Science.gov

Sample records for apoptosis related genes

  1. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    PubMed Central

    Wang, Baoman; Yuan, Fei; Kong, Xiangyin; Hu, Lan-Dian; Cai, Yu-Dong

    2015-01-01

    Apoptosis is the process of programmed cell death (PCD) that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature. PMID:26543496

  2. Tributyltin increases the expression of apoptosis- and adipogenesis-related genes in rat ovaries

    PubMed Central

    Lee, Hyojin; Lim, Sojeong; Yun, Sujin; Yoon, Ayoung; Park, Gayoung

    2012-01-01

    Objective Tributyltin (TBT), an endocrine disrupting chemical, has been reported to decrease ovarian function by causing apoptosis in the ovary, but the mechanism is not fully understood. Therefore, we examined whether TBT increases the expression of adipogenesis-related genes in the ovary and the increased expression of these genes is associated with apoptosis induction. Methods Three-week-old Sprague-Dawley rats were orally administered TBT (1 or 10 mg/kg body weight) or sesame oil as a control for 7 days. The ovaries were obtained and weighed on day 8, and then they were fixed for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) or frozen for RNA extraction. Using the total RNA of the ovaries, adipogenesis- and apoptosis-related genes were analyzed by real-time polymerase chain reaction (PCR). Results The ovarian weight was significantly decreased in rats administered 10 mg/kg TBT compared to that in control rats. As determined by the TUNEL assay, the number of apoptotic follicles in ovary was significantly increased in rats administered 10 mg/kg TBT. The real-time PCR results showed that the expression of adipogenesis-related genes such as PPARγ, aP2, CD36, and PEPCK was increased after TBT administration. In addition, apoptosis-related genes such as TNFα and TNFR1 were expressed more in the TBT-administered rats compared with the control rats. Conclusion The present study demonstrates that TBT induces the expression of adipogenesis- and apoptosis-related genes in the ovary leading to apoptosis in the ovarian follicles. These results suggest that the increased expression of adipogenesis-related genes in the ovary by TBT exposure might induce apoptosis resulting in a loss of ovarian function. PMID:22563546

  3. Data on four apoptosis-related genes in the colonial tunicate Botryllus schlosseri.

    PubMed

    Franchi, Nicola; Ballin, Francesca; Manni, Lucia; Schiavon, Filippo; Ballarin, Loriano

    2016-09-01

    The data described are related to the article entitled "Recurrent phagocytosis-induced apoptosis in the cyclical generation change of the compound ascidian Botryllus schlosseri" (Franchi et al., 2016) [1]. Four apoptosis-related genes, showing high similarity with mammalian Bax (a member of the Bcl-2 protein family), AIF1 (apoptosis-inducing factor-1), PARP1 (poly ADP ribose polymerase-1) and IAP7 (inhibitor of apoptosis-7) were identified from the analysis of the trascriptome of B. schlosseri. They were named BsBax, BsAIF1, BsPARP1 and BsIAP7. Here, their deduced amino acid sequence were compared with known sequences of orthologous genes from other deuterostome species together with a study of their identity/similarity. PMID:27294183

  4. [Viral transfer of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in gene therapy].

    PubMed

    Wędrowska, Ewelina; Wandtke, Tomasz; Dyczek, Andrzej; Woźniak, Joanna

    2015-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces carcinoma cell death through the extrinsic pathway of apoptosis. Preclinical trials of gene therapy have been conducted using viral transfer of the TRAIL transgene into prostate, bladder, breast, kidney, liver, non-small cell lung cancer and also glioblastoma cells. Experiments in vitro demonstrated the extensive apoptosis of target cells as well as frequent disease regression or remission. TRAIL transfer did not show any side effects, opposite to chemotherapy. Encouraging results of TRAIL-related gene therapy were observed in rheumatoid arthritis and type 1 diabetes. Adenoviral vectors (AdV) encoding TRAIL are the most promising tool in anti-tumor therapy. They have undergone numerous modifications by increasing transfection efficiency and transgene expression in target cells. However, only one clinical phase I trial has been performed. AdV encoding the TRAIL transgene caused local inflammation and apoptosis in patients with prostate cancer. PMID:27259213

  5. Differential expression of apoptosis-related genes in the cochlea of noise-exposed rats

    PubMed Central

    Hu, Bo Hua; Cai, Qunfeng; Manohar, Senthilvelan; Jiang, Haiyan; Ding, Dalian; Coling, Donald E.; Zheng, Guiliang; Salvi, Richard

    2009-01-01

    Exposure to intense noise induces apoptosis in hair cells in the cochlea. To identify the molecular changes associated with noise-induced apoptosis, we used quantitative real-time PCR to evaluate the changes in 84 apoptosis related genes in cochlear samples from the sensory epithelium and lateral wall. Sprague Dawley rats exposed to a continuous noise at 115 dB SPL for 2 h. The exposure caused a 40–60 dB threshold shift 4 h post-exposure that decreased to 20–30 dB 7 days post-exposure. These functional changes were associated with apoptotic markers including nuclear condensation and fragmentation and TUNEL staining. Immediately after the noise exposure, 12 genes were downregulated, whereas only one gene (Traf4) was upregulated. At 4 h post-exposure, 8 genes were upregulated; 3 (Tnrsf1a, Tnfrsf1b, Tnfrst5) belonged to the Tnfrsf family, 3 (Bir3, Mcl1 and Prok2) have anti-apoptotic properties and 1 (Gadd45a) is a target of p53. At 7 d post-exposure, all the upregulated genes returned to pre-noise levels. Interestingly, the normal control cochlea had high constitutive levels of several apoptosis-related genes. These constitutively expressed genes, together with the inducible genes, may participate in the induction of cochlear apoptotic activity. PMID:19348871

  6. Oxyphilic and non-oxyphilic thyroid carcinoma cell lines differ in expressing apoptosis-related genes.

    PubMed

    Allìa, E; Cassoni, P; Marrocco, T; Volante, M; Bussolati, B; Wong, M; Clark, O H; Papotti, M

    2003-07-01

    Oxyphilic tumors of the thyroid are characterized by mitochondrion-rich cells and extensive DNA fragmentation. In order to clarify if a different expression of apoptosis-related genes could be responsible for DNA fragmentation in oxyphilic cell tumors, two thyroid follicular carcinoma-derived cell lines, having oxyphilic (XTC.UC1) and non-oxyphilic (WRO) features, were compared applying a gene array technique. Under basal culture conditions, several pro-apoptotic genes [caspases 3 and 10, Fas and the tumor necrosis factor-related apoptosis-inducing ligand (trail) genes] were switched on in oxyphilic, but not in non-oxyphilic cells. No difference in the mitochondrial apoptosis-related genes (bax, bad, bcl family etc.) was observed. Using the ISEL technique, the extent of DNA fragmentation did not differ under basal conditions in the two cell lines. Conversely, following an oxidative pro-apoptotic stress (6-h methylene blue treatment and light exposure), XTC.UC1 cells showed an extensive DNA fragmentation (up to 70% of cells), dramatically exceeding that observed in WRO cells (up to 20% of cells). In contrast, the oxidative stimulus induced a remarkable apoptosis gene activation in non-oxyphilic WRO cells only. These results suggest that oxyphilic cells may have a unique silent activation of a pro-apoptotic phenotype, which could be responsible for DNA instability and lead to cell death as the consequence of an increased sensitivity to ischemic stresses, as frequently observed in vivo. PMID:14594119

  7. Dynamic changes in the expression of apoptosis-related genes in differentiating gonocytes and in seminomas.

    PubMed

    Manku, Gurpreet; Culty, Martine

    2015-01-01

    Apoptosis is an integral part of the spermatogenic process, necessary to maintain a proper ratio of Sertoli to germ cell numbers and provide an adequate microenvironment to germ cells. Apoptosis may also represent a protective mechanism mediating the elimination of abnormal germ cells. Extensive apoptosis occurs between the first and second postnatal weeks, at the point when gonocytes, precursors of spermatogonial stem cells, should have migrated toward the basement membrane of the tubules and differentiated into spermatogonia. The mechanisms regulating this process are not well-understood. Gonocytes undergo phases of proliferation, migration, and differentiation which occur in a timely and closely regulated manner. Gonocytes failing to migrate and differentiate properly undergo apoptosis. Inadequate gonocyte differentiation has been suggested to lead to testicular germ cell tumor (TGCT) formation. Here, we examined the expression levels of apoptosis-related genes during gonocyte differentiation by quantitative real-time polymerase chain reaction, identifying 48 pro- and anti-apoptotic genes increased by at least two-fold in rat gonocytes induced to differentiate by retinoic acid, when compared to untreated gonocytes. Further analysis of the most highly expressed genes identified the pro-apoptotic genes Gadd45a and Cycs as upregulated in differentiating gonocytes and in spermatogonia compared with gonocytes. These genes were also significantly downregulated in seminomas, the most common type of TGCT, compared with normal human testicular tissues. These results indicate that apoptosis-related genes are actively regulated during gonocyte differentiation. Moreover, the down-regulation of pro-apoptotic genes in seminomas suggests that they could represent new therapeutic targets in the treatment of TGCTs. PMID:25677133

  8. Dynamic changes in the expression of apoptosis-related genes in differentiating gonocytes and in seminomas

    PubMed Central

    Manku, Gurpreet; Culty, Martine

    2015-01-01

    Apoptosis is an integral part of the spermatogenic process, necessary to maintain a proper ratio of Sertoli to germ cell numbers and provide an adequate microenvironment to germ cells. Apoptosis may also represent a protective mechanism mediating the elimination of abnormal germ cells. Extensive apoptosis occurs between the first and second postnatal weeks, at the point when gonocytes, precursors of spermatogonial stem cells, should have migrated toward the basement membrane of the tubules and differentiated into spermatogonia. The mechanisms regulating this process are not well-understood. Gonocytes undergo phases of proliferation, migration, and differentiation which occur in a timely and closely regulated manner. Gonocytes failing to migrate and differentiate properly undergo apoptosis. Inadequate gonocyte differentiation has been suggested to lead to testicular germ cell tumor (TGCT) formation. Here, we examined the expression levels of apoptosis-related genes during gonocyte differentiation by quantitative real-time polymerase chain reaction, identifying 48 pro- and anti-apoptotic genes increased by at least two-fold in rat gonocytes induced to differentiate by retinoic acid, when compared to untreated gonocytes. Further analysis of the most highly expressed genes identified the pro-apoptotic genes Gadd45a and Cycs as upregulated in differentiating gonocytes and in spermatogonia compared with gonocytes. These genes were also significantly downregulated in seminomas, the most common type of TGCT, compared with normal human testicular tissues. These results indicate that apoptosis-related genes are actively regulated during gonocyte differentiation. Moreover, the down-regulation of pro-apoptotic genes in seminomas suggests that they could represent new therapeutic targets in the treatment of TGCTs. PMID:25677133

  9. Transient axonal glycoprotein-1 induces apoptosis-related gene expression without triggering apoptosis in U251 glioma cells

    PubMed Central

    Chang, Haigang; Song, Shanshan; Chen, Zhongcan; Wang, Yaxiao; Yang, Lujun; Du, Mouxuan; Ke, Yiquan; Xu, Ruxiang; Jin, Baozhe; Jiang, Xiaodan

    2014-01-01

    Previous studies show that transient axonal glycoprotein-1, a ligand of amyloid precursor protein, increases the secretion of amyloid precursor protein intracellular domain and is involved in apoptosis in Alzheimer's disease. In this study, we examined the effects of transient axonal glycoprotein-1 on U251 glioma cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that transient axonal glycoprotein-1 did not inhibit the proliferation of U251 cells, but promoted cell viability. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that transient axonal glycoprotein-1 did not induce U251 cell apoptosis. Real-time PCR revealed that transient axonal glycoprotein-1 substantially upregulated levels of amyloid precursor protein intracellular C-terminal domain, and p53 and epidermal growth factor receptor mRNA expression. Thus, transient axonal glycoprotein-1 increased apoptosis-related gene expression in U251 cells without inducing apoptosis. Instead, transient axonal glycoprotein-1 promoted the proliferation of these glioma cells. PMID:25206849

  10. Apoptosis-Related Gene Expression in an Adult Cohort with Crimean-Congo Hemorrhagic Fever

    PubMed Central

    Guler, Nil; Eroglu, Cafer; Yilmaz, Hava; Karadag, Adil; Alacam, Hasan; Sunbul, Mustafa; Fletcher, Tom E.; Leblebicioglu, Hakan

    2016-01-01

    Crimean-Congo Hemorrhagic Fever (CCHF) is a life threatening acute viral infection characterized by fever, bleeding, leukopenia and thrombocytopenia. It is a major emerging infectious diseases threat, but its pathogenesis remains poorly understood and few data exist for the role of apoptosis in acute infection. We aimed to assess apoptotic gene expression in leukocytes in a cross-sectional cohort study of adults with CCHF. Twenty participants with CCHF and 10 healthy controls were recruited at a tertiary CCHF unit in Turkey; at admission baseline blood tests were collected and total RNA was isolated. The RealTime ready Human Apoptosis Panel was used for real-time PCR, detecting differences in gene expression. Participants had CCHF severity grading scores (SGS) with low risk score (10 out of 20) and intermediate or high risk scores (10 out of 20) for mortality. Five of 20 participants had a fatal outcome. Gene expression analysis showed modulation of pro-apoptotic and anti-apoptotic genes that facilitate apoptosis in the CCHF patient group. Dominant extrinsic pathway activation, mostly related with TNF family members was observed. Severe and fatal cases suggest additional intrinsic pathway activation. The clinical significance of relative gene expression is not clear, and larger longitudinal studies with simultaneous measurement of host and viral factors are recommended. PMID:27304063

  11. Apoptosis-Related Gene Expression in an Adult Cohort with Crimean-Congo Hemorrhagic Fever.

    PubMed

    Guler, Nil; Eroglu, Cafer; Yilmaz, Hava; Karadag, Adil; Alacam, Hasan; Sunbul, Mustafa; Fletcher, Tom E; Leblebicioglu, Hakan

    2016-01-01

    Crimean-Congo Hemorrhagic Fever (CCHF) is a life threatening acute viral infection characterized by fever, bleeding, leukopenia and thrombocytopenia. It is a major emerging infectious diseases threat, but its pathogenesis remains poorly understood and few data exist for the role of apoptosis in acute infection. We aimed to assess apoptotic gene expression in leukocytes in a cross-sectional cohort study of adults with CCHF. Twenty participants with CCHF and 10 healthy controls were recruited at a tertiary CCHF unit in Turkey; at admission baseline blood tests were collected and total RNA was isolated. The RealTime ready Human Apoptosis Panel was used for real-time PCR, detecting differences in gene expression. Participants had CCHF severity grading scores (SGS) with low risk score (10 out of 20) and intermediate or high risk scores (10 out of 20) for mortality. Five of 20 participants had a fatal outcome. Gene expression analysis showed modulation of pro-apoptotic and anti-apoptotic genes that facilitate apoptosis in the CCHF patient group. Dominant extrinsic pathway activation, mostly related with TNF family members was observed. Severe and fatal cases suggest additional intrinsic pathway activation. The clinical significance of relative gene expression is not clear, and larger longitudinal studies with simultaneous measurement of host and viral factors are recommended. PMID:27304063

  12. Pretransplant Immune- and Apoptosis-Related Gene Expression Is Associated with Kidney Allograft Function

    PubMed Central

    Kamińska, Dorota; Kościelska-Kasprzak, Katarzyna; Chudoba, Paweł; Mazanowska, Oktawia; Banasik, Mirosław; Żabinska, Marcelina; Boratyńska, Maria; Lepiesza, Agnieszka; Gomółkiewicz, Agnieszka; Dzięgiel, Piotr; Klinger, Marian

    2016-01-01

    Renal transplant candidates present immune dysregulation, caused by chronic uremia. The aim of the study was to investigate whether pretransplant peripheral blood gene expression of immune factors affects clinical outcome of renal allograft recipients. Methods. In a prospective study, we analyzed pretransplant peripheral blood gene expression in87 renal transplant candidates with real-time PCR on custom-designed low density arrays (TaqMan). Results. Immediate posttransplant graft function (14-day GFR) was influenced negatively by TGFB1 (P = 0.039) and positively by IL-2 gene expression (P = 0.040). Pretransplant blood mRNA expression of apoptosis-related genes (CASP3, FAS, and IL-18) and Th1-derived cytokine gene IFNG correlated positively with short- (6-month GFR CASP3: P = 0.027, FAS: P = 0.021, and IFNG: P = 0.029) and long-term graft function (24-month GFR CASP3: P = 0.003, FAS: P = 0.033, IL-18: P = 0.044, and IFNG: P = 0.04). Conclusion. Lowered pretransplant Th1-derived cytokine and apoptosis-related gene expressions were a hallmark of subsequent worse kidney function but not of acute rejection rate. The pretransplant IFNG and CASP3 and FAS and IL-18 genes' expression in the recipients' peripheral blood is the possible candidate for novel biomarker of short- and long-term allograft function. PMID:27382192

  13. Expression of apoptosis-related genes in liver-specific growth hormone receptor gene-disrupted mice is sex dependent.

    PubMed

    Gesing, Adam; Wang, Feiya; List, Edward O; Berryman, Darlene E; Masternak, Michal M; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Kopchick, John J; Bartke, Andrzej

    2015-01-01

    Apoptosis is a process that affects life span and health. Mice with liver-specific disruption of the growth hormone receptor (GHR) gene (ie, Ghr gene) liver-specific growth hormone receptor knockout [LiGHRKO] mice), as opposed to mice with global deletion of the Ghr gene (GHRKO; Ghr-/-), are characterized by severe hepatic steatosis and lack of improved insulin sensitivity. We have previously shown that levels of proapoptotic factors are decreased in long-lived and insulin-sensitive GHRKO mice. In the current study, expression of specific apoptosis-related genes was assessed in brains, kidneys, and livers of male and female LiGHRKO and wild-type mice using real-time PCR. In the brain, expression of Caspase 3, Caspase 9, Smac/DIABLO, and p53 was decreased in females compared with males. Renal expression of Caspase 3 and Noxa also decreased in female mice. In the liver, no differences were seen between males and females. Also, no significant genotype effects were detected in the examined organs. Lack of significant genotype effect in kidneys contrasts with previous observations in GHRKO mice. Apparently, global GHR deletion induces beneficial changes in apoptotic factors, whereas liver-specific GHR disruption does not. Furthermore, sexual dimorphism may play an important role in regulating apoptosis during liver-specific suppression of the somatotrophic signaling. PMID:24550353

  14. Identification of Aadnr1, a novel gene related to innate immunity and apoptosis in Aedes albopictus.

    PubMed

    Li, Xiaomei; Meng, Kun; Qiao, Jialu; Liu, Hao; Zhong, Chunyan; Liu, Qingzhen

    2016-08-01

    Innate immunity and apoptosis play critical roles in defending pathogens in insects. In Drosophila, Dnr1 was reported as a negative regulator of apoptosis and immune deficiency (Imd) pathway which belongs to innate immunity. Aedes albopictus is an important kind of arbovirus vector and becoming a significant threat to public health due to its rapid global expansion. Here we identified an ortholog of dnr1 from A. albopictus, named as Aadnr1. Aadnr1 encoded a putative protein containing an N-terminal FERM domain and a C-terminal RING domain. AaDnr1 shared high identity with dipteran insects Dnr1 orthologs. Phylogenetic analyses showed that the closest relative of AaDnr1 was Aedes aegypti Dnr1. Real-time PCR proved that Aadnr1 mRNA was expressed ubiquitously during developmental and adult stages. Transcriptional levels of Aadnr1 were decreased drastically in C6/36 cells underwent apoptosis induced by Actinomycin D (Act D) treatment. Partial silence of Aadnr1 enhanced Act D-induced caspase activity. When challenged by heat-inactivated E. coli, transcriptional level of Aadnr1 was also decreased dramatically in C6/36 cells. While when C6/36 cells were infected with Sindbis virus TE/GFP, transcriptional level of Aadnr1 was reduced and recovered repeatedly, with an overall decreasing trend. It was also shown in this study that similar to Drosophila Dnr1, RING domain destabilized AaDnr1 protein. Taken together, the study identified an innate immunity and apoptosis related gene Aadnr1 in A. albopictus. PMID:27045774

  15. Chinese herb related molecules of cancer-cell-apoptosis: a minireview of progress between Kanglaite injection and related genes.

    PubMed

    Lu, Yun; Li, Chang-Sheng; Dong, Qian

    2008-01-01

    Many kinds of Chinese herb had been confirmed to have the character of anti-tumor, clinical reports about anti-tumor effects of Chinese herb had also been found in recent years, but most of the reports were focused on the clinical treatment of effectiveness for Chinese herb, on the other hand, review about Chinese herbal related with molecules on cancer-cell-apoptosis was seldom, many scientists could not believe such kinds of clinical describes about anti-tumor effects for Chinese herb, because these describes were lack of molecular biology evidence. Kanglaite(KLT) injection is an anti-tumor new drug which extracts from Chinese medicine-coix seed with modern advanced pharmaceutical technology, it is also a new biphase extended-spectrum anticancer medicine, the food and drug administration(FDA) of United States also approved a phase II trial of KLT to test its efficacy in treating non-small-cell lung cancer. Some studies show it could inhibit some anti-apoptotic gene and activate some pro-apoptotic gene, its injection solution is one of the new anticancer medicine that can significantly inhibit a various kinds of tumor cells, so it has become the core of research that how to further explore KLT injection to promote tumor cell apoptosis by impacting on related genes. In this review, the relationship between KLT and some tumor cell apoptosis molecules had been discussed and reviewed generally. PMID:18718024

  16. Apoptosis-related genes confer resistance to Fusarium wilt in transgenic 'Lady Finger' bananas.

    PubMed

    Paul, Jean-Yves; Becker, Douglas K; Dickman, Martin B; Harding, Robert M; Khanna, Harjeet K; Dale, James L

    2011-12-01

    Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most devastating diseases of banana (Musa spp.). Apart from resistant cultivars, there are no effective control measures for the disease. We investigated whether the transgenic expression of apoptosis-inhibition-related genes in banana could be used to confer disease resistance. Embryogenic cell suspensions of the banana cultivar, 'Lady Finger', were stably transformed with animal genes that negatively regulate apoptosis, namely Bcl-xL, Ced-9 and Bcl-2 3' UTR, and independently transformed plant lines were regenerated for testing. Following a 12-week exposure to Foc race 1 in small-plant glasshouse bioassays, seven transgenic lines (2 × Bcl-xL, 3 × Ced-9 and 2 × Bcl-2 3' UTR) showed significantly less internal and external disease symptoms than the wild-type susceptible 'Lady Finger' banana plants used as positive controls. Of these, one Bcl-2 3' UTR line showed resistance that was equivalent to that of wild-type Cavendish bananas that were included as resistant negative controls. Further, the resistance of this line continued for 23-week postinoculation at which time the experiment was terminated. Using TUNEL assays, Foc race 1 was shown to induce apoptosis-like features in the roots of wild-type 'Lady Finger' plants consistent with a necrotrophic phase in the life cycle of this pathogen. This was further supported by the observed reduction in these effects in the roots of the resistant Bcl-2 3' UTR-transgenic line. This is the first report on the generation of transgenic banana plants with resistance to Fusarium wilt. PMID:21819535

  17. Emodin induces apoptosis of human breast cancer cells by modulating the expression of apoptosis-related genes

    PubMed Central

    ZU, CONG; ZHANG, MINGDI; XUE, HUI; CAI, XIAOPENG; ZHAO, LEI; HE, ANNING; QIN, GUANGYUAN; YANG, CHUNSHU; ZHENG, XINYU

    2015-01-01

    The aim of this study was to investigate the effects of emodin on the proliferation of human breast cancer cells Bcap-37 and ZR-75-30. Cell viability following emodin treatment was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of emodin on apoptosis were determined by flow cytometry using Annexin V-fluorescein isothiocyanate and propidium iodide staining. Quantitative polymerase chain reaction and western blot analysis were used to determine changes in the expression of apoptotic genes and protein, respectively. The effect of emodin on the invasiveness of breast cancer cells was evaluated by Matrigel invasion assay. Treatment of breast cancer cells Bcap-37 and ZR-75-30 with emodin was observed to inhibit the growth and induced apoptosis in a time- and dose-dependent manner. Emodin reduced the level of Bcl-2 and increased levels of cleaved caspase-3, PARP, p53 and Bax. These findings indicate that emodin induces growth inhibition and apoptosis in human breast cancer cells. Emodin may be a potential therapeutic agent for the treatment of breast cancer. PMID:26722264

  18. Dendrosomal curcumin nanoformulation modulate apoptosis-related genes and protein expression in hepatocarcinoma cell lines.

    PubMed

    Montazeri, Maryam; Sadeghizadeh, Majid; Pilehvar-Soltanahmadi, Yones; Zarghami, Faraz; Khodi, Samaneh; Mohaghegh, Mina; Sadeghzadeh, Hadi; Zarghami, Nosratollah

    2016-07-25

    The side-effects observed in conventional therapies have made them unpromising in curing Hepatocellular carcinoma; therefore, developing novel treatments can be an overwhelming significance. One of such novel agents is curcumin which can induce apoptosis in various cancerous cells, however, its poor solubility is restricted its application. To overcome this issue, this paper employed dendrosomal curcumin (DNC) was employed to in prevent hepatocarcinoma in both RNA and protein levels. Hepatocarcinoma cells, p53 wild-type HepG2 and p53 mutant Huh7, were treated with DNC and investigated for toxicity study using MTT assay. Cell cycle distribution and apoptosis were analyzed using Flow-cytometry and Annexin-V-FLUOS/PI staining. Real-time PCR and Western blot were employed to analyze p53, BAX, Bcl-2, p21 and Noxa in DNC-treated cells. DNC inhibited the growth in the form of time-dependent manner, while the carrier alone was not toxic to the cell. Flow-cytometry data showed the constant concentration of 20μM DNC during the time significantly increases cell population in SubG1 phase. Annexin-V-PI test showed curcumin-induced apoptosis was enhanced in Huh7 as well as HepG2, compared to untreated cells. Followed by treatment, mRNA expression of p21, BAX, and Noxa increased, while the expression of Bcl-2 decreased, and unlike HepG2, Huh7 showed down-regulation of p53. In summary, DNC-treated hepatocellular carcinoma cells undergo apoptosis by changing the expression of genes involved in the apoptosis and proliferation processes. These findings suggest that DNC, as a plant-originated therapeutic agent, could be applied in cancer treatment. PMID:27234697

  19. Expression of TNF-Alpha-Dependent Apoptosis-Related Genes in the Peripheral Blood of Malagasy Subjects with Tuberculosis

    PubMed Central

    Rakotosamimanana, Niaina; Doherty, T. Mark; Andriamihantasoa, Lova H.; Richard, Vincent; Gicquel, Brigitte; Soares, Jean-Louis; Zumla, Alimuddin; Razanamparany, Voahangy Rasolofo

    2013-01-01

    The majority of Mycobacterium tuberculosis (Mtb) infections remain asymptomatic with only up to 10% progressing to clinical tuberculosis. However, the constituents of the effective “protective immunity” against tuberculosis responsible for containing most infections remain unknown. Evaluating gene transcriptional profiles in tuberculosis clinical cohorts is one approach to understanding the spectrum of tuberculosis progression. It is clear that apoptosis plays a role in the control of tuberculosis but the utility of apoptosis-related genes as surrogate markers of protection against tuberculosis has not been well investigated. To characterize potential surrogate markers that could discriminate different phases of the clinical tuberculosis spectrum, we investigated gene expression of several TNF-alpha dependent apoptotic genes (TNFR1, TNFR2, FLICE, FLIPs) by real-time RT-PCR of peripheral blood cells from cohorts of individuals with active tuberculosis or potential exposure to tuberculosis. Newly diagnosed tuberculosis patients (n = 23), their close household contacts (n = 80), and community controls (n = 46) were tested at intervals over a period of up to two years. Latent infection or previous Mtb contact was assessed by ELISPOT and TST and complete blood counts were performed during the follow up. Results showed significant upregulation of FLIPs expression by infected individuals regardless of clinical status at entry to the study. A higher percentage of lymphocytes was found in the infected household contacts that remained healthy. In contrast, in individuals with active TB, a significant upregulation of TNFR2 expression, a significantly higher percentage of monocytes and a significantly decreased lymphocyte count were seen, compared to subjects that remained healthy. Moreover, the household contacts who subsequently developed signs of TB also had a significantly high number of monocytes. These data suggest tuberculosis may be associated with

  20. Role of serum TRAIL level and TRAIL apoptosis gene expression in multiple sclerosis and relation to brain atrophy.

    PubMed

    Tawdy, Mohamed H; Abd El Nasser, Maged M; Abd El Shafy, Sanaa S; Nada, Mona A F; El Sirafy, Mohamed Nasr I; Magd, Amany Hussien Abol

