan: Implication From Germ Cell Apoptosis Modulated by Mitochondrial Dysfunction and Genotoxic Response Genes in Caenorhabditis elegans

    PubMed Central

    Du, Hua; Wang, Meimei; Wang, Lei; Dai, Hui; Wang, Min; Hong, Wei; Nie, Xinxin; Wu, Lijun; Xu, An

    2015-01-01

    Endosulfan as a new member of persistent organic pollutants has been shown to induce reproductive dysfunction in various animal models. However, the action mechanism of endosulfan-produced reproductive toxicity remains largely unknown. This study was focused on investigating the reproductive toxicity induced by α-endosulfan and clarifying the role of mitochondria and genotoxic response genes in germ cell apoptosis of Caenorhabditis elegans. Our data showed that endosulfan induced a dose-dependent decrease of life span, fecundity, and hatchability, whereas the germ cell apoptosis was dose-dependently increased. The mitochondria membrane potential was disrupted by endosulfan, leading to a significant increase of germ cell apoptosis in mev-1(kn-1) mutant. However, the apoptotic effects of endosulfan were blocked in mutants of cep-1(w40), egl-1(n487), and hus-1(op241), indicating conserved genotoxic response genes played an essential role in endosulfan-induced germ cell apoptosis. Furthermore, exposure to endosulfan induced the accumulation of HUS-1::GFP foci and the germ cell cycle arrest. These findings provided clear evidence that endosulfan caused significant adverse effects on the reproduction system of C. elegans and increased germ cell apoptosis, which was regulated by mitochondrial dysfunction and DNA damage response genes. This study may help to understand the signal transduction pathways involved in endosulfan-induced reproductive toxicity. PMID:25666835

  16. Identification and functional analysis of LsMNPV anti-apoptosis genes.

    PubMed

    Kim, Yu-Sin; Xiao, Hua-Zhong; Du, En-Qi; Cai, Guo-Shuai; Lu, Song-Ya; Qi, Yi-Peng

    2007-07-31

    Three anti-apoptosis genes, Ls-iap2, iap3 and p49 were found in Leucania separata multiple nuclear polyhedrovirus. Amino acid sequence homology of Ls-IAP2 and Ls-IAP3 with Op-IAP2 and Op-IAP3 from Orgyia pseddotsugata MNPV were 20% and 42%, while that of Ls-P49 is 28% with Sl-P49 from Spodoptera littorolis MNPV. Ls-IAP2 contains one baculoviral IAP repeat (BIR) domain followed by a RING domain, while Ls-IAP3 contains two BIRs and a RING. Ls-P49 contains a reactive site loop, predicted cleavage site (KKLD(74) downward arrow G) that is different from Sl-P49 (TVID(94) downward arrow G). Expressed Ls-iap3 or Ls-p49 under presence of actinomycin D in SF9 cells, DNA ladder assay revealed that Ls- IAP3 or Ls-P49 could block the apoptosis of SF9 cells induced by actinomycin D. Replication of p35 deficient-mutant Autographa californica MNPV in SF9 cells was also rescued when Ls-iap3 or Ls-p49 was expressed transiently. No anti-apoptotic activity was observed for Ls-IAP2. The results showed that both of Ls-IAP3 and Ls-P49 were functional apoptotic suppressors in SF9 cells. PMID:17669274

  17. Bioinformatic characterization and gene expression pattern of apoptosis inhibitor from Macrobrachium rosenbergii challenged with infectious hypodermal and hematopoietic necrosis virus.

    PubMed

    Arockiaraj, Jesu; Vanaraja, Puganeshwaran; Easwvaran, Sarasvathi; Singh, Arun; Othman, Rofina Yasmin; Bhassu, Subha

    2011-12-01

    Apoptosis is genetically programmed cellular killing processes that execute unnecessary or infected cells. It plays an important role in embryogenesis, homeostasis, insect metamorphosis and immunity. Apoptosis inhibitor (MrIAP) was sequenced from the freshwater giant prawn Macrobrachium rosenbergii using Illumina Solexa Genome Analyzer Technique. MrIAP consisted of 1753 base pair nucleotides encoded 535 polypeptide with an estimated molecular mass of 60 kDa. MrIAP amino acid sequence contains IAP superfamily domain between 5 and 490. The deduced amino acid sequences of the MrIAP were aligned with the other IAP family members. The highest sequence similarity was observed in IAP-5 from ant Camponotus floridanus (67%) followed by IAP from body louse Pediculus humanus corporis (66%) and the lowest (62%) in IAP-5 isoform-5 from common chimpanzee Pan troglodytes and IAP-5 from Aedes aegypti. The IAP phylogenetic tree showed that MrIAP closely related to other arthropod blacklegged tick Ixodes scapularis, formed a sister group with IAP from a hemichordate acorn worm Saccoglossus kowalevskii and finally clustered together with IAPs from fish groups. The quantitative real time PCR analysis revealed that significantly (P < 0.05) highest expression was noticed in hepatopancreas and significantly (P < 0.05) lowest expression in pleopods. Based on the results of gene expression analysis, MrIAP mRNA transcription in M. rosenbergii challenged to infectious hypodermal and hematopoietic necrosis virus (IHHNV) was highly induced in hepatopancreas. The collective results of this study indicate that the MrIAP is an essential immune gene and influences the immune response against IHHNV infection in M. rosenbergii. PMID:21945707

  18. Delivery of PUMA Apoptosis Gene Using Polyethyleneimine-SMCC-TAT/DNA Nanoparticles: Biophysical Characterization and In Vitro Transfection Into Malignant Melanoma Cells.

    PubMed

    Li, Fu; Wang, Zhifei; Huang, Yuanfu; Xu, Hancong; He, Lei; Deng Yan; Zeng, Xin; He, Nongyue

    2015-10-01

    A synthesized PEI-based gene delivery system, wherein PEI was crosslinked with sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (Sulfo-SMCC) conjugating trans-activating transcriptional activator (TAT), yielding PEI-SMCC-TAT (PST), a novel non-viral vector for apoptosis-related gene PUMA (p53 up regulated modulator of apoptosis), was designed and evaluated. Sulfo-SMCC is a commonly used heterobifunctional crosslinker and is soluble in water, making the crosslinking easier without organic reagent like DMSO or chloroform. The PST/pDNA nanoparticles were 171.9 nm at the optimal N/P ratio (50:1). DNA complexes of all the PST conjugation had much lower toxicity and exhibited enhancement in transfection efficiency in comparison with single PEI vector. The results also showed that the transfection efficiency of PST/pEGFP nanoparticles into malignant melanoma A375 cell increased, and PST carrying PUMA gene induced the apoptosis of A375 cells. It was suggested that PST could be a promising melanoma tumor-targeting nanovector, and have a good potential in clinical application. PMID:26502640

  19. Activation of a PGC-1-related coactivator (PRC)-dependent inflammatory stress program linked to apoptosis and premature senescence.

    PubMed

    Gleyzer, Natalie; Scarpulla, Richard C

    2013-03-22

    PGC-1-related coactivator (PRC), a growth-regulated member of the PGC-1 coactivator family, contributes to the expression of the mitochondrial respiratory apparatus. PRC also orchestrates a robust response to metabolic stress by promoting the expression of multiple genes specifying inflammation, proliferation, and metabolic reprogramming. Here, we demonstrate that this PRC-dependent stress program is activated during apoptosis and senescence, two major protective mechanisms against cellular dysfunction. Both PRC and its targets (IL1α, SPRR2D, and SPRR2F) were rapidly induced by menadione, an agent that promotes apoptosis through the generation of intracellular oxidants. Menadione-induced apoptosis and the PRC stress program were blocked by the antioxidant N-acetylcysteine. The PRC stress response was also activated by the topoisomerase I inhibitor 7-ethyl-10-hydroxycamptothecin (SN-38), an inducer of premature senescence in tumor cells. Cells treated with SN-38 displayed morphological characteristics of senescence and express senescence-associated β-galactosidase activity. In contrast to menadione, the SN-38 induction of the PRC program occurred over an extended time course and was antioxidant-insensitive. The potential adaptive function of the PRC stress response was investigated by treating cells with meclizine, a drug that promotes glycolytic energy metabolism and has been linked to cardio- and neuroprotection against ischemia-reperfusion injury. Meclizine increased lactate production and was a potent inducer of the PRC stress program, suggesting that PRC may contribute to the protective effects of meclizine. Finally, c-MYC and PRC were coordinately induced under all conditions tested, implicating c-MYC in the biological response to metabolic stress. The results suggest a general role for PRC in the adaptive response to cellular dysfunction. PMID:23364789

  20. Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes

    SciTech Connect

    Lieuallen, Kimberly; Pennacchio, Len A.; Park, Morgan; Myers, Richard M.; Lennon, Gregory G.

    2001-07-05

    Loss-of-function mutations in the cystatin B (Cstb) gene cause a neurological disorder known as Unverricht Lundborg disease (EPM1) in human patients. Mice that lack Cstb provide a mammalian model for EPM1 by displaying progressive ataxia and myoclonic seizures. We analyzed RNAs from brains of Cstb-deficient mice by using modified differential display, oligonucleotide microarray hybridization and quantitative reverse transcriptase polymerase chain reaction to examine the molecular consequences of the lack of Cstb. We identified seven genes that have consistently increased transcript levels in neurological tissues from the knockout mice. These genes are cathepsin S, C1q B-chain of complement (C1qB), beta-2-microglobulin, glial fibrillary acidic protein (Gfap), apolipoprotein D, fibronectin 1 and metallothionein II, which are expected to be involved in increased proteolysis, apoptosis and glial activation. The molecular changes in Cstb-deficient mice are consistent with the pathology found in the mouse model and may provide clues towards the identification of therapeutic points of intervention for EPM1 patients.

  1. Identification and characterization of the biosynthetic gene cluster of polyoxypeptin A, a potent apoptosis inducer

    PubMed Central

    2014-01-01

    Background Polyoxypeptin A was isolated from a culture broth of Streptomyces sp. MK498-98 F14, which has a potent apoptosis-inducing activity towards human pancreatic carcinoma AsPC-1 cells. Structurally, polyoxypeptin A is composed of a C15 acyl side chain and a nineteen-membered cyclodepsipeptide core that consists of six unusual nonproteinogenic amino acid residues (N-hydroxyvaline, 3-hydroxy-3-methylproline, 5-hydroxypiperazic acid, N-hydroxyalanine, piperazic acid, and 3-hydroxyleucine) at high oxidation states. Results A gene cluster containing 37 open reading frames (ORFs) has been sequenced and analyzed for the biosynthesis of polyoxypeptin A. We constructed 12 specific gene inactivation mutants, most of which abolished the production of polyoxypeptin A and only ΔplyM mutant accumulated a dehydroxylated analogue polyoxypeptin B. Based on bioinformatics analysis and genetic data, we proposed the biosynthetic pathway of polyoxypeptin A and biosynthetic models of six unusual amino acid building blocks and a PKS extender unit. Conclusions The identified gene cluster and proposed pathway for the biosynthesis of polyoxypeptin A will pave a way to understand the biosynthetic mechanism of the azinothricin family natural products and provide opportunities to apply combinatorial biosynthesis strategy to create more useful compounds. PMID:24506891

  2. The glucocorticoid-induced gene tdag8 encodes a pro-apoptotic G protein-coupled receptor whose activation promotes glucocorticoid-induced apoptosis.

    PubMed

    Malone, Michael H; Wang, Zhengqi; Distelhorst, Clark W

    2004-12-17

    The apoptotic action of glucocorticoids on lymphocytes makes them effective therapeutics for many lymphoid malignancies. Although it is clear that glucocorticoid-induced apoptosis requires transcription, the gene products that induce apoptosis remain unknown. Using gene expression profiles of lymphoma cell lines and primary thymocytes treated with the synthetic glucocorticoid dexamethasone, we discovered that induction of tdag8 (T-cell death-associated gene 8) was a common event in each model system investigated. Activation of TDAG8 by its agonist psychosine markedly enhanced dexamethasone-induced apoptosis in a TDAG8-dependent manner. Expression of a TDAG8-GFP fusion protein was sufficient to induce apoptosis, and repression of endogenous TDAG8 using RNA interference partially inhibited dexamethasone-induced apoptosis. Together, these data suggest that TDAG8 is a regulator of glucocorticoid-induced apoptosis and that agonists of TDAG8 may be promising agents to improve the efficacy of glucocorticoids for the treatment of leukemia and lymphoma. PMID:15485889

  3. Distinct spatial activation of intrinsic and extrinsic apoptosis pathways in natural scrapie: association with prion-related lesions

    PubMed Central

    Serrano, Carmen; Lyahyai, Jaber; Bolea, Rosa; Varona, Luis; Monleón, Eva; Badiola, Juan J.; Zaragoza, Pilar; Martín-Burriel, Inmaculada

    2009-01-01

    Neurodegeneration and gliosis are the main neuropathological features of prion diseases. However, the molecular mechanisms involved in these processes remain unclear. Several studies have demonstrated changes in the expression of apoptotic factors and inflammatory cytokines in animals with experimental infection. Here we present the expression profiles of 15 genes implicated in the intrinsic and extrinsic apoptotic pathways in the central nervous systems of sheep naturally infected with scrapie. Expression changes obtained by real-time RT-PCR were also compared with the extent of classical scrapie lesions, such as prion deposition, neuronal vacuolisation, spongiosis, and astrogliosis as well as with the activation of caspase-3, using a stepwise regression. The results suggest that the factors assessed participate in apoptotic or inflammatory functions, depending on the affected area. The mitochondrial apoptosis pathway was associated with prion deposition in the prefrontal cortex (the less affected area), and with activation of caspase-3-mediated cell death via over-expression of BAK. In addition to its known association with astroglial activation, the extrinsic apoptosis pathway was also related to cell death and neuronal vacuolisation. PMID:19401142

  4. Possible Molecular Mechanisms Underlying Age-Related Cardiomyocyte Apoptosis in the F344XBN Rat Heart

    PubMed Central

    Kakarla, Sunil K.; Rice, Kevin M.; Katta, Anjaiah; Paturi, Satyanarayana; Wu, Miaozong; Kolli, Madhukar; Keshavarzian, Saba; Manzoor, Kamran; Wehner, Paulette S.

    2010-01-01

    Despite advances in treatment, age-related cardiac dysfunction still remains a leading cause of cardiovascular death. Recent data have suggested that increases in cardiomyocyte apoptosis may be involved in the pathological remodeling of heart. Here, we examine the effects of aging on cardiomyocyte apoptosis in 6-, 30-, and 36-month-old Fischer344xBrown Norway F1 hybrid rats (F344XBN). Compared with 6-month hearts, aged hearts exhibited increased TdT-mediated dUTP nick end labeling–positive nuclei, caspase-3 activation, caspase-dependent cleavage of α-fodrin and diminished phosphorylation of protein kinase B/Akt (Thr 308). These age-dependent increases in cardiomyocyte apoptosis were associated with alterations in the composition of the cardiac dystrophin glycoprotein complex and elevated cytoplasmic IgG and albumin immunoreactivity. Immunohistochemical analysis confirmed these data and demonstrated qualitative differences in localization of dystrophin–glycoprotein complex (DGC) molecules with aging. Taken together, these data suggest that aging-related increases in cardiac apoptotic activity model may be due, at least in part, to age-associated changes in DGC structure. PMID:20056683

  5. Dynamin-Related Protein 1 Translocates from the Cytosol to Mitochondria during UV-Induced Apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenzhen; Wu, Shengnan; Feng, Jie

    2011-01-01

    Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, the mechanisms involved in these processes are still not well characterized. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial dynamics in response to UV irradiation in human lung adenocarcinoma cells (ASTC-α-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Our results suggest that Drp1 is involved in the regulation of transition from an interconnecting network to a punctiform mitochondrial phenotype during UV-induced apoptosis.

  6. MicroRNA-21 regulates T-cell apoptosis by directly targeting the tumor suppressor gene Tipe2

    PubMed Central

    Ruan, Q; Wang, P; Wang, T; Qi, J; Wei, M; Wang, S; Fan, T; Johnson, D; Wan, X; Shi, W; Sun, H; Chen, Y H

    2014-01-01

    MicroRNAs (MiRs) are short noncoding RNAs that can regulate gene expression. It has been reported that miR-21 suppresses apoptosis in activated T cells, but the molecular mechanism remains undefined. Tumor suppressor Tipe2 (or tumor necrosis factor-α-induced protein 8 (TNFAIP8)-like 2 (TNFAIP8L2)) is a newly identified anti-inflammatory protein of the TNFAIP8 family that is essential for maintaining immune homeostasis. We report here that miR-21 is a direct target of nuclear factor-κB and could regulate Tipe2 expression in a Tipe2 coding region-dependent manner. In activated T cells and macrophages, Tipe2 expression was markedly downregulated, whereas miR-21 expression was upregulated. Importantly, Tipe2-deficient T cells were significantly less sensitive to apoptosis. Conversely, overexpression of Tipe2 in EL-4 T cells increased their susceptibility to activation-induced apoptosis. Therefore, Tipe2 provides a molecular bridge between miR-21 and cell apoptosis; miR-21 suppresses apoptosis in activated T cells at least in part through directly targeting tumor suppressor gene Tipe2. PMID:24577093

  7. Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern.

    PubMed

    Ashhab, Y; Alian, A; Polliack, A; Panet, A; Ben Yehuda, D

    2001-04-20

    Using homology searches, we identified a novel human inhibitor of apoptosis (IAP) gene. This gene has two splicing variants that contain open reading frames of 298 and 280 amino acids and both contained a single copy of baculovirus IAP repeat (BIR) and RING domain. We refer here to the longer and shorter variants as Livin alpha and beta, respectively. Semiquantitative reverse transcriptase-polymerase chain reaction demonstrated a tissue-specific and non-correlated expression pattern in both adult and fetal tissues. Both mRNA variants were detected in various transformed cell lines. Despite their very close similarity, the two isoforms have different antiapoptotic properties. Both isoforms have a significant antiapoptotic activity in the Jurkat T cell line after triggering apoptosis via tumor necrosis factor and CD95 receptors. The Livin alpha but not beta protects cells from apoptosis induced by staurosporine, but in contrast, apoptosis initiated by etoposide was blocked only by the beta isoform. This difference in biological activities may indicate the presence of critical amino acids outside the BIR and RING domains. These functional and tissue distribution differences of Livin alpha and beta suggest that Livin may play a complex role in the regulation of apoptosis. PMID:11322947

  8. Effect of silencing HOXA5 gene expression using RNA interference on cell cycle and apoptosis in Jurkat cells

    PubMed Central

    HUANG, HUI-PING; LIU, WEN-JUN; GUO, QU-LIAN; BAI, YONG-QI

    2016-01-01

    Acute lymphocytic leukemia (ALL) is a common malignant tumor with a high morbidity rate among children, accounting for approximately 80% of leukemia cases. Although there have been improvements in the treatment of patients frequent relapse lead to a poor prognosis. The aim of the present study was to determine whether HOXA5 may be used as a target for gene therapy in leukemia in order to provide a new treatment. Mononuclear cells were extracted from the bone marrow according to the clinical research aims. After testing for ALL in the acute stage, the relative mRNA and protein expression of HOXA5 was detected in the ALL remission groups (n=25 cases per group) and the control group [n=20 cases, immune thrombocytopenia (ITP)]. Gene silencing by RNA interference (RNAi) was used to investigate the effect of silencing HOXA5 after small interfering RNA (siRNA) transfection to Jurkat cells. The HOXA5-specific siRNA was transfected to Jurkat cells using lipofectamine. The experiment was divided into the experimental group (liposomal transfection of HOXA5 targeting siRNA), the negative control group (liposomal transfection of cells with negative control siRNA) and the control group (plus an equal amount of cells and culture media only). Western blotting and quantitative fluorescent polymerase chain reaction (QF-PCR) were used to detect the relative HOXA5 mRNA expression and protein distribution in each cell group. Cell distribution in the cell cycle and the rate of cells undergoing apoptosis were determined using flow cytometry. The expression of HOXA5 at the mRNA and protein levels in the acute phase of ALL was significantly higher than that in ALL in the remission and control groups. In cells transfected with HOXA5-specific siRNA, the expression of HOXA5 at the mRNA and protein levels decreased significantly (P<0.05). The distribution of cells in the cell cycle was also altered. Specifically, more cells were present in the G0/G1 phase compared to the S phase (P<0.05). In

  9. Inhibition of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) reverses experimental pulmonary hypertension.

    PubMed

    Hameed, Abdul G; Arnold, Nadine D; Chamberlain, Janet; Pickworth, Josephine A; Paiva, Claudia; Dawson, Sarah; Cross, Simon; Long, Lu; Zhao, Lan; Morrell, Nicholas W; Crossman, David C; Newman, Christopher M H; Kiely, David G; Francis, Sheila E; Lawrie, Allan

    2012-10-22

    Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by the progressive narrowing and occlusion of small pulmonary arteries. Current therapies fail to fully reverse this vascular remodeling. Identifying key pathways in disease pathogenesis is therefore required for the development of new-targeted therapeutics. We have previously reported tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) immunoreactivity within pulmonary vascular lesions from patients with idiopathic PAH and animal models. Because TRAIL can induce both endothelial cell apoptosis and smooth muscle cell proliferation in the systemic circulation, we hypothesized that TRAIL is an important mediator in the pathogenesis of PAH. We demonstrate for the first time that TRAIL is a potent stimulus for pulmonary vascular remodeling in human cells and rodent models. Furthermore, antibody blockade or genetic deletion of TRAIL prevents the development of PAH in three independent rodent models. Finally, anti-TRAIL antibody treatment of rodents with established PAH reverses pulmonary vascular remodeling by reducing proliferation and inducing apoptosis, improves hemodynamic indices, and significantly increases survival. These preclinical investigations are the first to demonstrate the importance of TRAIL in PAH pathogenesis and highlight its potential as a novel therapeutic target to direct future translational therapies. PMID:23071256

  10. Inhibition of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) reverses experimental pulmonary hypertension

    PubMed Central

    Hameed, Abdul G.; Arnold, Nadine D.; Chamberlain, Janet; Pickworth, Josephine A.; Paiva, Claudia; Dawson, Sarah; Cross, Simon; Long, Lu; Zhao, Lan; Morrell, Nicholas W.; Crossman, David C.; Newman, Christopher M.H.; Kiely, David G.; Francis, Sheila E.

    2012-01-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by the progressive narrowing and occlusion of small pulmonary arteries. Current therapies fail to fully reverse this vascular remodeling. Identifying key pathways in disease pathogenesis is therefore required for the development of new-targeted therapeutics. We have previously reported tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) immunoreactivity within pulmonary vascular lesions from patients with idiopathic PAH and animal models. Because TRAIL can induce both endothelial cell apoptosis and smooth muscle cell proliferation in the systemic circulation, we hypothesized that TRAIL is an important mediator in the pathogenesis of PAH. We demonstrate for the first time that TRAIL is a potent stimulus for pulmonary vascular remodeling in human cells and rodent models. Furthermore, antibody blockade or genetic deletion of TRAIL prevents the development of PAH in three independent rodent models. Finally, anti-TRAIL antibody treatment of rodents with established PAH reverses pulmonary vascular remodeling by reducing proliferation and inducing apoptosis, improves hemodynamic indices, and significantly increases survival. These preclinical investigations are the first to demonstrate the importance of TRAIL in PAH pathogenesis and highlight its potential as a novel therapeutic target to direct future translational therapies. PMID:23071256

  11. Genes and gene networks implicated in aggression related behaviour.

    PubMed

    Malki, Karim; Pain, Oliver; Du Rietz, Ebba; Tosto, Maria Grazia; Paya-Cano, Jose; Sandnabba, Kenneth N; de Boer, Sietse; Schalkwyk, Leonard C; Sluyter, Frans

    2014-10-01

    Aggressive behaviour is a major cause of mortality and morbidity. Despite of moderate heritability estimates, progress in identifying the genetic factors underlying aggressive behaviour has been limited. There are currently three genetic mouse models of high and low aggression created using selective breeding. This is the first study to offer a global transcriptomic characterization of the prefrontal cortex across all three genetic mouse models of aggression. A systems biology approach has been applied to transcriptomic data across the three pairs of selected inbred mouse strains (Turku Aggressive (TA) and Turku Non-Aggressive (TNA), Short Attack Latency (SAL) and Long Attack Latency (LAL) mice and North Carolina Aggressive (NC900) and North Carolina Non-Aggressive (NC100)), providing novel insight into the neurobiological mechanisms and genetics underlying aggression. First, weighted gene co-expression network analysis (WGCNA) was performed to identify modules of highly correlated genes associated with aggression. Probe sets belonging to gene modules uncovered by WGCNA were carried forward for network analysis using ingenuity pathway analysis (IPA). The RankProd non-parametric algorithm was then used to statistically evaluate expression differences across the genes belonging to modules significantly associated with aggression. IPA uncovered two pathways, involving NF-kB and MAPKs. The secondary RankProd analysis yielded 14 differentially expressed genes, some of which have previously been implicated in pathways associated with aggressive behaviour, such as Adrbk2. The results highlighted plausible candidate genes and gene networks implicated in aggression-related behaviour. PMID:25142712

  12. Effect of different concentrations of neogenin on proliferation, apoptosis and related proliferative factors in human trophoblasts.

    PubMed

    Zhong, Shaoping; Zou, Li; Zhao, Yin; Hu, Bin; Xie, Han

    2010-08-01

    The underlying effect of different concentrations of neogenin on proliferation, apoptosis and the related proliferative factors in human trophoblasts was explored in order to understand the function of neogenin during placentation. TEV-1 cell line was cultured and the expression of netrin-1 was detected by using indirect cellular immunofluorescence. Exponentially growing TEV-1 cells were treated by different concentrations of neogenin (0, 1, 5, 10, 50 ng/mL) for 24 h. Cell viability was measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. TEV-1 cell apoptosis was assessed by flow cytometry (FCM). The expression of netrin-1 mRNA and protein in TEV-1 cells was examined by using real-time PCR and Western blot, respectively. It was found that immunoreactivity for netrin-1 was observed in cytoplasm of the trophoblasts. Immediately after treatment with different concentrations of neogenin for 24 h, the netrin-1 expression began to increase. Real-time PCR revealed that the expression level of netrin-1 mRNA was 37.59+/-10.25 times higher than control group when TEV-1 cells were exposed to 50 ng/mL neogenin (P<0.01), and the same tendency was seen by using Western blot. MTT results showed that proliferation of TEV-1 cells was independent of neogenin. Meanwhile, apoptosis was significantly increased to (22.15+/-6.15)% at 50 ng/mL neogenin and (6.55+/-0.25)% without neogenin (P<0.01). It is suggested that neogenin regulates proliferation and apoptosis of TEV-1 cells. And it can enhance the ability of TEV-1 cells to express netrin-1 in a dose-dependent manner. Neogenin may play an important biological role in the normal human pregnancy and contribute to the physiological pregnancy process. PMID:20714878

  13. Apoptosis and telomeres shortening related to HIV-1 induced oxidative stress in an astrocytoma cell line

    PubMed Central

    Pollicita, Michela; Muscoli, Carolina; Sgura, Antonella; Biasin, Alberto; Granato, Teresa; Masuelli, Laura; Mollace, Vincenzo; Tanzarella, Caterina; Del Duca, Claudio; Rodinò, Paola; Perno, Carlo Federico; Aquaro, Stefano

    2009-01-01

    Background Oxidative stress plays a key role in the neuropathogenesis of Human Immunodeficiency Virus-1 (HIV-1) infection causing apoptosis of astroglia cells and neurons. Recent data have shown that oxidative stress is also responsible for the acceleration of human fibroblast telomere shortening in vitro. In the present study we analyzed the potential relations occurring between free radicals formation and telomere length during HIV-1 mediated astroglial death. Results To this end, U373 human astrocytoma cells have been directly exposed to X4-using HIV-1IIIB strain, for 1, 3 or 5 days and treated (where requested) with N-acetylcysteine (NAC), a cysteine donor involved in the synthesis of glutathione (GSH, a cellular antioxidant) and apoptosis has been evaluated by FACS analysis. Quantitative-FISH (Q-FISH) has been employed for studying the telomere length while intracellular reduced/oxidized glutathione (GSH/GSSG) ratio has been determined by High-Performance Liquid Chromatography (HPLC). Incubation of U373 with HIV-1IIIB led to significant induction of cellular apoptosis that was reduced in the presence of 1 mM NAC. Moreover, NAC improved the GSH/GSSG, a sensitive indicator of oxidative stress, that significantly decreased after HIV-1IIIB exposure in U373. Analysis of telomere length in HIV-1 exposed U373 showed a statistically significant telomere shortening, that was completely reverted in NAC-treated U373. Conclusion Our results support the role of HIV-1-mediated oxidative stress in astrocytic death and the importance of antioxidant compounds in preventing these cellular damages. Moreover, these data indicate that the telomere structure, target for oxidative damage, could be the key sensor of cell apoptosis induced by oxidative stress after HIV infection. PMID:19463156

  14. Prediction of tissue-specific effects of gene knockout on apoptosis in different anatomical structures of human brain

    PubMed Central

    2015-01-01

    Background An important issue in the target identification for the drug design is the tissue-specific effect of inhibition of target genes. The task of assessing the tissue-specific effect in suppressing gene activity is especially relevant in the studies of the brain, because a significant variability in gene expression levels among different areas of the brain was well documented. Results A method is proposed for constructing statistical models to predict the potential effect of the knockout of target genes on the expression of genes involved in the regulation of apoptosis in various brain regions. The model connects the expression of the objective group of genes with expression of the target gene by means of machine learning models trained on available expression data. Information about the interactions between target and objective genes is determined by reconstruction of target-centric gene network. STRING and ANDSystem databases are used for the reconstruction of gene networks. The developed models have been used to analyse gene knockout effects of more than 7,500 target genes on the expression of 1,900 objective genes associated with the Gene Ontology category "apoptotic process". The tissue-specific effect was calculated for 12 main anatomical structures of the human brain. Initial values of gene expression in these anatomical structures were taken from the Allen Brain Atlas database. The results of the predictions of the effect of suppressing the activity of target genes on apoptosis, calculated on average for all brain structures, were in good agreement with experimental data on siRNA-inhibition. Conclusions This theoretical paper presents an approach that can be used to assess tissue-specific gene knockout effect on gene expression of the studied biological process in various structures of the brain. Genes that, according to the predictions of the model, have the highest values of tissue-specific effects on the apoptosis network can be considered as

  15. Induction of apoptosis in cancer cells through N-acetyl-l-leucine-modified polyethylenimine-mediated p53 gene delivery.

    PubMed

    Li, Zhiyuan; Zhang, Liu; Li, Quanshun

    2015-11-01

    Herein, N-acetyl-L-leucine-modified polyethylenimine was successfully constructed through the EDC/NHS-mediated coupling reaction and employed as vectors to accomplish p53 gene delivery using HeLa (p53wt) and PC-3 cells (p53null) as models. Compared with PEI25K, the derivatives exhibited lower cytotoxicity, protein adsorption and hemolytic activity, together with satisfactory pDNA condensation capability and gene transfection efficiency. After p53 transfection, MTT analysis confirmed that the cell proliferation was inhibited. Flow cytometric analysis showed that the derivative-mediated p53 delivery could induce stronger early apoptosis than PEI25K and Lipofectamine(2000). Further, PC-3 cells showed higher sensitivity to the exogenous p53 transfection than HeLa cells. The mechanism for inducing apoptosis was determined to be up-regulation of p53 expression at both mRNA and protein levels using RT-PCR and western blotting analysis. Expression level and activity analysis of caspase-3, -8 and -9, and mitochondrial membrane potential measurement revealed that p53 transfection mediated by these derivatives facilitated early apoptosis of tumor cells via a mitochondria-dependent apoptosis pathway. Thus, the derivatives showed potential as biocompatible carriers for realizing effective tumor gene therapy. PMID:26322477

  16. Maitake (D fraction) mushroom extract induces apoptosis in breast cancer cells by BAK-1 gene activation.

    PubMed

    Soares, Raquel; Meireles, Manuela; Rocha, Ana; Pirraco, Ana; Obiol, Diego; Alonso, Eliana; Joos, Gisela; Balogh, Gabriela

    2011-06-01

    For many years mushrooms have been used empirically in traditional medicine to treat several diseases. Study of the maitake mushroom, with its immunomodulatory and antitumoral properties, has led to the isolation of several bioactive compounds. One of these, D fraction, is known to reduce tumor cell viability. This study examined the effect of isolated D fraction on viability and apoptosis of human breast cancer cells (MCF7). These cells were treated with maitake (D fraction) extract at 18 μg/mL, 36 μg/mL, 91 μg/mL, 183 μg/mL, or 367 μg/mL or were left untreated (control) for 24 hours. MCF7 incubation with the maitake extract resulted in decreased cell viability [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay] in a dose-dependent manner. Apoptosis was statistically significantly increased in a dose-dependent manner at every concentration tested (terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay). Upon incubation with D fraction, a microarray assay revealed upregulation of BAK-1 and cytochrome c transcripts, 2 proteins directly involved in the apoptotic pathway. Reverse transcriptase polymerase chain reaction studies confirmed these findings; BAK-1 was one of most overexpressed gene, as observed by microarray assay. These findings confirm the apoptotic effect of maitake D fraction in breast cancer cells and further highlight the involvement of cytochrome c release to the cytoplasm. Cytoplasmic release of cytochrome c, another player in the apoptotic pathway, was also increased after incubation with D fraction in a dose-dependent manner. This finding indicates that the effect of this compound involves mitochondrial dysfunction. The identification of the molecular mechanisms by which D fraction exerts its effects is crucial for the development of preventive and therapeutic strategies for cancer. PMID:21480800

  17. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs.

    PubMed Central

    Birnbaum, M J; Clem, R J; Miller, L K

    1994-01-01

    Two different baculovirus genes are known to be able to block apoptosis triggered upon infection of Spodoptera frugiperda cells with p35 mutants of the insect baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV):p35 (P35-encoding gene) of AcMNPV (R. J. Clem, M. Fechheimer, and L. K. Miller, Science 254:1388-1390, 1991) and iap (inhibitor of apoptosis gene) of Cydia pomonella granulosis virus (CpGV) (N. E. Crook, R. J. Clem, and L. K. Miller, J. Virol. 67:2168-2174, 1993). Using a genetic complementation assay to identify additional genes which inhibit apoptosis during infection with a p35 mutant, we have isolated a gene from Orgyia pseudotsugata NPV (OpMNPV) that was able to functionally substitute for AcMNPV p35. The nucleotide sequence of this gene, Op-iap, predicted a 30-kDa polypeptide product with approximately 58% amino acid sequence identity to the product of CpGV iap, Cp-IAP. Like Cp-IAP, the predicted product of Op-iap has a carboxy-terminal C3HC4 zinc finger-like motif. In addition, a pair of additional cysteine/histidine motifs were found in the N-terminal regions of both polypeptide sequences. Recombinant p35 mutant viruses carrying either Op-iap or Cp-iap appeared to have a normal phenotype in S. frugiperda cells. Thus, Cp-IAP and Op-IAP appear to be functionally analogous to P35 but are likely to block apoptosis by a different mechanism which may involve direct interaction with DNA. Images PMID:8139034

  18. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs.

    PubMed

    Birnbaum, M J; Clem, R J; Miller, L K

    1994-04-01

    Two different baculovirus genes are known to be able to block apoptosis triggered upon infection of Spodoptera frugiperda cells with p35 mutants of the insect baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV):p35 (P35-encoding gene) of AcMNPV (R. J. Clem, M. Fechheimer, and L. K. Miller, Science 254:1388-1390, 1991) and iap (inhibitor of apoptosis gene) of Cydia pomonella granulosis virus (CpGV) (N. E. Crook, R. J. Clem, and L. K. Miller, J. Virol. 67:2168-2174, 1993). Using a genetic complementation assay to identify additional genes which inhibit apoptosis during infection with a p35 mutant, we have isolated a gene from Orgyia pseudotsugata NPV (OpMNPV) that was able to functionally substitute for AcMNPV p35. The nucleotide sequence of this gene, Op-iap, predicted a 30-kDa polypeptide product with approximately 58% amino acid sequence identity to the product of CpGV iap, Cp-IAP. Like Cp-IAP, the predicted product of Op-iap has a carboxy-terminal C3HC4 zinc finger-like motif. In addition, a pair of additional cysteine/histidine motifs were found in the N-terminal regions of both polypeptide sequences. Recombinant p35 mutant viruses carrying either Op-iap or Cp-iap appeared to have a normal phenotype in S. frugiperda cells. Thus, Cp-IAP and Op-IAP appear to be functionally analogous to P35 but are likely to block apoptosis by a different mechanism which may involve direct interaction with DNA. PMID:8139034

  19. A Transcriptome Analysis Suggests Apoptosis-Related Signaling Pathways in Hemocytes of Spodoptera litura After Parasitization by Microplitis bicoloratus

    PubMed Central

    Zhang, Yan; Yu, Dongshuai; Yang, Minjun; Yang, Yang; Hu, Jiansheng; Luo, Kaijun

    2014-01-01

    Microplitis bicoloratus parasitism induction of apoptotic DNA fragmentation of host Spodoptera litura hemocytes has been reported. However, how M. bicoloratus parasitism regulates the host signaling pathways to induce DNA fragmentation during apoptosis remains unclear. To address this question, we performed a new RNAseq-based comparative analysis of the hemocytes transcriptomes of non-parasitized and parasitized S. litura. We were able to assemble a total of more than 11.63 Gbp sequence, to yield 20,571 unigenes. At least six main protein families encoded by M. bicoloratus bracovirus are expressed in the parasitized host hemocytes: Ankyrin-repeat, Ben domain, C-type lectin, Egf-like and Mucin-like, protein tyrosine phosphatase. The analysis indicated that during DNA fragmentation and cell death, 299 genes were up-regulated and 2,441 genes were down-regulated. Data on five signaling pathways related with cell death, the gap junctions, Ca2+, PI3K/Akt, NF-κB, ATM/p53 revealed that CypD, which is involved in forming a Permeability Transition Pore Complex (PTPC) to alter mitochondrial membrane permeabilization (MMP), was dramatically up-regulated. The qRT-PCR also provided that the key genes for cell survival were down-regulated under M. bicoloratus parasitism, including those encoding Inx1, Inx2 and Inx3 of the gap junction signaling pathway, p110 subunit of the PI3K/Akt signaling pathway, and the p50 and p65 subunit of the NF-κB signaling pathway. These findings suggest that M. bicoloratus parasitism may regulate host mitochondria to trigger internucleosomal DNA fragmentation. This study will facilitate the identification of immunosuppression-related genes and also improves our understanding of molecular mechanisms underlying polydnavirus-parasitoid-host interaction. PMID:25350281

  20. Physical contact with endothelial cells through β1- and β2- integrins rescues chronic lymphocytic leukemia cells from spontaneous and drug-induced apoptosis and induces a peculiar gene expression profile in leukemic cells

    PubMed Central

    Maffei, Rossana; Fiorcari, Stefania; Bulgarelli, Jenny; Martinelli, Silvia; Castelli, Ilaria; Deaglio, Silvia; Debbia, Giulia; Fontana, Marcella; Coluccio, Valeria; Bonacorsi, Goretta; Zucchini, Patrizia; Narni, Franco; Torelli, Giuseppe; Luppi, Mario; Marasca, Roberto

    2012-01-01

    Background Chronic lymphocytic leukemia B cells display prolonged survival in vivo, but when cultured in vitro rapidly undergo spontaneous apoptosis. We hypothesize that interactions with endothelial cells in infiltrated tissues and during recirculation may have a pathogenic role in chronic lymphocytic leukemia. Design and Methods We evaluated apoptosis of leukemic cells after co-culture on a monolayer of human umbilical vein endothelial cells with addition of fludarabine and antibodies that block adhesion. Then, we compared microarray-based gene expression profiles between leukemic cells at baseline and after co-culture. Results We found that the endothelial layer protected leukemic cells from apoptosis inducing a 2-fold mean decrement in apoptotic cells after 2 days of co-culture. Moreover, the endothelial layer decreased the sensitivity of chronic lymphocytic leukemia B cells to fludarabine-induced apoptosis. Physical contact with endothelium mediated by both β1- and β2- integrins is essential for the survival advantage of leukemic cells. In particular, blocking CD106 on endothelial cells or CD18 on leukemic B cells led to the almost complete abrogation of the survival advantage (>70% inhibition of viability). However, a reduction of apoptosis was also measured in leukemic cells cultured in conditioned medium collected after 2 days of co-culture, implying that survival is partially mediated by soluble factors. Overall, the contact with endothelial cells modulated 1,944 genes in chronic lymphocytic leukemia B cells, establishing a peculiar gene expression profile: up-regulation of angiogenesis-related genes, an increase of genes involved in TGFβ and Wnt signaling pathways, secretion of cytokines recruiting stromal cells and macrophages and up-regulation of anti-apoptotic molecules such as Bcl2 and Survivin. Conclusions Our study supports the notion that endothelial cells are major players in the chronic lymphocytic leukemia microenvironment. Adhesion to

  1. Synergistic Induction of Apoptosis in Primary B-CLL Cells after Treatment with Recombinant Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand and Histone Deacetylase Inhibitors

    PubMed Central

    Norian, Lyse A.; Kucaba, Tamara A.; Earel, James K.; Knutson, Tina; vanOosten, Rebecca L.; Griffith, Thomas S.

    2009-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is currently being investigated as a therapeutic agent for a variety of malignancies, as it triggers apoptosis specifically in transformed cells. However, TRAIL use as a stand alone therapeutic is hampered by the fact that many primary tumor cells are resistant to TRAIL-mediated apoptosis. Here, we investigated the extent to which pretreatment of TRAIL-resistant primary B-cell chronic lymphocytic leukemia (B-CLL) cells with histone deacetylase inhibitors (HDACis) could render them susceptible to killing by TRAIL. We found that HDAC inhibition in B-CLL cells led to increased TRAIL receptor expression, increased caspase activation, decreased expression of antiapoptotic regulators such as Bcl-2, and ultimately, enhanced TRAIL-induced apoptosis. Importantly, untransformed peripheral blood mononuclear cells remained largely resistant to TRAIL, even in the presence of HDACis. These results suggest that combination therapies using HDAC inhibition and TRAIL could prove beneficial for the treatment of B-CLL. PMID:19547714

  2. In vivo gene delivery of XIAP protects against myocardial apoptosis and infarction following ischemia/reperfusion in conscious rabbits

    PubMed Central

    Kim, Song-Jung; Kuklov, Alex; Crystal, George J.

    2011-01-01

    Aims We tested the hypothesis that an in vivo gene delivery of the pro-survival protein XIAP (X-chromosome linked inhibitor of apoptosis protein) protects against myocardial apoptosis and infarction following ischemia/reperfusion. Main Methods Nineteen rabbits were chronically instrumented with an hydraulic occluder placed around the circumflex coronary artery. Adenovirus harboring XIAP (Ad.XIAP; 1×1010 pfu/ml) or β-galactosidase (5×109 pfu/ml), as a control, was constructed and transfected into the heart using a catheter place into the left ventricle accompanied by cross-clamping. 1-2 weeks after gene delivery, myocardial ischemia was induced by a 30-min occlusion followed by reperfusion for four days. Protein expression was determined by Western blot and Apoptosis (% of myocytes) was quantified by TUNEL staining. Key Findings Myocardial infarct size, expressed as a fraction of the area at risk, was reduced in Ad.XIAP (n=5) compared to control (n=7) rabbits (21±3% vs. 30±2%, p<0.05). Apoptosis was reduced in Ad.XIAP rabbits compared to control rabbits (2.96±0.68% vs. 8.98±1.84%, p<0.01). This was associated with an approximate 60% decrease in the cleaved caspase-3 level in Ad.XIAP rabbits compared to control rabbits. Significances The current findings demonstrate that overexpression of XIAP via in vivo delivery in an adenovirus can reduce both myocardial apoptosis and infarction following ischemia/reperfusion, at least in part, due to the ability of XIAP to inhibit caspase-3. These findings confirm previous work suggesting a link between myocardial apoptosis and infarction i.e., anti-apoptotic therapy was effective in reducing myocardial infarct size. PMID:21277870

  3. Smad7 protein induces interferon regulatory factor 1-dependent transcriptional activation of caspase 8 to restore tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis.

    PubMed

    Hong, Suntaek; Kim, Hye-Youn; Kim, Jooyoung; Ha, Huyen Trang; Kim, Young-Mi; Bae, Eunjin; Kim, Tae Hyung; Lee, Kang Choon; Kim, Seong-Jin

    2013-02-01

    Smad7 has been known as a negative regulator for the transforming growth factor-β (TGF-β) signaling pathway through feedback regulation. However, Smad7 has been suspected to have other biological roles through the regulation of gene transcription. By screening differentially regulated genes, we found that the caspase 8 gene was highly up-regulated in Smad7-expressing cells. Smad7 was able to activate the caspase 8 promoter through recruitment of the interferon regulatory factor 1 (IRF1) transcription factor to the interferon-stimulated response element (ISRE) site. Interaction of Smad7 on the caspase 8 promoter was confirmed with electrophoretic mobility shift assay and chromatin immunoprecipitation experiment. Interestingly, Smad7 did not directly interact with the ISRE site, but it increased the binding activity of IRF1 with ISRE. These results support that Smad7 recruits IRF1 protein on the caspase 8 promoter and functions as a transcriptional coactivator. To confirm the biological significance of caspase 8 up-regulation, we tested tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated cell death assay in breast cancer cells. Smad7 in apoptosis-resistant MCF7 cells markedly sensitized the cells to TRAIL-induced cell death by restoring the caspase cascade. Furthermore, restoration of caspase 8-mediated apoptosis pathway repressed the tumor growth in the xenograft model. In conclusion, we suggest a novel role for Smad7 as a transcriptional coactivator for caspase 8 through the interaction with IRF1 in regulation of the cell death pathway. PMID:23255602

  4. Substrate stiffness regulates apoptosis and the mRNA expression of extracellular matrix regulatory genes in the rat annular cells.

    PubMed

    Zhang, Yue-Hui; Zhao, Chang-Qing; Jiang, Lei-Sheng; Dai, Li-Yang

    2011-03-01

    Cells are subjected to static tension of different magnitudes when cultured on substrates with different stiffnesses. It has long been recognized that mechanical stress is an important modulator of the intervertebral disc degeneration. Here we studied the influence of substrate stiffness on cell morphology, apoptosis and extracellular matrix (ECM) metabolism of the rat annulus fibrosus (AF) cells which are known to be mechanosensitive cells. Polyacrylamide gel substrates with three different stiffnesses were prepared by varying the concentration of acrylamide and bisacrylamide, and the elastic modulus of the different gel substrates were measured with atomic force microscopy (AFM). First-passage rat annular cells were cultured on soft, intermediate, rigid substrates or plastics for 24 or 48 h. The percentages of apoptotic cells were detected by flow cytometry and caspase-3 activity, and morphologic changes were visualized by Hoechst 33258 staining and F-actin staining. In addition, the expression of ECM genes (Col1α1, Col2α1, aggrecan, MMP-3, MMP-13 and ADAMTS-5) were analyzed by RT-PCR. The three different substrates had elastic moduli varying between 1±0.23 kPa (soft, 5% gel with 0.06% bis), 32±2.89 kPa (intermediate, 10% gel with 0.13% bis) and 63±3.45 kPa (rigid, 10% gel with 0.26% bis) with a thickness about 60-70 μm. Most of the rat AF cells appeared small and rounded, and lost most of their stress fibers when cultured on soft substrate. There was a significant increase in the percentage of apoptotic cells in the rat AF cells cultured on soft and intermediate substrates relative to those on plastic surface, with a parallel decrease in the area of cell spreading and nucleus. The AF cells grown on intermediate or rigid substrate had reduced expression of Col1α1, Col2α1 and aggrecan and enhanced expression of MMP-3, MMP-13, and ADAMTS-5 at 24h or 48 h, respectively, relative to those cultured on plastic surface. Conversely, we observed an up

  5. Reduced proliferative and differentiative activity of mouse pink-eyed dilution melanoblasts is related to apoptosis.

    PubMed

    Hirobe, Tomohisa; Terunuma, Emi

    2012-11-01

    The mouse pink-eyed dilution (p) locus is known to control the melanin content, melanosome morphology, and tyrosinase activity in melanocytes. However, it is not well known whether the p allele is involved in regulating melanocyte proliferation, differentiation, and death. The aim of this study is to investigate in detail the role of the p allele in melanocyte proliferation, differentiation, and death using a cell culture system. The epidermal cell suspensions of the neonatal dorsal skin derived from wild type mice at the p locus (black, C57BL/10JHir-P/P) and their congenic mutant (pink-eyed dilution, C57BL/10JHir-p/p) were cultured with serum-free melanoblast-proliferation medium (MDMDF) and melanocyte-proliferation medium (MDMD). The proliferation and differentiation of p/p melanoblasts in MDMDF or MDMD were greatly inhibited compared with those of P/P melanoblasts and melanocytes. It is possible that apoptosis is related to the reduced proliferative and differentiative activity of p/p melanoblasts/melanocytes. The addition of apoptosis-inhibitors, such as caspase-9 inhibitor (C9I) and Bax-inhibiting peptide (BIP) into MDMDF or MDMD stimulated the proliferation and differentiation of p/p melanoblasts. In contrast, in P/P melanoblasts and melanocytes, C9I and BIP failed to stimulate their proliferation and differentiation. The number of apoptotic keratinocytes and melanoblasts/melanocytes in p/p mice was greater than in P/P mice. Moreover, expression of C9 and Bax in keratinocytes and melanoblasts/melanocytes in p/p mice was greater than in P/P mice. These results suggest that the increased apoptosis in keratinocytes and melanoblasts/melanocytes is related to the reduced proliferative and differentiative activity of p/p melanoblasts. PMID:23106556

  6. Candidate tumor suppressor LUCA-15/RBM5/H37 modulates expression of apoptosis and cell cycle genes

    SciTech Connect

    Mourtada-Maarabouni, Mirna . E-mail: bia19@biol.keele.ac.uk; Keen, Jennifer; Clark, Jeremy; Cooper, Colin S.; Williams, Gwyn T. . E-mail: g.t.williams@keele.ac.uk

    2006-06-10

    RBM5 (RNA-binding motif protein 5/LUCA-15/H37) is encoded at the lung cancer tumor suppressor locus 3p21.3 and itself has several important characteristics of a tumor suppressor, including both potentiation of apoptosis and inhibition of the cell cycle. Here, we report the effects of both upregulation and downregulation of LUCA-15/RBM5 on gene expression monitored using cDNA microarrays. Many of the genes modulated by LUCA-15/RBM5 are involved in the control of apoptosis, the cell cycle, or both. These effects were confirmed for the most significant genes using real-time RT-PCR and/or Western blotting. In particular, LUCA-15/RBM5 increased the expression of Stat5b and BMP5 and decreased the expression of AIB1 (Amplified In Breast Cancer 1), proto-oncogene Pim-1, caspase antagonist BIRC3 (cIAP-2, MIHC), and CDK2 (cyclin-dependent kinase 2). These effects on multiple genes controlling both apoptosis and proliferation are in line with the functional effects of LUCA-15/RBM5 and indicate that it plays a central role in regulating cell fate consistent with its tumor suppressor activity.

  7. Lipocalin 2, a new GADD153 target gene, as an apoptosis inducer of endoplasmic reticulum stress in lung cancer cells

    SciTech Connect

    Hsin, I-Lun; Hsiao, Yueh-Chieh; Wu, Ming-Fang; Jan, Ming-Shiou; Tang, Sheau-Chung; Lin, Yu-Wen; Hsu, Chung-Ping; Ko, Jiunn-Liang

    2012-09-15

    Endoplasmic reticulum (ER) stress is activated under severe cellular conditions. GADD153, a member of the C/EBP family, is an unfolded protein response (UPR) responsive transcription factor. Increased levels of lipocalin 2, an acute phase protein, have been found in several epithelial cancers. The aim of this study is to investigate the function of lipocalin 2 in lung cancer cells under ER stress. Treatment with thapsigargin, an ER stress activator, led to increases in cytotoxicity, ER stress, apoptosis, and lipocalin 2 expression in A549 cells. GADD153 silencing decreased lipocalin 2 expression in A549 cells. On chromatin immunoprecipitation assay, ER stress increased GADD153 DNA binding to lipocalin 2 promoter. Furthermore, silencing of lipocalin 2 mitigated ER stress-mediated apoptosis in A549 cells. Our findings demonstrated that lipocalin 2 is a new GADD153 target gene that mediates ER stress-induced apoptosis. Highlights: ► We demonstrate that Lipocalin 2 is a new GADD153 target gene. ► Lipocalin 2 mediates ER stress-induced apoptosis. ► ER stress-induced lipocalin 2 expression is calcium-independent in A549 cells. ► Lipocalin 2 dose not play a major role in ER stress-induced autophagy.

  8. miR-29a up-regulation in AR42J cells contributes to apoptosis via targeting TNFRSF1A gene

    PubMed Central

    Fu, Qiang; Qin, Tao; Chen, Lin; Liu, Chuan-Jiang; Zhang, Xu; Wang, Yu-Zhu; Hu, Ming-Xing; Chu, Hao-Yuan; Zhang, Hong-Wei

    2016-01-01

    AIM: To investigate the expression of miR-29a in rat acute pancreatitis and its functional role in AR42J cell apoptosis. METHODS: Twelve SD rats were divided into a control group and an acute edematous pancreatitis (AEP) group randomly. AEP was induced by intraperitoneal injection of L-arginine (150 mg/kg) in the AEP group and equal volume of 0.9% NaCl was injected in the control group. The apoptosis of acinar cells in pancreatic tissue was determined by TUNEL assay. miRNA chip assay was performed to examine the expression of miRNAs in two groups. Besides, to further explore the role of miR-29a in apoptosis in vitro, recombinant rat TNF-α (50 ng/mL) was administered to treat the rat pancreatic acinar cell line AR42J for inducing AR42J cell apoptosis. Quantitative real-time PCR (qRT-PCR) was adopted to measure miR-29a expression. Then, miRNA mimic, miRNA antisense oligonucleotide (AMO) and control vector were used to transfect AR42J cells. The expression of miR-29a was confirmed by qRT-PCR and the apoptosis rate of AR42J cells was detected by flow cytometry analysis. Western blot was used to detect the expression of activated caspase3. Moreover, we used bioinformatics software and luciferase assay to test whether TNFRSF1A was the target gene of miR-29a. After transfection, qRT-PCR and Western blot was used to detect the expression of TNFRSF1A in AR42J cells after transfection. RESULTS: The expression of miR-29a was much higher in the AEP group compared with the control group as displayed by the miRNA chip assay. After inducing apoptosis of AR42J cells in vitro, the expression of miR-29a was significantly increased by 1.49 ± 0.04 times in comparison with the control group. As revealed by qRT-PCR assay, the expression of miR-29a was 2.68 ± 0.56 times higher in the miR-29a mimic group relative to the control vector group, accompanied with an obviously increased acinar cell apoptosis rate (42.83 ± 1.25 vs 24.97 ± 0.15, P < 0.05). Moreover, the expression of miR-29a

  9. Gene Transfers Between Distantly Related Organisms

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.

    2003-01-01

    With the completion of numerous microbial genome sequences, reports of individual gene transfers between distantly related prokaryotes have become commonplace. On the other hand, transfers between prokaryotes and eukaryotes still excite the imagination. Many of these claims may be premature, but some are certainly valid. In this chapter, the kinds of supporting data needed to propose transfers between distantly related organisms and cite some interesting examples are considered.

  10. Dichlorodiphenyltrichloroethane technical mixture regulates cell cycle and apoptosis genes through the activation of CAR and ERα in mouse livers

    SciTech Connect

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Pustylnyak, Vladimir O.

    2013-09-01

    Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CAR and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their cell

  11. A baculovirus anti-apoptosis gene homolog of the Trichoplusia ni granulovirus.

    PubMed

    Bideshi, D K; Anwar, A T; Federici, B A

    1999-01-01

    An inhibitor of apoptosis (iap) gene homolog (Tn-iap) of the Trichoplusia ni granulovirus (TnGV) was cloned, sequenced and mapped on the genome of TnGV. Tn-iap encoded a protein (Tn-IAP) of 301 amino acids with a predicted molecular mass of 35 kDa. The Tn-IAP contained the two sequence motifs, BIRs and RING finger, characteristic of IAP proteins, and shared identities of 21-27% and similarities of 28-53% with IAP proteins of Cydia pomonella GV (Cp-IAP), Orgyia pseudotsugata multinucleocapsid nucleopolyhedrovirus (MNPV) (Op-IAP1, 3), Autographa californica MNPV (Ac-IAP1), Bombyx mori NPV (Bm-IAP1), Lymantria dispar MNPV (Ld-IAP3) and Buzura suppressaria single nucleocapsid NPV (Bs-IAP1). However, Tn-IAP shared no significant homology with baculovirus IAP2 proteins. Using an antisense Tn-iap probe, two major transcripts of approximately 800 nt and 1600 nt were detected by Northern blot analysis of RNA extracted from the fat body of T. ni larvae infected with the TnGV. Unlike Cp-IAP and Op-IAP3, however, Tn-IAP did not rescue virion occlusion in SF21 cells infected with a p35-deficient AcMNPV mutant. Tn-IAP's synthesis in vivo but failure to rescue p35-deficient AcMNPV in SF21 cells suggests it is a functional IAP that is only effective in certain cell types. PMID:10541013

  12. TNF-related apoptosis-inducing ligand deficiency enhances survival in murine colon ascendens stent peritonitis

    PubMed Central

    Beyer, Katharina; Stollhof, Laura; Poetschke, Christian; von Bernstorff, Wolfram; Partecke, Lars Ivo; Diedrich, Stephan; Maier, Stefan; Bröker, Barbara M; Heidecke, Claus-Dieter

    2016-01-01

    Background Apart from inducing apoptosis in tumor cells, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) influences inflammatory reactions. Murine colon ascendens stent peritonitis (CASP) represents a model of diffuse peritonitis. Recently, it has been demonstrated that administration of exogenous TRAIL not only induces apoptosis in neutrophils but also enhances survival in this model. The aim of this study was to examine the impact of genetic TRAIL deficiency on the course of CASP. Methods Peritonitis was induced in 6- to 8-week-old female TRAIL−/− mice as well as in wild-type mice. The sepsis severity score and survival of mice were monitored. Bacterial loads in blood as well as in the lymphoid organs were examined. Additionally, the number of apoptotic cells within the lymphoid organs was determined. Results As early as 8 hours postinduction of CASP, TRAIL−/− mice were significantly more affected by sepsis than wild-type mice, as measured by the sepsis severity score. However, during the further course of sepsis, TRAIL deficiency led to significantly decreased sepsis severity scores, resulting in an enhanced overall survival in TRAIL−/− mice. The better survival of TRAIL−/− mice was accompanied by a decreased bacterial load within the blood. In marked contrast, the number of apoptotic cells within the lymphoid organs was highly increased in TRAIL−/− mice 20 hours after induction of CASP. Conclusion Hence, exogenous and endogenous TRAIL is protective during the early phase of sepsis, while endogenous TRAIL appears to be detrimental in the later course of this disease. PMID:27366100

  13. Oncolytic vaccine virus harbouring the IL-24 gene suppresses the growth of lung cancer by inducing apoptosis.

    PubMed

    Lv, Chunwei; Su, Qunshu; Liang, Yupei; Hu, Jinqing; Yuan, Sujing

    2016-07-15

    Lung cancer has an especially high incidence rate worldwide, and its resistance to cell death and chemotherapeutic drugs increases its intractability. The vaccinia virus has been shown to destroy neoplasm within a short time and disseminate rapidly and extensively as an enveloped virion throughout the circulatory system, and this virus has also demonstrated a strong ability to overexpress exogenous genes. Interleukin-24 (IL-24/mda-7) is an important cytokine that belongs to the activating caspase family and facilitates the inhibition of STAT3 when a cell enters the apoptosis pathway. In this study, we constructed a cancer-targeted vaccinia virus carrying the IL-24 gene knocked in the region of the viral thymidine kinase (TK) gene (VV-IL-24). Our results showed that VV-IL-24 efficiently infected and destroyed lung cancer cells via caspase-dependent apoptosis and decreased the expression of STAT3. In vivo, VV-IL-24 expressed IL-24 at a high level in the transplanted tumour, reduced STAT3 activity, and eventually led to apoptosis. In conclusion, we demonstrated that vv-IL-24 has the potential for use as a new human lung cancer treatment. PMID:27208781

  14. DIO-1 is a gene involved in onset of apoptosis in vitro, whose misexpression disrupts limb development

    PubMed Central

    García-Domingo, David; Leonardo, Esther; Grandien, Alf; Martínez, Pedro; Albar, Juan Pablo; Izpisúa-Belmonte, Juan Carlos; Martínez-A, Carlos

    1999-01-01

    The DIO-1 (death inducer-obliterator-1) gene, identified by differential display PCR in pre-B WOL-1 cells undergoing apoptosis, encodes a putative transcription factor whose protein has two Zn finger motifs, nuclear localization signals, and transcriptional activation domains, expressed in the limb interdigitating webs during development. When overexpressed, DIO-1 translocates to the nucleus and activates apoptosis in vitro. Nuclear translocation as well as induction of apoptosis are lost after deletion of the nuclear localization sequences. DIO-1 apoptotic induction is prevented by caspase inhibitors and Bcl-2 overexpression. The in vivo role of DIO-1 was studied by misexpressing DIO-1 during chicken limb development. The most frequently observed phenotype was an arrest in limb outgrowth, an effect that correlates with the inhibition of mesodermal and ectodermal genes involved in this process. Our data demonstrate the ability of DIO-1 to trigger apoptotic processes in vitro and suggest a role for this gene in cell death during development. PMID:10393935

  15. TNF-related apoptosis-inducing ligand (TRAIL) as a negative regulator of normal human erythropoiesis.

    PubMed

    Zamai, L; Secchiero, P; Pierpaoli, S; Bassini, A; Papa, S; Alnemri, E S; Guidotti, L; Vitale, M; Zauli, G

    2000-06-15

    The impact of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on normal hematopoietic development was investigated using adult peripheral blood CD34(+) hematopoietic progenitor cells, induced to differentiate along the erythroid, megakaryocytic, granulocytic, and monocytic lineages by the addition of specific cytokine cocktails. TRAIL selectively reduced the number of erythroblasts, showing intermediate levels of glycophorin A (glycophorin A(interm)) surface expression, which appeared in liquid cultures supplemented with stem cell factor + interleukin 3 + erythropoietin at days 7-10. However, neither immature (day 4) glycophorin A(dim) erythroid cells nor mature (day 14) glycophorin A(bright) erythroblasts were sensitive to TRAIL-mediated apoptosis. Moreover, pre-exposure to TRAIL significantly decreased the number and size of erythroid colonies in semisolid assays. These adverse effects of TRAIL were selective for erythropoiesis, as TRAIL did not significantly influence the survival of cells differentiating along the megakaryocytic, granulocytic, or monocytic lineages. Furthermore, TRAIL was detected by Western blot analysis in lysates obtained from normal bone marrow mononuclear cells. These findings indicate that TRAIL acts in a lineage- and stage of differentiation-specific manner, as a negative regulator of normal erythropoiesis. (Blood. 2000;95:3716-3724) PMID:10845902

  16. Parathyroid hormone-related protein overexpression protects goat mammary gland epithelial cells from calcium-sensing receptor activation-induced apoptosis.

    PubMed

    Li, Hui; Sun, Yongsen; Zheng, Huiling; Li, Lihui; Yu, Qian; Yao, Xiaotong

    2015-01-01

    Normal mammary gland epithelial cells and breast cancer cells express the calcium-sensing receptor (CaSR), which is the master regulator of systemic calcium metabolism. During lactation, activation of the CaSR in mammary epithelial cells downregulates parathyroid hormone-related protein (PTHrP) levels in milk and in the circulation, and increases calcium transport into milk. However, very little information is available on the role of CaSR in goat mammary gland epithelial cells (GMECs) apoptosis. In this investigation, the full-length cDNA of CaSR from Xinong Saanen dairy goats was cloned, which contains an open-reading frame of 3,258 bp encoding 1,085 amino acids with a predicted molecular weight of 121.0 kDa and an isoelectric point of 5.65. The amino acid sequence is highly homologous with sheep, and the goat CaSR gene is mapped to chromosome 1. Quantitative real-time PCR suggested that CaSR was predominantly expressed in the heart, kidney and mammary gland. Then, we found the stimulation of CaSR with its activator gadolinium chloride (GdCl3) contributed to increase CaSR mRNA levels in GMECs and simultaneously promoted cell apoptosis, and these effects were abrogated partially by NPS2390 which is an inhibitor of CaSR. We also demonstrated that Ca(2+) increased CaSR mRNA levels and induced GMECs apoptosis and restrained cell proliferation. In contrast, PTHrP overexpression protected GMECs from calcium-induced apoptosis, and promoted cell proliferation. In conclusion, these results suggest that PTHrP overexpression protects GMECs from CaSR activation-induced apoptosis. PMID:25266236

  17. Gene Ontology and KEGG Enrichment Analyses of Genes Related to Age-Related Macular Degeneration

    PubMed Central

    Zhang, Jian; Xing, ZhiHao; Ma, Mingming; Wang, Ning; Cai, Yu-Dong; Chen, Lei; Xu, Xun

    2014-01-01

    Identifying disease genes is one of the most important topics in biomedicine and may facilitate studies on the mechanisms underlying disease. Age-related macular degeneration (AMD) is a serious eye disease; it typically affects older adults and results in a loss of vision due to retina damage. In this study, we attempt to develop an effective method for distinguishing AMD-related genes. Gene ontology and KEGG enrichment analyses of known AMD-related genes were performed, and a classification system was established. In detail, each gene was encoded into a vector by extracting enrichment scores of the gene set, including it and its direct neighbors in STRING, and gene ontology terms or KEGG pathways. Then certain feature-selection methods, including minimum redundancy maximum relevance and incremental feature selection, were adopted to extract key features for the classification system. As a result, 720 GO terms and 11 KEGG pathways were deemed the most important factors for predicting AMD-related genes. PMID:25165703

  18. Ventromedial hypothalamic lesions change the expression of cell proliferation-related genes and morphology-related genes in rat pancreatic islets

    PubMed Central

    Kiba, Takayoshi; Ishigaki, Yasuhito

    2014-01-01

    Studies in normal rats and ob/ob mice indicated that islet neogenesis does not occur in the intact rodent pancreas. We previously reported that ventromedial hypothalamic (VMH) lesions stimulated cell proliferation of rat pancreatic islet B and acinar cells primarily through a cholinergic receptor mechanism and examined how gene families involved in cell proliferation in total pancreatic tissue are regulated after VMH lesions formation. This study examined how gene families involved in cell proliferation in pancreatic islets alone are regulated after VMH lesions formation. Pancreatic islet RNA was extracted, and differences in gene expression profiles between rats at day 3 after VMH lesioning and sham-VMH-lesioned rats were investigated using DNA microarray and real-time polymerase chain reaction. VMH lesions regulated genes that were involved in functions related to cell cycle and differentiation, growth, binding, apoptosis and morphology in pancreas islets. Real-time polymerase chain reaction also confirmed that gene expression of polo-like kinase 1 (Plk1) and topoisomerase (DNA) II α 170 kDa (Top2a), and stanniocalcin 1 (Stc1) were upregulated at day 3 after the VMH lesions. Ventromedial hypothalamic lesions may change the expression of cell proliferation-related genes and morphology-related genes in rat pancreatic islets. PMID:25658146

  19. Construction of p66Shc gene interfering lentivirus vectors and its effects on alveolar epithelial cells apoptosis induced by hyperoxia

    PubMed Central

    Zhang, Chan; Dong, Wen-Bin; Zhao, Shuai; Li, Qing-Ping; Kang, Lan; Lei, Xiao-Ping; Guo, Lin; Zhai, Xue-Song

    2016-01-01

    Background The aim of this study is to observe the inhibitive effects of p66Shc gene interfering lentivirus vectors on the expression of p66Shc, and to explore its effects on alveolar epithelial cells apoptosis induced by hyperoxia. Methods The gene sequences were cloned into the pLenR-GPH-shRNA lentiviral vector, which was selected by Genebank searches. The pLenR-GPH-shRNA and lentiviral vector packaging plasmid mix were cotransfected into 293T cells to package lentiviral particles. Culture virus supernatant was harvested, and then the virus titer was determined by serial dilution assay. A549 cells were transduced with the constructed lentiviral vectors, and real-time polymerase chain reaction (RT-PCR) and Western blot were used to evaluate p66Shc expression. This study is divided into a control group, a hyperoxia group, an A549-p66ShcshRNA hyperoxia group, and a negative lentivirus group. Cell apoptosis was detected by flow cytometry after 24 hours; the expression of X-linked inhibitor of apoptosis protein (XIAP) and caspase-9 were detected by immunohistochemistry assay. The production of reactive oxygen species and cellular mitochondria membrane potential (ΔΨm) were determined by fluorescence microscopy. Results We successfully established the p66Shc gene interfering lentivirus vectors, A549-p66ShcshRNA. The A549-p66ShcshRNA was transfected into alveolar epithelial cells, and the inhibitive effects on the expression of p66Shc were observed. Both RT-PCR and Western blot demonstrated downregulation of p66Shc expression in A549 cells. In the A549-p66ShcshRNA hyperoxia group, we found dampened oxidative stress. A549-p66ShcshRNA can cause p66Shc gene silencing, reduce mitochondrial reactive oxygen species generation, reduce membrane potential decrease, reduce the apoptosis of A549 cells, and reduce alveolar epithelial cell injury, while the lentiviral empty vector group had no such changes. Conclusion p66Shc gene interfering lentivirus vector can affect the

  20. Influence of infection route on the infectivity of baculovirus mutants lacking the apoptosis-inhibiting gene p35 and the adjacent gene p94.

    PubMed Central

    Clem, R J; Robson, M; Miller, L K

    1994-01-01

    The infectivity of Autographa californica nuclear polyhedrosis virus mutants lacking the apoptosis-inhibiting gene p35 is decreased 1,000-fold or more in larvae of the insect Spodoptera frugiperda if the budded form of the virus is administered by hemocoelic injection; this decrease is correlated with the antiviral effects of apoptosis (R. J. Clem and L. K. Miller, J. Virol. 67:3730-3738, 1993). We have extended this correlation by showing that the infectivity of p35 mutant budded virus is restored to wild-type levels by expression of an unrelated baculovirus apoptosis-inhibiting gene, Cp-iap. We have also examined the oral infectivity of the occluded form of mutants lacking p35, the neighboring p94 gene, or both genes by feeding insects occluded virus. The oral infectivity of the p35 mutant was significantly reduced in S. frugiperda larvae, but this reduction (25-fold) was less than that observed for the hemocoelic route of infection (1,000-fold). The disruption of p94 alone had no apparent effect on infectivity by either route. Unexpectedly, however, the disruption of both p35 and p94 restored oral infectivity to nearly wild-type levels but did not exert this compensatory effect on infectivity by hemocoelic injection. Thus, the infectivity of the double p35/p94 mutant is affected in a route-specific manner in S. frugiperda larvae, suggesting a tissue-specific response to p35 and/or p94. Infectivity in a different host, Trichoplusia ni, was unaffected by all the mutants tested, consistent with previous studies indicating a lack of sensitivity to apoptosis in this species. However, T. ni and S. frugiperda larvae infected with p35 mutants failed to exhibit the symptom of morphological disintegration ("melting") typical of a wild-type infection, suggesting that p35 is required for the infection of some tissues in both species. PMID:8084009

  1. Gene expression in enhanced apoptosis of human lymphoma U937 cells treated with the combination of different free radical generators and hyperthermia.

    PubMed

    Wada, Shigehito; Tabuchi, Yoshiaki; Kondo, Takashi; Cui, Zheng-Guo; Zhao, Qing-Li; Takasaki, Ichiro; Salunga, Thucydides L; Ogawa, Ryohei; Arai, Toshiyuki; Makino, Keisuke; Furuta, Isao

    2007-01-01

    The effects of various free radicals derived from 6-formylpterin (6-FP), alpha-phenyl-tert-butyl nitrone (PBN) and 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) combined with hyperthermia, on gene expression in similarly enhanced apoptosis of human lymphoma U937 cells were investigated using cDNA microarrays containing approximately 16,600 genes and computational gene expression analysis tools. When the cells were treated for 10 min at 44 degrees C (15% apoptosis level), 39 up-regulated and 3 down-regulated genes were identified. In the up-regulated genes, apoptosis- and unfolded protein response-associated genes were contained. The combined treatment with heat and either chemical enhanced apoptosis level (approximately 30%) and showed a chemical-specific gene expression pattern. Furthermore, the expression levels of selected genes were confirmed by a real-time quantitative PCR. The present results will provide a basis for further understanding the molecular mechanisms in enhancement of heat-induced apoptosis by different intracellular oxidative stress. PMID:17164180

  2. The genomic underpinnings of apoptosis in the silkworm, Bombyx mori

    PubMed Central

    2010-01-01

    Background Apoptosis is regulated in an orderly fashion by a series of genes, and has a crucial role in important physiological processes such as growth development, immunological response and so on. Recently, substantial studies have been undertaken on apoptosis in model animals including humans, fruit flies, and the nematode. However, the lack of genomic data for silkworms limits their usefulness in apoptosis studies, despite the advantages of silkworm as a representative of Lepidoptera and an effective model system. Herein we have identified apoptosis-related genes in the silkworm Bombyx mori and compared them to those from insects, mammals, and nematodes. Results From the newly assembled genome databases, a genome-wide analysis of apoptosis-related genes in Bombyx mori was performed using both nucleotide and protein Blast searches. Fifty-two apoptosis-related candidate genes were identified, including five caspase family members, two tumor necrosis factor (TNF) superfamily members, one Bcl-2 family member, four baculovirus IAP (inhibitor of apoptosis) repeat (BIR) domain family members and 1 RHG (Reaper, Hid, Grim, and Sickle; Drosophila cell death activators) family member. Moreover, we identified a new caspase family member, BmCaspase-New, two splice variants of BmDronc, and Bm3585, a mammalian TNF superfamily member homolog. Twenty-three of these apoptosis-related genes were cloned and sequenced using cDNA templates isolated from BmE-SWU1 cells. Sequence analyses revealed that these genes could have key roles in apoptosis. Conclusions Bombyx mori possesses potential apoptosis-related genes. We hypothesized that the classic intrinsic and extrinsic apoptotic pathways potentially are active in Bombyx mori. These results lay the foundation for further apoptosis-related study in Bombyx mori. PMID:21040523

  3. The age related markers lipofuscin and apoptosis show different genetic architecture by QTL mapping in short-lived Nothobranchius fish

    PubMed Central

    Ng'oma, Enoch; Reichwald, Kathrin; Dorn, Alexander; Wittig, Michael; Balschun, Tobias; Franke, Andre; Platzer, Matthias; Cellerino, Allesandro

    2014-01-01

    Annual fish of the genus Nothobranchius show large variations in lifespan and expression of age-related phenotypes between closely related populations. We studied N. kadleci and its sister species N. furzeri GRZ strain, and found that N.kadleci is longer-lived than the N. furzeri. Lipofuscin and apoptosis measured in the liver increased with age in N. kadleci with different profiles: lipofuscin increased linearly, while apoptosis declined in the oldest animals. More lipofuscin (P < 0.001) and apoptosis (P < 0.001) was observed in N. furzeri than in N. kadleci at 16w age. Lipofuscin and apoptotic cells were then quantified in hybrids from the mating of N. furzeri to N. kadleci. F1 individuals showed heterosis for lipofuscin but additive effects for apoptosis. These two age-related phenotypes were not correlated in F2 hybrids. Quantitative trait loci analysis of 287 F2 fish using 237 markers identified two QTL accounting for 10% of lipofuscin variance (P < 0.001) with overdominance effect. Apoptotic cells revealed three significant- and two suggestive QTL explaining 19% of variance (P < 0.001), showing additive and dominance effects, and two interacting loci. Our results show that lipofuscin and apoptosis are markers of different age-dependent biological processes controlled by different genetic mechanisms. PMID:25093339

  4. Genetic dissection of susceptibility to radiation-induced apoptosis of thymocytes and mapping of Rapop1, a novel susceptibility gene

    SciTech Connect

    Mori, Nobuko; Okumoto, Masaaki; Esaki, Kozaburo

    1995-02-10

    Genetic dissection of susceptibility to radiation-induced apoptosis of thymocytes was performed by counting dead cells in histologically processed thymuses after 0.5 Gy of whole-body X-irradiation, using recombinant congenic (CcS/Dem) strains derived from inbred mouse strains BALB/cHeA (susceptible) and STS/A (resistant). A high (8/20) number of strains with lower dead cell scores than BALB/cHeA among CcS/Dem recombinant congenic strains (RCS), which contain 12.5% of STS/A genome in the genetic background of BALB/cHeA strain, indicates that the difference between BALB/cHeA and STS/A is caused by several genes and that susceptibility probably requires BALB/ cHeA alleles at more than one locus. Similar results were obtained with CXS/Hg recombinant inbred (CXS/ Hg) strains. Analysis of F{sub 2} hybrids between BALB/ cHeA and CcS-7, one of the CcS/Dem strains that showed lower dead cell scores than BALB/cHeA, demonstrated that a novel gene (Rapop1, radiation-induced apoptosis 1) controlling susceptibility to radiation-induced apoptosis in the thymus is located in the proximal region of mouse chromosome 16. 40 refs., 2 figs., 2 tabs.

  5. P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation

    PubMed Central

    2011-01-01

    Background Metastatic melanoma represents a major clinical problem. Its incidence continues to rise in western countries and there are currently no curative treatments. While mutation of the P53 tumour suppressor gene is a common feature of many types of cancer, mutational inactivation of P53 in melanoma is uncommon; however, its function often appears abnormal. Methods In this study whole genome bead arrays were used to examine the transcript expression of P53 target genes in extracts from 82 melanoma metastases and 6 melanoma cell lines, to provide a global assessment of aberrant P53 function. The expression of these genes was also examined in extracts derived from diploid human melanocytes and fibroblasts. Results The results indicated that P53 target transcripts involved in apoptosis were under-expressed in melanoma metastases and melanoma cell lines, while those involved in the cell cycle were over-expressed in melanoma cell lines. There was little difference in the transcript expression of P53 target genes between cell lines with null/mutant P53 compared to those with wild-type P53, suggesting that altered expression in melanoma was not related to P53 status. Similarly, down-regulation of P53 by short-hairpin RNA (shRNA) had limited effect on P53 target gene expression in melanoma cells, whereas there were a large number of P53 target genes whose mRNA expression was significantly altered by P53 inhibition in melanocytes. Analysis of whole genome gene expression profiles indicated that the ability of P53 to regulate genes involved in the cell cycle was significantly reduced in melanoma cells. Moreover, inhibition of P53 in melanocytes induced changes in gene expression profiles that were characteristic of melanoma cells and resulted in increased proliferation. Conversely, knockdown of P53 in melanoma cells resulted in decreased proliferation. Conclusions These results indicate that P53 target genes involved in apoptosis and cell cycle regulation are aberrantly

  6. Susceptibility to Acute Rheumatic Fever Based on Differential Expression of Genes Involved in Cytotoxicity, Chemotaxis, and Apoptosis

    PubMed Central

    Smyth, Gordon K.; Gooding, Travis; Oshlack, Alicia; Harrington, Zinta; Currie, Bart; Carapetis, Jonathan R.; Robins-Browne, Roy; Curtis, Nigel

    2014-01-01

    It is unknown why only some individuals are susceptible to acute rheumatic fever (ARF). We investigated whether there are differences in the immune response, detectable by gene expression, between individuals who are susceptible to ARF and those who are not. Peripheral blood mononuclear cells (PBMCs) from 15 ARF-susceptible and 10 nonsusceptible (control) adults were stimulated with rheumatogenic (Rh+) group A streptococci (GAS) or nonrheumatogenic (Rh−) GAS. RNA from stimulated PBMCs from each subject was cohybridized with RNA from unstimulated PBMCs on oligonucleotide arrays to compare gene expression. Thirty-four genes were significantly differentially expressed between ARF-susceptible and control groups after stimulation with Rh+ GAS. A total of 982 genes were differentially expressed between Rh+ GAS- and Rh− GAS-stimulated samples from ARF-susceptible individuals. Thirteen genes were differentially expressed in the same direction (predominantly decreased) between the two study groups and between the two stimulation conditions, giving a strong indication of their involvement. Seven of these were immune response genes involved in cytotoxicity, chemotaxis, and apoptosis. There was variability in the degree of expression change between individuals. The high proportion of differentially expressed apoptotic and immune response genes supports the current model of autoimmune and cytokine dysregulation in ARF. This study also raises the possibility that a “failed” immune response, involving decreased expression of cytotoxic and apoptotic genes, contributes to the immunopathogenesis of ARF. PMID:24478089

  7. Susceptibility to acute rheumatic fever based on differential expression of genes involved in cytotoxicity, chemotaxis, and apoptosis.

    PubMed

    Bryant, Penelope A; Smyth, Gordon K; Gooding, Travis; Oshlack, Alicia; Harrington, Zinta; Currie, Bart; Carapetis, Jonathan R; Robins-Browne, Roy; Curtis, Nigel

    2014-02-01

    It is unknown why only some individuals are susceptible to acute rheumatic fever (ARF). We investigated whether there are differences in the immune response, detectable by gene expression, between individuals who are susceptible to ARF and those who are not. Peripheral blood mononuclear cells (PBMCs) from 15 ARF-susceptible and 10 nonsusceptible (control) adults were stimulated with rheumatogenic (Rh+) group A streptococci (GAS) or nonrheumatogenic (Rh-) GAS. RNA from stimulated PBMCs from each subject was cohybridized with RNA from unstimulated PBMCs on oligonucleotide arrays to compare gene expression. Thirty-four genes were significantly differentially expressed between ARF-susceptible and control groups after stimulation with Rh+ GAS. A total of 982 genes were differentially expressed between Rh+ GAS- and Rh- GAS-stimulated samples from ARF-susceptible individuals. Thirteen genes were differentially expressed in the same direction (predominantly decreased) between the two study groups and between the two stimulation conditions, giving a strong indication of their involvement. Seven of these were immune response genes involved in cytotoxicity, chemotaxis, and apoptosis. There was variability in the degree of expression change between individuals. The high proportion of differentially expressed apoptotic and immune response genes supports the current model of autoimmune and cytokine dysregulation in ARF. This study also raises the possibility that a "failed" immune response, involving decreased expression of cytotoxic and apoptotic genes, contributes to the immunopathogenesis of ARF. PMID:24478089

  8. [PRRT2 gene-related paroxysmal disorders].

    PubMed

    Li, Jin; Mao, Xiao; Wang, Junling; Li, Nan; Tang, Beisha

    2014-10-01

    Proline-rich transmembrane protein 2 (PRRT2), the causative gene of paroxysmal kinesigenic dyskinesias (PKD), benign familial infantile seizures (BFIS) and infantile convulsions with paroxysmal choreoathetosis (ICCA), also causes a variety of neurological paroxysmal disorders. These diseases share the same characteristics which may be due to the same genetic defect. We therefore propose to name them as PRRT2-related paroxysmal disorders (PRPDs) in order to assist clinical diagnosis, treatment and prognosis. This paper has reviewed the clinical phenotype, common features and pathogenesis of the PRPDs. PMID:25297589

  9. The Complete Genome Sequence of Plodia Interpunctella Granulovirus: Evidence for Horizontal Gene Transfer and Discovery of an Unusual Inhibitor-of-Apoptosis Gene.

    PubMed

    Harrison, Robert L; Rowley, Daniel L; Funk, C Joel

    2016-01-01

    The Indianmeal moth, Plodia interpunctella (Lepidoptera: Pyralidae), is a common pest of stored goods with a worldwide distribution. The complete genome sequence for a larval pathogen of this moth, the baculovirus Plodia interpunctella granulovirus (PiGV), was determined by next-generation sequencing. The PiGV genome was found to be 112, 536 bp in length with a 44.2% G+C nucleotide distribution. A total of 123 open reading frames (ORFs) and seven homologous regions (hrs) were identified and annotated. Phylogenetic inference using concatenated alignments of 36 baculovirus core genes placed PiGV in the "b" clade of viruses from genus Betabaculovirus with a branch length suggesting that PiGV represents a distinct betabaculovirus species. In addition to the baculovirus core genes and orthologues of other genes found in other betabaculovirus genomes, the PiGV genome sequence contained orthologues of the bidensovirus NS3 gene, as well as ORFs that occur in alphabaculoviruses but not betabaculoviruses. While PiGV contained an orthologue of inhibitor of apoptosis-5 (iap-5), an orthologue of inhibitor of apoptosis-3 (iap-3) was not present. Instead, the PiGV sequence contained an ORF (PiGV ORF81) encoding an IAP homologue with sequence similarity to insect cellular IAPs, but not to viral IAPs. Phylogenetic analysis of baculovirus and insect IAP amino acid sequences suggested that the baculovirus IAP-3 genes and the PiGV ORF81 IAP homologue represent different lineages arising from more than one acquisition event. The presence of genes from other sources in the PiGV genome highlights the extent to which baculovirus gene content is shaped by horizontal gene transfer. PMID:27472489

  10. The Complete Genome Sequence of Plodia Interpunctella Granulovirus: Evidence for Horizontal Gene Transfer and Discovery of an Unusual Inhibitor-of-Apoptosis Gene

    PubMed Central

    Harrison, Robert L.; Rowley, Daniel L.; Funk, C. Joel

    2016-01-01

    The Indianmeal moth, Plodia interpunctella (Lepidoptera: Pyralidae), is a common pest of stored goods with a worldwide distribution. The complete genome sequence for a larval pathogen of this moth, the baculovirus Plodia interpunctella granulovirus (PiGV), was determined by next-generation sequencing. The PiGV genome was found to be 112, 536 bp in length with a 44.2% G+C nucleotide distribution. A total of 123 open reading frames (ORFs) and seven homologous regions (hrs) were identified and annotated. Phylogenetic inference using concatenated alignments of 36 baculovirus core genes placed PiGV in the “b” clade of viruses from genus Betabaculovirus with a branch length suggesting that PiGV represents a distinct betabaculovirus species. In addition to the baculovirus core genes and orthologues of other genes found in other betabaculovirus genomes, the PiGV genome sequence contained orthologues of the bidensovirus NS3 gene, as well as ORFs that occur in alphabaculoviruses but not betabaculoviruses. While PiGV contained an orthologue of inhibitor of apoptosis-5 (iap-5), an orthologue of inhibitor of apoptosis-3 (iap-3) was not present. Instead, the PiGV sequence contained an ORF (PiGV ORF81) encoding an IAP homologue with sequence similarity to insect cellular IAPs, but not to viral IAPs. Phylogenetic analysis of baculovirus and insect IAP amino acid sequences suggested that the baculovirus IAP-3 genes and the PiGV ORF81 IAP homologue represent different lineages arising from more than one acquisition event. The presence of genes from other sources in the PiGV genome highlights the extent to which baculovirus gene content is shaped by horizontal gene transfer. PMID:27472489

  11. Mountain grown ginseng induces apoptosis in HL-60 cells and its mechanism have little relation with TNF-alpha production.

    PubMed

    Koo, Hyun-Na; Jeong, Hyun-Ja; Choi, In-Young; An, Hyo-Jin; Moon, Phil-Dong; Kim, Seong-Jin; Jee, Seon-Young; Um, Jae-Young; Hong, Seung-Heon; Shin, Soon-Shik; Yang, Deok-Chun; Seo, Yong-Suk; Kim, Hyung-Min

    2007-01-01

    The root of ginseng is one of the most popular natural tonics in Oriental countries. Ginseng grown in the wild, deep in the mountains, is known as Sansam (mountain grown ginseng, MGG). MGG belongs to Araliaceae and Panax. In this study, we investigated the effects of MGG on the cytotoxicity, induction of apoptosis and the putative pathways of its actions in human promyelocytic leukemia cells, HL-60. Using apoptosis analysis, we found that MGG is a potent inducer of apoptosis, but it has less effect on human peripheral blood mononuclear cells. Caspase-3 activation and subsequent apoptotic cell death in MGG-treated cells were partially blocked by the caspase-3 inhibitor, Z-DEVD-FMK. MGG also inhibited the caspase-8 activity. To determine whether MGG-induced apoptosis is involved in tumor necrosis factor-alpha (TNF-alpha) secretion, TNF-alpha secretion was quantified by enzyme-linked immunosorbent assay (ELISA) method. Unexpectedly, MGG significantly decreased the TNF-alpha secretion compared to the control. These results suggest that MGG-induced cytotoxicity have little relation with the secretion of TNF-alpha in HL-60 cells. Furthermore, MGG with rIFN-gamma synergistically increased nitric oxide (NO) production in mouse peritoneal macrophages. Taken together, our data indicate that MGG is a potent inducer of apoptosis on HL-60 cells and these abilities could be used clinically for the treatment of cancer. PMID:17265560

  12. Roles of dynamin-related protein 1 in the regulation of mitochondrial fission and apoptosis in response to UV stimuli

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenzhen; Feng, Jie; Wu, Shengnan

    2011-03-01

    Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, it remains unclear whether this event has a significant impact on the rate of cell death or only accompanies apoptosis as an epiphenomenon. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial morphology and apoptosis in response to UV irradiation in human lung adenocarcinoma cells (ASTC-a-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Down-regulation of Drp1 by shRNA inhibits UV-induced apoptosis. Our results suggest that Drp1 is involved in the regulation of transition from a reticulo-tubular to a punctiform mitochondrial phenotype and mitochondrial fission plays an important role in UV-induced apoptosis.

  13. Characterization of immune-related genes in the yellow catfish Pelteobagrus fulvidraco in response to LPS challenge.

    PubMed

    Liu, Qiu-Ning; Xin, Zhao-Zhe; Chai, Xin-Yue; Jiang, Sen-Hao; Li, Chao-Feng; Zhang, Hua-Bin; Ge, Bao-Ming; Zhang, Dai-Zhen; Zhou, Chun-Lin; Tang, Bo-Ping

    2016-09-01

    Fish are considered an excellent model for studies in comparative immunology as they are a representative population of lower vertebrates linked to invertebrate evolution. To gain a better understanding of the immune response in fish, we constructed a subtractive cDNA library from the head kidney of lipopolysaccharide-stimulated yellow catfish (Pelteobagrus fulvidraco) using suppression subtractive hybridization (SSH). A total of 300 putative EST clones were identified which contained 95 genes, including 27 immune-related genes, 7 cytoskeleton-related genes, 3 genes involved in the cell cycle and apoptosis, 9 respiration and energy metabolism-related genes, 7 genes related to transport, 24 metabolism-related genes, 10 genes involved in stress responses, seven genes involved in regulation of transcription and translation and 59 unknown genes. Using real-time quantitative reverse transcription PCR, a subset of randomly selected genes involved in the immune response to lipopolysaccharide challenge were investigated to verify the reliability of the SSH data which identified 16 up-regulated genes. The genes identified in this study provide novel insight into the immune response in fish. PMID:27235365

  14. GNRs@SiO2-FA in combination with radiotherapy induces the apoptosis of HepG2 cells by modulating the expression of apoptosis-related proteins

    PubMed Central

    GAO, BIN; SHEN, LEI; HE, KE-WU; XIAO, WEI-HUA

    2015-01-01

    The aim of the present study was to examine the apoptosis of the hepatocellular carcinoma cell line, HepG2, induced by treatment with folic acid-conjugated silica-coated gold nanorods (GNRs@SiO2-FA) in combination with radiotherapy, and to determine the involvement of apoptosis-related proteins. An MTT colorimetric assay was used to assess the biocompatibility of GNRs@SiO2-FA. The distribution of GNRs@SiO2-FA into the cells was observed using transmission electron microscopy (TEM). HepG2 cells cultured in vitro were divided into the following 4 groups: i)the control group (untreated), ii) the GNRs@SiO2-FA group, iii) the radiotherapy group (iodine 125 seeds) and iv) the combination group (treated with GNRs@SiO2-FA and iodine 125 seeds) groups. The apoptosis of the HepG2 cells was detected by flow cytometry. The concentration range of <40 µg/ml GNRs@SiO2-FA was found to be safe for the biological activity of the HepG2 cells. GNRs@SiO2-FA entered the cytoplasm through endocytosis. The apoptotic rates of the HepG2 cells were higher in the GNRs@SiO2-FA and radiotherapy groups than in the control group (P<0.05). The apoptotic rate was also significantly higher in the combination group than the GNRs@SiO2-FA and radiotherapy groups (P<0.05). Taken together, these findings demonstrate that the combination of GNRs@SiO2-FA and radiotherapy more effectively induces the apoptosis of HepG2 cells. These apoptotic effects are achieved by increasing the protein expression of Bax and caspase-3, and inhibiting the protein expression of Bcl-2 and Ki-67. The combination of GNRs@SiO2-FA and radiotherapy may thus prove to be a new approach in the treatment of primary liver cancer. PMID:26648274

  15. GNRs@SiO₂-FA in combination with radiotherapy induces the apoptosis of HepG2 cells by modulating the expression of apoptosis-related proteins.

    PubMed

    Gao, Bin; Shen, Lei; He, Ke-Wu; Xiao, Wei-Hua

    2015-11-01

    The aim of the present study was to examine the apoptosis of the hepatocellular carcinoma cell line, HepG2, induced by treatment with folic acid-conjugated silica-coated gold nanorods (GNRs@SiO2-FA) in combination with radiotherapy, and to determine the involvement of apoptosis-related proteins. An MTT colorimetric assay was used to assess the biocompatibility of GNRs@SiO2-FA. The distribution of GNRs@SiO2-FA into the cells was observed using transmission electron microscopy (TEM). HepG2 cells cultured in vitro were divided into the following 4 groups: i)the control group (untreated), ii) the GNRs@SiO2-FA group, iii) the radiotherapy group (iodine 125 seeds) and iv) the combination group (treated with GNRs@SiO2-FA and iodine 125 seeds) groups. The apoptosis of the HepG2 cells was detected by flow cytometry. The concentration range of <40 µg/ml GNRs@SiO2-FA was found to be safe for the biological activity of the HepG2 cells. GNRs@SiO2-FA entered the cytoplasm through endocytosis. The apoptotic rates of the HepG2 cells were higher in the GNRs@SiO2-FA and radiotherapy groups than in the control group (P<0.05). The apoptotic rate was also significantly higher in the combination group than the GNRs@SiO2-FA and radiotherapy groups (P<0.05). Taken together, these findings demonstrate that the combination of GNRs@SiO2-FA and radiotherapy more effectively induces the apoptosis of HepG2 cells. These apoptotic effects are achieved by increasing the protein expression of Bax and caspase-3, and inhibiting the protein expression of Bcl-2 and Ki-67. The combination of GNRs@SiO2-FA and radiotherapy may thus prove to be a new approach in the treatment of primary liver cancer. PMID:26648274

  16. Serum from patients with hepatitis E virus-related acute liver failure induces human liver cell apoptosis

    PubMed Central

    WU, FAN; WANG, MINXIN; TIAN, DEYING

    2014-01-01

    The pathogenesis of acute liver failure has not been fully elucidated. The present study investigated the effects of the serum from patients with hepatitis E virus (HEV)-related acute liver failure on human liver cell survival and apoptosis, and evaluated the protective effects of anti-lipopolysaccharide(LPS) antibody recognizing core polysaccharide against acute liver failure serum-induced apoptosis. Serum was collected from patients with HEV-related acute liver failure. The levels of endotoxin (LPS) in the serum were measured using a quantitative tachypleus amebocyte lysate endotoxin detection kit with a chromogenic endpoint. Serum with a mean concentration of LPS was incubated with L02 human liver cells and the rate of apoptosis was detected by flow cytometry. The apoptotic rate was also evaluated in liver cells incubated with antibody and the HEV-related acute liver failure serum. The results indicated that the concentration of LPS in the serum of patients with HEV-related acute liver failure was 0.26±0.02 EU/ml, which was significantly higher than that of the control group (P<0.05). The rate of apoptosis in the human liver cells induced by acute liver failure serum was 5.83±0.42%, which was significantly increased compared with that in the cells treated with the serum of healthy individuals (P<0.05). The apoptotic rate of the cells incubated with antibody and the acute liver failure serum was 5.53±0.51%, which was lower than that of the cells incubated with acute liver failure serum alone (P>0.05). These results indicate that the serum of patients with HEV-related acute liver failure induces the apoptosis of human liver cells. LPS may be directly involved in the apoptosis of human liver cells. Moreover, the presence of the antibody did not significantly reduce the level of apoptosis of liver cells exposed to HEV-related acute liver failure serum. PMID:24348810

  17. Gene expression in human lupus: bone marrow differentiates active from inactive patients and displays apoptosis and granulopoiesis signatures

    PubMed Central

    Nakou, Magdalene; Knowlton, Nicholas; Frank, Mark B.; Bertsias, George; Osban, Jeanette; Sandel, Clayton E.; Papadaki, Eleni; Raptopoulou, Amalia; Sidiropoulos, Prodromos; Kritikos, Heraklis; Tassiulas, Ioannis; Centola, Michael; Boumpas, Dimitrios T.

    2009-01-01

    Objective The cells of the immune system originate from the bone marrow (BM), where many of them also mature. To better understand the aberrant immune response in systemic lupus erythematosus (SLE), we examined the BM in lupus patients using DNA microarrays and compared it to the peripheral blood (PB). Patients and Methods Bone marrow mononuclear cells (BMMCs) from 20 SLE patients (11 with active disease and 9 with inactive disease) and peripheral blood mononuclear cells (PBMCs) from 27 patients (16 active/ 11 inactive); BMMCs and PBMCs from 7 healthy individuals and 3 osteoarthritis patients served as controls. Samples were analyzed on genome-scale microarrays with 21,329 genes represented. Results We found 102 differentially expressed genes between patients’ and controls’ BMMCs (unpaired student t-test), involved in various biologic processes; 53 of them are involved in major networks including cell death, growth, signaling and proliferation. Comparative analysis between BM and PB of patients identified 88 genes differentially expressed; 61 out of 88 participate in cell growth and differentiation, cellular movement and morphology, immune response and other hematopoietic cell functions. Unsupervised clustering of highly expressed genes revealed two major SLE patient clusters (active and inactive) in BM, but not in PB. The upregulated genes in the bone marrow of active patients included genes involved in cell death and granulopoiesis. Conclusion Microarray analysis of the bone marrow differentiates active from inactive lupus patients and provides further evidence for the role of apoptosis and granulocytes in the pathogenesis of the disease. PMID:18975309

  18. Calcitonin Gene-Related Peptide (CGRP)

    PubMed Central

    Russo, Andrew F.

    2015-01-01

    Migraine is a neurological disorder that manifests as a debilitating headache associated with altered sensory perception. The neuropeptide calcitonin gene-related peptide (CGRP) is now firmly established as a key player in migraine. Clinical trials carried out during the past decade have proved that CGRP receptor antagonists are effective for treating migraine, and antibodies to the receptor and CGRP are currently under investigation. Despite this progress in the clinical arena, the mechanisms by which CGRP triggers migraine remain uncertain. This review discusses mechanisms whereby CGRP enhances sensitivity to sensory input at multiple levels in both the periphery and central nervous system. Future studies on epistatic and epigenetic regulators of CGRP actions are expected to shed further light on CGRP actions in migraine. In conclusion, targeting CGRP represents an approachable therapeutic strategy for migraine. PMID:25340934

  19. Site-specific Effects of DUOX1-Related Peroxidase on Intercellular Apoptosis Signaling.

    PubMed

    Heinzelmann, Sonja; Bauer, Georg

    2015-11-01

    Intercellular apoptosis-inducing HOCl signaling is known as an interplay between superoxide anions/H₂O₂ of transformed target cells and dual oxidase 1 (DUOX1)-related peroxidase that is released from neighboring non-transformed or transformed effector cells. Effector cells are dispensable when the release of the peroxidase domain of DUOX1 from target cells is prevented through inhibition of matrix metalloproteinase (MMP) activity. Membrane-associated peroxidase is then co-localized to NADPH oxidase 1 (NOX1) and establishes HOCl signaling specifically in transformed cells, using the same biochemical pathways as classical intercellular HOCl signaling. Membrane-associated peroxidase protects against exogenous HOCl through reversal of the peroxidase reaction. In addition, membrane-associated peroxidase protects against NO/peroxynitrite signaling as it oxidates NO and decomposes peroxynitrite. The protective function of membrane-associated peroxidase (in the absence of MMP) is analogous to that of catalase, whereas the destructive effect of the enzyme, i.e. the synthesis of HOCl, is independent of its localization and of MMP activity. PMID:26504019

  20. Levels of circulating TNF-related apoptosis-inducing ligand in celiac disease

    PubMed Central

    CELEGHINI, CLAUDIO; NOT, TARCISIO; NORCIO, ALESSIA; MONASTA, LORENZO; SECCHIERO, PAOLA

    2014-01-01

    It has previously been demonstrated that the circulating levels of TNF-related apoptosis-inducing ligand (TRAIL) are significantly lower in patients with type 1 diabetes (T1D) than in normal age- and gender-matched controls. Since celiac disease (CD) is often associated with T1D, a retrospective study was performed to analyze the sera of a cohort of pediatric subjects: i) patients with CD at onset (n=100); ii) patients with potential CD (n=45); iii) patients with CD associated with other auto-immune diseases (n=17); and iv) patients with eosinophilic esophagitis (n=15). Among the patients with CD, 49 were also analyzed after six months on a gluten-free diet, while data were also available for 13 patients after one year on a gluten-free diet. No significant differences were found in the circulating levels of TRAIL between the patients with CD and the patients with either eosinophilic esophagitis or potential CD. Patients with CD associated with other auto-immune diseases showed significantly lower levels of TRAIL when compared with patients with CD alone. The gluten-free diet did not significantly modify the levels of circulating TRAIL at 6 or 12 months. Thus, although T1D and CD share common immunological features, the circulating levels of TRAIL show a significant difference between the two pathologies, and do not appear to be modulated in CD. PMID:25371753

  1. Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt

    PubMed Central

    Zong, Yanfang; Huang, Yaqian; Chen, Siyao; Zhu, Mingzhu; Chen, Qinghua; Feng, Shasha; Sun, Yan; Zhang, Qingyou; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2015-01-01

    Background. The study aimed to investigate whether endogenous H2S pathway was involved in high-salt-stimulated mitochondria-related vascular endothelial cell (VEC) apoptosis. Methods. Cultured human umbilical vein endothelial cells (HUVECs) were used in the study. H2S content in the supernatant was detected. Western blot was used to detect expression of cystathionine gamma-lyase (CSE), cleaved-caspase-3, and mitochondrial and cytosolic cytochrome c (cytc). Fluorescent probes were used to quantitatively detect superoxide anion generation and measure the in situ superoxide anion generation in HUVEC. Mitochondrial membrane pore opening, mitochondrial membrane potential, and caspase-9 activities were measured. The cell apoptosis was detected by cell death ELISA and TdT-mediated dUTP nick end labeling (TUNEL) methods. Results. High-salt treatment downregulated the endogenous VEC H2S/CSE pathway, in association with increased generation of oxygen free radicals, decreased mitochondrial membrane potential, enhanced the opening of mitochondrial membrane permeability transition pore and leakage of mitochondrial cytc, activated cytoplasmic caspase-9 and caspase-3 and subsequently induced VEC apoptosis. However, supplementation of H2S donor markedly inhibited VEC oxidative stress and mitochondria-related VEC apoptosis induced by high salt. Conclusion. H2S/CSE pathway is an important endogenous defensive system in endothelial cells antagonizing high-salt insult. The protective mechanisms for VEC damage might involve inhibiting oxidative stress and protecting mitochondrial injury. PMID:26078816

  2. Prostate apoptosis response 4 gene is not associated with methamphetamine-use disorder in the Japanese population.

    PubMed

    Kishi, Taro; Ikeda, Masashi; Kitajima, Tsuyoshi; Yamanouchi, Yoshio; Kinoshita, Yoko; Kawashima, Kunihiro; Inada, Toshiya; Harano, Mutsuo; Komiyama, Tokutaro; Hori, Toru; Yamada, Mitsuhiko; Iyo, Masaomi; Sora, Ichiro; Sekine, Yoshimoto; Ozaki, Norio; Ujike, Hiroshi; Iwata, Nakao

    2008-10-01

    Abnormal intracellular signaling molecules in dopamine signal transduction are thought to be associated with the pathophysiology of methamphetamine (METH)-use disorder. A recent study reported that a new intracellular protein, prostate apoptosis response 4 (Par-4), plays a critical role in dopamine 2 receptor signaling. We therefore analyzed the association between the Par-4 gene (PAWR) and METH-use disorder in a Japanese population (191 patients with METH-use disorder and 466 healthy controls). Using the recommended "gene-based" association analysis, we selected five tagging SNPs in PAWR from the HapMap database. No significant allele/genotype-wise or haplotype-wise association was found between PAWR and METH-use disorder. These results suggest that PAWR does not play a major role in METH-use disorders in the Japanese population. PMID:18991852

  3. Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells.

    PubMed

    Velma, Venkatramreddy; Dasari, Shaloam R; Tchounwou, Paul B

    2016-01-01

    Cisplatin is a known antitumor drug, but its mechanisms of action are not fully elucidated. In this research, we studied the anticancer potential of cisplatin at doses of 1, 2, or 3 µM using HL-60 cells as a test model. We investigated cisplatin effects at the molecular level using RNA sequencing, cell cycle analysis, and apoptotic assay after 24, 48, 72, and 96 hours of treatment. The results show that many genes responsible for molecular and cellular functions were significantly altered. Cisplatin treatment also caused the cells to be arrested at the DNA synthesis phase, and as the time increases, the cells gradually accumulated at the sub-G1 phase. Also, as the dose increases, a significant number of cells entered into the apoptotic and necrotic stages. Altogether, the data show that low doses of cisplatin significantly impact the viability of HL-60 cells, through modulation of gene expression, cell cycle, and apoptosis. PMID:27594783

  4. Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells

    PubMed Central

    Velma, Venkatramreddy; Dasari, Shaloam R.; Tchounwou, Paul B.

    2016-01-01

    Cisplatin is a known antitumor drug, but its mechanisms of action are not fully elucidated. In this research, we studied the anticancer potential of cisplatin at doses of 1, 2, or 3 µM using HL-60 cells as a test model. We investigated cisplatin effects at the molecular level using RNA sequencing, cell cycle analysis, and apoptotic assay after 24, 48, 72, and 96 hours of treatment. The results show that many genes responsible for molecular and cellular functions were significantly altered. Cisplatin treatment also caused the cells to be arrested at the DNA synthesis phase, and as the time increases, the cells gradually accumulated at the sub-G1 phase. Also, as the dose increases, a significant number of cells entered into the apoptotic and necrotic stages. Altogether, the data show that low doses of cisplatin significantly impact the viability of HL-60 cells, through modulation of gene expression, cell cycle, and apoptosis. PMID:27594783

  5. Molecular pathways: gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention.

    PubMed

    Bultman, Scott J

    2014-02-15

    Gene-environment interactions are so numerous and biologically complicated that it can be challenging to understand their role in cancer. However, dietary fiber and colorectal cancer prevention may represent a tractable model system. Fiber is fermented by colonic bacteria into short-chain fatty acids such as butyrate. One molecular pathway that has emerged involves butyrate having differential effects depending on its concentration and the metabolic state of the cell. Low-moderate concentrations, which are present near the base of colonic crypts, are readily metabolized in the mitochondria to stimulate cell proliferation via energetics. Higher concentrations, which are present near the lumen, exceed the metabolic capacity of the colonocyte. Unmetabolized butyrate enters the nucleus and functions as a histone deacetylase (HDAC) inhibitor that epigenetically regulates gene expression to inhibit cell proliferation and induce apoptosis as the colonocytes exfoliate into the lumen. Butyrate may therefore play a role in normal homeostasis by promoting turnover of the colonic epithelium. Because cancerous colonocytes undergo the Warburg effect, their preferred energy source is glucose instead of butyrate. Consequently, even moderate concentrations of butyrate accumulate in cancerous colonocytes and function as HDAC inhibitors to inhibit cell proliferation and induce apoptosis. These findings implicate a bacterial metabolite with metaboloepigenetic properties in tumor suppression. PMID:24270685

  6. Melanoma differentiation-associated gene-7/IL-24 gene enhances NF-kappa B activation and suppresses apoptosis induced by TNF.

    PubMed

    Aggarwal, Sita; Takada, Yasunari; Mhashilkar, Abner M; Sieger, Kerry; Chada, Sunil; Aggarwal, Bharat B

    2004-10-01

    Melanoma differentiation-associated gene-7 (mda-7), also referred to as IL-24, is a novel growth regulatory cytokine that has been shown to regulate the immune system by inducing the expression of inflammatory cytokines, such as TNF, IL-1, and IL-6. Whether the induction of these cytokines by MDA-7 is mediated through activation of NF-kappaB or whether it regulates cytokine signaling is not known. In the present report we investigated the effect of MDA-7 on NF-kappaB activation and on TNF-induced NF-kappaB activation and apoptosis in human embryonic kidney 293 cells. Stable or transient transfection with mda-7 into 293 cells failed to activate NF-kappaB. However, TNF-induced NF-kappaB activation was significantly enhanced in mda-7-transfected cells, as indicated by DNA binding, p65 translocation, and NF-kappaB-dependent reporter gene expression. Mda-7 transfection also potentiated NF-kappaB reporter activation induced by TNF receptor-associated death domain and TNF receptor-associated factor-2. Cytoplasmic MDA-7 with deleted signal sequence was as effective as full-length MDA-7 in potentiating TNF-induced NF-kappaB reporter activity. Secretion of MDA-7 was not required for the potentiation of TNF-induced NF-kappaB activation. TNF-induced expression of the NF-kappaB-regulated gene products cyclin D1 and cyclooxygenase-2, were significantly up-regulated by stable expression of MDA-7. Furthermore, MDA-7 expression abolished TNF-induced apoptosis, and suppression of NF-kappaB by IkappaBalpha kinase inhibitors enhanced apoptosis. Overall, our results indicate that stable or transient MDA-7 expression alone does not substantially activate NF-kappaB, but potentiates TNF-induced NF-kappaB activation and NF-kappaB-regulated gene expression. Potentiation of NF-kappaB survival signaling by MDA-7 inhibits TNF-mediated apoptosis. PMID:15383566

  7. Changes of Antioxidant Function and the mRNA Expression Levels of Apoptosis Genes in Duck Ovaries Caused by Molybdenum or/and Cadmium.