    2014-09-01

    One of the presumed pathological mechanisms of multiple sclerosis (MS) is the failure of apoptosis of autoreactive T lymphocytes. This study aimed to determine the relationship of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA gene expression ratio and serum TRAIL levels with MS and brain atrophy. This study was conducted on 53 relapsing-remitting Egyptian MS patients and 25 matched healthy volunteers. The expression of TRAIL in peripheral blood lymphocytes was analyzed by reverse transcription polymerase chain reaction, serum levels of soluble TRAIL (sTRAIL) were determined by enzyme-linked immunosorbent assay and brain MRI measured "black holes" and the bicaudate ratio as a measure of brain atrophy in all patients. The serum TRAIL level was lower in MS patients compared to controls but no difference was seen in the TRAIL mRNA gene expression ratio. No significant correlation was detected between the serum TRAIL level and the TRAIL mRNA expression ratio in either group. No statistically significant correlation was found between serum TRAIL levels or the TRAIL mRNA expression ratio with the number of black holes or the bicaudate ratio on MRI. Apoptosis of T lymphocytes is decreased in MS patients, which could be useful when designing treatments. There was no difference in the TRAIL mRNA gene expression ratio between MS patients and controls. PMID:24913933

  1. Differential Expression of Apoptosis Related Genes in Selected Strains of Aedes aegypti with Different Susceptibilities to Dengue Virus

    PubMed Central

    Ocampo, Clara B.; Caicedo, Paola A.; Jaramillo, Gloria; Ursic Bedoya, Raul; Baron, Olga; Serrato, Idalba M.; Cooper, Dawn M.; Lowenberger, Carl

    2013-01-01

    Aedes aegypti is the principal vector of Dengue viruses worldwide. We identified field collected insects with differential susceptibility to Dengue-2 virus (DENv-2) and used isofemale selection to establish susceptible and refractory strains based on midgut infection barriers. Previous experiments had identified higher expression of apoptosis-related genes in the refractory strain. To identify potential molecular mechanisms associated with DENv susceptibility, we evaluated the differential expression of Caspase-16, Aedronc, Aedredd, Inhibitor of apoptosis (AeIAP1) and one member of the RNAi pathway, Argonaute-2 in the midguts and fat body tissues of the selected strains at specific times post blood feeding or infection with DENv-2. In the refractory strain there was significantly increased expression of caspases in midgut and fatbody tissues in the presence of DENv-2, compared to exposure to blood alone, and significantly higher caspase expression in the refractory strain compared with the susceptible strain at timepoints when DENv was establishing in these tissues. We used RNAi to knockdown gene expression; knockdown of AeIAP1 was lethal to the insects. In the refractory strain, knockdown of the pro-apoptotic gene Aedronc increased the susceptibility of refractory insects to DENv-2 from 53% to 78% suggesting a contributing role of this gene in the innate immune response of the refractory strain. PMID:23593426

  2. SO2 inhalation modulates the expression of apoptosis-related genes in rat hippocampus via its derivatives in vivo.

    PubMed

    Yun, Yang; Li, Hongyan; Li, Guangke; Sang, Nan

    2010-09-01

    The possible neurotoxicity of SO(2) has been implicated by determining morphological change, oxidative stress, DNA damage and membrane channel alteration in previous studies, however, its detailed mechanisms remain unclear. In the present study, we investigated SO(2) inhalation-induced effects on the transcription and translation of several apoptosis-related genes (p53, bax, bcl-2, c-fos, and c-jun) in rat hippocampus, using real-time RT-PCR analysis and western blotting technique, respectively. The results demonstrate that SO(2) statistically increased p53 expression and the ratio of bax to bcl-2 in a concentration-dependent manner. Also, mRNA and protein levels of c-fos and c-jun significantly elevated in proportion to exposure concentration. Then, we treated primary cultured hippocampal neurons with SO(2) derivatives (bisulfite and sulfite, 3:1 M/M), and examined mRNA levels of above genes. The results show that P53, c-fos, c-jun mRNA expression and the ratio of bax to bcl-2 augmented as functions of SO(2) derivative concentration and exposure time, and confirm that SO(2) affected the transcription and translation process of apoptosis-related genes in central nervous system via its derivatives in vivo. The present data provide further evidence for SO(2)-caused neurological insults, and imply that two major pathways associated with p53 and AP-1 might play important roles in the pathogenesis. PMID:20545484

  3. Nature promises new anticancer agents: Interplay with the apoptosis-related BCL2 gene family.

    PubMed

    Christodoulou, Maria-Ioanna; Kontos, Christos K; Halabalaki, Maria; Skaltsounis, Alexios-Leandros; Scorilas, Andreas

    2014-03-01

    Natural products display special attributes in the treatment and prevention of a variety of human disorders including cancer. Their therapeutic capacities along with the fact that nature comprises a priceless pool of new compounds have attracted the interest of researchers worldwide. A significant number of organic compounds from terrestrial and marine organisms exhibit anticancer properties as attested by both in vitro and in vivo studies. Emerging evidence supporting the antineoplastic activity of natural compounds has rendered them promising agents in the fight against cancer. As a result, numerous natural compounds or their derivatives have entered clinical practice and are currently in the forefront of chemotherapeutics, showing beneficial effects for cancer patients. Induction of apoptosis seems to be the major mechanism of action induced by these natural agents in the race against cancer. This is mainly achieved through modulations of the expression of B-cell CLL/lymphoma 2 (BCL2) family members. These molecules appear to be the pivotal players determining cellular fate. In the current review, we provide a comprehensive overview of the major alterations in the gene and/or protein levels of BCL2-family members evoked in cancer cells after treatment with a gamut of natural compounds. The data cited suggest the need for exploitation of newly discovered natural products that, along with the improvement of currently employed chemotherapeutics, will significantly enrich the anticancer armamentarium. PMID:23848203

  4. Expression of cytokine and apoptosis-related genes in bovine peripheral blood mononuclear cells stimulated with Brucella abortus recombinant proteins.

    PubMed

    Im, Young Bin; Jung, Myunghwan; Shin, Min-Kyoung; Kim, Suk; Yoo, Han Sang

    2016-01-01

    Brucellosis is a clinically and economically important disease. Therefore, eradication programs of the disease have been implemented in several countries. One hurdle in these programs is the detection of infected animals at the early stage. Although the protein antigens as diagnostic antigens have recently received attention, the exact mechanisms at the beginning of immune responses are not yet known. Therefore, genes encoding five B. abortus cellular proteins were cloned and the expressed recombinant proteins were purified. The expression of several cytokine genes (IL-1β, IL-4, IL-6, IL-12p40, IFN-γ, TNF-α, and iNOS) was analyzed in bovine peripheral blood mononuclear cells (bPBMC) after stimulation with the recombinant proteins. Three apoptosis-related genes, Bax, Bcl-2, and TLR4, were also included in the analysis to find out the adverse effects of the proteins to the cells. Each protein induced different patterns of cytokine expression depending on the stimulation time and antigen dose. Expression of IL-6, IL-12p40, and IFN-γ was induced with all of the proteins while IL-1β, IL-4, TNF-α, and iNOS gene expression was not. Expression of apoptosis-related genes was not altered except TLR4. These results suggest that the cellular antigens of B. abortus induce both humoral and cellular immunity via the production of IL-6, IL-12p40, and IFN-γ in bPBMC without exerting any adverse effects on the cells. PMID:26864657

  5. Parental exposure to natural mixtures of persistent organic pollutants (POP) induced changes in transcription of apoptosis-related genes in offspring zebrafish embryos.

    PubMed

    Lyche, Jan L; Grześ, Irena M; Karlsson, Camilla; Nourizadeh-Lillabadi, Rasoul; Aleström, Peter; Ropstad, Erik

    2016-01-01

    Apoptosis is an integral element of development that may also be initiated by environmental contaminants. The aim of the present study was to assess potential changes in the regulation of apoptotic genes in zebrafish embryos following parental exposure to two natural mixtures of persistent organic pollutants (POP). The mixture from Lake Mjøsa contained exceptionally high concentrations of polybrominated diphenyl ethers (PBDE), as well as relatively high levels of polychlorinated biphenyls (PCB) and dichlorodiphenyltrichloroethane (DDT). The mixture from Lake Losna contained background concentrations of POP. Genes involved in the apoptotic machinery were screened for their expression profile at four time points during embryonic development. Thirteen and 15 genes involved in apoptosis were found to be significantly upregulated in the high-exposure and background exposure groups, respectively, compared with controls. Modulation of apoptotic genes was restricted only to the first time point, which corresponds with the blastula stage. Although there were substantial differences in POP concentrations between mixtures, genes underlying the apoptosis process showed almost similar responses to the two mixtures. In both exposure groups the main executors of apoptosis p53, casp 2, casp 6, cassp 8, and BAX displayed upregulation compared to controls, suggesting that these POP induce apoptosis via a p53-dependent mechanism. Upregulation of genes that play a critical role in apoptosis suggests that disturbance of normal apoptotic signaling during gametogenesis and embryogenesis may be one of the central mechanisms involved in adverse reproductive effects produced by POP in zebrafish. PMID:27484141

  6. Embryonic exposure to carbendazim induces the transcription of genes related to apoptosis, immunotoxicity and endocrine disruption in zebrafish (Danio rerio).

    PubMed

    Jiang, Jinhua; Wu, Shenggan; Wu, Changxing; An, Xuehua; Cai, Leiming; Zhao, Xueping

    2014-12-01

    Carbendazim is one of the most widespread environmental contaminant that can cause major concern to human and animal reproductive system. To date, very few studies have been conducted on the toxic effect of carbendazim in the non-target organism zebrafish (Danio rerio). The study presented here aimed to assess how carbendazim triggers apoptosis, immunotoxicity and endocrine disruption pathways in zebrafish during its embryo development. Our results demonstrated that the expression patterns of many key genes involved in cell apoptosis pathway (e.g. P53, Mdm2, Bbc3 and Cas8) were significantly up-regulated upon the exposure to carbendazim at the concentration of 500 μg/L, while the Bcl2 and Cas3 were down-regulated at the same concentration, interestingly, the expression level of Ogg1 decreased at all the exposure concentrations. It was also observed that the mRNA levels of CXCL-C1C, CCL1, IL-1b and TNFα which were closely related to the innate immune system, were affected in newly hatched zebrafish after exposed to different concentrations of carbendazim. Moreover, the expression of genes that are involved in the hypothalamic-pituitary-gonadal/thyroid (HPG/HPT) axis including VTG, ERα, ERβ2, Dio1, Dio2, Thraa and Thrb were all down-regulated significantly after the exposure to carbendazim. The expression levels of two cytochrome P450 aromatases CYP19a and CYP19b were increased significantly after 20 and 100 μg/L carbendazim exposure, respectively. Taken together, our results indicated that carbendazim had the potential to induce cell apoptosis and cause immune toxicity as well as endocrine disruption in zebrafish during the embryo developmental stage. The information presented here also help to elucidate the environmental risks caused by the carbendazim-induced toxicity in aquatic organisms. PMID:25304545

  7. Assessment of apoptosis in relation to proliferation and mutational status of p53 gene in head and neck cancers.

    PubMed

    Mundle, S; Kotelnikov, V; Wood, N; Coon, J; Horvath, E; Taylor, S; Lafollette, S; Caldarelli, D; Hutchinson, J; Panje, W; Preisler, H; Raza, A

    1996-06-01

    The present studies were undertaken to determine the incidence of apoptosis in plastic embedded head and neck (HN) tumor biopsies (n=31) using in situ end labeling (ISEL) of fragmented DNA. The extent of spontaneous apoptosis in untreated tumors was correlated with histological grade, percent S-phase cells (Labeling Index, LI) and with the mutational status of p53 gene in these tumors. Additionally, the in vivo effects of chemo- and/or radiotherapy on apoptosis were evaluated in seven patients. In the majority of tumors studied (25/31) spontaneous apoptosis was virtually undetectable or was very low (1-15% positively labeled cells). Only 6 tumors showed intermediate to high apoptosis (>15% positively labeled cells). High apoptosis was more frequent in poorly differentiated tumors (similar to 50%), as compared to well and moderately differentiated tumors. The median LI for 31 tumors studied was 20.2%. The mean LI for moderately differentiated tumors (23.7+/-1.7%) was significantly higher than that in well differentiated (15.1+/-2.1%, p=0.005) and was comparable in poorly differentiated tumors (24.5%). Cytotoxic therapy significantly increased the degree of apoptosis in 5/7 specimens studied (p=0.03). Double labeling of 5 of these tumors before and after the therapy, combining ISEL with detection of IUdR/BrdU, showed compartmentalized apoptosis and proliferation with virtually no double labeled cells in any specimen. Interestingly, tumors with a mutated p53 gene (n=6) showed intermediate to high degree of pretherapy, baseline apoptosis in contrast to low or undetectable levels of apoptosis in tumors bearing wild-type p53 (n=13, p=0.034). It appears that low levels of apoptosis and high proliferation may be characteristic of HN tumors. The spontaneous apoptosis in HN tumors seems unrelated to mutations in the p53 gene. Moreover, our data also show that despite overall increase in apoptosis induced by cytotoxic therapy, some proliferating tumor cells escaped the

  8. Effect of alpha-tocopherol supplementation during boar semen cryopreservation on sperm characteristics and expression of apoptosis related genes.

    PubMed

    Jeong, Yeon-Ji; Kim, Mi-Kyeong; Song, Hye-Jin; Kang, Eun-Ju; Ock, Sun-A; Kumar, B Mohana; Balasubramanian, S; Rho, Gyu-Jin

    2009-04-01

    Boar semen is extremely vulnerable to cold shock and sensitive to peroxidative damage due to high content of unsaturated fatty acids in the phospholipids of the plasma membrane and the relatively low antioxidant capacity of seminal plasma. The present study evaluated the influence of alpha-tocopherol supplementation at various concentrations in the boar semen extender during cryopreservation on post-thawed sperm motility characteristics (total sperm motility, MOT; local motility, LCM; curvilinear velocity, VCL; straight linear velocity, VSL; and average path velocity, VAP), sperm qualities (viability, acrosomal integrity and apoptosis), expression of stress protein (HSP70), and the expression of pro-apoptotic (Bax and Bak) and anti-apoptotic (Bcl-2l and Bcl-xl) genes. Semen collected from 10 Duroc boars was cryopreserved in lactose-egg yolk buffer supplemented with various concentrations of alpha-tocopherol (0, 100, 200, 400, 600 and 800 microM) using the straw-freezing procedure and stored at -196 degrees C for a minimum period of one month. In frozen-thawed groups, sperm motility was significantly (P<0.05) lower than that of fresh sperm. In fresh sperm, HSP70 immunoreactivity expression was observed in the equatorial region, but in frozen-thawed groups, expressions were mostly observed in the sperm head. Higher apoptosis rates were observed in 600 and 800 microM alpha-tocopherol supplemented frozen-thawed groups. In alpha-tocopherol supplemented frozen-thawed groups immediately after thawing, the expression was similar to that of fresh group. But after incubation at 37 degrees C for 3h, the expression in 200 and 800 microM alpha-tocopherol supplemented groups was higher than that of others. Expression of pro-apoptotic genes was significantly higher and anti-apoptotic genes was significantly (P<0.01) lower in alpha-tocopherol supplemented frozen-thawed groups compared to fresh sperm group. In conclusion, alpha-tocopherol, supplemented at 200 microM concentration

  9. Deletion of growth hormone receptor gene but not visceral fat removal decreases expression of apoptosis-related genes in the kidney-potential mechanism of lifespan extension.

    PubMed

    Gesing, Adam; Masternak, Michal M; Wang, Feiya; Karbownik-Lewinska, Malgorzata; Bartke, Andrzej

    2012-04-01

    Mice homozygous for the targeted disruption of the growth hormone (GH) receptor (Ghr) gene (GH receptor knockout; GHRKO; KO) are hypoinsulinemic, highly insulin sensitive, normoglycemic, and long-lived. Visceral fat removal (VFR) is a surgical intervention which improves insulin signaling in normal (N) mice and rats and extends longevity in rats. We have previously demonstrated decreased expression level of certain pro-apoptotic genes in skeletal muscles and suggested that this may contribute to the regulation of longevity in GHRKO mice. Alterations in apoptosis-related genes expression in the kidneys also may potentially lead to lifespan extension. In this context, we decided to examine the renal expression of the following genes: caspase-3, caspase-9, caspase-8, bax, bad, bcl-2, Smac/DIABLO, Apaf-1, p53, and cytochrome c1 (cyc1) in male GHRKO and N mice subjected to VFR or sham surgery, at approximately 6 months of age. The kidneys were collected 2 months after VFR. As a result, caspase-3, caspase-9, and bax expressions were decreased in KO mice as compared to N animals. Expressions of Smac/DIABLO, caspase-8, bcl-2, bad, and p53 did not differ between KOs and N mice. VFR did not change the expression of the examined genes in KO or N mice. In conclusion, endocrine abnormalities in GHRKO mice result in decreased expression of pro-apoptotic genes and VFR did not alter the examined genes expression in N and KO mice. These data are consistent with a model in which alterations of GH signaling and/or insulin sensitivity lead to increased lifespan mediated by decreased renal expression of pro-apoptotic genes. PMID:21431351

  10. Overexpression of the hydatidiform mole-related gene F10 inhibits apoptosis in A549 cells through downregulation of BCL2-associated X protein and caspase-3.

    PubMed

    Song, Yali; Zhang, Gong; Zhu, Xiulan; Pang, Zhanjun; Xing, Fuqi; Quan, Song

    2012-09-01

    The aim of this study was to investigate how the overexpression of the hydatidiform mole-related gene F10 affects apoptosis in human lung cancer A549 cells. A549 cells were transfected with pEGFP-N1-F10 (A549-F10) or pEGFP-N1 empty vector (A549-empty). Untransfected A549, A549-F10 or A549-empty cells were examined using the MTT cell proliferation assay and the TUNEL-FITC/Hoechst 33258 apoptosis assay. Western blotting was used to examine the expression levels of the pro-apoptotic genes, BCL2-associated X protein (BAX) and caspase-3. F10 was stably expressed in A549 cells. From 12 h, A549-F10 cells proliferated markedly faster than the untransfected and A549-empty cells. F10 overexpression also significantly inhibited apoptosis, as shown by the reduced number of TUNEL and Hoechst 33258 double-positive cells. This inhibition was likely due to an F10-induced reduction in the BAX and caspase-3 levels. The results of this study indicate that F10 overexpression inhibits apoptosis in A549 cells through the downregulation of the pro-apoptotic genes BAX and caspase-3. PMID:23741243

  11. Analysis of apoptosis-related genes in patients with clinically isolated syndrome and their association with conversion to multiple sclerosis.

    PubMed

    Hagman, Sanna; Kolasa, Marcin; Basnyat, Pabitra; Helminen, Mika; Kähönen, Mika; Dastidar, Prasun; Lehtimäki, Terho; Elovaara, Irina

    2015-03-15

    To analyse whether the expression of apoptotic transcripts is associated with the conversion from clinically isolated syndrome (CIS) to multiple sclerosis (MS). Eleven candidate transcripts belonging to the death receptor pathway, BCL-2, the inflammasome complex and NF-ΚB family were studied in the nonconverting and converting CIS patients during the four-year follow-up period. Conversion to MS was associated with marked variability in the expression of proapoptotic genes that were linked to TGF-B1 gene levels. The predominant expression of proapoptotic genes in patients with CIS suggests an increased potential to undergo apoptosis with the goal of terminating immune responses and regulating immune system homeostasis. PMID:25773154

  12. Expression levels of the BAK1 and BCL2 genes highlight the role of apoptosis in age-related hearing impairment.

    PubMed

    Falah, Masoumeh; Najafi, Mohammad; Houshmand, Massoud; Farhadi, Mohammad

    2016-01-01

    Age-related hearing impairment (ARHI) is a progressive and a common sensory disorder in the elderly and will become an increasingly important clinical problem given the growing elderly population. Apoptosis of cochlear cells is an important factor in animal models of ARHI. As these cells cannot regenerate, their loss leads to irreversible hearing impairment. Identification of molecular mechanisms can facilitate disease prevention and effective treatment. In this study, we compared the expression of the genes BAK1 and BCL2 as two arms of the intrinsic apoptosis pathway between patients with ARHI and healthy subjects. ARHI and healthy subjects were selected after an ear nose throat examination, otoscopic investigation, and pure tone audiometry. RNA was extracted from peripheral blood samples, and relative gene expression levels were measured using quantitative real-time polymerase chain reaction. BAK1 and the BAK1/BCL2 ratio were statistically significantly upregulated in the ARHI subjects. The BAK1/BCL2 ratio was positively correlated with the results of the audiometric tests. Our results indicate that BAK-mediated apoptosis may be a core mechanism in the progression of ARHI in humans, similar to finding in animal models. Moreover, the gene expression changes in peripheral blood samples could be used as a rapid and simple biomarker for early detection of ARHI. PMID:27555755

  13. Expression levels of the BAK1 and BCL2 genes highlight the role of apoptosis in age-related hearing impairment

    PubMed Central

    Falah, Masoumeh; Najafi, Mohammad; Houshmand, Massoud; Farhadi, Mohammad

    2016-01-01

    Age-related hearing impairment (ARHI) is a progressive and a common sensory disorder in the elderly and will become an increasingly important clinical problem given the growing elderly population. Apoptosis of cochlear cells is an important factor in animal models of ARHI. As these cells cannot regenerate, their loss leads to irreversible hearing impairment. Identification of molecular mechanisms can facilitate disease prevention and effective treatment. In this study, we compared the expression of the genes BAK1 and BCL2 as two arms of the intrinsic apoptosis pathway between patients with ARHI and healthy subjects. ARHI and healthy subjects were selected after an ear nose throat examination, otoscopic investigation, and pure tone audiometry. RNA was extracted from peripheral blood samples, and relative gene expression levels were measured using quantitative real-time polymerase chain reaction. BAK1 and the BAK1/BCL2 ratio were statistically significantly upregulated in the ARHI subjects. The BAK1/BCL2 ratio was positively correlated with the results of the audiometric tests. Our results indicate that BAK-mediated apoptosis may be a core mechanism in the progression of ARHI in humans, similar to finding in animal models. Moreover, the gene expression changes in peripheral blood samples could be used as a rapid and simple biomarker for early detection of ARHI. PMID:27555755

  14. Fish oil supplementation induces expression of genes related to cell cycle, endoplasmic reticulum stress and apoptosis in peripheral blood mononuclear cells: a transcriptomic approach

    PubMed Central

    Myhrstad, M C W; Ulven, S M; Günther, C-C; Ottestad, I; Holden, M; Ryeng, E; Borge, G I; Kohler, A; Brønner, K W; Thoresen, M; Holven, K B

    2014-01-01

    Background Fish oil supplementation has been shown to alter gene expression of mononuclear cells both in vitro and in vivo. However, little is known about the total transcriptome profile in healthy subjects after intake of fish oil. We therefore investigated the gene expression profile in peripheral blood mononuclear cells (PBMCs) after intake of fish oil for 7 weeks using transcriptome analyses. Design In a 7-week, double-blinded, randomized, controlled, parallel-group study, healthy subjects received 8 g day−1 fish oil (1.6 g day−1 eicosapentaenoic acid + docosahexaenoic acid) (n = 17) or 8 g day−1 high oleic sunflower oil (n = 19). Microarray analyses of RNA isolated from PBMCs were performed at baseline and after 7 weeks of intervention. Results Cell cycle, DNA packaging and chromosome organization are biological processes found to be upregulated after intake of fish oil compared to high oleic sunflower oil using a moderated t-test. In addition, gene set enrichment analysis identified several enriched gene sets after intake of fish oil. The genes contributing to the significantly different gene sets in the subjects given fish oil compared with the control group are involved in cell cycle, endoplasmic reticulum (ER) stress and apoptosis. Gene transcripts with common motifs for 35 known transcription factors including E2F, TP53 and ATF4 were upregulated after intake of fish oil. Conclusion We have shown that intake of fish oil for 7 weeks modulates gene expression in PBMCs of healthy subjects. The increased expression of genes related to cell cycle, ER stress and apoptosis suggests that intake of fish oil may modulate basic cellular processes involved in normal cellular function. PMID:24641624

  15. GENETIC ANALYSIS OF INTERFERON INDUCED THYROIDITIS (IIT): EVIDENCE FOR A KEY ROLE FOR MHC AND APOPTOSIS RELATED GENES AND PATHWAYS

    PubMed Central

    Hasham, Alia; Zhang, Weijia; Lotay, Vaneet; Haggerty, Shannon; Stefan, Mihaela; Concepcion, Erlinda; Dieterich, Douglas T.; Tomer, Yaron

    2013-01-01

    Autoimmune thyroid diseases (AITD) have become increasingly recognized as a complication of interferon-alpha (IFNα) therapy in patients with chronic Hepatitis C virus (HCV) infection. Interferon-induced thyroiditis (IIT) can manifest as clinical thyroiditis in approximately 15% of HCV patients receiving IFNα and subclinical thyroiditis in up to 40% of patients, possibly resulting in either dose reduction or discontinuation of IFNα treatment. However, the exact mechanisms that lead to the development of IIT are unknown and may include IFNα-mediated immune-recruitment as well as direct toxic effects on thyroid follicular cells. We hypothesized that IIT develops in genetically predisposed individuals whose threshold for developing thyroiditis is lowered by IFNα. Therefore, our aim was to identify the susceptibility genes for IIT. We used a genomic convergence approach combining genetic association data with transcriptome analysis of genes upregulated by IFNα. Integrating results of genetic association, transcriptome data, pathway, and haplotype analyses enabled the identification of 3 putative loci, SP100/110/140 (2q37.1), HLA (6p21.3), and TAP1 (6p21.3) that may be involved in the pathogenesis of IIT. Immune-regulation and apoptosis emerged as the predominant mechanisms underlying the etiology of IIT. PMID:23683877

  16. Exposure in utero to 2,2',3,3',4,6'-hexachlorobiphenyl (PCB 132) impairs sperm function and alters testicular apoptosis-related gene expression in rat offspring

    SciTech Connect

    Hsu, P.-C.; Pan, M.-H.; Li, L.-A.; Chen, C.-J.; Tsai, S.-S.; Guo, Y.L. . E-mail: leonguo@ha.mc.ntu.edu.tw

    2007-05-15

    Toxicity of the polychlorinated biphenyls (PCBs) depends on their molecular structure. Mechanisms by prenatal exposure to a non-dioxin-like PCB, 2,2',3,4',5',6-hexachlorobiphenyl (PCB 132) that may act on reproductive pathways in male offspring are relatively unknown. The purpose was to determine whether epididymal sperm function and expression of apoptosis-related genes were induced or inhibited by prenatal exposure to PCB 132. Pregnant rats were treated with a single dose of PCB 132 at 1 or 10 mg/kg on gestational day 15. Male offspring were killed and the epididymal sperm counts, motility, velocity, reactive oxygen species (ROS) generation, sperm-oocyte penetration rate (SOPR), testicular histopathology, apoptosis-related gene expression and caspase activation were assessed on postnatal day 84. Prenatal exposure to PCB 132 with a single dose of 1 or 10 mg/kg decreased cauda epididymal weight, epididymal sperm count and motile epididymal sperm count in adult offspring. The spermatozoa of PCB 132-exposed offspring produced significantly higher levels of ROS than the controls; ROS induction and SOPR reduction were dose-related. In the low-dose PCB 132 group, p53 was significantly induced and caspase-3 was inhibited. In the high-dose group, activation of caspase-3 and -9 was significantly increased, while the expressions of Fas, Bax, bcl-2, and p53 genes were significantly decreased. Gene expression and caspase activation data may provide insight into the mechanisms by which exposure to low-dose or high-dose PCB 132 affects reproduction in male offspring in rats. Because the doses of PCB 132 administered to the dams were approximately 625-fold in low-dose group and 6250-fold higher in high-dose group than the concentration in human tissue levels, the concentrations are not biologically or environmentally relevant. Further studies using environmentally relevant doses are needed for hazard identification.

  17. Impact of broiler egg storage on the relative expression of selected blastoderm genes associated with apoptosis, oxidative stress, and fatty acid metabolism.