    PubMed

    Cao, Huabin; Xia, Bing; Zhang, Mengmeng; Liao, Yilin; Yang, Zhi; Hu, Guoliang; Zhang, Caiying

    2016-06-01

    To investigate the effects of molybdenum (Mo) combined with cadmium (Cd) on the antioxidant function and the mRNA expression levels of apoptosis-related genes in duck ovaries, 60 healthy 11-old-day female ducks were treated with hexaammonium molybdate ([(NH4)6Mo7O24·4H2O]) or/and cadmium sulfate (3CdSO4·8H2O) at different doses on a daily basis for 120 days. On the 120th day, ten female birds in each group were euthanized, and the ovaries and blood were collected to determine the antioxidant indexes and the mRNA expression levels of Bak-1, Bcl-2, and caspase-3 in ovaries. In addition, ovary tissues were subjected to histopathological analysis with optical microscope. The total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity decreased significantly (P < 0.01) in treated groups comparing with control while the nitric oxide synthase (NOS) activity increased (P < 0.01) both in ovary tissue and serum. The Bak-1 and caspase-3 expressions were upregulated while the Bcl-2 was downgraded by Mo or/and Cd. Biomolecules were affected in all metal-treated groups, whereas combined-treated animals showed greater effects. What is more, pathological damage in Mo and Cd combination treated groups was more severe. The results from the present study indicated that Mo or/and Cd caused oxidative stress and apoptosis in duck ovaries. Combination of Mo and Cd showed additive or synergistic effect leading to apoptosis and oxidative stress, and the pathway might be the mitochondrial pathway. PMID:26446861

  8. NES1/KLK10 gene represses proliferation, enhances apoptosis and down-regulates glucose metabolism of PC3 prostate cancer cells

    PubMed Central

    Hu, Jiajia; Lei, Hu; Fei, Xiaochun; Liang, Sheng; Xu, Hanzhang; Qin, Dongjun; Wang, Yue; Wu, Yingli; Li, Biao

    2015-01-01

    The normal epithelial cell-specific-1 (NES1) gene, also named as KLK10, is recognised as a novel putative tumour suppressor in breast cancer, but few studies have focused on the function of KLK10 in human prostate cancer. Our study confirms that the expression of KLK10 in prostate cancer tissue and cell lines (PC3, DU145, and LNCaP clone FGC) is low. Given that the androgen-independent growth characteristic of the PC3 cell line is more similar to clinical castration-resistant prostate cancer, we studied the role of KLK10 in PC3. In vitro and in vivo assays showed that over-expressing KLK10 in PC3 could decelerate tumour proliferation, which was accompanied with an increase in apoptosis and suppression of glucose metabolism. The related proteins, such as Bcl-2 and HK-2, were down-regulated subsequently. Furthermore, by up-regulating Bcl-2 or HK-2 respectively in the PC3-KLK10 cell line, we observed a subsequent increase of cell proliferation and a synchronous up-regulation of HK-2 and Bcl-2. Besides, KLK10 expression was also increased by Bcl-2 and HK-2, which suggests that there is a negative feedback loop between KLK10 and Bcl-2/HK-2. Thus, our results demonstrated that KLK10 may function as a tumour suppressor by repressing proliferation, enhancing apoptosis and decreasing glucose metabolism in PC3 cells. PMID:26616394

  9. Gene expression profiling analysis reveals arsenic-induced cell cycle arrest and apoptosis in p53-proficient and p53-deficient cells through differential gene pathways

    SciTech Connect

    Yu Xiaozhong Robinson, Joshua F.; Gribble, Elizabeth; Hong, Sung Woo; Sidhu, Jaspreet S.; Faustman, Elaine M.

    2008-12-15

    Arsenic (As) is a well-known environmental toxicant and carcinogen as well as an effective chemotherapeutic agent. The underlying mechanism of this dual capability, however, is not fully understood. Tumor suppressor gene p53, a pivotal cell cycle checkpoint signaling protein, has been hypothesized to play a possible role in mediating As-induced toxicity and therapeutic efficiency. In this study, we found that arsenite (As{sup 3+}) induced apoptosis and cell cycle arrest in a dose-dependent manner in both p53{sup +/+} and p53{sup -/-} mouse embryonic fibroblasts (MEFs). There was, however, a distinction between genotypes in the apoptotic response, with a more prominent induction of caspase-3 in the p53{sup -/-} cells than in the p53{sup +/+} cells. To examine this difference further, a systems-based genomic analysis was conducted comparing the critical molecular mechanisms between the p53 genotypes in response to As{sup 3+}. A significant alteration in the Nrf2-mediated oxidative stress response pathway was found in both genotypes. In p53{sup +/+} MEFs, As{sup 3+} induced p53-dependent gene expression alterations in DNA damage and cell cycle regulation genes. However, in the p53{sup -/-} MEFs, As{sup 3+} induced a significant up-regulation of pro-apoptotic genes (Noxa) and down-regulation of genes in immune modulation. Our findings demonstrate that As-induced cell death occurs through a p53-independent pathway in p53 deficient cells while apoptosis induction occurs through p53-dependent pathway in normal tissue. This difference in the mechanism of apoptotic responses between the genotypes provides important information regarding the apparent dichotomy of arsenic's dual mechanisms, and potentially leads to further advancement of its utility as a chemotherapeutic agent.

  10. Gene expression profiling analysis reveals arsenic-induced cell cycle arrest and apoptosis in p53-proficient and p53-deficient cells through differential gene pathways

    PubMed Central

    Yu, Xiaozhong; Robinson, Joshua F.; Gribble, Elizabeth; Hong, Sung Woo; Sidhu, Jaspreet S; Faustman, Elaine M

    2008-01-01

    Arsenic (As) is a well-known environmental toxicant and carcinogen as well as an effective chemotherapeutic agent. The underlying mechanism of this dual capability, however, is not fully understood. Tumor suppressor gene p53, a pivotal cell cycle checkpoint signaling protein, has been hypothesized to play a possible role in mediating As-induced toxicity and therapeutic efficiency. In this study, we found that arsenite (As3+) induced apoptosis and cell cycle arrest in a dose-dependent manner in both p53+/+ and p53−/− mouse embryonic fibroblasts (MEFs). There was, however, a distinction between genotypes in the apoptotic response, with a more prominent induction of caspase-3 in the p53−/− cells than in the p53+/+ cells. To examine this difference further, a systems-based genomic analysis was conducted comparing the critical molecular mechanisms between the p53 genotypes in response to As3+. A significant alteration in the Nrf2-mediated oxidative stress response pathway were found in both genotypes. In p53+/+ MEFs, As3+ induced p53-dependent gene expression alterations in DNA damage and cell cycle regulation genes. However, in the p53−/− MEFs, As3+ induced a significant up-regulation of pro-apoptotic genes (Noxa) and down-regulation of genes in immune modulation. Our findings demonstrate that As-induced cell death occurs through a p53-independent pathway in p53 deficient cells while apoptosis induction occurs through p53-dependent pathway in normal tissue. This difference in the mechanism of apoptotic responses between the genotypes provides important information regarding the apparent dichotomy of arsenic’s dual mechanisms, and potentially leads to further advancement of its utility as a chemotherapeutic agent. PMID:18929588

  11. Meloxicam combined with sorafenib synergistically inhibits tumor growth of human hepatocellular carcinoma cells via ER stress-related apoptosis.

    PubMed

    Zhong, Jingtao; Xiu, Peng; Dong, Xiaofeng; Wang, Fuhai; Wei, Honglong; Wang, Xin; Xu, Zongzhen; Liu, Feng; Li, Tao; Wang, Yong; Li, Jie

    2015-10-01

    Sorafenib (SOR) is a promising treatment for advanced hepatocellular carcinoma (HCC). However, the precise mechanisms of toxicity and drug resistance have not been fully explored and new strategies are urgently needed for HCC therapy. Meloxicam (MEL) is a selective cyclooxygenase-2 (COX-2) inhibitor which elicits antitumor effects in human HCC cells. In the present study, we investigated the interaction between MEL and SOR in human SMMC‑7721 cells and the role endoplasmic reticulum (ER) stress exerts in the combination of SOR with MEL treatment-induced cytotoxicity. Our results revealed that the combination treatment synergistically inhibited cell proliferation and enhanced apoptosis. Furthermore, the combination treatment enhanced ER stress-related molecules which involved in SMMC-7721 cell apoptosis. GRP78 knockdown by siRNA or co-treatment with MG132 significantly increased this combination treatment-induced apoptosis. In addition, we found that the combination treatment suppressed tumor growth by way of activation of ER stress in in vivo models. We concluded that the combination of SOR with MEL treatment-induced ER stress, and eventually apoptosis in human SMMC-7721 cells. Knockdown of GRP78 using siRNA or proteosome inhibitor enhanced the cytotoxicity of the combination of SOR with MEL-treatment in SMMC-7721 cells. These findings provided a new potential treatment strategy against HCC. PMID:26252057

  12. Radiation induced apoptosis and initial DNA damage are inversely related in locally advanced breast cancer patients

    PubMed Central

    2010-01-01

    Background DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Methods Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Results Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p < 0.0001 in all cases). Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). A statistically significant inverse correlation was found between initial damage to DNA and radio-induced apoptosis at 1 Gy (p = 0.034). A trend toward 2 Gy (p = 0.057) and 8 Gy (p = 0.067) was observed after 24 hours of incubation. Conclusions An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity. PMID:20868468

  13. The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals

    PubMed Central

    Kvitt, Hagit; Rosenfeld, Hanna; Tchernov, Dan

    2016-01-01

    Recent studies suggest that controlled apoptotic response provides an essential mechanism, enabling corals to respond to global warming and ocean acidification. However, the molecules involved and their functions are still unclear. To better characterize the apoptotic response in basal metazoans, we studied the expression profiles of selected genes that encode for putative pro- and anti-apoptotic mediators in the coral Stylophora pistillata under thermal stress and bleaching conditions. Upon thermal stress, as attested by the elevation of the heat-shock protein gene HSP70’s mRNA levels, the expression of all studied genes, including caspase, Bcl-2, Bax, APAF-1 and BI-1, peaked at 6–24 h of thermal stress (hts) and declined at 72 hts. Adversely, the expression levels of the survivin gene showed a shifted pattern, with elevation at 48–72 hts and a return to basal levels at 168 hts. Overall, we show the quantitative anti-apoptotic traits of the coral Bcl-2 protein, which resemble those of its mammalian counterpart. Altogether, our results highlight the similarities between apoptotic networks operating in simple metazoans and in higher animals and clearly demonstrate the activation of pro-cell survival regulators at early stages of the apoptotic response, contributing to the decline of apoptosis and the acclimation to chronic stress. PMID:27460544

  14. The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals

    NASA Astrophysics Data System (ADS)

    Kvitt, Hagit; Rosenfeld, Hanna; Tchernov, Dan

    2016-07-01

    Recent studies suggest that controlled apoptotic response provides an essential mechanism, enabling corals to respond to global warming and ocean acidification. However, the molecules involved and their functions are still unclear. To better characterize the apoptotic response in basal metazoans, we studied the expression profiles of selected genes that encode for putative pro- and anti-apoptotic mediators in the coral Stylophora pistillata under thermal stress and bleaching conditions. Upon thermal stress, as attested by the elevation of the heat-shock protein gene HSP70’s mRNA levels, the expression of all studied genes, including caspase, Bcl-2, Bax, APAF-1 and BI-1, peaked at 6–24 h of thermal stress (hts) and declined at 72 hts. Adversely, the expression levels of the survivin gene showed a shifted pattern, with elevation at 48–72 hts and a return to basal levels at 168 hts. Overall, we show the quantitative anti-apoptotic traits of the coral Bcl-2 protein, which resemble those of its mammalian counterpart. Altogether, our results highlight the similarities between apoptotic networks operating in simple metazoans and in higher animals and clearly demonstrate the activation of pro-cell survival regulators at early stages of the apoptotic response, contributing to the decline of apoptosis and the acclimation to chronic stress.

  15. The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals.

    PubMed

    Kvitt, Hagit; Rosenfeld, Hanna; Tchernov, Dan

    2016-01-01

    Recent studies suggest that controlled apoptotic response provides an essential mechanism, enabling corals to respond to global warming and ocean acidification. However, the molecules involved and their functions are still unclear. To better characterize the apoptotic response in basal metazoans, we studied the expression profiles of selected genes that encode for putative pro- and anti-apoptotic mediators in the coral Stylophora pistillata under thermal stress and bleaching conditions. Upon thermal stress, as attested by the elevation of the heat-shock protein gene HSP70's mRNA levels, the expression of all studied genes, including caspase, Bcl-2, Bax, APAF-1 and BI-1, peaked at 6-24 h of thermal stress (hts) and declined at 72 hts. Adversely, the expression levels of the survivin gene showed a shifted pattern, with elevation at 48-72 hts and a return to basal levels at 168 hts. Overall, we show the quantitative anti-apoptotic traits of the coral Bcl-2 protein, which resemble those of its mammalian counterpart. Altogether, our results highlight the similarities between apoptotic networks operating in simple metazoans and in higher animals and clearly demonstrate the activation of pro-cell survival regulators at early stages of the apoptotic response, contributing to the decline of apoptosis and the acclimation to chronic stress. PMID:27460544

  16. Nupr1/Chop signal axis is involved in mitochondrion-related endothelial cell apoptosis induced by methamphetamine.

    PubMed

    Cai, D; Huang, E; Luo, B; Yang, Y; Zhang, F; Liu, C; Lin, Z; Xie, W-B; Wang, H

    2016-01-01

    Methamphetamine (METH) abuse has been a serious global public health problem for decades. Previous studies have shown that METH causes detrimental effects on the nervous and cardiovascular systems. METH-induced cardiovascular toxicity has been, in part, attributed to its destructive effect on vascular endothelial cells. However, the underlying mechanism of METH-caused endothelium disruption has not been investigated systematically. In this study, we identified a novel pathway involved in endothelial cell apoptosis induced by METH. We demonstrated that exposure to METH caused mitochondrial apoptosis in human umbilical vein endothelial cells and rat cardiac microvascular endothelial cells in vitro as well as in rat cardiac endothelial cells in vivo. We found that METH mediated endothelial cell apoptosis through Nupr1-Chop/P53-PUMA/Beclin1 signaling pathway. Specifically, METH exposure increased the expression of Nupr1, Chop, P53 and PUMA. Elevated p53 expression raised up PUMA expression, which initiated mitochondrial apoptosis by downregulating antiapoptotic Bcl-2, followed by upregulation of proapoptotic Bax, resulting in translocation of cytochrome c (cyto c), an apoptogenic factor, from the mitochondria to cytoplasm and activation of caspase-dependent pathways. Interestingly, increased Beclin1, upregulated by Chop, formed a ternary complex with Bcl-2, thereby decreasing the dissociative Bcl-2. As a result, the ratio of dissociative Bcl-2 to Bax was also significantly decreased, which led to translocation of cyto c and initiated more drastic apoptosis. These findings were supported by data showing METH-induced apoptosis was significantly inhibited by silencing Nupr1, Chop or P53, or by PUMA or Beclin1 knockdown. Based on the present data, a novel mechanistic model of METH-induced endothelial cell toxicity is proposed. Collectively, these results highlight that the Nupr1-Chop/P53-PUMA/Beclin1 pathway is essential for mitochondrion-related METH-induced endothelial

  17. Nupr1/Chop signal axis is involved in mitochondrion-related endothelial cell apoptosis induced by methamphetamine

    PubMed Central

    Cai, D; Huang, E; Luo, B; Yang, Y; Zhang, F; Liu, C; Lin, Z; Xie, W-B; Wang, H

    2016-01-01

    Methamphetamine (METH) abuse has been a serious global public health problem for decades. Previous studies have shown that METH causes detrimental effects on the nervous and cardiovascular systems. METH-induced cardiovascular toxicity has been, in part, attributed to its destructive effect on vascular endothelial cells. However, the underlying mechanism of METH-caused endothelium disruption has not been investigated systematically. In this study, we identified a novel pathway involved in endothelial cell apoptosis induced by METH. We demonstrated that exposure to METH caused mitochondrial apoptosis in human umbilical vein endothelial cells and rat cardiac microvascular endothelial cells in vitro as well as in rat cardiac endothelial cells in vivo. We found that METH mediated endothelial cell apoptosis through Nupr1–Chop/P53–PUMA/Beclin1 signaling pathway. Specifically, METH exposure increased the expression of Nupr1, Chop, P53 and PUMA. Elevated p53 expression raised up PUMA expression, which initiated mitochondrial apoptosis by downregulating antiapoptotic Bcl-2, followed by upregulation of proapoptotic Bax, resulting in translocation of cytochrome c (cyto c), an apoptogenic factor, from the mitochondria to cytoplasm and activation of caspase-dependent pathways. Interestingly, increased Beclin1, upregulated by Chop, formed a ternary complex with Bcl-2, thereby decreasing the dissociative Bcl-2. As a result, the ratio of dissociative Bcl-2 to Bax was also significantly decreased, which led to translocation of cyto c and initiated more drastic apoptosis. These findings were supported by data showing METH-induced apoptosis was significantly inhibited by silencing Nupr1, Chop or P53, or by PUMA or Beclin1 knockdown. Based on the present data, a novel mechanistic model of METH-induced endothelial cell toxicity is proposed. Collectively, these results highlight that the Nupr1–Chop/P53–PUMA/Beclin1 pathway is essential for mitochondrion-related METH

  18. Inhibition of myocardin-related transcription factor/serum response factor signaling decreases lung fibrosis and promotes mesenchymal cell apoptosis.

    PubMed

    Sisson, Thomas H; Ajayi, Iyabode O; Subbotina, Natalya; Dodi, Amos E; Rodansky, Eva S; Chibucos, Lauren N; Kim, Kevin K; Keshamouni, Venkateshwar G; White, Eric S; Zhou, Yong; Higgins, Peter D R; Larsen, Scott D; Neubig, Richard R; Horowitz, Jeffrey C

    2015-04-01

    Myofibroblasts are crucial to the pathogenesis of tissue fibrosis. Their formation of stress fibers results in the release of myocardin-related transcription factor (MRTF), a transcriptional coactivator of serum response factor (SRF). MRTF-A (Mkl1)-deficient mice are protected from lung fibrosis. We hypothesized that the SRF/MRTF pathway inhibitor CCG-203971 would modulate myofibroblast function in vitro and limit lung fibrosis in vivo. Normal and idiopathic pulmonary fibrosis lung fibroblasts were treated with/without CCG-203971 (N-[4-chlorophenyl]-1-[3-(2-furanyl)benzoyl]-3-piperidine carboxamide) and/or Fas-activating antibody in the presence/absence of transforming growth factor (TGF)-β1, and apoptosis was assessed. In vivo studies examined the effect of therapeutically administered CCG-203971 on lung fibrosis in two distinct murine models of fibrosis induced by bleomycin or targeted type II alveolar epithelial injury. In vitro, CCG-203971 prevented nuclear localization of MRTF-A; increased the apoptotic susceptibility of normal and idiopathic pulmonary fibrosis fibroblasts; blocked TGF-β1-induced myofibroblast differentiation; and inhibited TGF-β1-induced expression of fibronectin, X-linked inhibitor of apoptosis, and plasminogen activator inhibitor-1. TGF-β1 did not protect fibroblasts or myofibroblasts from apoptosis in the presence of CCG-203971. In vivo, CCG-203971 significantly reduced lung collagen content in both murine models while decreasing alveolar plasminogen activator inhibitor-1 and promoting myofibroblast apoptosis. These data support a central role of the SRF/MRTF pathway in the pathobiology of lung fibrosis and suggest that its inhibition can help resolve lung fibrosis by promoting fibroblast apoptosis. PMID:25681733

  19. Dynamin-related protein 1 mediates mitochondria-dependent apoptosis in chlorpyrifos-treated SH-SY5Y cells.

    PubMed

    Park, Jae Hyeon; Ko, Juyeon; Hwang, Jungwook; Koh, Hyun Chul

    2015-12-01

    Recent studies have demonstrated that dynamin-related protein 1 (Drp1), a mitochondrial fission protein, mediates mitochondria-dependent apoptosis through mitochondrial division. However, little is known about the mechanism by which Drp1 modulates apoptosis in response to chlorpyrifos (CPF)-induced toxicity. In this study, we determined that CPF-induced mitochondrial apoptosis is mediated by Drp1 translocation in SH-SY5Y human neuroblastoma cells. Our results showed that CPF treatment induced intrinsic apoptosis by activating caspase-9, caspase-3, and cytochrome c release in SH-SY5Y cells. Cytosolic Drp1 translocated to the mitochondria in CPF-treated cells and was phosphorylated at Ser616. Treating cells with CPF induced the generation of reactive oxygen species (ROS) and activation of mitogen-activated protein kinases (MAPKs). Inhibiting this ROS generation and MAPK activation abolished CPF-induced expression of phospho-Drp1. Furthermore, Drp1 was required for p53 to translocate to the mitochondria under CPF-induced oxidative stress. Treating cells with mitochondrial-division inhibitor-1 (mdivi-1), which blocks Drp1 translocation, increased the viability of CPF-treated cells by abrogating Drp1 translocation and caspase-3 activation. Specifically, pretreating cells with mdivi-1 inhibited Bax translocation to the mitochondria by blocking p53 signaling. Taken together, these data reveal a novel mechanism by which Drp1 activates mitochondrial-dependent apoptosis and indicate that inhibiting Dpr1 function can protect against CPF-induced cytotoxicity. We propose that inhibiting Drp1 is a possible therapeutic approach for pesticide-induced toxicity when hyperactivated Drp1 contributes to pathology. PMID:26598294

  20. Inhibition of Myocardin-Related Transcription Factor/Serum Response Factor Signaling Decreases Lung Fibrosis and Promotes Mesenchymal Cell Apoptosis

    PubMed Central

    Sisson, Thomas H.; Ajayi, Iyabode O.; Subbotina, Natalya; Dodi, Amos E.; Rodansky, Eva S.; Chibucos, Lauren N.; Kim, Kevin K.; Keshamouni, Venkateshwar G.; White, Eric S.; Zhou, Yong; Higgins, Peter D.R.; Larsen, Scott D.; Neubig, Richard R.; Horowitz, Jeffrey C.

    2016-01-01

    Myofibroblasts are crucial to the pathogenesis of tissue fibrosis. Their formation of stress fibers results in the release of myocardin-related transcription factor (MRTF), a transcriptional coactivator of serum response factor (SRF). MRTF-A (Mkl1)-deficient mice are protected from lung fibrosis. We hypothesized that the SRF/MRTF pathway inhibitor CCG-203971 would modulate myofibroblast function in vitro and limit lung fibrosis in vivo. Normal and idiopathic pulmonary fibrosis lung fibroblasts were treated with/without CCG-203971 (N-[4-chlorophenyl]-1-[3-(2-furanyl)benzoyl]-3-piperidine carboxamide) and/or Fas-activating antibody in the presence/absence of transforming growth factor (TGF)-β1, and apoptosis was assessed. In vivo studies examined the effect of therapeutically administered CCG-203971 on lung fibrosis in two distinct murine models of fibrosis induced by bleomycin or targeted type II alveolar epithelial injury. In vitro, CCG-203971 prevented nuclear localization of MRTF-A; increased the apoptotic susceptibility of normal and idiopathic pulmonary fibrosis fibroblasts; blocked TGF-β1–induced myofibroblast differentiation; and inhibited TGF-β1–induced expression of fibronectin, X-linked inhibitor of apoptosis, and plasminogen activator inhibitor-1. TGF-β1 did not protect fibroblasts or myofibroblasts from apoptosis in the presence of CCG-203971. In vivo, CCG-203971 significantly reduced lung collagen content in both murine models while decreasing alveolar plasminogen activator inhibitor-1 and promoting myofibroblast apoptosis. These data support a central role of the SRF/MRTF pathway in the pathobiology of lung fibrosis and suggest that its inhibition can help resolve lung fibrosis by promoting fibroblast apoptosis. PMID:25681733

  1. Overexpression of miR-506 suppresses proliferation and promotes apoptosis of osteosarcoma cells by targeting astrocyte elevated gene-1

    PubMed Central

    Yao, Jie; Qin, Li; Miao, Sen; Wang, Xiangshan; Wu, Xuejian

    2016-01-01

    There is increasing evidence that microRNAs (miRs) are implicated in tumor development and progression; however, their specific roles in osteosarcoma are not well understood. The aim of the present study was to investigate the role of miR-506 in the pathogenesis of osteosarcoma. The expression levels of miR-506 and astrocyte elevated gene-1 (AEG-1) mRNA were detected using quantitative polymerase chain reaction, and the protein levels of AEG-1, β-catenin, c-myc and cyclin D1 were determined using western blot analysis. The effects of miR-506 and AEG-1 on cell viability, colony forming ability and apoptosis were assessed using MTT assay, colony formation assay, and flow cytometry, respectively. Lucifer reporter assays were used to demonstrate whether AEG-1 is a direct target of miR-506. The present study identified that miR-506 was downregulated in osteosarcoma tissues and cells. Overexpression of miR-506 suppressed the proliferation and induced apoptosis in osteosarcoma cells in vitro and inhibited tumor formation in vivo. Overexpression of miR-506 significantly inhibited the luciferase activity of AEG-1 with a wild-type 3′-untranslated region, providing clear evidence that AEG-1 was a direct and functional downstream target of miR-506. Similar to the overexpression of miR-506, downregulation of AEG-1 lead to an inhibitory effect on osteosarcoma in vitro. Furthermore, overexpression of miR-506 or downregulation of AEG-1 inhibited the Wnt/β-catenin signaling pathway, and inhibition of this pathway by β-catenin small interfering RNA or CGP049090, a small molecule inhibitor, suppressed cell proliferation and induced apoptosis in vitro. Overall, the present data indicated that miR-506 functions as a tumor suppressor by targeting AEG-1 in osteosarcoma via the regulation of the Wnt/β-catenin signaling pathway. PMID:27602115

  2. Ventromedial hypothalamic lesions change the expression of neuron-related genes and immune-related genes in rat liver.

    PubMed

    Kiba, Takayoshi; Kintaka, Yuri; Suzuki, Yoko; Nakata, Eiko; Ishigaki, Yasuhito; Inoue, Shuji

    2009-05-01

    There are no reports that hypothalamus can directly affect the expression of neuron-related genes and immune-related genes in liver. We identified genes of which expression profiles showed significant modulation in rat liver after ventromedial hypothalamic (VMH) lesions. Total RNA was extracted, and differences in the gene expression profiles between rats at day 3 after VMH lesioning and sham-VMH lesioned rats were investigated using DNA microarray analysis. The result revealed that VMH lesions regulated the genes that were involved in functions related to neuronal development and immunofunction in the liver. Real-time PCR also confirmed that gene expression of SULT4A1 was upregulated, but expression of ACSL1 and CISH were downregulated at day 3 after VMH lesions. VMH lesions may change the expression of neuron-related genes and immune-related genes in rat liver. PMID:19429097

  3. Cloning the Gravity and Shear Stress Related Genes from MG-63 Cells by Subtracting Hybridization

    NASA Astrophysics Data System (ADS)

    Zhang, Shu; Dai, Zhong-quan; Wang, Bing; Cao, Xin-sheng; Li, Ying-hui; Sun, Xi-qing

    2008-06-01

    Background The purpose of the present study was to clone the gravity and shear stress related genes from osteoblast-like human osteosarcoma MG-63 cells by subtractive hybridization. Method MG-63 cells were divided into two groups (1G group and simulated microgravity group). After cultured for 60 h in two different gravitational environments, two groups of MG-63 cells were treated with 1.5Pa fluid shear stress (FSS) for 60 min, respectively. The total RNA in cells was isolated. The gravity and shear stress related genes were cloned by subtractive hybridization. Result 200 clones were gained. 30 positive clones were selected using PCR method based on the primers of vector and sequenced. The obtained sequences were analyzed by blast. changes of 17 sequences were confirmed by RT-PCR and these genes are related to cell proliferation, cell differentiation, protein synthesis, signal transduction and apoptosis. 5 unknown genes related to gravity and shear stress were found. Conclusion In this part of our study, our result indicates that simulated microgravity may change the activities of MG-63 cells by inducing the functional alterations of specific genes.

  4. Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-κB Pathway

    PubMed Central

    Zeng, Wenrong; Liu, Qingjun; Chen, Zhida; Wu, Xinyu; Zhong, Yuanfu; Wu, Jin

    2016-01-01

    Recently, the human ether à go-go (eag) related gene 1 (hERG1) channel, a member of the voltage-dependent potassium channel (Kv) family, was determined to have a critical role in cancer cell proliferation, invasion, tumorigenesis and apoptosis. However, the expression levels and functions of hERG1 in osteosarcoma cells remain poorly characterized. In this study, hERG1 transcript and protein levels in osteosarcoma cells and tissues were measured using semi-quantitative real time PCR (RT-PCR), Western blot, and immunohistochemistry. The effects of hERG1 knockdown on osteosarcoma cell proliferation, apoptosis and invasion were examined using CCK-8, colony formation, flow cytometry, caspase-3 activity, wound healing and transwell based assays. Furthermore, semi-quantitative RT-PCR, Western blot and a luciferase reporter assay were used to assess the effects of hERG1 inhibition on the nuclear factor-κB (NF-κB) pathway. In addition, the effect of NF-κB p65-siRNA and NF-κB p65 expression on the survival of osteosarcoma cells was investigated. Through this work, a relationship for hERG1 with the NF-κB pathway was identified. Osteosarcoma cells and tissues were found to express high levels of hERG1. Knockdown of hERG1 significantly suppressed cellular proliferation and invasion, and induced apoptosis, while inhibition of hERG1 significantly decreased activation of NF-κB. Overall, hERG1 may stimulate nuclear translocation of p65, thus regulating the NF-κB pathway through the activation of the hERG1/beta1 integrin complex and PI3K/AKT signaling. Taken together, these results demonstrate that hERG1 is necessary for regulation of osteosarcoma cellular proliferation, apoptosis and migration. Furthermore, this regulation by hERG1 is, at least in part, through mediation of the NF-κB pathway. PMID:27076857

  5. Knockdown of prolactin receptors in a pancreatic beta cell line: effects on DNA synthesis, apoptosis, and gene expression.

    PubMed

    Arumugam, Ramamani; Fleenor, Don; Freemark, Michael

    2014-08-01

    Prolactin (PRL) and placental lactogen stimulate beta cell replication and insulin production in vitro and in vivo. The molecular mechanisms by which lactogens promote beta cell expansion are unclear. We treated rat insulinoma cells with a PRL receptor (PRLR) siRNA to determine if PRLR signaling is required for beta cell DNA synthesis and cell survival and to identify beta cell cycle genes whose expression depends upon lactogen action. Effects of PRLR knockdown were compared with those of PRL treatment. PRLR knockdown (-80 %) reduced DNA synthesis, increased apoptosis, and inhibited expression of cyclins D2 and B2, IRS-2, Tph1, and the anti-apoptotic protein PTTG1; p21 and BCL6 mRNAs increased. Conversely, PRL treatment increased DNA synthesis, reduced apoptosis, and enhanced expression of A, B and D2 cyclins, CDK1, IRS-2, FoxM1, BCLxL, and PTTG1; BCL6 declined. PRLR signaling is required for DNA synthesis and survival of rat insulinoma cells. The effects of lactogens are mediated by down-regulation of cell cycle inhibitors (BCL6, p21) and induction of A, B, and D2 cyclins, IRS-2, Tph1, FoxM1, and the anti-apoptotic proteins BCLxL and PTTG1. PMID:24114406

  6. Fibrinogen-like protein 2 gene silencing inhibits cardiomyocytes apoptosis, improves heart function of streptozotocin-induced diabetes rats and the molecular mechanism involved

    PubMed Central

    Zhenzhong, Zheng; Yafa, Yu; Jin, Liang

    2015-01-01

    Fibrinogen-like protein 2 (Fgl2) is involved in apoptosis, angiogenesis and inflammatory response. Diabetes is closely associated with apoptosis, angiogenesis and coagulation. So it allowed us to assume that Fgl2 plays an important role during the process of diabetic cardiomyopathy (DCM). In the present study, we test that the feasibility of Fgl2 as a therapeutic target for the treatment of DCM and its possible molecular mechanism involved. We found that Fgl2 gene silencing inhibits apoptosis and improves heart function of streptozotocin (STZ)-induced diabetes rats, the possible mechanism maybe that Fgl2 gene silencing reduces the tumour necrosis factor (TNF)±levels, decreases the expression of B-cell lymphoma-2 (bcl2), bcl-2-associated X (bax), toll-like receptors 4 (TLR4) and p38 mitogen-activated protein kinase (MAPK). In conclusion, Fgl2 is a potent target to treat DCM. PMID:26182381

  7. Fluoxetine synergizes with temozolomide to induce the CHOP-dependent endoplasmic reticulum stress-related apoptosis pathway in glioma cells

    PubMed Central

    Ma, Jian; Yang, Yan-Ru; Chen, Wei; Chen, Mei-Hua; Wang, Hao; Wang, Xiao-Dan; Sun, Li-Li; Wang, Feng-Ze; Wang, De-Cai

    2016-01-01

    Although temozolomide (TMZ) is the most effective chemotherapy agent for glioma, chemotherapy resistance has limited its clinical use. Fluoxetine (FLT), which is widely used in cancer-related depression, has exhibited potent anticancer properties in different cancer cell types. The aim of this study was i) to evaluate the antitumor mechanism of FLT, and ii) to further evaluate the effects of a combination of FLT and TMZ on glioma cells. Glioma cell lines were exposed to FLT and/or TMZ. Cell viability and apoptosis were examined by CCK-8 assay, flow cytometry and caspase-3 activity assay, respectively. The expression of endoplasmic reticulum-stress (ERS) apoptosis-related proteins was measured using real-time PCR and western blotting. Synergism between the two drugs was evaluated by the combination index (CI) through CompuSyn software. FLT significantly and dose-dependently inhibited the proliferation of various glioma cell lines, and rat glioma C6 cells had a highly sensitive response to the addition of FLT. FLT treatment increased the early apoptosis rate, induced typical apoptotic morphology in the C6 cells and activated caspase-3 with no change in the mitochondrial membrane potential. Further study showed that FLT activated the ERS marker, CHOP. This induction was associated with activation of the PERK-eIF2α-ATF4 and ATF6 cascade. Concomitantly, GADD34, a downstream molecule of CHOP, was also increased. Combined FLT and TMZ treatment showed a synergistic cytotoxic effect in the C6 glioma cells. Knockdown of CHOP expression abolished the synergistic effect of FLT and TMZ in the C6 cells, which suggests that FLT may sensitize glioma cells to TMZ through activation of the CHOP-dependent apoptosis pathway. These results revealed that FLT induced glioma cell apoptosis and sensitized glioma cells to TMZ through activation of the CHOP-dependent apoptosis pathway. The present study provides a primary basis for using the combination of these drugs in patients with

  8. Fluoxetine synergizes with temozolomide to induce the CHOP-dependent endoplasmic reticulum stress-related apoptosis pathway in glioma cells.

    PubMed

    Ma, Jian; Yang, Yan-Ru; Chen, Wei; Chen, Mei-Hua; Wang, Hao; Wang, Xiao-Dan; Sun, Li-Li; Wang, Feng-Ze; Wang, De-Cai

    2016-08-01

    Although temozolomide (TMZ) is the most effective chemotherapy agent for glioma, chemotherapy resistance has limited its clinical use. Fluoxetine (FLT), which is widely used in cancer-related depression, has exhibited potent anticancer properties in different cancer cell types. The aim of this study was i) to evaluate the antitumor mechanism of FLT, and ii) to further evaluate the effects of a combination of FLT and TMZ on glioma cells. Glioma cell lines were exposed to FLT and/or TMZ. Cell viability and apoptosis were examined by CCK-8 assay, flow cytometry and caspase-3 activity assay, respectively. The expression of endoplasmic reticulum-stress (ERS) apoptosis-related proteins was measured using real-time PCR and western blotting. Synergism between the two drugs was evaluated by the combination index (CI) through CompuSyn software. FLT significantly and dose-dependently inhibited the proliferation of various glioma cell lines, and rat glioma C6 cells had a highly sensitive response to the addition of FLT. FLT treatment increased the early apoptosis rate, induced typical apoptotic morphology in the C6 cells and activated caspase-3 with no change in the mitochondrial membrane potential. Further study showed that FLT activated the ERS marker, CHOP. This induction was associated with activation of the PERK-eIF2α-ATF4 and ATF6 cascade. Concomitantly, GADD34, a downstream molecule of CHOP, was also increased. Combined FLT and TMZ treatment showed a synergistic cytotoxic effect in the C6 glioma cells. Knockdown of CHOP expression abolished the synergistic effect of FLT and TMZ in the C6 cells, which suggests that FLT may sensitize glioma cells to TMZ through activation of the CHOP-dependent apoptosis pathway. These results revealed that FLT induced glioma cell apoptosis and sensitized glioma cells to TMZ through activation of the CHOP‑dependent apoptosis pathway. The present study provides a primary basis for using the combination of these drugs in patients with

  9. Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis

    PubMed Central

    Yamaguchi, Osamu; Watanabe, Tetsuya; Nishida, Kazuhiko; Kashiwase, Kazunori; Higuchi, Yoshiharu; Takeda, Toshihiro; Hikoso, Shungo; Hirotani, Shinichi; Asahi, Michio; Taniike, Masayuki; Nakai, Atsuko; Tsujimoto, Ikuko; Matsumura, Yasushi; Miyazaki, Jun-ichi; Chien, Kenneth R.; Matsuzawa, Atsushi; Sadamitsu, Chiharu; Ichijo, Hidenori; Baccarini, Manuela; Hori, Masatsugu; Otsu, Kinya

    2004-01-01

    The Raf/MEK/extracellular signal–regulated kinase (ERK) signaling pathway regulates diverse cellular processes such as proliferation, differentiation, and apoptosis and is implicated as an important contributor to the pathogenesis of cardiac hypertrophy and heart failure. To examine the in vivo role of Raf-1 in the heart, we generated cardiac muscle–specific Raf-1–knockout (Raf CKO) mice with Cre-loxP–mediated recombination. The mice demonstrated left ventricular systolic dysfunction and heart dilatation without cardiac hypertrophy or lethality. The Raf CKO mice showed a significant increase in the number of apoptotic cardiomyocytes. The expression level and activation of MEK1/2 or ERK showed no difference, but the kinase activity of apoptosis signal–regulating kinase 1 (ASK1), JNK, or p38 increased significantly compared with that in controls. The ablation of ASK1 rescued heart dysfunction and dilatation as well as cardiac fibrosis. These results indicate that Raf-1 promotes cardiomyocyte survival through a MEK/ERK–independent mechanism. PMID:15467832

  10. Hepatic Xbp1 Gene Deletion Promotes Endoplasmic Reticulum Stress-induced Liver Injury and Apoptosis.

    PubMed

    Olivares, Shantel; Henkel, Anne S

    2015-12-11

    Endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR), a highly conserved signaling cascade that functions to alleviate stress and promote cell survival. If, however, the cell is unable to adapt and restore homeostasis, then the UPR activates pathways that promote apoptotic cell death. The molecular mechanisms governing the critical transition from adaptation and survival to initiation of apoptosis remain poorly understood. We aim to determine the role of hepatic Xbp1, a key mediator of the UPR, in controlling the adaptive response to ER stress in the liver. Liver-specific Xbp1 knockout mice (Xbp1(LKO)) and Xbp1(fl/fl) control mice were subjected to varying levels and durations of pharmacologic ER stress. Xbp1(LKO) and Xbp1(fl/fl) mice showed robust and equal activation of the UPR acutely after induction of ER stress. By 24 h, Xbp1(fl/fl) controls showed complete resolution of UPR activation and no liver injury, indicating successful adaptation to the stress. Conversely, Xbp1(LKO) mice showed ongoing UPR activation associated with progressive liver injury, apoptosis, and, ultimately, fibrosis by day 7 after induction of ER stress. These data indicate that hepatic XBP1 controls the adaptive response of the UPR and is critical to restoring homeostasis in the liver in response to ER stress. PMID:26504083

  11. The efficiency of silencing expression of the gene coding STAT3 transcriptional factor and susceptibility of bladder cancer cells to apoptosis

    PubMed Central

    Bednarek, Ilona; Sypniewski, Daniel; Gawlik, Natalia; Goraus, Karol

    2012-01-01

    Aim of the study Abnormalities in signaling as well as altered gene expression have been identified in numerous diseases, including cancer. The biological functions of signal transducer and activator of transcription 3 (STAT3) are very broad. It is thought that STAT3 can also contribute to oncogenesis. RNA interference (RNAi) is one of the most efficient tools for silencing gene expression within cells. The main goal of the study was to verify the effectiveness of STAT3 gene silencing and its influence on cell proliferation and activation of apoptosis in bladder cancer cells. Material and methods The study was conducted on cellular material, which was the stable human bladder cancer cell line T24. The synthesis of shRNA (short hairpin RNA) interfering with the STAT3 gene was based on pSUPER. neo expression vector. The gene expression at the mRNA level was determined by the real-time PCR method. The influence of STAT3 gene silencing on apoptosis induced in cells with modulated STAT3 expression was evaluated using parallel quantification of mono- and oligonucleosomal DNA degradation of genomic DNA. Results In transfected T24 cells, the STAT3 mRNA expression decreased to the level of 68.3% compared to the scrambled (SCR) control. Silencing the STAT3 gene induced changes in the phenotype of T24 cells. Statistically significant differences in cell proliferation (p = 0.0318) and apoptosis induction (p = 0.0376) were observed. Conclusions Application of the designed shRNA for the STAT3 gene contributed to a decrease of expression of the examined gene. It also decreased the proliferation and increased the susceptibility to apoptosis in T24 bladder cancer cells. PMID:23788901

  12. Monitoring of gliomas in vivo by diffusion MRI and (1)H MRS during gene therapy-induced apoptosis: interrelationships between water diffusion and mobile lipids.

    PubMed

    Liimatainen, Timo; Hakumäki, Juhana M; Kauppinen, Risto A; Ala-Korpela, Mika

    2009-04-01

    The measurement of water diffusion by diffusion-weighted MRI (DWI) in vivo offers a non-invasive method for assessing tissue responses to anti-cancer therapies. The pathway of cell death after anti-cancer treatment is often apoptosis, which leads to accumulation of mobile lipids detectable by (1)H MRS in vivo. However, it is not known how these discrete MR markers of cell death relate to each other. In a rodent tumour model [i.e. ganciclovir-treated herpes simplex thymidine kinase (HSV-tk) gene-transfected BT4C gliomas], we studied the interrelationships between water diffusion (Trace{D}) and mobile lipids during apoptosis. Water diffusion and water-referenced concentrations of mobile lipids showed clearly increasing and interconnected trends during treatment. Of the accumulating (1)H MRS-visible lipids, the fatty acid --CH==CH-- groups and cholesterol compounds showed the strongest associations with water diffusion (r(2) = 0.30; P < 0.05 and r(2) = 0.48; P < 0.01, respectively). These results indicate that the tumour histopathology and apoptotic processes during tumour shrinkage can be interrelated in vivo by DWI of tissue water and (1)H MRS of mobile lipids, respectively. However, there is considerable individual variation in the associations, particularly at the end of the treatment period, and in the relative compositions of the accumulating NMR-visible lipids. The findings suggest that the assessment of individual treatment response in vivo may benefit from combining DWI and (1)H MRS. Absolute and relative changes in mobile lipids may indicate initiation of tumour shrinkage even when changes in tissue water diffusion are still small. Conversely, greatly increased water diffusion probably indicates that substantial cell decomposition has taken place in the tumour tissue when the (1)H MRS resonances of mobile lipids alone can no longer give a reliable estimate of tissue conditions. PMID:19009568

  13. Activation of PPARgamma is required for curcumin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro.

    PubMed

    Zheng, Shizhong; Chen, Anping

    2004-11-15

    During liver fibrogenesis, quiescent HSC (hepatic stellate cells) become active, a transformation that is associated with enhanced cell proliferation and overproduction of ECM (extracellular matrix). Inhibition of cell proliferation and induction of apoptosis are potential strategies to block the activation of HSC for the prevention and treatment of liver fibrosis. Levels of PPARgamma (peroxisome proliferator-activated receptor gamma) are dramatically diminished in parallel with HSC activation. Stimulation of PPARgamma by its agonists inhibits HSC activation in vitro and in vivo. We demonstrated recently that curcumin, the yellow pigment in curry, inhibited HSC activation in vitro, reducing cell proliferation, inducing apoptosis and inhibiting ECM gene expression. Further studies indicated that curcumin induced the gene expression of PPARgamma and stimulated its activity in activated HSC in vitro, which was required for curcumin to inhibit HSC proliferation. The aims of the present study were to evaluate the roles of PPARgamma activation in the induction of apoptosis and suppression of ECM gene expression by curcumin in activated HSC, and to elucidate the underlying mechanisms. Our results demonstrated that blocking PPARgamma activation abrogated the effects of curcumin on the induction of apoptosis and inhibition of the expression of ECM genes in activated HSC in vitro. Further experiments demonstrated that curcumin suppressed the gene expression of TGF-beta (transforming growth factor-beta) receptors and interrupted the TGF-beta signalling pathway in activated HSC, which was mediated by PPARgamma activation. Taken together, our results demonstrate that curcumin stimulated PPARgamma activity in activated HSC in vitro, which was required for curcumin to reduce cell proliferation, induce apoptosis and suppress ECM gene expression. These results provide novel insight into the mechanisms responsible for the inhibition of HSC activation by curcumin. The characteristics

  14. [The molecular evolution of rice stress-related genes].

    PubMed

    Song, Xiaojun; Xie, Kaibin; Zhang, Yanping; Jin, Ping

    2014-10-01

    In the processes of evolution, plants have formed a perfect regulation system to tolerate adverse environmental conditions. However, there has not been any report about the molecular evolution of rice stress-related genes. We derived a family of 22 stress-related genes in rice from Plant Stress Gene Database, and analyzed it by bioinformatics and comparative genome method. The results showed that these genes are relatively conservative in low organisms, and their copy numbers increase along with the environmental changes and the evolution. We also found four conserved sequence motifs and three other specific motifs. We propose that these motifs are closely associated with the function of rice stress-related genes. The analysis of selection pressure showed that about 50% rice stress-related genes have positive selection sites, although they were subject to a strong purifying selection. Positive selection sites might be very significant for plants to adapt to environmental changes. PMID:25406251

  15. Molecular Cloning and Gene Expression of Canine Apoptosis Inhibitor of Macrophage

    PubMed Central

    TOMURA, Shintaro; UCHIDA, Mona; YONEZAWA, Tomohiro; KOBAYASHI, Masato; BONKOBARA, Makoto; ARAI, Satoko; MIYAZAKI, Toru; TAMAHARA, Satoshi; MATSUKI, Naoaki

    2014-01-01

    Apoptosis inhibitor of macrophage (AIM) plays roles in survival of macrophages. In this study, we cloned canine AIM cDNA and observed its transcriptional expression levels in various tissues. The coding sequence of canine AIM was 1,023 bp encoding 340 amino acid residues, which had around 65% homology with those of the human, mouse and rat. Transcriptional expression of AIM was observed in the spleen, lung, liver and lymph node, which confirmed the expression of canine AIM in tissue macrophages. Moreover, AIM was highly expressed in one of the canine histiocytic sarcoma cell lines. CD36, the receptor of AIM, was also expressed in various tissues and these cell lines. These findings are useful to reveal the actual functions of canine AIM. PMID:25649949

  16. Secreted Frizzled related protein-4 (sFRP4) promotes epidermal differentiation and apoptosis

    SciTech Connect

    Maganga, Richard; Giles, Natalie; Adcroft, Katharine; Unni, Ambili; Keeney, Diane; Wood, Fiona; Fear, Mark Dharmarajan, Arunasalam

    2008-12-12

    The skin provides vital protection from infection and dehydration. Maintenance of the skin is through a constant program of proliferation, differentiation and apoptosis of epidermal cells, whereby proliferating cells in the basal layer differentiating to form the keratinized, anucleated stratum corneum. The WNT signalling pathway is known to be important in the skin. WNT signalling has been shown to be important both in epidermal development and in the maintenance and cycling of hair follicles and epidermal stem cells. However, the precise role for this pathway in epidermal differentiation remains unknown. We investigated the role of the WNT signalling inhibitor sFRP4 in epidermal differentiation. sFRP4 is expressed in both normal skin and keratinocytes in culture. Expression of sFRP4 mRNA and protein increases with keratinocyte differentiation and apoptosis, whilst exposure of keratinocytes to exogenous sFRP4 promotes apoptosis and expression of the terminal differentiation marker Involucrin. These data suggest sFRP4 promotes epidermal differentiation.

  17. Antiproliferative and Apoptotic Effect of Curcumin and TRAIL (TNF Related Apoptosis inducing Ligand) in Chronic Myeloid Leukaemic Cells

    PubMed Central

    Iqbal, Bushra; Sahabjada; Singh, Shraddha; Arshad, Mohd.; Mahdi, Abbas Ali; Tiwari, Sunita

    2016-01-01

    Introduction Curcumin, traditionally utilized as a flavouring zest as a part of Indian cooking, has been accounted to decrease the proliferation potential of most cancer cells. Apoptosis is a mechanism by which most anticancer therapies including chemotherapy, radiation and antihormonal therapy kill tumour/cancer cells. Novel agents that may sensitize drug-resistant tumour cells for induction of apoptosis by customary treatments could lead to the regression and improved prognosis of the refractory disease. Indeed, chemotherapeutic agents have been shown to sensitize cancer cells to killing by death ligands such as tumour necrosis factor-α. Aim To investigate cytotoxicity and apoptotic effect of curcumin in chronic myeloid leukaemic cell line KCL-22. Materials and Methods In present study, different doses of curcumin (10,25,50,75,100μM) and tumour necrosis factor–related apoptosis-inducing ligand (TRAIL) (25,50 μM) alone and combine regimen were exposed to myeloid leukaemic cell KCL-22. The cell viability was monitored by MTT assay, apoptotic activity by binding of Annexin V-FITC using fluorescence microscopy and cell cycle check points by flow cytometry. Results Cytotoxic assay revealed that curcumin and TRAIL induced both dose and time-dependent decrease in cell viability. Significant cell cytotoxicity was seen in combine regimen of both curcumin and TRAIL at 48 h of exposure. Cells treated with curcumin and TRAIL was arrested at the S phase, as revealed by flow cytometric analysis. Subtoxic concentrations of the curcumin-TRAIL combination induced strong apoptotic response in KCL-22 cells as demonstrated by the binding of Annexin V-FITC. Conclusion Our study conclude that curcumin inhibits the cancer cell growth by inducing apoptosis and enhance the therapeutic potential of TRAIL which recommends that both curcumin alone or in combination with TRAIL might be useful for leukaemic prevention and better therapeutic responses. PMID:27190933

  18. Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer.

    PubMed

    Fulda, S; Küfer, M U; Meyer, E; van Valen, F; Dockhorn-Dworniczak, B; Debatin, K M

    2001-09-13

    Resistance of tumors to treatment with cytotoxic drugs, irradiation or immunotherapy may be due to disrupted apoptosis programs. Here, we report in a variety of different tumor cells including Ewing tumor, neuroblastoma, malignant brain tumors and melanoma that caspase-8 expression acts as a key determinant of sensitivity for apoptosis induced by death-inducing ligands or cytotoxic drugs. In tumor cell lines resistant to TRAIL, anti-CD95 or TNFalpha, caspase-8 protein and mRNA expression was decreased or absent without caspase-8 gene loss. Methylation-specific PCR revealed hypermethylation of caspase-8 regulatory sequences in cells with impaired caspase-8 expression. Treatment with the demethylation agent 5-Aza-2'-deoxycytidine (5-dAzaC) reversed hypermethylation of caspase-8 resulting in restoration of caspase-8 expression and recruitment and activation of caspase-8 at the CD95 DISC upon receptor cross-linking thereby sensitizing for death receptor-, and importantly, also for drug-induced apoptosis. Inhibition of caspase-8 activity also inhibited apoptosis sensitization by 5-dAzaC. Similar to demethylation, introduction of caspase-8 by gene transfer sensitized for apoptosis induction. Hypermethylation of caspase-8 was linked to reduced caspase-8 expression in different tumor cell lines in vitro and, most importantly, also in primary tumor samples. Thus, these findings indicate that re-expression of caspase-8, e.g. by demethylation or caspase-8 gene transfer, might be an effective strategy to restore sensitivity for chemotherapy- or death receptor-induced apoptosis in various tumors in vivo. PMID:11593392

  19. Taip2 is a novel cell death-related gene expressed in the brain during development

    SciTech Connect

    Yamada, Kazumi; Akiyama, Nobutake; Yamada, Shuichi; Tanaka, Hiromitsu; Saito, Saburo; Hiraoka, Masahiro; Kizaka-Kondoh, Shinae

    2008-05-02

    TAIP2 was isolated as one of the homologous genes of TAIP3 (TGF-{beta}-up-regulated apoptosis-inducing-protein chromosome 3). The transcript of the mouse counterpart of TAIP2, designated mTaip2, was detected in several tissue specimens from embryos to adults, while mTaip2 was dominantly expressed in the embryonic brain. The overexpression of the full-length mTaip2 induced cell death in various cell lines. An analysis of mTaip2 deletion mutants revealed that the N-terminal half of mTaip2, but not the C-terminal half, had nuclear localization and cell death-inducing activities. The results indicate that mTaip2 is a novel cell death-related gene dominantly expressed in the embryonic brain, thus suggesting that mTaip2 may play a role in development of the brain.

  20. Cloning of murine G1RP, a novel gene related to Drosophila melanogaster g1.

    PubMed

    Baker, S J; Reddy, E P

    2000-05-01

    To study the nature of genes that are induced during the apoptotic death of myeloid precursor cells, we performed representational difference analysis (RDA) using 32Dcl3 myeloblastic cells that were deprived of IL-3 for 24h. We have isolated a novel cDNA (g1-related protein, G1RP) that is homologous to g1, a Drosophila melanogaster zinc-finger protein that is expressed in the mesoderm. Northern blot analysis using RNAs derived from 32Dcl3 cells that have been grown in the absence of IL-3 demonstrates that the G1RP message is upregulated in these cells following the removal of IL-3, suggesting that this gene may regulate growth factor withdrawal-induced apoptosis of myeloid precursor cells. PMID:10806348

  1. Si Shen Wan Inhibits mRNA Expression of Apoptosis-Related Molecules in p38 MAPK Signal Pathway in Mice with Colitis

    PubMed Central

    Zhao, Hai-Mei; Huang, Xiao-Ying; Zhou, Feng; Tong, Wen-Ting; Wan, Pan-Ting; Huang, Min-Fang; Ye, Qing; Liu, Duan-Yong

    2013-01-01

    Si Shen Wan (SSW) is used to effectively treat ulcerative colitis (UC) as a formula of traditional Chinese medicine. To explore the mechanism of SSW-inhibited apoptosis of colonic epithelial cell, the study observed mRNA expression of apoptosis-related molecules in p38 MAPK signal pathway in colonic mucosa in colitis mice treated with SSW. Experimental colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice; meanwhile, the mice were administrated daily either SSW (5 g/kg) or p38 MAPK inhibitor (2 mg/kg) or vehicle (physiological saline) for 10 days. While microscopical evaluation was observed, apoptosis rate of colonic epithelial cell and mRNA expression of apoptosis-related molecules were tested. Compared with colitis mice without treatment, SSW alleviated colonic mucosal injuries and decreased apoptosis rate of colonic epithelial cell, while the mRNA expressions of p38 MAPK, p53, caspase-3, c-jun, c-fos, Bax, and TNF-α were decreased in the colonic mucosa in colitis mice treated with SSW, and Bcl-2 mRNA and the ratio of Bcl-2/Bax were increased. The present study demonstrated that SSW inhibited mRNA expression of apoptosis-related molecules in p38 MAPK signal pathway to downregulate colonic epithelial cells apoptosis in colonic mucosa in mice with colitis. PMID:24223057

  2. Combining Hierarchical and Associative Gene Ontology Relations with Textual Evidence in Estimating Gene and Gene Product Similarity

    SciTech Connect

    Sanfilippo, Antonio P.; Posse, Christian; Gopalan, Banu; Riensche, Roderick M.; Beagley, Nathaniel; Baddeley, Bob L.; Tratz, Stephen C.; Gregory, Michelle L.

    2007-03-01

    Gene and gene product similarity is a fundamental diagnostic measure in analyzing biological data and constructing predictive models for functional genomics. With the rising influence of the Gene Ontology, two complementary approaches have emerged where the similarity between two genes or gene products is obtained by comparing Gene Ontology (GO) annotations associated with the genes or gene products. One approach captures GO-based similarity in terms of hierarchical relations within each gene subontology. The other approach identifies GO-based similarity in terms of associative relations across the three gene subontologies. We propose a novel methodology where the two approaches can be merged with ensuing benefits in coverage and accuracy, and demonstrate that further improvements can be obtained by integrating textual evidence extracted from relevant biomedical literature.