    PubMed

    Bakst, M R; Welch, G R; Fetterer, R; Miska, K

    2016-06-01

    Cool temperature storage of eggs prior to incubation is a frequent practice by commercial broiler hatcheries. However, continued storage beyond 7 d leads to a progressive increase in the rate of early embryonic mortality. In this study, we examined the relative expression of 31 genes associated with fatty acid metabolism (8), apoptosis (7), and oxidative stress (16) pathways to better understand the basis of embryo mortality during egg storage. A total of 642 broiler eggs in 2 separate trials were subjected to the following egg treatments: stored 4 d (Control 1, C1); stored 21 d but subjected to short periods of incubation during egg storage (SPIDES); stored un-manipulated 21 d (NonSPIDES, NS); and stored 4 d then incubated for 10 h to advance the embryos to the same developmental stages as the SPIDES embryos (Control 2, C2). Hatchability trials (277 eggs) confirmed the efficacy of SPIDES compared to NS treatments in both trials. To determine relative expression of 31 selected genes, 365 blastoderms were isolated, staged, and flash frozen in batches of 5 to 10 blastoderms per vial (7 vials per egg treatment) prior to RNA extractions. Analysis of gene expression was performed using qRT-PCR and the results presented as relative expression normalized to C1. The relative expression of genes in which the SPIDES and C2 treatments were significantly up- or down-regulated in tandem indicated that the stage-specific expression of those genes was maintained by the SPIDES treatment. This study provides the relative gene expressions of blastodermal cells before and after prolonged egg storage as well as insight as to how SPIDES impacts blastodermal cell gene expression. PMID:26944957

  18. MicroRNA-related polymorphisms in apoptosis pathway genes are predictive of clinical outcome in patients with limited disease small cell lung cancer

    PubMed Central

    Jiang, Wei; Bi, Nan; Zhang, Wen-Jue; Wu, Li-Hong; Liu, Li-Pin; Men, Yu; Wang, Jing-Bo; Liang, Jun; Hui, Zhou-Guang; Zhou, Zong-Mei; Wang, Lu-Hua

    2016-01-01

    We examined the impact of single nucleotide polymorphisms (SNPs) at miRNA binding sites in the 3′-UTRs of genes in the apoptosis pathway on the prognosis of patients with limited disease-small cell lung cancer (LD-SCLC). Twelve tagSNPs in seven genes were genotyped using blood samples from 146 LD-SCLC patients treated with chemoradiotherapy. Cox proportional hazard regression models and recursive partitioning analysis were performed to identify SNPs significantly associated with overall survival. Three SNPs, CASP8: rs1045494 (C > T), PIK3R1: rs3756668 (A > G) and CASP7: rs4353229 (T > C), were associated with longer overall survival in LD-SCLC patients after chemoradiotherapy. The adjusted hazard ratios (95% confidence intervals) were 0.480 (0.258–0.894), 0.405 (0.173–0.947) and 0.446 (0.247–0.802), respectively, and remained significant after multiple comparison correction. Moreover, subset analysis showed these SNPs were still predictive of overall survival in stage III patients. Recursive partitioning analysis enabled patients to be classified into three risk subgroups based on unfavorable genotype combinations of the rs1045494 and rs4353229 SNPs. These findings suggest miRNA-related polymorphisms in the apoptosis pathway may be useful biomarkers for selection of LD-SCLC patients likely to benefit from chemoradiotherapy. PMID:26988918

  19. Expression of genes related to apoptosis, cell cycle and signaling pathways are independent of TP53 status in urinary bladder cancer cells.

    PubMed

    da Silva, Glenda N; Evangelista, Adriane F; Magalhães, Danielle A; Macedo, Cláudia; Búfalo, Michelle C; Sakamoto-Hojo, Elza T; Passos, Geraldo A S; Salvadori, Daisy M F

    2011-08-01

    Urinary bladder cancer is the fourth most common malignancy in the Western world. Transitional cell carcinoma (TCC) is the most common subtype, accounting for about 90% of all bladder cancers. The TP53 gene plays an essential role in the regulation of the cell cycle and apoptosis and therefore contributes to cellular transformation and malignancy; however, little is known about the differential gene expression patterns in human tumors that present with the wild-type or mutated TP53 gene. Therefore, because gene profiling can provide new insights into the molecular biology of bladder cancer, the present study aimed to compare the molecular profiles of bladder cancer cell lines with different TP53 alleles, including the wild type (RT4) and two mutants (5637, with mutations in codons 280 and 72; and T24, a TP53 allele encoding an in-frame deletion of tyrosine 126). Unsupervised hierarchical clustering and gene networks were constructed based on data generated by cDNA microarrays using mRNA from the three cell lines. Differentially expressed genes related to the cell cycle, cell division, cell death, and cell proliferation were observed in the three cell lines. However, the cDNA microarray data did not cluster cell lines based on their TP53 allele. The gene profiles of the RT4 cells were more similar to those of T24 than to those of the 5637 cells. While the deregulation of both the cell cycle and the apoptotic pathways was particularly related to TCC, these alterations were not associated with the TP53 status. PMID:21116856

  20. Differential Expression of Tyrosine Hydroxylase Protein and Apoptosis-Related Genes in Differentiated and Undifferentiated SH-SY5Y Neuroblastoma Cells Treated with MPP+

    PubMed Central

    Khwanraj, Kawinthra; Phruksaniyom, Chareerut; Madlah, Suriyat; Dharmasaroja, Permphan

    2015-01-01

    The human neuroblastoma SH-SY5Y cell line has been used as a dopaminergic cell model for Parkinson's disease research. Whether undifferentiated or differentiated SH-SY5Y cells are more suitable remains controversial. This study aims to evaluate the expression of apoptosis-related mRNAs activated by MPP+ and evaluate the differential expression of tyrosine hydroxylase (TH) in undifferentiated and retinoic acid- (RA-) induced differentiated cells. The western blot results showed a gradual decrease in TH in undifferentiated cells and a gradual increase in TH in differentiated cells from days 4 to 10 after cell plating. Immunostaining revealed a gradual increase in TH along with neuritic outgrowth in differentiated cells on days 4 and 7 of RA treatment. For the study on cell susceptibility to MPP+ and the expression of apoptosis-related genes, MTT assay showed a decrease in cell viability to approximately 50% requiring 500 and 1000 μM of MPP+ for undifferentiated and RA-differentiated cells, respectively. Using real-time RT-PCR, treatment with 500 μM MPP+ led to significant increases in the Bax/Bcl-2 ratio, p53, and caspase-3 in undifferentiated cells but was without significance in differentiated cells. In conclusion, differentiated cells may be more suitable, and the shorter duration of RA differentiation may make the SH-SY5Y cell model more accessible. PMID:26634154

  1. Association between breast cancer and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) gene 1595C/T SNP in a Pakistani population

    PubMed Central

    Rehman, Saima F.; Mansoor, Qaisar; Nazir, Nusrat; Kausar, Rukhsana; Jabeen, Nyla; Ismail, Muhammad

    2015-01-01

    Aim of the Study TRAIL-mediated signalling has emerged as an extensively studied biological mechanism reported to differentially induce apoptosis in cancer cells. However, overwhelmingly increasing experimentally verified data is shedding light on resistance against TRAIL-induced apoptosis in cancer cells. Moreover, genetic and epigenetic mutations also exert effects on the functionality of TRAIL and its receptors. In this study we investigated the association between breast cancer and polymorphisms in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) in a Pakistani Population. Material and methods Genotyping for TRAIL gene 1595 C/T polymorphism was done for 363 breast cancer patients and 193 age- and sex-matched healthy controls. DNA was extracted using standard organic methods. PCR-RFLP analysis was done for C/T polymorphism at position 1595 in exon 5 of the TRAIL gene using site-specific primers and restriction enzyme. The results were statistically evaluated by SPSS14. Results In this study, CC homozygotes were 46.3% in patients and 49.7% in controls, p = 0.729 with OR value 0.8705 (95% CI: 0.6137–1.2348). CT was statistically insignificant, p = 0.837 with OR value 0.9242 (95% CI: 0.6494–1.3154). However, the minor allele or risk allele genotype TT had a higher percentage among breast cancer patients (12.1%) than in the control group (6.7%). Since there was a statistically insignificant difference (p = 0.212, OR value 1.9098 with 95% CI 1.0019 to 3.6406) of TT genotype between the two groups, the contrastingly higher percentage of TT genotype in breast cancer patients seems to be a risk factor for the disease. Moreover, the frequency of minor allele T was also found to be higher in the patients (0.329) than in the controls (0.285). Conclusions The TRAIL gene 1595 C/T SNP has a contradictory role in cancer development in different populations. In our population group although the percentage of homozygous risk allele TT was higher in patients

  2. Calcitonin gene-related peptide cooperates with substance P to inhibit melanogenesis and induces apoptosis of B16F10 cells.

    PubMed

    Zhou, Jia; Feng, Jun-Yi; Wang, Qian; Shang, Jing

    2015-07-01

    Skin is the largest organ in human body and works as biologically active barrier to provide critical preservation of body homeostasis. The skin is highly innervated by a plenitude of nerve fiber subpopulations, each carrying one or more neuronal mediators. Melanocyte itself also intimately contact with nerve fibers to form 'synaptic-like structure' and its functions may be directly regulated by the mediators contained in terminals of intra-epidermal nerve fibers. Clinical and biochemical studies have suggested that calcitonin gene-related peptide (CGRP) is involved in vitiligo skin. The present study was designed to investigate the effect of CGRP on epidermal melanocytes. After treatment with CGRP ranging from 0 to 500 ng/mL for 48 h, tyrosinase activity and melanogenesis were with little changes compared to treatment with medium only in B16F10 cells. Treatment with 500 ng/mL of CGRP cooperates with substance P (SP) (0.1-10 nM) to decrease tyrosinase activity and decrease melanin biosynthesis in B16F10 cells in a concentration-dependent manner. Furthermore, CGRP (8-37) antagonizes the synergistic effect of CGRP. The effect of CGRP on the cell apoptosis was examined. Treatments with 0-500 ng/mL of CGRP for 24 h, the expression levels of cleaved caspase-3, total caspase-3, cleaved caspase-9 and total caspase-9 were increased in a concentration-dependent manner. And 500 ng/mL of CGRP induced B16F10 cell apoptosis showed by TUNEL assay. In addition, Bax expression was up-regulated and Bcl-2 down-regulated in response to CGRP treatment. Hence, the Bax/Bcl-2 ratio was significantly increased. These in vitro observations indicate the pro-apoptotic impact of CGRP on B16F10 cell. PMID:25982845

  3. Apoptosis Induction by Polygonum minus is related to antioxidant capacity, alterations in expression of apoptotic-related genes, and S-phase cell cycle arrest in HepG2 cell line.

    PubMed

    Mohd Ghazali, Mohd Alfazari; Al-Naqeb, Ghanya; Krishnan Selvarajan, Kesavanarayanan; Hazizul Hasan, Mizaton; Adam, Aishah

    2014-01-01

    Polygonum minus (Polygonaceae) is a medicinal herb distributed throughout eastern Asia. The present study investigated antiproliferative effect of P. minus and its possible mechanisms. Four extracts (petroleum ether, methanol, ethyl acetate, and water) were prepared by cold maceration. Extracts were subjected to phytochemical screening, antioxidant, and antiproliferative assays; the most bioactive was fractionated using vacuum liquid chromatography into seven fractions (F1-F7). Antioxidant activity was measured via total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. Antiproliferative activity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Most active fraction was tested for apoptosis induction and cell cycle arrest in HepG2 cells using flow cytometry and confocal microscopy. Apoptotic-related gene expression was studied by RT-PCR. Ethyl acetate extract was bioactive in initial assays. Its fraction, F7, exhibited highest antioxidant capacity (TPC; 113.16 ± 6.2 mg GAE/g extract, DPPH; EC50: 30.5 ± 3.2 μg/mL, FRAP; 1169 ± 20.3 μmol Fe (II)/mg extract) and selective antiproliferative effect (IC50: 25.75 ± 1.5 μg/mL). F7 induced apoptosis in concentration- and time-dependent manner and caused cell cycle arrest at S-phase. Upregulation of proapoptotic genes (Bax, p53, and caspase-3) and downregulation of antiapoptotic gene, Bcl-2, were observed. In conclusion, F7 was antiproliferative to HepG2 cells by inducing apoptosis, cell cycle arrest, and via antioxidative effects. PMID:24955361

  4. Apoptosis Induction by Polygonum minus Is Related to Antioxidant Capacity, Alterations in Expression of Apoptotic-Related Genes, and S-Phase Cell Cycle Arrest in HepG2 Cell Line

    PubMed Central

    Mohd Ghazali, Mohd Alfazari; Al-Naqeb, Ghanya; Krishnan Selvarajan, Kesavanarayanan; Hazizul Hasan, Mizaton; Adam, Aishah

    2014-01-01

    Polygonum minus (Polygonaceae) is a medicinal herb distributed throughout eastern Asia. The present study investigated antiproliferative effect of P. minus and its possible mechanisms. Four extracts (petroleum ether, methanol, ethyl acetate, and water) were prepared by cold maceration. Extracts were subjected to phytochemical screening, antioxidant, and antiproliferative assays; the most bioactive was fractionated using vacuum liquid chromatography into seven fractions (F1–F7). Antioxidant activity was measured via total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. Antiproliferative activity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Most active fraction was tested for apoptosis induction and cell cycle arrest in HepG2 cells using flow cytometry and confocal microscopy. Apoptotic-related gene expression was studied by RT-PCR. Ethyl acetate extract was bioactive in initial assays. Its fraction, F7, exhibited highest antioxidant capacity (TPC; 113.16 ± 6.2 mg GAE/g extract, DPPH; EC50: 30.5 ± 3.2 μg/mL, FRAP; 1169 ± 20.3 μmol Fe (II)/mg extract) and selective antiproliferative effect (IC50: 25.75 ± 1.5 μg/mL). F7 induced apoptosis in concentration- and time-dependent manner and caused cell cycle arrest at S-phase. Upregulation of proapoptotic genes (Bax, p53, and caspase-3) and downregulation of antiapoptotic gene, Bcl-2, were observed. In conclusion, F7 was antiproliferative to HepG2 cells by inducing apoptosis, cell cycle arrest, and via antioxidative effects. PMID:24955361

  5. Dioxinodehydroeckol protects human keratinocyte cells from UVB-induced apoptosis modulated by related genes Bax/Bcl-2 and caspase pathway.

    PubMed

    Ryu, BoMi; Ahn, Byul-Nim; Kang, Kyong-Hwa; Kim, Young-Sang; Li, Yong-Xin; Kong, Chang-Suk; Kim, Se-Kwon; Kim, Dong Gyu

    2015-12-01

    Although ultraviolet B (UVB) has a low level of skin penetration, it readily results in epidermal sunburn of keratinocytes that are destined to apoptosis after sun expose, and leads to DNA damage. Dioxinodehydroeckol (DHE), a phlorotannin from Ecklonia cava has been explored for its preventive activity against UVB-induced apoptosis in human keratinocyte (HaCaT) cells; however, the protective effects of treatment with low doses of DHE on UVB-damaged cells post-UVB exposure and their underlying mechanisms still remain unclear. The HaCaT cells were exposed to 20 mJcm(-2) of UVB irradiation which is the minimal erythema dose (MED) for individuals to be able to tan, and the expression levels of Bax/Bcl-2 and caspase-3,-8, -9 which are associated genes with apoptosis were investigated when we either treated cells with DHE doses after UVB irradiation or exposed them to UVB only. Our results suggest insight into proposed mechanistic pathway of protective activity of DHE on the HaCaT cells from UVB-induced apoptosis, indicating the benefit of DHE as a repair agent for skin damage against UVB. PMID:26529485

  6. Concentrate diet modulation of ruminal genes involved in cell proliferation and apoptosis is related to combined effects of short-chain fatty acid and pH in rumen of goats.

    PubMed

    Gui, Hongbing; Shen, Zanming

    2016-08-01

    Short-chain fatty acids (SCFA) regulate cell proliferation and cell apoptosis in gastrointestinal tissue in vitro and in vivo. We have tested the hypothesis that a medium-concentrate intake induces mRNA abundance alterations of genes involved in cell proliferation and cell apoptosis in the rumen epithelium of goats, and that these changes in mRNA abundance are related to ruminal SCFA concentration and ruminal pH. Goats (n=16) were randomly allocated to 2 groups and fed either a low-concentrate (LC) diet (10% concentrate; n=8) or a medium-concentrate (MC) diet (35% concentrate; n=8) in 2 equal portions daily. The individually housed goats were fed separately with their respective diet for 3wk and were slaughtered 6h after the morning feed on d 22. In vivo, goats receiving the MC treatment exhibited a greater ruminal SCFA concentration (73.7mM) compared with those receiving the LC treatment (53.2mM), and the pH decreased from 6.9 to 6.5. The expression of proliferative genes of cyclin A, cyclin B1, cyclin D1, cyclin E1, CDK1, CDK2, CDK4, and CDK6 mRNA in the MC group was enhanced. The gene expression of apoptosis genes (caspase 3, caspase 8, caspase 9, p53, and Bax) was significantly higher, and the ratio of Bcl-2 to Bax (Bcl-2/Bax) expression was lower in the MC group than in the LC group. The same trend was observed in the population of apoptotic cells analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. The cell density in the stratum germinativum of the MC group was significantly increased compared with that in the LC group. During primary culture of rumen epithelial cells, SCFA or pH treatment alone of the culture medium had significant effects on the expression of most of the genes tested in the present study. Furthermore, SCFA and pH exerted combined effects on the expression of cyclin A, cyclin B1, cyclin E1, CDK6, p53, Bcl-2, and Bcl-2/Bax. Thus, the MC diet induces alteration of gene expression of the genes that regulate

  7. Validation of the Antiproliferative Effects of Organic Extracts from the Green Husk of Juglans regia L. on PC-3 Human Prostate Cancer Cells by Assessment of Apoptosis-Related Genes

    PubMed Central

    Alshatwi, Ali A.; Hasan, Tarique N.; Shafi, Gowhar; Syed, Naveed Ahmed; Al-Assaf, Abdullah H.; Alamri, Mohammed S.; Al-Khalifa, Abdrohman S.

    2012-01-01

    With the increased use of plant-based cancer chemotherapy, exploring the antiproliferative effects of phytochemicals for anticancer drug design has gained considerable attention worldwide. This study was undertaken to investigate the effect of walnut green husk extracts on cell proliferation and to determine the possible molecular mechanism of extract-induced cell death by quantifying the expression of Bcl-2, Bax, caspases-3, and Tp53. PC-3 human prostate cancer cells. In this study, we found that green husk extracts suppressed proliferation and induced apoptosis in a dose- and time-dependent manner by modulating expression of apoptosis-related genes. This involved DNA fragmentation (determined by TUNEL assay) and significant changes in levels of mRNA and the expression of corresponding proteins. An increase in expressions of Bax, caspase-3, and tp53 genes and their corresponding proteins was detected using real-time PCR and western blot analysis in PC-3 cells treated with the green husk organic extracts. In contrast, Bcl2 expression was downregulated after exposure to the extracts. Our data suggest the presence of bioactive compound(s) in walnut green husks that are capable of killing prostate carcinoma cells by inducing apoptosis and that the husks are a candidate source of anticancer drugs. PMID:22454652

  8. Effect of sub-chronic intraperitoneal administration of aminoguanidine on the memory and hippocampal apoptosis-related genes in diabetic rats.

    PubMed

    Alipour, M; Amini, B; Adineh, F; Feizi, H; Jafari, M R

    2016-01-01

    Memory impairment is a common disorder in diabetes mellitus which is associated with hippocampal neuronal apoptosis. The present study was conducted to examine the effect of one-week intraperitoneal (ip), administration of aminoguanidine (AG) on passive avoidance learning (PAL) and Bcl-2 family gene expression in the hippocampus of rats. Sixty male rats were divided into ten groups: non-diabetic/diabetic animals with/without AG (50, 100, 200 and 400 mg/kg, ip) treatment for one week. PAL and Bcl-2 family genes were examined. AG (100 and 200 mg/kg) improved both memory and Bax, Bak, Bcl-2 and Bcl-xl deficiency significantly in diabetic rats. AG treatment also ameliorated the diabetes-induced changes in (Bcl-2+Bcl-xl)/(Bak+Bax) ratios considerably. These results propose that one-week ip administration of AG may recover the deficit cognition in diabetic rats via enhancing (Bcl-2+Bcl-xl)/(Bak+Bax) proportions (Tab. 2, Fig. 4, Ref. 55). PMID:27546701

  9. Association of Single Nucleotide Polymorphisms in the Apoptosis-Related Genes TP63 and CD40 with Risk for Lung Cancer in a Chinese Han Population.

    PubMed

    Tang, WenJun; Xue, Li; Yan, QiXing; Cai, ShaoXi; Bai, YuJie; Lin, Li; Lin, BiLin; Huang, MingLong; Yi, GuoHui; Li, Hui

    2016-01-01

    Apoptosis plays a critical role in tumorigenesis. TP63 inhibits the pro-apoptosis function of TP53, and CD40 increases expression of anti-apoptotic proteins. Two single nucleotide polymorphisms (SNPs), rs6790167 (g243059A>G) in intron 9 of TP63 and rs1535045 (g6194C>T) in intron 1 of CD40 respectively, may affect the susceptibility of lung cancer. To evaluate the association of these SNPs with lung cancer, we performed a case-control study with 258 patients, including 149 adenocarcinoma and 47 small cell lung cancer, and 270 controls. Genotyping was conducted using allele-specific polymerase chain reaction and pyrosequencing. We found that rs6790167 and rs1535045 are associated with the risk of lung adenocarcinoma (P = 0.048) and small cell lung cancer (P = 0.019), respectively. Non-smoking males carrying the GG genotype of rs6790167 had higher risk for lung adenocarcinoma than individuals carrying the AA genotype (OR = 7.58, 95% CI: 2.43-23.65). Compared to the TT genotype of rs1535045, non-smoking women with the CC genotype had higher risk for lung adenocarcinoma (OR = 4.20, 95% CI: 1.34-13.12). After stratified analysis based on clinical characteristics, the frequency of the CC genotype of rs1535045 was higher in patients at I-II stages (P = 0.013) or patients whose tumor markers were negative (P = 0.003). Individuals carrying both the GG genotype of rs6790167 and the CC genotype of rs1535045 were associated with significantly higher risk for lung adenocarcinoma. Thus, the polymorphisms in the TP63 and CD40 genes are associated with lung cancer in a Chinese Han population. PMID:27063419

  10. [Ice/ced-3 family gene and apoptosis].

    PubMed

    Miura, M

    1996-07-01

    Apoptosis is a process by which cells carry out their own execution by activating an orderly set of genetic and biochemical program. A genetic pathway of apoptosis has been identified in the nematode Caenorhabditis elegans. The ced-3 gene is required for all programmed cell death in C. elegans. Mammalian homolog of ced-3 has been identified as Ice family which is newly identified cysteine protease. Overexpression of Ice/ced-3 family gene can induce apoptosis in a variety of mammalian cells, and inhibitors of Ice/ced-3 family effectively prevent apoptosis induced by a variety of stimulus. Several housekeeping genes have been shown to be targets of Ice/ced-3 family gene, indicating that activation of Ice/ced-3 can induce irreversible fatal changes of cells. PMID:8741679

  11. Molecular mechanism of ER stress-induced gene expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in macrophages.

    PubMed

    Huang, Yan; Wang, Yarui; Li, Xiaofeng; Chen, Zhaolin; Li, Xiaohui; Wang, Huan; Ni, Mingming; Li, Jun

    2015-06-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, whose members are capable of inducing apoptosis and inflammation. Endoplasmic reticulum stress (ERS) plays a key role in immune surveillance in macrophages. TRAIL mRNA and protein expression have previously been detected in macrophages; however, whether ERS has any effects on TRAIL expression in macrophages has not yet been determined. Here, we demonstrate that thapsigargin (TG) and tunicamycin (TM), two ERS inducers activated macrophages were able to increase TRAIL mRNA and protein expression in RAW264.7 macrophages, the culture supernatant of THP-1 cells, and mouse peritoneal macrophages, indicating that ERS as a potent inducer of TRAIL transcription and expression in macrophages. This effect was blocked by the specific JNK inhibitor SP600125 and transcription factor AP-1 inhibitor SR 1130. Interestingly, at the molecular level, regulation of TRAIL expression by ERS was accompanied by a significant decrease in cytokine signaling suppressor 3 (SOCS3). SOCS3 siRNA clearly increased the expression of TRAIL mRNA and protein under ERS by activating the AP-1 components phosphorylated c-Jun and phosphorylated c-Fos in RAW264.7 cells. In contrast, over-expression of SOCS3 reversed ERS-induced TRAIL expression. These findings provide in vitro evidence that SOCS3 plays a critical negative role in the regulation of ERS-induced TRAIL expression via the Jun N-terminal kinase/AP-1 signaling pathway in macrophages. PMID:25827060

  12. CoCr wear particles generated from CoCr alloy metal-on-metal hip replacements, and cobalt ions stimulate apoptosis and expression of general toxicology-related genes in monocyte-like U937 cells

    SciTech Connect

    Posada, Olga M.; Gilmour, Denise; Tate, Rothwelle J.; Grant, M. Helen

    2014-11-15

    Cobalt-chromium (CoCr) particles in the nanometre size range and their concomitant release of Co and Cr ions into the patients' circulation are produced by wear at the articulating surfaces of metal-on-metal (MoM) implants. This process is associated with inflammation, bone loss and implant loosening and led to the withdrawal from the market of the DePuy ASR™ MoM hip replacements in 2010. Ions released from CoCr particles derived from a resurfacing implant in vitro and their subsequent cellular up-take were measured by ICP-MS. Moreover, the ability of such metal debris and Co ions to induce both apoptosis was evaluated with both FACS and immunoblotting. qRT-PCR was used to assess the effects on the expression of lymphotoxin alpha (LTA), BCL2-associated athanogene (BAG1), nitric oxide synthase 2 inducible (NOS2), FBJ murine osteosarcoma viral oncogene homolog (FOS), growth arrest and DNA-damage-inducible alpha (GADD45A). ICP-MS showed that the wear debris released significant (p < 0.05) amounts of Co and Cr ions into the culture medium, and significant (p < 0.05) cellular uptake of both ions. There was also an increase (p < 0.05) in apoptosis after a 48 h exposure to wear debris. Analysis of qRT-PCR results found significant up-regulation (p < 0.05) particularly of NOS2 and BAG1 in Co pre-treated cells which were subsequently exposed to Co ions + debris. Metal debris was more effective as an inducer of apoptosis and gene expression when cells had been pre-treated with Co ions. This suggests that if a patient receives sequential bilateral CoCr implants, the second implant may be more likely to produce adverse effects than the first one. - Highlights: • Effects of CoCr nanoparticles and Co ions on U937 cells were investigated. • Ions released from wear debris play an important role in cellular response, • Toxicity of Co ions could be related to NO metabolic processes and apoptosis. • CoCr particles were a more effective inducer of apoptosis after cell

  13. Gene Network Exploration of Crosstalk between Apoptosis and Autophagy in Chronic Myelogenous Leukemia

    PubMed Central

    Cho, William C. S.; Chan, Lawrence W. C.; Wong, S. C. Cesar; Tsui, Nancy B. Y.; Siu, Parco M.; Yip, S. P.; Yung, Benjamin Y. M.

    2015-01-01

    Background. Gene expression levels change to adapt the stress, such as starvation, toxin, and radiation. The changes are signals transmitted through molecular interactions, eventually leading to two cellular fates, apoptosis and autophagy. Due to genetic variations, the signals may not be effectively transmitted to modulate apoptotic and autophagic responses. Such aberrant modulation may lead to carcinogenesis and drug resistance. The balance between apoptosis and autophagy becomes very crucial in coping with the stress. Though there have been evidences illustrating the apoptosis-autophagy interplay, the underlying mechanism and the participation of the regulators including transcription factors (TFs) and microRNAs (miRNAs) remain unclear. Results. Gene network is a graphical illustration for exploring the functional linkages and the potential coordinate regulations of genes. Microarray dataset for the study of chronic myeloid leukemia was obtained from Gene Expression Omnibus. The expression profiles of those genes related to apoptosis and autophagy, including MCL1, BCL2, ATG, beclin-1, BAX, BAK, E2F, cMYC, PI3K, AKT, BAD, and LC3, were extracted from the dataset to construct the gene networks. Conclusion. The network analysis of these genes explored the underlying mechanisms and the roles of TFs and miRNAs for the crosstalk between apoptosis and autophagy. PMID:25821802

  14. Retinoid receptor-specific agonists regulate bovine in vitro early embryonic development, differentiation and expression of genes related to cell cycle arrest and apoptosis.

    PubMed

    Rodríguez, A; Díez, C; Caamaño, J N; de Frutos, C; Royo, L J; Muñoz, M; Ikeda, S; Facal, N; Alvarez-Viejo, M; Gómez, E

    2007-11-01

    A major goal in reproductive biotechnology is the identification of pathways that regulate early embryonic development and the allocation of cells to the inner cell mass (ICM) and trophectoderm (TE). Retinoids regulate the development and differentiation of the bovine blastocyst in vitro, although the involvement of the retinoid X receptors (RXRs) remains to be clarified. This paper compares the effect of a synthetic RXR agonist (LG100268; LG) with that of the retinoic acid receptor (RAR) agonist all-trans retinoic acid (ATRA) on blastulation. In vitro-produced morulae were treated for 48 h with LG (0.1 microM, 1 microM and 10 microM), ATRA 0.7 microM, or no additives. Treatment with ATRA did not increase the rate of development; however, the LG 0.1 microM treatment increased both the blastocyst development and hatching rate. Cell numbers increased in the ICM with LG 10 microM, while a dose-dependent reduction was observed in the TE in the presence of LG. Gene expression levels of p53 and p66 did not vary with LG but increased with ATRA. Both LG and ATRA activated bax, a pro-apoptotic gene and H2A.Z, a cell cycle-related gene. The above effects suggest the existence of active p53-dependent and -independent apoptotic pathways for ATRA and LG, respectively, in the bovine embryo. The expression of p53 and H2A.Z showed a strong, positive correlation (r=0.93; p<0.0001) in all experimental groups; both proteins are linked through the cell cycle. Agonists of RXR could be used to control blastocyst development and differentiation. PMID:17869331

  15. Genes related to growth regulation, DNA repair and apoptosis in an oestrogen receptor-negative (MDA-231) versus an oestrogen receptor-positive (MCF-7) breast tumour cell line.