  3. High expression of S100A8 gene is associated with drug resistance to etoposide and poor prognosis in acute myeloid leukemia through influencing the apoptosis pathway

    PubMed Central

    Yang, Xiao-yan; Zhang, Ming-ying; Zhou, Qi; Wu, Shui-yan; Zhao, Ye; Gu, Wei-ying; Pan, Jian; Cen, Jian-nong; Chen, Zi-xing; Guo, Wen-ge; Chen, Chien-shing; Yan, Wen-hua; Hu, Shao-yan

    2016-01-01

    S100A8 has been increasingly recognized as a biomarker in multiple solid tumors and has played pivotal roles in hematological malignancies. S100A8 is potentially an indicator for poor survival in acute myeloid leukemia (AML) in retrospective studies. However, the mechanisms of S100A8 are diverse in cancers. In this study, we investigated the correlation of S100A8 at the transcription level with clinical parameters in 91 de novo AML patients and explored its mechanisms of chemoresistance to etoposide in vitro. The transcription level of S100A8 was significantly lower at initial and relapse stages of AML samples than at complete remission (P<0.001) and than in the control group (P=0.0078), while no significant difference could be found between initial and relapse stages (P=0.257). Patients with high transcription levels of S100A8 exhibited a shorter overall survival (P=0.0012). HL-60 cells transfected with S100A8 showed resistance to etoposide with a higher level IC50 value and lower apoptosis rate compared with HL-60 cells transfected with empty vector. Thirty-six genes were significantly downregulated and 12 genes were significantly upregulated in S100A8 overexpression group compared with control group in which 360 genes involved in apoptotic genes array were performed by real-time reverse transcriptase polymerase chain reaction. Among them, the caspase-3, Bcl-2, and Bax were verified by Western blot analysis which indicated that the role of S100A8 in resistance to chemotherapy was closely related with antiapoptosis. In conclusion, critical S100A8 provided useful clinical information in predicting the outcome of AML. The main mechanism of S100A8 which promoted chemoresistance was antiapoptosis. PMID:27540302

  4. Dral Is a P53-Responsive Gene Whose Four and a Half Lim Domain Protein Product Induces Apoptosis

    PubMed Central

    Scholl, Florence A.; McLoughlin, Patricia; Ehler, Elisabeth; de Giovanni, Carla; Schäfer, Beat W.

    2000-01-01

    DRAL is a four and a half LIM domain protein identified because of its differential expression between normal human myoblasts and the malignant counterparts, rhabdomyosarcoma cells. In the current study, we demonstrate that transcription of the DRAL gene can be stimulated by p53, since transient expression of functional p53 in rhabdomyosarcoma cells as well as stimulation of endogenous p53 by ionizing radiation in wild-type cells enhances DRAL mRNA levels. In support of these observations, five potential p53 target sites could be identified in the promoter region of the human DRAL gene. To obtain insight into the possible functions of DRAL, ectopic expression experiments were performed. Interestingly, DRAL expression efficiently triggered apoptosis in three cell lines of different origin to the extent that no cells could be generated that stably overexpressed this protein. However, transient transfection experiments as well as immunofluorescence staining of the endogenous protein allowed for the localization of DRAL in different cellular compartments, namely cytoplasm, nucleus, focal contacts, as well as Z-discs and to a lesser extent the M-bands in cardiac myofibrils. These data suggest that downregulation of DRAL might be involved in tumor development. Furthermore, DRAL expression might be important for heart function. PMID:11062252

  5. Whole Genome Gene Expression Analysis Reveals Casiopeína-Induced Apoptosis Pathways

    PubMed Central

    Valencia-Cruz, Alejandra Idan; Uribe-Figueroa, Laura I.; Galindo-Murillo, Rodrigo; Baca-López, Karol; Gutiérrez, Anllely G.; Vázquez-Aguirre, Adriana; Ruiz-Azuara, Lena; Hernández-Lemus, Enrique; Mejía, Carmen

    2013-01-01

    Copper-based chemotherapeutic compounds Casiopeínas, have been presented as able to promote selective programmed cell death in cancer cells, thus being proper candidates for targeted cancer therapy. DNA fragmentation and apoptosis–in a process mediated by reactive oxygen species–for a number of tumor cells, have been argued to be the main mechanisms. However, a detailed functional mechanism (a model) is still to be defined and interrogated for a wide variety of cellular conditions before establishing settings and parameters needed for their wide clinical application. In order to shorten the gap in this respect, we present a model proposal centered in the role played by intrinsic (or mitochondrial) apoptosis triggered by oxidative stress caused by the chemotherapeutic agent. This model has been inferred based on genome wide expression profiling in cervix cancer (HeLa) cells, as well as statistical and computational tests, validated via functional experiments (both in the same HeLa cells and also in a Neuroblastoma model, the CHP-212 cell line) and assessed by means of data mining studies. PMID:23382936

  6. The RING for gypsy moth control: Topical application of fragment of its nuclear polyhedrosis virus anti-apoptosis gene as insecticide.

    PubMed

    Oberemok, Volodymyr V; Laikova, Kateryna V; Zaitsev, Aleksei S; Gushchin, Vladimir A; Skorokhod, Oleksii A

    2016-07-01

    Numerous studies suggest a cellular origin for the Lymantria dispar multicapsid nuclear polyhedrosis virus (LdMNPV) anti-apoptosis genes IAPs, thus opening a possibility to use the fragments of these genes for modulation of host metabolism. We report here the strong insecticidal and metabolic effect of single-stranded antisense DNA fragment from RING (really interesting new gene) domain of gypsy moth LdMNPV IAP-3 gene: specifically, on reduction of biomass (by 35%) and survival of L. dispar caterpillars. The treatment with this DNA fragment leads to a significantly higher mortality rates of female insects (1.7 fold) accompanied with the signs of apoptosis. Additionally, we show increased expression of host IAP-1, caspase-4 and gelsolin genes in eggs laid by survived females treated with RING DNA fragment accompanied with calcium and magnesium imbalance, indicating that the strong stress reactions and metabolic effects are not confined to treated insects but likely led to apoptosis in eggs too. The proposed new approach for insect pest management, which can be considered as advancement of "microbial pesticides", is based on the application of the specific virus DNA, exploiting the knowledge about virus-pest interactions and putting it to the benefit of mankind. PMID:27265824

  7. Long-term caloric restriction in mice may prevent age-related learning impairment via suppression of apoptosis.

    PubMed

    Ma, Lina; Wang, Rong; Dong, Wen; Li, Yun; Xu, Baolei; Zhang, Jingshuang; Zhao, Zhiwei

    2016-12-15

    Caloric restriction (CR) is the most reliable intervention to extend lifespan and prevent age-related disorders in various species from yeast to rodents. However, the underlying mechanisms have not yet been clearly defined. Therefore, we aimed to identify the underlying mechanisms of long-term CR on age-related learning impairment in C57/BL mice. Thirty six-week-old male C57/BL mice were randomly divided into three groups: normal control group (NC group, n=10), high energy group (HE group, n=10), and CR group (n=10). After 10 months, the Morris water maze test was performed to monitor learning abilities. Western blotting, immunohistochemistry and real-time polymerase chain reaction were used to monitor changes in protein and mRNA levels associated with apoptosis-related proteins in the hippocampus. The average escape latency was lower in the CR group compared with the NC group, and the average time taken to first cross the platform in the CR group was significantly shorter than the HE group. Both Bcl-2 protein and mRNA expression levels in the CR group were significantly higher than those of the NC group and HE group. The expression of Bax, Caspase-3 and PARP protein in the CR group was significantly lower than the NC group. Our findings demonstrate that long-term CR may prevent age-related learning impairments via suppressing apoptosis in mice. PMID:27452805

  8. A candidate gene approach for virally-induced cancer with application to HIV-related Kaposi’s sarcoma

    PubMed Central

    Aissani, Brahim; Wiener, Howard W.; Zhang, Kui; Kaslow, Richard A.; Ogwaro, Kisani M.; Shrestha, Sadeep; Jacobson, Lisa P.

    2014-01-01

    Like other members of the γ-herpesvirus family, human herpes virus 8 (HHV-8), the etiologic agent of classic and HIV-related Kaposi’s sarcoma (HIV-KS) acquired and evolved several human genes with key immune modulatory and cellular growth control functions. The encoded viral homologs substitute for their human counterparts but escape cellular regulation, leading to uncontrolled cell proliferation. We postulated that DNA variants in the human homologs of viral genes that potentially alter the expression or the binding of the encoded factors controlling the antiviral response may facilitate viral interference. To test whether cellular homologs are candidate susceptibility genes, we evaluated the association of DNA variants in 92 immune-related genes including 7 cellular homologs with the risk for HIV-KS in a matched case and control study nested in the Multicenter AIDS Cohort Study. Low- and high-risk gene-by-gene interactions were estimated by multifactor dimensionality reduction and used as predictors in conditional logistic models. Among the most significant gene interactions at risk (OR=2.84–3.92; Bonferroni-adjusted p= 9.9×10−3−2.6×10−4), three comprised human homologs of two latently expressed viral genes, cyclin D1 (CCND1) and interleukin-6 (IL-6), in conjunction with angiogenic genes (VEGF, EDN-1 and EDNRB). At lower significance thresholds (adjusted p < 0.05), human homologs related to apoptosis (CFLAR) and chemotaxis (CCL2) emerged as candidates. This “proof of concept” study identified human homologs involved in the regulation of type I interferon-induced signaling, cell cycle and apoptosis potentially as important determinants of HIV-KS PMID:23818101

  9. Testis-specific Fank1 gene in knockdown mice produces oligospermia via apoptosis

    PubMed Central

    Dong, Wan-Wei; Huang, Hua-Liang; Yang, Wei; Liu, Jia; Yu, Yang; Zhou, Sheng-Lai; Wang, Wei; Lv, Xiang-Chuan; Li, Zhao-Yang; Zhang, Mei-Ying; Zheng, Zhi-Hong; Yan, Wei

    2014-01-01

    Fank1 is exclusively expressed in the testis from the meiosis phase to the haploid phase of spermatogenesis. In this study, we examined the function of Fank1 by establishing a Fank1-knockdown transgenic mouse model. The apoptotic statuses of the testes of the transgenic mice were tested using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method. The FANK1 consensus DNA-binding sequence was identified using cyclic amplification of sequence target (CAST) analysis. Differentially expressed genes were examined using microarray analysis. A reduction in sperm number and an increase in apoptotic spermatocytes were observed in Fank1-knockdown mice, and the apoptotic cells were found to be primarily spermatogonia and spermatocytes. The CAST results demonstrated that the consensus DNA-binding sequence was AAAAAG, in which the percentage occurrence of each base at each position ranged from 55 to 86%. This sequence was present in the promoter regions of 10 differentially expressed genes that were examined using microarray analysis. In total, 17 genes were differentially expressed with changes in their expression levels greater than twofold. The abnormal expression of Fank1 target genes that were regulated directly or indirectly by Fank1 reduced the number of sperm in the knockdown mice. Thus, FANK1 may play a pivotal role in spermatogenesis as a transcription factor. PMID:24369145

  10. Anticarcinogenic effects of diet-related apoptosis in the colorectal mucosa.

    PubMed

    Johnson, I T

    2002-08-01

    The crypt is the fundamental unit of epithelial proliferation in the intestinal mucosa. The progeny of the pluripotent stem cells located near the base of the crypt migrate towards the crypt orifice, divide once or twice more, and then undergo differentiation, senescence and exfoliation. Programmed cell death (apoptosis) also occurs deep in the proliferative zone. Various lines of evidence suggest that apoptosis provides a protective mechanism against neoplasia by removing genetically damaged stem cells from the epithelium before they can undergo clonal expansion. Several different classes of food constituents, including certain polyunsaturated fatty acids, the short-chain fatty acid butyrate, and some phytochemicals including flavonoids and glucosinolates breakdown products, can modulate both cellular proliferation and programmed death. Each of these food components has also been shown to suppress the emergence of aberrant crypt foci in animal models of carcinogenesis. Further mechanistic and clinical studies are required to establish whether such dietary effects can be exploited to achieve preventive or therapeutic effects in humans. PMID:12067580

  11. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.

    PubMed

    Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong

    2015-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis. PMID:25635858

  12. GeneChip Expression Profiling Reveals the Alterations of Energy Metabolism Related Genes in Osteocytes under Large Gradient High Magnetic Fields

    PubMed Central

    Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong

    2015-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis. PMID:25635858

  13. Esophageal cancer-related gene 4 at the interface of injury, inflammation, infection, and malignancy

    PubMed Central

    Baird, Andrew; Lee, Jisook; Podvin, Sonia; Kurabi, Arwa; Dang, Xitong; Coimbra, Raul; Costantini, Todd; Bansal, Vishal; Eliceiri, Brian P

    2014-01-01

    In humans, esophageal cancer-related gene 4 (ECRG4) is encoded by four exons in the c2orf40 locus of chromosome 2. Translation of ECRG4 messenger ribonucleic acid produces a 148 amino acid-secreted 17 KDa protein that is then processed to 14, ten, eight, six, four, and two KDa peptides, depending on the cell in which the gene is expressed. As hypermethylation at the c2orf40 locus inhibits ECRG4 gene expression in many epithelial cancers, several investigators have speculated that ECRG4 is a candidate tumor suppressor. Indeed, overexpression of ECRG4 inhibits cell proliferation in vitro, but it also has a wide range of effects in vivo beyond its antitumor activity. ECRG4 overexpression affects apoptosis, senescence, cell migration, inflammation, injury, and infection responsiveness. ECRG4 activities also depend on its cellular localization, secretion, and post-translational processing. These cytokine/chemokine-like characteristics argue that ECRG4 is not a traditional candidate tumor suppressor gene, as originally predicted by its downregulation in cancer. We review how insights into the regulation of ECRG4 gene expression, knowledge of its primary structure, and the study of its emerging physiological functions come together to support a much more complex role for ECRG4 at the interface of inflammation, infection, and malignancy. PMID:25580077

  14. Network analysis of EtOH-related candidate genes.

    PubMed

    Guo, An-Yuan; Sun, Jingchun; Jia, Peilin; Zhao, Zhongming

    2010-05-01

    Recently, we collected many large-scale datasets for alcohol dependence and EtOH response in five organisms and deposited them in our EtOH-related gene resource database (ERGR, http://bioinfo.mc.vanderbilt.edu/ERGR/). Based on multidimensional evidence among these datasets, we prioritized 57 EtOH-related candidate genes. To explore their biological roles, and the molecular mechanisms of EtOH response and alcohol dependence, we examined the features of these genes by the Gene Ontology (GO) term-enrichment test and network/pathway analysis. Our analysis revealed that these candidate genes were highly enriched in alcohol dependence/alcoholism and highly expressed in brain or liver tissues. All the significantly enriched GO terms were related to neurotransmitter systems or EtOH metabolic processes. Using the Ingenuity Pathway Analysis system, we found that these genes were involved in networks of neurological disease, cardiovascular disease, inflammatory response, and small molecular metabolism. Many key genes in signaling pathways were in the central position of these networks. Furthermore, our protein-protein interaction (PPI) network analysis suggested some novel candidate genes which also had evidence in the ERGR database. This study demonstrated that our candidate gene selection is effective and our network/pathway analysis is useful for uncovering the molecular mechanisms of EtOH response and alcohol dependence. This approach can be applied to study the features of candidate genes of other complex traits/phenotypes. PMID:20491071

  15. Cytochrome P450-2E1 promotes aging-related hepatic steatosis, apoptosis and fibrosis through increased nitroxidative stress.

    PubMed

    Abdelmegeed, Mohamed A; Choi, Youngshim; Ha, Seung-Kwon; Song, Byoung-Joon

    2016-02-01

    The role of ethanol-inducible cytochrome P450-2E1 (CYP2E1) in promoting aging-dependent hepatic disease is unknown and thus was investigated in this study. Young (7 weeks) and aged female (16 months old) wild-type (WT) and Cyp2e1-null mice were used in this study to evaluate age-dependent changes in liver histology, steatosis, apoptosis, fibrosis and many nitroxidative stress parameters. Liver histology showed that aged WT mice exhibited markedly elevated hepatocyte vacuolation, ballooning degeneration, and inflammatory cell infiltration compared to all other groups. These changes were accompanied with significantly higher hepatic triglyceride and serum cholesterol in aged WT mice although serum ALT and insulin resistance were not significantly altered. Aged WT mice showed the highest rates of hepatocyte apoptosis and hepatic fibrosis. Further, the highest levels of hepatic hydrogen peroxide, lipid peroxidation, protein carbonylation, nitration, and oxidative DNA damage were observed in aged WT mice. These increases in the aged WT mice were accompanied by increased levels of mitochondrial nitroxidative stress and alteration of mitochondrial complex III and IV proteins in aged WT mice, although hepatic ATP levels seems to be unchanged. In contrast, the aging-related nitroxidative changes were very low in aged Cyp2e1-null mice. These results suggest that CYP2E1 is important in causing aging-dependent hepatic steatosis, apoptosis and fibrosis possibly through increasing nitroxidative stress and that CYP2E1 could be a potential target for translational research in preventing aging-related liver disease. PMID:26703967

  16. SU-E-T-245: MR Guided Focused Ultrasound Increased PARP Related Apoptosis On Prostate Cancer in Vivo

    SciTech Connect

    Chen, L; Chen, X; Cvetkovic, D; Gupta, R; Yang, D; Ma, C

    2014-06-01

    Purpose: Our previous study demonstrated that significant tumor growth delay was observed in the mice treated with pulsed high intensity focused ultrasound (pHIFU). The purpose of this study is to understand the cell killing mechanisms of pHIFU. Methods: Prostate cancer cells (LNCaP), were grown orthotopically in 17 nude mice. Tumor-bearing mice were treated using pHIFU with an acoustic power of 25W, pulse width 100msec and 300 pulses in one sonication under MR guidance. Mutiple sonications were used to cover the whole tumor volume. Temperature (less than 40 degree centigrade in the focal spot) was monitored using MR thermometry. Animals were euthanized at pre-determined time points (n=2) after treatment: 0 hours; 6 hrs; 24 hrs; 48 hrs; 4 days and 7 days. Two tumorbearing mice were used as control. Three tumor-bearing mice were treated with radiation (RT, 2 Gy) using 6 MV photon beams. RT treated mice were euthanized at 0 hr, 6 hrs and 24 hrs. The tumors were processed for immunohistochemical (IHC) staining for PARP (a surrogate of apoptosis). A multispectral imaging analysis system was used to quantify the expression of PARP staining. Cell apoptosis was calculated based on the PARP expression level, which is the intensity of the DAB reaction. Results: Our data showed that PARP related apoptosis peaked at 48 hrs and 7 days in pHIFU treated mice, which is comparable to that for the RT group at 24 hrs. The preliminary results from this study were consistent with our previous study on tumor growth delay using pHIFU. Conclusion: Our results demonstrated that non-thermal pHIFU increased apoptotic tumor cell death through the PARP related pathway. MR guided pHIFU may have a great potential as a safe, noninvasive treatment modality for cancer therapy. This treatment modality might be able to synergize with PARP inhibitors to achieve better result.

  17. Amplification of a Gene Related to Mammalian mdr Genes in Drug-Resistant Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Wilson, Craig M.; Serrano, Adelfa E.; Wasley, Annemarie; Bogenschutz, Michael P.; Shankar, Anuraj H.; Wirth, Dyann F.

    1989-06-01

    The malaria parasite Plasmodium falciparum contains at least two genes related to the mammalian multiple drug resistance genes, and at least one of the P. falciparum genes is expressed at a higher level and is present in higher copy number in a strain that is resistant to multiple drugs than in a strain that is sensitive to the drugs.

  18. Human Vγ2Vδ2 T cells limit breast cancer growth by modulating cell survival-, apoptosis-related molecules and microenvironment in tumors

    PubMed Central

    Aggarwal, Reeva; Lu, Jingwei; Kanji, Suman; Das, Manjusri; Joseph, Matthew; Lustberg, Maryam B.; Ray, Alo; Pompili, Vincent J.; Shapiro, Charles L.; Das, Hiranmoy

    2013-01-01

    Innate immune system has been known to play an important role in inhibiting the malignant transformation, tumor progression and invasion. However, the mechanistic basis remains ambiguous. Despite polyclonality of human γδ T cells, Vγ2Vδ2 T cell subset was shown to recognize and limit the growth of various tumors at various degrees. The differential recognition of the tumor cells by Vγ2Vδ2 T cells are yet to be defined. Our study reveals that γδ T cells limit in vitro growth of most breast tumor cells, such as SkBr7 (HER2+), MCF7 (ER+) and MDA-MB-231 (ER−) by inhibiting their survival and inducing apoptosis, except BrCa-MZ01 (PR+) cells. To investigate detail mechanisms of antineoplastic effects, we found that cell death was associated with the surface expression levels of MICA/B and ICAM1. Molecular signaling analysis demonstrated that inhibition of cell growth by γδ T cells was associated with the lower expression levels of cell survival-related molecules such as AKT, ERK and concomitant upregulation of apoptosis-related molecules, such as PARP, cleaved caspase 3 and tumor suppressor genes PTEN and P53. However, opposite molecular signaling was observed in the resistant cell line after coculture with γδ T cells. In vivo, antineoplastic effects of γδ T cells were also documented, where tumor growth was inhibited due to the downregulation of survival signals, strong induction of apoptotic molecules, disruption of microvasculature and increased infiltration of tumor associated macrophages. These findings reveal that a complex molecular signaling is involved in γδ T cell-mediated antineoplastic effects. PMID:23595559

  19. Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy

    NASA Astrophysics Data System (ADS)

    Gopinath, P.; Gogoi, Sonit Kumar; Chattopadhyay, Arun; Sankar Ghosh, Siddhartha

    2008-02-01

    The impact of manufactured nanomaterials on human health and the environment is a major concern for commercial use of nanotechnology based products. A judicious choice of selective usage, lower nanomaterial concentration and use in combination with conventional therapeutic materials may provide the best solution. For example, silver nanoparticles (Ag NPs) are known to be bactericidal and also cytotoxic to mammalian cells. Herein, we investigate the molecular mechanism of Ag NP mediated cytotoxicity in both cancer and non-cancer cells and find that optimum particle concentration leads to programmed cell death in vitro. Also, the benefit of the cytotoxic effects of Ag NPs was tested for therapeutic use in conjunction with conventional gene therapy. The synergistic effect of Ag NPs on the uracil phosphoribosyltransferase expression system sensitized the cells more towards treatment with the drug 5-fluorouracil. Induction of the apoptotic pathway makes Ag NPs a representative of a new chemosensitization strategy for future application in gene therapy.

  20. Co-expression of perforin and granzyme B genes induces apoptosis and inhibits the tumorigenicity of laryngeal cancer cell line Hep-2

    PubMed Central

    Li, Xiu-Ying; Li, Zhi; An, Gui-Jie; Liu, Sha; Lai, Yan-Dong

    2014-01-01

    Granzyme B and perforin, two of the most important components, have shown anticancer properties in various cancers, but their effects in laryngeal cancer remain unexplored. Here we decided to examine the effects of Granzyme B and perforin in Hep-2 cells and clarify the role of perforin and granzyme B in the tumorigenicity of laryngeal cancer cell line. Hep-2 cells were transfected with pVAX1-PIG co-expression vector (comprising perforin and granzyme B genes), and then the growth and apoptosis of these Hep-2 cells were evaluated. The tumorigenicity of Hep-2 cell line co-expressing perforin and granzyme B genes was tested in BALB/c nu/nu mice. We found that the co-expression of perforin and granzyme B genes could obviously inhibit cell focus formation and induce cell apoptosis in Hep-2 cells. Furthermore, after subcutaneous injection of Hep-2 cells transfected with pVAX1-PIG, an extensive delay in tumor growth was observed in BALB/c-nu/nu mice. Moreover, our studies demonstrated that the anticancer activity of perforin and granzyme B was sustainable in vivo as tumor development by inducing cell apoptosis. Taken together, our data indicate that the co-expression of perforin and granzyme B genes exhibits anticancer potential, and hopefully provide potential therapeutic applications in laryngeal cancer. PMID:24696715

  1. Effects of nitrogen on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon-based cold atmospheric pressure plasma.

    PubMed

    Tabuchi, Yoshiaki; Uchiyama, Hidefumi; Zhao, Qing-Li; Yunoki, Tatsuya; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2016-06-01

    Cold atmospheric pressure plasma (CAP) is known as a source of biologically active agents, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). In the present study, we examined the effects of nitrogen (N2) on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon (Ar)-CAP. Enormous amounts of hydroxyl (·OH) radicals in aqueous solution were produced using Ar‑CAP generated using a 20 kHz low frequency at 18 kV with a flow rate of 2 l/min. The increase in the levels of ·OH radicals was significantly attenuated by the addition of N2 to Ar gas. On the other hand, the level of total nitrate/nitrite in the supernatant was significantly elevated in the Ar + N2-CAP‑exposed U937 cells. When the cells were exposed to Ar‑CAP, a significant increase in apoptosis was observed, whereas apoptosis was markedly decreased in the cells exposed to Ar + N2-CAP. Microarray and pathway analyses revealed that a newly identified gene network containing a number of heat shock proteins (HSPs), anti-apoptotic genes, was mainly associated with the biological function of the prevention of apoptosis. Quantitative PCR revealed that the expression levels of HSPs were significantly elevated in the cells exposed to Ar + N2-CAP than those exposed to Ar‑CAP. These results indicate that N2 gas in Ar‑CAP modifies the ratio of ROS to RNS, and suppresses the apoptosis induced by Ar‑CAP. The modulation of gaseous conditions in CAP may thus prove to be useful for future clinical applications, such as for switching from a sterilizing mode to cytocidal effect for cancer cells. PMID:27121589

  2. Amelotin gene expression is temporarily being upregulated at the initiation of apoptosis induced by TGFβ1 in mouse gingival epithelial cells.

    PubMed

    Nakayama, Yohei; Matsui, Sari; Noda, Keisuke; Yamazaki, Mizuho; Iwai, Yasunobu; Matsumura, Hiroyoshi; Izawa, Takashi; Tanaka, Eiji; Ganss, Bernhard; Ogata, Yorimasa

    2016-10-01

    Amelotin (AMTN) is expressed and secreted by ameloblasts in the maturation stage of amelogenesis and persist with low levels in the junctional epithelium (JE) of erupted teeth. The purpose of this study is to investigate the transcriptional regulation of the AMTN gene by transforming growth factor beta1 (TGFβ1) in gingival epithelial (GE1) cells in the apoptosis phase. Apoptosis was evaluated by the fragmentation of chromosomal DNA and TUNEL staining. A real-time PCR was carried out to examine the AMTN mRNA levels induced by TGFβ1 and Smad3 overexpression. Transient transfection analyses were completed using the various lengths of mouse AMTN gene promoter constructs with or without TGFβ1. Chromatin immunoprecipitation (ChIP) assays were performed to investigate the Smad3 bindings to the AMTN gene promoter by TGFβ1. TGFβ1-induced apoptosis in GE1 cells were detected at 24 and 48 h by DNA fragmentation and TUNEL staining. AMTN mRNA levels increased at 6 h and reached maximum at 24 h in GE1 cells. Luciferase activities of the mouse AMTN gene promoter constructs were induced by TGFβ1. The results of the ChIP assays showed that there was an increase in Smad3 binding to Smad-binding element (SBE)#1 and SBE#2 after stimulation by TGFβ1. Immunohistochemical localization of AMTN was detected in the JE, and the AMTN protein levels in Smad3-deficient mice were decreased compared with wild-type mice. AMTN mRNA levels were induced at the initiation of apoptosis by TGFβ1, which mediated through the Smad3 bindings to SBEs in the mouse AMTN gene promoter. PMID:27502207

  3. Wild-type p53 and p73 negatively regulate expression of proliferation related genes.

    PubMed

    Scian, M J; Carchman, E H; Mohanraj, L; Stagliano, K E R; Anderson, M A E; Deb, D; Crane, B M; Kiyono, T; Windle, B; Deb, S P; Deb, S

    2008-04-17

    When normal cells come under stress, the wild-type (WT) p53 level increases resulting in the regulation of gene expression responsible for growth arrest or apoptosis. Here we show that elevated levels of WT p53 or its homologue, p73, inhibit expression of a number of cell cycle regulatory and growth promoting genes. Our analysis also identified a group of genes whose expression is differentially regulated by WT p53 and p73. We have infected p53-null H1299 human lung carcinoma cells with recombinant adenoviruses expressing WT p53, p73 or beta-galactosidase, and have undertaken microarray hybridization analyses to identify genes whose expression profile is altered by p53 or p73. Quantitative real-time PCR verified the repression of E2F-5, centromere protein A and E, minichromosome maintenance proteins (MCM)-2, -3, -5, -6 and -7 and human CDC25B after p53 expression. 5-Fluorouracil treatment of colon carcinoma HCT116 cells expressing WT p53 results in a reduction of the cyclin B2 protein level suggesting that DNA damage may indeed cause repression of these genes. Transient transcriptional assays verified that WT p53 repressed promoters of a number of these genes. Interestingly, a gain-of-function p53 mutant instead upregulated a number of these promoters in transient transfection. Using promoter deletion mutants of MCM-7 we have found that WT p53-mediated repression needs a minimal promoter that contains a single E2F site and surrounding sequences. However, a single E2F site cannot be significantly repressed by WT p53. Many of the genes identified are also repressed by p21. Thus, our work shows that WT p53 and p73 repress a number of growth-related genes and that in many instances this repression may be through the induction of p21. PMID:17982488

  4. Expression of apoptosis-regulating genes in the rat prostate following botulinum toxin type a injection

    PubMed Central

    2012-01-01

    Background Onabotulinumtoxin A (OnabotA) injection has been investigated as a novel treatment for benign prostatic enlargement caused by benign prostatic hyperplasia. An OnabotA - induced volume reduction caused by sympathetic fibers impairment has been proposed as a potential mechanism of action. Our aim was to investigate the expression of apoptosis-regulating proteins in the rat prostate following OnabotA intraprostatic injection. Methods Adult Wistar rats were injected in the ventral lobes of the prostate with 10 U of OnabotA or saline. A set of OnabotA-injected animals was further treated with 0.5 mg/kg of phenylephrine (PHE) subcutaneously daily. All animals were sacrificed after 1 week and had their prostates harvested. Immunohistochemical staining was performed for Bax, Bcl-xL and caspase-3 proteins and visualized by the avidin-biotin method. The optical density of the glandular cells was also determined, with measurement of differences between average optical densities for each group. Results Saline-treated animals showed intense epithelial staining for Bcl-xL and a faint labelling for both Bax and Caspase-3. OnabotA-treated rats showed a reduced epithelial staining of Bcl-xL and a consistently increased Bax and Caspase-3 staining when compared with saline-treated animals. PHE-treated animals showed a stronger Bcl-xL staining and reduced staining of both Bax and Caspase-3 when compared to the OnabotA group. Mean signal intensity measurements for each immunoreaction confirmed a significant decrease of the signal intensity for Bcl-xL and a significant increase of the signal intensity for Bax and Caspase 3 in OnabotA-injected animals when compared with the control group. In OnabotA+PHE treated animals mean signal intensity for Bcl-xL, Bax and Caspase 3 immunoreactions was identical to that of the control animals. Conclusions These results support the hypothesis that OnabotA activates apoptotic pathways in the rat prostate through a mechanism that involves

  5. Up-regulation of the interferon-related genes in BRCA2 knockout epithelial cells

    PubMed Central

    Xu, Hong; Xian, Jian; Vire, Emmanuelle; McKinney, Steven; Wong, Jason; Wei, Vivien; Tong, Rebecca; Kouzarides, Tony; Caldas, Carlos; Aparicio, Samuel

    2016-01-01

    BRCA2 mutations are significantly associated with early onset breast cancer, and the tumour suppressing function of BRCA2 has been attributed to its involvement in homologous recombination [1]-mediated DNA repair. In order to identify additional functions of BRCA2, we generated BRCA2-knockout HCT116 human colorectal carcinoma cells. Using genome-wide microarray analyses, we have discovered a link between the loss of BRCA2 and the up-regulation of a subset of interferon (IFN)-related genes, including APOBEC3F and APOBEC3G. The over-expression of IFN-related genes was confirmed in different human BRCA2−/− and mouse Brca2−/− tumour cell lines, and was independent of either senescence or apoptosis. In isogenic wild type BRCA2 cells, we observed over-expression of IFN-related genes after treatment with DNA-damaging agents, and following ionizing radiation. Cells with endogenous DNA damage because of defective BRCA1 or RAD51 also exhibited over-expression of IFN-related genes. Transcriptional activity of the IFN-stimulated response element (ISRE) was increased in BRCA2 knockout cells, and the expression of BRCA2 greatly decreased IFN-α stimulated ISRE reporter activity, suggesting that BRCA2 directly represses the expression of IFN-related genes through the ISRE. Finally, the colony forming capacity of BRCA2 knockout cells was significantly reduced in the presence of either IFN-β or IFN-γ, suggesting that IFNs may have potential as therapeutic agents in cancer cells with BRCA2 mutations. PMID:25043256

  6. Novel histone deacetylase inhibitor MPT0G009 induces cell apoptosis and synergistic anticancer activity with tumor necrosis factor-related apoptosis-inducing ligand against human hepatocellular carcinoma.

    PubMed

    Chen, Mei-Chuan; Huang, Hui-Hsuan; Lai, Chin-Yu; Lin, Yi-Jyun; Liou, Jing-Ping; Lai, Mei-Jung; Li, Yu-Hsuan; Teng, Che-Ming; Yang, Chia-Ron

    2016-01-01

    Hepatocellular carcinoma (HCC) is a frequent cause of cancer-related death; therefore, more effective anticancer therapies for the treatment of HCC are needed. Histone deacetylase (HDAC) inhibitors serve as promising anticancer drugs because they can induce cell growth arrest and apoptosis. We previously reported that 3-[1-(4-methoxybenzenesulfonyl)-2,3-dihydro-1H-indol-5-yl]-N-hydroxyacrylamide (MPT0G009)-a novel 1-arylsulfonyl-5-(N-hydroxyacrylamide)indolines compound-demonstrated potent pan-HDAC inhibition and anti-inflammatory effects. In this study, we evaluated the anti-HCC activity of MPT0G009 in vitro and in vivo. Growth inhibition, apoptosis, and inhibited HDAC activity induced by MPT0G009 were more potent than a marketed HDAC inhibitor SAHA (Vorinostat). Furthermore, MPT0G009-induced apoptosis of Hep3B cells was characterized by an increase in apoptotic (sub-G1) population, loss of mitochondrial membrane potential, activation of caspase cascade, increased levels of pro-apoptotic protein (Bim), and decreased levels of anti-apoptotic proteins (Bcl-2, Bcl-xL, and FLICE-inhibitory protein); the downregulation FLIP by MPT0G009 is mediated through proteasome-mediated degradation and transcriptional suppression. In addition, combinations of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with lower concentrations (0.1 μM) of MPT0G009 were synergistic in cell growth inhibition and apoptosis in HCC cells. In the in vivo model, MPT0G009 markedly reduced Hep3B xenograft tumor volume, inhibited HDAC activities, and induced apoptosis in the Hep3B xenografts. Our results demonstrate that MPT0G009 is a potential new candidate drug for HCC therapy. PMID:26587975

  7. Novel histone deacetylase inhibitor MPT0G009 induces cell apoptosis and synergistic anticancer activity with tumor necrosis factor-related apoptosis-inducing ligand against human hepatocellular carcinoma

    PubMed Central

    Lai, Chin-Yu; Lin, Yi-Jyun; Liou, Jing-Ping; Lai, Mei-Jung; Li, Yu-Hsuan; Teng, Che-Ming; Yang, Chia-Ron

    2016-01-01

    Hepatocellular carcinoma (HCC) is a frequent cause of cancer-related death; therefore, more effective anticancer therapies for the treatment of HCC are needed. Histone deacetylase (HDAC) inhibitors serve as promising anticancer drugs because they can induce cell growth arrest and apoptosis. We previously reported that 3-[1-(4-methoxybenzenesulfonyl)-2,3-dihydro-1H-indol-5-yl]-N-hydroxyacrylamide (MPT0G009)—a novel 1-arylsulfonyl-5-(N-hydroxyacrylamide)indolines compound—demonstrated potent pan-HDAC inhibition and anti-inflammatory effects. In this study, we evaluated the anti-HCC activity of MPT0G009 in vitro and in vivo. Growth inhibition, apoptosis, and inhibited HDAC activity induced by MPT0G009 were more potent than a marketed HDAC inhibitor SAHA (Vorinostat). Furthermore, MPT0G009-induced apoptosis of Hep3B cells was characterized by an increase in apoptotic (sub-G1) population, loss of mitochondrial membrane potential, activation of caspase cascade, increased levels of pro-apoptotic protein (Bim), and decreased levels of anti-apoptotic proteins (Bcl-2, Bcl-xL, and FLICE-inhibitory protein); the downregulation FLIP by MPT0G009 is mediated through proteasome-mediated degradation and transcriptional suppression. In addition, combinations of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with lower concentrations (0.1 μM) of MPT0G009 were synergistic in cell growth inhibition and apoptosis in HCC cells. In the in vivo model, MPT0G009 markedly reduced Hep3B xenograft tumor volume, inhibited HDAC activities, and induced apoptosis in the Hep3B xenografts. Our results demonstrate that MPT0G009 is a potential new candidate drug for HCC therapy. PMID:26587975

  8. Covariation of Branch Lengths in Phylogenies of Functionally Related Genes

    PubMed Central

    Li, Wai Lok Sibon; Rodrigo, Allen G.

    2009-01-01

    Recent studies have shown evidence for the coevolution of functionally-related genes. This coevolution is a result of constraints to maintain functional relationships between interacting proteins. The studies have focused on the correlation in gene tree branch lengths of proteins that are directly interacting with each other. We here hypothesize that the correlation in branch lengths is not limited only to proteins that directly interact, but also to proteins that operate within the same pathway. Using generalized linear models as a basis of identifying correlation, we attempted to predict the gene ontology (GO) terms of a gene based on its gene tree branch lengths. We applied our method to a dataset consisting of proteins from ten prokaryotic species. We found that the degree of accuracy to which we could predict the function of the proteins from their gene tree varied substantially with different GO terms. In particular, our model could accurately predict genes involved in translation and certain ribosomal activities with the area of the receiver-operator curve of up to 92%. Further analysis showed that the similarity between the trees of genes labeled with similar GO terms was not limited to genes that physically interacted, but also extended to genes functioning within the same pathway. We discuss the relevance of our findings as it relates to the use of phylogenetic methods in comparative genomics. PMID:20041191

  9. Baicalein antagonizes rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to Parkinsonism

    PubMed Central

    2012-01-01

    Background Two active compounds, baicalein and its glycoside baicalin were found in the dried root of Scutellaria baicalensis Georgi, and reported to be neuroprotective in vitro and in vivo. This study aims to evaluate the protective effects of baicalein on the rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to parkinsonism. Methods Cell viability and cytotoxicity were determined by MTT assay. The degree of nuclear apoptosis was evaluated with a fluorescent DNA-binding probe Hoechst 33258. The production of reactive oxidative species (ROS) and loss of mitochondrial membrane potential (ΔΨm) were determined by fluorescent staining with DCFH-DA and Rhodanmine 123, respectively. The expression of Bax, Bcl-2, cleaved caspase-3 and phosphorylated ERK1/2 was determined by the Western blots. Results Baicalein significantly increased viability and decreased rotenone-induced death of SH-SY5Y cells in a dose-dependent manner. Pre- and subsequent co-treatment with baicalein preserved the cell morphology and attenuated the nuclear apoptotic characteristics triggered by rotenone. Baicalein antagonized rotenone-induced overproduction of ROS, loss of ΔΨm, the increased expression of Bax, cleaved caspase-3 and phosphorylated ERK1/2 and the decreased expression of Bcl-2. Conclusion The antioxidative effect, mitochondrial protection and modulation of anti-and pro-apoptotic proteins are related to the neuroprotective effects of baicalein against rotenone induced cell death in SH-SY5Y cells. PMID:22264378

  10. Effects of 4-nonylphenol on spermatogenesis and induction of testicular apoptosis through oxidative stress-related pathways.

    PubMed

    Duan, Peng; Hu, Chunhui; Butler, Holly J; Quan, Chao; Chen, Wei; Huang, Wenting; Tang, Sha; Zhou, Wei; Yuan, Meng; Shi, Yuqin; Martin, Francis L; Yang, Kedi

    2016-07-01

    This study tested the hypothesis that prepubertal exposure to 4-nonylphenol (NP) affects reproductive function in male rats. Twenty-four rats at five-weeks-old were randomly divided into four groups and treated with NP at varying concentrations (0, 5, 20, and 60mg/kg/2d) for thirty days by intra-peritoneal injection. 60mg/kg NP induced spermatogenic degeneration and pronounced deficits in epididymal sperm count, motility and function, whereas potentially stimulatory effects were observed at 5 NPmg/kg. Moreover, 60mg/kg NP resulted in a significant reduction in fructose, FSH and LH; induced apoptosis related to oxidative stress; inhibited mRNA and protein levels of Bcl-2 and PCNA; as well as the additional up-regulation of p53, Bax, Apaf-1, cytochrome c, cleaved-caspase-3, Fas and FasL expression. Our data suggest potentially hormetic effects of NP on spermatogenic function. High-dose NP impairs testicular development and function by reducing cell proliferation and inducing apoptosis involving oxidative stress-related p53-Bcl-2/Bax and -Fas/FasL pathways. PMID:27109770

  11. Clinical significance of proliferation, apoptosis and senescence of nasopharyngeal cells by the simultaneously blocking EGF, IGF-1 receptors and Bcl-xl genes

    SciTech Connect

    Dai, Guodong; Peng, Tao; Zhou, Xuhong; Zhu, Jun; Kong, Zhihua; Ma, Li; Xiong, Zhi; Yuan, Yulin

    2013-11-01

    Highlight: •Construction of shRNA segments expression vectors is valid by the investigation of RT-PCR for IGF1R, EGFR and Bcl-xl mRNA and protein expression. •Studies have suggested that the vectors in blocking these genes of the growth factor receptors and anti- apoptosis is capable of breaking the balance of tumor growth so that tumor trend apoptosis and senescence. •Simultaneously blocking multiple genes that are abnormally expressed may be more effective in treating cancer cells than silencing a single gene. -- Abstract: Background: In previous work, we constructed short hairpin RNA (shRNA) expression plasmids that targeted human EGF and IGF-1 receptors messenger RNA, respectively, and demonstrated that these vectors could induce apoptosis of human nasopharyngeal cell lines (CNE2) and inhibit ligand-induced pAkt and pErk activation. Method: We have constructed multiple shRNA expression vectors of targeting EGFR, IGF1R and Bcl-xl, which were transfected to the CNE2 cells. The mRNA expression was assessed by RT-PCR. The growth of the cells, cell cycle progression, apoptosis of the cells, senescent tumor cells and the proteins of EGFR, IGF1R and Bcl-xl were analyzed by MTT, flow cytometry, cytochemical therapy or Western blot. Results: In group of simultaneously blocking EGFR, IGF1R and Bcl-xl genes, the mRNA of EGFR, IGF1R and Bcl-xl expression was decreased by (66.66 ± 3.42)%, (73.97 ± 2.83)% and (64.79 ± 2.83)%, and the protein expressions was diminished to (67.69 ± 4.02)%, (74.32 ± 2.30)%, and (60.00 ± 3.34)%, respectively. Meanwhile, the cell apoptosis increased by 65.32 ± 0.18%, 65.16 ± 0.25% and 55.47 ± 0.45%, and senescent cells increased by 1.42 ± 0.15%, 2.26 ± 0.15% and 3.22 ± 0.15% in the second, third and fourth day cultures, respectively. Conclusions: Simultaneously blocking EGFR, IGF1R and Bcl-xl genes is capable of altering the balance between proliferating versus apoptotic and senescent cells in the favor of both of apoptosis and

  12. α-Phellandrene alters expression of genes associated with DNA damage, cell cycle, and apoptosis in murine leukemia WEHI-3 cells.

    PubMed

    Lin, Jen-Jyh; Yu, Chien-Chih; Lu, Kung-Wen; Chang, Shu-Jen; Yu, Fu-Shun; Liao, Ching-Lung; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-08-01

    α-phellandrene (α-PA) is a cyclic monoterpene, present in natural plants such as Schinus molle L. α-PA promotes immune responses in mice in vivo. However, there is no available information on whether α-PA affects gene expression in leukemia cells. The present study determined effects of α-PA on expression levels of genes associated with DNA damage, cell cycle and apoptotic cell death in mouse leukemia WEHI-3 cells. WEHI-3 cells were treated with 10 μM α-PA for 24 h, cells were harvested and total RNA was extracted, and gene expression was analyzed by cDNA microarray. Results indicated that α-PA up-regulated 10 genes 4-fold, 13 by over 3-fold and 175 by over 2-fold; 21 genes were down-regulated by over 4-fold, 26 genes by over 3-fold and expression of 204 genes was altered by at leas 2-fold compared with the untreated control cells. DNA damage-associated genes such as DNA damage-inducer transcript 4 and DNA fragmentation factor were up-regulated by 4-fold and over 2-fold, respectively; cell-cycle check point genes such as cyclin G2 and cyclin-dependent kinases inhibitor 2D and IA (p21) were up-regulated by over 3-fold and over 2-fold, respectively; apoptosis-associated genes such as BCL2/adenovirus EIB interacting protein 3, XIAP-associated factor 1, BCL2 modifying factor, caspase-8 and FADD-like apoptosis regulator were over 2-fold up-regulated. Furthermore, DNA damage-associated gene TATA box binding protein was over 4-fold down-regulated, and D19Ertd652c (DNA segment) over 2-fold down-regulated; cell cycle-associated gene cyclin E2 was over 2-fold down-regulated; apoptosis associated gene growth arrest-specific 5 was over 9-fold down-regulated, Gm5426 (ATP synthase) was over 3-fold down-regulated, and death box polypeptide 33 was over 2-fold down-regulated. Based on these observations, α-PA altered gene expression in WEHI-3 cells in vitro. PMID:25075043

  13. Effect of fluorescent whitening agent on the transcription of cell damage-related genes in zebrafish embryos.

    PubMed

    Jung, Hyun; Seok, Seung-Hyeok; Han, Ju-Hee; Abdelkader, Tamer Said; Kim, Tae-Hyoun; Chang, Seo-Na; Ko, Ae-Sun; Choi, Seung-Kyu; Lee, Cho-Rong; Seo, Ji-Eun; Byun, Soo-Hyun; Kim, Jung-A; Park, Jae-Hak

    2012-09-01

    7-Diethylamino-4-methylcoumarin (DEMC) is a fluorescent whitening agent (FWAs). There have been some studies on DEMC's protective effects against biological activity but there are few papers about the in vivo toxicity of DEMC. In this study, we used wild-type zebrafish embryos 3 days post fertilization (dpf). Test solutions with DEMC concentrations were negative control (without vehicle), 0 (with vehicle, 0.01% v/v ethanol), 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 and 2 ppm. Embryos and larvae were counted for survival rate and hatching rate. Heart rates were also counted at 2.5 and 3.0 dpf. At 3.0 dpf, quantitative RT-PCR was performed with some samples (0, 0.25, 0.75 and 1.25 ppm) to determine the toxic effect to DEMC by detecting the expression levels of toxic-responsive genes. We used 11 genes, which included oxidative stress-related genes [sod(Mn), sod(Cu,Zn) and hsp70], mitochondrial metabolism-related genes (coxI, pyc, cyt and cyclinG1) and apoptosis-related genes (c-jun, bcl2, bax and p53). High-concentration DEMC-treated groups showed significant different survival rate, hatching rate and heart rate compared with low-concentration DEMC-treated groups. The LC50 of this chemical, 0.959 ppm, was calculated. We also confirmed that some genes in the DEMC exposure groups showed significantly up-regulations in expression levels compared with control groups. We concluded that the fluorescence agent, DEMC, has possible developmental toxicities and alteration effect of gene expression, which are related to oxidative stress, mitochondrial metabolism and apoptosis in zebrafish embryos. PMID:21538407

  14. Induction of Apoptosis and Nonsteroidal Antiinflammatory Drug-Activated Gene 1 in Pancreatic Cancer Cells By A Glycyrrhetinic Acid Derivative

    PubMed Central

    Jutooru, Indira; Chadalapaka, Gayathri; Chintharlapalli, Sudhakar; Papineni, Sabitha; Safe, Stephen

    2009-01-01

    Methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (CDODA-Me) is a synthetic triterpenoid derived from glycyrrhetinic acid, a bioactive phytochemical in licorice, CDODA-Me inhibits growth of Panc1 and Panc28 pancreatic cancer cell lines and activates peroxisome proliferator-activated receptor γ (PPARγ)-dependent transactivation in these cells. CDODA-Me also induced p21 and p27 protein expression and downregulates cyclin D1; however, these responses were receptor-independent. CDODA-Me induced apoptosis in Panc1 and Panc28 cells, and this was accompanied by receptor-independent induction of the proapoptotic proteins early growth response-1 (Egr-1), nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), and activating transcription factor-3 (ATF3). Induction of NAG-1 and Egr-1 by CDODA-Me was dependent on activation of phosphatidylinositol-3-kinase (PI3-K) and/or p42 and p38 mitogen-activated protein kinase (MAPK) pathways but there were differences between Panc28 and Panc1 cells. Induction of NAG-1 in Panc28 cells was p38-MAPK- and PI3-K-dependent but Egr-1-independent, whereas induction in Panc1 cells was associated with activation of p38-MAPK, PI3-K and p42-MAPK and was only partially Egr-1-dependent. This is the first report of the induction of the proapoptotic protein NAG-1 in pancreatic cancer cells. PMID:19125423

  15. Delay of vaccinia virus-induced apoptosis in nonpermissive Chinese hamster ovary cells by the cowpox virus CHOhr and adenovirus E1B 19K genes.

    PubMed Central

    Ink, B S; Gilbert, C S; Evan, G I

    1995-01-01

    The infection of vaccinia virus in Chinese hamster ovary (CHO) cells produces a rapid shutdown in protein synthesis, and the infection is abortive (R.R. Drillien, D. Spehner, and A. Kirn, Virology 111:488-499, 1978; D.E. Hruby, D.L. Lynn, R. Condit, and J.R. Kates, J. Gen. Virol. 47:485-488, 1980). Cowpox virus, which can productively infect CHO cells, had previously been shown to contain a host range gene, CHOhr, which confers on vaccinia virus the ability to replicate in CHO cells (D. Spehner, S. Gillard, R. Drillien, and A. Kirn, J. Virol. 62:1297-1304, 1988). We found that CHO cells underwent apoptosis when infected with vaccinia virus. The expression of the CHOhr gene in vaccinia virus allowed for the expression of late virus genes. CHOhr also delayed or prevented vaccinia virus-induced apoptosis in CHO cells such that there was sufficient time for replication of the virus before the cell died. The E1B 19K gene from adenovirus also delayed vaccinia virus-induced apoptosis; however, there was no detectable expression of late virus genes. Furthermore, E1B 19K also delayed cell death in CHO cells which had been productively infected with vaccinia virus. This study identifies a new antiapoptotic gene from cowpox virus, CHOhr, for which the protein contains an ankyrin-like repeat and shows no significant homology to other proteins. This work also indicates that an antiapoptotic gene from one virus family can delay cell death in an infection of a virus from a different family. PMID:7815529

  16. Low Levels of p53 Protein and Chromatin Silencing of p53 Target Genes Repress Apoptosis in Drosophila Endocycling Cells

    PubMed Central

    Zhang, Bingqing; Mehrotra, Sonam; Ng, Wei Lun; Calvi, Brian R.

    2014-01-01

    Apoptotic cell death is an important response to genotoxic stress that prevents oncogenesis. It is known that tissues can differ in their apoptotic response, but molecular mechanisms are little understood. Here, we show that Drosophila polyploid endocycling cells (G/S cycle) repress the apoptotic response to DNA damage through at least two mechanisms. First, the expression of all the Drosophila p53 protein isoforms is strongly repressed at a post-transcriptional step. Second, p53-regulated pro-apoptotic genes are epigenetically silenced in endocycling cells, preventing activation of a paused RNA Pol II by p53-dependent or p53-independent pathways. Over-expression of the p53A isoform did not activate this paused RNA Pol II complex in endocycling cells, but over-expression of the p53B isoform with a longer transactivation domain did, suggesting that dampened p53B protein levels are crucial for apoptotic repression. We also find that the p53A protein isoform is ubiquitinated and degraded by the proteasome in endocycling cells. In mitotic cycling cells, p53A was the only isoform expressed to detectable levels, and its mRNA and protein levels increased after irradiation, but there was no evidence for an increase in protein stability. However, our data suggest that p53A protein stability is regulated in unirradiated cells, which likely ensures that apoptosis does not occur in the absence of stress. Without irradiation, both p53A protein and a paused RNA pol II were pre-bound to the promoters of pro-apoptotic genes, preparing mitotic cycling cells for a rapid apoptotic response to genotoxic stress. Together, our results define molecular mechanisms by which different cells in development modulate their apoptotic response, with broader significance for the survival of normal and cancer polyploid cells in mammals. PMID:25211335

  17. Tissue-Specific Effects of Valproic Acid on DNA Repair Genes and Apoptosis in Postimplantation Mouse Embryos

    PubMed Central

    Lamparter, Christina; Winn, Louise M.

    2014-01-01

    Exposure to the anticonvulsant drug valproic acid (VPA) is associated with an increased risk of congenital malformations. Although the mechanisms contributing to its teratogenicity are poorly understood, VPA has been shown to induce DNA double strand breaks (DSB) and to increase homologous recombination in vitro. The objective of the present study was to determine whether in utero exposure to VPA alters the frequency of intrachromosomal recombination and the expression of several genes involved in DSB repair in pKZ1 mouse embryos. Pregnant pKZ1 transgenic mice (GD 9.0) were administered VPA (500 mg/kg s.c.) and embryos were extracted and microdissected into the head, heart, and trunk regions 1, 3, 6, and 24 h after injection. Quantitative PCR was used to measure the tissue-specific expression of lacZ, a surrogate measure of recombination, Xrcc4, Rad51, Brca1, and Brca2, with Western blotting used to quantify Rad51, cleaved caspase-3 and cleaved-PARP protein. Increased recombination was only observed in the embryonic head following 6-h VPA exposure. VPA had no effect on Xrcc4 expression. Rad51, Brca1, and Brca2 expression rapidly decreased in head and trunk tissues after 1-h VPA exposure, followed by a subsequent increase in all tissues, although it was generally attenuated in the head and not due to differences in endogenous levels. Cleaved caspase-3 and cleaved-PARP expression was increased in all tissues 3 h following VPA exposure. This study indicates that the tissue-specific expression of several genes involved in DSB repair is altered following exposure to VPA and may be contributing to increased apoptosis. PMID:24913804

  18. Induction of apoptosis by sinulariolide from soft coral through mitochondrial-related and p38MAPK pathways on human bladder carcinoma cells.