    PubMed

    Skog, Sven; He, Qimin; Khoshnoud, Reza; Fornander, Tommy; Rutqvist, Lars-Erik

    2004-01-01

    The molecular mechanism(s) behind the development of endocrine resistance in breast cancer remains controversial. Here, we compare the capability of oestrogen receptor (ER)-negative cells (MDA-231) versus ER-positive tamoxifen-sensitive cells (MCF-7) to handle DNA repair, transmit signals from damaged DNA, initiate cell death via apoptosis, and then to control transmitted signals from the cell cycle and to synthesize growth factors and receptors. Genes related to these events were studied by cDNA micro-array. Normal human breast cells (H2F) and human lymphoblastoid tumour cells (CEM) were used as controls. Of the 18 genes investigated, 10 genes showed differences in their expression between the cell types. The ER-negative cells showed higher expressions of BRCA1, BRCA2, cdc2, cyclin B1, cyclin D1, cyclin E, IGFBP-3, TGF-alpha, TGF beta 2 and a lower expression of TGF beta R1. No differences in the expressions of bax, bcl-2, p53, p21 and GADD45 were found between the two cell lines. We found that the ER-negative cells were characterized by: (1) a stimulated expression of growth factors and cell cycle regulation compounds, (2) improved DNA repair capacity, but (3) no change in DNA damage signals and apoptotic pathways. Improved DNA repair capacity of ER-negative cells would have a growth advantage over ER-positive tumours when receiving antitumour therapy. PMID:15192311

  16. Identification of genes regulating TRAIL-induced apoptosis in rheumatoid arthritis fibroblasts-like synoviocytes.

    PubMed

    Audo, R; Hegglin, A; Severac, D; Dantec, C; Combe, B; Hahne, M; Morel, J

    2015-10-01

    We previously described that sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis varied in rheumatoid arthritis fibroblasts-like synoviocytes (RAFLS) from one patient to another and was correlated with disease severity. Therefore, we screened for genes differentially expressed in RAFLS sensitive and resistant to TRAIL-induced apoptosis. The sensitivity of RAFLS was defined based on the percentage of TRAIL-induced apoptosis: 0-10% for resistant cells and >25% for sensitive RAFLS. We performed transcriptomic comparison between RAFLS-S (n=6) and RAFLS-R (n=6) and then examined the implication of identified candidates in the regulation of apoptosis using small interference RNA (siRNA). Microarray analysis revealed 10 functional genes differentially expressed according to TRAIL sensitivity. These factors are implicated in different functions, such as the respiratory chain (ND3), the transport of lipids (OSBP2, PLTP), the regulation of signaling linked to extracellular factors (SULF2, GALNT1, SIAE) or the regulation of gene expression (TET2 and LARP6). We confirmed differential expression for GALNT1 and LARP6 by quantitative reverse transcriptase-PCR. Using siRNA extinction, we demonstrated the implication of GALNT1, SULF2 and LARP6 in the control of TRAIL-induced responses. These results are of particular interest as GALNT1 and LARP6 have been implicated in the regulation of cell death and may represent interesting targets to induce apoptosis of RAFLS. PMID:26247836

  17. Effect of Stress from Cadmium Combined with Different Levels of Molybdenum on Serum Free Radical and Expression of Related Apoptosis Genes in Goat Livers.

    PubMed

    Cao, Huabin; Xing, Chenghong; Zhuang, Yu; Gu, Xiaolong; Luo, Junrong; Guo, Xiaoquan; Liu, Ping; Zhang, Caiying; Hu, Guoliang

    2016-08-01

    Molybdenum (Mo) is an essential element for human beings and animals; however, high dietary intake of Mo can lead to adverse reactions. Cadmium (Cd) is one of the major transitional metals which have toxic effects in animals. The toxicity of simple Cd or Mo has been researched frequently. However, the toxicity of Mo combined with Cd was rarely studied. To investigate the toxicity of Mo combined with Cd in liver of goats, 36 Boer goats were randomly divided into four groups and assigned with one of the three oral treatments of CdCl2 (0.5 mg kg(-1) Cd) and [(NH4)6Mo7O24·4H2O] (15 mg kg(-1) Mo, group I; 30 mg kg(-1) Mo, group II; 45 mg kg(-1) Mo, group III), while the control group received deionized water. Blood samples were collected on days 0, 10, 20, 30, 40, and 50 to determine antioxidant indices in serum. In addition, liver tissues were collected on days 0, 25, and 50 for detecting the messenger RNA (mRNA) expression levels of Bcl-2 and Bax. Moreover, liver tissues at 50 days were subjected to histopathological analysis with the optical microscope. The results revealed a significant increase (P < 0.05 or P < 0.01) in the levels of nitric oxide (NO), malonaldehyde (MDA), and the activity of nitrix oxide synthase (NOS) and a significant decline (P < 0.05) in the activities of total superoxide dismutase (T-SOD) and total antioxidative capacity (T-AOC). The mRNA expression level of Bcl-2 was suppressed (P < 0.05), while the expression of Bax was increased (P < 0.05) in liver. The histopathological changes were observed in the liver of goats including a small amount of erythrocyte, the unclear structure of hepatic cord and hepatic sinusoid, granular degeneration, vacuolar degeneration, and steatosis. In conclusion, combined chronic toxicity of Cd with different levels of Mo might induce goat liver cell apoptosis and cause oxidative stress in serum, and it showed a possible synergistic relationship between the two elements. PMID:26758867

  18. Changes in barrier health status of the gill for grass carp (Ctenopharyngodon idella) during valine deficiency: Regulation of tight junction protein transcript, antioxidant status and apoptosis-related gene expression.

    PubMed

    Feng, Lin; Luo, Jian-Bo; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Zhang, Yong-An; Zhou, Xiao-Qiu

    2015-08-01

    enzymes, NF-κB p65, IκBα, TOR, Nrf2, Keap1 and apoptosis-related genes in the fish gill. PMID:25917968

  19. p53 mediated apoptosis in osteosarcoma MG-63 cells by inhibition of FANCD2 gene expression

    PubMed Central

    Xia, Peng; Sun, Yifu; Zheng, Changjun; Hou, Tingting; Kang, Mingyang; Yang, Xiaoyu

    2015-01-01

    Purpose: The aim of this study was to investigate the association between osteosarcoma (OS) and Fanconi anemia (FA) related pathways and the molecular mechanisms. Methods: siRNA for Fanconi anemia complementation group D2 (FANCD2) was constructed and transfected into the osteosarcoma cell line MG-63 cells. Expression of TP53INP1, p53, p21, caspase-9, and caspase-3 mRNA in MG-63 cells were examined by real-time fluorescence quantitative PCR, and the protein levels were also determined by western blot. Results: After silence of the FANCD2 gene in MG-63 cells, cell proliferation was inhibited, cell cycle was arrested and cell apoptosis was induced. The apoptosis was mediated by the p53 signaling pathway. After FANCD2 expression was inhibited, TP53INP1 gene expression was up-regulated, phosphorylation of p53 was promoted and the p21 protein was activated, leading to cell cycle arrested in G1, finally resulted in caspase-dependent cell apoptosis. Conclusions: Inhibition of FANCD2 gene expression can induce apoptosis of osteosarcoma cells, which indicated that FANCD2 played an important role in the development of osteosarcoma and it might be a potential target for treatment of osteosarcoma. PMID:26379910

  20. Tetranectin gene deletion induces Parkinson's disease by enhancing neuronal apoptosis.

    PubMed

    Chen, Zhifeng; Wang, Ersong; Hu, Rong; Sun, Yu; Zhang, Lei; Jiang, Jue; Zhang, Ying; Jiang, Hong

    Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). We previously identified tetranectin (TET) as a potential biomarker for PD whose expression is downregulated in the cerebrospinal fluid of PD patients. In the present study, we investigate the role of TET in neurodegeneration in vitro and in vivo. Our results showed that siRNA knockdown of TET decreased cell viability and the number of tyrosine hydroxylase (TH) positive cells, whereas it increased caspase-3 activity and the Bax/Bcl-2 ratio in cultured primary dopaminergic neurons. Overexpression of TET protected dopaminergic neurons against neuronal apoptosis in 1-methyl-4-phenylpyridinium cell culture model in vitro. In TET knockdown mouse model of PD, TET gene deletion decreased the number of TH positive cells in the SNpc, induced apoptosis via the p53/Bax pathway, and significantly impaired the motor behavior of transgenic mice. The findings suggest that TET plays a neuroprotective role via reducing neuron apoptosis and could be a valuable biomarker or potential therapeutic target for the treatment of patients with PD. PMID:26597345

  1. Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis

    PubMed Central

    2011-01-01

    Background Runt-related transcription factor 3 (RUNX3) is known as a tumor suppressor gene for gastric cancer and other cancers, this gene may be involved in the development of hepatocellular carcinoma (HCC). Methods RUNX3 expression was analyzed by immunoblot and immunohistochemistry in HCC cells and tissues, respectively. Hep3B cells, lacking endogenous RUNX3, were introduced with RUNX3 constructs. Cell proliferation was measured using the MTT assay and apoptosis was evaluated using DAPI staining. Apoptosis signaling was assessed by immunoblot analysis. Results RUNX3 protein expression was frequently inactivated in the HCC cell lines (91%) and tissues (90%). RUNX3 expression inhibited 90 ± 8% of cell growth at 72 h in serum starved Hep3B cells. Forty-eight hour serum starvation-induced apoptosis and the percentage of apoptotic cells reached 31 ± 4% and 4 ± 1% in RUNX3-expressing Hep3B and control cells, respectively. Apoptotic activity was increased by Bim expression and caspase-3 and caspase-9 activation. Conclusion RUNX3 expression enhanced serum starvation-induced apoptosis in HCC cell lines. RUNX3 is deleted or weakly expressed in HCC, which leads to tumorigenesis by escaping apoptosis. PMID:21205319

  2. Selenoprotein X Gene Knockdown Aggravated H2O2-Induced Apoptosis in Liver LO2 Cells.

    PubMed

    Tang, Jiayong; Cao, Lei; Li, Qiang; Wang, Longqiong; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Cai, Jingyi; Shang, Haiying; Zhao, Hua

    2016-09-01

    To determine the roles of selenoprotein X gene (Selx) in protecting liver cells against oxidative damage, the influences of Selx knockdown on H2O2-induced apoptosis in human normal hepatocyte (LO2) cells were studied. pSilencer 3.1 was used to develop knockdown vector targeting the 3'-UTR of human Selx. The Selx knockdown and control cells were further exposed to H2O2, and cell viability, cell apoptosis rate, and the expression levels of mRNA and protein of apoptosis-related genes were detected. The results showed that vector targeting the 3'-UTR of Selx successfully silenced mRNA or protein expression of SelX in LO2 cells. Selx knockdown resulted in decreased cell viability, increased percentage of early apoptotic cells, decreased Bcl2A1 and Bcl-2 expression, and increased phosphorylation of P38 in LO2 cells. When Selx knockdown LO2 cells were exposed to H2O2, characteristics of H2O2-induced cell dysfunctions were further exacerbated. Taken together, our findings suggested that SelX played important roles in protecting LO2 cells against oxidative damage and reducing H2O2-induced apoptosis in liver cells. PMID:26899321

  3. Kallistatin protects against sepsis-related acute lung injury via inhibiting inflammation and apoptosis

    PubMed Central

    Lin, Wei-Chieh; Chen, Chang-Wen; Huang, Yu-Wen; Chao, Lee; Chao, Julie; Lin, Yee-Shin; Lin, Chiou-Feng

    2015-01-01

    Kallistatin, an endogenous plasma protein, exhibits pleiotropic properties in inhibiting inflammation, oxidative stress and apoptosis, as evidenced in various animal models and cultured cells. Here, we demonstrate that kallistatin levels were positively correlated with the concentration of total protein in bronchoalveolar lavage fluids (BALF) from patients with sepsis-related acute respiratory distress syndrome (ARDS), indicating a compensatory mechanism. Lower ratio of kallistatin to total protein in BALF showed a significant trend toward elevated neutrophil counts (P = 0.002) in BALF and increased mortality (P = 0.046). In lipopolysaccharide (LPS)-treated mice, expression of human kallistatin in lung by gene transfer with human kallistatin-encoding plasmid ameliorated acute lung injury (ALI) and reduced cytokine/chemokine levels in BALF. These mice exhibited attenuated lung epithelial apoptosis and decreased Fas/FasL expression compared to the control mice. Mouse survival was improved by kallistatin gene transfer or recombinant human kallistatin treatment after LPS challenge. In LPS-stimulated A549 human lung epithelial cells, kallistatin attenuated apoptosis, down-regulated Fas/FasL signaling, suppressed intracellular reactive oxygen species (ROS) and inhibited ROS-mediated NF-κB activation and inflammation. Furthermore, LPS-induced apoptosis was blocked by antioxidant N-acetylcysteine or NF-κB inhibitor via down-regulating Fas expression. These findings suggest the therapeutic potential of kallistatin for sepsis-related ALI/ARDS. PMID:26198099

  4. CoCr wear particles generated from CoCr alloy metal-on-metal hip replacements, and cobalt ions stimulate apoptosis and expression of general toxicology-related genes in monocyte-like U937 cells.

    PubMed

    Posada, Olga M; Gilmour, Denise; Tate, Rothwelle J; Grant, M Helen

    2014-11-15

    Cobalt-chromium (CoCr) particles in the nanometre size range and their concomitant release of Co and Cr ions into the patients' circulation are produced by wear at the articulating surfaces of metal-on-metal (MoM) implants. This process is associated with inflammation, bone loss and implant loosening and led to the withdrawal from the market of the DePuy ASR™ MoM hip replacements in 2010. Ions released from CoCr particles derived from a resurfacing implant in vitro and their subsequent cellular up-take were measured by ICP-MS. Moreover, the ability of such metal debris and Co ions to induce both apoptosis was evaluated with both FACS and immunoblotting. qRT-PCR was used to assess the effects on the expression of lymphotoxin alpha (LTA), BCL2-associated athanogene (BAG1), nitric oxide synthase 2 inducible (NOS2), FBJ murine osteosarcoma viral oncogene homolog (FOS), growth arrest and DNA-damage-inducible alpha (GADD45A). ICP-MS showed that the wear debris released significant (p<0.05) amounts of Co and Cr ions into the culture medium, and significant (p<0.05) cellular uptake of both ions. There was also an increase (p<0.05) in apoptosis after a 48h exposure to wear debris. Analysis of qRT-PCR results found significant up-regulation (p<0.05) particularly of NOS2 and BAG1 in Co pre-treated cells which were subsequently exposed to Co ions+debris. Metal debris was more effective as an inducer of apoptosis and gene expression when cells had been pre-treated with Co ions. This suggests that if a patient receives sequential bilateral CoCr implants, the second implant may be more likely to produce adverse effects than the first one. PMID:25281833

  5. Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)

    PubMed Central

    Elmallah, Mohammed I. Y.; Micheau, Olivier

    2015-01-01

    Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells. PMID:26580630

  6. Differential Effects of Alpha-Particle Radiation and X-Irradiation on Genes Associated with Apoptosis

    PubMed Central

    Chauhan, Vinita; Howland, Matthew; Chen, Jeremy; Kutzner, Barbara; Wilkins, Ruth C.

    2011-01-01

    This study examined differential effects of alpha-(α-) particle radiation and X-rays on apoptosis and associated changes in gene expression. Human monocytic cells were exposed to α-particle radiation and X-rays from 0 to 1.5 Gy. Four days postexposure, cell death was measured by flow cytometry and 84 genes related to apoptosis were analyzed using real-time PCR. On average, 33% of the cells were apoptotic at 1.5 Gy of α-particle radiation. Transcript profiling showed statistical expression of 15 genes at all three doses tested. Cells exposed to X-rays were <5% apoptotic at ~1.5 Gy and induced less than a 2-fold expression in 6 apoptotic genes at the higher doses of radiation. Among these 6 genes, Fas and TNF-α were common to the α-irradiated cells. This data suggests that α-particle radiation initiates cell death by TNF-α and Fas activation and through intermediate signalling mediators that are distinct from X-irradiated cells. PMID:22091383

  7. Overcoming of multidrug resistance by introducing the apoptosis gene, bcl-Xs, into MRP-overexpressing drug resistant cells.

    PubMed

    Ohi, Y; Kim, R; Toge, T

    2000-05-01

    Multidrug resistance associated protein (MRP) is one of drug transport membranes that confer multidrug resistance in cancer cells. Multidrug resistance has been known to be associated with resistance to apoptosis. In this study, using MRP overexpressing multidrug resistant nasopharyngeal cancer cells, we examined the expression of apoptosis related genes including p53, p21WAF1, bax and bcl-Xs between drug sensitive KB and its resistant KB/7D cells. We also examined whether the introduction of apoptosis related gene could increase the sensitivity to anticancer drugs in association with apoptotic cell death. The relative resistances to anticancer drugs in KB/7D cells evaluated by IC50 values were 3.6, 61.3, 10.4 and 10.5 to adriamycin (ADM), etoposide (VP-16), vincristine (VCR) and vindesine (VDS), respectively. The resistance to anticancer drugs in KB/7D cells was associated with the attenuation of internucleosomal DNA ladder formation in apoptosis. Of important, the mRNA expression of bcl-Xs gene in KB/7D cells was decreased in one-fourth as compared to that of KB cells among the apoptosis genes. The mRNA expression of bcl-Xs gene in a bcl-Xs transfected clone (KB/7Dbcl-Xs) was increased about 2-fold compared to that of KB/7Dneo cells, while the mRNA expression of MRP gene was not significantly different in KB/7bcl-Xs and KB/7Dneo cells. The sensitivities to anticancer drugs including ADM, VCR and VDS except VP-16 were increased in KB/7Dbcl-Xs cells, in turn, the relative resistance in KB/7Dbcl-Xs cells was decreased to 1.4, 4.0, and 3.0 in ADM, VCR and VDS, respectively, as compared to those of KB/7Dneo cells. Of interest, the studies on the accumulation of [3H]VCR showed that the decrease of [3H]VCR accumulation in KB/7Dbcl-Xs was not significantly different from that of KB/7Dneo cells. Collectively, these results indicated that the mechanism(s) of drug resistance in KB/7D cells could be explained at least by two factors: a) reduced drug accumulation mediated by

  8. Identification of novel molecular regulators of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in breast cancer cells by RNAi screening

    PubMed Central

    2014-01-01

    Introduction Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) binds to its receptors, TRAIL-receptor 1 (TRAIL-R1) and TRAIL-receptor 2 (TRAIL-R2), leading to apoptosis by activation of caspase-8 and the downstream executioner caspases, caspase-3 and caspase-7 (caspase-3/7). Triple-negative breast cancer (TNBC) cell lines with a mesenchymal phenotype are sensitive to TRAIL, whereas other breast cancer cell lines are resistant. The underlying mechanisms that control TRAIL sensitivity in breast cancer cells are not well understood. Here, we performed small interfering RNA (siRNA) screens to identify molecular regulators of the TRAIL pathway in breast cancer cells. Methods We conducted siRNA screens of the human kinome (691 genes), phosphatome (320 genes), and about 300 additional genes in the mesenchymal TNBC cell line MB231. Forty-eight hours after transfection of siRNA, parallel screens measuring caspase-8 activity, caspase-3/7 activity, or cell viability were conducted in the absence or presence of TRAIL for each siRNA, relative to a negative control siRNA (siNeg). A subset of genes was screened in cell lines representing epithelial TNBC (MB468), HER2-amplified breast cancer (SKBR3), and estrogen receptor-positive breast cancer (T47D). Selected putative negative regulators of the TRAIL pathway were studied by using small-molecule inhibitors. Results The primary screens in MB231 identified 150 genes, including 83 kinases, 4 phosphatases, and 63 nonkinases, as potential negative regulators of TRAIL. The identified genes are involved in many critical cell processes, including apoptosis, growth factor-receptor signaling, cell-cycle regulation, transcriptional regulation, and DNA repair. Gene-network analysis identified four genes (PDPK1, IKBKB, SRC, and BCL2L1) that formed key nodes within the interaction network of negative regulators. A secondary screen of a subset of the genes identified in additional cell lines representing different breast cancer

  9. TNF-related apoptosis-inducing ligand (TRAIL): A new path to anti-cancer therapies

    PubMed Central

    Holoch, Peter A.; Griffith, Thomas S.

    2009-01-01

    Since its discovery in 1995, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of the tumor necrosis factor super family, has been under intense focus because of its remarkable ability to induce apoptosis in malignant human cells while leaving normal cells unscathed. Consequently, activation of the apoptotic signaling pathway from the death-inducing TRAIL receptors provides an attractive, biologically-targeted approach to cancer therapy. A great deal of research has focused on deciphering the TRAIL receptor signaling cascade and intracellular regulation of this pathway, as many human tumor cells possess mechanisms of resistance to TRAIL-induced apoptosis. This review focuses on the currently state of knowledge regarding TRAIL signaling and resistance, the preclinical development of therapies targeted at TRAIL receptors and modulators of the pathway, and the results of clinical trials for cancer treatment that have emerged from this base of knowledge. TRAIL-based approaches to cancer therapy vary from systemic administration of recombinant, soluble TRAIL protein with or without the combination of traditional chemotherapy, radiation or novel anticancer agents to agonistic monoclonal antibodies directed against functional TRAIL receptors to TRAIL gene transfer therapy. A better understanding of TRAIL resistance mechanisms may allow for the development of more effective therapies that exploit this cell-mediated pathway to apoptosis. PMID:19836385

  10. Glycogen synthase kinase-3β regulates tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis via the NF-κB pathway in hepatocellular carcinoma

    PubMed Central

    FU, KAI; PAN, HUAZHENG; LIU, SHIHAI; LV, JING; WAN, ZHAOJUN; LI, JIAO; SUN, QING; LIANG, JUN

    2015-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known for its ability to selectively induce apoptosis in malignant cells. However, human hepatocellular carcinoma (HCC) cells display resistance to TRAIL-induced cell death. The present study investigated whether TRAIL-induced apoptosis in HCC cells was enhanced by the administration of an inhibitor of glycogen synthase kinase-3β (GSK-3β) or by short hairpin RNA-mediated inhibition of GSK-3β. The results of the current study demonstrated that inhibition of GSK-3β significantly impairs the expression of the nuclear factor-κB (NF-κB) target genes Bcl-xL and clAP2 in HCC cells (P<0.05). This indicates that GSK-3β may regulate NF-κB target genes involved in cell survival. Furthermore, knockdown of Bcl-xL significantly enhanced the sensitizing effect of GSK-3β inhibitor on TRAIL-induced apoptosis (P<0.05). Overall, the present study provides a rationale for further exploration of GSK-3β inhibition combined with TRAIL as a novel treatment for HCC. PMID:26788169

  11. Effects of parathyroid hormone-related protein and macrophage inflammatory protein-1α in Jurkat T-cells on tumor formation in vivo and expression of apoptosis regulatory genes in vitro

    PubMed Central

    Shu, Sherry T.; Dirksen, Wessel P.; Lanigan, Lisa G.; Martin, Chelsea K.; Thudi, Nanda K.; Werbeck, Jillian L.; Fernandez, Soledad A.; Hildreth, Blake E.; Rosol, Thomas J.

    2012-01-01

    Parathyroid hormone-related protein (PTHrP) and macrophage inflammatory protein-1α (MIP-1α) have been implicated in the pathogenesis of adult T-cell leukemia/lymphoma, but their effects on T-cells have not been well studied. Here we analyzed the functions of PTHrP and MIP-1α on T-cell growth and death both in vitro and in vivo by overexpressing either factor in human Jurkat T-cells. PTHrP or MIP-1α did not affect Jurkat cell growth in vitro, but PTHrP increased their sensitivity to apoptosis. Importantly, PTHrP and MIP-1α decreased both tumor incidence and growth in vivo. To investigate possible mechanisms, polymerase chain reaction (PCR) arrays and real-time reverse transcription (RT)-PCR assays were performed. Both PTHrP and MIP-1α increased the expression of several factors including signal transducer and activator of transcription 4, tumor necrosis factor α, receptor activator of nuclear factor κB ligand and death-associated protein kinase 1, and decreased the expression of inhibitor of DNA binding 1, interferon γ and CD40 ligand in Jurkat cells. In addition, MIP-1α also increased the expression of transcription factor AP-2α and PTHrP increased expression of the vitamin D3 receptor. These data demonstrate that PTHrP and MIP-1α exert a profound antitumor effect presumably by increasing the sensitivity to apoptotic signals through modulation of transcription and apoptosis factors in T-cells. PMID:21942940

  12. Trauma patients’ elevated Tumor Necrosis Related Apoptosis Inducing Ligand (TRAIL) contributes to increased T cell apoptosis

    PubMed Central

    Bandyopadhyay, Gautam; Bankey, Paul E.; Miller-Graziano, Carol L.

    2012-01-01

    Immunosuppression resulting from excessive post-trauma apoptosis of hyperactivated Tcells is controversial. TRAIL mediated Tcell apoptosis decreases highly activated Tcells’ responses. Caspase-10, a particular TRAIL target, was increased in trauma patients’ Tcells with concomitantly elevated plasma TRAIL levels. These patients’ Tcells developed anergy, implicating increased TRAIL-mediated Tcell apoptosis in post-trauma Tcell anergy. Control Tcells cultured with patients’ sera containing high TRAIL levels increased their Caspase-10 activity and apoptosis. Stimulated primary Tcells are TRAIL apoptosis resistant. Increased plasma Thrombospondin-1 and Tcell expression of CD47, a Thrombospondin-1 receptor, preceded patients’ Tcell anergy. CD47 triggering of Tcells increased their sensitivity to TRAIL-induced apoptosis. Augmentation of Tcell TRAIL-induced apoptosis was secondary to CD47 triggered activation of the Src homology-containing phosphatase-1(SHP-1) and was partially blocked by a SHP-1 inhibitor. We suggest that combined post-trauma CD47 triggering, SHP-1 mediated NFκB suppression, and elevated TRAIL levels increase patients’ CD47 expressing Tcell apoptosis, thus contributing to subsequent Tcell anergy. PMID:22926077

  13. Multiwall Carbon Nanotube-Induced Apoptosis and Antioxidant Gene Expression in the Gills, Liver, and Intestine of Oryzias latipes

    PubMed Central

    Lee, Jin Wuk; Choi, Young Chul; Kim, Rosa; Lee, Sung Kyu

    2015-01-01

    Multiwall carbon nanotubes (MWCNTs) have many attractive properties with potential applications in various fields. Despite their usefulness, however, the associated waste can be hazardous to the environment. To examine adverse effects in aquatic environments, Oryzias latipes were exposed to MWCNTs dispersed in water for 14 days and apoptosis and antioxidant gene expression were observed. This work showed that in gills exposed to 100 mg/L MWCNTs for 4 days, there was significant p53, caspase-3 (Cas3), caspase-8 (Cas8), and caspase-9 (Cas9) gene expression relative to the controls, while catalase (CAT) and glutathione-S-transferase (GST) expression were reduced. At 14 days, CAT, GST, and metallothionein (MT) were induced significantly in the gills and Cas3, Cas8, and Cas9 were induced in the liver. No significant gene induction was seen in intestine. Intracellular reactive oxygen species (ROS) were increased significantly only at 14 days. Histologically, no apoptosis was observed with exposure to 100 mg/L MWCNTs for 21 days. The gills were more sensitive to MWCNT toxicity than the other organs. Males had higher apoptosis gene induction than females. These results demonstrated that MWCNTs could cause apoptosis in a manner influenced by tissue and gender in aqueous environments. PMID:26146619

  14. The effect of heat stress on gene expression, synthesis of steroids, and apoptosis in bovine granulosa cells.

    PubMed

    Li, Lian; Wu, Jie; Luo, Man; Sun, Yu; Wang, Genlin

    2016-05-01

    Summer heat stress (HS) is a major contributing factor in low fertility in lactating dairy cows in hot environments. Heat stress inhibits ovarian follicular development leading to diminished reproductive efficiency of dairy cows during summer. Ovarian follicle development is a complex process. During follicle development, granulosa cells (GCs) replicate, secrete hormones, and support the growth of the oocyte. To obtain an overview of the effects of heat stress on GCs, digital gene expression profiling was employed to screen and identify differentially expressed genes (DEGs; false discovery rate (FDR) ≤ 0.001, fold change ≥2) of cultured GCs during heat stress. A total of 1211 DEGs including 175 upregulated and 1036 downregulated ones were identified, of which DEGs can be classified into Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The results suggested that heat stress triggers a dramatic and complex program of altered gene expression in GCs. We hypothesized that heat stress could induce the apoptosis and dysfunction of GCs. Real-time reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the expression of steroidogenic genes (steroidogenic acute regulatory protein (Star), cytochrome P-450 (CYP11A1), CYP19A1, and steroidogenic factor 1 (SF-1)) and apoptosis-related genes (caspase-3, BCL-2, and BAX). Radio immunoassay (RIA) was used to analyze the level of 17β-estradiol (E2) and progesterone (P4). We also assessed the apoptosis of GCs by flow cytometry. Our data suggested that heat stress induced GC apoptosis through the BAX/BCL-2 pathway and reduced the steroidogenic gene messenger RNA (mRNA) expression and E2 synthesis. These results suggest that the decreased function of GCs may cause ovarian dysfunction and offer an improved understanding of the molecular mechanism responsible for the low fertility in cattle in summer. PMID:26847372

  15. MicroRNA-322 protects hypoxia-induced apoptosis in cardiomyocytes via BDNF gene

    PubMed Central

    Yang, Liguo; Song, Shigang; Lv, Hang

    2016-01-01

    Background: Cardiomyocytes apoptosis under hypoxia condition contributes significantly to various cardiovascular diseases. In this study, we investigated the role of microRNA-322 (miR-322) in regulating hypoxia-induced apoptosis in neonatal murine cardiomyocytes in vitro. Method: Cardiomyocytes of C57BL/6J mice were treated with hypoxia condition in vitro. Cardiomyocyte apoptosis was measured by TUNEL assay. Gene expression pattern of miR-322 was measured by qRT-PCR. Stable downregulation of miR-322 in cardiomyocytes were achieved by lentiviral transduction, and the effect of miR-322 downregulation on hypoxia-induced cardiomyocyte apoptosis was investigated. Possible regulation of miR-322 on its downstream target gene, brain derived neurotrophic factor (BDNF) was investigated in cardiomyocytes. BDNF was then genetically silenced by siRNA to evaluate its role in miR-137 mediated cardiomyocyte apoptosis protection under hypoxia condition. Results: Under hypoxia condition, significant apoptosis was induced and miR-322 was significantly upregulated in cardiomyocytes in vitro. Through lentiviral transduction, miR-322 was efficiently knocked down in cardiomyocytes. Downregulation of miR-322 protected hypoxia-induced cardiomyocyte apoptosis. Luciferase assay showed BDNF was the target gene of miR-322. QRT-PCR showed BDNF expression was associated with miR-322 regulation on hypoxia-induced cardiomyocyte apoptosis. Silencing BDNF in cardiomyocyte through siRNA transfection reversed the protective effect of miR-322 downregulation on hypoxia-induced apoptosis. Conclusion: Our study revealed that miR-322, in association with BDNF, played important role in regulating hypoxia-induced apoptosis in cardiomyocyte. PMID:27398164

  16. In vitro study on shRNA-mediated reduction of testis developmental related gene 1 expression and its effects on the proliferation, invasion and apoptosis of NTERA-2 cells

    PubMed Central

    GAN, YU; YANG, JIANFU; WANG, YONG; TAN, ZHENGYU; JIANG, XIANZHEN; TANG, YUXIN

    2015-01-01

    Testis developmental related gene 1 (TDRG1) is a novel human testis-specific gene. TDRG1 is differentially expressed in cancerous tissue compared with normal testicular tissue and demonstrates a unique expression pattern in normal testes; therefore, this gene may be involved in the occurrence and development of testicular germ cell tumors (TGCT). In the present study, the expression level of TDRG1 was downregulated in human TGCT NTERA-2 cells by RNA interference (RNAi) in order to investigate the association between TDRG1 and TGCT. The TDRG1 mRNA and protein expression levels in NTERA-2 cells were significantly inhibited following transfection with specific RNAi plasmids. The ability to proliferate (inhibited by 15.4% at day 3 and 26.1% at day 5; P<0.001) and invade (reduced by 49.1%; P=0.01) in vitro was suppressed in cells in which the expression level of TDRG1 was reduced, and a corresponding increase in the apoptotic potential was observed (the early apoptotic potential and total apoptotic potential were increased by 75%; P=0.019 and 54.8%; P=0.009, respectively). The results of the present study indicated that the biological behavior of NTERA-2 cells is associated with TDRG1 expression levels, and that this gene may be a novel target candidate in the treatment of TGCT. PMID:26170977

  17. [Protection of corneal endothelium from apoptosis by gene and cell therapy].