    PubMed

    Neoh, Choo-Aun; Wang, Robert Y-L; Din, Zhong-Hao; Su, Jui-Hsin; Chen, Yu-Kuei; Tsai, Feng-Jen; Weng, Shun-Hsiang; Wu, Yu-Jen

    2012-12-01

    Sinulariolide, an isolated compound from the soft coral Sinularia flexibilis, possesses the anti-proliferative, anti-migratory and apoptosis-inducing activities against the TSGH bladder carcinoma cell. The anti-tumor effects of sinulariolide were determined by 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, cell migration assay and flow cytometry, respectively. Sinulariolide inhibited the growth and migration of bladder carcinoma cells in a dose-dependent manner, as well as induced both early and late apoptosis as determined by the flow cytometer. Also, the sinulariolide-induced apoptosis is related to the mitochondrial-mediated apoptosis via caspase-dependent pathways, elucidated by the loss of mitochondrial membrane potential, release of cytochrome C, activation of caspase-3/-9, Bax and Bad, as well as suppression of Bcl-2/Bcl-xL/Mcl-1. Detection of the PARP-1 cleaved product suggested the partial involvement of caspase-independent pathways. Moreover, inhibition of p38MAPK activity leads to the rescue of the cell cytotoxicity of sinulariolide-treated TSGH cells, indicating that the p38MAPK pathway is also involved in the sinulariolide-induced cell apoptosis. Altogether, these results suggest that sinulariolide induces apoptosis against bladder cancer cells through mitochondrial-related and p38MAPK pathways. PMID:23249971

  19. Induction of Apoptosis by Sinulariolide from Soft Coral through Mitochondrial-Related and p38MAPK Pathways on Human Bladder Carcinoma Cells

    PubMed Central

    Neoh, Choo-Aun; Wang, Robert Y.-L.; Din, Zhong-Hao; Su, Jui-Hsin; Chen, Yu-Kuei; Tsai, Feng-Jen; Weng, Shun-Hsiang; Wu, Yu-Jen

    2012-01-01

    Sinulariolide, an isolated compound from the soft coral Sinularia flexibilis, possesses the anti-proliferative, anti-migratory and apoptosis-inducing activities against the TSGH bladder carcinoma cell. The anti-tumor effects of sinulariolide were determined by 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, cell migration assay and flow cytometry, respectively. Sinulariolide inhibited the growth and migration of bladder carcinoma cells in a dose-dependent manner, as well as induced both early and late apoptosis as determined by the flow cytometer. Also, the sinulariolide-induced apoptosis is related to the mitochondrial-mediated apoptosis via caspase-dependent pathways, elucidated by the loss of mitochondrial membrane potential, release of cytochrome C, activation of caspase-3/-9, Bax and Bad, as well as suppression of Bcl-2/Bcl-xL/Mcl-1. Detection of the PARP-1 cleaved product suggested the partial involvement of caspase-independent pathways. Moreover, inhibition of p38MAPK activity leads to the rescue of the cell cytotoxicity of sinulariolide-treated TSGH cells, indicating that the p38MAPK pathway is also involved in the sinulariolide-induced cell apoptosis. Altogether, these results suggest that sinulariolide induces apoptosis against bladder cancer cells through mitochondrial-related and p38MAPK pathways. PMID:23249971

  20. Sex chromosome complement regulates expression of mood-related genes

    PubMed Central

    2013-01-01

    Background Studies on major depressive and anxiety disorders suggest dysfunctions in brain corticolimbic circuits, including altered gamma-aminobutyric acid (GABA) and modulatory (serotonin and dopamine) neurotransmission. Interestingly, sexual dimorphisms in GABA, serotonin, and dopamine systems are also reported. Understanding the mechanisms behind these sexual dimorphisms may help unravel the biological bases of the heightened female vulnerability to mood disorders. Here, we investigate the contribution of sex-related factors (sex chromosome complement, developmental gonadal sex, or adult circulating hormones) to frontal cortex expression of selected GABA-, serotonin-, and dopamine-related genes. Methods As gonadal sex is determined by sex chromosome complement, the role of sex chromosomes cannot be investigated individually in humans. Therefore, we used the Four Core Genotypes (FCG) mouse model, in which sex chromosome complement and gonadal sex are artificially decoupled, to examine the expression of 13 GABA-related genes, 6 serotonin- and dopamine-related genes, and 8 associated signal transduction genes under chronic stress conditions. Results were analyzed by three-way ANOVA (sex chromosome complement × gonadal sex × circulating testosterone). A global perspective of gene expression changes was provided by heatmap representation and gene co-expression networks to identify patterns of transcriptional activities related to each main factor. Results We show that under chronic stress conditions, sex chromosome complement influenced GABA/serotonin/dopamine-related gene expression in the frontal cortex, with XY mice consistently having lower gene expression compared to XX mice. Gonadal sex and circulating testosterone exhibited less pronounced, more complex, and variable control over gene expression. Across factors, male conditions were associated with a tightly co-expressed set of signal transduction genes. Conclusions Under chronic stress conditions

  1. Relating significance and relations of differentially expressed genes in response to Aspergillus flavus infection in maize.

    PubMed

    Asters, Matthew C; Williams, W Paul; Perkins, Andy D; Mylroie, J Erik; Windham, Gary L; Shan, Xueyan

    2014-01-01

    Aspergillus flavus is a pathogenic fungus infecting maize and producing aflatoxins that are health hazards to humans and animals. Characterizing host defense mechanism and prioritizing candidate resistance genes are important to the development of resistant maize germplasm. We investigated methods amenable for the analysis of the significance and relations among maize candidate genes based on the empirical gene expression data obtained by RT-qPCR technique from maize inbred lines. We optimized a pipeline of analysis tools chosen from various programs to provide rigorous statistical analysis and state of the art data visualization. A network-based method was also explored to construct the empirical gene expression relational structures. Maize genes at the centers in the network were considered as important candidate genes for maize DNA marker studies. The methods in this research can be used to analyze large RT-qPCR datasets and establish complex empirical gene relational structures across multiple experimental conditions. PMID:24770700

  2. Relating significance and relations of differentially expressed genes in response to Aspergillus flavus infection in maize

    PubMed Central

    Asters, Matthew C.; Williams, W. Paul; Perkins, Andy D.; Mylroie, J. Erik; Windham, Gary L.; Shan, Xueyan

    2014-01-01

    Aspergillus flavus is a pathogenic fungus infecting maize and producing aflatoxins that are health hazards to humans and animals. Characterizing host defense mechanism and prioritizing candidate resistance genes are important to the development of resistant maize germplasm. We investigated methods amenable for the analysis of the significance and relations among maize candidate genes based on the empirical gene expression data obtained by RT-qPCR technique from maize inbred lines. We optimized a pipeline of analysis tools chosen from various programs to provide rigorous statistical analysis and state of the art data visualization. A network-based method was also explored to construct the empirical gene expression relational structures. Maize genes at the centers in the network were considered as important candidate genes for maize DNA marker studies. The methods in this research can be used to analyze large RT-qPCR datasets and establish complex empirical gene relational structures across multiple experimental conditions. PMID:24770700

  3. Apigenin enhances the cytotoxic effects of tumor necrosis factor-related apoptosis-inducing ligand in human rheumatoid arthritis fibroblast-like synoviocytes.

    PubMed

    Sun, Qing-Wen; Jiang, Song-Min; Yang, Ke; Zheng, Jian-Ming; Zhang, Li; Xu, Wei-Dong

    2012-05-01

    Activated rheumatoid arthritis (RA) fibroblast-like synoviocytes (RAFLSs) play a central role in both initiating and driving RA. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been documented to induce apoptosis only in a small proportion of RAFLSs, which is followed by an induction of proliferation in surviving cells. Apigenin, a chemopreventive bioflavonoid, exhibits proapoptotic activity in many types of cells. In the present study, we sought to determine whether apigenin could enhance the cytotoxic effect of TRAIL on activated RAFLSs. Human RAFLSs isolated from patients with RA were treated with TRAIL (1 nM), apigenin (20 μM), or their combination, and subjected to apoptosis analysis after a 24-h incubation and proliferation analysis after a 72-h incubation. Apoptosis assay revealed that TRAIL or apigenin alone induced a marked apoptosis in RAFLS and their combination yielded a synergistic increase in RAFLS apoptosis. Immunoblotting analysis of apoptosis regulators demonstrated that combined treatment with apigenin increased caspase-3 expression and activity and decreased the Bcl-2/Bax ratio relative to treatment with TRAIL alone. The presence of apigenin significantly restrained TRAIL-induced RAFLS proliferation, coupled with restoration of the expression of two cell-cycle inhibitors p21 and p27. Moreover, the combination with apigenin blunted TRAIL-induced activation of the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. Our data collectively demonstrate that apigenin sensitizes RAFLS to TRAIL-induced apoptosis and counteracts TRAIL-dependent RAFLS proliferation, which is likely mediated through inactivation of PI3-K/Akt signaling pathway. PMID:22189539

  4. NO-Releasing Enmein-Type Diterpenoid Derivatives with Selective Antiproliferative Activity and Effects on Apoptosis-Related Proteins.

    PubMed

    Li, Dahong; Hu, Xu; Han, Tong; Liao, Jie; Xiao, Wei; Xu, Shengtao; Li, Zhanlin; Wang, Zhenzhong; Hua, Huiming; Xu, Jinyi

    2016-01-01

    A series of nine enmein-type ent-kaurane diterpenoid and furoxan-based nitric oxide (NO) donor hybrids (10a-i) were designed and synthesized from commercially available oridonin (1). These hybrids were evaluated for their antiproliferative activity against Bel-7402, K562, MGC-803, and CaEs-17 human cancer cell lines and L-02 normal liver cells. The antiproliferative activity against tumor cells was stronger than the lead compound 1 and parent molecule 9 in most cases. Especially, compound 10f showed the strongest activity against human hepatocarcinoma Bel-7402 cell line with an IC50 of 0.81 μM and could also release 33.7 μmol/L NO at the time point of 60 min. Compounds 10a-i also showed cytotoxic selectivity between tumor and normal liver cells with IC50 ranging from 22.1 to 33.9 μM. Furthermore, the apoptotic properties on Bel-7402 cells revealed that 10f could induce S phase cell cycle arrest and apoptosis at low micromolar concentrations. The effects of 10f on apoptosis-related proteins were also investigated. The potent antiproliferative activities and mechanistic studies warrant further preclinical investigations. PMID:27617998

  5. Effect of taurine on oxidative stress and apoptosis-related protein expression in trinitrobenzene sulphonic acid-induced colitis

    PubMed Central

    Giriş, M; Depboylu, B; Doğru-Abbasoğlu, S; Erbil, Y; Olgaç, V; Alış, H; Aykaç-Toker, G; Uysal, M

    2008-01-01

    Ulcerative colitis (UC) is a multi-factorial inflammatory disease of the colon and rectum. The present study was undertaken to investigate the effect of taurine, an anti-oxidant amino acid, on oxidative stress and the expression of apoptosis-related proteins, pro-apoptotic Bax and anti-apoptotic B cell lymphoma-2 (Bcl-2) in colon tissue in rats with 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis. Rats received taurine (1·5% w/v) in drinking water for 15 days before and 15 days after administration of TNBS solution. Then, colonic myeloperoxidase (MPO) activity, malondialdehyde (MDA) and glutathione (GSH) levels, and Bax and Bcl-2 expression were measured. TNBS-induced colitis caused significantly increased MPO activity and MDA levels and decreased GSH levels in colon tissue compared to controls. Increase in Bax expression and decrease in Bcl-2 expression were detected in colon of rats with TNBS-induced colitis. Taurine treatment was associated with amelioration in macroscopic and microscopic colitis scores, decreased colonic MPO activity and MDA levels and increased GSH levels in TNBS-induced colitis. In addition, taurine reduced the expression of Bax and prevented the loss of Bcl-2 proteins in colon tissue of rats with TNBS-induced colitis. The results of this study show that taurine administration may exert beneficial effects in UC by decreasing inflammatory reactions, oxidative stress and apoptosis. PMID:18241224

  6. Reactive oxygen species effect PASMCs apoptosis via regulation of dynamin-related protein 1 in hypoxic pulmonary hypertension.

    PubMed

    Zhang, Lixin; Ma, Cui; Zhang, Chen; Ma, Mingfei; Zhang, Fengying; Zhang, Linlin; Chen, Yingli; Cao, Fangyuan; Li, Shuzhen; Zhu, Daling

    2016-07-01

    The high level of reactive oxygen species and up-regulation of mitochondrial fission protein dynamin-related protein-1, both of which involved in pulmonary artery smooth muscle cells (PASMCs) apoptosis, have been detected in the lungs of rodent pulmonary arterial hypertension models. However, the regulatory mechanisms between ROS and DRP1 are poorly understood. In this study, ROS inhibitor, hypoxic rodent PAH models, small interfering RNA, polymerase chain reaction, Western blot, flow cytometry, immunohistochemistry and immunofluorescence were used. We determined that ROS, mainly derive from mitochondria, mediate mitochondria fission of PASMCs contributing to pulmonary vascular remodeling. Meanwhile, we also observed that hypoxia-induced DRP1 expression depends on ROS generation, especially mitochondrial ROS (mROS). Moreover, the levels of ROS and mROS evoked by hypoxia were regulated by DRP1. Furthermore, we verified the apoptosis suppression of PASMCs under hypoxia due to the interaction between ROS/mROS and DRP1. Our study reveals a novel mechanism of hypoxia-induced pulmonary vascular remodeling, suggesting a new therapeutic strategy which is targeting on the positive feedback of ROS/mROS-DRP1 for the treatment of PAH. PMID:27010815

  7. DNA Damage Signaling Assessed in Individual Cells in Relation to the Cell Cycle Phase and Induction of Apoptosis

    PubMed Central

    Darzynkiewicz, Zbigniew; Zhao, Hong; Halicka, H. Dorota; Rybak, Paulina; Dobrucki, Jurek; Wlodkowic, Donald

    2012-01-01

    Reviewed are the phosphorylation events reporting activation of protein kinases and the key substrates critical for the DNA damage signaling (DDS). These DDS events are detected immunocytochemically using phospho-specific Abs; flow cytometry or image-assisted cytometry provide the means to quantitatively assess them on a cell by cell basis. The multiparameter analysis of the data is used to correlate these events with each other and relate to the cell cycle phase, DNA replication and induction of apoptosis. Expression of γH2AX as a possible marker of induction of DNA double strand breaks is the most widely studied event of DDS. Reviewed are applications of this multiparameter approach to investigate constitutive DDS reporting DNA damage by endogenous oxidants byproducts of oxidative phosphorylation. Also reviewed are its applications to detect and explore mechanisms of DDS induced by variety of exogenous agents targeting DNA such as exogenous oxidants, ionizing radiation, radiomimetic drugs, UV light, DNA topoisomerase I and II inhibitors, DNA crosslinking drugs and variety of environmental genotoxins. Analysis of DDS induced by these agents provides often a wealth of information about mechanism of induction and the type of DNA damage (lesion) and is reviewed in the context of cell cycle phase specificity, DNA replication, and induction of apoptosis or cell senescence. Critically assessed is interpretation of the data as to whether the observed DDS events report induction of a particular type of DNA lesion. PMID:23137030

  8. Effect of ATRA on the expression of HOXA5 gene in K562 cells and its relationship with cell cycle and apoptosis

    PubMed Central

    LIU, WEN-JUN; ZHANG, TENG; GUO, QU-LIAN; LIU, CHUN-YAN; BAI, YONG-QI

    2016-01-01

    Leukemia is the most common malignant disease in children with high incidence and mortality rates, and a poor treatment effect. The aim of the present study was to examine the changes in the expression of homeobox (Hox) A5 gene and its relationship with cell cycle and apoptosis through the intervention of human K562 myeloid leukemia cell line by all-trans retinoic acid (ATRA), to analyze the role of HOXA5 in the pathogenesis and development process of myeloid leukemia. The optimal concentration of ATRA to be used with K562 cells was determined using a cell counting kit-8 (CCK-8). After 24, 72 and 48 h following treatment of K562 cells with 10 µmol/l ATRA, cell cycle events and apoptosis were measured using flow cytometry. HOXA5 mRNA and protein expression in K562 cells was assessed by RT-PCR and western blot analysis, and the relationship between HOXA5 expression and cell cycle and apoptosis was analyzed. The HOXA5 mRNA and protein expression levels were increased following treatment with ATRA in K562 cells. Apoptosis was increased significantly. The cell cycle was inhibited in G0/G1 phase. Cell proliferation was also inhibited. HOXA5 mRNA and protein expression rates positively correlated with cell apoptosis and the increased percentage and cell cycle of the G0/G1 phase. However, HOXA5 negatively correlated with the reduced percentage of S stage. In conclusion, the expression of HOXA5 in cells was increased following treatment with ATRA in K562 cells, in a time-dependent manner. Additionally, ATRA may inhibit the proliferation of K562 cells and promote apoptosis by upregulating the HOXA5 mRNA and protein expression. PMID:27052693

  9. Identification of genes involved in Ca2+ ionophore A23187-mediated apoptosis and demonstration of a high susceptibility for transcriptional repression of cell cycle genes in B lymphoblasts from a patient with Scott syndrome

    PubMed Central

    Kozian, Detlef; Proulle, Valérie; Nitsche, Almut; Galitzine, Marie; Martinez, Marie-Carmen; Schumann, Beatrice; Meyer, Dominique; Herrmann, Matthias; Freyssinet, Jean-Marie; Kerbiriou-Nabias, Danièle

    2005-01-01

    Background In contrast to other agents able to induce apoptosis of cultured cells, Ca2+ ionophore A23187 was shown to elicit direct activation of intracellular signal(s). The phenotype of the cells derived from patients having the hemorrhagic disease Scott syndrome, is associated with an abnormally high proportion of apoptotic cells, both in basal culture medium and upon addition of low ionophore concentrations in long-term cultures. These features are presumably related to the mutation also responsible for the defective procoagulant plasma membrane remodeling. We analyzed the specific transcriptional re-programming induced by A23187 to get insights into the effect of this agent on gene expression and a defective gene regulation in Scott cells. Results The changes in gene expression upon 48 hours treatment with 200 nM A23187 were measured in Scott B lymphoblasts compared to B lymphoblasts derived from the patient's daughter or unrelated individuals using Affymetrix microarrays. In a similar manner in all of the B cell lines, results showed up-regulation of 55 genes, out of 12,000 represented sequences, involved in various pathways of the cell metabolism. In contrast, a group of 54 down-regulated genes, coding for histones and proteins involved in the cell cycle progression, was more significantly repressed in Scott B lymphoblasts than in the other cell lines. These data correlated with the alterations of the cell cycle phases in treated cells and suggested that the potent effect of A23187 in Scott B lymphoblasts may be the consequence of the underlying molecular defect. Conclusion The data illustrate that the ionophore A23187 exerts its pro-apoptotic effect by promoting a complex pattern of genetic changes. These results also suggest that a subset of genes participating in various steps of the cell cycle progress can be transcriptionally regulated in a coordinated fashion. Furthermore, this research brings a new insight into the defect in cultured Scott B

  10. Molecular functions of genes related to grain shape in rice

    PubMed Central

    Zheng, Jia; Zhang, Yadong; Wang, Cailin

    2015-01-01

    Because grain shape is an important component of rice grain yield, the discovery of genes related to rice grain shape has attracted much attention of rice breeding programs. In recent years, some of these genes have been cloned and studied. They have been found not only regulate grain shape by changing the shape of the spikelet hull, but also regulate endosperm development through control of cell division using different molecular mechanisms. In this paper, we review the recent research on genes related to rice grain shape and their possible regulatory mechanisms. PMID:26069441

  11. DRUMS: a human disease related unique gene mutation search engine.

    PubMed

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. PMID:21913285

  12. Inhibition of cell proliferation and induction of apoptosis by oleanane triterpenoid (CDDO-Me) in pancreatic cancer cells is associated with the suppression of hTERT gene expression and its telomerase activity

    SciTech Connect

    Deeb, Dorrah; Gao, Xiaohua; Liu, Yongbo; Kim, Sahn-Ho; Pindolia, Kirit R.; Arbab, Ali S.; Gautam, Subhash C.

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer CDDO-Me inhibits hTERT gene expression. Black-Right-Pointing-Pointer CDDO-Me inhibits hTERT protein expression. Black-Right-Pointing-Pointer CDDO-Me inhibits hTERT telomerase activity. Black-Right-Pointing-Pointer CDDO-Me inhibits hTERT regulatory proteins. -- Abstract: Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) is a multifunctional oleanane synthetic triterpenoid with potent anti-inflammatory and antitumorigenic properties. The mechanisms of the antisurvival and apoptosis-inducing activities of CDDO-Me and related derivatives of oleanolic acid have been defined; however, to date, no study has been carried out on the effect of CDDOs on human telomerase reverse transcriptase (hTERT) gene or telomerase activity. Here we report for the first time that inhibition of cell proliferation and induction of apoptosis by CDDO-Me in pancreatic cancer cell lines is associated with the inhibition of hTERT gene expression, hTERT telomerase activity and a number of proteins that regulate hTERT expression and activity. Furthermore, abrogation or overexpression of hTERT protein altered the susceptibility of tumor cells to CDDO-Me. These findings suggest that telomerase (hTERT) is a relevant target of CDDO-Me in pancreatic cancer cells.

  13. Mechanisms and anticarcinogenic effects of diet-related apoptosis in the intestinal mucosa.

    PubMed

    Johnson, I T

    2001-12-01

    There is now ample epidemiological evidence to show that the wide international variations in the incidence of both adenomatous polyps and colo-rectal cancer are linked to diet, but the mechanisms through which particular dietary constituents influence the onset of neoplasia are poorly understood. The crypt epithelial cells of the human gastrointestinal mucosa are amongst the most rapidly proliferating tissues in the body, and those of the colorectum are particularly vulnerable to neoplasia. Within the crypt, continuous division of basally localized stem cells gives rise to daughter cells that may divide once or twice again, before differentiating and migrating to the mucosal surface. The majority of nascent crypt epithelial cells differentiate, become senescent and are shed into the gut lumen, but a small proportion die by apoptosis soon after cell division. Various lines of evidence suggest that these pathways of programmed cell death provide a protective mechanism against induction of neoplasia by removing genetically damaged stem cells before they can divide further and give rise to precancerous lesions. There is evidence that the short-chain fatty acid butyrate and several different classes of food constituents, including some polyunsaturated fatty acids, flavonoids and glucosinolate breakdown products, can regulate the processes of cell proliferation and death in vitro, and in colorectal crypts in vivo. All three classes of food components suppress the emergence of aberrant crypt foci in animal models of carcinogenesis. The cellular mechanisms underlying these phenomena, and their possible significance for human health, are discussed. PMID:19087425

  14. ER stress related factor ATF6 and caspase-12 trigger apoptosis in neonatal hypoxic-ischemic encephalopathy

    PubMed Central

    Liu, Luran; Liu, Chang; Lu, Yuting; Liu, Lina; Jiang, Yan

    2015-01-01

    The specific and available markers proteins of neonatal hypoxic-ischemic encephalopathy (HIE) injury are correlated with disease severity and the disability in childhood. Exploring the mechanism of HIE is very helpful to the targeted therapeutic approach in clinical. This study aims to explore the cell death-related proteins or biomarkers that plays roles in the HIE injury. In this study, 15 patients were included the 487 autopsies patients performed at the Department of Pathology. The lactate dehydrogenase (LDH) assay was used to detect the cell viability of NGF-differentiated PC12 cell. TUNEL assay was employed to examine the apoptotic cells in embedded slides samples. Three ER stress-related protein, including ATF6, p-Perk and IRE-1 were investigated using Western blot assay for the ER stress examination. The apoptosis associated caspase-12 and CHOP protein were detected by Western blot. The results indicated that LDH activity of living cells during hypoxia was significantly enhanced to 45% and 64% after 8 hours and 24 hours. The TUNEL results showed that plenty of the PC12 cells became the positive staining cells when treated with 0.1% O2 hypoxia. ER stress UPR pathway protein, cleaved ATF6, was increased significantly when treated with 0.1% O2 compared with the cells treated with 20% O2. Furthermore, the caspase 12 activation was triggered when the cells treated with the 0.1% O2. In conclusion, apoptosis is served as an important factor that triggers the HIE brain injury through cleaving the ATF6 and caspase-12 ER stress-related protein. PMID:26261584

  15. An Integrative Analysis of the Putative Gefitinib-resistance Related Genes in a Lung Cancer Cell Line Model System.

    PubMed

    Han, Xiaohong; Liu, Manjiao; Wang, Shuai; Lv, Guanting; Ma, Li; Zeng, Changqing; Shi, Yuankai

    2015-01-01

    The epidermal growth factor receptor-tyrosine kinase inhibitors (EGFRTKI), such as gefitinib and erlotinib have improved the survival of patients with nonsmall cell lung cancer (NSCLC). Unfortunately, acquired resistance will eventually develop in most patients who initially respond to the therapy. Currently known molecular mechanisms for such an acquired resistance may interpret only about 70% of clinical cases. In this study, using NSCLC cell model H1650, we constructed a gefitinib resistant cell line H1650GR through long term drug exposure with increased doses. RNA sequencing and whole genome SNP array were applied to investigate the transcriptome and genome alterations possibly involved in gefitinib resistance. By comparing the expression profiles between H1650GR and H1650 cells, we identified a large set of differentially expressed genes (DEGs), including FOXM1. In the PI3K/AKT pathway, AKT activity was predicted to be inhibited. However, genes that play important roles in gefitinib-induced apoptosis, including TP53, FOXO3 and BAD, were not up-regulated. Ingenuity Pathway Analysis (IPA) canonical pathway analysis showed that p53 signaling was inhibited in H1650GR cells, with down-regulation of pro-apoptosis genes FAS, PUMA, NOXA, and upregulation of anti-apoptosis genes BIRC5/Survivin. Besides, a large number of immune response-related genes were differently expressed, the role of which in gefitinib resistance requires further investigation. Whole genome copy number alterations (CNAs) were also analyzed and NOXA was located in the H1650GR unique copy number loss region, 18q21. Our results suggested that the much higher EGFR-TKI resistance in H1650GR may be produced by the integration of multi-aspect factors. PMID:25877381

  16. Engineering the periodontal ligament in hyaluronan-gelatin-type I collagen constructs: upregulation of apoptosis and alterations in gene expression by cyclic compressive strain.

    PubMed

    Saminathan, Aarthi; Sriram, Gopu; Vinoth, Jayasaleen Kumar; Cao, Tong; Meikle, Murray C

    2015-02-01

    To engineer constructs of the periodontal ligament (PDL), human PDL cells were incorporated into a matrix of hyaluronan, gelatin, and type I collagen (COLI) in sample holders (13×1 mm) of six-well Biopress culture plates. The loading dynamics of the PDL were mimicked by applying a cyclic compressive strain of 33.4 kPa (340.6 gm/cm(2)) to the constructs for 1.0 s every 60 s, for 6, 12, and 24 h in a Flexercell FX-4000C Strain Unit. Compression significantly increased the number of nonviable cells and increased the expression of several apoptosis-related genes, including initiator and executioner caspases. Of the 15 extracellular matrix genes screened, most were upregulated at some point after 6-12 h deformation, but all were downregulated at 24 h, except for MMPs1-3 and CTGF. In culture supernatants, matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinases-1 (TIMP-1) protein levels were upregulated at 24 h; receptor activator of nuclear kappa factor B (RANKL), osteoprotegerin (OPG) and fibroblast growth factor-2 (FGF-2) were unchanged; and connective tissue growth factor (CTGF) not detected. The low modulus of elasticity of the constructs was a disadvantage-future mechanobiology studies and tissue engineering applications will require constructs with much higher stiffness. Since the major structural protein of the PDL is COLI, a more rational approach would be to permeabilize preformed COLI scaffolds with PDL-populated matrices. PMID:25181942

  17. A genetic screen for modifiers of Drosophila caspase Dcp-1 reveals caspase involvement in autophagy and novel caspase-related genes

    PubMed Central

    2010-01-01

    Background Caspases are cysteine proteases with essential functions in the apoptotic pathway; their proteolytic activity toward various substrates is associated with the morphological changes of cells. Recent reports have described non-apoptotic functions of caspases, including autophagy. In this report, we searched for novel modifiers of the phenotype of Dcp-1 gain-of-function (GF) animals by screening promoter element- inserted Drosophila melanogaster lines (EP lines). Results We screened ~15,000 EP lines and identified 72 Dcp-1-interacting genes that were classified into 10 groups based on their functions and pathways: 4 apoptosis signaling genes, 10 autophagy genes, 5 insulin/IGF and TOR signaling pathway genes, 6 MAP kinase and JNK signaling pathway genes, 4 ecdysone signaling genes, 6 ubiquitination genes, 11 various developmental signaling genes, 12 transcription factors, 3 translation factors, and 11 other unclassified genes including 5 functionally undefined genes. Among them, insulin/IGF and TOR signaling pathway, MAP kinase and JNK signaling pathway, and ecdysone signaling are known to be involved in autophagy. Together with the identification of autophagy genes, the results of our screen suggest that autophagy counteracts Dcp-1-induced apoptosis. Consistent with this idea, we show that expression of eGFP-Atg5 rescued the eye phenotype caused by Dcp-1 GF. Paradoxically, we found that over-expression of full-length Dcp-1 induced autophagy, as Atg8b-GFP, an indicator of autophagy, was increased in the eye imaginal discs and in the S2 cell line. Taken together, these data suggest that autophagy suppresses Dcp-1-mediated apoptotic cell death, whereas Dcp-1 positively regulates autophagy, possibly through feedback regulation. Conclusions We identified a number of Dcp-1 modifiers that genetically interact with Dcp-1-induced cell death. Our results showing that Dcp-1 and autophagy-related genes influence each other will aid future investigations of the

  18. Apoptosis Induction of Human Bladder Cancer Cells by Sanguinarine through Reactive Oxygen Species-Mediated Up-Regulation of Early Growth Response Gene-1

    PubMed Central

    Han, Min Ho; Park, Cheol; Jin, Cheng-Yun; Kim, Gi-Young; Chang, Young-Chae; Moon, Sung-Kwon; Kim, Wun-Jae; Choi, Yung Hyun

    2013-01-01

    Although the effects of sanguinarine, a benzophenanthridine alkaloid, on the inhibition of some kinds of cancer cell growth have been established, the underlying mechanisms are not completely understood. This study investigated possible mechanisms by which sanguinarine exerts its anticancer action in cultured human bladder cancer cell lines (T24, EJ, and 5637). Sanguinarine treatment resulted in concentration-response growth inhibition of the bladder cancer cells by inducing apoptosis. Sanguinarine-induced apoptosis was correlated with the up-regulation of Bax, the down-regulation of Bid and XIAP, the activation of caspases (-3, -8, and -9), and the generation of increased reactive oxygen species (ROS). The ROS scavenger N-acetyl cysteine (NAC) completely reversed the sanguinarine-triggered apoptotic events. In addition, sanguinarine effectively increased the activation of the c-Jun N-terminal kinase (JNK) and the expression of the early growth response gene-1 (Egr-1), which was recovered by pretreatment with NAC. Furthermore, knockdown of Egr-1 expression by small interfering RNA attenuated sanguinarine-induced apoptosis, but not the JNK inhibitor, indicating that the interception of ROS generation blocked the sanguinarine-induced apoptotic effects via deregulation of the expression of Egr-1 proteins. Taken together, the data provide evidence that sanguinarine is a potent anticancer agent, which inhibits the growth of bladder cancer cells and induces their apoptosis through the generation of free radicals. PMID:23717422

  19. Association of copy numbers of survival motor neuron gene 2 and neuronal apoptosis inhibitory protein gene with the natural history in a Chinese spinal muscular atrophy cohort.

    PubMed

    Qu, Yu-jin; Ge, Xiu-shan; Bai, Jin-li; Wang, Li-wen; Cao, Yan-yan; Lu, Yan-yu; Jin, Yu-wei; Wang, Hong; Song, Fang

    2015-03-01

    We evaluated survival motor neuron 2 (SMN2) and neuronal apoptosis inhibitory protein (NAIP) gene copy distribution and the association of copy number with survival in 232 Chinese spinal muscular atrophy (SMA) patients. The SMN2 and NAIP copy numbers correlated positively with the median onset age (r = 0.72 and 0.377). The risk of death for patients with fewer copies of SMN2 or NAIP was much higher than for those with more copies (P < .01). The survival probabilities at 5 years were 5.1%, 90.7%, and 100% for 2, 3, and 4 SMN2 copies and 27.9%, 66.7%, and 87.2% for 0, 1, and 2 NAIP copies, respectively. Our results indicated that combined SMN1-SMN2-NAIP genotypes with fewer copies were associated with earlier onset age and poorer survival probability. Better survival status for Chinese type I SMA might due to a higher proportion of 3 SMN2 and a lower rate of zero NAIP. PMID:25330799

  20. miR-6734 Up-Regulates p21 Gene Expression and Induces Cell Cycle Arrest and Apoptosis in Colon Cancer Cells

    PubMed Central

    Kang, Moo Rim; Park, Ki Hwan; Yang, Jeong-Ook; Lee, Chang Woo; Oh, Soo Jin; Yun, Jieun; Lee, Myeong Youl; Han, Sang-Bae; Kang, Jong Soon

    2016-01-01

    Recently, microRNAs have been implicated in the regulation of gene expression in terms of both gene silencing and gene activation. Here, we investigated the effects of miR-6734, which has a sequence homology with a specific region of p21WAF1/CIP1 (p21) promoter, on cancer cell growth and the mechanisms involved in this effect. miR-6734 up-regulated p21 expression at both mRNA and protein levels and chromatin immunoprecipitation analysis using biotin-labeled miR-6734 confirmed the association of miR-6734 with p21 promoter. Moreover, miR-6734 inhibited cancer cell growth and induced cell cycle arrest and apoptosis in HCT-116 cells, which was abolished by knockdown of p21. The phosphorylation of Rb and the cleavage of caspase 3 and PARP were suppressed by miR-6734 transfection in HCT-116 cells and these effects were also reversed by p21 knockdown. In addition, miR-6734 transfection caused prolonged induction of p21 gene and modification of histones in p21 promoter, which are typical aspects of a phenomenon referred to as RNA activation (RNAa). Collectively, our results demonstrated that miR-6734 inhibits the growth of colon cancer cells by up-regulating p21 gene expression and subsequent induction of cell cycle arrest and apoptosis, suggesting its role as an important endogenous regulator of cancer cell proliferation and survival. PMID:27509128

  1. Brain region-specific altered expression and association of mitochondria-related genes in autism

    PubMed Central

    2012-01-01

    Background Mitochondrial dysfunction (MtD) has been observed in approximately five percent of children with autism spectrum disorders (ASD). MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA). Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. Methods For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG), motor cortex (MC) and thalamus (THL)) from autism patients (n=8) and controls (n=10) were obtained from the Autism Tissue Program (Princeton, NJ, USA). Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct) method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. Results Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2), neurofilament, light polypeptide (NEFL) and solute carrier family 25, member 27 (SLC25A27) showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066) and SLC25A27 (P = 0.046; Z-score 1.990) showed genetic association with autism in Caucasian and Japanese samples, respectively. The expression of

  2. Identifying aging-related genes in mouse hippocampus using gateway nodes

    PubMed Central

    2014-01-01

    number of genes previously implicated in the aging mouse hippocampus related to synaptic plasticity and apoptosis. Additionally, this model identifies a novel set of aging genes previously uncharacterized in the hippocampus. This research can be viewed as a first-step for identifying the processes behind comparative experiments in aging that is applicable to any type of temporal multi-state network. PMID:24886704

  3. Tumor Necrosis Factor Related Apoptosis Inducing Ligand (Trail) in endothelial response to biomechanical and biochemical stresses in arteries.

    PubMed

    D'Auria, F; Centurione, L; Centurione, M A; Angelini, A; Di Pietro, R

    2015-11-01

    Shear stress is determined by three physical components described in a famous triad: blood flow, blood viscosity and vessel geometry. Through the direct action on endothelium, shear stress is able to radically interfere with endothelial properties and the physiology of the vascular wall. Endothelial cells (ECs) have also to sustain biochemical stresses represented by chemokines, growth factors, cytokines, complement, hormones, nitric oxide (NO), oxygen and reactive oxygen species (ROS). Many growth factors, cytokines, chemokines, hormones, and chemical substances, like NO, act and regulate endothelium functions and homeostasis. Among these cytokines Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) has been assigned a regulatory role in ECs physiology and physiopathology. Thus, the aim of this review is to provide a general overview of the endothelial response pathways after different types of biomechanical and biochemical stress in in vitro models and to analyze the crucial role of TRAIL under pathological conditions of the cardiocirculatory system like atherosclerosis, coronary artery disease, and diabetes. PMID:25974396

  4. Review of Literature: Genes Related to Postaxial Polydactyly

    PubMed Central

    Verma, Prashant Kumar; El-Harouni, Ashraf A.

    2015-01-01

    Background: Postaxial polydactyly (PAP) is one of the commonest congenital malformations and usually is associated to several syndromes. There is no primary investigational strategy for PAP cases with single gene disorder in literature. PAP cases with single gene disorder can be classified according to common pathways and molecular basis. Molecular classification may help in diagnostic approach. Materials and Methods: All single gene disorders associated with PAP reported on PubMed and OMIM are analyzed and classified according to molecular basis. Results: Majority of genes related to cilia structure and functions are associated with PAP, so we classified them as ciliopathies and non-ciliopathies groups. Genes related to Shh–Gli3 pathway was the commonest group in non-ciliopathies. Conclusion: Genes related to cilia are most commonly related to PAP due to their indirect relationship to Shh–Gli3 signaling pathway. Initially, PAP may be the only clinical finding with ciliopathies so those cases need follow up. Proper diagnosis is helpful for management and genetic counseling. Molecular approach may help to define pleiotropy. PMID:25717468

  5. Injection of Aβ1-40 into hippocampus induced cognitive lesion associated with neuronal apoptosis and multiple gene expressions in the tree shrew.

    PubMed

    Lin, Na; Xiong, Liu-Lin; Zhang, Rong-Ping; Zheng, Hong; Wang, Lei; Qian, Zhong-Yi; Zhang, Piao; Chen, Zhi-Wei; Gao, Fa-Bao; Wang, Ting-Hua

    2016-05-01

    Alzheimer's disease (AD) can incur significant health care costs to the patient, their families, and society; furthermore, effective treatments are limited, as the mechanisms of AD are not fully understood. This study utilized twelve adult male tree shrews (TS), which were randomly divided into PBS and amyloidbetapeptide1-40 (Aβ1-40) groups. AD model was established via an intracerebroventricular (icv) injection of Aβ1-40 after being incubated for 4 days at 37 °C. Behavioral, pathophysiological and molecular changes were evaluated by hippocampal-dependent tasks, magnetic resonance imaging (MRI), silver staining, hematoxylin-eosin (HE) staining, TUNEL assay and gene sequencing, respectively. At 4 weeks post-injection, as compared with the PBS group, in Aβ1-40 injected animals: cognitive impairments happened, and the hippocampus had atrophied indicated by MRI findings; meanwhile, HE staining showed the cells of the CA3 and DG were significantly thinner and smaller. The average number of cells in the DG, but not the CA3, was also significantly reduced; furthermore, silver staining revealed neurotic plaques and neurofibrillary tangles (NFTs) in the hippocampi; TUNEL assay showed many cells exhibited apoptosis, which was associated with downregulated BCL-2/BCL-XL-associated death promoter (Bad), inhibitor of apoptosis protein (IAP), Cytochrome c (CytC) and upregulated tumor necrosis factor receptor 1 (TNF-R1); lastly, gene sequencing reported a total of 924 mobilized genes, among which 13 of the downregulated and 19 of the upregulated genes were common to the AD pathway. The present study not only established AD models in TS, but also reported on the underlying mechanism involved in neuronal apoptosis associated with multiple gene expression. PMID:26897171

  6. Apoptosis-linked Gene-2 (ALG-2)/Sec31 Interactions Regulate Endoplasmic Reticulum (ER)-to-Golgi Transport

    PubMed Central

    Helm, Jared R.; Bentley, Marvin; Thorsen, Kevin D.; Wang, Ting; Foltz, Lauren; Oorschot, Viola; Klumperman, Judith; Hay, Jesse C.

    2014-01-01

    Luminal calcium released from secretory organelles has been suggested to play a regulatory role in vesicle transport at several steps in the secretory pathway; however, its functional roles and effector pathways have not been elucidated. Here we demonstrate for the first time that specific luminal calcium depletion leads to a significant decrease in endoplasmic reticulum (ER)-to-Golgi transport rates in intact cells. Ultrastructural analysis revealed that luminal calcium depletion is accompanied by increased accumulation of intermediate compartment proteins in COPII buds and clusters of unfused COPII vesicles at ER exit sites. Furthermore, we present several lines of evidence suggesting that luminal calcium affected transport at least in part through calcium-dependent interactions between apoptosis-linked gene-2 (ALG-2) and the Sec31A proline-rich region: 1) targeted disruption of ALG-2/Sec31A interactions caused severe defects in ER-to-Golgi transport in intact cells; 2) effects of luminal calcium and ALG-2/Sec31A interactions on transport mutually required each other; and 3) Sec31A function in transport required luminal calcium. Morphological phenotypes of disrupted ALG-2/Sec31A interactions were characterized. We found that ALG-2/Sec31A interactions were not required for the localization of Sec31A to ER exit sites per se but appeared to acutely regulate the stability and trafficking of the cargo receptor p24 and the distribution of the vesicle tether protein p115. These results represent the first outline of a mechanism that connects luminal calcium to specific protein interactions regulating vesicle trafficking machinery. PMID:25006245

  7. A screen of apoptosis and senescence regulatory genes for life span effects when over-expressed in Drosophila

    PubMed Central

    Shen, Jie; Curtis, Christina; Tavaré, Simon; Tower, John

    2009-01-01

    Conditional expression of transgenes in Drosophila was produced using the Geneswitch system, wherein feeding the drug RU486/Mifepristone activates the artificial transcription factor Geneswitch. Geneswitch was expressed using the Actin5C promoter and this was found to yield conditional, tissue-general expression of a target transgene (UAS-GFP) in both larvae and adult flies. Nervous system-specific (Elav-GS) and fat body-specific Geneswitch drivers were also characterized using UAS-GFP. Fourteen genes implicated in growth, apoptosis and senescence regulatory pathways were over-expressed in adult flies or during larval development, and assayed for effects on adult fly life span. Over-expression of a dominant p53 allele (p53-259H) in adult flies using the ubiquitous driver produced increased life span in females but not males, consistent with previous studies. Both wingless and Ras activated form transgenes were lethal when expressed in larvae, and reduced life span when expressed in adults, consistent with results from other model systems indicating that the wingless and Ras pathways can promote senescence. Over-expression of the caspase inhibitor baculovirus p35 during larval development reduced the mean life span of male and female adults, and also produced a subset of females with increased life span. These experiments suggest that baculovirus p35 and the wingless and Ras pathways can have sex-specific and developmental stage-specific effects on adult Drosophila life span, and these reagents should be useful for the further analysis of the role of these conserved pathways in aging. PMID:20157509

  8. A complex network analysis of hypertension-related genes

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Xu, Chuan-Yun; Hu, Jing-Bo; Cao, Ke-Fei

    2014-01-01

    In this paper, a network of hypertension-related genes is constructed by analyzing the correlations of gene expression data among the Dahl salt-sensitive rat and two consomic rat strains. The numerical calculations show that this sparse and assortative network has small-world and scale-free properties. Further, 16 key hub genes (Col4a1, Lcn2, Cdk4, etc.) are determined by introducing an integrated centrality and have been confirmed by biological/medical research to play important roles in hypertension.

  9. Consequences of recurrent gene flow from crops to wild relatives.

    PubMed Central

    Haygood, Ralph; Ives, Anthony R; Andow, David A

    2003-01-01

    Concern about gene flow from crops to wild relatives has become widespread with the increasing cultivation of transgenic crops. Possible consequences of such gene flow include genetic assimilation, wherein crop genes replace wild ones, and demographic swamping, wherein hybrids are less fertile than their wild parents, and wild populations shrink. Using mathematical models of a wild population recurrently receiving pollen from a genetically fixed crop, we find that the conditions for genetic assimilation are not stringent, and progress towards replacement can be fast, even for disfavoured crop genes. Demographic swamping and genetic drift relax the conditions for genetic assimilation and speed progress towards replacement. Genetic assimilation can involve thresholds and hysteresis, such that a small increase in immigration can lead to fixation of a disfavoured crop gene that had been maintained at a moderate frequency, even if the increase in immigration is cancelled before the gene fixes. Demographic swamping can give rise to 'migrational meltdown', such that a small increase in immigration can lead to not only fixation of a disfavoured crop gene but also drastic shrinkage of the wild population. These findings suggest that the spread of crop genes in wild populations should be monitored more closely. PMID:14561300

  10. Consequences of recurrent gene flow from crops to wild relatives.

    PubMed

    Haygood, Ralph; Ives, Anthony R; Andow, David A

    2003-09-22

    Concern about gene flow from crops to wild relatives has become widespread with the increasing cultivation of transgenic crops. Possible consequences of such gene flow include genetic assimilation, wherein crop genes replace wild ones, and demographic swamping, wherein hybrids are less fertile than their wild parents, and wild populations shrink. Using mathematical models of a wild population recurrently receiving pollen from a genetically fixed crop, we find that the conditions for genetic assimilation are not stringent, and progress towards replacement can be fast, even for disfavoured crop genes. Demographic swamping and genetic drift relax the conditions for genetic assimilation and speed progress towards replacement. Genetic assimilation can involve thresholds and hysteresis, such that a small increase in immigration can lead to fixation of a disfavoured crop gene that had been maintained at a moderate frequency, even if the increase in immigration is cancelled before the gene fixes. Demographic swamping can give rise to 'migrational meltdown', such that a small increase in immigration can lead to not only fixation of a disfavoured crop gene but also drastic shrinkage of the wild population. These findings suggest that the spread of crop genes in wild populations should be monitored more closely. PMID:14561300

  11. Cross-Ontological Analytics: Combining Associative and Hierarchical Relations in the Gene Ontologies to Assess Gene Product Similarity

    SciTech Connect

    Posse, Christian; Sanfilippo, Antonio P.; Gopalan, Banu; Riensche, Roderick M.; Beagley, Nathaniel; Baddeley, Bob L.

    2006-05-28

    Gene and gene product similarity is a fundamental diagnostic measure in analyzing biological data and constructing predictive models for functional genomics. With the rising influence of the gene ontologies, two complementary approaches have emerged where the similarity between two genes/gene products is obtained by comparing gene ontology (GO) annotations associated with the gene/gene products. One approach captures GO-based similarity in terms of hierarchical relations within each gene ontology. The other approach identifies GO-based similarity in terms of associative relations across the three gene ontologies. We propose a novel methodology where the two approaches can be merged with ensuing benefits in coverage and accuracy.

  12. A Potential Regulatory Role for Intronic microRNA-338-3p for Its Host Gene Encoding Apoptosis-Associated Tyrosine Kinase

    PubMed Central

    Kos, Aron; Olde Loohuis, Nikkie F. M.; Wieczorek, Martha L.; Glennon, Jeffrey C.; Martens, Gerard J. M.; Kolk, Sharon M.; Aschrafi, Armaz

    2012-01-01

    MicroRNAs (miRNAs) are important gene regulators that are abundantly expressed in both the developing and adult mammalian brain. These non-coding gene transcripts are involved in post-transcriptional regulatory processes by binding to specific target mRNAs. Approximately one third of known miRNA genes are located within intronic regions of protein coding and non-coding regions, and previous studies have suggested a role for intronic miRNAs as negative feedback regulators of their host genes. In the present study, we monitored the dynamic gene expression changes of the intronic miR-338-3p and miR-338-5p and their host gene Apoptosis-associated Tyrosine Kinase (AATK) during the maturation of rat hippocampal neurons. This revealed an uncorrelated expression pattern of mature miR-338 strands with their host gene. Sequence analysis of the 3′ untranslated region (UTR) of rat AATK mRNA revealed the presence of two putative binding sites for miR-338-3p. Thus, miR-338-3p may have the capacity to modulate AATK mRNA levels in neurons. Transfection of miR-338-3p mimics into rat B35 neuroblastoma cells resulted in a significant decrease of AATK mRNA levels, while the transfection of synthetic miR-338-5p mimics did not alter AATK levels. Our results point to a possible molecular mechanism by which miR-338-3p participates in the regulation of its host gene by modulating the levels of AATK mRNA, a kinase which plays a role during differentiation, apoptosis and possibly in neuronal degeneration. PMID:22363537

  13. Pancreatic carcinogenesis: apoptosis and angiogenesis.

    PubMed

    Onizuka, Shinya; Kawakami, Shunsuke; Taniguchi, Ken; Fujioka, Hikaru; Miyashita, Kosei

    2004-04-01

    Apoptosis and angiogenesis are critical biologic processes that are altered during carcinogenesis. Both apoptosis and angiogenesis may play an important role in pancreatic carcinogenesis. Despite numerous advances in the diagnosis and treatment of pancreatic cancer, its prognosis remains dismal and a new therapeutic approach is much needed. Recent research has revealed that apoptosis and angiogenesis are closely interrelated. Several reports show that a tumor suppresser gene that is expressed in pancreatic carcinoma and related to malignant potential can induce apoptosis and also inhibit angiogenesis. At present, it is generally accepted that tumor growth in cancers, including pancreatic cancer, depends on angiogenesis. We have identified 2 new angiogenesis inhibitors from a conditioned medium of human pancreatic carcinoma cell line (BxPC-3): antiangiogenic antithrombin III (aaAT-III) and vitamin D binding protein-macrophage activating factor (DBP-maf). These molecules were able to regress tumors in severe combined immunodeficiency disease (SCID) mice, demonstrating potent inhibition of endothelial cell proliferation. Moreover, the angiogenesis inhibitors induced tumor dormancy in the animal model. These results suggest that antiangiogenic therapy using angiogenesis inhibitors may become a new strategy for treatment of pancreatic cancer in the near future. PMID:15084979

  14. Analysis of opa1 isoforms expression and apoptosis regulation in autosomal dominant optic atrophy (ADOA) patients with mutations in the opa1 gene.

    PubMed

    Formichi, Patrizia; Radi, Elena; Giorgi, Eleonora; Gallus, Gian Nicola; Brunetti, Jlenia; Battisti, Carla; Rufa, Alessandra; Dotti, Maria Teresa; Franceschini, Rossella; Bracci, Luisa; Federico, Antonio

    2015-04-15

    Autosomal dominant optic atrophy (ADOA) is a hereditary optic neuropathy characterized by bilateral symmetrical visual loss, decrease in retinal ganglion cells and a loss of myelin within the optic nerve. ADOA is associated to mutations in Optic atrophy 1 gene (OPA1), which encodes a mitochondrial protein involved in cristae remodeling, maintenance of mitochondrial membrane integrity, mitochondrial fusion and apoptosis regulation. We thus evaluated the rate of apoptosis and the expression levels of OPA1 isoforms in ADOA and control cells. Peripheral blood lymphocytes from eight patients with OPA1 mutation and age matched controls were cultivated both in basal conditions or with 2-deoxy-D-ribose, a reducing sugar that induces apoptosis through oxidative stress. Apoptosis was analyzed by flow cytometry, phosphatidylserine translocation, mitochondrial membrane depolarization and caspase 3 activation. We also analyzed the expression levels of OPA1 isoforms in ADOA and control cells cultured with and without 2-deoxy-D-ribose. We showed an increased percentage of apoptotic cells in ADOA patients compared to controls, both in basal culture conditions and after 2-deoxy-D-ribose treatment. This suggested a great susceptibility of ADOA cells to oxidative stress and a strong correlation between OPA1 protein dysfunctions and morphological-functional alterations to mitochondria. Moreover OPA1 protein expression was significantly decreased in lymphocytes from the ADOA patients after 2-deoxy-D-ribose treatment, implying a great sensitivity of the mutated protein to free radical damage. Concluding, we could confirm that oxidative stress-induced apoptosis may play a key role in the pathophysiological process bringing to retinal ganglion cells degeneration in ADOA. PMID:25796301

  15. Reprogrammed CRISPR-Cas9 targeting the conserved regions of HPV6/11 E7 genes inhibits proliferation and induces apoptosis in E7-transformed keratinocytes.

    PubMed

    Liu, Yu-Chen; Cai, Zhi-Ming; Zhang, Xue-Jun

    2016-01-01

    The persistence infection of low-risk type (type 6 or type 11) of human papillomavirus (HPV) is the main cause of genital warts. Given the high rate of recurrence after treatment, the use of a new molecular agent is certain to be of value. The aim of this study was to achieve targeted inactivation of viral E 7 gene in keratinocytes using the reprogrammed clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system. To accomplish this, a universal CRISPR-Cas9 system for targeting both HPV6/11 E 7 genes was constructed by using a dual guide RNA vector. After transfection of the vector into E 7-transfromed keratinocytes, the expression level of E 7 protein was measured using western-blot analysis and the sequence of the E 7 gene was determined using Sanger sequencing. Cell proliferation was analyzed by CCK-8 assay, and cell apoptosis was evaluated by Hoechst 33258 staining, flow cytometry analysis and ELISA assay. The results indicated that both HPV6/11 E 7 genes can be inactivated by the single CRISPR-Cas9 system. Furthermore, silencing of E 7 led to inhibition of cell proliferation and induction of apoptosis in E 7-transfromed keratinocytes but not in normal keratinocytes. Our data suggested that the reprogrammed CRISPR-Cas9 system has the potential for the development of an adjuvant therapy for genital warts. PMID:26228041

  16. Overexpression of cellular repressor of E1A-stimulated genes inhibits TNF-{alpha}-induced apoptosis via NF-{kappa}B in mesenchymal stem cells

    SciTech Connect

    Peng, Cheng-Fei; Han, Ya-Ling; Jie-Deng,; Yan, Cheng-Hui; Jian-Kang,; Bo-Luan,; Jie-Li

    2011-03-25

    Research highlights: {yields} CREG protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis. {yields} CREG inhibits the phosphorylation of I{kappa}B{alpha} and prevents the activation of NF-{kappa}B. {yields} CREG inhibits NF-{kappa}B nuclear translocation and pro-apoptosis protein transcription. {yields} CREG anti-apoptotic effect involves inhibition of the death receptor pathway. {yields} p53 is downregulated by CREG via NF-{kappa}B pathway under TNF-{alpha} stimulation. -- Abstract: Bone marrow-derived mesenchymal stem cells (MSCs) show great potential for therapeutic repair after myocardial infarction. However, poor viability of transplanted MSCs in the ischemic heart has limited their use. Cellular repressor of E1A-stimulated genes (CREG) has been identified as a potent inhibitor of apoptosis. This study therefore aimed to determine if rat bone marrow MSCs transfected with CREG-were able to effectively resist apoptosis induced by inflammatory mediators, and to demonstrate the mechanism of CREG action. Apoptosis was determined by flow cytometric and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assays. The pathways mediating these apoptotic effects were investigated by Western blotting. Overexpression of CREG markedly protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis by 50% after 10 h, through inhibition of the death-receptor-mediated apoptotic pathway, leading to attenuation of caspase-8 and caspase-3. Moreover, CREG resisted the serine phosphorylation of I{kappa}B{alpha} and prevented the nuclear translocation of the transcription factor nuclear factor-{kappa}B (NF-{kappa}B) under TNF-{alpha} stimulation. Treatment of cells with the NF-{kappa}B inhibitor pyrrolidine dithiocarbamate (PDTC) significantly increased the transcription of pro-apoptosis proteins (p53 and Fas) by NF-{kappa}B, and attenuated the anti-apoptotic effects of CREG on MSCs. The results of this study

  17. Age-related macular degeneration: Evidence of a major gene

    SciTech Connect

    Bhatt, S.; Warren, C.; Yang, H.

    1994-09-01

    Age-related macular degeneration is a major cause of blindness in developing countries. It remains a very poorly understood disorder. Although environmental and genetic factors have been implicated in its pathogenesis, none have been firmly implicated. The purpose of this study was to use pedigree analysis to evaluate the possible role of a major gene as a determinant of familial aggregation. Information was collected regarding occupation, smoking, sun exposure, associated medical problems and family history. 50 probands with age-related macular degeneration (ARMD) and 39 age, race and sex-matched controls were included in the study. In the ARMD group 15/50 (30%) of probands reported a positive family history; 22 out of 222 first degree relatives over age 60 were reported to be affected. In the control groups, none of the 138 first degree relatives over age 50 had a history of ARMD. This difference is statistically significant (p = 0.0003), indicating that genetic factors may play an important role in the pathogenesis of ARMD. In the ARMD group more siblings as compared to parents (16/127 vs. 5/82) were affected. 5/50 (10%) of the ARMD probands also gave a history of a second degree relative affected with ARMD, compared to none known among the relatives of controls. Data from 50 pedigrees were analyzed by complex segregation analysis under a class A regressive logistic model using the REGD program implemented in the SAGE package. Preliminary results allow rejection of a polygenic model and suggest there is a major gene for ARMD in these families. The inheritance model most compatible with the observed familial aggregation is autosomal recessive. In conclusion, these results are suggestive of a major gene effect in the etiology of ARMD. Identification of a major gene effect is a first step to further pursue linkage analysis and to search for the gene(s) involved in the causation of ARMD.

  18. Inhibition of cell proliferation, induction of apoptosis, reactivation of DLC1, and modulation of other gene expression by dietary flavone in breast cancer cell lines

    PubMed Central

    Ullmannova, Veronika; Popescu, Nicholas C.