    PubMed

    Fuchsluger, T A

    2016-06-01

    Protection of corneal endothelium from apoptosis using gene and cell therapy is in a translational phase. This approach offers advantages for eye banking and after transplantation. Safe vehicles for gene or cell therapeutic transduction of corneal endothelium with nucleic acids are available. This strategy will be further developed in consultation with the Paul Ehrlich Institute and European regulatory authorities. PMID:27260626

  18. Determining Semantically Related Significant Genes.

    PubMed

    Taha, Kamal

    2014-01-01

    GO relation embodies some aspects of existence dependency. If GO term xis existence-dependent on GO term y, the presence of y implies the presence of x. Therefore, the genes annotated with the function of the GO term y are usually functionally and semantically related to the genes annotated with the function of the GO term x. A large number of gene set enrichment analysis methods have been developed in recent years for analyzing gene sets enrichment. However, most of these methods overlook the structural dependencies between GO terms in GO graph by not considering the concept of existence dependency. We propose in this paper a biological search engine called RSGSearch that identifies enriched sets of genes annotated with different functions using the concept of existence dependency. We observe that GO term xcannot be existence-dependent on GO term y, if x- and y- have the same specificity (biological characteristics). After encoding into a numeric format the contributions of GO terms annotating target genes to the semantics of their lowest common ancestors (LCAs), RSGSearch uses microarray experiment to identify the most significant LCA that annotates the result genes. We evaluated RSGSearch experimentally and compared it with five gene set enrichment systems. Results showed marked improvement. PMID:26357049

  19. Targeting the tumor necrosis factor-related apoptosis-inducing ligand path in neuroblastoma.

    PubMed

    Yang, Xuezhong; Thiele, Carol J

    2003-07-18

    The identification of the tumor necrosis factor (TNF) superfamily member TNF-related apoptosis-inducing ligand (TRAIL) a few years ago generated considerable enthusiasm for it as a potential cancer therapeutic agent. This is because TRAIL shows potent apoptosis inducing activity in a wide spectrum of transformed cell lines but not in cell lines derived from normal tissue origin. As the details in the signal transduction pathway of TRAIL-induced apoptosis are clarified, various defects of TRAIL pathway have been identified in TRAIL resistant cancer cells. Neuroblastoma is the most common extracranial solid tumor in children and those with a poor prognosis require more sensitive therapies. Unlike other cancer cells, most neuroblastoma cell lines are resistant to TRAIL induced apoptosis and the resistance correlates with caspase 8 deficiency, which is attributed to the methylation of the gene. Interferon (IFN)-gamma induces caspase 8 expression in most neuroblastoma cell lines regardless of the methylation status but fails to sensitize most NB to TRAIL. Further analysis indicates a TRAIL receptor deficiency contributes to TRAIL resistance in NB. Multiple lesions suggest that this path may play an important role in tumorigenesis and/ or evasion from therapies. Furthermore it indicates that the clinical application of TRAIL in NB will require a multi-modality approach. Important questions remain unanswered: How does IFN-gamma induce caspase 8 and why is the induction heterogeneous? How to stimulate the caspase 8 induction in cells that fail to respond to IFN-gamma? How to target other TRAIL pathway lesions with the clinically feasible approaches? PMID:12880973

  20. Relation between microRNAs and Apoptosis in Hepatocellular Carcinoma

    PubMed Central

    Kamel, Refaat R.; Amr, Khalda Said; Afify, Mie; Elhosary, Yasser A.; Hegazy, Abdelfattah E.; Fahim, Hoda H.; Ezzat, Wafaa M.

    2016-01-01

    AIM: To determine the relation between serum microRNAs and apoptotic markers as regards development of HCC to understand the underlying mechanism of HCV related hepatocarcinogenesis. PATIENTS AND METHODS: A total of 65 serum samples (25 samples from controls, 20 samples from hepatitis and 20 samples from HCC patients) were collected for miRNAs (mir 21, mir 199-a, and mir 155) detection. Human Programmed cell death protein-4 (PDCD-4) and Human Cytochrome-C (CYT-C) were determined. RESULTS: miRNAs 21 and 155 were over expressed in sera of patients with HCC compared to patients with chronic hepatitis (p < 0.0001). While serum means values of miR 199a was significantly decreased among HCC group patients when compared to patients with chronic hepatitis (p < 0.0001). The serum levels of PCDC4 and CYTC were increased in patients with HCC when compared to chronic hepatitis patients. They were also increased in patients with chronic hepatitis when compared to controls (p < 0.05, significant). There was direct correlations between apoptotic markers and oncomirs miRNAs 21 and 155 while apoptotic markers were inversely correlated with miRNA 199-a. CONCLUSION: Both microRNAs and apoptotic markers have roles in HCC pathogenesis. It seems that oncogenic microRNAs induce liver carcinogenesis in HCV patients irrespective of suppression of apoptosis. PMID:27275325

  1. 20-hydroxyecdysone upregulates apoptotic genes and induces apoptosis in the Bombyx fat body.

    PubMed

    Tian, Ling; Liu, Shumin; Liu, Hanhan; Li, Sheng

    2012-04-01

    During insect metamorphosis, obsolete larval tissues are removed by programed cell death (PCD), mainly apoptosis and autophagy, which is directed by the molting hormone, 20-hydroxyecdysone (20E) and the 20E-triggered transcriptional cascade. Here, we investigated how 20E regulates apoptosis at the transcriptional level in the fat body of the silkworm, Bombyx mori. As detected by TdT-mediated dUTP Nick-End Labeling (TUNEL), apoptosis weakly occurred during the fourth larval molting, decreased to undetected levels during the early fifth instar, and gradually increased from day 4 of fifth instar to the wandering stage to the prepupal stage. Meanwhile, as determined by quantitative real-time PCR, eight genes involved in apoptosis, including Apaf-1, Nedd2 like1, Nedd2 like2, ICE1, ICE3, ICE5, Arp, and IAP, were highly expressed during molting and pupation, when the 20E titer is high. Injection of 20E into day 2 of fifth instar larvae significantly induced apoptosis and upregulated apoptotic genes after 6 h of treatment, and in vitro treatment of larval fat body tissues with 20E upregulated all the eight apoptotic genes. Moreover, RNAi knockdown of USP, a component of the 20E receptor complex EcR-USP, at the early-wandering stage reduced apoptosis and downregulated apoptotic genes after 24 h of treatment. Taken together, we infer that 20E upregulates apoptotic genes and thus induces apoptosis in the Bombyx fat body during larval molting and the larval-pupal transition. PMID:22517444

  2. Expression of the multidrug transporter P-glycoprotein is inversely related to that of apoptosis-associated endogenous TRAIL.

    PubMed

    Souza, Paloma S; Madigan, James P; Gillet, Jean-Pierre; Kapoor, Khyati; Ambudkar, Suresh V; Maia, Raquel C; Gottesman, Michael M; Fung, King Leung

    2015-08-15

    Multidrug resistance (MDR) has been associated with expression of ABC transporter genes including P-glycoprotein (Pgp, MDR1, ABCB1). However, deregulation of apoptotic pathways also renders cells resistant to chemotherapy. To discover apoptosis-related genes affected by Pgp expression, we used the HeLa MDR-off system. We found that using doxycycline to control Pgp expression has a significant advantage over tetracycline, in that doxycycline caused less endogenous gene expression modification/perturbation, and was more potent than tetracycline in suppressing Pgp expression. Cells overexpressing Pgp have lower TNFSF10 (TRAIL) expression than their parental cells. Controlled downregulation of Pgp increased endogenous TRAIL protein expression. Also, ectopic overexpression of TRAIL in Pgp-positive cells was associated with a reduction in Pgp levels. However, cells expressing a functionally defective mutant Pgp showed an increase in TRAIL expression, suggesting that Pgp function is required for TRAIL suppression. Cells in which Pgp is knocked down by upregulation of TRAIL expression are less susceptible to TRAIL ligand (sTRAIL)-induced apoptosis. Our findings reveal an inverse correlation between functional Pgp and endogenous TRAIL expression. Pgp function plays an important role in the TRAIL-mediated apoptosis pathway by regulating endogenous TRAIL expression and the TRAIL-mediated apoptosis pathway in MDR cancer cells. PMID:26101157

  3. Taurine induces the apoptosis of breast cancer cells by regulating apoptosis-related proteins of mitochondria.

    PubMed

    Zhang, Xiali; Lu, Hongfei; Wang, Yibing; Liu, Chunju; Zhu, Weifeng; Zheng, Shuangyan; Wan, Fusheng

    2015-01-01

    Taurine (Tau), the most abundant free amino acid in humans has numerous potential health benefits through its antioxidant and anti-inflammatory properties. However, limited studies have assessed its effect on tumors and the antitumor mechanism remains unknown. The present study investigated the cellular and molecular changes induced by Tau, leading to the induction of apoptosis in human breast cancer cell lines MCF-7 and MDA-MB-231. MCF-7 is p53 proficient (p53+/+) and MDA-MB-231 is a p53 null mutant (p53-/-). Cell proliferation and viability were assessed by MTT. Flow cytometry and hoechst33342 fluorescent staining were employed to detect apoptosis. Spectrophotometry was used to detect caspase-3 activity. Reverse transcription-polymerase chain reaction and western blot analysis were used to detect the levels of mRNA and proteins of p53-upregulated modulator of apoptosis (PUMA), Bax and Bcl-2. Finally, the affect of Tau on the growth of MDA-MB-231-cell-nude mice xenografts was examined. In the study, Tau inhibited growth and induced apoptosis of the two cell lines in a concentration- and time-dependent manner. Notably, the inhibitory effect of Tau on p53-/- cancer cells was clearly significant compared to the p53+/+ cancer cells. Further studies showed that Tau promoted apoptosis in human breast cancer cells and inhibited the growth of tumor in nude mice by inducing the expression of PUMA, which further up- and downregulated the expression of Bax and Bcl-2 protein, giving rise to increased activation of caspase-3. Collectively, these results indicate that Tau is a potent candidate for the chemotherapy of breast cancer through increasing the PUMA expression independent of p53 status. PMID:25395275

  4. Effects of spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects on gene expression and late apoptosis induction

    PubMed Central

    Sønder, Søren Ulrik Salling; Mikkelsen, Marianne; Rieneck, Klaus; Hedegaard, Chris Juul; Bendtzen, Klaus

    2006-01-01

    Spironolactone (SPIR) binds to cytoplasmic mineralocorticoid receptors (MR) and functions as an aldosterone antagonist. Recently, the drug was shown to have an early suppressive effect on several immunoactive and proinflammatory cytokines. To elucidate the mechanism behind this, the four MR-binding steroids SPIR, canrenone, 7α-thiomethyl-spironolactone and aldosterone (ALDO) were investigated for effects on lipopolysaccharide- and phytohemagglutinin-A-activated human blood mononuclear cells. Gene expression was examined after 4 h using microarrays, and SPIR affected 1018 transcripts of the (=) 22,000 probed. In contrast, the SPIR-related steroids affected 17 or fewer transcripts. Combining SPIR and ALDO resulted in 940 affected transcripts, indicating that SPIR has an early gene-regulatory effect independent of MR. The affected genes encode a large number of signalling proteins and receptors, including immunoinflammatory response genes and apoptosis and antiapoptosis genes. Apoptosis was evident in CD3-, CD14- and CD19-positive cells, but only after 18 h of exposure to SPIR. The transcriptional network involving the differentially regulated genes was examined and the results indicate that SPIR affects genes controlled by the transcription factors NF-κB, CEBPβ and MYC. These observations provide new insight into the non-MR-mediated effects of SPIR. PMID:16520746

  5. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice.

    PubMed

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  6. Biomolecular Effects of Low-Intensity Ultrasound: Apoptosis, Sonotransfection, and Gene Expression

    NASA Astrophysics Data System (ADS)

    Feril, Loreto B.; Kondo, Takashi; Tabuchi, Yoshiaki; Ogawa, Ryohei; Zhao, Qing-Li; Nozaki, Tetsuo; Yoshida, Toru; Kudo, Nobuki; Tachibana, Katsuro

    2007-07-01

    Biological effects of low-intensity ultrasound (US) focusing on US-induced programmed cell death (apoptosis), regulation of gene expression, and US-mediated gene transfection (sonotransfection) are reviewed. Studies have shown that US can induce apoptosis and that certain conditions can provide an optimal apoptosis induction. Sonotransfection of different cell lines in vitro and target tissues in vivo have been reported. Several genes can also be up-regulated or down-regulated by sonication. As to the potential therapeutic applications, apoptosis induction by US may induce direct and fast ways of treating tumor or cancer tissues. Systemic or local sonotransfection might also be a safe and effective gene therapy method in effecting the cure of local and systemic disorders. Gene regulation of target cells may be utilized in modifying cellular response to a treatment, such as increasing the sensitivity of diseased cells while making normal cells resistant to the side effects of the treatment. In addition, gene regulation by US may also play an important part in the enhanced healing of damaged tissues.

  7. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice

    PubMed Central

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  8. Mycoplasma hyorhinis and Mycoplasma fermentans induce cell apoptosis and changes in gene expression profiles of 32D cells.

    PubMed

    Liu, Wenbin; Shou, Chengchao

    2011-01-01

    Infection of mycoplasmas has been linked to various human diseases including arthritis, pneumonia, infertility and cancer. While Mycoplasma hyorhinis and Mycoplasma fermentans have been detected in gastric adenocarcinomas, the mechanisms underlyine the pathogenesis are unknown. In this study, cell growth kinetics, Hoechst 33258 staining, DNA ladder assays, Western blotting analysis and cDNA microarray assays were performed to investigate the roles of M. hyorhinis and M. fermentans during infection of mammalian cells. Our data demonstrated that these mycoplasmas inhibid the growth of immortalised cell lines (32D and COS-7) ane tumor cell lines (HeLa and AGS). In addition, the infection of the 32D cell line with M. hyorhinis and M. fermentans induced compression of the nucleus, degradation of the cell genome and dysregulation of the expression of genes related to proliferation, apoptosis, tumorigenesis, signaling pathway and metabolism. Apoptosis related proteins Bcl-2, Bid and p53 were down-regulated, Fas was up-regulated and Bax was dysregulated in mycoplasma-infected 32D cells. Together, our data demonstrated that infection of mycoplasmas inhibitd cele growts through modification of gene expression profiles and post-translation modification of proliferation and apoptosis related proteins. PMID:22446603

  9. Increased metallothionein gene expression, zinc, and zinc-dependent resistance to apoptosis in circulating monocytes during HIV viremia

    PubMed Central

    Raymond, Andrea D.; Gekonge, Bethsebah; Giri, Malavika S.; Hancock, Aidan; Papasavvas, Emmanouil; Chehimi, Jihed; Kossevkov, Andrew V.; Nicols, Calen; Yousef, Malik; Mounzer, Karam; Shull, Jane; Kostman, Jay; Showe, Louise; Montaner, Luis J.

    2010-01-01

    Circulating monocytes exhibit an apoptotic resistance phenotype during HIV viremia in association with increased MT expression. MTs are known to play an important role in zinc metabolism and immune function. We now show, in a cross-sectional study using peripheral monocytes, that expression of MT1 isoforms E, G, H, and X is increased significantly in circulating monocyte cells from HIV+ subjects during chronic viremic episodes as compared with uninfected subjects. This increase in expression is also observed during acute viremia following interruption of suppressive ART. Circulating monocytes from HIV+ donors were also found to have elevated zinc importer gene Zip8 expression in conjunction with elevated intracellular zinc levels in contrast to CD4+T-lymphocytes. In vitro HIV-1 infection studies with elutriated MDM confirm a direct relation between HIV-1 infection and increased MDM MT1 (isoform G) gene expression and increased intracellular zinc levels. A direct link between elevated zinc levels and apoptosis resistance was established using a cell-permeable zinc chelator TPEN, which reversed apoptosis resistance effectively in monocytes from HIV-infected to levels comparable with uninfected controls. Taken together, increases in MT gene expression and intracellular zinc levels may contribute directly to maintenance of an immune-activated monocyte by mediating an increased resistance to apoptosis during active HIV-1 viremia. PMID:20551211

  10. Apoptosis and HIV infection: about molecules and genes.

    PubMed

    Cossarizza, Andrea

    2008-01-01

    During the evolution, the immune system has developed several strategies to fight viral infections. Apoptosis, autophagy and necrosis are different types of cell death that play a main role in the interactions between infective agents and the host, since they are often important defence mechanisms that have to avoid the spreading of the infection. In turn, viruses have evolved numerous ways to evade the host immune system by influencing the behaviour and functionality of several components. HIV infects and kills CD4+ T helper lymphocytes, preferentially those that are antigen-specific, but also encodes proteins with apoptotic capacities, including gp120, gp160, Tat, Nef, Vpr, Vpu, Vif and, last but not least, the viral protease. This latter protein can kill infected and uninfected lymphocytes through the action of several host molecules, mainly members of the tumor necrosis factor family, or via the mitochondrial apoptotic pathway. The proinflammatory state that is characteristic of both the acute and chronic phase of HIV infection facilitates cell death, and is an additional cause of immune damage. Potent antiretroviral drugs that are largely use in therapy can reduce apoptosis by different mechanisms, that not only include the diminished production of the virus by infected cells and the subsequent reduction of inflammation, but also a direct action on the viral protease. The role of the host genetic background is finally crucial in understanding the process of cell death in HIV infection. PMID:18220834

  11. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    PubMed Central

    2012-01-01

    Background Alcohol use disorders (AUDs) lead to alterations in central nervous system (CNS) architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs) produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs) of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP) assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1) was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5) showed a highly significant correlation with AUD-induced decreases in the volume of the left parietal supramarginal

  12. Antiaging Gene Klotho Attenuates Pancreatic β-Cell Apoptosis in Type 1 Diabetes.

    PubMed

    Lin, Yi; Sun, Zhongjie

    2015-12-01

    Apoptosis is the major cause of death of insulin-producing β-cells in type 1 diabetes mellitus (T1DM). Klotho is a recently discovered antiaging gene. We found that the Klotho gene is expressed in pancreatic β-cells. Interestingly, halplodeficiency of Klotho (KL(+/-)) exacerbated streptozotocin (STZ)-induced diabetes (a model of T1DM), including hyperglycemia, glucose intolerance, diminished islet insulin storage, and increased apoptotic β-cells. Conversely, in vivo β-cell-specific expression of mouse Klotho gene (mKL) attenuated β-cell apoptosis and prevented STZ-induced diabetes. mKL promoted cell adhesion to collagen IV, increased FAK and Akt phosphorylation, and inhibited caspase 3 cleavage in cultured MIN6 β-cells. mKL abolished STZ- and TNFα-induced inhibition of FAK and Akt phosphorylation, caspase 3 cleavage, and β-cell apoptosis. These promoting effects of Klotho can be abolished by blocking integrin β1. Therefore, these cell-based studies indicated that Klotho protected β-cells by inhibiting β-cell apoptosis through activation of the integrin β1-FAK/Akt pathway, leading to inhibition of caspase 3 cleavage. In an autoimmune T1DM model (NOD), we showed that in vivo β-cell-specific expression of mKL improved glucose tolerance, attenuated β-cell apoptosis, enhanced insulin storage in β-cells, and increased plasma insulin levels. The beneficial effect of Klotho gene delivery is likely due to attenuation of T-cell infiltration in pancreatic islets in NOD mice. Overall, our results demonstrate for the first time that Klotho protected β-cells in T1DM via attenuating apoptosis. PMID:26340932

  13. THE EFFECTS OF HYPERTHERMIA ON SPERMATOGENESIS, APOPTOSIS, GENE EXPRESSION AND FERTILITY IN ADULT MALE MICE

    EPA Science Inventory

    The effects of hyperthermia on spermatogenesis, apoptosis, gene expression and fertility in adult male mice
    John C. Rockett1, Faye L. Mapp1, J. Brian Garges1, J. Christopher Luft1, Chisato Mori2 and David J. Dix1.
    1Reproductive Toxicology Division, National Health and Envir...

  14. Comparison of the expression profile of apoptosis-associated genes in rheumatoid arthritis and osteoarthritis.

    PubMed

    Qingchun, Huang; Runyue, Huang; LiGang, Jie; Yongliang, Chu; Song, Wei; Shujing, Zhao

    2008-05-01

    The purpose of this study was to employ microarray analysis to evaluate differential gene expression in synovial tissue samples obtained from patients with rheumatoid arthritis (RA) or osteoarthritis (OA) to study the expression profile of apoptosis-associated genes in these tissues. Four samples were obtained from RA-affected patients and three from osteoarthritis patients. After total RNA was extracted from synovial tissue, the RNA was processed using two-cycle target labeling, followed by hybridization and scanning procedure. The GeneChip Human Genome U133 Plus 2.0 containing 900471 gene loci was used and eight genes associated with apoptosis were identified with a selected p value<0.05 and a twofold change in expression in rheumatoid samples compared to osteoarthritis tissues. Anti-apoptotic genes were generally upregulated whereas apoptotic genes were downregulated suggesting that these genes may play a role in the pathogenesis of RA. Furthermore, these genes may serve as novel therapeutic targets for the treatment of RA. PMID:18274751

  15. The duration of gastrin treatment affects global gene expression and molecular responses involved in ER stress and anti-apoptosis

    PubMed Central

    2013-01-01

    Background How cells decipher the duration of an external signal into different transcriptional outcomes is poorly understood. The hormone gastrin can promote a variety of cellular responses including proliferation, differentiation, migration and anti-apoptosis. While gastrin in normal concentrations has important physiological functions in the gastrointestine, prolonged high levels of gastrin (hypergastrinemia) is related to pathophysiological processes. Results We have used genome-wide microarray time series analysis and molecular studies to identify genes that are affected by the duration of gastrin treatment in adenocarcinoma cells. Among 403 genes differentially regulated in transiently (gastrin removed after 1 h) versus sustained (gastrin present for 14 h) treated cells, 259 genes upregulated by sustained gastrin treatment compared to untreated controls were expressed at lower levels in the transient mode. The difference was subtle for early genes like Junb and c-Fos, but substantial for delayed and late genes. Inhibition of protein synthesis by cycloheximide was used to distinguish between primary and secondary gastrin regulated genes. The majority of gastrin upregulated genes lower expressed in transiently treated cells were primary genes induced independently of de novo protein synthesis. This indicates that the duration effect of gastrin treatment is mainly mediated via post-translational signalling events, while a smaller fraction of the differentially expressed genes are regulated downstream of primary transcriptional events. Indeed, sustained gastrin treatment specifically induced prolonged ERK1/2 activation and elevated levels of the AP-1 subunit protein JUNB. Enrichment analyses of the differentially expressed genes suggested that endoplasmic reticulum (ER) stress and survival is affected by the duration of gastrin treatment. Sustained treatment exerted an anti-apoptotic effect on serum starvation-induced apoptosis via a PKC-dependent mechanism. In

  16. p53-related apoptosis resistance and tumor suppression activity in UVB-induced premature senescent human skin fibroblasts.

    PubMed

    Chen, Wenqi; Kang, Jian; Xia, Jiping; Li, Yanhua; Yang, Bo; Chen, Bin; Sun, Weiling; Song, Xiuzu; Xiang, Wenzhong; Wang, Xiaoyong; Wang, Fei; Wan, Yinsheng; Bi, Zhigang

    2008-05-01

    Chronic exposure to solar UV irradiation leads to photoaging, immunosuppression, and ultimately carcinogenesis. Cellular senescence is thought to play an important role in tumor suppression and apoptosis resistance. However, the relationships among stress-induced premature senescence (SIPS), tumorigenesis and apoptosis induced by UVB remain unknown. We developed a model of UVB-induced premature senescence in human skin fibroblasts (HSFs). After five repeated subcytotoxic UVB exposures at a dose of 10 mJ/cm2, the following biomarkers of senescence were markedly present: senescence-associated beta-galactosidase (SA beta-gal) activity, growth arrest, and the overexpression of senescence-associated genes. Firstly, there was an increase in the proportion of cells positive for SA beta-gal activity. Secondly, there was a loss of replicative potential as assessed by MTT assay. FACS analysis showed that UVB-stressed HSFs were blocked mostly in the G1 phase of the cell cycle, and replicative senescence, and protein expression of p53, p21(WAF-1) and p16(INK-4a) increased significantly. Thirdly, the mRNA levels of three senescence-associated genes, fibronectin, osteonectin and SM22, also increased. A real time PCR array to investigate the mRNA expression of p53-related genes involved in growth arrest, apoptosis and tumorigenesis indicated that p53, p21, p19, Hdm2, and Bax were up-regulated, and bcl, HIF-1alpha and VEGF were down-regulated. Collectively, our data suggest that UVB-induced SIPS plays an important role in p53-related apoptosis resistance and tumor suppression activity. PMID:18425358

  17. The apoptosis associated tyrosine kinase gene is frequently hypermethylated in human cancer and is regulated by epigenetic mechanisms

    PubMed Central

    Haag, Tanja; Herkt, Christina E.; Walesch, Sara K.; Richter, Antje M.; Dammann, Reinhard H.

    2014-01-01

    Epigenetic gene inactivation through promoter hypermethylation is an important aberration involved in the silencing of tumor-associated genes in cancer. Here we identified the apoptosis associated tyrosine kinase (AATK) as an epigenetically downregulated tumor related gene. We analyzed the epigenetic regulation of AATK in several human cancer cell lines and normal tissues by methylation and expression analysis. Hypermethylation of AATK was also analyzed in 25 primary lung tumors, 30 breast cancers and 24 matching breast tissues. In normal tissues the AATK CpG island promoter was unmethylated and AATK was expressed. Hypermethylation of AATK occurred frequently in 13 out of 14 (93%) human cancer cell lines. Methylation was reversed by 5-aza-2′-deoxycytidine treatment leading to re-expression of AATK in cancer cell lines. Aberrant methylation of AATK was also revealed in primary lung (40%) and breast (53%) cancers, but was found to be significantly less methylated in matching normal breast tissues (17%; p<0.01). In addition, we observed that AATK is epigenetically reactivated through the chromatin regulator CTCF. We further show that overexpression of Aatk significantly suppresses colony formation in cancer cell lines. Our findings suggest that the apoptosis associated tyrosine kinase is frequently inactivated in human cancers and acts as a tumor suppressive gene. PMID:25352953

  18. Repression of SRF target genes is critical for Myc-dependent apoptosis of epithelial cells

    PubMed Central

    Wiese, Katrin E; Haikala, Heidi M; von Eyss, Björn; Wolf, Elmar; Esnault, Cyril; Rosenwald, Andreas; Treisman, Richard; Klefström, Juha; Eilers, Martin

    2015-01-01

    Oncogenic levels of Myc expression sensitize cells to multiple apoptotic stimuli, and this protects long-lived organisms from cancer development. How cells discriminate physiological from supraphysiological levels of Myc is largely unknown. Here, we show that induction of apoptosis by Myc in breast epithelial cells requires association of Myc with Miz1. Gene expression and ChIP-Sequencing experiments show that high levels of Myc invade target sites that lack consensus E-boxes in a complex with Miz1 and repress transcription. Myc/Miz1-repressed genes encode proteins involved in cell adhesion and migration and include several integrins. Promoters of repressed genes are enriched for binding sites of the serum-response factor (SRF). Restoring SRF activity antagonizes Myc repression of SRF target genes, attenuates Myc-induced apoptosis, and reverts a Myc-dependent decrease in Akt phosphorylation and activity, a well-characterized suppressor of Myc-induced apoptosis. We propose that high levels of Myc engage Miz1 in repressive DNA binding complexes and suppress an SRF-dependent transcriptional program that supports survival of epithelial cells. PMID:25896507

  19. Fatty Acid Esters of Phloridzin Induce Apoptosis of Human Liver Cancer Cells through Altered Gene Expression

    PubMed Central

    Nair, Sandhya V. G.; Ziaullah; Rupasinghe, H. P. Vasantha

    2014-01-01

    Phloridzin (phlorizin or phloretin 2′-O-glucoside) is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin) using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA) ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2), growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR) and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK), cell cycle machinery (CDKs, TERT, TOP2A, TOP2B) as well as epigenetics regulators (HDACs). These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects mediated

  20. Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis

    SciTech Connect

    Chen, Pei-Lin; Easton, Alexander S.

    2010-01-01

    Tumor necrosis factor (TNF) and its related ligands TNF-related apoptosis inducing ligand (TRAIL) and Fas ligand (FasL) play roles in the regulation of vascular responses, but their effect on the formation of new blood vessels (angiogenesis) is unclear. Therefore, we have examined the effects of these ligands on angiogenesis modeled with primary cultures of human umbilical vein endothelial cells (HUVEC). To examine angiogenesis in the context of the central nervous system, we have also modeled cerebral angiogenesis with the human brain endothelial cell line hCMEC/D3. Parameters studied were bromodeoxyuridine (BrdU) incorporation and cell number (MTT) assay (to assess endothelial proliferation), scratch assay (migration) and networks on Matrigel (tube formation). In our hands, neither TRAIL nor FasL (1, 10, and 100 ng/ml) had an effect on parameters of angiogenesis in the HUVEC model. In hCMEC/D3 cells by contrast, TRAIL inhibited all parameters (10-100 ng/ml, 24 h). This was due to apoptosis, since its action was blocked by the pan-caspase inhibitor zVADfmk (5 x 10{sup -5} mol/l) and TRAIL increased caspase-3 activity 1 h after application. However FasL (100 ng/ml) increased BrdU uptake without other effects. We conclude that TRAIL has different effects on in vitro angiogenesis depending on which model is used, but that FasL is generally ineffective when applied in vitro. The data suggest that TRAIL primarily influences angiogenesis by the induction of vascular endothelial apoptosis, leading to vessel regression.

  1. Tissue transglutaminase-dependent posttranslational modification of the retinoblastoma gene product in promonocytic cells undergoing apoptosis.

    PubMed Central

    Oliverio, S; Amendola, A; Di Sano, F; Farrace, M G; Fesus, L; Nemes, Z; Piredda, L; Spinedi, A; Piacentini, M

    1997-01-01

    The retinoblastoma gene product (pRB) plays an important role in controlling both cell release from the G1 phase and apoptosis. We show here that in the early phases of apoptosis, pRB is posttranslationally modified by a tissue transglutaminase (tTG)-catalyzed reaction. In fact, by employing a novel haptenized lysis synthetic substrate which allows the isolation of glutaminyl-tTG substrates in vivo, we identified pRB as a potential tTG substrate in U937 cells undergoing apoptosis. In keeping with this finding, we showed that apoptosis of U937 cells is characterized by the rapid disappearance of the 105,000- to 110,000-molecular-weight pRB forms concomitantly with the appearance of a smear of immunoreactive products with a molecular weight of greater than 250,000. The shift in pRB molecular weight was reproduced by adding exogenous purified tTG to extracts obtained from viable U937 cells and was prevented by dansylcadaverine, a potent enzyme inhibitor. The effect of the pRB posttranslational modification during apoptosis was investigated by determining the E2F-1 levels and by isolating and characterizing pRB-null clones from U937 cells. Notably, the lack of pRB in these U937-derived clones renders these p53-null cells highly resistant to apoptosis induced by serum withdrawal, calphostin C, and ceramide. Taken together, these data suggest that tTG, acting on the pRB protein, might play an important role in the cell progression through the death program. PMID:9315663

  2. Differential Gene Expression Patterns in Chicken Cardiomyocytes during Hydrogen Peroxide-Induced Apoptosis

    PubMed Central

    Li, Youwen; Guo, Dingzong

    2016-01-01

    Hydrogen peroxide (H2O2) is both an exogenous and endogenous cytotoxic agent that can reliably induce apoptosis in numerous cell types for studies on apoptosis signaling pathways. However, little is known of these apoptotic processes in myocardial cells of chicken, a species prone to progressive heart failure. Sequencing of mRNA transcripts (RNA-Seq) allows for the identification of differentially expressed genes under various physiological and pathological conditions to elucidate the molecular pathways involved, including cellular responses to exogenous and endogenous toxins. We used RNA-seq to examine genes differentially expressed during H2O2-induced apoptosis in primary cultures of embryonic chicken cardiomyocytes. Following control or H2O2 treatment, RNA was extracted and sequencing performed to identify novel transcripts up- or downregulated in the H2O2 treatment group and construct protein−protein interaction networks. Of the 19,268 known and 2,160 novel transcripts identified in both control and H2O2 treatment groups, 4,650 showed significant differential expression. Among them, 55.63% were upregulated and 44.37% downregulated. Initiation of apoptosis by H2O2 was associated with upregulation of caspase-8, caspase-9, and caspase-3, and downregulation of anti-apoptotic genes API5 and TRIA1. Many other differentially expressed genes were associated with metabolic pathways (including ‘Fatty acid metabolism’, ‘Alanine, aspartate, and glutamate metabolism’, and ‘Biosynthesis of unsaturated fatty acids’) and cell signaling pathways (including ‘PPAR signaling pathway’, ‘Adipocytokine signaling pathway’, ‘TGF-beta signaling pathway’, ‘MAPK signaling pathway’, and ‘p53 signaling pathway’). In chicken cardiomyocytes, H2O2 alters the expression of numerous genes linked to cell signaling and metabolism as well as genes directly associated with apoptosis. In particular, H2O2 also affects the biosynthesis and processing of proteins and

  3. A Smac Mimetic Reduces TNF Related Apoptosis Inducing Ligand (TRAIL)-Induced Invasion and Metastasis of Cholangiocarcinoma Cells

    PubMed Central

    Fingas, Christian D.; Blechacz, Boris R. A.; Smoot, Rory L.; Guicciardi, Maria E.; Mott, Justin; Bronk, Steve F.; Werneburg, Nathan W.; Sirica, Alphonse E.; Gores, Gregory J.

    2010-01-01

    Cholangiocarcinoma (CCA) cells paradoxically express tumor necrosis factor–related apoptosis-inducing ligand (TRAIL), a death ligand that, failing to kill CCA cells, instead promotes their tumorigenicity and especially the metastatic behaviors of cell migration and invasion. Second mitochondria-derived activator of caspase (smac) mimetics are promising cancer therapeutic agents that enhance proapoptotic death receptor signaling by causing cellular degradation of inhibitor of apoptosis (IAP) proteins. Our aim was to examine the in vitro and in vivo effects of the smac mimetic JP1584 in CCA. Despite JP1584-mediated loss of cellular inhibitor of apoptosis-1 (cIAP-1) and cIAP-2, TRAIL failed to induce apoptosis in KMCH-1, TFK-1, and BDEneu CCA cells; a finding consistent with a downstream block in death signaling. Because cIAP-1 and cIAP-2 also promote nuclear factor kappa B (NF-κB) activation by the canonical pathway, the effect of JP1584 on this signaling pathway was examined. Treatment with JP1584 inhibited TRAIL-induced NF-κB activation as well as TRAIL-mediated up-regulation of the NF-κB target gene, matrix metalloproteinase 7 (MMP7). JP1584 also reduced TRAIL-mediated CCA cell migration and invasion in vitro. Finally, in a syngeneic rat orthotopic CCA model, JP1584 administration reduced MMP7 messenger RNA levels and extrahepatic metastases. Conclusion Although the smac mimetic JP1584 does not sensitize cells to apoptosis, it reduces TRAIL-induced CCA cell metastatic behavior. These data support the emerging concept that IAPs are prometastatic and represent targets for antimetastatic therapies. PMID:20683954

  4. TNF-α Gene Knockout in Triple Negative Breast Cancer Cell Line Induces Apoptosis

    PubMed Central

    Pileczki, Valentina; Braicu, Cornelia; Gherman, Claudia D.; Berindan-Neagoe, Ioana

    2013-01-01

    Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine involved in the promotion and progression of cancer, including triple negative breast cancer cells. Thus, there is significant interest in understanding the molecular signaling pathways that connect TNF-α with the survival of tumor cells. In our experiments, we used as an in vitro model for triple negative breast cancer the cell line Hs578T. The purpose of this study is to determine the gene expression profiling of apoptotic signaling networks after blocking TNF-α formation by using specially designed siRNA molecules to target TNF-α messenger RNA. Knockdown of TNF-α gene was associated with cell proliferation inhibition and apoptosis, as observed by monitoring the cell index using the xCELLigence RTCA System and flow cytometry. PCR array technology was used to examine the transcript levels of 84 genes involved in apoptosis. 15 genes were found to be relevant after comparing the treated group with the untreated one of which 3 were down-regulated and 12 up-regulated. The down-regulated genes are all involved in cell survival, whereas the up-regulated ones are involved in and interact with pro-apoptotic pathways. The results described here indicate that the direct target of TNF-α in the Hs578T breast cancer cell line increases the level of certain pro-apoptotic factors that modulate different cellular networks that direct the cells towards death. PMID:23263670

  5. Isolation of an Apoptosis Suppressor Gene of the Spodoptera littoralis Nucleopolyhedrovirus†

    PubMed Central

    Du, Quansheng; Lehavi, Dana; Faktor, Ouriel; Qi, Yipeng; Chejanovsky, Nor

    1999-01-01

    Spodoptera frugiperda SF9 cells infected with mutants of the Autographa californica nucleopolyhedrovirus (AcMNPV) which lack a functional p35 gene undergo apoptosis, aborting the viral infection. The Spodoptera littoralis nucleopolyhedrovirus (SlNPV) was able to suppress apoptosis triggered by vΔP35K/pol+, an AcMNPV p35 null mutant. To identify the putative apoptotic suppressor gene of SlNPV, overlapping cosmid clones representing the entire SlNPV genome were individually cotransfected along with genomic DNA of vΔP35K/pol+. Using this complementation assay, we isolated a SlNPV DNA fragment that was able to rescue the vΔP35K/pol+ infection in SF9 cells. By further subcloning and rescue, we identified a novel SlNPV gene, Slp49. The Slp49 sequence predicted a 49-kDa polypeptide with about 48.8% identity to the AcMNPV apoptotic suppressor P35. SLP49 displays a potential recognition site, TVTDG, for cleavage by death caspases. Recombinant AcMNPVs deficient in p35 bearing the Slp49 gene did not induce apoptosis and showed successful productive infections in SF9 cells, indicating that Slp49 is a functional homologue of p35. A 1.5-kbp Slp49-specific transcript was identified in SF9 cells infected with SlNPV or with vAc496, a vΔP35K/pol+-recombinant bearing Slp49. The discovery of Slp49 contributes to the identification of important functional motifs conserved in p35-like apoptotic suppressors and to the future isolation of p35-like genes from other baculoviruses. PMID:9882332

  6. Disruption of Smad5 gene induces mitochondria-dependent apoptosis in cardiomyocytes

    SciTech Connect

    Sun Yanxun; Zhou Jiang; Liao Xudong; Lue Yaxin; Deng Chuxia; Huang Peitang; Chen Quan; Yang Xiao . E-mail: yangx@nic.bmi.ac.cn

    2005-05-15

    Our previous studies have shown that SMAD5, an important intracellular mediator of transforming growth factor {beta} (TGF-{beta}) family, is required for normal development of the cardiovascular system in vivo. In the current study, we reported that the lack of the Smad5 gene resulted in apoptosis of cardiac myocytes in vivo. To further investigate the mechanism of the Smad5 gene in cardiomyocyte apoptosis, the embryonic stem (ES) cell differentiation system was employed. We found that the myotubes that differentiated from the homozygous Smad5 {sup ex6/ex6} mutant ES cells underwent collapse and degeneration during the late stages of in vitro differentiation, mimicking the in vivo observation. By electron microscopy, abnormal swollen mitochondria were observed in cardiomyocytes both from Smad5-deficient embryos and from ES-differentiated cells. There was also a significant reduction in mitochondrial membrane potential ({delta}{psi} {sub m}) and a leakage of cytochrome c from mitochondria into the cytosol of myocytes differentiated from Smad5 mutant ES cells. The expression of p53 and p21 was found to be elevated in the differentiated Smad5 mutant myocytes, and this was accompanied by an up-regulation in caspase 3 expression. These results suggest that the Smad5-mediated TGF-{beta} signals may protect cardiomyocytes from apoptosis by maintaining the integrity of the mitochondria, probably through suppression of p53 mediated pathways.

  7. miR-27b attenuates apoptosis induced by transmissible gastroenteritis virus (TGEV) infection via targeting runt-related transcription factor 1 (RUNX1)

    PubMed Central

    Bai, Xiaoyuan; Fei, Naijiao; Huang, Yong; Zhao, Zhimin; Du, Qian; Zhang, Hongling; Zhang, Liang

    2016-01-01

    Transmissible gastroenteritis virus (TGEV), belonging to the coronaviridae family, is the key cause of the fatal diarrhea of piglets and results in many pathological processes. microRNAs (miRNAs) play a key role in the regulation of virus-induced apoptosis. During the process of apoptosis induced by TGEV infection in PK-15 cells, the miR-27b is notably down-regulated. Thus, we speculate that miR-27b is involved in regulating the process of apoptosis in PK-15 cells. In this study we demonstrated that the over-expression of miR-27b led to the inhibition of TGEV-induced apoptosis, reduction of Bax protein level, and decrease of caspase-3 and −9 activities. Conversely, silencing of miR-27b by miR-27b inhibitors enhanced apoptosis via up-regulating Bax expression and promoting the activities of caspase-3 and −9 in TGEV-infected cells. Subsequently, the runt-related transcription factor 1 (RUNX1) is a candidate target of miR-27b predicted by bioinformatics search. We further identified that the miR-27b directly bound to the 3′ UTR of RUNX1 mRNA and suppressed RUNX1 expression, which indicates RUNX1 is the direct target gene of miR-27b. The over-expression of RUNX1 increased apoptosis and knockdown RUNX1blocked apoptosis of viral-infected cells via regulating Bax expression and the activities of caspase-3 and −9. Our data reveal that miR-27b may repress the mitochondrial pathway of apoptosis by targeting RUNX1, indicating that TGEV may induce apoptosis via down-regulating miR-27b and that miR-27b may act as a target for therapeutic intervention. PMID:26870610

  8. α–blockade, apoptosis, and prostate shrinkage: how are they related?

    PubMed Central

    Chłosta, Piotr; Kaplan, Steven

    2013-01-01

    Purpose The α1–adrenoreceptor antagonists, such as terazosin and doxazosin, induce prostate programmed cell death (apoptosis) within prostate epithelial and stromal cells in vitro. This treatment should cause prostate volume decrease, However, this has never been observed in clinical conditions. The aim of this paper is to review the disconnect between these two processes. Methods PubMed and DOAJ were searched for papers related to prostate, apoptosis, and stem cell death. The following key words were used: prostate, benign prostate hyperplasia, programmed cell death, apoptosis, cell death, α1–adrenoreceptor antagonist, α–blockade, prostate epithelium, prostate stroma, stem cells, progenitors, and in vitro models. Results We have shown how discoveries related to stem cells can influence our understanding of α–blockade treatment for BPH patients. Prostate epithelial and mesenchymal compartments have stem (progenitors) and differentiating cells. These compartments are described in relation to experimental in vitro and in vivo settings. Conclusions Apoptosis is observed within prostate tissue, but this effect has no clinical significance and cannot lead to prostate shrinkage. In part, this is due to stem cells that are responsible for prostate tissue regeneration and are resistant to apoptosis triggered by α1–receptor antagonists. PMID:24579025

  9. Growth phase-regulated induction of Salmonella-induced macrophage apoptosis correlates with transient expression of SPI-1 genes.

    PubMed

    Lundberg, U; Vinatzer, U; Berdnik, D; von Gabain, A; Baccarini, M

    1999-06-01

    Invasive Salmonella has been reported to induce apoptosis in a fraction of infected macrophages within 2 to 14 h from the time of infection by a mechanism involving the type III secretion machinery encoded by the Salmonella pathogenicity island 1 (SPI-1). Here, we show that bacteria in the transition from logarithmic to stationary phase cause 90% of the macrophages to undergo phagocytosis-independent, caspase-mediated apoptosis within 30 to 60 min of infection. The ability of Salmonella to induce this rapid apoptosis was growth phase regulated and cell type restricted, with epithelial cells being resistant. Apoptosis induction was also abrogated by disruption of the hilA gene (encoding a regulator of SPI-1 genes) and by the expression of a constitutively active PhoPQ. hilA itself and a subset of SPI-1 genes were transiently expressed during aerobic growth in liquid medium. Interestingly, however, hilA was found to be required only for the expression of the prgH gene, while sipB, invA, and invF were expressed in a hilA-independent manner. The expression of SPI-1 genes and the secretion of invasion-associated proteins correlated temporally with the induction of apoptosis and are likely to represent its molecular basis. Thus, growth phase transition regulates the expression and secretion of virulence determinants and represents the most efficient environmental cue for apoptosis induction reported to date. PMID:10348855

  10. Growth Phase-Regulated Induction of Salmonella-Induced Macrophage Apoptosis Correlates with Transient Expression of SPI-1 Genes

    PubMed Central

    Lundberg, Urban; Vinatzer, Ursula; Berdnik, Daniela; von Gabain, Alexander; Baccarini, Manuela

    1999-01-01

    Invasive Salmonella has been reported to induce apoptosis in a fraction of infected macrophages within 2 to 14 h from the time of infection by a mechanism involving the type III secretion machinery encoded by the Salmonella pathogenicity island 1 (SPI-1). Here, we show that bacteria in the transition from logarithmic to stationary phase cause 90% of the macrophages to undergo phagocytosis-independent, caspase-mediated apoptosis within 30 to 60 min of infection. The ability of Salmonella to induce this rapid apoptosis was growth phase regulated and cell type restricted, with epithelial cells being resistant. Apoptosis induction was also abrogated by disruption of the hilA gene (encoding a regulator of SPI-1 genes) and by the expression of a constitutively active PhoPQ. hilA itself and a subset of SPI-1 genes were transiently expressed during aerobic growth in liquid medium. Interestingly, however, hilA was found to be required only for the expression of the prgH gene, while sipB, invA, and invF were expressed in a hilA-independent manner. The expression of SPI-1 genes and the secretion of invasion-associated proteins correlated temporally with the induction of apoptosis and are likely to represent its molecular basis. Thus, growth phase transition regulates the expression and secretion of virulence determinants and represents the most efficient environmental cue for apoptosis induction reported to date. PMID:10348855

  11. Effect of Thymoquinone on P53 Gene Expression and Consequence Apoptosis in Breast Cancer Cell Line

    PubMed Central

    Dastjerdi, Mehdi Nikbakht; Mehdiabady, Ebrahim Momeni; Iranpour, Farhad Golshan; Bahramian, Hamid

    2016-01-01

    Background: Nigella sativa has been a nutritional flavoring factor and natural treatment for many ailments for so many years in medical science. Earlier studies have been reported that thymoquinone (TQ), an active compound of its seed, contains anticancer properties. Previous studies have shown that TQ induces apoptosis in breast cancer cells but it is unclear the role of P53 in the apoptotic pathway. Hereby, this study reports the potency of TQ on expression of tumor suppressor gene P53 and apoptosis induction in breast cancer cell line Michigan Cancer Foundation-7 (MCF-7). Methods: MCF-7 cell line was cultured and treated with TQ, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was carried out for evaluating the half-maximal inhibitory concentration (IC50) values after 24 h of treatment. The percentage of apoptotic cells was measured by flow cytometry. Real-time polymerase chain reaction (PCR) was performed to estimate the messenger RNA expression of P53 in MCF-7 cell line at different times. Results: The IC50 value for the TQ in MCF-7 cells was 25 μM that determined using MTT assay. The flow cytometry and real-time PCR results showed that TQ could induce apoptosis in MCF-7 cells, and the P53 gene expression was dramatically up-regulated by ascending time, respectively. Hence, there was significant difference in 48 and 72 h. Conclusions: Our results demonstrated that TQ could induce apoptosis in MCF-7 cells through up-regulation of P53 expression in breast cancer cell line (MCF-7) by time-dependent manner. PMID:27141285

  12. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    PubMed Central

    Wang, Likui; Gao, Shijuan; Jiang, Wei; Luo, Cheng; Xu, Maonian; Bohlin, Lars; Rosendahl, Markus; Huang, Wenlin

    2014-01-01

    Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2) called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE), which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix) polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen) and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair. PMID:25226533

  13. Tumor necrosis factor-related apoptosis-inducing ligand in vascular inflammation and atherosclerosis: a protector or culprit?

    PubMed

    Cheng, Wen; Zhao, Yuxia; Wang, Shuangxi; Jiang, Fan

    2014-12-01

    In addition to inducing tumor cell apoptosis, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) shows broad biological functions both in vitro and in vivo. TRAIL gene deletion enhanced atherogenesis in hyperlipidemic mice, supporting that endogenous TRAIL has protective actions in maintaining blood vessel homeostasis and repressing atherosclerosis. The mechanisms of this beneficial effect are not understood. It remains to be determined whether the athero-protective action of TRAIL is via direct impacts on residential vascular cells or indirectly by modulating systemic immune functions. However, in vitro experiments indicate that excessive TRAIL may stimulate endothelial cell apoptosis, smooth muscle proliferation and migration, and inflammatory responses. Moreover, TRAIL can stimulate lipid uptake and foam cell formation in cultured macrophages. Here we provide a critical review on the potential relationships between TRAIL and atherosclerosis. We propose that increased TRAIL production may also have potential detrimental effects on vascular inflammation and atherosclerosis. Further in vivo experiments are warranted to elucidate the effects of exogenous TRAIL on atherogenesis. PMID:25451562

  14. Changes of Gene Expression in the Apoptosis Pathway in Lncap and PC3 Cells Exposed to X-Rays or Protons

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. In our current studies, we investigated the expressions of apoptosis related gene expression profile (84 genes) in two distinct prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-) before and after exposure to X-rays or protons, using cDNA PCR arrays. In Lncap cells, 10Gy X-ray radiation significantly induced the expression of 19 out of 84 genes at 4h after irradiation. The changed genes were mostly in death and death receptor domain families, TNF ligand and receptor families, and apoptotic group of the BCL2 family, especially in P53 related genes, such as FAS, BAX, BAK1 and GADD45A. In PC3, X-rays only induced the expression of 3 genes, including an increased expression of BIRC3. There was no difference of the X-ray mediated cell killing in both cell lines using the cell cycle analysis. However, these X-ray-induced gene expression differences between PC3 and Lncap may explain the phenotype of PC3 cells that shows more tolerant not only to radiation, but also to other apoptosis inducing and sensitizing reagents. To compare the effectiveness of cell killing with X-rays, we also exposed PC3 cells to 10Gy protons at the Bragg peak region. Protons did not induce more apoptosis than X-rays for the same dose. In comparison to X-rays, protons significantly altered expressions of 13 genes in PC3, which included decreased expressions of anti-apoptosis genes (BCL2 and BCL2L2), and increased expressions of death and death receptor domain family genes, TNF ligand and receptor family and several kinases (FAS, DAPK1 and RIPK2). These data suggest that proton treatment is more effective in influencing the apoptosis pathways in PC3 cells than X-rays, thus protons may be more effective in the treatment of specific prostate tumor.

  15. Characterization and functional analysis of two inhibitor of apoptosis genes in Zhikong scallop Chlamys farreri.

    PubMed

    Miao, Guoying; Qi, Haigang; Li, Li; Que, Huayong; Zhang, Guofan

    2016-07-01

    The proteins of inhibitor of apoptosis (IAP) family play important roles in regulation of apoptosis, immunological response and cell proliferation. Here we reported two IAP genes (named CfIAP1 and CfIAP2) in Zhikong scallop Chlamys farreri. The full-length CfIAP1 cDNA contained 1552 nucleotides, encoding a predicted protein of 251 amino acids with two BIR domains. The full-length CfIAP2 cDNA contained 1243 nt, encoding a 356-aa protein with one BIR domain and one RING domain. The two genes are ubiquitously expressed in six types of tissue of C. farreri. The expression levels of CfIAP1 and CfIAP2 were significantly up-regulated after challenged with acute viral necrobiotic disease virus, lipopolysaccharide and exposure to air. Subcellular localization assay showed that CfIAP1 was mainly distributed in cytoplasm and CfIAP2 was in cytoplasm and nucleus. As assessed using a kit designed to test Caspase3 function in mammalian cells, the activity of CfCaspase3 was enhanced as a result of the down-regulation of CfIAP2 expression by dsRNA-mediated gene silencing. Our study indicated that CfIAP1 and CfIAP2 may participate in the innate immunity and stress responses and that CfIAP2 might block apoptosis via inhibiting CfCaspase3 indirectly through an unexplored mechanism in C. farreri. PMID:26875631

  16. Resveratrol triggers apoptosis through regulating ceramide metabolizing genes in human K562 chronic myeloid leukemia cells.