    2007-01-01

    Background Dietary flavone was previously shown to increase the expression of deleted in liver cancer–1 gene (DLC-1) in HT-29 colon carcinoma cell line (Proteomics 2004;4:2455-64). DLC-1 that encodes a Rho GTPase-activating protein, functions as a tumor suppressor gene and is frequently inactivated or down-regulated in several common cancers. Restoration of DLC-1 expression suppresses in vitro tumor cells proliferation and tumorigenicity in vivo. Methods Here, the effect of flavone was examined in several DLC-1-deficient cell lines derived from different types human cancer using assays for cell proliferation, gene expression and transfer. Results We show that exposure to 150μM flavone increased DLC1 expression in breast but not in liver or prostate carcinoma cells or a nonmalignant breast epithelial cell line. Flavone restored the expression of DLC1 in the breast carcinoma cell lines MDA-MB-468, MDA-MB-361, and BT20 as well as in the colon carcinoma cell line HT-29 all of which are DLC-1-negative due to promoter hypermethylation. We further show that flavone inhibited cell proliferation, induced cell cycle arrest at G2-M, increased p21 Waf1 gene expression, and caused apoptosis. Microarray analysis of these aggressive and metastatic breast carcinoma cells revealed 29 flavone-responsive genes, among which the DNA damage–inducible GADD genes were up-regulated and the proto-oncogene STMN1 and IGFBP3 were down-regulated. Conclusions Flavone-mediated alterations of genes that regulate tumor cell proliferation, cell cycle, and apoptosis contribute to chemopreventive and antitumoral effects of flavone. Alone or in combination with demethylating agents, flavone may be an effective adjunct to chemotherapy in preventing breast cancer metastasis. PMID:17418982

  19. Comparative and functional analysis of cardiovascular-related genes

    SciTech Connect

    Cheng, Jan-Fang; Pennacchio, Len A.

    2003-09-01

    The ability to detect putative cis-regulatory elements in cardiovascular-related genes has been accelerated by the availability of genomic sequence data from numerous vertebrate species and the recent development of comparative genomic tools. This improvement is anticipated to lead to a better understanding of the complex regulatory architecture of cardiovascular (CV) genes and how genetic variants in these non-coding regions can potentially play a role in cardiovascular disease. This manuscript reviews a recently established database dedicated to the comparative sequence analysis of 250 human CV genes of known importance, 37 of which currently contain sequence comparison data for organisms beyond those of human, mouse and rat. These data have provided a glimpse into the variety of possible insights from deep vertebrate sequence comparisons and the identification of putative gene regulatory elements.

  20. Hepatitis-related hepatocellular carcinoma: Insights into cytokine gene polymorphisms.

    PubMed

    Dondeti, Mahmoud Fathy; El-Maadawy, Eman Anwar; Talaat, Roba Mohamed

    2016-08-14

    Hepatocellular carcinoma (HCC) is a primary liver cancer, which is one of the most prevalent cancers among humans. Many factors are involved in the liver carcinogenesis as lifestyle and environmental factors. Hepatitis virus infections are now recognized as the chief etiology of HCC; however, the precise mechanism is still enigmatic till now. The inflammation triggered by the cytokine-mediated immune response, was reported to be the closest factor of HCC development. Cytokines are immunoregulatory proteins produced by immune cells, functioning as orchestrators of the immune response. Genes of cytokines and their receptors are known to be polymorphic, which give rise to variations in their genes. These variations have a great impact on the expression levels of the secreted cytokines. Therefore, cytokine gene polymorphisms are involved in the molecular mechanisms of several diseases. This piece of work aims to shed much light on the role of cytokine gene polymorphisms as genetic host factor in hepatitis related HCC. PMID:27570418

  1. Hepatitis-related hepatocellular carcinoma: Insights into cytokine gene polymorphisms

    PubMed Central

    Dondeti, Mahmoud Fathy; El-Maadawy, Eman Anwar; Talaat, Roba Mohamed

    2016-01-01

    Hepatocellular carcinoma (HCC) is a primary liver cancer, which is one of the most prevalent cancers among humans. Many factors are involved in the liver carcinogenesis as lifestyle and environmental factors. Hepatitis virus infections are now recognized as the chief etiology of HCC; however, the precise mechanism is still enigmatic till now. The inflammation triggered by the cytokine-mediated immune response, was reported to be the closest factor of HCC development. Cytokines are immunoregulatory proteins produced by immune cells, functioning as orchestrators of the immune response. Genes of cytokines and their receptors are known to be polymorphic, which give rise to variations in their genes. These variations have a great impact on the expression levels of the secreted cytokines. Therefore, cytokine gene polymorphisms are involved in the molecular mechanisms of several diseases. This piece of work aims to shed much light on the role of cytokine gene polymorphisms as genetic host factor in hepatitis related HCC. PMID:27570418

  2. Visually Relating Gene Expression and in vivo DNA Binding Data

    SciTech Connect

    Huang, Min-Yu; Mackey, Lester; Ker?,; nen, Soile V. E.; Weber, Gunther H.; Jordan, Michael I.; Knowles, David W.; Biggin, Mark D.; Hamann, Bernd

    2011-09-20

    Gene expression and in vivo DNA binding data provide important information for understanding gene regulatory networks: in vivo DNA binding data indicate genomic regions where transcription factors are bound, and expression data show the output resulting from this binding. Thus, there must be functional relationships between these two types of data. While visualization and data analysis tools exist for each data type alone, there is a lack of tools that can easily explore the relationship between them. We propose an approach that uses the average expression driven by multiple of ciscontrol regions to visually relate gene expression and in vivo DNA binding data. We demonstrate the utility of this tool with examples from the network controlling early Drosophila development. The results obtained support the idea that the level of occupancy of a transcription factor on DNA strongly determines the degree to which the factor regulates a target gene, and in some cases also controls whether the regulation is positive or negative.

  3. The molecular signature of AML mesenchymal stromal cells reveals candidate genes related to the leukemogenic process.

    PubMed

    Binato, Renata; de Almeida Oliveira, Nathalia Correa; Du Rocher, Barbara; Abdelhay, Eliana

    2015-12-01

    Acute myeloid leukemia (AML) is a heterogeneous disease characterized by myeloid precursor proliferation in the bone marrow, apoptosis reduction and differentiation arrest. Although there are several studies in this field, events related to disease initiation and progression remain unknown. The malignant transformation of hematopoietic stem cells (HSC) is thought to generate leukemic stem cells, and this transformation could be related to changes in mesenchymal stromal cell (hMSC) signaling. Thus, the aim of this work was to analyze the gene expression profile of hMSC from AML patients (hMSC-AML) compared to healthy donors hMSCs (hMSC-HD). The results showed a common molecular signature for all hMSC-AML. Other assays were performed with a large number of patients and the results confirmed a molecular signature that is capable of distinguishing hMSC-AML from hMSC-HD. Moreover, CCL2 and BMP4 genes encode secreted proteins that could affect HSCs. To verify whether these proteins are differentially expressed in AML patients, ELISA was performed with plasma samples. CCL2 and BMP4 proteins are differentially expressed in AML patients, indicating changes in hMSC-AML signaling. Altogether, hMSCs-AML signaling alterations could be an important factor in the leukemic transformation process. PMID:26279521

  4. Detecting Horizontal Gene Transfer between Closely Related Taxa.

    PubMed

    Adato, Orit; Ninyo, Noga; Gophna, Uri; Snir, Sagi

    2015-10-01

    Horizontal gene transfer (HGT), the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived) genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM). Using CRM, the algorithm assigns a confidence score based on "unusual" sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain. PMID:26439115

  5. Detecting Horizontal Gene Transfer between Closely Related Taxa

    PubMed Central

    Adato, Orit; Ninyo, Noga; Gophna, Uri; Snir, Sagi

    2015-01-01

    Horizontal gene transfer (HGT), the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived) genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM). Using CRM, the algorithm assigns a confidence score based on “unusual” sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain. PMID:26439115

  6. Rhein Protects Pancreatic β-Cells From Dynamin-Related Protein-1–Mediated Mitochondrial Fission and Cell Apoptosis Under Hyperglycemia

    PubMed Central

    Liu, Jing; Chen, Zhaohong; Zhang, Yujing; Zhang, Mingchao; Zhu, Xiaodong; Fan, Yun; Shi, Shaolin; Zen, Ke; Liu, Zhihong

    2013-01-01

    Rhein, an anthraquinone compound isolated from rhubarb, has been shown to improve glucose metabolism disorders in diabetic mice. The mechanism underlying the protective effect of rhein, however, remains unknown. Here, we demonstrate that rhein can protect the pancreatic β-cells against hyperglycemia-induced cell apoptosis through stabilizing mitochondrial morphology. Oral administration of rhein for 8 or 16 weeks in db/db mice significantly reduced fasting blood glucose (FBG) level and improved glucose tolerance. Cell apoptosis assay using both pancreatic sections and cultured pancreatic β-cells indicated that rhein strongly inhibited β-cell apoptosis. Morphological study showed that rhein was mainly localized at β-cell mitochondria and rhein could preserve mitochondrial ultrastructure by abolishing hyperglycemia-induced mitochondrial fission protein dynamin-related protein 1 (Drp1) expression. Western blot and functional analysis confirmed that rhein protected the pancreatic β-cells against hyperglycemia-induced apoptosis via suppressing mitochondrial Drp1 level. Finally, mechanistic study further suggested that decreased Drp1 level by rhein might be due to its effect on reducing cellular reactive oxygen species. Taken together, our study demonstrates for the first time that rhein can serve as a novel therapeutic agent for hyperglycemia treatment and rhein protects pancreatic β-cells from apoptosis by blocking the hyperglycemia-induced Drp1 expression. PMID:23919963

  7. High presence/absence gene variability in defense-related gene clusters of Cucumis melo

    PubMed Central

    2013-01-01

    Background Changes in the copy number of DNA sequences are one of the main mechanisms generating genome variability in eukaryotes. These changes are often related to phenotypic effects such as genetic disorders or novel pathogen resistance. The increasing availability of genome sequences through the application of next-generation massive sequencing technologies has allowed the study of genomic polymorphisms at both the interspecific and intraspecific levels, thus helping to understand how species adapt to changing environments through genome variability. Results Data on gene presence/absence variation (PAV) in melon was obtained by resequencing a cultivated accession and an old-relative melon variety, and using previously obtained resequencing data from three other melon cultivars, among them DHL92, on which the current draft melon genome sequence is based. A total of 1,697 PAV events were detected, involving 4.4% of the predicted melon gene complement. In all, an average 1.5% of genes were absent from each analyzed cultivar as compared to the DHL92 reference genome. The most populated functional category among the 304 PAV genes of known function was that of stress response proteins (30% of all classified PAVs). Our results suggest that genes from multi-copy families are five times more likely to be affected by PAV than singleton genes. Also, the chance of genes present in the genome in tandem arrays being affected by PAV is double that of isolated genes, with PAV genes tending to be in longer clusters. The highest concentration of PAV events detected in the melon genome was found in a 1.1 Mb region of linkage group V, which also shows the highest density of melon stress-response genes. In particular, this region contains the longest continuous gene-containing PAV sequence so far identified in melon. Conclusions The first genome-wide report of PAV variation among several melon cultivars is presented here. Multi-copy and clustered genes, especially those with

  8. Myristicin from nutmeg induces apoptosis via the mitochondrial pathway and down regulates genes of the DNA damage response pathways in human leukaemia K562 cells.

    PubMed

    Martins, Célia; Doran, Carolina; Silva, Inês C; Miranda, Claudia; Rueff, José; Rodrigues, António S

    2014-07-25

    Myristicin, an allylbenzene, is a major active component of various spices, such as nutmeg and cinnamon, plants from the Umbelliferae family or in some essential oils, such as oils of clove or marjoram. Human exposure to myristicin is low but widespread due to consumption of these spices and essential oils, added to food (e.g. cola drinks) or in traditional medicine. Occasionally high dose exposure occurs, leading to various clinical symptoms, however the molecular mechanisms underlying them are unknown. Our previous studies revealed that myristicin is not genotoxic and yet presented apoptotic activity. Therefore, in this work we assessed the apoptotic mechanisms induced by myristicin in human leukaemia cells. In order to gain further insight on the potential of myristicin to modulate gene expression we also analysed alterations in expression of 84 genes associated with the DNA damage response pathway. The results obtained show that myristicin can induce apoptosis as characterised by alterations in the mitochondrial membrane potential, cytochrome c release, caspase-3 activation, PARP-cleavage and DNA fragmentation. The gene expression profile revealed an overall down regulation of DNA damage response genes after exposure to myristicin, with significant under-expression of genes associated with nucleotide excision repair (ERCC1), double strand break repair (RAD50, RAD51) and DNA damage signalling (ATM) and stress response (GADD45A, GADD45G). On the whole, we demonstrate that myristicin can alter mitochondrial membrane function, induce apoptosis and modulate gene expression in human leukaemia K562 cells. This study provides further detail on the molecular mechanisms underlying the biological activity of myristicin. PMID:24792648

  9. Expression analysis of immune related genes identified from the coelomocytes of sea cucumber (Apostichopus japonicus) in response to LPS challenge.

    PubMed

    Dong, Ying; Sun, Hongjuan; Zhou, Zunchun; Yang, Aifu; Chen, Zhong; Guan, Xiaoyan; Gao, Shan; Wang, Bai; Jiang, Bei; Jiang, Jingwei

    2014-01-01

    The sea cucumber (Apostichopus japonicus) occupies a basal position during the evolution of deuterostomes and is also an important aquaculture species. In order to identify more immune effectors, transcriptome sequencing of A. japonicus coelomocytes in response to lipopolysaccharide (LPS) challenge was performed using the Illumina HiSeq™ 2000 platform. One hundred and seven differentially expressed genes were selected and divided into four functional categories including pathogen recognition (25 genes), reorganization of cytoskeleton (27 genes), inflammation (41 genes) and apoptosis (14 genes). They were analyzed to elucidate the mechanisms of host-pathogen interactions and downstream signaling transduction. Quantitative real-time polymerase chain reactions (qRT-PCRs) of 10 representative genes validated the accuracy and reliability of RNA sequencing results with the correlation coefficients from 0.88 to 0.98 and p-value <0.05. Expression analysis of immune-related genes after LPS challenge will be useful in understanding the immune response mechanisms of A. japonicus against pathogen invasion and developing strategies for resistant markers selection. PMID:25421239

  10. Expression Analysis of Immune Related Genes Identified from the Coelomocytes of Sea Cucumber (Apostichopus japonicus) in Response to LPS Challenge

    PubMed Central

    Dong, Ying; Sun, Hongjuan; Zhou, Zunchun; Yang, Aifu; Chen, Zhong; Guan, Xiaoyan; Gao, Shan; Wang, Bai; Jiang, Bei; Jiang, Jingwei

    2014-01-01

    The sea cucumber (Apostichopus japonicus) occupies a basal position during the evolution of deuterostomes and is also an important aquaculture species. In order to identify more immune effectors, transcriptome sequencing of A. japonicus coelomocytes in response to lipopolysaccharide (LPS) challenge was performed using the Illumina HiSeq™ 2000 platform. One hundred and seven differentially expressed genes were selected and divided into four functional categories including pathogen recognition (25 genes), reorganization of cytoskeleton (27 genes), inflammation (41 genes) and apoptosis (14 genes). They were analyzed to elucidate the mechanisms of host-pathogen interactions and downstream signaling transduction. Quantitative real-time polymerase chain reactions (qRT-PCRs) of 10 representative genes validated the accuracy and reliability of RNA sequencing results with the correlation coefficients from 0.88 to 0.98 and p-value <0.05. Expression analysis of immune-related genes after LPS challenge will be useful in understanding the immune response mechanisms of A. japonicus against pathogen invasion and developing strategies for resistant markers selection. PMID:25421239

  11. APOLIPOPROTEIN E GENE AND EARLY AGE-RELATED MACULOPATHY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    OBJECTIVE: To examine the association between the apolipoprotein E (APOE) gene and early age-related maculopathy (ARM) in middle-aged persons. DESIGN: Population-based cross-sectional study. PARTICIPANTS: Participants from the Atherosclerosis Risk in Communities Study (n = 10139; age range, 49-73 ye...

  12. Cyclosporine A-induced apoptosis in renal tubular cells is related to oxidative damage and mitochondrial fission.

    PubMed

    de Arriba, Gabriel; Calvino, Miryam; Benito, Selma; Parra, Trinidad

    2013-03-27

    Cyclosporine A (CsA) nephrotoxicity has been linked to reactive oxygen species (ROS) production in renal cells. We have demonstrated that the antioxidant Vitamin E (Vit E) abolished renal toxicity in vivo and in vitro models. As one of the main sources of intracellular ROS are mitochondria, we studied the effects of CsA on several mitochondrial functions in LLC-PK1 cells. CsA induced ROS synthesis and decreased reduced glutathione (GSH). The drug decreased mitochondrial membrane potential (ΔΨm) and induced physiological modifications in both the inner (IMM) and the outer mitochondrial membranes (OMM). In the IMM, CsA provoked mitochondrial permeability transition pores (MPTP) and cytochrome c was liberated into the intermembrane space. CsA also induced pore formation in the OMM, allowing that intermembrane space contents can reach cytosol. Furthermore, CsA altered the mitochondrial dynamics, inducing an increase in mitochondrial fission; CsA increased the expression of dynamin related protein 1 (Drp1) that contributes to mitochondrial fission, and decreased the expression of mitofusin 2 (Mfn2) and optic atrophy protein 1 (Opa1), proteins involved in the fusion process. All these phenomena were related to apoptosis. These effects were inhibited when cells were treated with the antioxidant Vit E suggesting that they were mediated by the synthesis of ROS. PMID:23347876

  13. Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers

    NASA Astrophysics Data System (ADS)

    Pereira, M. M.; Raposo, N. R. B.; Brayner, R.; Teixeira, E. M.; Oliveira, V.; Quintão, C. C. R.; Camargo, L. S. A.; Mattoso, L. H. C.; Brandão, H. M.

    2013-02-01

    Cellulose nanofibers (CNF) have mechanical properties that make them very attractive for applications in the construction of polymeric matrices, drug delivery and tissue engineering. However, little is known about their impact on mammalian cells. The objective of this study was to evaluate the cytotoxicity of CNF and their effect on gene expression of fibroblasts cultured in vitro. The morphology of CNF was analyzed by transmission electron microscopy and the surface charge by Zeta potential. Cell viability was analyzed by flow cytometry assay and gene expression of biomarkers focused on cell stress response such as Heat shock protein 70.1 (HSP70.1) and Peroxiredoxin 1 (PRDX1) and apoptosis as B-cell leukemia (BCL-2) and BCL-2 associated X protein (BAX) by RT-PCR assay. Low concentrations of CNF (0.02-100 μg ml-1) did not cause cell death; however, at concentrations above 200 μg ml-1, the nanofibers significantly decreased cell viability (86.41 ± 5.37%). The exposure to high concentrations of CNF (2000 and 5000 μg ml-1) resulted in increased HSP70.1, PRDX1 and BAX gene expression. The current study concludes that, under the conditions tested, high concentrations (2000 and 5000 μg ml-1) of CNF cause decreased cell viability and affect the expression of stress- and apoptosis-associated molecular markers.

  14. How should we measure proportionality on relative gene expression data?

    PubMed

    Erb, Ionas; Notredame, Cedric

    2016-06-01

    Correlation is ubiquitously used in gene expression analysis although its validity as an objective criterion is often questionable. If no normalization reflecting the original mRNA counts in the cells is available, correlation between genes becomes spurious. Yet the need for normalization can be bypassed using a relative analysis approach called log-ratio analysis. This approach can be used to identify proportional gene pairs, i.e. a subset of pairs whose correlation can be inferred correctly from unnormalized data due to their vanishing log-ratio variance. To interpret the size of non-zero log-ratio variances, a proposal for a scaling with respect to the variance of one member of the gene pair was recently made by Lovell et al. Here we derive analytically how spurious proportionality is introduced when using a scaling. We base our analysis on a symmetric proportionality coefficient (briefly mentioned in Lovell et al.) that has a number of advantages over their statistic. We show in detail how the choice of reference needed for the scaling determines which gene pairs are identified as proportional. We demonstrate that using an unchanged gene as a reference has huge advantages in terms of sensitivity. We also explore the link between proportionality and partial correlation and derive expressions for a partial proportionality coefficient. A brief data-analysis part puts the discussed concepts into practice. PMID:26762323

  15. Inferring gene transcriptional modulatory relations: a genetical genomics approach

    SciTech Connect

    Li, Hongqiang; Lu, Lu; Manly, Kenneth; Chesler, Elissa J; Bao, Lei; Wang, Jintao; Zhou, Mi; Williams, Robert; Cui, Yan

    2005-01-01

    Bayesian network modeling is a promising approach to define and evaluate gene expression circuits in diverse tissues and cell types under different experimental conditions. The power and practicality of this approach can be improved by restricting the number of potential interactions among genes and by defining causal relations before evaluating posterior probabilities for billions of networks. A newly developed genetical genomics method that combines transcriptome profiling with complex trait analysis now provides strong constraints on network architecture. This method detects those chromosomal intervals responsible for differences in mRNA expression using quantitative trait locus (QTL) mapping. We have developed an efficient Bayesian approach that exploits the genetical genomics method to focus computational effort on the most plausible gene modulatory networks. We exploit a dense marker map for a genetic reference population (GRP) that consists of 32 BXD strains of mice made by intercrossing two progenitor strains- C57BL/6J and DBA/2J. These progenitors differ at 1.3 million known single nucleotide polymorphisms (SNPs), all of which can be exploited to estimate the probability that a gene contains functional polymorphisms that segregate within the GRP. We constructed 66 candidate networks that include all the candidate modulator genes located in the 209 statistically significant trans-acting QTL regions. SNPs that distinguish between the two progenitor strains were used to further winnow the list of candidate modulators. Bayesian network was then used to identify the genetic modulatory relations that best explain the microarray data.

  16. A human TAPBP (TAPASIN)-related gene, TAPBP-R.

    PubMed

    Teng, Michelle S; Stephens, Richard; Du Pasquier, Louis; Freeman, Tom; Lindquist, Jonathan A; Trowsdale, John

    2002-04-01

    TAPASIN, a V-C1 (variable-constant) immunoglobulin superfamily (IgSF) molecule that links MHC class I molecules to the transporter associated with antigen processing (TAP) in the endoplasmic reticulum (ER) is encoded by the TAPBP gene, located near to the MHC at 6p21.3. A related gene was identified at chromosome position 12p13.3 between the CD27 and VAMP1 genes near a group of MHC-paralogous loci. The gene, which we have called TAPBP-R (R for related), also encodes a member of the IgSF, TAPASIN-R. Its putative product contains similar structural motifs to TAPASIN, with some marked differences, especially in the V domain, transmembrane and cytoplasmic regions. By using the mouse ortholog to screen tissue, we revealed that the TAPBP-R gene was broadly expressed. Sub-cellular localization showed that the bulk of TAPASIN-R is located within the ER but biotinylation experiments were consistent with some expression at thecell surface. TAPASIN-R lacks an obvious ER retention signal. The function of TAPASIN-R will be of interest in regards to the evolution of the immune system as well as antigen processing. PMID:11920573

  17. Gene-environment interactions of circadian-related genes for cardiometabolic traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common circadian-related gene variants associate with increased risk for metabolic alterations including type 2 diabetes. However, little is known about whether diet and sleep could modify associations between circadian-related variants (CLOCK-rs1801260, CRY2-rs11605924, MTNR1B-rs1387153, MTNR1B-rs1...

  18. Rice bran phytic acid induced apoptosis through regulation of Bcl-2/Bax and p53 genes in HepG2 human hepatocellular carcinoma cells.

    PubMed

    Al-Fatlawi, Atheer Abbas; Al-Fatlawi, Anees Abbas; Irshad, Md; Zafaryab, Md; Rizvi, M Moshahid Alam; Ahmad, Ayaz

    2014-01-01

    Phytic acid (PA) has been reported to have positive nutritional benefits and prevent cancer formation. This study investigated the anticancer activity of rice bran PA against hepatocellular carcinoma (HepG2) cells. Cytotoxicty of PA (0.5 to 4mM) was examined by MTT and LDH assays after 24 and 48 h treatment. Apoptotic activity was evaluated by expression analysis of apoptosis-regulatory genes [i.e. p53, Bcl-2, Bax, Caspase-3 and -9] by reverse transcriptase-PCR and DNA fragmentation assay. The results showed antioxidant activity of PA in Fe3+ reducing power assay (p ≤ 0.03). PA inhibited the growth of HepG2 cells in a concentration dependent manner (p ≤ 0.04). After 48h treatment, cell viability was recorded 84.7, 74.4, 65.6, 49.6, 36.0 and 23.8% in MTT assay and 92.6, 77.0%, 66.8%, 51.2, 40.3 and 32.3% in LDH assay at concentrations of 1, 1.5, 2.0, 2.5, 3.0, and 3.5mM, respectively. Hence, treatment of PA for 24h, recorded viability of cells 93.5, 88.6, 55.5, 34.6 and 24.4% in MTT assay and 94.2, 86.1%, 59.7%, 42.3 and 31.6%, in LDH assay at concentrations of 1, 2.2, 3.0, 3.6 and 4.0mM, respectively. PA treated HepG2 cells showed up-regulation of p53, Bax, Caspase-3 and -9, and down- regulation of Bcl-2 gene (p ≤ 0.01). At the IC50 (2.49 mM) of PA, the p53, Bax, Caspase-3 and-9 genes were up- regulated by 6.03, 7.37, 19.7 and 14.5 fold respectively. Also, the fragmented genomic DNA in PA treated cells provided evidence of apoptosis. Our study confirmed the biological activity of PA and demonstrated growth inhibition and induction of apoptosis in HepG2 cells with modulation of the expression of apoptosis-regulatory genes. PMID:24870784

  19. The human papilloma virus 16E6 gene sensitizes human mammary epithelial cells to apoptosis induced by DNA damage.

    PubMed Central

    Xu, C; Meikrantz, W; Schlegel, R; Sager, R

    1995-01-01

    Programmed cell death (apoptosis) is a normal physiological process, which could in principle be manipulated to play an important role in cancer therapy. The key importance of p53 expression in the apoptotic response to DNA-damaging agents has been stressed because mutant or deleted p53 is so common in most kinds of cancer. An important strategy, therefore, is to find ways to induce apoptosis in the absence of wild-type p53. In this paper, we compare apoptosis in normal human mammary epithelial cells, in cells immortalized with human papilloma virus (HPV), and in mammary carcinoma cell lines expressing wild-type p53, mutant p53, or no p53 protein. Apoptosis was induced with mitomycin C (MMC), a DNA cross-linking and damaging agent, or with staurosporine (SSP), a protein kinase inhibitor. The normal and HPV-transfected cells responded more strongly to SSP than did the tumor cells. After exposure to MMC, cells expressing wild-type p53 underwent extensive apoptosis, whereas cells carrying mutated p53 responded weakly. Primary breast cancer cell lines null for p53 protein were resistant to MMC. In contrast, two HPV immortalized cell lines in which p53 protein was destroyed by E6-modulated ubiquitinylation were highly sensitive to apoptosis induced by MMC. Neither p53 mRNA nor protein was induced in the HPV immortalized cells after MMC treatment, although p53 protein was elevated by MMC in cells with wild-type p53. Importantly, MMC induced p21 mRNA but not p21 protein expression in the HPV immortalized cells. Thus, HPV 16E6 can sensitize mammary epithelial cells to MMC-induced apoptosis via a p53- and p21-independent pathway. We propose that the HPV 16E6 protein modulates ubiquitin-mediated degradation not only of p53 but also of p21 and perhaps other proteins involved in apoptosis. Images Fig. 1 Fig. 2 Fig. 4 PMID:7644500

  20. Damnacanthal is a potent inducer of apoptosis with anticancer activity by stimulating p53 and p21 genes in MCF-7 breast cancer cells.

    PubMed

    Aziz, Muhammad Yusran Abdul; Omar, Abdul Rahman; Subramani, Tamilselvan; Yeap, Swee Keong; Ho, Wan Yong; Ismail, Nor Hadiani; Ahmad, Syahida; Alitheen, Noorjahan Banu

    2014-05-01

    Damnacanthal, an anthraquinone compound, is isolated from the roots of Morinda citrifolia L. (noni), which has been used for traditional therapy in several chronic diseases, including cancer. Although noni has long been consumed in Asian and Polynesian countries, the molecular mechanisms by which it exerts several benefits are starting to emerge. In the present study, the effect of damnacanthal on MCF-7 cell growth regulation was investigated. Treatment of MCF-7 cells with damnacanthal for 72 h indicated an antiproliferative activity. The MTT method confirmed that damnacanthal inhibited the growth of MCF-7 cells at the concentration of 8.2 μg/ml for 72 h. In addition, the drug was found to induce cell cycle arrest at the G1 checkpoint in MCF-7 cells by cell cycle analysis. Damnacanthal induced apoptosis, determined by Annexin V-fluorescein isothiocyanate/propidium iodide (PI) dual-labeling, acridine-orange/PI dyeing and caspase-7 expression. Furthermore, damnacanthal-mediated apoptosis involves the sustained activation of p21, leading to the transcription of p53 and the Bax gene. Overall, the present study provided significant evidence demonstrating that p53-mediated damnacanthal induced apoptosis through the activation of p21 and caspase-7. PMID:24765160

  1. Gene expression profiles of autophagy-related genes in multiple sclerosis.

    PubMed

    Igci, Mehri; Baysan, Mehmet; Yigiter, Remzi; Ulasli, Mustafa; Geyik, Sirma; Bayraktar, Recep; Bozgeyik, İbrahim; Bozgeyik, Esra; Bayram, Ali; Cakmak, Ecir Ali

    2016-08-15

    Multiple sclerosis (MS) is an imflammatory disease of central nervous system caused by genetic and environmental factors that remain largely unknown. Autophagy is the process of degradation and recycling of damaged cytoplasmic organelles, macromolecular aggregates, and long-lived proteins. Malfunction of autophagy contributes to the pathogenesis of neurological diseases, and autophagy genes may modulate the T cell survival. We aimed to examine the expression levels of autophagy-related genes. The blood samples of 95 unrelated patients (aged 17-65years, 37 male, 58 female) diagnosed as MS and 95 healthy controls were used to extract the RNA samples. After conversion to single stranded cDNA using polyT priming: the targeted genes were pre-amplified, and 96×78 (samples×primers) qRT-PCR reactions were performed for each primer pair on each sample on a 96.96 array of Fluidigm BioMark™. Compared to age- and sex-matched controls, gene expression levels of ATG16L2, ATG9A, BCL2, FAS, GAA, HGS, PIK3R1, RAB24, RGS19, ULK1, FOXO1, HTT were significantly altered (false discovery rate<0.05). Thus, altered expression levels of several autophagy related genes may affect protein levels, which in turn would influence the activity of autophagy, or most probably, those genes might be acting independent of autophagy and contributing to MS pathogenesis as risk factors. The indeterminate genetic causes leading to alterations in gene expressions require further analysis. PMID:27125224

  2. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Prostate Cancer Cells after Treatment with Xanthohumol-A Natural Compound Present in Humulus lupulus L.

    PubMed

    Kłósek, Małgorzata; Mertas, Anna; Król, Wojciech; Jaworska, Dagmara; Szymszal, Jan; Szliszka, Ewelina

    2016-01-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is an endogenous ligand, which plays role in immune surveillance and anti-tumor immunity. It has ability to selectively kill tumor cells showing no toxicity to normal cells. We tested the apoptotic and cytotoxic activities of xanthohumol, a prenylated chalcone found in Humulus lupulus on androgen-sensitive human prostate adenocarcinoma cells (LNCaP) in combination with TRAIL. Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium reduction assay (MTT) and lactate dehydrogenase assay (LDH). The expression of death receptors (DR4/TRAIL-R1 and DR5/TRAIL-R2) and apoptosis were detected using flow cytometry. We examined mitochondrial membrane potential (ΔΨm) by DePsipher reagent using fluorescence microscopy. The intracellular expression of proteins was evaluated by Western blotting. Our study showed that xanthohumol enhanced cytotoxic and apoptotic effects of TRAIL. The tested compounds activated caspases-3, -8, -9, Bid, and increased the expression of Bax. They also decreased expression of Bcl-xL and decreased mitochondrial membrane potential, while the expression of death receptors was not changed. The findings suggest that xanthohumol is a compound of potential use in chemoprevention of prostate cancer due to its sensitization of cancer cells to TRAIL-mediated apoptosis. PMID:27338375

  3. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Prostate Cancer Cells after Treatment with Xanthohumol—A Natural Compound Present in Humulus lupulus L.

    PubMed Central

    Kłósek, Małgorzata; Mertas, Anna; Król, Wojciech; Jaworska, Dagmara; Szymszal, Jan; Szliszka, Ewelina

    2016-01-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is an endogenous ligand, which plays role in immune surveillance and anti-tumor immunity. It has ability to selectively kill tumor cells showing no toxicity to normal cells. We tested the apoptotic and cytotoxic activities of xanthohumol, a prenylated chalcone found in Humulus lupulus on androgen-sensitive human prostate adenocarcinoma cells (LNCaP) in combination with TRAIL. Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium reduction assay (MTT) and lactate dehydrogenase assay (LDH). The expression of death receptors (DR4/TRAIL-R1 and DR5/TRAIL-R2) and apoptosis were detected using flow cytometry. We examined mitochondrial membrane potential (ΔΨm) by DePsipher reagent using fluorescence microscopy. The intracellular expression of proteins was evaluated by Western blotting. Our study showed that xanthohumol enhanced cytotoxic and apoptotic effects of TRAIL. The tested compounds activated caspases-3, -8, -9, Bid, and increased the expression of Bax. They also decreased expression of Bcl-xL and decreased mitochondrial membrane potential, while the expression of death receptors was not changed. The findings suggest that xanthohumol is a compound of potential use in chemoprevention of prostate cancer due to its sensitization of cancer cells to TRAIL-mediated apoptosis. PMID:27338375

  4. The evolution of cancer-related genes in hominoids.

    PubMed

    Kang, Lin; Michalak, Pawel

    2015-01-01

    The evolution of cancer suppression is essential for the maintenance of multicellularity. The lack of correlation between body size and cancer risk across species, known as Peto's paradox, suggests that genetic variation in cancer resistance is sufficient to compensate for increases of cell numbers in bigger animals. To assess evolutionary dynamics of cancer-related genes, we analyzed Ka, Ks,and Ka/Ks values in 120 oncogenes and tumor suppressor genes (TSG) among seven hominoid species, including two extinct species, Neanderthal and Denisovan. Ka/Ks of tumor suppressor genes tended to be higher relative to that of oncogenes, consistent with relaxed purifying selection acting on the former. Ka/Ks values were positively correlated with TSG scores, but negatively correlated with oncogene scores, suggesting opposing selection pressures operating on the two groups of cancer-related genes. Additionally, we found 108 species-divergent substitutions that were prevalent germline genotypes in some species but in humans appeared only as somatic cancerous mutations. Better understanding the resistance to cancer may lead to new methods of cancer prevention in humans. PMID:25249249

  5. Combinatorial gene regulation by modulation of relative pulse timing

    PubMed Central

    Lin, Yihan; Sohn, Chang Ho; Dalal, Chiraj K.; Cai, Long; Elowitz, Michael B.

    2015-01-01

    Studies of individual living cells have revealed that many transcription factors activate in dynamic, and often stochastic, pulses within the same cell. However, it has remained unclear whether cells might modulate the relative timing of these pulses to control gene expression. Here, using quantitative single-cell time-lapse imaging of Saccharomyces cerevisiae, we show that the pulsatile transcription factors Msn2 and Mig1 combinatorially regulate their target genes through modulation of their relative pulse timing. The activator Msn2 and repressor Mig1 pulsed in either a temporally overlapping or non-overlapping manner during their transient response to different inputs, with only the non-overlapping dynamics efficiently activating target gene expression. Similarly, under constant environmental conditions, where Msn2 and Mig1 exhibit sporadic pulsing, glucose concentration modulated the temporal overlap between pulses of the two factors. Together, these results reveal a time-based mode of combinatorial gene regulation. Regulation through relative signal timing is common in engineering and neurobiology, and these results suggest that it could also function broadly within the signaling and regulatory systems of the cell. PMID:26466562

  6. Titanium nanotubes activate genes related to bone formation in vitro

    PubMed Central

    Pozio, Alfonso; Palmieri, Annalisa; Girardi, Ambra; Cura, Francesca; Carinci, Francesco

    2012-01-01

    Background: Titanium is used worldwide to make osseointegrable devices, thanks to its favorable characteristics as mechanical proprieties and biocompatibility, demonstrated by in vivo studies with animal models and clinical trials over a forty-year period. However, the exact genetic effect of the titanium layer on cells is still not well characterized. Materials and Methods: To investigate how titanium nanotubes stimulate osteoblasts differentiation and proliferation, some osteoblast genes (SP7, RUNX2, COL3A1, COL1A1, ALPL, SPP1 and FOSL1) were analyzed by quantitative Real Time RT- PCR. Results: After 15 days, osteoblasts cultivated on titanium naotube showed the up-regulation of bone related genes SP7, ENG, FOSL1 and SPP1 and the down-regulation of RUNX2, COL3A1, COL1A1, and ALPL. After 30 days of treatment, the bone related genes SP7, ENG, FOSL1 and RUNX2 were up-regulated while COL3A1, COL1A1, ALPL and SPP1 were down-regulated. Conclusions: Our results, demonstrates that titanium nanotubes can lead to osteoblast differentiation and extracellular matrix deposition and mineralization in dental pulp stem cells by the activation of osteoblast related genes SPP1, FOSL1 and RUNX2. PMID:23814577

  7. Macular xanthophylls, lipoprotein-related genes, and age-related macular degeneration1234

    PubMed Central

    Koo, Euna; Neuringer, Martha; SanGiovanni, John Paul

    2014-01-01

    Plant-based macular xanthophylls (MXs; lutein and zeaxanthin) and the lutein metabolite meso-zeaxanthin are the major constituents of macular pigment, a compound concentrated in retinal areas that are responsible for fine-feature visual sensation. There is an unmet need to examine the genetics of factors influencing regulatory mechanisms and metabolic fates of these 3 MXs because they are linked to processes implicated in the pathogenesis of age-related macular degeneration (AMD). In this work we provide an overview of evidence supporting a molecular basis for AMD-MX associations as they may relate to DNA sequence variation in AMD- and lipoprotein-related genes. We recognize a number of emerging research opportunities, barriers, knowledge gaps, and tools offering promise for meaningful investigation and inference in the field. Overviews on AMD- and high-density lipoprotein (HDL)–related genes encoding receptors, transporters, and enzymes affecting or affected by MXs are followed with information on localization of products from these genes to retinal cell types manifesting AMD-related pathophysiology. Evidence on the relation of each gene or gene product with retinal MX response to nutrient intake is discussed. This information is followed by a review of results from mechanistic studies testing gene-disease relations. We then present findings on relations of AMD with DNA sequence variants in MX-associated genes. Our conclusion is that AMD-associated DNA variants that influence the actions and metabolic fates of HDL system constituents should be examined further for concomitant influence on MX absorption, retinal tissue responses to MX intake, and the capacity to modify MX-associated factors and processes implicated in AMD pathogenesis. PMID:24829491

  8. Apoptosis of cholangiocytes modulated by thioredoxin of carcinogenic liver fluke.

    PubMed

    Matchimakul, Pitchaya; Rinaldi, Gabriel; Suttiprapa, Sutas; Mann, Victoria H; Popratiloff, Anastas; Laha, Thewarach; Pimenta, Rafael N; Cochran, Christina J; Kaewkes, Sasithorn; Sripa, Banchob; Brindley, Paul J

    2015-08-01

    Chronic infection with the food-borne liver fluke, Opisthorchis viverrini, frequently induces cancer of the bile ducts, cholangiocarcinoma. Opisthorchiasis is endemic in Thailand, Lao PDR, Cambodia and Vietnam, where eating undercooked freshwater fish carrying the juvenile stage of this pathogen leads to human infection. Because inhibition of apoptosis facilitates carcinogenesis, this study investigated modulation by thioredoxin from O. viverrini of apoptosis of bile duct epithelial cells, cholangiocytes. Cells of a cholangiocyte line were incubated with the parasite enzyme after which they were exposed hydrogen peroxide. Oxidative stress-induced apoptosis was monitored using flow cytometry, growth in real time and imaging of living cells using laser confocal microscopy. Immunolocalization revealed liver fluke thioredoxin within cholangiocytes. Cells exposed to thioredoxin downregulated apoptotic genes in the mitogen activated protein kinases pathway and upregulated anti-apoptosis-related genes including apoptosis signaling kinase 1, caspase 9, caspase 8, caspase 3, survivin and others. Western blots of immunoprecipitates of cell lysates revealed binding of thioredoxin to apoptosis signaling kinase 1. Together the findings indicated that thioredoxin from O. viverrini inhibited oxidative stress-induced apoptosis of bile duct epithelial cells, which supports a role for this liver fluke oxidoreductase in opisthorchiasis-induced cholangiocarcinogenesis. PMID:26007234

  9. Age-Related Macular Degeneration: Insights into Inflammatory Genes

    PubMed Central

    Ragazzo, Michele; Missiroli, Filippo; Borgiani, Paola; Angelucci, Francesco; Marsella, Luigi Tonino; Cusumano, Andrea; Novelli, Giuseppe; Ricci, Federico; Giardina, Emiliano

    2014-01-01

    Age-related macular degeneration (AMD) is a progressive neurodegenerative disease that affects approximately 8.7% of elderly people worldwide (>55 years old). AMD is characterized by a multifactorial aetiology that involves several genetic and environmental risk factors (genes, ageing, smoking, family history, dietary habits, oxidative stress, and hypertension). In particular, ageing and cigarette smoking (including oxidative compounds and reactive oxygen species) have been shown to significantly increase susceptibility to the disease. Furthermore, different genes (CFH, CFI, C2, C3, IL-6, IL-8, and ARMS2) that play a crucial role in the inflammatory pathway have been associated with AMD risk. Several genetic and molecular studies have indicated the participation of inflammatory molecules (cytokines and chemokines), immune cells (macrophages), and complement proteins in the development and progression of the disease. Taking into consideration the genetic and molecular background, this review highlights the genetic role of inflammatory genes involved in AMD pathogenesis and progression. PMID:25478207

  10. A pathogenic role for tumor necrosis factor-related apoptosis-inducing ligand in chronic obstructive pulmonary disease.

    PubMed

    Haw, T J; Starkey, M R; Nair, P M; Pavlidis, S; Liu, G; Nguyen, D H; Hsu, A C; Hanish, I; Kim, R Y; Collison, A M; Inman, M D; Wark, P A; Foster, P S; Knight, D A; Mattes, J; Yagita, H; Adcock, I M; Horvat, J C; Hansbro, P M

    2016-07-01

    Chronic obstructive pulmonary disease (COPD) is a life-threatening inflammatory respiratory disorder, often induced by cigarette smoke (CS) exposure. The development of effective therapies is impaired by a lack of understanding of the underlining mechanisms. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with inflammatory and apoptotic properties. We interrogated a mouse model of CS-induced experimental COPD and human tissues to identify a novel role for TRAIL in COPD pathogenesis. CS exposure of wild-type mice increased TRAIL and its receptor messenger RNA (mRNA) expression and protein levels, as well as the number of TRAIL(+)CD11b(+) monocytes in the lung. TRAIL and its receptor mRNA were also increased in human COPD. CS-exposed TRAIL-deficient mice had decreased pulmonary inflammation, pro-inflammatory mediators, emphysema-like alveolar enlargement, and improved lung function. TRAIL-deficient mice also developed spontaneous small airway changes with increased epithelial cell thickness and collagen deposition, independent of CS exposure. Importantly, therapeutic neutralization of TRAIL, after the establishment of early-stage experimental COPD, reduced pulmonary inflammation, emphysema-like alveolar enlargement, and small airway changes. These data provide further evidence for TRAIL being a pivotal inflammatory factor in respiratory diseases, and the first preclinical evidence to suggest that therapeutic agents that target TRAIL may be effective in COPD therapy. PMID:26555706

  11. The BIRC6 gene as a novel target for therapy of prostate cancer: dual targeting of inhibitors of apoptosis

    PubMed Central

    Iris Luk, Sze Ue; Xue, Hui; Cheng, Hongwei; Lin, Dong; Gout, Peter W.; Fazli, Ladan; Collins, Colin C.; Gleave, Martin E.; Wang, Yuzhuo

    2014-01-01

    Treatment resistance, the major challenge in the management of advanced prostate cancer, is in part based on resistance to apoptosis. The Inhibitor of Apoptosis (IAP) protein family is thought to play key roles in survival and drug resistance of cancer via inhibition of apoptosis. Of the IAP family members, cIAP1, cIAP2, XIAP and survivin are known to be up-regulated in prostate cancer. BIRC6, a much less studied IAP member, was recently shown to be elevated in castration-resistant prostate cancer (CRPC). In the present study, we showed a correlation between elevated BIRC6 expression in clinical prostate cancer specimens and poor patient prognostic factors, as well as co-upregulation of certain IAP members. In view of this, we designed antisense oligonucleotides that simultaneously target BIRC6 and another co-upregulated IAP member (dASOs). Two dASOs, targeting BIRC6+cIAP1 and BIRC6+survivin, showed substantial inhibition of CRPC cell proliferation, exceeding that obtained with single BIRC6 targeting. The growth inhibition was associated with increased apoptosis, cell cycle arrest and suppression of NFkB activation. Moreover, treatment with either dASO led to significantly lower viable tumor volume in vivo, without major host toxicity. This study shows that BIRC6-based dual IAP-targeting ASOs represent potential novel therapeutic agents against advanced prostate cancer. PMID:25071009

  12. Protein kinase Cδ regulates vaccinia-related kinase 1 in DNA damage–induced apoptosis

    PubMed Central

    Park, Choon-Ho; Choi, Bo-Hwa; Jeong, Min-Woo; Kim, Sangjune; Kim, Wanil; Song, Yun Seon; Kim, Kyong-Tai

    2011-01-01

    Vaccinia-related kinase 1 (VRK1) is a novel serine/threonine kinase that plays an important role in cell proliferation. However, little is known about the upstream regulators of VRK1 activity. Here we provide evidence for a role of protein kinase Cδ (PKCδ) in the regulation of murine VRK1. We show that PKCδ interacts with VRK1, phosphorylates the Ser-355 residue in the putative regulatory region, and negatively regulates its kinase activity in vitro. Intriguingly, PKCδ-induced cell death was facilitated by phosphorylation of VRK1 when cells were exposed to a DNA-damaging agent. In addition, p53 played a critical role in the regulation of DNA damage–induced cell death accompanied by PKCδ-mediated modulation of VRK1. In p53-deficient cells, PKCδ-mediated phosphorylation of VRK1 had no effect on cell viability. However, cells overexpressing p53 exhibited significant reduction of cell viability when cotransfected with both VRK1 and PKCδ. Taken together, these results indicate that PKCδ regulates phosphorylation and down-regulation of VRK1, thereby contributing to cell cycle arrest and apoptotic cell death in a p53-dependent manner. PMID:21346188

  13. A patient with PMP22-related hereditary neuropathy and DBH-gene-related dysautonomia.

    PubMed

    Bartoletti-Stella, Anna; Chiaro, Giacomo; Calandra-Buonaura, Giovanna; Contin, Manuela; Scaglione, Cesa; Barletta, Giorgio; Cecere, Annagrazia; Garagnani, Paolo; Tieri, Paolo; Ferrarini, Alberto; Piras, Silvia; Franceschi, Claudio; Delledonne, Massimo; Cortelli, Pietro; Capellari, Sabina

    2015-10-01

    Recurrent focal neuropathy with liability to pressure palsies is a relatively frequent autosomal-dominant demyelinating neuropathy linked to peripheral myelin protein 22 (PMP22) gene deletions. The combination of PMP22 gene mutations with other genetic variants is known to cause a more severe phenotype than expected. We present the case of a patient with severe orthostatic hypotension since 12 years of age, who inherited a PMP22 gene deletion from his father. Genetic double trouble was suspected because of selective sympathetic autonomic disturbances. Through exome-sequencing analysis, we identified two novel mutations in the dopamine beta hydroxylase gene. Moreover, with interactome analysis, we excluded a further influence on the origin of the disease by variants in other genes. This case increases the number of unique patients presenting with dopamine-β-hydroxylase deficiency and of cases with genetically proven double trouble. Finding the right, complete diagnosis is crucial to obtain adequate medical care and appropriate genetic counseling. PMID:26410747

  14. Genes related to high temperature tolerance during maize seed germination.

    PubMed

    Dutra, S M F; Von Pinho, E V R; Santos, H O; Lima, A C; Von Pinho, R G; Carvalho, M L M

    2015-01-01

    The identification of genes related to heat tolerance is fundamental for the development of high-quality seeds that are tolerant to heat stress condition. The objective of this study was to evaluate maize lineages and the gene expression involved in high temperature tolerance during germination using physiological tests, proteomics, and transcriptome analysis. Seeds from six maize lineages (30, 44, 54, 63, 64, and 91) with different levels of tolerance to high temperatures were used. Lineages 54 and 91 were observed to be more tolerant to high temperature conditions. The highest expression of α-amylase was observed in maize seeds from lineages 30 and 91 that were subjected to controlled deterioration. The highest expression of α-amylase was observed in maize seeds from lineages 30 and 91 that were subjected to controlled deterioration; with the controlled deterioration, the highest level of gene expression did not occur in the most tolerant materials; the association of lower expression of genes involved in heat-resistant protein systems was observed in seeds from lineage 44, which were more susceptible to high temperatures, and the highest gene expression of LEA D-34, ZmAN13, and AOX-1 was observed in seeds from lineage 64 when submitted to controlled deterioration. PMID:26782452

  15. Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells

    PubMed Central

    Li, Robert W; Li, CongJun

    2006-01-01

    Background Global gene expression profiles of bovine kidney epithelial cells regulated by sodium butyrate were investigated with high-density oligonucleotide microarrays. The bovine microarray with 86,191 distinct 60mer oligonucleotides, each with 4 replicates, was designed and produced with Maskless Array Synthesizer technology. These oligonucleotides represent approximately 45,383 unique cattle sequences. Results 450 genes significantly regulated by butyrate with a median False Discovery Rate (FDR) = 0 % were identified. The majority of these genes were repressed by butyrate and associated with cell cycle control. The expression levels of 30 selected genes identified by the microarray were confirmed using real-time PCR. The results from real-time PCR positively correlated (R = 0.867) with the results from the microarray. Conclusion This study presented the genes related to multiple signal pathways such as cell cycle control and apoptosis. The profound changes in gene expression elucidate the molecular basis for the pleiotropic effects of butyrate on biological processes. These findings enable better recognition of the full range of beneficial roles butyrate may play during cattle energy metabolism, cell growth and proliferation, and possibly in fighting gastrointestinal pathogens. PMID:16972989

  16. Hepatic apoptosis can modulate liver fibrosis through TIMP1 pathway.

    PubMed

    Wang, Kewei; Lin, Bingliang; Brems, John J; Gamelli, Richard L

    2013-05-01

    Apoptotic injury participates in hepatic fibrosis, but the molecular mechanisms are not well understood. The present study aimed to investigate the role of inducible TIMP1 in the pathogenesis of hepatic apoptosis-fibrosis. Apoptosis was induced with GCDC, LPS, and alcohol in precision-cut liver slices or bile duct ligation (BDL) in rats, as reflected by caspase-3 activity, TUNEL assay, and apoptosis-related gene profiles. The hepatic fibrosis was detected with Picrosirius staining, hydroxyproline determination, and expression profiling of fibrosis-related genes. Levels of TIMP1 were upregulated by the hepatic apoptosis, but downregulated by caspase inhibitor. The inducible TIMP1 was apoptosis-dependent. Once TIMP1 was inhibited with treatment of TIMP1-siRNA, the fibrotic response was reduced as demonstrated by hydroxyproline assay. In addition, the expression of fibrosis-related genes aSMA, CTGF, and TGFb2r were down-regulated subsequent to the treatment of TIMP1-siRNA. TIMP1 could mediate the expression of fibrosis-related genes. TIMP1 was transcriptionally regulated by nuclear factor c-Jun as demonstrated by EMSA and ChIP assay. The treatment of c-Jun siRNA could significantly decrease the expression of TIMP1 induced by alcohol, GCDC, or LPS treatment. Hepatic apoptosis induces the expression of TIMP1. Inducible TIMP1 can modulate the expression of fibrosis-related genes in liver. TIMP1 pathway is a potential target for therapeutic intervention of fibrotic liver diseases. PMID:23456624

  17. FOXL2, GATA4, and SMAD3 Co-Operatively Modulate Gene Expression, Cell Viability and Apoptosis in Ovarian Granulosa Cell Tumor Cells

    PubMed Central

    Anttonen, Mikko; L'Hôte, David; Vattulainen, Sanna; Färkkilä, Anniina; Unkila-Kallio, Leila; Veitia, Reiner A.; Heikinheimo, Markku

    2014-01-01

    Aberrant ovarian granulosa cell proliferation and apoptosis may lead to granulosa cell tumors (GCT), the pathogenesis of which involves transcription factors GATA4, FOXL2, and SMAD3. FOXL2 gene harbors a point mutation (C134W) in a vast majority of GCTs. GATA4 is abundantly expressed in GCTs and its expression correlates with poor prognosis. The TGF-β mediator SMAD3 promotes GCT cell survival through NF-κB activation, and interacts with FOXL2. Here, we find that the expression patterns of these factors overlap in the normal human ovary and 90 GCTs, and positively correlate with each other and with their mutual target gene CCND2, which is a key factor for granulosa cell proliferation. We have explored the molecular interactions of FOXL2, GATA4, and SMAD3 and their roles in the regulation of CCND2 using co-immunoprecipitation, promoter transactivation, and cell viability assays in human GCT cells. We found that not only SMAD3, but also GATA4 physically interact with both wild type and C134W-mutated FOXL2. GATA4 and SMAD3 synergistically induce a 8-fold increase in CCND2 promoter transactivation, which is 50% reduced by both FOXL2 types. We confirmed that wild type FOXL2 significantly decreases cell viability. Interestingly, GATA4 and SMAD3 caused a marked reduction of GCT cell apoptosis induced by wild type FOXL2. Thus, the effects of GATA4 and SMAD3 on both cell viability and apoptosis are distinct from those of wild type FOXL2; a perturbation of this balance due to the oncogenic FOXL2 mutation is likely to contribute to GCT pathogenesis. PMID:24416423

  18. FOXL2, GATA4, and SMAD3 co-operatively modulate gene expression, cell viability and apoptosis in ovarian granulosa cell tumor cells.

    PubMed

    Anttonen, Mikko; Pihlajoki, Marjut; Andersson, Noora; Georges, Adrien; L'hôte, David; Vattulainen, Sanna; Färkkilä, Anniina; Unkila-Kallio, Leila; Veitia, Reiner A; Heikinheimo, Markku

    2014-01-01

    Aberrant ovarian granulosa cell proliferation and apoptosis may lead to granulosa cell tumors (GCT), the pathogenesis of which involves transcription factors GATA4, FOXL2, and SMAD3. FOXL2 gene harbors a point mutation (C134W) in a vast majority of GCTs. GATA4 is abundantly expressed in GCTs and its expression correlates with poor prognosis. The TGF-β mediator SMAD3 promotes GCT cell survival through NF-κB activation, and interacts with FOXL2. Here, we find that the expression patterns of these factors overlap in the normal human ovary and 90 GCTs, and positively correlate with each other and with their mutual target gene CCND2, which is a key factor for granulosa cell proliferation. We have explored the molecular interactions of FOXL2, GATA4, and SMAD3 and their roles in the regulation of CCND2 using co-immunoprecipitation, promoter transactivation, and cell viability assays in human GCT cells. We found that not only SMAD3, but also GATA4 physically interact with both wild type and C134W-mutated FOXL2. GATA4 and SMAD3 synergistically induce a 8-fold increase in CCND2 promoter transactivation, which is 50% reduced by both FOXL2 types. We confirmed that wild type FOXL2 significantly decreases cell viability. Interestingly, GATA4 and SMAD3 caused a marked reduction of GCT cell apoptosis induced by wild type FOXL2. Thus, the effects of GATA4 and SMAD3 on both cell viability and apoptosis are distinct from those of wild type FOXL2; a perturbation of this balance due to the oncogenic FOXL2 mutation is likely to contribute to GCT pathogenesis. PMID:24416423

  19. Globin gene expression in correlation with G protein-related genes during erythroid differentiation

    PubMed Central

    2013-01-01

    Background The guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs) regulate cell growth, proliferation and differentiation. G proteins are also implicated in erythroid differentiation, and some of them are expressed principally in hematopoietic cells. GPCRs-linked NO/cGMP and p38 MAPK signaling pathways already demonstrated potency for globin gene stimulation. By analyzing erythroid progenitors, derived from hematopoietic cells through in vitro ontogeny, our study intends to determine early markers and signaling pathways of globin gene regulation and their relation to GPCR expression. Results Human hematopoietic CD34+ progenitors are isolated from fetal liver (FL), cord blood (CB), adult bone marrow (BM), peripheral blood (PB) and G-CSF stimulated mobilized PB (mPB), and then differentiated in vitro into erythroid progenitors. We find that growth capacity is most abundant in FL- and CB-derived erythroid cells. The erythroid progenitor cells are sorted as 100% CD71+, but we did not find statistical significance in the variations of CD34, CD36 and GlyA antigens and that confirms similarity in maturation of studied ontogenic periods. During ontogeny, beta-globin gene expression reaches maximum levels in cells of adult blood origin (176 fmol/μg), while gamma-globin gene expression is consistently up-regulated in CB-derived cells (60 fmol/μg). During gamma-globin induction by hydroxycarbamide, we identify stimulated GPCRs (PTGDR, PTGER1) and GPCRs-coupled genes known to be activated via the cAMP/PKA (ADIPOQ), MAPK pathway (JUN) and NO/cGMP (PRPF18) signaling pathways. During ontogeny, GPR45 and ARRDC1 genes have the most prominent expression in FL-derived erythroid progenitor cells, GNL3 and GRP65 genes in CB-derived cells (high gamma-globin gene expression), GPR110 and GNG10 in BM-derived cells, GPR89C and GPR172A in PB-derived cells, and GPR44 and GNAQ genes in mPB-derived cells (high beta-globin gene expression). Conclusions These results

  20. TYK2, a Candidate Gene for Type 1 Diabetes, Modulates Apoptosis and the Innate Immune Response in Human Pancreatic β-Cells.