    PubMed

    Kartal, Melis; Saydam, Guray; Sahin, Fahri; Baran, Yusuf

    2011-01-01

    Resveratrol, an important phytoalexin in many plants, has been reported to have cytotoxic effects on various types of cancer. Ceramide is a bioactive sphingolipid that regulates many signaling pathways, including cell growth and proliferation, senescence and quiescence, apoptosis, and cell cycle. Ceramides are generated by longevity assurance genes (LASS). Glucosylceramide synthase (GCS) and sphingosine kinase-1 (SK-1) enzymes can convert ceramides to antiapoptotic molecules, glucosylceramide, and sphingosine-1-phosphate, respectively. C8:ceramide, an important cell-permeable analogue of natural ceramides, increases intracellular ceramide levels significantly, while 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and SK-1 inhibitor increase accumulation of ceramides by inhibiting GCS and SK-1, respectively. Chronic myelogenous leukemia (CML) is a hematological disorder resulting from generation of BCR/ABL oncogene. In this study, we examined the roles of ceramide metabolizing genes in resveratrol-induced apoptosis in K562 CML cells. There were synergistic cytotoxic and apoptotic effects of resveratrol with coadministration of C8:ceramide, PDMP, and SK-1 inhibitor. Interestingly, there were also significant increases in expression levels of LASS genes and decreases in expression levels of GCS and SK-1 in K562 cells in response to resveratrol. Our data, in total, showed for the first time that resveratrol might kill CML cells through increasing intracellular generation and accumulation of apoptotic ceramides. PMID:21500096

  17. Brg1 Enables Rapid Growth of the Early Embryo by Suppressing Genes That Regulate Apoptosis and Cell Growth Arrest.

    PubMed

    Singh, Ajeet P; Foley, Julie F; Rubino, Mark; Boyle, Michael C; Tandon, Arpit; Shah, Ruchir; Archer, Trevor K

    2016-08-01

    SWI/SNF (switching/sucrose nonfermenting)-dependent chromatin remodeling establishes coordinated gene expression programs during development, yet important functional details remain to be elucidated. We show that the Brg1 (Brahma-related gene 1; Smarca4) ATPase is globally expressed at high levels during postimplantation development and its conditional ablation, beginning at gastrulation, results in increased apoptosis, growth retardation, and, ultimately, embryonic death. Global gene expression analysis revealed that genes upregulated in Rosa26CreERT2; Brg1(flox/flox) embryos (here referred to as Brg1(d/d) embryos to describe embryos with deletion of the Brg1(flox/flox) alleles) negatively regulate cell cycle progression and cell growth. In addition, the p53 (Trp53) protein, which is virtually undetectable in early wild-type embryos, accumulated in the Brg1(d/d) embryos and activated the p53-dependent pathways. Using P19 cells, we show that Brg1 and CHD4 (chromodomain helicase DNA binding protein 4) coordinate to control target gene expression. Both proteins physically interact and show a substantial overlap of binding sites at chromatin-accessible regions adjacent to genes differentially expressed in the Brg1(d/d) embryos. Specifically, Brg1 deficiency results in reduced levels of the repressive histone H3 lysine K27 trimethylation (H3K27me3) histone mark and an increase in the amount of open chromatin at the regulatory region of the p53 and p21 (Cdkn1a) genes. These results provide insights into the mechanisms by which Brg1 functions, which is in part via the p53 program, to constrain gene expression and facilitate rapid embryonic growth. PMID:27185875

  18. TR4 orphan nuclear receptor functions as an apoptosis modulator via regulation of Bcl-2 gene expression

    SciTech Connect

    Kim, Eungseok; Ma, Wen-Lung; Lin, Din-Lii; Inui, Shigeki; Chen, Yuh-Ling; Chang, Chawnshang . E-mail: chang@urmc.rochester.edu

    2007-09-21

    While Bcl-2 plays an important role in cell apoptosis, its relationship to the orphan nuclear receptors remains unclear. Here we report that mouse embryonic fibroblast (MEF) cells prepared from TR4-deficient (TR4{sup -} {sup /-}) mice are more susceptible to UV-irradiation mediated apoptosis compared to TR4-Wildtype (TR4 {sup +/+}) littermates. Substantial increasing TR4{sup -} {sup /-} MEF apoptosis to UV-irradiation was correlated to the down-regulation of Bcl-2 RNA and protein expression and collaterally increased caspase-3 activity. Furthermore, this TR4-induced Bcl-2 gene expression can be suppressed by co-transfection with TR4 coregulators, such as androgen receptor (AR) and receptor-interacting protein 140 (RIP140) in a dose-dependent manner. Together, our results demonstrate that TR4 might function as an apoptosis modulator through induction of Bcl-2 gene expression.

  19. Modulation of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by chemotherapy in thyroid cancer cell lines.

    PubMed

    Park, Jin-Woo; Wong, Mariwil G; Lobo, Margaret; Hyun, William C; Duh, Quan-Yang; Clark, Orlo H

    2003-12-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in many human cancer cells but not in normal cells. Thyroid cancer cells, however, appear to be relatively resistant to TRAIL-induced apoptosis. We therefore investigated the effect of chemotherapy on TRAIL-induced apoptosis in thyroid cancer cells. We used six thyroid cancer cell lines: TPC-1, FTC-133, FTC-236, FTC-238, XTC-1, and ARO82-1. We used flow cytometry to measure apoptosis, dimethyl-thiazol-diphenyltetrazolium bromide (MTT) assay to measure antiproliferation effects and Western blot to determine the expression of Bcl family proteins. Troglitazone, paclitaxel, geldanamycin, and cycloheximide were used for pretreatment. We used the Student's t test and analysis of variance (ANOVA) for statistical analysis. All thyroid cancer cell lines, except the TPC-1 cell line, were resistant to TRAIL, and growth inhibition was less than 20% at concentration of 800 ng/mL of TRAIL. In both TPC-1 (TRAIL-sensitive) and FTC-133 (TRAIL-resistant) thyroid cancer cell lines, pretreatment with troglitazone, cycloheximide, and paclitaxel enhanced TRAIL-induced cell death significantly but pretreatment with geldanamycin did not. There were no significant changes in Bcl-2, Bcl-xl, and Bax protein expression after troglitazone treatment. In conclusion, TRAIL in combination with troglitazone, paclitaxel, and cycloheximide induces apoptosis in thyroid cancer cells at suboptimal concentrations that cannot be achieved using TRAIL alone. PMID:14751030

  20. Immunity-related genes and gene families in Anopheles gambiae.

    PubMed

    Christophides, George K; Zdobnov, Evgeny; Barillas-Mury, Carolina; Birney, Ewan; Blandin, Stephanie; Blass, Claudia; Brey, Paul T; Collins, Frank H; Danielli, Alberto; Dimopoulos, George; Hetru, Charles; Hoa, Ngo T; Hoffmann, Jules A; Kanzok, Stefan M; Letunic, Ivica; Levashina, Elena A; Loukeris, Thanasis G; Lycett, Gareth; Meister, Stephan; Michel, Kristin; Moita, Luis F; Müller, Hans-Michael; Osta, Mike A; Paskewitz, Susan M; Reichhart, Jean-Marc; Rzhetsky, Andrey; Troxler, Laurent; Vernick, Kenneth D; Vlachou, Dina; Volz, Jennifer; von Mering, Christian; Xu, Jiannong; Zheng, Liangbiao; Bork, Peer; Kafatos, Fotis C

    2002-10-01

    We have identified 242 Anopheles gambiae genes from 18 gene families implicated in innate immunity and have detected marked diversification relative to Drosophila melanogaster. Immune-related gene families involved in recognition, signal modulation, and effector systems show a marked deficit of orthologs and excessive gene expansions, possibly reflecting selection pressures from different pathogens encountered in these insects' very different life-styles. In contrast, the multifunctional Toll signal transduction pathway is substantially conserved, presumably because of counterselection for developmental stability. Representative expression profiles confirm that sequence diversification is accompanied by specific responses to different immune challenges. Alternative RNA splicing may also contribute to expansion of the immune repertoire. PMID:12364793

  1. Effect of the WWOX gene on the regulation of the cell cycle and apoptosis in human ovarian cancer stem cells.

    PubMed

    Yan, Hongchao; Tong, Jianye; Lin, Xiaoman; Han, Qiuyu; Huang, Hongxiang

    2015-08-01

    In order to examine new ideas for gene therapy in ovarian cancer, the specific mechanism underlying the effects of the WW domain containing oxidoreductase (WWOX) gene on cell cycle regulation and apoptosis in human ovarian cancer stem cells was investigated. Ovarian cancer stem cells were transfected with a eukaryotic expression vector carrying the WWOX gene in vitro (recombinant plasmid) and cells transfected with the empty plasmid (empty plasmid) or untransfected cells were used as controls. Stably transfected cells were screened and amplified in culture and the WWOX protein was detected by western blot analysis in the three groups of cells. Western blot analysis was performed to detect the expression of cell cycle regulatory proteins cyclin E, cyclin-dependent kinase (CDK) 2, cyclin D1, CDK4 and apoptosis-related protein Wnt-5α and c-Jun N-terminal kinase (JNK), while polymerase chain reaction (PCR) was used to detect alterations in the mRNA expression levels of caspase-3. The results demonstrated that the WWOX protein was stably expressed in cells of the recombinant plasmid group, but was not detected in cells of the empty plasmid group and the control group. Cell proliferation at each time point decreased significantly in the recombinant plasmid group compared with the empty plasmid group and the control group. Flow cytometric analysis demonstrated that the proportion of cells in the G0/G1 phase in the recombinant plasmid group was significantly higher than that of cells in the empty plasmid group and the control group. The rate of apoptosis in the recombinant plasmid group was significantly higher than that of cells in the empty plasmid group and the control group. Western blot analysis demonstrated that the expression levels of cyclin E, CDK2, cyclin D1 and CDK4 in the recombinant plasmid group were significantly lower than those in the empty plasmid group and the control group; however, the expression levels of Wnt-5α and JNK were significantly higher

  2. The relation between doses or post-plasma time points and apoptosis of leukemia cells induced by dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Haixia; Xue, Zhixiao; Yin, Huijuan; Niu, Qing; Chen, Hongli

    2015-12-01

    The dielectric barrier discharge (DBD) plasma was applied to induce apoptosis of LT-12 leukemia cells. Plasma effects on cell death was evaluated by MTT assay and FCM apoptosis assay with Annexin V/PI double staining, suggesting that plasma killing cells rate and inducing cell apoptosis rate both positively were related to the plasma doses or the post-plasma time points. The cell death rates increased from 15.2% to 33.1% and the apoptosis rate raise from 23.8% to 28% when the dose raise from 60s to 120 s at 8 h post-plasma, while they increased from 15.4% to 34.9% and from 48% to 55.3% respectively at the same doses at 12 h post-plasma. Furthermore, the production of reactive oxygen species (ROS), gene and protein expression for Caspases and Bcl-2 family members were measured for exploring the related apoptotic mechanisms phenomenon. We found ROS immediately increased to 1.24 times of the original amount, then increasing to 5.39-fold at 20 h after treatment. The gene and protein expression for Caspases and Bcl-2 family members are very active at 8-12 h post-plasma. Our results demonstrate that DBD plasma can effectively induce tumor cell death through primarily related apoptotic mechanisms.

  3. VMP1 related autophagy and apoptosis in colorectal cancer cells: VMP1 regulates cell death

    SciTech Connect

    Qian, Qinyi; Zhou, Hao; Chen, Yan; Shen, Chenglong; He, Songbing; Zhao, Hua; Wang, Liang; Wan, Daiwei; Gu, Wen

    2014-01-17

    Highlights: •This research confirmed VMP1 as a regulator of autophagy in colorectal cancer cell lines. •We proved the pro-survival role of VMP1-mediated autophagy in colorectal cancer cell lines. •We found the interaction between VMP1 and BECLIN1 also existing in colorectal cancer cell lines. -- Abstract: Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death.

  4. Algal sulfated carrageenan inhibits proliferation of MDA-MB-231 cells via apoptosis regulatory genes.

    PubMed

    Murad, Hossam; Ghannam, Ahmed; Al-Ktaifani, Mahmoud; Abbas, Assef; Hawat, Mohammad

    2015-03-01

    Marine algae are prolific sources of sulfated polysaccharides, which may explain the low incidence of certain cancers in countries that traditionally consume marine food. Breast cancer is one of the most common types of non‑skin cancer in females. In this study, extracted sulfated carrageenan (ESC), predominantly consisting of ι‑carrageenan extracted from the red alga Laurencia papillosa, was characterized using Fourier transform infrared spectrometry. The biological effects of the identified extract were investigated and its potential cytotoxic activity was tested against the MDA‑MB‑231 cancer cell line. The biological biometer of the inhibitory concentration of the polysaccharide‑treated MDA‑MB‑231 cells was determined as 50 µM. Treatment with 50 µM ESC inhibited cell proliferation and promptly induced cell death through nuclear condensation and DNA fragmentation. Characterization of polysaccharide‑treated MDA‑MB‑231 cell death revealed that induction of apoptosis occurred via the activation of the extrinsic apoptotic caspase‑8 gene. The apoptotic signaling pathway was regulated through caspase‑3, caspase‑9, p53, Bax and Bcl‑2 genes. These findings suggest that ESC may serve as a potential therapeutic agent to target breast cancer via prompting apoptosis. PMID:25384757

  5. TNF-related apoptosis-inducing ligand (TRAIL): a potential candidate for combined treatment of hematological malignancies.

    PubMed

    Secchiero, Paola; Vaccarezza, Mauro; Gonelli, Arianna; Zauli, Giorgio

    2004-01-01

    TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF gene superfamily, which induces apoptosis through engagement of death receptors. TRAIL is unusual as compared to the other cytokines of this family, as it interacts with a complex system of receptors consisting of two pro-apoptotic death receptors (TRAIL-R1 and TRAIL-R2) and three decoy receptors (TRAIL-R3, TRAIL-R4 and osteoprotegerin). Moreover, with respect to other members of the TNF superfamily, such as CD95L and TNF-alpha, TRAIL has generated great interest as a potential tumor-specific cancer therapeutic because as a stable soluble trimer it selectively induces apoptosis in many transformed cells but not in normal cells. Of note, TRAIL cytotoxicity is at least partially independent of the major systems involved in resistance to chemotherapy, such as p53 wild-type function and multidrug resistance (MDR) genes. Since one fundamental problem of most cancers is the development of multiple mechanisms of resistance, which progressively reduce or suppress the therapeutic efficacy of conventional chemotherapy, new therapeutic approaches that either restore the pro-apoptotic activity of chemotherapeutic drugs or by-pass the mechanisms of resistance are highly desirable. This review will focus on the potential of TRAIL for its application in the therapy of hematological malignancies, used either alone or in combination with chemotherapy. The scenario emerging from the literature is that the treatment and management of hematological malignancies will require the rational combination of TRAIL plus conventional or new drugs in a regimen that would optimize the anti-neoplastic activity in malignant cells resistant to chemotherapy through restoration of the pro-apoptotic activity of TRAIL. PMID:15579063

  6. Role of apoptosis in pathogenesis and treatment of bone-related diseases.

    PubMed

    Mollazadeh, Samaneh; Fazly Bazzaz, Bibi Sedigheh; Kerachian, Mohammad Amin

    2015-01-01

    In this article, bone cells and their intercellular communications have been reviewed. Gap junctions and hemichannels are the main routes of interactions in bone tissue. They play a substantial role in survival and cell death, since pro-apoptotic signals can propagate through them. Different adhesion molecules are required for apoptosis, particularly caspase family as well as noncaspase proteases. The disruption outcome of apoptosis could result in bone-related diseases such as osteonecrosis. Anti-apoptotic strategies include inhibition of caspase, poly [ADP-ribose] polymerase (PARP), and Bcl-2 proteins as well as induction of the PKB/Akt pathway and inhibitors of apoptosis (IAP) family of proteins. Thus, understanding the mechanism of apoptosis gives detailed insights of anti-apoptotic molecular targets. Based on these targets, different treatments were designed and produced such as estrogen replacement therapy, administration of different bisphosphonates, raloxifene, calcitonin, sodium fluoride, calcium, and vitamin D. As a result, new applicable drugs for treatment of related bone problems can be proposed for clinical approach especially in the early stage of diseases. PMID:25627748

  7. Synergistically combined gene delivery for enhanced VEGF secretion and anti-apoptosis

    PubMed Central

    Won, Young-Wook; Lee, Minhyung; Kim, Hyun Ah; Nam, Kihoon; Bull, David A.; Kim, Sung Wan

    2013-01-01

    With current pharmacological treatments, preventing the remodeling of the left ventricle and the progression to heart failure is a difficult task. Gene therapy is considered to provide a direct treatment to the long-term complications of ischemic heart diseases. Although current gene therapies that use single molecular targets seem potentially possible, they have not achieved a success in the treatment of ischemic diseases. With an efficient polymeric gene carrier, PAM-ABP, we designed a synergistically combined gene delivery strategy to enhance vascular endothelial growth factor (VEGF) secretion and prolong anti-apoptotic effects. A hypoxia-inducible plasmid expressing both hypoxia-inducible heme oxygenase-1 (HO-1) and the Src homology domain-2 containing tyrosine phosphatase-1 microRNA (miSHP 1) and a hypoxia-responsive VEGF plasmid were combined in this study. The positive feedback circuit between HO-1 and VEGF, and the negative regulatory role of SHP-1 in angiogenesis enhance VEGF secretion synergistically. The synergy in VEGF secretion as a consequence of the gene combination and the prolonged HO-1 activity was confirmed in hypoxic cardiomyocytes and cardiomyocyte apoptosis under hypoxia, and was decreased synergistically. These results suggest that the synergistic combination of VEGF, HO-1, and miSHP-1 may be promising for the clinical treatment of ischemic diseases. PMID:24007285

  8. Demethoxycurcumin alters gene expression associated with DNA damage, cell cycle and apoptosis in human lung cancer NCI-H460 cells in vitro.

    PubMed

    Ko, Yang-Ching; Hsu, Shu-Chun; Liu, Hsin-Chung; Hsiao, Yung-Ting; Hsia, Te-Chun; Yang, Su-Tso; Hsu, Wu-Huei; Chung, Jing-Gung

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths and new lung cancer cases are continuously emerging around the globe; however, treatment of lung cancer remains unsatisfactory. Demethoxycurcumin (DMC) has been shown to exert cytotoxic effects in human cancer cells via induction of apoptosis. However, the effects of DMC on genetic mechanisms associated with these actions have not been yet elucidated. Human lung cancer NCI-H460 cells were incubated with or without 35 μM of DMC for 24 h and total RNA was extracted for cDNA synthesis labeling and microarray hybridization, followed by fluor-labeled cDNA hybridization on chip. Expression Console software with default Robust Multichip Analysis (RMA) parameters were used for detecting and quantitating the localized concentrations of fluorescent molecules. The GeneGo software was used for investigating key genes involved and their possible interaction pathways. Genes associated with DNA damage and repair, cell-cycle check point and apoptosis could be altered by DMC; in particular, 144 genes were found up-regulated and 179 genes down-regulated in NCI-H460 cells after exposure to DMC. In general, DMC-altered genes may offer information to understand the cytotoxic mechanism of this agent at the genetic level since gene alterations can be useful biomarkers or targets for the diagnosis and treatment of human lung cancer in the future. PMID:25600535

  9. Ceramides promote apoptosis for virus-infected lymphoma cells through induction of ceramide synthases and viral lytic gene expression

    PubMed Central

    Dai, Lu; Trillo-Tinoco, Jimena; Bai, Aiping; Chen, Yihan; Bielawski, Jacek; Del Valle, Luis; Smith, Charles D.; Ochoa, Augusto C.; Qin, Zhiqiang; Parsons, Chris

    2015-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent for several human cancers including primary effusion lymphoma (PEL), a rapidly progressive malignancy arising preferentially in immunocompromised patients. With conventional chemotherapy, PEL continues to portend high mortality, dictating the development of novel therapeutic strategies. Sphingosine kinase 2 (SphK2) represents a key gatekeeper for sphingolipid metabolism, responsible for conversion of ceramides to sphingosine-1-phosphate (S1P). We have previously demonstrated that targeting SphK2 using a novel selective inhibitor, ABC294640, leads to intracellular accumulation of ceramides and induces apoptosis for KSHV-infected PEL cells, while suppressing tumor progression in vivo. In the current study, we sought to determine whether specific ceramide/dh-ceramide species and related ceramide synthases (CerS) impact viability for KSHV-infected PEL cells during targeting of SphK2. We found that several specific ceramide and dihydro(dh)-ceramide species and their associated CerS reduce PEL survival and tumor expansion in vitro and in vivo. Moreover, we found that dhC16-Cer induces PEL apoptosis in part through activation of KSHV lytic gene expression. These data further implicate bioactive sphingolipids in regulation of PEL survival, and provide justification for future studies evaluating clinically relevant ceramide analogs or mimetics for their potential as therapeutic agents for PEL. PMID:26327294

  10. Effects of aging on apoptosis gene expression in oral mucosal tissues.

    PubMed

    Gonzalez, Octavio A; Novak, M John; Kirakodu, Sreenatha; Stromberg, Arnold J; Shen, Shu; Orraca, Luis; Gonzalez-Martinez, Janis; Ebersole, Jeffrey L

    2013-03-01

    Apoptotic processes are important for physiologic renewal of an intact epithelial barrier and contribute some antimicrobial resistance for bacteria and viruses, as well as anti-inflammatory effects that benefits the mucosa. The oral cavity presents a model of host-bacterial interactions at mucosal surfaces, in which a panoply of microorganisms colonizes various niches in the oral cavity and creates complex multispecies biofilms that challenge the gingival tissues. This report details gene expression in apoptotic pathways that occur in oral mucosal tissues across the lifespan, using a nonhuman primate model. Macaca mulatta primates from 2 to 23 years of age (n = 23) were used in a cross-sectional study to obtain clinical healthy gingival tissues specimens. Further, mRNA was prepared and evaluated using the Affymetrix Rhesus GeneChip and 88 apoptotic pathway genes were evaluated. The results identified significant positive correlations with age in 12 genes and negative correlations with an additional five genes. The gene effects were predicted to alter apoptosis receptor levels, extrinsic apoptotic pathways through caspases, cytokine effects on apoptotic events, Ca(+2)-induced death signaling, cell cycle checkpoints, and potential effects of survival factors. Both the positively and negatively correlated genes within the apoptotic pathways provided evidence that healthy tissues in aging animals exhibit decreased apoptotic potential compared to younger animals. The results suggested that decreased physiologic apoptotic process in the dynamic septic environment of the oral mucosal tissues could increase the risk of aging tissues to undergo destructive disease processes through dysregulated inflammatory responses to the oral microbial burden. PMID:23334583

  11. MiR-133b Targets Antiapoptotic Genes and Enhances Death Receptor-Induced Apoptosis

    PubMed Central

    Bild, Matthias; Jung, Ulrike; Müller, Henrik; Arntzen, Magnus Ø.; Piso, Chloe; Stephan, Carsten; Thiede, Bernd; Mollenkopf, Hans-Joachim; Jung, Klaus; Kaufmann, Stefan H. E.; Schreiber, Jörg

    2012-01-01

    Despite the importance of microRNAs (miRs) for regulation of the delicate balance between cell proliferation and death, evidence for their specific involvement during death receptor (DR)-mediated apoptosis is scarce. Transfection with miR-133b rendered resistant HeLa cells sensitive to tumor necrosis factor-alpha (TNFα)-induced cell death. Similarly, miR-133b caused exacerbated proapoptotic responses to TNF-related apoptosis-inducing ligand (TRAIL) or an activating antibody to Fas/CD95. Comprehensive analysis, encompassing global RNA or protein expression profiling performed by microarray experiments and pulsed stable isotope labeling with amino acids in cell culture (pSILAC), led to the discovery of the antiapoptotic protein Fas apoptosis inhibitory molecule (FAIM) as immediate miR-133b target. Moreover, miR-133b impaired the expression of the detoxifying protein glutathione-S-transferase pi (GSTP1). Expression of miR-133b in tumor specimens of prostate cancer patients was significantly downregulated in 75% of the cases, when compared with matched healthy tissue. Furthermore, introduction of synthetic miR-133b into an ex-vivo model of prostate cancer resulted in impaired proliferation and cellular metabolic activity. PC3 cells were also sensitized to apoptotic stimuli after transfection with miR-133b similar to HeLa cells. These data reveal the ability of a single miR to influence major apoptosis pathways, suggesting an essential role for this molecule during cellular transformation, tumorigenesis and tissue homeostasis. PMID:22532850

  12. Comparison of oxycodone and morphine on the proliferation, apoptosis and expression of related molecules in the A549 human lung adenocarcinoma cell line

    PubMed Central

    Tian, Mi; Jin, Li; Li, Renqi; Zhu, Sihai; Ji, Muhuo; Li, Weiyan

    2016-01-01

    The present study aimed to compare the effects of oxycodone and morphine hydrochloride on the proliferation, apoptosis and migration of A549 lung cancer cells. A549 human lung cancer cells were cultured in vitro and treated with oxycodone or morphine at various concentrations (10, 20 and 40 µg/ml). Cell migration was determined using a wound healing assay, whereas apoptosis was detected using flow cytometry. Reverse transcription quantitative-polymerase chain reaction was performed in order to assess the apoptosis-related gene expression levels, including p53, B-cell lymphoma (Bcl)-2 and Bcl-2-associated X protein (Bax). The levels of vascular endothelial growth factor (VEGF) and urokinase-type plasminogen activator (uPA) were detected using enzyme-linked immunosorbent assays. The expression levels of intercellular cell adhesion molecule (ICAM)-1 were determined by immunofluorescence. In the present study, oxycodone and morphine induced apoptosis in A549 lung cancer cells with similar potency; however, >20 µg/ml oxycodone was more effective at inhibiting cell proliferation (P<0.05) and migration (P<0.05), as compared with morphine at the same concentration. Oxycodone induced a dose-dependent increase in the expression levels of p53 and Bax apoptosis-related genes, whereas it decreased the gene expression levels of Bcl-2. Furthermore, oxycodone decreased, whereas morphine increased, the expression levels of ICAM-1 in a concentration-dependent manner. In addition, at 40 µg/ml, the expression levels of VEGF and uPA in the morphine group were significantly higher than those demonstrated in the oxycodone group (P<0.05). In conclusion, oxycodone was more effective in inhibiting the proliferation and migration of A549 lung cancer cells, as compared with morphine. PMID:27446244

  13. A novel mechanism of dasatinib-induced apoptosis in chronic myeloid leukemia; ceramide synthase and ceramide clearance genes.

    PubMed

    Gencer, Emel B; Ural, Ali U; Avcu, Ferit; Baran, Yusuf

    2011-11-01

    Sphingolipids are bioeffector molecules that control various aspects of cell growth, proliferation, apoptosis, and drug resistance. Ceramides, the central molecule of sphingolipid metabolism, are inducer of apoptosis and inhibitors of proliferation. Sphingosine-1-phosphate (S1P) and glucosyleceramide, converted from ceramides by sphingosine kinase-1 (SK-1) and glucosyleceramide synthase (GCS) enzymes, respectively, inhibit apoptosis and develop resistance to chemotherapeutic drugs. In this study, we examined the therapeutic potentials of bioactive sphingolipids in chronic myeloid leukemia (CML) alone and in combination with dasatinib in addition to investigate the roles of ceramide-metabolizing genes in dasatinib-induced apoptosis. Cytotoxic effects of dasatinib, C8:ceramide, PDMP, and SK-1 inhibitor were determined by XTT cell proliferation assay. Changes in caspase-3 enzyme activity and mitochondrial membrane potential (MMP) were measured using caspase-3 colorimetric assay and JC-1 MMP detection kit. Expression levels of ceramide-metabolizing genes were examined by qRT-PCR. Application of ceramide analogs and inhibitors of ceramide clearance genes decreased cell proliferation and induced apoptosis. Targeting bioactive sphingolipids towards generation/accumulation of ceramides increased apoptotic effects of dasatinib, synergistically. It was shown for the first time that dasatinib induces apoptosis through downregulating expression levels of antiapoptotic SK-1 but not GCS, and upregulating expression levels of ceramide synthase (CerS) genes, especially CerS1, in K562 cells. On the other hand, dasatinib downregulates expression levels of both GCS and SK-1 and upregulate apoptotic CerS2, -5 and -6 genes in Meg-01 cells. Increasing endogenous ceramide levels and decreasing prosurvival lipids, S1P, and GC, can open the way of more effective treatment of CML. PMID:21455605

  14. Inhibition of Single Minded 2 gene expression mediates tumor-selective apoptosis and differentiation in human colon cancer cells.