    PubMed

    Marroqui, Laura; Dos Santos, Reinaldo Sousa; Fløyel, Tina; Grieco, Fabio A; Santin, Izortze; Op de Beeck, Anne; Marselli, Lorella; Marchetti, Piero; Pociot, Flemming; Eizirik, Decio L

    2015-11-01

    Pancreatic β-cells are destroyed by an autoimmune attack in type 1 diabetes. Linkage and genome-wide association studies point to >50 loci that are associated with the disease in the human genome. Pathway analysis of candidate genes expressed in human islets identified a central role for interferon (IFN)-regulated pathways and tyrosine kinase 2 (TYK2). Polymorphisms in the TYK2 gene predicted to decrease function are associated with a decreased risk of developing type 1 diabetes. We presently evaluated whether TYK2 plays a role in human pancreatic β-cell apoptosis and production of proinflammatory mediators. TYK2-silenced human β-cells exposed to polyinosinic-polycitidilic acid (PIC) (a mimick of double-stranded RNA produced during viral infection) showed less type I IFN pathway activation and lower production of IFNα and CXCL10. These cells also had decreased expression of major histocompatibility complex (MHC) class I proteins, a hallmark of early β-cell inflammation in type 1 diabetes. Importantly, TYK2 inhibition prevented PIC-induced β-cell apoptosis via the mitochondrial pathway of cell death. The present findings suggest that TYK2 regulates apoptotic and proinflammatory pathways in pancreatic β-cells via modulation of IFNα signaling, subsequent increase in MHC class I protein, and modulation of chemokines such as CXCL10 that are important for recruitment of T cells to the islets. PMID:26239055

  1. Delivery of inhibitor of growth 4 (ING4) gene significantly inhibits proliferation and invasion and promotes apoptosis of human osteosarcoma cells

    PubMed Central

    Li, Mei; Zhu, Ye; Zhang, Hongbin; Li, Lihua; He, Peng; Xia, Hong; Zhang, Yu; Mao, Chuanbin

    2014-01-01

    Growing evidence has suggested that inhibitor of growth 4 (ING4), a novel member of ING family proteins, plays a critical role in the development and progression of different tumors via multiple pathways. However, the function of ING4 in human osteosarcoma remains unclear. To understand its potential roles and mechanisms in inhibiting osteosarcoma, we constructed an expression vector pEGFP-ING4 and transfected the human osteosarcoma cells using this vector. We then studied the effects of over-expressed ING4 in the transfected cells on the proliferation, apoptosis and invasion of the osteosarcoma cells. The up-regulation of ING4 in the osteosarcoma cells, arising from the stable pEGFP-ING4 gene transfection, was found to significantly inhibit the cell proliferation by the cell cycle alteration with S phase reduction and G0/G1 phase arrest, induce cell apoptosis via the activation of the mitochondria pathway, and suppress cell invasion through the down-regulation of the matrix metalloproteinase 2 (MMP-2) and MMP-9 expression. In addition, increased ING4 level evoked the blockade of NF-κB signaling pathway and down-regulation of its target proteins. Our work suggests that ING4 can suppress osteosarcoma progression through signaling pathways such as mitochondria pathway and NF-κB signaling pathway and ING4 gene therapy is a promising approach to treating osteosarcoma. PMID:25490312

  2. Obtain osteoarthritis related molecular signature genes through regulation network.

    PubMed

    Li, Yawei; Wang, Bing; Lv, Guohua; Xiong, Guangzhong; Liu, Wei Dong; Li, Lei

    2012-01-01

    Osteoarthritis (OA), also known as degenerative joint disease or osteoarthrosis, is the most common form of arthritis. OA occurs when cartilage in the joints wears down over time. We used the GSE1919 series to identify potential genes that correlated to OA. The aim of our study was to obtain a molecular signature of OA through the regulation network based on differentially expressed genes. From the result of regulation network construction in OA, a number of transcription factors (TFs) and pathways closely related to OA were linked by our method. Peroxisome proliferator-activated receptor γ also arises as hub nodes in our transcriptome network and certain TFs containing CEBPD, EGR2 and ETS2 were shown to be related to OA by a previous study. PMID:21946934

  3. Sex steroid receptors and apoptosis-related proteins are differentially expressed in polycystic ovaries of adult dogs.

    PubMed

    Chuffa, Luiz Gustavo de Almeida; Lupi Júnior, Luiz Antonio; da Maia Lima, Alfredo Feio

    2016-02-01

    In Polycystic Ovaries (PCOs), the dynamics of sex hormone receptors and follicle-related apoptotic signaling remain unknown. In this study, we investigated the expression of androgen receptors (AR), estrogen receptors (ERα and ERβ), and apoptosis-related molecules (BAX, active caspase-3, Bcl-2 and Survivin) on different follicular stages of PCOs in adult dogs. Clinical evidences of high estradiol and testosterone levels, persistent estrus and vaginal discharge were observed. Inhibin B immunolabeling was increased in primary and 2 to 5-mm follicles, and a marked epithelial hyperplasia was common in the ovarian surface. Ovarian epithelia and primary follicles showed low expression of AR, ERα, and ERβ, whereas a moderate immunoexpression of AR was found in theca cells of secondary follicles and cysts. In PCOs, growing follicles displayed ERα expression, and secondary follicles exhibited higher ERβ expression. In addition, while few ERα-positive cells were found in the cysts, ERβ was moderately expressed in growing follicles and cysts. BAX was upregulated in the ovarian epithelium, primary follicles, and in the wall of follicular cysts. Active caspase-3 was significantly downregulated in the epithelium, primary follicles, and follicular cysts, whereas growing follicles had a strong immunoexpression in the granulosa cells. Bcl-2 and survivin were increased in the epithelium and primary follicles, and only survivin was upregulated in secondary and growing follicles. While Bcl-2 had a diffuse immunexpression in the follicular cysts, survivin was overexpressed by these cells. We concluded that sex steroid receptors and apoptotic proteins are differentially expressed in the follicles of adult dogs with PCOs. PMID:26767421

  4. Identification of low Ca(2+) stress-induced embryo apoptosis response genes in Arachis hypogaea by SSH-associated library lift (SSHaLL).

    PubMed

    Chen, Hua; Zhang, Chong; Cai, Tie Cheng; Deng, Ye; Zhou, Shuangbiao; Zheng, Yixiong; Ma, Shiwei; Tang, Ronghua; Varshney, Rajeev K; Zhuang, Weijian

    2016-02-01

    Calcium is a universal signal in the regulation of wide aspects in biology, but few are known about the function of calcium in the control of early embryo development. Ca(2+) deficiency in soil induces early embryo abortion in peanut, producing empty pods, which is a general problem; however, the underlying mechanism remains unclear. In this study, embryo abortion was characterized to be caused by apoptosis marked with cell wall degradation. Using a method of SSH cDNA libraries associated with library lift (SSHaLL), 62 differentially expressed genes were isolated from young peanut embryos. These genes were classified to be stress responses, catabolic process, carbohydrate and lipid metabolism, embryo morphogenesis, regulation, etc. The cell retardation with cell wall degradation was caused by up-regulated cell wall hydrolases and down-regulated cellular synthases genes. HsfA4a, which was characterized to be important to embryo development, was significantly down-regulated under Ca(2+) -deficient conditions from 15 days after pegging (DAP) to 30 DAP. Two AhCYP707A4 genes, encoding abscisic acid (ABA) 8'-hydroxylases, key enzymes for ABA catabolism, were up-regulated by 21-fold under Ca(2+) -deficient conditions upstream of HsfA4a, reducing the ABA level in early embryos. Over-expression of AhCYP707A4 in Nicotiana benthamiana showed a phenotype of low ABA content with high numbers of aborted embryos, small pods and less seeds, which confirms that AhCYP707A4 is a key player in regulation of Ca(2+) deficiency-induced embryo abortion via ABA-mediated apoptosis. The results elucidated the mechanism of low Ca(2+) -induced embryo abortion and described the method for other fields of study. PMID:26079063

  5. Novel reciprocal regulation of cAMP signaling and apoptosis by orphan G-protein-coupled receptor GPRC5A gene expression

    SciTech Connect

    Hirano, Minoru; Zang, Liqing; Oka, Takehiko; Ito, Yoshiyuki; Shimada, Yasuhito; Nishimura, Yuhei; Tanaka, Toshio . E-mail: tanaka@doc.medic.mie-u.ac.jp

    2006-12-08

    GPRC5A is a member of G-protein-coupled receptors, which was originally identified as an all-trans-retinoic acid-induced gene. Although recent studies reported that this gene was highly expressed in the cancer cell lines and that GPRC5A might positively regulate cell proliferation, its mechanism remains unknown. We investigated the upstream and downstream signaling of GPRC5A and its biological function, and found that cAMP signaling is the novel GPRC5A induction pathway. When GPRC5A gene was overexpressed, intracellular cAMP concentration was decreased, and Gs{alpha} gene expression was downregulated. On the other hand, RNA interference of GPRC5A increased mRNA levels of Gs{alpha} and intracellular cAMP, reduced cell number, and induced apoptosis. Conversely, cell number was increased by GPRC5A overexpression. We first report the novel negative feedback model of cAMP signaling through GPRC5A gene expression. This evidence explains one of the mechanisms of the GPRC5A-regulated cell growth in some cancer cell lines.

  6. Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: activation of the vertebrate homologue of the drosophila seven in absentia gene.

    PubMed Central

    Amson, R B; Nemani, M; Roperch, J P; Israeli, D; Bougueleret, L; Le Gall, I; Medhioub, M; Linares-Cruz, G; Lethrosne, F; Pasturaud, P; Piouffre, L; Prieur, S; Susini, L; Alvaro, V; Millasseau, P; Guidicelli, C; Bui, H; Massart, C; Cazes, L; Dufour, F; Bruzzoni-Giovanelli, H; Owadi, H; Hennion, C; Charpak, G; Telerman, A

    1996-01-01

    We report the isolation of 10 differentially expressed cDNAs in the process of apoptosis induced by the p53 tamor suppressor. As a global analytical method, we performed a differential display of mRNA between mouse M1 myeloid leukemia cells and derived clone LTR6 cells, which contain a stably transfected temperature-sensitive mutant of p53. At 32 degrees C wild-type p53 function is activated in LTR6 cells, resulting in programmed cell death. Eight genes are activated (TSAP; tumor suppressor activated pathway), and two are inhibited (TSIP, tumor suppressor inhibited pathway) in their expression. None of the 10 sequences has hitherto been recognized as part of the p53 signaling pathway. Three TSAPs are homologous to known genes. TSAP1 corresponds to phospholipase C beta 4. TSAP2 has a conserved domain homologous to a multiple endocrine neoplasia I (ZFM1) candidate gene. TSAP3 is the mouse homologue of the Drosophila seven in absentia gene. These data provide novel molecules involved in the pathway of wild-type p53 activation. They establish a functional link between a homologue of a conserved developmental Drosophila gene and signal transduction in tumor suppression leading to programmed cell death. Images Fig. 2 Fig. 3 PMID:8632996

  7. Decoding c-Myc networks of cell cycle and apoptosis regulated genes in a transgenic mouse model of papillary lung adenocarcinomas

    PubMed Central

    Ciribilli, Yari; Singh, Prashant; Spanel, Reinhard; Inga, Alberto; Borlak, Jürgen

    2015-01-01

    The c-Myc gene codes for a basic-helix-loop-helix-leucine zipper transcription factor protein and is reported to be frequently over-expressed in human cancers. Given that c-Myc plays an essential role in neoplastic transformation we wished to define its activity in lung cancer and therefore studied its targeted expression to respiratory epithelium in a transgenic mouse disease model. Using histological well-defined tumors, transcriptome analysis identified novel c-Myc responsive cell cycle and apoptosis genes that were validated as direct c-Myc targets using EMSA, Western blotting, gene reporter and ChIP assays. Through computational analyses c-Myc cooperating transcription factors emerged for repressed and up-regulated genes in cancer samples, namely Klf7, Gata3, Sox18, p53 and Elf5 and Cebpα, respectively. Conversely, at promoters of genes regulated in transgenic but non-carcinomatous lung tissue enriched binding sites for c-Myc, Hbp1, Hif1 were observed. Bioinformatic analysis of tumor transcriptomic data revealed regulatory gene networks and highlighted mortalin and moesin as master regulators while gene reporter and ChIP assays in the H1299 lung cancer cell line as well as cross-examination of published ChIP-sequence data of 7 human and 2 mouse cell lines provided strong evidence for the identified genes to be c-Myc targets. The clinical significance of findings was established by evaluating expression of orthologous proteins in human lung cancer. Taken collectively, a molecular circuit for c-Myc-dependent cellular transformation was identified and the network analysis broadened the perspective for molecularly targeted therapies. PMID:26427040

  8. Inhibition of p66ShcA Longevity Gene Rescues Podocytes from HIV-1-induced Oxidative Stress and Apoptosis*

    PubMed Central

    Husain, Mohammad; Meggs, Leonard G.; Vashistha, Himanshu; Simoes, Sonia; Griffiths, Kevin O.; Kumar, Dileep; Mikulak, Joanna; Mathieson, Peter W.; Saleem, Moin A.; Del Valle, Luis; Pina-Oviedo, Sergio; Wang, Jin Ying; Seshan, Surya V.; Malhotra, Ashwani; Reiss, Krzysztof; Singhal, Pravin C.

    2009-01-01

    Glomerular visceral epithelial cells (podocytes) play a critical role in the pathogenesis of human immunodeficiency virus (HIV)-associated nephropathy. A key question concerns the mechanism(s) by which the HIV-1 genome alters the phenotype of the highly specialized, terminally differentiated podocytes. Here, using an in vitro system of conditionally immortalized differentiated human podocytes (CIDHPs), we document a pivotal role for the p66ShcA protein in HIV-1-induced reactive oxygen species generation and CIDHP apoptosis. CIDHP transfected with truncated HIV-1 construct (NL4-3) exhibit increased reactive oxygen species metabolism, DNA strand breaks, and a 5-fold increase in apoptosis, whereas the opposite was true for NL4-3/CIDHP co-transfected with mu-36p66ShcA (mu-36) dominant negative expression vector or isoform-specific p66-small interfering RNA. Phosphorylation at Ser-36 of the wild type p66ShcA protein, required for p66ShcA redox function and inhibition of the potent stress response regulator Foxo3a, was unchanged in mu-36/NL4-3/CIDHP but increased in NL4-3/CIDHP. Acute knockdown of Foxo3a by small interfering RNA induced a 50% increase in mu-36/NL4-3/CIDHP apoptosis, indicating that Foxo3a-dependent responses promote the survival phenotype in mu-36 cells. We conclude that inhibition of p66ShcA redox activity prevents generation of HIV-1 stress signals and activation of the CIDHP apoptosis program. PMID:19383602

  9. Expression and interaction analysis of Arabidopsis Skp1-related genes.

    PubMed

    Takahashi, Naoki; Kuroda, Hirofumi; Kuromori, Takashi; Hirayama, Takashi; Seki, Motoaki; Shinozaki, Kazuo; Shimada, Hiroaki; Matsui, Minami

    2004-01-01

    Specific protein degradation has been observed in several aspects of development and differentiation in many organisms. One example of such proteolysis is regulated by protein polyubiquitination that is promoted by the SCF complex consisting of Skp1, cullin, and an F-box protein. We examined the activities of the Arabidopsis Skp1-related proteins (ASKs). Among 19 annotated ASK genes, we isolated 16 of the corresponding cDNAs (ASK1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19), and examined their gene products for interactions with 24 representatives of F-box proteins carrying various classes of the C-terminal domains using the yeast two-hybrid system. As a result, we found diverse binding specificities: ASK1, ASK2, ASK11 and ASK12 interacted well with COI1, FKF1, UFO-like protein, LRR-containing F-box proteins, and other F-box proteins with unknown C-terminal motifs. We also observed specific interaction between F-box proteins and ASK3, ASK9, ASK13, ASK14, ASK16 and ASK18. In contrast, we detected no interaction between any of the 12 ASK proteins and F-box proteins containing CRFA, CRFB or CRFC domains. Both histochemical and RT-PCR analysis of eight ASK genes expression revealed unique expression patterns for the respective genes. PMID:14749489

  10. Relating protein adduction to gene expression changes: a systems approach

    PubMed Central

    Zhang, Bing; Shi, Zhiao; Duncan, Dexter T; Prodduturi, Naresh; Marnett, Lawrence J; Liebler, Daniel C

    2013-01-01

    Modification of proteins by reactive electrophiles such as the 4-hydroxy-2-nonenal (HNE) plays a critical role in oxidant-associated human diseases. However, little is known about protein adduction and the mechanism by which protein damage elicits adaptive effects and toxicity. We developed a systems approach for relating protein adduction to gene expression changes through the integration of protein adduction, gene expression, protein-DNA interaction, and protein-protein interaction data. Using a random walk strategy, we expanded a list of responsive transcription factors inferred from gene expression studies to upstream signaling networks, which in turn allowed overlaying protein adduction data on the network for the prediction of stress sensors and their associated regulatory mechanisms. We demonstrated the general applicability of transcription factor-based signaling network inference using 103 known pathways. Applying our workflow on gene expression and protein adduction data from HNE-treatment not only rediscovered known mechanisms of electrophile stress but also generated novel hypotheses regarding protein damage sensors. Although developed for analyzing protein adduction data, the framework can be easily adapted for phosphoproteomics and other types of protein modification data. PMID:21594272

  11. The Drosophila gene escargot encodes a zinc finger motif found in snail-related genes.

    PubMed

    Whiteley, M; Noguchi, P D; Sensabaugh, S M; Odenwald, W F; Kassis, J A

    1992-02-01

    Two independent P-element enhancer detection lines were obtained that express lacZ in a pattern of longitudinal stripes early in germband elongation. In this paper, molecular and genetic characterization of a gene located near these transposons is presented. Sequence analysis of a cDNA clone from the region reveals that this gene has a high degree of similarity with the Drosophila snail gene (Boulay et al., 1987). The sequence similarity extends over 400 nucleotides, and includes a region encoding five tandem zinc finger motifs (72% nucleotide identity; 76% amino acid identity). This region is also conserved in the snail homologue from Xenopus laevis (76% nucleotide identity; 83% amino acid identity) (Sargent and Bennett, 1990). We have named the Drosophila snail-related gene escargot (esg), and the region of sequence conservation common to all three genes the 'snailbox'. A number of Drosophila genomic DNA fragments cross-hybridize to a probe from the snailbox region suggesting that snail and escargot are members of a multigene family. The expression pattern of escargot is dynamic and complex. Early in germband elongation, escargot RNA is expressed in a pattern of longitudinal stripes identical to the one observed in the two enhancer detection lines. Later in development, escargot is expressed in cells that will form the larval imaginal tissues, escargot is allelic with l(2)35Ce, an essential gene located near snail in the genome. PMID:1571289

  12. Differential regulation of the 70K heat shock gene and related genes in Saccharomyces cerevisiae.

    PubMed Central

    Ellwood, M S; Craig, E A

    1984-01-01

    Saccharomyces cerevisiae contains a family of genes related to Hsp70, the major heat shock gene of Drosophila melanogaster. The transcription of three of these genes, which show no conservation of sequences 5' to the protein-coding region, was analyzed. The 5' flanking regions from the three genes were fused to the Escherichia coli beta-galactosidase structural gene and introduced into yeasts on multicopy plasmids, putting the beta-galactosidase production under yeast promoter control. Analysis of beta-galactosidase mRNA and protein production in these transformed strains revealed that transcription from the three promoters is differentially regulated. The number of transcripts from one promoter is vastly increased for a brief period after heat shock, whereas mRNA from another declines. Transcripts from a third gene are slightly enhanced upon heat shock; however, multiple 5' ends of the mRNA are found, and a minor species increases in amount after heat shock. Transcription of these promoters in their native state on the chromosome appears to be modulated in the same manner. Images PMID:6436685

  13. Mitochondrial-related gene expression profiles suggest an important role of PGC-1alpha in the compensatory mechanism of endemic dilated cardiomyopathy

    SciTech Connect

    He, Shu-Lan; Tan, Wu-Hong; Zhang, Zeng-Tie; Zhang, Feng; Qu, Cheng-Juan; Lei, Yan-Xia; Zhu, Yan-He; Yu, Han-Jie; Xiang, You-Zhang; and others

    2013-10-15

    Keshan disease (KD) is an endemic dilated cardiomyopathy with unclear etiology. In this study, we compared mitochondrial-related gene expression profiles of peripheral blood mononuclear cells (PBMCs) derived from 16 KD patients and 16 normal controls in KD areas. Total RNA was isolated, amplified, labeled and hybridized to Agilent human 4×44k whole genome microarrays. Mitochondrial-related genes were screened out by the Third-Generation Human Mitochondria-Focused cDNA Microarray (hMitChip3). Quantitative real-time PCR, immunohistochemical and biochemical parameters related mitochondrial metabolism were conducted to validate our microarray results. In KD samples, 34 up-regulated genes (ratios≥2.0) were detected by significance analysis of microarrays and ingenuity systems pathway analysis (IPA). The highest ranked molecular and cellular functions of the differentially regulated genes were closely related to amino acid metabolism, free radical scavenging, carbohydrate metabolism, and energy production. Using IPA, 40 significant pathways and four significant networks, involved mainly in apoptosis, mitochondrion dysfunction, and nuclear receptor signaling were identified. Based on our results, we suggest that PGC-1alpha regulated energy metabolism and anti-apoptosis might play an important role in the compensatory mechanism of KD. Our results may lead to the identification of potential diagnostic biomarkers for KD in PBMCs, and may help to understand the pathogenesis of KD. Highlights: • Thirty-four up-regulated genes were detected in KD versus health controls. • Forty pathways and four networks were detected in KD. • PGC-1alpha regulated energy metabolism and anti-apoptosis in KD.

  14. Silencing of Human CutC Gene (hCutC) Induces Apoptosis in HepG2 Cells.

    PubMed

    Kunjunni, Remesh; Sathianathan, Sandeep; Behari, Madhuri; Chattopadhyay, Parthaprasad; Subbiah, Vivekanandhan

    2016-07-01

    Copper is an essential microelement required for maintaining normal cell physiology. Copper transporter CutC is one of the six members of Cut family proteins, involved in prokaryotic copper homeostasis. Human homolog of CutC (hCutC) is an intracellular copper-binding protein with unknown physiological function. In the present study using HepG2 cells, we report the effects of hCutC knockdown on copper sensitivity and morphology of cells that ultimately leads to apoptosis. We silenced hCutC using specific small interfering RNA (siRNA), and its downregulation was confirmed by quantitative real-time PCR. Though there was no significant variation in total cellular copper as estimated by inductively coupled plasma-atomic emission spectrometry (ICP-AES), knockdown of hCutC caused an increase in sensitivity of HepG2 cells to copper loads when compared to control cells (studied by MTT-based cell viability assay). Morphological analysis by transmission electron microscopy (TEM) indicated onset of apoptosis in hCutC-silenced cells which was exacerbated upon copper treatment. Mitochondrial transmembrane potential (ΔΨm) assay and DNA fragmentation assay further ensured apoptosis occurring in cells upon hCutC silencing. The present study reveals copper induced damage in cells upon hCutC silencing and provides evidence for the role of hCutC protein in intracellular copper homeostasis. PMID:26660891

  15. Molecular cloning of allelopathy related genes and their relation to HHO in Eupatorium adenophorum.

    PubMed

    Guo, Huiming; Pei, Xixiang; Wan, Fanghao; Cheng, Hongmei

    2011-10-01

    In this study, conserved sequence regions of HMGR, DXR, and CHS (encoding 3-hydroxy-3-methylglutaryl-CoA reductase, 1-deoxyxylulose-5-phosphate reductoisomerase and chalcone synthase, respectively) were amplified by reverse transcriptase (RT)-PCR from Eupatorium adenophorum. Quantitative real-time PCR showed that the expression of CHS was related to the level of HHO, an allelochemical isolated from E. adenophorum. Semi-quantitative RT-PCR showed that there was no significant difference in expression of genes among three different tissues, except for CHS. Southern blotting indicated that at least three CHS genes are present in the E. adenophorum genome. A full-length cDNA from CHS genes (named EaCHS1, GenBank ID: FJ913888) was cloned. The 1,455 bp cDNA contained an open reading frame (1,206 bp) encoding a protein of 401 amino acids. Preliminary bioinformatics analysis of EaCHS1 revealed that EaCHS1 was a member of CHS family, the subcellular localization predicted that EaCHS1 was a cytoplasmic protein. To the best of our knowledge, this is the first report of conserved sequences of these genes and of a full-length EaCHS1 gene in E. adenophorum. The results indicated that CHS gene is related to allelopathy of E. adenophorum. PMID:21127986

  16. Three-dimensionally specific inhibition of DNA repair-related genes by activated KRAS in colon crypt model.

    PubMed

    Tsunoda, Toshiyuki; Takashima, Yasuo; Fujimoto, Takahiro; Koyanagi, Midori; Yoshida, Yasuhiro; Doi, Keiko; Tanaka, Yoko; Kuroki, Masahide; Sasazuki, Takehiko; Shirasawa, Senji

    2010-05-01

    Growth and differentiation of colonic epithelium are regulated in the three-dimensional (3D) physiological architecture, colonic crypt, and deregulation of 3D interactions is involved in tumorigenesis. Cell-based 3D culture systems provide a suitable approach bridging the gap between two-dimensional (2D) culture and animal models. KRAS mutations are found at high frequencies in human colorectal cancer (CRC); however, KRAS-targeted cancer therapy has not been developed. Here, we have established a 3D cell culture model resembling the colonic crypt by use of HKe3 cells, human CRC HCT116 cells disrupted at activated KRAS. In this 3D colonic crypt model, HKe3 cells showed the features of time course-dependent transit-amplifying and terminal-differentiated stages, which are characteristic of normal colonic crypt. On the basis of the features of HCT116 cells, activated KRAS inhibited normal cell polarity and apoptosis in 3D culture. The expression of DNA repair-related tumor suppressor genes including TP53, BRCA1, BRCA2, and EXO-1 was markedly suppressed by activated KRAS in 3D culture but not in 2D culture. These results together suggest that activated KRAS plays critical roles in the accumulation of genetic alterations through inhibition of DNA repair genes and apoptosis and that this 3D culture model will provide a useful tool for investigating the molecular mechanisms of CRC development. PMID:20454511

  17. Three-dimensionally Specific Inhibition of DNA Repair-Related Genes by Activated KRAS in Colon Crypt Model1 2

    PubMed Central

    Tsunoda, Toshiyuki; Takashima, Yasuo; Fujimoto, Takahiro; Koyanagi, Midori; Yoshida, Yasuhiro; Doi, Keiko; Tanaka, Yoko; Kuroki, Masahide; Sasazuki, Takehiko; Shirasawa, Senji

    2010-01-01

    Growth and differentiation of colonic epithelium are regulated in the three-dimensional (3D) physiological architecture, colonic crypt, and deregulation of 3D interactions is involved in tumorigenesis. Cell-based 3D culture systems provide a suitable approach bridging the gap between two-dimensional (2D) culture and animal models. KRAS mutations are found at high frequencies in human colorectal cancer (CRC); however, KRAS-targeted cancer therapy has not been developed. Here, we have established a 3D cell culture model resembling the colonic crypt by use of HKe3 cells, human CRC HCT116 cells disrupted at activated KRAS. In this 3D colonic crypt model, HKe3 cells showed the features of time course-dependent transit-amplifying and terminal-differentiated stages, which are characteristic of normal colonic crypt. On the basis of the features of HCT116 cells, activated KRAS inhibited normal cell polarity and apoptosis in 3D culture. The expression of DNA repair-related tumor suppressor genes including TP53, BRCA1, BRCA2, and EXO-1 was markedly suppressed by activated KRAS in 3D culture but not in 2D culture. These results together suggest that activated KRAS plays critical roles in the accumulation of genetic alterations through inhibition of DNA repair genes and apoptosis and that this 3D culture model will provide a useful tool for investigating the molecular mechanisms of CRC development. PMID:20454511

  18. Differential expression of calcium-related genes in gastric cancer cells transfected with cellular prion protein.

    PubMed

    Liang, Jie; Luo, Guanhong; Ning, Xiaoxuan; Shi, Yongquan; Zhai, Huihong; Sun, Shiren; Jin, Haifeng; Liu, Zhenxiong; Zhang, Faming; Lu, Yuanyuan; Zhao, Yunping; Chen, Xiong; Zhang, Hongbo; Guo, Xuegang; Wu, Kaichun; Fan, Daiming

    2007-06-01

    The prion protein (PrPC) has a primary role in the pathogenesis of transmissible spongiform encephalopathies, which causes prion disorders partially due to Ca2+ dysregulation. In our previous work, we found that overexpressed PrPC in gastric cancer was involved in apoptosis, cell proliferation, and metastasis of gastric cancer. To better understand how PrPC acts in gastric cancer, a human microarray was performed to select differentially regulated genes that correlate with the biological function of PrPC. The microarray data were analyzed and revealed 3798 genes whose expression increased at least 2-fold in gastric cancer cells transfected with PrPC. These genes encode proteins involved in several aspects of cell biology, among which, we specially detected molecules related to calcium, especially the S100 calcium-binding proteins, and found that PrPC upregulates S100A1, S100A6, S100B, and S100P but downregulates CacyBP in gastric cancer cells. We also found that intracellular Ca2+ levels in cells transfected with PrPC increased, whereas these levels decreased in knockdowns of these cells. Taken together, PrPC might increase intracellular Ca2+, partially through calcium-binding proteins, or PrPC might upregulate the expression of S100 proteins, partially through stimulating the intracellular calcium level in gastric cancer. Though the underlying mechanisms need further exploration, this study provides a new insight into the role of PrPC in gastric cancer and enriches our knowledge of prion protein. PMID:17612632

  19. Impact of obesity-related genes in Spanish population

    PubMed Central

    2013-01-01

    Background The objective was to investigate the association between BMI and single nucleotide polymorphisms previously identified of obesity-related genes in two Spanish populations. Forty SNPs in 23 obesity-related genes were evaluated in a rural population characterized by a high prevalence of obesity (869 subjects, mean age 46 yr, 62% women, 36% obese) and in an urban population (1425 subjects, mean age 54 yr, 50% women, 19% obese). Genotyping was assessed by using SNPlex and PLINK for the association analysis. Results Polymorphisms of the FTO were significantly associated with BMI, in the rural population (beta 0.87, p-value <0.001). None of the other SNPs showed significant association after Bonferroni correction in the two populations or in the pooled analysis. A weighted genetic risk score (wGRS) was constructed using the risk alleles of the Tag-SNPs with a positive Beta parameter in both populations. From the first to the fifth quintile of the score, the BMI increased 0.45 kg/m2 in Hortega and 2.0 kg/m2 in Pizarra. Overall, the obesity predictive value was low (less than 1%). Conclusion The risk associated with polymorphisms is low and the overall effect on BMI or obesity prediction is minimal. A weighted genetic risk score based on genes mainly acting through central nervous system mechanisms was associated with BMI but it yields minimal clinical prediction for the obesity risk in the general population. PMID:24267414

  20. miR-1273g-3p modulates activation and apoptosis of hepatic stellate cells by directly targeting PTEN in HCV-related liver fibrosis.

    PubMed

    Niu, Xuemin; Fu, Na; Du, Jinghua; Wang, Rongqi; Wang, Yang; Zhao, Suxian; Du, Huijuan; Wang, Baoyu; Zhang, Yuguo; Sun, Dianxing; Nan, Yuemin

    2016-08-01

    MicroRNA (miRNA) play a pivotal role in the development of liver fibrosis. However, the functions of miRNA in hepatitis C virus (HCV)-related liver fibrosis remain unclear. In this study, we systematically analyzed the microarray data of the serum miRNA in patients with HCV-induced hepatic fibrosis. Among 41 dysregulated miRNA, miR-1273g-3p was the most significantly upregulated miRNA and correlated with the stage of liver fibrosis. Overexpression of miR-1273g-3p could inhibit translation of PTEN, increase the expression of α-SMA, Col1A1, and reduce apoptosis in HSCs. Hence, we conclude that miR-1273g-3p might affect the activation and apoptosis of HSCs by directly targeting PTEN in HCV-related liver fibrosis. PMID:27423040

  1. Leptin regulates gallbladder genes related to absorption and secretion.

    PubMed

    Swartz-Basile, Deborah A; Lu, Debao; Basile, David P; Graewin, Shannon J; Al-Azzawi, Hayder; Kiely, James M; Mathur, Abhishek; Yancey, Kyle; Pitt, Henry A

    2007-07-01

    Dysregulation of gallbladder ion and water absorption and/or secretion has been linked to cholesterol crystal and gallstone formation. We have recently demonstrated that obese, leptin-deficient (Lep(ob)) mice have enlarged gallbladder volumes and decreased gallbladder contractility and that leptin administration to these mice normalizes gallbladder function. However, the effect of leptin on gallbladder absorption/secretion is not known. Therefore, we sought to determine whether leptin would alter the expression of genes involved in water and ion transport across the gallbladder epithelium. Affymetrix oligonucleotide microarrays representing 39,000 transcripts were used to compare gallbladder gene-expression profiles from 12-wk-old control saline-treated Lep(ob) and from leptin-treated Lep(ob) female mice. Leptin administration to Lep(ob) mice decreased gallbladder volume, bile sodium concentration, and pH. Leptin repletion upregulated the expression of aquaporin 1 water channel by 1.3-fold and downregulated aquaporin 4 by 2.3-fold. A number of genes involved in sodium transport were also influenced by leptin replacement. Epithelial sodium channel-alpha and sodium hydrogen exchangers 1 and 3 were moderately downregulated by 2.0-, 1.6-, and 1.3-fold, respectively. Carbonic anhydrase-IV, which plays a role in the acidification of bile, was upregulated 3.7-fold. In addition, a number of inflammatory cytokines that are known to influence gallbladder epithelial cell absorption and secretion were upregulated. Thus leptin, an adipocyte-derived cytokine involved with satiety and energy balance, influences gallbladder bile volume, sodium, and pH as well as multiple inflammatory cytokine genes and genes related to water, sodium, chloride, and bicarbonate transport. PMID:17463181

  2. Glutamine Reduces the Apoptosis of H9C2 Cells Treated with High-Glucose and Reperfusion through an Oxidation-Related Mechanism

    PubMed Central

    Zhang, Hong; Liu, Xiao-Peng; Zhang, Dong; Wu, Ai-Li; Li, Jian-Jun; Tang, Yue

    2015-01-01

    Mitochondrial overproduction of reactive oxygen species (ROS) in diabetic hearts during ischemia/reperfusion injury and the anti-oxidative role of glutamine have been demonstrated. However, in diabetes mellitus the role of glutamine in cardiomyocytes during ischemia/reperfusion injury has not been explored. To examine the effects of glutamine and potential mechanisms, in the present study, rat cardiomyoblast H9C2 cells were exposed to high glucose (33 mM) and hypoxia-reoxygenation. Cell viability, apoptosis, intracellular glutamine, and mitochondrial and intracellular glutathione were determined. Moreover, ROS formation, complex I activity, membrane potential and adenosine triphosphate (ATP) content were also investigated. The levels of S-glutathionylated complex I and mitochondrial apoptosis-related proteins, including cytochrome c and caspase-3, were analyzed by western blot. Data indicated that high glucose and hypoxia-reoxygenation were associated with a dramatic decline of intercellular glutamine and increase in apoptosis. Glutamine supplementation correlated with a reduction in apoptosis and increase of glutathione and glutathione reduced/oxidized ratio in both cytoplasm and mitochondria, but a reduction of intracellular ROS. Glutamine supplementation was also associated with less S-glutathionylation and increased the activity of complex I, leading to less mitochondrial ROS formation. Furthermore, glutamine supplementation prevented from mitochondrial dysfunction presented as mitochondrial membrane potential and ATP levels and attenuated cytochrome c release into the cytosol and caspase-3 activation. We conclude that apoptosis induced by high glucose and hypoxia-reoxygenation was reduced by glutamine supplementation, via decreased oxidative stress and inactivation of the intrinsic apoptotic pathway. PMID:26146991

  3. Proteomic investigation of the sinulariolide-treated melanoma cells A375: effects on the cell apoptosis through mitochondrial-related pathway and activation of caspase cascade.

    PubMed

    Li, Hsing-Hui; Su, Jui-Hsin; Chiu, Chien-Chih; Lin, Jen-Jie; Yang, Zih-Yan; Hwang, Wen-Ing; Chen, Yu-Kuei; Lo, Yu-Hsuan; Wu, Yu-Jen

    2013-07-01

    Sinulariolide is an active compound isolated from the cultured soft coral Sinularia flexibilis. In this study, we investigated the effects of sinulariolide on A375 melanoma cell growth and protein expression. Sinulariolide suppressed the proliferation and migration of melanoma cells in a concentration-dependent manner and was found to induce both early and late apoptosis by flow cytometric analysis. Comparative proteomic analysis was conducted to investigate the effects of sinulariolide at the molecular level by comparison between the protein profiles of melanoma cells treated with sinulariolide and those without treatment. Two-dimensional gel electrophoresis (2-DE) master maps of control and treated A375 cells were generated by analysis with PDQuest software. Comparison between these maps showed up- and downregulation of 21 proteins, seven of which were upregulated and 14 were downregulated. The proteomics studies described here identify some proteins that are involved in mitochondrial dysfunction and apoptosis-associated proteins, including heat shock protein 60, heat shock protein beta-1, ubiquinol cytochrome c reductase complex core protein 1, isocitrate dehydrogenase (NAD) subunit alpha (down-regulated), and prohibitin (up-regulated), in A375 melanoma cells exposed to sinulariolide. Sinulariolide-induced apoptosis is relevant to mitochondrial-mediated apoptosis via caspase-dependent pathways, elucidated by the loss of mitochondrial membrane potential, release of cytochrome c, and activation of Bax, Bad and caspase-3/-9, as well as suppression of p-Bad, Bcl-xL and Bcl-2. Taken together, our results show that sinulariolide-induced apoptosis might be related to activation of the caspase cascade and mitochondria dysfunction pathways. Our results suggest that sinulariolide merits further evaluation as a chemotherapeutic agent for human melanoma. PMID:23880933

  4. Proteomic Investigation of the Sinulariolide-Treated Melanoma Cells A375: Effects on the Cell Apoptosis through Mitochondrial-Related Pathway and Activation of Caspase Cascade

    PubMed Central

    Li, Hsing-Hui; Su, Jui-Hsin; Chiu, Chien-Chih; Lin, Jen-Jie; Yang, Zih-Yan; Hwang, Wen-Ing; Chen, Yu-Kuei; Lo, Yu-Hsuan; Wu, Yu-Jen

    2013-01-01

    Sinulariolide is an active compound isolated from the cultured soft coral Sinularia flexibilis. In this study, we investigated the effects of sinulariolide on A375 melanoma cell growth and protein expression. Sinulariolide suppressed the proliferation and migration of melanoma cells in a concentration-dependent manner and was found to induce both early and late apoptosis by flow cytometric analysis. Comparative proteomic analysis was conducted to investigate the effects of sinulariolide at the molecular level by comparison between the protein profiles of melanoma cells treated with sinulariolide and those without treatment. Two-dimensional gel electrophoresis (2-DE) master maps of control and treated A375 cells were generated by analysis with PDQuest software. Comparison between these maps showed up- and downregulation of 21 proteins, seven of which were upregulated and 14 were downregulated. The proteomics studies described here identify some proteins that are involved in mitochondrial dysfunction and apoptosis-associated proteins, including heat shock protein 60, heat shock protein beta-1, ubiquinol cytochrome c reductase complex core protein 1, isocitrate dehydrogenase (NAD) subunit alpha (down-regulated), and prohibitin (up-regulated), in A375 melanoma cells exposed to sinulariolide. Sinulariolide-induced apoptosis is relevant to mitochondrial-mediated apoptosis via caspase-dependent pathways, elucidated by the loss of mitochondrial membrane potential, release of cytochrome c, and activation of Bax, Bad and caspase-3/-9, as well as suppression of p-Bad, Bcl-xL and Bcl-2. Taken together, our results show that sinulariolide-induced apoptosis might be related to activation of the caspase cascade and mitochondria dysfunction pathways. Our results suggest that sinulariolide merits further evaluation as a chemotherapeutic agent for human melanoma. PMID:23880933

  5. Cloning and characterization of temperature-related gene TRS1.

    PubMed

    Han, X-B; Zhou, X-C; Hu, Z-Y; Zhang, Z-H; Liu, Y-X

    2002-01-01

    To investigate the mechanism of spermatogenesis arrest derived from heat treatment and to screen temperature-related genes involved in spermatogenesis, the authors analyzed the differences in gene expression between cryptorchid and scrotal testes in rats, and cloned a full-length cDNA named TRS1. In situ hybridization showed that TRS1 mRNA was mainly expressed in spermatocyte and round spermatids in testis. The expression level decreased in cryptorchid testis, suggesting that the lower scrotal temperature is a key factor in keeping the normal expression of TRS1. At the N-terminal of TRS1, there was a plecstrin homology (PH) domain signature. This PH domain has high similarity to that in PEPP2, a homosapien protein, which has a characteristic of binding phosphatidylinositol 3-phosphate via its PH domain in vitro. These findings suggest that TRS1 may be important in spermatogenesis and give clues for further research on the function of TRS1. PMID:12137588

  6. Growth inhibition and apoptosis induced by daunomycin-conjugated triplex-forming oligonucleotides targeting the c-myc gene in prostate cancer cells

    PubMed Central

    Napoli, Sara; Negri, Umberto; Arcamone, Federico; Capobianco, Massimo L.; Carbone, Giuseppina M.; Catapano, Carlo V.

    2006-01-01

    Covalent attachment of intercalating agents to triplex-forming oligonucleotides (TFOs) is a promising strategy to enhance triplex stability and biological activity. We have explored the possibility to use the anticancer drug daunomycin as triplex stabilizing agent. Daunomycin-conjugated TFOs (dauno-TFOs) bind with high affinity and maintain the sequence-specificity required for targeting individual genes in the human genome. Here, we examined the effects of two dauno-TFOs targeting the c-myc gene on gene expression, cell proliferation and survival. The dauno-TFOs were directed to sequences immediately upstream (dauno-GT11A) and downstream (dauno-GT11B) the major transcriptional start site in the c-myc gene. Both dauno-TFOs were able to down-regulate promoter activity and transcription of the endogenous gene. Myc-targeted dauno-TFOs inhibited growth and induced apoptosis of prostate cancer cells constitutively expressing the gene. Daunomycin-conjugated control oligonucleotides with similar sequences had only minimal effects, confirming that the activity of dauno-TFOs was sequence-specific and triplex-mediated. To test the selectivity of dauno-TFOs, we examined their effects on growth of normal human fibroblasts, which express low levels of c-myc. Despite their ability to inhibit c-myc transcription, both dauno-TFOs failed to inhibit growth of normal fibroblasts at concentrations that inhibited growth of prostate cancer cells. In contrast, daunomycin inhibited equally fibroblasts and prostate cancer cells. Thus, daunomycin per se did not contribute to the antiproliferative activity of dauno-TFOs, although it greatly enhanced their ability to form stable triplexes at the target sites and down-regulate c-myc. Our data indicate that dauno-TFOs are attractive gene-targeting agents for development of new cancer therapeutics. PMID:16449206

  7. Oncolytic Adenoviral Mutants with E1B19K Gene Deletions Enhance Gemcitabine-induced Apoptosis in Pancreatic Carcinoma Cells and Anti-Tumor Efficacy In vivo

    PubMed Central

    Leitner, Stephan; Sweeney, Katrina; Öberg, Daniel; Davies, Derek; Miranda, Enrique; Lemoine, Nick R.; Halldén, Gunnel

    2010-01-01

    Purpose Pancreatic adenocarcinoma is a rapidly progressive malignancy that is highly resistant to current chemotherapeutic modalities and almost uniformly fatal.We show that a novel targeting strategy combining oncolytic adenoviral mutants with the standard cytotoxic treatment, gemcitabine, can markedly improve the anticancer potency. Experimental Design Adenoviral mutants with the E1B19K gene deleted with and without E3B gene expression (AdΔE1B19K and dl337 mutants, respectively) were assessed for synergistic interactions in combination with gemcitabine. Cell viability, mechanism of cell death, and antitumor efficacy in vivo were determined in the pancreatic carcinoma cells PT45 and Suit2, normal human bronchial epithelial cells, and in PT45 xenografts. Results The ΔE1B19K-deleted mutants synergized with gemcitabine to selectively kill cultured pancreatic cancer cells and xenografts in vivo with no effect in normal cells. The corresponding wild-type virus (Ad5) stimulated drug-induced cell killing to a lesser degree. Gemcitabine blocked replication of all viruses despite the enhanced cell killing activity due to gemcitabine-induced delay in G1/S-cell cycle progression, with repression of cyclin E and cdc25A, which was not abrogated by viral E1A-expression. Synergistic cell death occurred through enhancement of gemcitabine-induced apoptosis in the presence of both AdΔE1B19K and dl337 mutants, shown by increased cell membrane fragmentation, caspase-3 activation, and mitochondrial dysfunction. Conclusions Our data suggest that oncolytic mutants lacking the antiapoptotic E1B19K gene can improve efficacy of DNA-damaging drugs such as gemcitabine through convergence on cellular apoptosis pathways.These findings imply that less toxic doses than currently practicedin the clinic could efficiently target pancreatic adenocarcinomas when combined with adenoviral mutants. PMID:19223497

  8. Antitumor activity of adenoviral vector containing T42 and 4xT42 peptide gene through inducing apoptosis of tumor cells and suppressing angiogenesis.

    PubMed

    Zhang, Xiong; Qi, Dong-Dong; Zhang, Ting-Ting; Chen, Qing-Xin; Wang, Guang-Zhi; Sui, Guang-Yu; Hao, Xue-Wei; Sun, Shouli; Song, Xue; Chen, Ying-Li

    2015-03-01

    The T42 peptide, generated from two active fragments of tumstatin, has been shown to have anti‑tumor activity. The adenoviral vector is the most frequently used vector in research and clinical trials for gene therapy. In the present study, the anti‑tumor activity of the T42 peptide and quadruple T42 (4xT42) peptide adenoviral vectors were elucidated for the first time, to the best of our knowledge. Human embryonic kidney 293 cells were infected with plasmid adenovirus (pAd)‑enhanced green fluorescent protein (EGFP)‑T42 or pAd‑EGFP‑4xT42 and the expression of the T42 and 4xT42 genes was confirmed by the identification of GFP expression and reverse transcription polymerase chain reaction experiments. The anti‑cancer effects of pAd‑EGFP‑T42 and pAd‑EGFP‑4xT42 on breast cancer cells in vivo and in vitro were subsequently investigated. The results indicated that the packaging of the recombinant adenoviruses with the viral titer was successful, following purification at 5x109 plaque forming units/ml. The results also revealed that the recombinant adenoviruses promoted apoptosis in MCF‑7 breast cancer cells and inhibited cancer growth. Through the analysis of caspase‑3, B‑cell lymphoma 2 (Bcl‑2) and Bcl‑2‑associated X protein expression, it was demonstrated that the T42/4xT42 peptide may induce apoptosis via the mitochondrial pathway. In addition, mouse xenograft experiments confirmed that the T42 peptide inhibited tumor growth and reduced angiogenesis in vivo. In conclusion, the results of the present study indicated that the T42 and 4xT42 peptide genes, transfected by a recombinant adenovirus, may provide a potential novel strategy for the treatment of breast cancer. PMID:25384346

  9. The Study of Pentoxifylline Drug Effects on Renal Apoptosis and BCL-2 Gene Expression Changes Following Ischemic Reperfusion Injury in Rat

    PubMed Central

    Hashemi, Mehrdad

    2014-01-01

    Ischemia Reperfusion injury is the tissue damage caused when blood supply returns to the tissue after a period of ischemia or lack of oxygen. In this study, the effect of pentoxyfylline on BCL-2 gene expression changes and cell injury in kidney of rat following Ischemia Reperfusion were evaluated. In this experimental study, 20 male wistar rats with average weight of 250-300 g were selected and then were accidently divided them on two tenth group of control and treatment groups. In the control group, celiotomy was performed by ventral midline incision. The left kidney was isolated, and then both the renal artery and vein were obstructed. After 60 minutes of warm ischemia, vessel obstruction resolved and the right kidney was removed. 72 hours after reperfusion, tissue samples were taken from left kidney for Tunel assay. We used quantitative real time PCR for detection of BCL-2 gene expression in treated groups and then compared them to control samples. In the treatment group, the cell death changes, showed lower level than the control group. The results also showed the BCL-2 gene expression was declined in ischemia group as campared to PNT drug group. The pentoxyfylline might have a role in control of apoptosis result from Ischemia- reperfusion and quantitative real-time PCR can be used as a direct method for detection BCL-2 gene expression in tested samples and normal samples. PMID:24734070

  10. A gene and protein expression study on four porcine genes related to intramuscular fat deposition.

    PubMed

    Zappaterra, Martina; Deserti, Marzia; Mazza, Roberta; Braglia, Silvia; Zambonelli, Paolo; Davoli, Roberta

    2016-11-01

    Intramuscular fat (IMF) content has a prominent role in meat quality, affecting sensory attributes such as flavour and texture. In the present research, we studied in samples of porcine Semimembranosus muscle four genes related to lipid metabolism and whose gene expressions have been associated to IMF deposition: FASN, SCD, LIPE and LPL. We analysed both mRNA and protein expressions in two groups of Italian Large White pigs divergent for Semimembranosus IMF deposition, with the aim of comparing the levels of four genes and enzymes between the two groups and identifying possible coexpression links. The obtained results suggest a prominent role of LIPE enzyme in IMF hydrolysis, as the samples with low IMF deposition show a significantly higher amount of this lipase. Finally, a poorly known correlation was found between LIPE and FASN enzymes only in female individuals. These results provide new information for the understanding of IMF deposition. PMID:27236338

  11. Inhibition of Salmonella-induced apoptosis as a marker of the protective efficacy of virulence gene-deleted live attenuated vaccine.

    PubMed

    Kamble, Nitin M; Nandre, Rahul M; Lee, John Hwa

    2016-01-01

    Vaccination is one of the best protection strategies against Salmonella infection in humans and chickens. Salmonella bacteria must induce apoptosis prior to initiating infection, pathogenesis and evasion of host immune responses. In this study, we evaluated the efficacy of vaccinating chickens against Salmonella Enteritidis (SE) using a vaccine candidate strain (JOL919), constructed by deleting the lon and cpxR genes from a wild-type SE using an allelic exchange method. In present study day old chickens were inoculated with 1×10(7)cfu (colony forming unit) of JOL919 per os. We measured cell-mediated immunity, protective efficacy and extent of apoptosis induction in splenocytes. Seven days post-immunization, the number of CD3+CD4+ and CD3+ CD8+ T cells was significantly higher in the immunized group compared to the control group, indicating a significant augmentation of systemic immune response. The internal organs of chickens immunized with JOL919 had a significantly lower challenge-strain recovery, indicating effective protection and clearance of the challenge strain. Post-challenge, the number of apoptotic cells in the immunized group was significantly lower than in the control group. Additionally, AV/PI (Annexin V/propidium iodide) staining was performed to differentiate between apoptotic cells and necrotic cells, which corroborated TUNEL-assay (terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling) results. The proportions of AV+/PI- and AV+/PI+ cells, which represent the proportions of early apoptotic and late apoptotic/early necrotic cells present, respectively, were significantly lower in the immunized group. Our findings suggest that the apoptotic splenocytes in immunized chickens significantly decreased in number, which occurred concomitantly with a significant rise in systemic immune response and bacterial clearance. This suggests that inhibition of apoptosis may be a marker of protection efficacy in immunized chickens. PMID

  12. Protective Role of Hsp27 Protein Against Gamma Radiation-Induced Apoptosis and Radiosensitization Effects of Hsp27 Gene Silencing in Different Human Tumor Cells

    SciTech Connect

    Aloy, Marie-Therese Hadchity, Elie; Bionda, Clara; Diaz-Latoud, Chantal; Claude, Line; Rousson, Robert; Arrigo, Andre-Patrick; Rodriguez-Lafrasse, Claire

    2008-02-01

    Purpose: The ability of heat shock protein 27 (Hsp27) to protect cells from stressful stimuli and its increased levels in tumors resistant to anticancer therapeutics suggest that it may represent a target for sensitization to radiotherapy. In this study, we investigate the protective role of Hsp27 against radiation-induced apoptosis and the effect of its attenuation in highly expressing radioresistant cancer cell lines. Methods and Materials: We examined clonogenic death and the kinetics of apoptotic events in different tumor cell lines overexpressing or underexpressing Hsp27 protein irradiated with photons. The radiosensitive Jurkat cell line, which does not express Hsp27 constitutively or in response to {gamma}-rays, was stably transfected with Hsp27 complementary DNA. Attenuation of Hsp27 expression was accomplished by antisense or RNAi (interfering RNA) strategies in SQ20B head-and-neck squamous carcinoma, PC3 prostate cancer, and U87 glioblastoma radioresistant cells. Results: We measured concentration-dependent protection against the cytotoxic effects of radiation in Jurkat-Hsp27 cells, which led to a 50% decrease in apoptotic cells at 48 hours in the highest expressing cells. Underlying mechanisms leading to radiation resistance involved a significant increase in glutathione levels associated with detoxification of reactive oxygen species, a delay in mitochondrial collapse, and caspase activation. Conversely, attenuation of Hsp27 in SQ20B cells, characterized by their resistance to apoptosis, sensitizes cells to irradiation. This was emphasized by increased apoptosis, decreased glutathione basal level, and clonogenic cell death. Sensitization to irradiation was confirmed in PC3 and U87 radioresistant cells. Conclusion: Hsp27 gene therapy offers a potential adjuvant to radiation-based therapy of resistant tumors.

  13. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties.

    SciTech Connect

    Huang, E. Y.; Madireddi, M. T.; Gopalkrishnan, R. V.; Leszczyniecka, M.; Su, Z. Z.; Lebedeva, I. V.; Kang, D. C.; Jian, H.; Lin, J. J.; Alexandre, D.; Chen, Y.; Vozhilla, N.; Mei, M. X.; Christiansen, K. A.; Sivo, F.; Goldstein, N. I.; Chada, S.; Huberman, E.; Pestka, S.; Fisher, P. B.; Biochip Technology Center; Columbia Univ.; Introgen Therapeutics Inc.; UMDNJ-Robert Wood Johnson Medical School

    2001-10-25

    Abnormalities in cellular differentiation are frequent occurrences in human cancers. Treatment of human melanoma cells with recombinant fibroblast interferon (IFN-beta) and the protein kinase C activator mezerein (MEZ) results in an irreversible loss in growth potential, suppression of tumorigenic properties and induction of terminal cell differentiation. Subtraction hybridization identified melanoma differentiation associated gene-7 (mda-7), as a gene induced during these physiological changes in human melanoma cells. Ectopic expression of mda-7 by means of a replication defective adenovirus results in growth suppression and induction of apoptosis in a broad spectrum of additional cancers, including melanoma, glioblastoma multiforme, osteosarcoma and carcinomas of the breast, cervix, colon, lung, nasopharynx and prostate. In contrast, no apparent harmful effects occur when mda-7 is expressed in normal epithelial or fibroblast cells. Human clones of mda-7 were isolated and its organization resolved in terms of intron/exon structure and chromosomal localization. Hu-mda-7 encompasses seven exons and six introns and encodes a protein with a predicted size of 23.8 kDa, consisting of 206 amino acids. Hu-mda-7 mRNA is stably expressed in the thymus, spleen and peripheral blood leukocytes. De novo mda-7 mRNA expression is also detected in human melanocytes and expression is inducible in cells of melanocyte/melanoma lineage and in certain normal and cancer cell types following treatment with a combination of IFN-beta plus MEZ. Mda-7 expression is also induced during megakaryocyte differentiation induced in human hematopoietic cells by treatment with TPA (12-O-tetradecanoyl phorbol-13-acetate). In contrast, de novo expression of mda-7 is not detected nor is it inducible by IFN-beta+MEZ in a spectrum of additional normal and cancer cells. No correlation was observed between induction of mda-7 mRNA expression and growth suppression following treatment with IFN-beta+MEZ and

  14. Dynamin-related protein Drp1 is required for Bax translocation to mitochondria in response to irradiation-induced apoptosis.

    PubMed

    Wang, Ping; Wang, Peiguo; Liu, Becky; Zhao, Jing; Pang, Qingsong; Agrawal, Samir G; Jia, Li; Liu, Feng-Ting

    2015-09-01

    Translocation of the pro-apoptotic protein Bax from the cytosol to the mitochondria is a crucial step in DNA damage-mediated apoptosis, and is also found to be involved in mitochondrial fragmentation. Irradiation-induced cytochrome c release and apoptosis was associated with Bax activation, but not mitochondrial fragmentation. Both Bax and Drp1 translocated from the cytosol to the mitochondria in response to irradiation. However, Drp1 mitochondrial translocation and oligomerization did not require Bax, and failed to induce apoptosis in Bax deficient diffuse large B-cell lymphoma (DLBCL) cells. Using fluorescent microscopy and the intensity correlation analysis, we demonstrated that Bax and Drp1 were colocalized and the levels of colocalization were increased by UV irradiation. Using co-immuno-precipitation, we confirmed that Bax and Drp1 were binding partners. Irradiation induced a time-associated increase in the interaction between active Bax and Drp1. Knocking down Drp1 using siRNA blocked UV irradiation-mediated Bax mitochondrial translocation. In conclusion, our findings demonstrate for the first time, that Drp1 is required for Bax mitochondrial translocation, but Drp1-induced mitochondrial fragmentation alone is not sufficient to induce apoptosis in DLBCL cells. PMID:26093086

  15. HCV E2 may induce apoptosis of Huh-7 cells via a mitochondrial-related caspase pathway

    SciTech Connect

    Chiou, H.-L. . E-mail: hlchiou@csmu.edu.tw; Hsieh, Y.-S.; Hsieh, M.-R.; Chen, T.-Y.

    2006-06-23

    Introduction: One unusual characteristic of HCV is to establish chronic infection and the precise mechanisms remain unclear. Materials and methods: Huh-7 cells were transiently transfected with E2 and subjected to MTT assay, DNA fragmentation assay, and Western blotting to see the impact of E2 protein on apoptosis. Results and discussion: E2 may inhibit cell proliferation by inducing apoptosis and pro-caspases 3, 8, and 9 were cleaved and activated to result in the presence of active forms in a time-dependent fashion, which suggest that E2-induced apoptosis is caspase-dependent. Furthermore, the cytosolic level of cytochrome c was increased together with a gradually down-regulated Bcl-2 and up-regulated Bax protein expression. The continuing reduction of Bid protein and the gradual increase of tBid protein also indicated that a time-dependent increased turn-over of Bid protein into tBid. Taken together, our data suggested that HCV E2 may induce apoptosis through a mitochondrial damage-mediated caspase pathway.

  16. The kinesin Eg5 inhibitor K858 induces apoptosis but also survivin-related chemoresistance in breast cancer cells.

    PubMed

    De Iuliis, Francesca; Taglieri, Ludovica; Salerno, Gerardo; Giuffrida, Anna; Milana, Bernardina; Giantulli, Sabrina; Carradori, Simone; Silvestri, Ida; Scarpa, Susanna

    2016-08-01

    Inhibitors of kinesin spindle protein Eg5 are characterized by pronounced antitumor activity. Our group has recently synthesized and screened a library of 1,3,4-thiadiazoline analogues with the pharmacophoric structure of K858, an Eg5 inhibitor. We herein report the effects of K858 on four different breast cancer cell lines: MCF7 (luminal A), BT474 (luminal B), SKBR3 (HER2 like) and MDA-MB231 (basal like). We demonstrated that K858 displayed anti-proliferative activity on every analyzed breast cancer cell line by inducing apoptosis. However, at the same time, we showed that K858 up-regulated survivin, an anti-apoptotic molecule. We then performed a negative regulation of survivin expression, with the utilization of wortmannin, an AKT inhibitor, and obtained a significant increase of K858-dependent apoptosis. These data demonstrate that K858 is a potent inhibitor of replication and induces apoptosis in breast tumor cells, independently from the tumor phenotype. This anti-proliferative response of tumor cells to K858 can be limited by the contemporaneous over-expression of survivin; consequently, the reduction of survivin levels, obtained with AKT inhibitors, can sensitize tumor cells to K858-induced apoptosis. PMID:26994617

  17. Tenm, a Drosophila gene related to tenascin, is a new pair-rule gene.

    PubMed Central

    Baumgartner, S; Martin, D; Hagios, C; Chiquet-Ehrismann, R

    1994-01-01

    We describe the molecular characterization of the Drosophila gene tenm, a large transcription unit spanning > 110 kb of DNA. tenm encodes a large extracellular protein of 2515 amino acids related to the extracellular matrix molecule tenascin. The Tenm protein is found in seven stripes during the blastoderm stage, and each stripe overlaps with the even-skipped stripes. tenm mutants show a phenotype resembling that of odd-paired (opa), a member of the pair-rule class of segmentation genes. Thus, Tenm is the first example of a pair-rule gene product acting from outside the cell. While the Tenm protein is under the control of fushi tarazu and even-skipped, but not of opa, at least two pair-rule genes, paired (prd) and sloppy paired (slp), and all segment-polarity genes analysed to date are under the control of tenm. Our data suggest that Tenm initiates a signal transduction cascade which acts, via or in concert with opa, on downstream targets such as prd, slp, gooseberry, engrailed and wingless, leading to an opa-like phenotype. Images PMID:8070401

  18. Modulation of adipogenesis-related gene expression by estrogen-related receptor gamma during adipocytic differentiation.

    PubMed

    Kubo, Mayumi; Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Takeda, Satoru; Inoue, Satoshi

    2009-02-01

    Estrogen-related receptor gamma (ERRgamma) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in oxidative metabolism and mitochondrial biogenesis in brown adipose tissue and heart. However, the physiological role of ERRgamma in adipogenesis and the development of white adipose tissue has not been well studied. Here we show that ERRgamma was up-regulated in murine mesenchyme-derived cells, especially in ST2 and C3H10T1/2 cells, at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. The up-regulation of ERRgamma mRNA was also observed in inguinal white adipose and brown adipose tissues of mice fed a high-fat diet. Gene knockdown by ERRgamma-specific siRNA results in mRNA down-regulation of adipogenic marker genes including fatty acid binding protein 4, PPARgamma, and PGC-1beta in a preadipocyte cell line 3T3-L1 preadipocytes and mesenchymal ST2 and C3H10T1/2 cells in the adipogenesis medium. In contrast, stable expression of ERRgamma in 3T3-L1 cells resulted in up-regulation of these adipogenic marker genes under the adipogenic condition. These results suggest that ERRgamma positively regulate the adipocyte differentiation with modulating the expression of various adipogenesis-related genes. PMID:18809516

  19. Impact of Mitochondria-Mediated Apoptosis in U251 Cell Cycle Arrest in G1 Stage and Caspase Activation

    PubMed Central

    Zhang, Lei; Liang, Peng; Zhang, Rui

    2015-01-01

    Background Most mitochondria-mediated apoptosis has some relevance to the cell cycle, but there is still a lack of investigations about U251 cell cycle in human brain glioma cells. In this study, we aimed to clarify the correlation of mitochondria-mediated apoptosis with the U251 cell cycle and its influence on apoptosis, through observing the impact of mitochondria-mediated apoptosis in U251cell specificity cycle arrest and Caspase activation. Material/Methods AnnexinV/PI and API were used to label the brain glioma cells for flow cytometry analysis of U251 cell apoptosis and cell cycle. RT-PCR and Western blot were performed to detect Caspase-3 and Caspase-9 activation. Results Peripheral blood in stationary phase is not sensitive to apoptosis induction, but U251 cells have obvious apoptosis. Mitochondria-mediated apoptosis mainly occurs in the G1 phase of the cell cycle. Caspase-3 and Caspase-9 mRNAs and proteins expression increased significantly after the cells were treated by mitochondrial apoptosis-related gene Bax induction. Conclusions Mitochondria-mediated apoptosis is related to the U251 cell cycle with specific G1 stage arrest. Caspase activation occurs in the process of cell apoptosis. PMID:26594875

  20. Prostate Cancer Related JAZF1 Gene is Associated with Schizophrenia

    PubMed Central

    Wang, Ke-Sheng; Zuo, Lingjun; Owusu, Daniel; Pan, Yue; Luo, Xingguang

    2016-01-01

    Background Epidemiological studies have shown that there is a reduced risk of prostate cancer among persons diagnosed with schizophrenia (SCZ). However, the mechanism of such relationship is not clear. The reduced incidence of cancer observed in SCZ patients may be related to differences in genetic background. Recently, the JAZF1 gene is found to be associated with prostate cancer and type 2 diabetes. However, no study has focused on the association of JAZF1 with the risk of SCZ. Methods We examined genetic associations of 118 single-nucleotide polymorphisms (SNPs) within the JAZF1 gene with SCZ using one European American (EA) sample of 1,149 cases and 1,347 controls. Logistic regression analysis of SCZ as a binary trait was performed using PLINK software. Results The most significant association with SCZ was observed with rs10258132 (p = 0.0011); while the next best signal was rs17156259 (p = 0.0031). The third best associated SNP was rs7791865 (p = 0.00889). In addition, haplotype analyses revealed that the A-C haplotype from rs10244184 and rs10258132 was associated with SCZ (p = 0.00093); and the G-G haplotype from rs17156238 and rs17156259 was associated with SCZ (p = 0.00455). Conclusion These findings provide evidence of several genetic variants in JAZF1 gene influencing the risk of SCZ and will serve as a resource for replication in other populations.

  1. Genes related to chromate resistance by Pseudomonas aeruginosa PAO1.

    PubMed

    Rivera, Sonia L; Vargas, Eréndira; Ramírez-Díaz, Martha I; Campos-García, Jesús; Cervantes, Carlos

    2008-08-01

    Chromate-hypersensitive mutants of the Pseudomonas aeruginosa PAO1 strain were isolated using transposon-insertion mutagenesis. Comparison of the nucleotide sequences of the regions interrupted in the mutants with the PAO1 genome revealed that the genes affected in three mutant strains were oprE (ORF PA0291), rmlA (ORF PA5163), and ftsK (ORF PA2615), respectively. A relationship of these genes with chromate tolerance has not been previously reported. No other phenotypic changes were observed in the oprE mutant but its resistance to chromate was not fully restored by expressing the ChrA protein, which extrudes chromate ions from the cytoplasm to the periplasmic space. These data suggest that OprE participates in the efflux of chromate from the periplasm to the outside. Increased susceptibility of the rmlA mutant to the metals cadmium and mercury and to the anion-superoxide generator paraquat suggests a protective role of LPS against chromate toxicity. A higher susceptibility of the ftsK mutant to compounds affecting DNA structure (ciprofloxacin, tellurite, mitomycin C) suggests a role of FtsK in the recombinational repair of DNA damage caused by chromate. In conclusion, the P. aeruginosa genome contains diverse genes related to its intrinsic resistance to chromate. Systems pertaining to the outer membrane (OprE), the cell wall (LPS), and the cytoplasm (FtsK) were identified in this work as involved in chromate protection mechanisms. PMID:18446454

  2. The RASSF1 Gene and the Opposing Effects of the RASSF1A and RASSF1C Isoforms on Cell Proliferation and Apoptosis.

    PubMed

    Reeves, Mark E; Firek, Matthew; Chen, Shin-Tai; Amaar, Yousef

    2013-01-01

    RASSF1A has been demonstrated to be a tumor suppressor, while RASSF1C is now emerging as a growth promoting protein in breast and lung cancer cells. To further highlight the dual functionality of the RASSF1 gene, we have compared the effects of RASSF1A and RASSF1C on cell proliferation and apoptosis in the presence of TNF- α . Overexpression of RASSF1C in breast and lung cancer cells reduced the effects of TNF- α on cell proliferation, apoptosis, and MST1/2 phosphorylation, while overexpression of RASSF1A had the opposite effect. We also assessed the expression of RASSF1A and RASSF1C in breast and lung tumor and matched normal tissues. We found that RASSF1A mRNA levels are significantly higher than RASSF1C mRNA levels in all normal breast and lung tissues examined. In addition, RASSF1A expression is significantly downregulated in 92% of breast tumors and in 53% of lung tumors. Conversely, RASSF1C was upregulated in 62% of breast tumors and in 47% of lung tumors. Together, these findings suggest that RASSF1C, unlike RASSF1A, is not a tumor suppressor but instead may play a role in stimulating survival in breast and lung cancer cells. PMID:24327924

  3. Whole blood hypoxia-related gene expression reveals novel pathways to obstructive sleep apnea in humans.

    PubMed

    Perry, Juliana C; Guindalini, Camila; Bittencourt, Lia; Garbuio, Silverio; Mazzotti, Diego R; Tufik, Sergio

    2013-12-01

    In this study, our goal was to identify the key genes that are associated with obstructive sleep apnea (OSA). Thirty-five volunteers underwent full in-lab polysomnography and, according to the sleep apnea hypopnea index (AHI), were classified into control, mild-to-moderate OSA and severe OSA groups. Severe OSA patients were assigned to participate in a continuous positive airway pressure (CPAP) protocol for 6 months. Blood was collected and the expression of 84 genes analyzed using the RT(2) Profiler™ PCR array. Mild-to-moderate OSA patients demonstrated down-regulation of 2 genes associated with induction of apoptosis, while a total of 13 genes were identified in severe OSA patients. After controlling for body mass index, PRPF40A and PLOD3 gene expressions were strongly and independently associated with AHI scores. This research protocol highlights a number of molecular targets that might help the development of novel therapeutic strategies. PMID:23994550

  4. Retinoids induce Nur77-dependent apoptosis in mouse thymocytes.

    PubMed

    Kiss, Beáta; Tóth, Katalin; Sarang, Zsolt; Garabuczi, Éva; Szondy, Zsuzsa

    2015-03-01

    Nur77 is a transcription factor, which plays a determinant role in mediating T cell receptor-induced cell death of thymocytes. In addition to regulation of transcription, Nur77 contributes to apoptosis induction by targeting mitochondria, where it can convert Bcl-2, an anti-apoptotic protein into a proapoptotic molecule. Previous studies have demonstrated that retinoids are actively produced in the mouse thymus and can induce a transcription-dependent apoptosis in mouse thymocytes. Here we show that retinoic acids induce the expression of Nur77, and retinoid-induced apoptosis is completely dependent on Nur77, as retinoids were unable to induce apoptosis in Nur77 null thymocytes. In wild-type thymocytes retinoids induced enhanced expression of the apoptosis-related genes FasL, TRAIL, NDG-1, Gpr65 and Bid, all of them in a Nur77-dependent manner. The combined action of these proteins led to Caspase 8-dependent Bid cleavage in the mitochondria. In addition, we could demonstrate the Nur77-dependent induction of STAT1 leading to enhanced Bim expression, and the mitochondrial translocation of Nur77 leading to the exposure of the Bcl-2/BH3 domain. The retinoid-induced apoptosis was dependent on both Caspase 8 and STAT1. Our data together indicate that retinoids induce a Nur77-dependent cell death program in thymocytes activating the mitochondrial pathway of apoptosis. PMID:25576519

  5. Bilberry extract (Antho 50) selectively induces redox-sensitive caspase 3-related apoptosis in chronic lymphocytic leukemia cells by targeting the Bcl-2/Bad pathway

    PubMed Central

    Alhosin, Mahmoud; León-González, Antonio J.; Dandache, Israa; Lelay, Agnès; Rashid, Sherzad K.; Kevers, Claire; Pincemail, Joël; Fornecker, Luc-Matthieu; Mauvieux, Laurent; Herbrecht, Raoul; Schini-Kerth, Valérie B.

    2015-01-01

    Defect in apoptosis has been implicated as a major cause of resistance to chemotherapy observed in B cell chronic lymphocytic leukaemia (B CLL). This study evaluated the pro-apoptotic effect of an anthocyanin-rich dietary bilberry extract (Antho 50) on B CLL cells from 30 patients and on peripheral blood mononuclear cells (PBMCs) from healthy subjects, and determined the underlying mechanism. Antho 50 induced concentration- and time-dependent pro-apoptotic effects in B CLL cells but little or no effect in PBMCs. Among the main phenolic compounds of the bilberry extract, delphinidin-3-O-glucoside and delphinidin-3-O-rutinoside induced a pro-apoptotic effect. Antho 50-induced apoptosis is associated with activation of caspase 3, down-regulation of UHRF1, a rapid dephosphorylation of Akt and Bad, and down-regulation of Bcl-2. Antho 50 significantly induced PEG-catalase-sensitive formation of reactive oxygen species in B CLL cells. PEG-catalase prevented the Antho 50-induced induction of apoptosis and related signaling. The present findings indicate that Antho 50 exhibits strong pro-apoptotic activity through redox-sensitive caspase 3 activation-related mechanism in B CLL cells involving dysregulation of the Bad/Bcl-2 pathway. This activity of Antho 50 involves the glucoside and rutinoside derivatives of delphinidin. They further suggest that Antho 50 has chemotherapeutic potential by targeting selectively B CLL cells. PMID:25757575

  6. Changes in cell adhesivity and cytoskeleton-related proteins during imatinib-induced apoptosis of leukemic JURL-MK1 cells.

    PubMed

    Kuželová, K; Pluskalová, M; Grebeňová, D; Pavlásková, K; Halada, P; Hrkal, Z

    2010-12-15

    The fusion protein Bcr-Abl, which is the molecular cause of chronic myelogenous leukemia (CML) interacts in multiple points with signaling pathways regulating the cellular adhesivity and cytoskeleton architecture and dynamics. We explored the effects of imatinib mesylate, an inhibitor of Bcr-Abl protein used in front-line CML therapy, on the adhesivity of JURL-MK1 cells to fibronectin and searched for underlying changes in the cell proteome. As imatinib induces apoptosis of JURL-MK1 cells, we used three different caspase inhibitors to discriminate between direct consequences of Bcr-Abl inhibition and secondary changes related to the apoptosis. Imatinib treatment caused a transient increase in JURL-MK1 cell adhesivity to fibronectin, possibly due to the switch off of Bcr-Abl activity. Subsequently, we observed a number of changes including a decrease in cell adhesivity, F-actin decomposition, reduction of integrin β1, CD44, and paxillin expression levels and a marked increase in cofilin phophorylation at Ser3. These events were generally related to the proceeding apoptosis but they differed in their sensitivity to the individual caspase inhibitors. PMID:20830748

  7. Isolation of tumor suppressor genes from MEN-1 related neoplasms

    SciTech Connect

    Yavari, R.; Kinder, B.; Bale, A.E.

    1994-09-01

    Multiple Endocrine Neoplasia type 1 (MEN 1) is a cancer predisposition syndrome marked by the development of tumors in specific endocrine tissues such as the pituitary, parathyroid and pancreatic islets. Genetic linkage studies have mapped the MEN 1 gene to 11q13, and allelic loss in related tumors suggests that the gene is a tumor suppressor. Because inactivation of tumor suppressors may be accompanied by underexpression, subtractive hybridization was used to isolate potential candidate genes underexpressed in MEN 1 tumors. cDNA was synthesized from tumor and normal parathyroid tissue by RT-PCR. Biotinylated tumor cDNA was used as a driver and normal cDNA as a tester in subtractive hybridization. Following annealing of the driver and tester amplicons, the biotinylated strands were removed with streptavidin. The subtracted material was then used as a probe to isolate clones from a normal pancreatic islet library. Screening 2 x 10{sup 5} plaques yielded 14 positive clones. Of 6 clones analyzed, 3 were confirmed to be underexpressed in parathyroid tumors. Sequence analysis identified 2 clones as human ribosomal protein S10 (RPS10, chromosome 6) and 1 as the islet amyloid polypeptide (1AP, chromosome 12). The precise function of human RPS10 is not known but the related RPS6 functions as a tumor suppressor in Drosophila. 1AP has been implicated in modulation of G protein activity. The remaining positive clones will be mapped to determine if any fall on chromosome 11q13, and additional subtractions with parathyroid and pancreatic islet neoplasms are underway.

  8. Johne's disease in cattle is associated with enhanced expression of genes encoding IL-5, GATA-3, tissue inhibitors of matrix metalloproteinases 1 and 2, and factors promoting apoptosis in peripheral blood mononuclear cells.

    PubMed

    Coussens, Paul M; Pudrith, Chas B; Skovgaard, Kerstin; Ren, Xiaoning; Suchyta, Steven P; Stabel, Judith R; Heegaard, Peter M H

    2005-05-15

    Infection of ruminants with Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) leads to a chronic and often fatal granulomatous enteritis known as Johne's disease. Most infections with M. paratuberculosis occur during the first 6 months of life, and there is some evidence for transmission in utero. Once established, infections typically exist in a subclinical state for several years. Recent gene-expression profiling studies suggested the hypothesis that inherent gene-expression profiles in peripheral blood mononuclear cells (PBMCs) from M. paratuberculosis-infected cattle may be different than expression profiles in PBMCs from uninfected controls. If true, this would suggest that it is possible to identify an M. paratuberculosis infection "signature" through transcriptional profiling of peripheral immune cells. In addition, identification of groups or classes of genes showing inherently different expression in PBMCs from M. paratuberculosis-infected cattle relative to PBMCs from uninfected controls might highlight important interactions between this pathogen and the host immune system. In this report, we describe studies aimed at testing this hypothesis. Our novel results indicate that, indeed expression profiles of at least 42 genes are inherently different in freshly isolated PBMCs from M. paratuberculosis-infected cattle when compared to similar cells from uninfected controls. Gene-expression differences observed following microarray analysis were verified and expanded upon by quantitative real-time PCR (Q-RT-PCR). Our results indicate that T cells within PBMCs from M. paratuberculosis-infected cows have adopted a predominant Th 2-like phenotype (enhanced expression of IL-5, GATA 3, and possibly IL-4 mRNA), that cells within infected cow PBMCs may exhibit tissue remodeling deficiencies through higher expression of tissue inhibitor of matrix metalloproteinase (TIMP) 1 and TIMP2 RNA and lower expression of matrix metalloproteinase (MMP) 14 RNA

  9. [Construction of nervous system relative protein and gene secondary database].

    PubMed

    Wang, Pan; Chen, Xinhao; Liu, Xiangming

    2007-10-01

    Along with the rapid research of neural molecular biology, abundant data are produced so that the collection and coordination of high-throughout data about nervous system relative proteins and genes are imperative. Through analyzing the biological primary databases maintained by NCBI and RCSB as the main data source and designing a new data model, a local specialized secondary database is constructed, which mainly includes nucleotide sequences, protein sequences and protein structures, and is established on Sun Blade 2000 System and Oracle 9i. All programs are developed by Java technology. A method of web information automatic retrieval with XML is proposed for sequence data collection and submission to the database. JSP + JavaBean technology is used to support data promulgation on Internet. The establishment of this database provides an excellent platform for the research of neural molecular biology and the pathogenesis of related diseases. PMID:18027688

  10. Transport of Magnesium by a Bacterial Nramp-Related Gene

    PubMed Central

    Rodionov, Dmitry A.; Freedman, Benjamin G.; Senger, Ryan S.; Winkler, Wade C.

    2014-01-01

    Magnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (∼0.5–2.0 mM). Three families of transport proteins were previously identified for magnesium import: CorA, MgtE, and MgtA/MgtB P-type ATPases. In the current study, we find that expression of a bacterial protein unrelated to these transporters can fully restore growth to a bacterial mutant that lacks known magnesium transporters, suggesting it is a new importer for magnesium. We demonstrate that this transport activity is likely to be specific rather than resulting from substrate promiscuity because the proteins are incapable of manganese import. This magnesium transport protein is distantly related to the Nramp family of proteins, which have been shown to transport divalent cations but have never been shown to recognize magnesium. We also find gene expression of the new magnesium transporter to be controlled by a magnesium-sensing riboswitch. Importantly, we find additional examples of riboswitch-regulated homologues, suggesting that they are a frequent occurrence in bacteria. Therefore, our aggregate data discover a new and perhaps broadly important path for magnesium import and highlight how identification of riboswitch RNAs can help shed light on new, and sometimes unexpected, functions of their downstream genes. PMID:24968120

  11. Transport of magnesium by a bacterial Nramp-related gene.

    PubMed

    Shin, Jung-Ho; Wakeman, Catherine A; Goodson, Jonathan R; Rodionov, Dmitry A; Freedman, Benjamin G; Senger, Ryan S; Winkler, Wade C

    2014-06-01

    Magnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (∼0.5-2.0 mM). Three families of transport proteins were previously identified for magnesium import: CorA, MgtE, and MgtA/MgtB P-type ATPases. In the current study, we find that expression of a bacterial protein unrelated to these transporters can fully restore growth to a bacterial mutant that lacks known magnesium transporters, suggesting it is a new importer for magnesium. We demonstrate that this transport activity is likely to be specific rather than resulting from substrate promiscuity because the proteins are incapable of manganese import. This magnesium transport protein is distantly related to the Nramp family of proteins, which have been shown to transport divalent cations but have never been shown to recognize magnesium. We also find gene expression of the new magnesium transporter to be controlled by a magnesium-sensing riboswitch. Importantly, we find additional examples of riboswitch-regulated homologues, suggesting that they are a frequent occurrence in bacteria. Therefore, our aggregate data discover a new and perhaps broadly important path for magnesium import and highlight how identification of riboswitch RNAs can help shed light on new, and sometimes unexpected, functions of their downstream genes. PMID:24968120

  12. Gene Therapy for Age-Related Macular Degeneration.

    PubMed

    Constable, Ian Jeffery; Blumenkranz, Mark Scott; Schwartz, Steven D; Barone, Sam; Lai, Chooi-May; Rakoczy, Elizabeth Piroska

    2016-01-01

    The purpose of this article was to evaluate safety and signals of efficacy of gene therapy with subretinal rAAV.sFlt-1 for wet age-related macular degeneration (wet AMD). A phase 1 dose-escalating single-center controlled unmasked human clinical trial was followed up by extension of the protocol to a phase 2A single-center trial. rAAV.sFlt-1 vector was used to deliver a naturally occurring anti-vascular endothelial growth factor agent, sFlt-1, into the subretinal space. In phase 1, step 1 randomized 3 subjects to low-dose rAAV.sFlt-1 (1 × 10 vector genomes) and 1 subject to the control arm; step 2 randomized an additional 3 subjects to treatment with high-dose rAAV.sFlt-1 (1 × 10 vector genomes) and 1 subject to the control arm. Follow-up studies demonstrated that rAAV.sFlt-1 was well tolerated with a favorable safety profile in these elderly subjects with wet AMD. Subretinal injection was highly reproducible, and no drug-related adverse events were reported. Procedure-related adverse events were mild and self-resolving. Two phakic patients developed cataract and underwent cataract surgery. Four of the 6 patients responded better than the small control group in this study and historical controls in terms of maintaining vision and a relatively dry retina with zero ranibizumab retreatments per annum. Two patients required 1 ranibizumab injection over the 52-week follow-up period. rAAV.sFlt-1 gene therapy may prove to be a potential adjunct or alternative to conventional intravitreal injection for patients with wet AMD by providing extended delivery of a naturally occurring antiangiogenic protein. PMID:27488071

  13. Lentivirus-Mediated Knockdown of Astrocyte Elevated Gene-1 Inhibits Growth and Induces Apoptosis through MAPK Pathways in Human Retinoblastoma Cells

    PubMed Central

    Chang, Ying; Li, Bin; Xu, Xiaolin; Shen, Ling; Bai, Haixia; Gao, Fei; Zhang, Zhibao; Jonas, Jost B.

    2016-01-01

    Purpose To explore expression and function of astrocyte elevated gene-1 (AEG-1) in human retinoblastoma (RB). Methods The expression of AEG-1 in histological sections of human RBs and in RB cell lines was examined using immunohistochemical staining and RT-PCR and Western blotting respectively. We knocked down AEG-1 gene levels by AEG-1-siRNA lentivirus transfection of human RB cell lines SO-RB50 and Y79, and using an MTT assay, we assessed the role of AEG-1 on RB cell proliferation. The biological significance of lentivirus transfection induced AEG-1 down-regulation was examined by assessing the apoptosis rate in the transfected RB cells by Annexin V-APC staining and flow cytometry. We additionally measured the expression of Bcl-2, Bax, cleaved-caspase-3 and caspase-3, and the phosphorylation and non-phosphorylation alternation of MAPKs. Results AEG-1 expression was detected to be strongly positive in the histological slides of 35 out of 54 (65%) patients with RB. AEG-1 expression increased significantly (P<0.05) with tumor stage. In the RB cell lines SO-RB50, Y79 and WERI-RB1 as compared with retinal pigment epithelium cells, expression of AEG-1 mRNA and AEG-1 protein was significantly higher. In AEG-1-siRNA lentivirus transfected cell cultures as compared with negative control lentivirus transfected cell cultures, levels of AEG-1 mRNA and of AEG-1 protein (P<0.05) and cell growth rates (P<0.01) were significantly lower, and apoptosis rate (P<0.001), Bax/Bcl-2 ratio and cleaved-caspase-3 protein level were significantly increased. The P-ERK/ERK ratio was significantly decreased in the AEG-1-siRNA lentivirus transfected cell lines. Conclusions Expression of AEG-1 was associated with RB, in histological slides of patients and in cell culture experiments. Lentivirus transfection induced knockdown of AEG-1 had a tumor suppressive effect, potentially by tumor cell apoptosis induction through inhibition of ERK. PMID:26894431

  14. [Apoptosis-inducing effect of tetrandrine and imatinib on K562/G01 cells and its related mechanism].

    PubMed

    Shi, Duo-Xuan; Ma, Liang-Ming; Lu, Yu-Jin; Bai, Bo

    2014-06-01

    This study was purposed to explore the apoptosis-inducing effect of tetrandrine (Tet) and imatinib (IM) alone or both combined on K562/G01 cells and their mechanism. MTT assay was used to detect the inhibitory effect of drugs on cell growth, flow cytometry was used to detect the cell cycle and apoptosis rate. The expression of caspase-3/BCL-2 mRNA was determined by real time-PCR, and the expression of caspase-3/BCL-2 protein was assayed by Western blot. The results showed that after being treated by 1.0 µmol/L IM or 1.5 µmol/L Tet alone and combination of these two drugs for 48 h, the inhibitory rate was (22.74 ± 0.05)%, (20.34 ± 0.57)% and (44.28 ± 0.60)%, respectively, suggesting that inhibitory effect of two drug combination was more obvious. The arrest of cell cycle at G1/S phase could be observed after Tet treatment. Early apoptosis rate was (7.81 ± 0.16) %, (14.10 ± 0.28) % respectively after being treated by combination of 1.5 µmol/L and 3.0 µmol/L Tet with 1.0 µmol/L IM. After being treated with Tet alone, FQ-PCR and Western blot showed that the expressions of caspase-3 mRNA and caspase-3 protein were up-regulated, the expressions of BCL-2 mRNA and protein were down-regulated, the effect of both drug combination was more significant. It is concluded that IM or Tet alone can induce apoptosis of K562/G01. Combination of IM with Tet shows obvious synergistic effect, mechanism of which may associate with up-regulation of caspase-3 mRNA and protein expressions, and down-regulation of BCL-2 mRNA and protein expressions. PMID:24989284

  15. The clock gene PER1 suppresses expression of tumor-related genes in human oral squamous cell carcinoma

    PubMed Central

    Li, Han-Xue; Fu, Xiao-Juan; Yang, Kai; Chen, Dan; Tang, Hong; Zhao, Qin

    2016-01-01

    Abnormal expression of the clock gene PER1 is highly correlated with carcinogenesis and the development of malignant tumors. Here, we designed short hairpin RNAs (shRNAs) to effectively knock down PER1 in SCC15 human oral squamous cell carcinoma cells. shRNA-mediated PER1 knockdown promoted SCC15 cell growth, proliferation, apoptosis resistance, migration and invasion in vitro. PER1 knockdown also increased the cells' expression of KI-67, MDM2, BCL-2, MMP2 and MMP9 mRNA, and decreased expression of C-MYC, p53, BAX and TIMP-2. In BALB/c nu/nu nude mice subcutaneously injected with SCC15 cells, PER1 knockdown in the cells enhanced tumor development, leading to increased tumor weights and volumes. These results suggest that PER1 is an important tumor suppressor gene and may be a useful molecular target for the treatment of cancer. PMID:26943040

  16. Scopadulciol, Isolated from Scoparia dulcis, Induces β-Catenin Degradation and Overcomes Tumor Necrosis Factor-Related Apoptosis Ligand Resistance in AGS Human Gastric Adenocarcinoma Cells.

    PubMed

    Fuentes, Rolly G; Toume, Kazufumi; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2015-04-24

    Scopadulciol (1), a scopadulan-type diterpenoid, was isolated from Scoparia dulcis along with three other compounds (2-4) by an activity-guided approach using the TCF reporter (TOP) luciferase-based assay system. A fluorometric microculture cytotoxicity assay (FMCA) revealed that compound 1 was cytotoxic to AGS human gastric adenocarcinoma cells. The treatment of AGS cells with 1 decreased β-catenin levels and also inhibited its nuclear localization. The pretreatment of AGS cells with a proteasome inhibitor, either MG132 or epoxomicin, protected against the degradation of β-catenin induced by 1. The 1-induced degradation of β-catenin was also abrogated in the presence of pifithrin-α, an inhibitor of p53 transcriptional activity. Compound 1 inhibited TOP activity in AGS cells and downregulated the protein levels of cyclin D1, c-myc, and survivin. Compound 1 also sensitized AGS cells to tumor necrosis factor-related apoptosis ligand (TRAIL)-induced apoptosis by increasing the levels of the death receptors, DR4 and DR5, and decreasing the level of the antiapoptotic protein Bcl-2. Collectively, our results demonstrated that 1 induced the p53- and proteasome-dependent degradation of β-catenin, which resulted in the inhibition of TCF/β-catenin transcription in AGS cells. Furthermore, 1 enhanced apoptosis in TRAIL-resistant AGS when combined with TRAIL. PMID:25793965

  17. Inhibition of p38 mitogen-activated protein kinase potentiates the apoptotic effect of berberine/tumor necrosis factor-related apoptosis-inducing ligand combination therapy

    PubMed Central

    REFAAT, ALAA; ABDELHAMED, SHERIF; SAIKI, IKUO; SAKURAI, HIROAKI

    2015-01-01

    It was previously reported that berberine (BBR) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) exhibited a synergistic apoptotic effect on triple negative breast cancer (TNBC) cells. In addition, the BBR/TRAIL combination treatment sensitized TRAIL-resistant TNBC cells to TRAIL. The aim of the present study was to investigate a novel pathway for enhancing the apoptotic effect of BBR/TRAIL through mitogen-activated protein kinases (MAPKs). Selective inhibitors and small interfering RNAs were utilized to understand the role of p38 MAPK in this pathway. The results demonstrated that p38 MAPK was activated in response to the combination therapy in TRAIL-resistant TNBC cells. In addition, it was revealed that the inhibition of p38 enhanced apoptosis in epidermal growth factor receptor (EGFR)-overexpressing MDA-MB-468 TNBC cells and EGFR-mutant PC-9 non-small-cell lung carcinoma cells, which was associated with the downregulation of EGFR serine phosphorylation. Viability assays for these two cell lines also confirmed the significant reduction of cell viability following p38 inhibition in BBR/TRAIL-treated cells. In conclusion, the present study provided novel evidence for the role of p38 in suppressing BBR/TRAIL-mediated apoptosis and its association with EGFR, which may explain the mechanism of treatment resistance in certain types of cancer. PMID:26622773

  18. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    SciTech Connect

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang Xiao, Shaobo; Chen, Huanchun

    2014-10-03

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.

  19. Mesenchymal stromal cell delivery of full-length tumor necrosis factor–related apoptosis-inducing ligand is superior to soluble type for cancer therapy

    PubMed Central

    Yuan, ZhengQiang; Kolluri, Krishna K.; Sage, Elizabeth K.; Gowers, Kate H.C.; Janes, Sam M.

    2015-01-01

    Background aims Mesenchymal stromal cell (MSC) delivery of pro-apoptotic tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is an attractive strategy for anticancer therapy. MSCs expressing full-length human TRAIL (flT) or its soluble form (sT) have previously been shown to be effective for cancer killing. However, a comparison between the two forms has never been performed, leaving it unclear which approach is most effective. This study addresses the issue for the possible clinical application of TRAIL-expressing MSCs in the future. Methods MSCs were transduced with lentiviruses expressing flT or an isoleucine zipper-fused sT. TRAIL expression was examined and cancer cell apoptosis was measured after treatment with transduced MSCs or with MSC-derived soluble TRAIL. Results The transduction does not adversely affect cell phenotype. The sT-transduced MSCs (MSC-sT) secrete abundant levels of soluble TRAIL but do not present the protein on the cell surface. Interestingly, the flT-transduced MSCs (MSC-flT) not only express cell-surface TRAIL but also release flT into medium. These cells were examined for inducing apoptosis in 20 cancer cell lines. MSC-sT cells showed very limited effects. By contrast, MSC-flT cells demonstrated high cancer cell-killing efficiency. More importantly, MSC-flT cells can overcome some cancer cell resistance to recombinant TRAIL. In addition, both cell surface flT and secreted flT are functional for inducing apoptosis. The secreted flT was found to have higher cancer cell-killing capacity than either recombinant TRAIL or MSC-secreted sT. Conclusions These observations demonstrate that MSC delivery of flT is superior to MSC delivery of sT for cancer therapy. PMID:25888191

  20. Breast and Prostate Cancer and Hormone-Related Gene Variant Study

    Cancer.gov

    The Breast and Prostate Cancer and Hormone-Related Gene Variant Study allows large-scale analyses of breast and prostate cancer risk in relation to genetic polymorphisms and gene-environment interactions that affect hormone metabolism.

  1. Calcitonin Gene-Related Peptide: Physiology and Pathophysiology

    PubMed Central

    Russell, F. A.; King, R.; Smillie, S.-J.; Kodji, X.; Brain, S. D.

    2014-01-01

    Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide. Discovered 30 years ago, it is produced as a consequence of alternative RNA processing of the calcitonin gene. CGRP has two major forms (α and β). It belongs to a group of peptides that all act on an unusual receptor family. These receptors consist of calcitonin receptor-like receptor (CLR) linked to an essential receptor activity modifying protein (RAMP) that is necessary for full functionality. CGRP is a highly potent vasodilator and, partly as a consequence, possesses protective mechanisms that are important for physiological and pathological conditions involving the cardiovascular system and wound healing. CGRP is primarily released from sensory nerves and thus is implicated in pain pathways. The proven ability of CGRP antagonists to alleviate migraine has been of most interest in terms of drug development, and knowledge to date concerning this potential therapeutic area is discussed. Other areas covered, where there is less information known on CGRP, include arthritis, skin conditions, diabetes, and obesity. It is concluded that CGRP is an important peptide in mammalian biology, but it is too early at present to know if new medicines for disease treatment will emerge from our knowledge concerning this molecule. PMID:25287861

  2. Gene Therapies for Neovascular Age-Related Macular Degeneration.

    PubMed

    Pechan, Peter; Wadsworth, Samuel; Scaria, Abraham

    2015-07-01

    Pathological neovascularization is a key component of the neovascular form (also known as the wet form) of age-related macular degeneration (AMD) and proliferative diabetic retinopathy. Several preclinical studies have shown that antiangiogenesis strategies are effective for treating neovascular AMD in animal models. Vascular endothelial growth factor (VEGF) is one of the main inducers of ocular neovascularization, and several clinical trials have shown the benefits of neutralizing VEGF in patients with neovascular AMD or diabetic macular edema. In this review, we summarize several preclinical and early-stage clinical trials with intraocular gene therapies, which have the potential to reduce or eliminate the repeated intravitreal injections that are currently required for the treatment of neovascular AMD. PMID:25524721

  3. All-trans retinoic acid stimulates gene expression of the cardioprotective natriuretic peptide system and prevents fibrosis and apoptosis in cardiomyocytes of obese ob/ob mice.

    PubMed

    Manolescu, Daniel-Constantin; Jankowski, Marek; Danalache, Bogdan A; Wang, Donghao; Broderick, Tom L; Chiasson, Jean-Louis; Gutkowska, Jolanta

    2014-10-01

    In hypertensive rodents, retinoic acid (RA) prevents adverse cardiac remodelling and improves myocardial infarction outcome, but its role in obesity-related changes of cardiac tissue are unclear. We hypothesized that all-trans RA (ATRA) treatment will improve the cardioprotective oxytocin-natriuretic peptides (OT-NP) system, preventing apoptosis and collagen accumulation in hearts of ob/ob mice, a mouse model of obesity and insulin resistance. Female 9-week-old B6.V-Lep/J ob/ob mice (n = 16) were divided into 2 groups: 1 group (n = 8) treated with 100 μg of ATRA dissolved in 100 μL of corn oil (vehicle) delivered daily (∼2 μg·g body weight(-1)·day(-1)) by stomach intubation for 16 days, and 1 group (n = 8) that received the vehicle alone. A group of nonobese littermate mice (n = 9) served as controls. Ob/ob mice exhibited obesity, hyperglycaemia, and downregulation of the cardiac OT-NP system, including the mRNA for the transcription factor GATA4, OT receptor and brain NP, and the protein expression for endothelial nitric oxide synthase. Hearts from ob/ob mice also demonstrated increased apoptosis and collagen accumulation. ATRA treatment induced weight loss and decreased adipocytes diameter in the visceral fat, thus reducing visceral obesity, which is associated with a high risk for cardiovascular disease. RA treatment was associated with a reduction in hyperglycemia and a normalization of the OT-NP system's expression in the hearts of ob/ob mice. Furthermore, ATRA treatment prevented apoptosis and collagen accumulation in hearts of ob/ob mice. The present study indicates that ATRA treatment was effective in restoring the cardioprotective OT-NP system and in preventing abnormal cardiac remodelling in the ob/ob mice. PMID:25017112

  4. Reductions in calcitonin gene-related peptide may be associated with the impairment of the contralateral testis in unilateral cryptorchidism

    PubMed Central

    ZHU, BAOPING; LIU, QING; LIN, LI; ZHENG, XINMIN

    2015-01-01

    The aim of the present study was to investigate the mechanism underlying the impairment of the contralateral testis in unilateral cryptorchidism in experimental rats using a molecular neurophysiological approach. Thirty-six male rats (21 days old) were divided into a cryptorchidism group, a cryptorchidism with division of the genitofemoral nerve (GFN) group and a control group (n=12/group). The distribution of the calcitonin gene-related peptide (CGRP) immunoreactive nerve fibers in the testes was studied using an immunohistochemistry technique. Germ cell apoptosis was detected using the terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling method. The concentration of malondialdehyde (MDA) in the testis tissue was evaluated using a spectrophotometric determination method, and the ultrastructure of Sertoli cells was observed using transmission electron microscopy. It was found that, 100 days after the surgery, the concentration of CGRP in the cryptorchidism group was decreased significantly, whereas the levels of MDA and the number of apoptotic germ cells were increased significantly compared with the control group (P<0.01). Following the division of the GFN, the damaging effects were decreased (P<0.01). The impairment mechanism may therefore be associated with a reduction in the level of CGRP in the contralateral testis. The reflex decrease in CGRP may be caused by germ cell apoptosis, decreased blood flow and oxygen levels, and the increase in reactive oxygen free radicals and lipid peroxidation. PMID:26136895

  5. The retinoid-related orphan receptor alpha (RORA) gene and fear-related psychopathology

    PubMed Central

    Miller, Mark W.; Wolf, Erika J.; Logue, Mark W.; Baldwin, Clinton T.

    2013-01-01

    Background This study followed on findings from a recent genome-wide association study of PTSD that implicated the retinoid-related orphan receptor alpha (RORA) gene (Logue et al, 2012) by examining its relationship to broader array of disorders. Methods Using data from the same cohort (N = 540), we analyzed patterns of association between 606 single nucleotide polymorphisms (SNPs) spanning the RORA gene and comorbidity factors termed fear, distress (i.e., internalizing factors) and externalizing. Results Results showed that rs17303244 was associated with the fear component of internalizing (i.e., defined by symptoms of panic, agoraphobia, specific phobia, and obsessive-compulsive disorder) at a level of significance that withstood correction for gene-wide multiple testing. Limitations The primary limitations were the modest size of the cohort and the absence of a replication sample. Conclusions Results add to a growing literature implicating the RORA gene in a wide range of neuropsychiatric disorders and offer new insight into possible molecular mechanisms of the effects of traumatic stress on the brain and the role of genetic factors in those processes. PMID:24007783

  6. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    SciTech Connect

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi . E-mail: INOUE-GER@h.u-tokyo.ac.jp

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  7. Mutation of a Nopp140 gene dao-5 alters rDNA transcription and increases germ cell apoptosis in C. elegans.

    PubMed

    Lee, C-C; Tsai, Y-T; Kao, C-W; Lee, L-W; Lai, H-J; Ma, T-H; Chang, Y-S; Yeh, N-H; Lo, S J

    2014-01-01

    Human diseases of impaired ribosome biogenesis resulting from disruption of rRNA biosynthesis or loss of ribosomal components are collectively described as 'ribosomopathies'. Treacher Collins syndrome (TCS), a representative human ribosomopathy with craniofacial abnormalities, is attributed to mutations in the tcof1 gene that has a homologous gene called nopp140. Previous studies demonstrated that the dao-5 (dauer and aged animal overexpression gene 5) of Caenorhabditis elegans is a member of nopp140 gene family and plays a role in nucleogenesis in the early embryo. Here, we established a C. elegans model for studying Nopp140-associated ribosomopathy. A null dao-5 mutant ok542 with a semi-infertile phenotype showed a delay in gonadogenesis, as well as a higher incidence of germline apoptosis. These phenotypes in dao-5(ok542) are likely resulted from inefficient rDNA transcription that was observed by run-on analyses and chromatin immunoprecipitation (ChIP) assays measuring the RNA Pol I occupancy on the rDNA promoter. ChIP assays further showed that the modifications of acetylated histone 4 (H4Ac) and dimethylation at the lysine 9 of histone 3 (H3K9me2) around the rDNA promoter were altered in dao-5 mutants compared with the N2 wild type. In addition, activated CEP-1 (a C. elegans p53 homolog) activity was also linked to the loss of DAO-5 in terms of the transcriptional upregulation of two CEP-1 downstream effectors, EGL-1 and CED-13. We propose that the dao-5 mutant of C. elegans can be a valuable model for studying human Nopp140-associated ribosomopathy at the cellular and molecular levels. PMID:24722283

  8. Bortezomib induces nuclear translocation of IκBα resulting in gene-specific suppression of NF-κB--dependent transcription and induction of apoptosis in CTCL.

    PubMed

    Juvekar, Ashish; Manna, Subrata; Ramaswami, Sitharam; Chang, Tzu-Pei; Vu, Hai-Yen; Ghosh, Chandra C; Celiker, Mahmut Y; Vancurova, Ivana

    2011-02-01

    Cutaneous T-cell lymphoma (CTCL) is characterized by constitutive activation of nuclear factor κB (NF-κB), which plays a crucial role in the survival of CTCL cells and their resistance to apoptosis. NF-κB activity in CTCL is inhibited by the proteasome inhibitor bortezomib; however, the mechanisms remained unknown. In this study, we investigated mechanisms by which bortezomib suppresses NF-κB activity in CTCL Hut-78 cells. We demonstrate that bortezomib and MG132 suppress NF-κB activity in Hut-78 cells by a novel mechanism that consists of inducing nuclear translocation and accumulation of IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), which then associates with NF-κB p65 and p50 in the nucleus and inhibits NF-κB DNA binding activity. Surprisingly, however, while expression of NF-κB-dependent antiapoptotic genes cIAP1 and cIAP2 is inhibited by bortezomib, expression of Bcl-2 is not suppressed. Chromatin immunoprecipitation indicated that cIAP1 and cIAP2 promoters are occupied by NF-κB p65/50 heterodimers, whereas Bcl-2 promoter is occupied predominantly by p50/50 homodimers. Collectively, our data reveal a novel mechanism of bortezomib function in CTCL and suggest that the inhibition of NF-κB-dependent gene expression by bortezomib is gene specific and depends on the subunit composition of NF-κB dimers recruited to NF-κB-responsive promoters. PMID:21224428

  9. GeneMesh: a web-based microarray analysis tool for relating differentially expressed genes to MeSH terms

    PubMed Central

    2010-01-01

    Background An important objective of DNA microarray-based gene expression experimentation is determining inter-relationships that exist between differentially expressed genes and biological processes, molecular functions, cellular components, signaling pathways, physiologic processes and diseases. Results Here we describe GeneMesh, a web-based program that facilitates analysis of DNA microarray gene expression data. GeneMesh relates genes in a query set to categories available in the Medical Subject Headings (MeSH) hierarchical index. The interface enables hypothesis driven relational analysis to a specific MeSH subcategory (e.g., Cardiovascular System, Genetic Processes, Immune System Diseases etc.) or unbiased relational analysis to broader MeSH categories (e.g., Anatomy, Biological Sciences, Disease etc.). Genes found associated with a given MeSH category are dynamically linked to facilitate tabular and graphical depiction of Entrez Gene information, Gene Ontology information, KEGG metabolic pathway diagrams and intermolecular interaction information. Expression intensity values of groups of genes that cluster in relation to a given MeSH category, gene ontology or pathway can be displayed as heat maps of Z score-normalized values. GeneMesh operates on gene expression data derived from a number of commercial microarray platforms including Affymetrix, Agilent and Illumina. Conclusions GeneMesh is a versatile web-based tool for testing and developing new hypotheses through relating genes in a query set (e.g., differentially expressed genes from a DNA microarray experiment) to descriptors making up the hierarchical structure of the National Library of Medicine controlled vocabulary thesaurus, MeSH. The system further enhances the discovery process by providing links between sets of genes associated with a given MeSH category to a rich set of html linked tabular and graphic information including Entrez Gene summaries, gene ontologies, intermolecular interactions

  10. Time course of apoptosis induced by photodynamic therapy with PsD007 in LT12 acute myeloid leukemia cells.

    PubMed

    Yin, Huijuan; Ye, Xuying; Niu, Qing; Wang, Chao; Li, Yingxin

    2016-07-01

    Apoptosis is one of the major mechanisms of photodynamic therapy (PDT) that leads to tumor degradation. Apoptosis-related genes and proteins function in a certain order and timing in the complex network of apoptosis. To further understanding of the apoptotic mechanism of PDT, this research examined the time course of apoptosis from PsD007 (a second-generation photosensitizer developed in China) induced PDT on the rat acute myeloid leukemia cell line LT12. MTT was used to detect the temporal dynamic of PDT killing effects and identified the "apoptotic window" of 2-24 h. Apoptosis showed a basal peak at 2 h, and the duration of apoptosis depended on PDT dose, which disappeared quickly at low concentrations but lasted to higher levels to 6 or 12 h at high concentrations as detected by flow cytometry. High-content imaging confirmed these results. An 84-gene apoptosis PCR array identified 15 genes with an expression level change of over twofold at 6 h post-PDT. Nine apoptosis-related genes showed changes in expression at 2-12 h after PDT. TNF family genes TNF and FASLG showed a maximal change of 3.47- and 4.42-fold from baseline. Key apoptosis proteins such as activated caspases showed strong up-regulation after PDT, with the expression peaks of cleaved caspase-7, caspase-9 and PARP at 4-6 h, and cleaved caspase-3 delayed to 6-12 h. Our findings help clarify the time course of apoptosis events in response to PDT treatment in a leukemia cell line and may help contribute to the clinical application of PDT in leukemia treatment. PMID:26861981

  11. Aronia melanocarpa juice induces a redox-sensitive p73-related caspase 3-dependent apoptosis in human leukemia cells.

    PubMed

    Sharif, Tanveer; Alhosin, Mahmoud; Auger, Cyril; Minker, Carole; Kim, Jong-Hun; Etienne-Selloum, Nelly; Bories, Pierre; Gronemeyer, Hinrich; Lobstein, Annelise; Bronner, Christian; Fuhrmann, Guy; Schini-Kerth, Valérie B

    2012-01-01

    Polyphenols are natural compounds widely present in fruits and vegetables, which have antimutagenic and anticancer properties. The aim of the present study was to determine the anticancer effect of a polyphenol-rich Aronia melanocarpa juice (AMJ) containing 7.15 g/L of polyphenols in the acute lymphoblastic leukemia Jurkat cell line, and, if so, to clarify the underlying mechanism and to identify the active polyphenols involved. AMJ inhibited cell proliferation, which was associated with cell cycle arrest in G(2)/M phase, and caused the induction of apoptosis. These effects were associated with an upregulation of the expression of tumor suppressor p73 and active caspase 3, and a downregulation of the expression of cyclin B1 and the epigenetic integrator UHRF1. AMJ significantly increased the formation of reactive oxygen species (ROS), decreased the mitochondrial membrane potential and caused the release of cytochrome c into the cytoplasm. Treatment with intracellular ROS scavengers prevented the AMJ-induced apoptosis and upregulation of the expression of p73 and active caspase 3. The fractionation of the AMJ and the use of identified isolated compounds indicated that the anticancer activity was associated predominantly with chlorogenic acids, some cyanidin glycosides, and derivatives of quercetin. AMJ treatment also induced apoptosis of different human lymphoblastic leukemia cells (HSB-2, Molt-4 and CCRF-CEM). In addition, AMJ exerted a strong pro-apoptotic effect in human primary lymphoblastic leukemia cells but not in human normal primary T-lymphocytes. Thus, the present findings indicate that AMJ exhibits strong anticancer activity through a redox-sensitive mechanism in the p53-deficient Jurkat cells and that this effect involves several types of polyphenols. They further suggest that AMJ has chemotherapeutic properties against acute lymphoblastic leukemia by selectively targeting lymphoblast-derived tumor cells. PMID:22412883

  12. Aronia melanocarpa Juice Induces a Redox-Sensitive p73-Related Caspase 3-Dependent Apoptosis in Human Leukemia Cells

    PubMed Central

    Sharif, Tanveer; Alhosin, Mahmoud; Auger, Cyril; Minker, Carole; Kim, Jong-Hun; Etienne-Selloum, Nelly; Bories, Pierre; Gronemeyer, Hinrich; Lobstein, Annelise; Bronner, Christian; Fuhrmann, Guy; Schini-Kerth, Valérie B.

    2012-01-01

    Polyphenols are natural compounds widely present in fruits and vegetables, which have antimutagenic and anticancer properties. The aim of the present study was to determine the anticancer effect of a polyphenol-rich Aronia melanocarpa juice (AMJ) containing 7.15 g/L of polyphenols in the acute lymphoblastic leukemia Jurkat cell line, and, if so, to clarify the underlying mechanism and to identify the active polyphenols involved. AMJ inhibited cell pro