    PubMed

    Aleman, Mireille J; DeYoung, Maurice Phil; Tress, Matthew; Keating, Patricia; Perry, Gary W; Narayanan, Ramaswamy

    2005-09-01

    A Down's syndrome associated gene, Single Minded 2 gene short form (SIM2-s), is specifically expressed in colon tumors but not in the normal colon. Antisense inhibition of SIM2-s in a RKO-derived colon carcinoma cell line causes growth inhibition, apoptosis, and inhibition of tumor growth in a nude mouse tumoriginicity model. The mechanism of cell death in tumor cells is unclear. In the present study, we investigated the pathways underlying apoptosis. Apoptosis was seen in a tumor cell-specific manner in RKO cells but not in normal renal epithelial cells, despite inhibition of SIM2-s expression in both of these cells by the antisense. Apoptosis was depended on WT p53 status and was caspase-dependent; it was inhibited by a pharmacological inhibitor of mitogen-activated protein kinase activity. Expression of a key stress response gene, growth arrest and DNA damage gene (GADD)45alpha, was up-regulated in antisense-treated tumor cells but not in normal cells. In an isogenic RKO cell line expressing stable antisense RNA to GADD45alpha, a significant protection of the antisense-induced apoptosis was seen. Whereas antisense-treated RKO cells did not undergo cell cycle arrest, several markers of differentiation were deregulated, including alkaline phosphatase activity, a marker of terminal differentiation. Protection of apoptosis and block of differentiation showed a correlation in the RKO model. Our results support the tumor cell-selective nature of SIM2-s gene function, provide a direct link between SIM2-s and differentiation, and may provide a model to identify SIM2-s targets. PMID:16129820

  15. Reproductive Toxicity of Endosulfan: Implication From Germ Cell Apoptosis Modulated by Mitochondrial Dysfunction and Genotoxic Response Genes in Caenorhabditis elegans

    PubMed Central

    Du, Hua; Wang, Meimei; Wang, Lei; Dai, Hui; Wang, Min; Hong, Wei; Nie, Xinxin; Wu, Lijun; Xu, An

    2015-01-01

    Endosulfan as a new member of persistent organic pollutants has been shown to induce reproductive dysfunction in various animal models. However, the action mechanism of endosulfan-produced reproductive toxicity remains largely unknown. This study was focused on investigating the reproductive toxicity induced by α-endosulfan and clarifying the role of mitochondria and genotoxic response genes in germ cell apoptosis of Caenorhabditis elegans. Our data showed that endosulfan induced a dose-dependent decrease of life span, fecundity, and hatchability, whereas the germ cell apoptosis was dose-dependently increased. The mitochondria membrane potential was disrupted by endosulfan, leading to a significant increase of germ cell apoptosis in mev-1(kn-1) mutant. However, the apoptotic effects of endosulfan were blocked in mutants of cep-1(w40), egl-1(n487), and hus-1(op241), indicating conserved genotoxic response genes played an essential role in endosulfan-induced germ cell apoptosis. Furthermore, exposure to endosulfan induced the accumulation of HUS-1::GFP foci and the germ cell cycle arrest. These findings provided clear evidence that endosulfan caused significant adverse effects on the reproduction system of C. elegans and increased germ cell apoptosis, which was regulated by mitochondrial dysfunction and DNA damage response genes. This study may help to understand the signal transduction pathways involved in endosulfan-induced reproductive toxicity. PMID:25666835

  16. Identification and functional analysis of LsMNPV anti-apoptosis genes.

    PubMed

    Kim, Yu-Sin; Xiao, Hua-Zhong; Du, En-Qi; Cai, Guo-Shuai; Lu, Song-Ya; Qi, Yi-Peng

    2007-07-31

    Three anti-apoptosis genes, Ls-iap2, iap3 and p49 were found in Leucania separata multiple nuclear polyhedrovirus. Amino acid sequence homology of Ls-IAP2 and Ls-IAP3 with Op-IAP2 and Op-IAP3 from Orgyia pseddotsugata MNPV were 20% and 42%, while that of Ls-P49 is 28% with Sl-P49 from Spodoptera littorolis MNPV. Ls-IAP2 contains one baculoviral IAP repeat (BIR) domain followed by a RING domain, while Ls-IAP3 contains two BIRs and a RING. Ls-P49 contains a reactive site loop, predicted cleavage site (KKLD(74) downward arrow G) that is different from Sl-P49 (TVID(94) downward arrow G). Expressed Ls-iap3 or Ls-p49 under presence of actinomycin D in SF9 cells, DNA ladder assay revealed that Ls- IAP3 or Ls-P49 could block the apoptosis of SF9 cells induced by actinomycin D. Replication of p35 deficient-mutant Autographa californica MNPV in SF9 cells was also rescued when Ls-iap3 or Ls-p49 was expressed transiently. No anti-apoptotic activity was observed for Ls-IAP2. The results showed that both of Ls-IAP3 and Ls-P49 were functional apoptotic suppressors in SF9 cells. PMID:17669274

  17. Bioinformatic characterization and gene expression pattern of apoptosis inhibitor from Macrobrachium rosenbergii challenged with infectious hypodermal and hematopoietic necrosis virus.

    PubMed

    Arockiaraj, Jesu; Vanaraja, Puganeshwaran; Easwvaran, Sarasvathi; Singh, Arun; Othman, Rofina Yasmin; Bhassu, Subha

    2011-12-01

    Apoptosis is genetically programmed cellular killing processes that execute unnecessary or infected cells. It plays an important role in embryogenesis, homeostasis, insect metamorphosis and immunity. Apoptosis inhibitor (MrIAP) was sequenced from the freshwater giant prawn Macrobrachium rosenbergii using Illumina Solexa Genome Analyzer Technique. MrIAP consisted of 1753 base pair nucleotides encoded 535 polypeptide with an estimated molecular mass of 60 kDa. MrIAP amino acid sequence contains IAP superfamily domain between 5 and 490. The deduced amino acid sequences of the MrIAP were aligned with the other IAP family members. The highest sequence similarity was observed in IAP-5 from ant Camponotus floridanus (67%) followed by IAP from body louse Pediculus humanus corporis (66%) and the lowest (62%) in IAP-5 isoform-5 from common chimpanzee Pan troglodytes and IAP-5 from Aedes aegypti. The IAP phylogenetic tree showed that MrIAP closely related to other arthropod blacklegged tick Ixodes scapularis, formed a sister group with IAP from a hemichordate acorn worm Saccoglossus kowalevskii and finally clustered together with IAPs from fish groups. The quantitative real time PCR analysis revealed that significantly (P < 0.05) highest expression was noticed in hepatopancreas and significantly (P < 0.05) lowest expression in pleopods. Based on the results of gene expression analysis, MrIAP mRNA transcription in M. rosenbergii challenged to infectious hypodermal and hematopoietic necrosis virus (IHHNV) was highly induced in hepatopancreas. The collective results of this study indicate that the MrIAP is an essential immune gene and influences the immune response against IHHNV infection in M. rosenbergii. PMID:21945707

  18. Delivery of PUMA Apoptosis Gene Using Polyethyleneimine-SMCC-TAT/DNA Nanoparticles: Biophysical Characterization and In Vitro Transfection Into Malignant Melanoma Cells.

    PubMed

    Li, Fu; Wang, Zhifei; Huang, Yuanfu; Xu, Hancong; He, Lei; Deng Yan; Zeng, Xin; He, Nongyue

    2015-10-01

    A synthesized PEI-based gene delivery system, wherein PEI was crosslinked with sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (Sulfo-SMCC) conjugating trans-activating transcriptional activator (TAT), yielding PEI-SMCC-TAT (PST), a novel non-viral vector for apoptosis-related gene PUMA (p53 up regulated modulator of apoptosis), was designed and evaluated. Sulfo-SMCC is a commonly used heterobifunctional crosslinker and is soluble in water, making the crosslinking easier without organic reagent like DMSO or chloroform. The PST/pDNA nanoparticles were 171.9 nm at the optimal N/P ratio (50:1). DNA complexes of all the PST conjugation had much lower toxicity and exhibited enhancement in transfection efficiency in comparison with single PEI vector. The results also showed that the transfection efficiency of PST/pEGFP nanoparticles into malignant melanoma A375 cell increased, and PST carrying PUMA gene induced the apoptosis of A375 cells. It was suggested that PST could be a promising melanoma tumor-targeting nanovector, and have a good potential in clinical application. PMID:26502640

  19. Activation of a PGC-1-related coactivator (PRC)-dependent inflammatory stress program linked to apoptosis and premature senescence.

    PubMed

    Gleyzer, Natalie; Scarpulla, Richard C

    2013-03-22

    PGC-1-related coactivator (PRC), a growth-regulated member of the PGC-1 coactivator family, contributes to the expression of the mitochondrial respiratory apparatus. PRC also orchestrates a robust response to metabolic stress by promoting the expression of multiple genes specifying inflammation, proliferation, and metabolic reprogramming. Here, we demonstrate that this PRC-dependent stress program is activated during apoptosis and senescence, two major protective mechanisms against cellular dysfunction. Both PRC and its targets (IL1α, SPRR2D, and SPRR2F) were rapidly induced by menadione, an agent that promotes apoptosis through the generation of intracellular oxidants. Menadione-induced apoptosis and the PRC stress program were blocked by the antioxidant N-acetylcysteine. The PRC stress response was also activated by the topoisomerase I inhibitor 7-ethyl-10-hydroxycamptothecin (SN-38), an inducer of premature senescence in tumor cells. Cells treated with SN-38 displayed morphological characteristics of senescence and express senescence-associated β-galactosidase activity. In contrast to menadione, the SN-38 induction of the PRC program occurred over an extended time course and was antioxidant-insensitive. The potential adaptive function of the PRC stress response was investigated by treating cells with meclizine, a drug that promotes glycolytic energy metabolism and has been linked to cardio- and neuroprotection against ischemia-reperfusion injury. Meclizine increased lactate production and was a potent inducer of the PRC stress program, suggesting that PRC may contribute to the protective effects of meclizine. Finally, c-MYC and PRC were coordinately induced under all conditions tested, implicating c-MYC in the biological response to metabolic stress. The results suggest a general role for PRC in the adaptive response to cellular dysfunction. PMID:23364789

  20. Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes

    SciTech Connect

    Lieuallen, Kimberly; Pennacchio, Len A.; Park, Morgan; Myers, Richard M.; Lennon, Gregory G.

    2001-07-05

    Loss-of-function mutations in the cystatin B (Cstb) gene cause a neurological disorder known as Unverricht Lundborg disease (EPM1) in human patients. Mice that lack Cstb provide a mammalian model for EPM1 by displaying progressive ataxia and myoclonic seizures. We analyzed RNAs from brains of Cstb-deficient mice by using modified differential display, oligonucleotide microarray hybridization and quantitative reverse transcriptase polymerase chain reaction to examine the molecular consequences of the lack of Cstb. We identified seven genes that have consistently increased transcript levels in neurological tissues from the knockout mice. These genes are cathepsin S, C1q B-chain of complement (C1qB), beta-2-microglobulin, glial fibrillary acidic protein (Gfap), apolipoprotein D, fibronectin 1 and metallothionein II, which are expected to be involved in increased proteolysis, apoptosis and glial activation. The molecular changes in Cstb-deficient mice are consistent with the pathology found in the mouse model and may provide clues towards the identification of therapeutic points of intervention for EPM1 patients.

  1. Identification and characterization of the biosynthetic gene cluster of polyoxypeptin A, a potent apoptosis inducer

    PubMed Central

    2014-01-01

    Background Polyoxypeptin A was isolated from a culture broth of Streptomyces sp. MK498-98 F14, which has a potent apoptosis-inducing activity towards human pancreatic carcinoma AsPC-1 cells. Structurally, polyoxypeptin A is composed of a C15 acyl side chain and a nineteen-membered cyclodepsipeptide core that consists of six unusual nonproteinogenic amino acid residues (N-hydroxyvaline, 3-hydroxy-3-methylproline, 5-hydroxypiperazic acid, N-hydroxyalanine, piperazic acid, and 3-hydroxyleucine) at high oxidation states. Results A gene cluster containing 37 open reading frames (ORFs) has been sequenced and analyzed for the biosynthesis of polyoxypeptin A. We constructed 12 specific gene inactivation mutants, most of which abolished the production of polyoxypeptin A and only ΔplyM mutant accumulated a dehydroxylated analogue polyoxypeptin B. Based on bioinformatics analysis and genetic data, we proposed the biosynthetic pathway of polyoxypeptin A and biosynthetic models of six unusual amino acid building blocks and a PKS extender unit. Conclusions The identified gene cluster and proposed pathway for the biosynthesis of polyoxypeptin A will pave a way to understand the biosynthetic mechanism of the azinothricin family natural products and provide opportunities to apply combinatorial biosynthesis strategy to create more useful compounds. PMID:24506891

  2. The glucocorticoid-induced gene tdag8 encodes a pro-apoptotic G protein-coupled receptor whose activation promotes glucocorticoid-induced apoptosis.

    PubMed

    Malone, Michael H; Wang, Zhengqi; Distelhorst, Clark W

    2004-12-17

    The apoptotic action of glucocorticoids on lymphocytes makes them effective therapeutics for many lymphoid malignancies. Although it is clear that glucocorticoid-induced apoptosis requires transcription, the gene products that induce apoptosis remain unknown. Using gene expression profiles of lymphoma cell lines and primary thymocytes treated with the synthetic glucocorticoid dexamethasone, we discovered that induction of tdag8 (T-cell death-associated gene 8) was a common event in each model system investigated. Activation of TDAG8 by its agonist psychosine markedly enhanced dexamethasone-induced apoptosis in a TDAG8-dependent manner. Expression of a TDAG8-GFP fusion protein was sufficient to induce apoptosis, and repression of endogenous TDAG8 using RNA interference partially inhibited dexamethasone-induced apoptosis. Together, these data suggest that TDAG8 is a regulator of glucocorticoid-induced apoptosis and that agonists of TDAG8 may be promising agents to improve the efficacy of glucocorticoids for the treatment of leukemia and lymphoma. PMID:15485889

  3. Distinct spatial activation of intrinsic and extrinsic apoptosis pathways in natural scrapie: association with prion-related lesions

    PubMed Central

    Serrano, Carmen; Lyahyai, Jaber; Bolea, Rosa; Varona, Luis; Monleón, Eva; Badiola, Juan J.; Zaragoza, Pilar; Martín-Burriel, Inmaculada

    2009-01-01

    Neurodegeneration and gliosis are the main neuropathological features of prion diseases. However, the molecular mechanisms involved in these processes remain unclear. Several studies have demonstrated changes in the expression of apoptotic factors and inflammatory cytokines in animals with experimental infection. Here we present the expression profiles of 15 genes implicated in the intrinsic and extrinsic apoptotic pathways in the central nervous systems of sheep naturally infected with scrapie. Expression changes obtained by real-time RT-PCR were also compared with the extent of classical scrapie lesions, such as prion deposition, neuronal vacuolisation, spongiosis, and astrogliosis as well as with the activation of caspase-3, using a stepwise regression. The results suggest that the factors assessed participate in apoptotic or inflammatory functions, depending on the affected area. The mitochondrial apoptosis pathway was associated with prion deposition in the prefrontal cortex (the less affected area), and with activation of caspase-3-mediated cell death via over-expression of BAK. In addition to its known association with astroglial activation, the extrinsic apoptosis pathway was also related to cell death and neuronal vacuolisation. PMID:19401142

  4. Possible Molecular Mechanisms Underlying Age-Related Cardiomyocyte Apoptosis in the F344XBN Rat Heart

    PubMed Central

    Kakarla, Sunil K.; Rice, Kevin M.; Katta, Anjaiah; Paturi, Satyanarayana; Wu, Miaozong; Kolli, Madhukar; Keshavarzian, Saba; Manzoor, Kamran; Wehner, Paulette S.

    2010-01-01

    Despite advances in treatment, age-related cardiac dysfunction still remains a leading cause of cardiovascular death. Recent data have suggested that increases in cardiomyocyte apoptosis may be involved in the pathological remodeling of heart. Here, we examine the effects of aging on cardiomyocyte apoptosis in 6-, 30-, and 36-month-old Fischer344xBrown Norway F1 hybrid rats (F344XBN). Compared with 6-month hearts, aged hearts exhibited increased TdT-mediated dUTP nick end labeling–positive nuclei, caspase-3 activation, caspase-dependent cleavage of α-fodrin and diminished phosphorylation of protein kinase B/Akt (Thr 308). These age-dependent increases in cardiomyocyte apoptosis were associated with alterations in the composition of the cardiac dystrophin glycoprotein complex and elevated cytoplasmic IgG and albumin immunoreactivity. Immunohistochemical analysis confirmed these data and demonstrated qualitative differences in localization of dystrophin–glycoprotein complex (DGC) molecules with aging. Taken together, these data suggest that aging-related increases in cardiac apoptotic activity model may be due, at least in part, to age-associated changes in DGC structure. PMID:20056683

  5. Dynamin-Related Protein 1 Translocates from the Cytosol to Mitochondria during UV-Induced Apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenzhen; Wu, Shengnan; Feng, Jie

    2011-01-01

    Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, the mechanisms involved in these processes are still not well characterized. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial dynamics in response to UV irradiation in human lung adenocarcinoma cells (ASTC-α-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Our results suggest that Drp1 is involved in the regulation of transition from an interconnecting network to a punctiform mitochondrial phenotype during UV-induced apoptosis.

  6. Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern.

    PubMed

    Ashhab, Y; Alian, A; Polliack, A; Panet, A; Ben Yehuda, D

    2001-04-20

    Using homology searches, we identified a novel human inhibitor of apoptosis (IAP) gene. This gene has two splicing variants that contain open reading frames of 298 and 280 amino acids and both contained a single copy of baculovirus IAP repeat (BIR) and RING domain. We refer here to the longer and shorter variants as Livin alpha and beta, respectively. Semiquantitative reverse transcriptase-polymerase chain reaction demonstrated a tissue-specific and non-correlated expression pattern in both adult and fetal tissues. Both mRNA variants were detected in various transformed cell lines. Despite their very close similarity, the two isoforms have different antiapoptotic properties. Both isoforms have a significant antiapoptotic activity in the Jurkat T cell line after triggering apoptosis via tumor necrosis factor and CD95 receptors. The Livin alpha but not beta protects cells from apoptosis induced by staurosporine, but in contrast, apoptosis initiated by etoposide was blocked only by the beta isoform. This difference in biological activities may indicate the presence of critical amino acids outside the BIR and RING domains. These functional and tissue distribution differences of Livin alpha and beta suggest that Livin may play a complex role in the regulation of apoptosis. PMID:11322947

  7. MicroRNA-21 regulates T-cell apoptosis by directly targeting the tumor suppressor gene Tipe2

    PubMed Central

    Ruan, Q; Wang, P; Wang, T; Qi, J; Wei, M; Wang, S; Fan, T; Johnson, D; Wan, X; Shi, W; Sun, H; Chen, Y H

    2014-01-01

    MicroRNAs (MiRs) are short noncoding RNAs that can regulate gene expression. It has been reported that miR-21 suppresses apoptosis in activated T cells, but the molecular mechanism remains undefined. Tumor suppressor Tipe2 (or tumor necrosis factor-α-induced protein 8 (TNFAIP8)-like 2 (TNFAIP8L2)) is a newly identified anti-inflammatory protein of the TNFAIP8 family that is essential for maintaining immune homeostasis. We report here that miR-21 is a direct target of nuclear factor-κB and could regulate Tipe2 expression in a Tipe2 coding region-dependent manner. In activated T cells and macrophages, Tipe2 expression was markedly downregulated, whereas miR-21 expression was upregulated. Importantly, Tipe2-deficient T cells were significantly less sensitive to apoptosis. Conversely, overexpression of Tipe2 in EL-4 T cells increased their susceptibility to activation-induced apoptosis. Therefore, Tipe2 provides a molecular bridge between miR-21 and cell apoptosis; miR-21 suppresses apoptosis in activated T cells at least in part through directly targeting tumor suppressor gene Tipe2. PMID:24577093

  8. Effect of silencing HOXA5 gene expression using RNA interference on cell cycle and apoptosis in Jurkat cells

    PubMed Central

    HUANG, HUI-PING; LIU, WEN-JUN; GUO, QU-LIAN; BAI, YONG-QI

    2016-01-01

    Acute lymphocytic leukemia (ALL) is a common malignant tumor with a high morbidity rate among children, accounting for approximately 80% of leukemia cases. Although there have been improvements in the treatment of patients frequent relapse lead to a poor prognosis. The aim of the present study was to determine whether HOXA5 may be used as a target for gene therapy in leukemia in order to provide a new treatment. Mononuclear cells were extracted from the bone marrow according to the clinical research aims. After testing for ALL in the acute stage, the relative mRNA and protein expression of HOXA5 was detected in the ALL remission groups (n=25 cases per group) and the control group [n=20 cases, immune thrombocytopenia (ITP)]. Gene silencing by RNA interference (RNAi) was used to investigate the effect of silencing HOXA5 after small interfering RNA (siRNA) transfection to Jurkat cells. The HOXA5-specific siRNA was transfected to Jurkat cells using lipofectamine. The experiment was divided into the experimental group (liposomal transfection of HOXA5 targeting siRNA), the negative control group (liposomal transfection of cells with negative control siRNA) and the control group (plus an equal amount of cells and culture media only). Western blotting and quantitative fluorescent polymerase chain reaction (QF-PCR) were used to detect the relative HOXA5 mRNA expression and protein distribution in each cell group. Cell distribution in the cell cycle and the rate of cells undergoing apoptosis were determined using flow cytometry. The expression of HOXA5 at the mRNA and protein levels in the acute phase of ALL was significantly higher than that in ALL in the remission and control groups. In cells transfected with HOXA5-specific siRNA, the expression of HOXA5 at the mRNA and protein levels decreased significantly (P<0.05). The distribution of cells in the cell cycle was also altered. Specifically, more cells were present in the G0/G1 phase compared to the S phase (P<0.05). In

  9. Inhibition of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) reverses experimental pulmonary hypertension.

    PubMed

    Hameed, Abdul G; Arnold, Nadine D; Chamberlain, Janet; Pickworth, Josephine A; Paiva, Claudia; Dawson, Sarah; Cross, Simon; Long, Lu; Zhao, Lan; Morrell, Nicholas W; Crossman, David C; Newman, Christopher M H; Kiely, David G; Francis, Sheila E; Lawrie, Allan

    2012-10-22

    Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by the progressive narrowing and occlusion of small pulmonary arteries. Current therapies fail to fully reverse this vascular remodeling. Identifying key pathways in disease pathogenesis is therefore required for the development of new-targeted therapeutics. We have previously reported tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) immunoreactivity within pulmonary vascular lesions from patients with idiopathic PAH and animal models. Because TRAIL can induce both endothelial cell apoptosis and smooth muscle cell proliferation in the systemic circulation, we hypothesized that TRAIL is an important mediator in the pathogenesis of PAH. We demonstrate for the first time that TRAIL is a potent stimulus for pulmonary vascular remodeling in human cells and rodent models. Furthermore, antibody blockade or genetic deletion of TRAIL prevents the development of PAH in three independent rodent models. Finally, anti-TRAIL antibody treatment of rodents with established PAH reverses pulmonary vascular remodeling by reducing proliferation and inducing apoptosis, improves hemodynamic indices, and significantly increases survival. These preclinical investigations are the first to demonstrate the importance of TRAIL in PAH pathogenesis and highlight its potential as a novel therapeutic target to direct future translational therapies. PMID:23071256

  10. Inhibition of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) reverses experimental pulmonary hypertension

    PubMed Central

    Hameed, Abdul G.; Arnold, Nadine D.; Chamberlain, Janet; Pickworth, Josephine A.; Paiva, Claudia; Dawson, Sarah; Cross, Simon; Long, Lu; Zhao, Lan; Morrell, Nicholas W.; Crossman, David C.; Newman, Christopher M.H.; Kiely, David G.; Francis, Sheila E.

    2012-01-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by the progressive narrowing and occlusion of small pulmonary arteries. Current therapies fail to fully reverse this vascular remodeling. Identifying key pathways in disease pathogenesis is therefore required for the development of new-targeted therapeutics. We have previously reported tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) immunoreactivity within pulmonary vascular lesions from patients with idiopathic PAH and animal models. Because TRAIL can induce both endothelial cell apoptosis and smooth muscle cell proliferation in the systemic circulation, we hypothesized that TRAIL is an important mediator in the pathogenesis of PAH. We demonstrate for the first time that TRAIL is a potent stimulus for pulmonary vascular remodeling in human cells and rodent models. Furthermore, antibody blockade or genetic deletion of TRAIL prevents the development of PAH in three independent rodent models. Finally, anti-TRAIL antibody treatment of rodents with established PAH reverses pulmonary vascular remodeling by reducing proliferation and inducing apoptosis, improves hemodynamic indices, and significantly increases survival. These preclinical investigations are the first to demonstrate the importance of TRAIL in PAH pathogenesis and highlight its potential as a novel therapeutic target to direct future translational therapies. PMID:23071256

  11. Genes and gene networks implicated in aggression related behaviour.

    PubMed

    Malki, Karim; Pain, Oliver; Du Rietz, Ebba; Tosto, Maria Grazia; Paya-Cano, Jose; Sandnabba, Kenneth N; de Boer, Sietse; Schalkwyk, Leonard C; Sluyter, Frans

    2014-10-01

    Aggressive behaviour is a major cause of mortality and morbidity. Despite of moderate heritability estimates, progress in identifying the genetic factors underlying aggressive behaviour has been limited. There are currently three genetic mouse models of high and low aggression created using selective breeding. This is the first study to offer a global transcriptomic characterization of the prefrontal cortex across all three genetic mouse models of aggression. A systems biology approach has been applied to transcriptomic data across the three pairs of selected inbred mouse strains (Turku Aggressive (TA) and Turku Non-Aggressive (TNA), Short Attack Latency (SAL) and Long Attack Latency (LAL) mice and North Carolina Aggressive (NC900) and North Carolina Non-Aggressive (NC100)), providing novel insight into the neurobiological mechanisms and genetics underlying aggression. First, weighted gene co-expression network analysis (WGCNA) was performed to identify modules of highly correlated genes associated with aggression. Probe sets belonging to gene modules uncovered by WGCNA were carried forward for network analysis using ingenuity pathway analysis (IPA). The RankProd non-parametric algorithm was then used to statistically evaluate expression differences across the genes belonging to modules significantly associated with aggression. IPA uncovered two pathways, involving NF-kB and MAPKs. The secondary RankProd analysis yielded 14 differentially expressed genes, some of which have previously been implicated in pathways associated with aggressive behaviour, such as Adrbk2. The results highlighted plausible candidate genes and gene networks implicated in aggression-related behaviour. PMID:25142712

  12. Effect of different concentrations of neogenin on proliferation, apoptosis and related proliferative factors in human trophoblasts.

    PubMed

    Zhong, Shaoping; Zou, Li; Zhao, Yin; Hu, Bin; Xie, Han

    2010-08-01

    The underlying effect of different concentrations of neogenin on proliferation, apoptosis and the related proliferative factors in human trophoblasts was explored in order to understand the function of neogenin during placentation. TEV-1 cell line was cultured and the expression of netrin-1 was detected by using indirect cellular immunofluorescence. Exponentially growing TEV-1 cells were treated by different concentrations of neogenin (0, 1, 5, 10, 50 ng/mL) for 24 h. Cell viability was measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. TEV-1 cell apoptosis was assessed by flow cytometry (FCM). The expression of netrin-1 mRNA and protein in TEV-1 cells was examined by using real-time PCR and Western blot, respectively. It was found that immunoreactivity for netrin-1 was observed in cytoplasm of the trophoblasts. Immediately after treatment with different concentrations of neogenin for 24 h, the netrin-1 expression began to increase. Real-time PCR revealed that the expression level of netrin-1 mRNA was 37.59+/-10.25 times higher than control group when TEV-1 cells were exposed to 50 ng/mL neogenin (P<0.01), and the same tendency was seen by using Western blot. MTT results showed that proliferation of TEV-1 cells was independent of neogenin. Meanwhile, apoptosis was significantly increased to (22.15+/-6.15)% at 50 ng/mL neogenin and (6.55+/-0.25)% without neogenin (P<0.01). It is suggested that neogenin regulates proliferation and apoptosis of TEV-1 cells. And it can enhance the ability of TEV-1 cells to express netrin-1 in a dose-dependent manner. Neogenin may play an important biological role in the normal human pregnancy and contribute to the physiological pregnancy process. PMID:20714878

  13. Apoptosis and telomeres shortening related to HIV-1 induced oxidative stress in an astrocytoma cell line

    PubMed Central

    Pollicita, Michela; Muscoli, Carolina; Sgura, Antonella; Biasin, Alberto; Granato, Teresa; Masuelli, Laura; Mollace, Vincenzo; Tanzarella, Caterina; Del Duca, Claudio; Rodinò, Paola; Perno, Carlo Federico; Aquaro, Stefano

    2009-01-01

    Background Oxidative stress plays a key role in the neuropathogenesis of Human Immunodeficiency Virus-1 (HIV-1) infection causing apoptosis of astroglia cells and neurons. Recent data have shown that oxidative stress is also responsible for the acceleration of human fibroblast telomere shortening in vitro. In the present study we analyzed the potential relations occurring between free radicals formation and telomere length during HIV-1 mediated astroglial death. Results To this end, U373 human astrocytoma cells have been directly exposed to X4-using HIV-1IIIB strain, for 1, 3 or 5 days and treated (where requested) with N-acetylcysteine (NAC), a cysteine donor involved in the synthesis of glutathione (GSH, a cellular antioxidant) and apoptosis has been evaluated by FACS analysis. Quantitative-FISH (Q-FISH) has been employed for studying the telomere length while intracellular reduced/oxidized glutathione (GSH/GSSG) ratio has been determined by High-Performance Liquid Chromatography (HPLC). Incubation of U373 with HIV-1IIIB led to significant induction of cellular apoptosis that was reduced in the presence of 1 mM NAC. Moreover, NAC improved the GSH/GSSG, a sensitive indicator of oxidative stress, that significantly decreased after HIV-1IIIB exposure in U373. Analysis of telomere length in HIV-1 exposed U373 showed a statistically significant telomere shortening, that was completely reverted in NAC-treated U373. Conclusion Our results support the role of HIV-1-mediated oxidative stress in astrocytic death and the importance of antioxidant compounds in preventing these cellular damages. Moreover, these data indicate that the telomere structure, target for oxidative damage, could be the key sensor of cell apoptosis induced by oxidative stress after HIV infection. PMID:19463156

  14. Prediction of tissue-specific effects of gene knockout on apoptosis in different anatomical structures of human brain

    PubMed Central

    2015-01-01

    Background An important issue in the target identification for the drug design is the tissue-specific effect of inhibition of target genes. The task of assessing the tissue-specific effect in suppressing gene activity is especially relevant in the studies of the brain, because a significant variability in gene expression levels among different areas of the brain was well documented. Results A method is proposed for constructing statistical models to predict the potential effect of the knockout of target genes on the expression of genes involved in the regulation of apoptosis in various brain regions. The model connects the expression of the objective group of genes with expression of the target gene by means of machine learning models trained on available expression data. Information about the interactions between target and objective genes is determined by reconstruction of target-centric gene network. STRING and ANDSystem databases are used for the reconstruction of gene networks. The developed models have been used to analyse gene knockout effects of more than 7,500 target genes on the expression of 1,900 objective genes associated with the Gene Ontology category "apoptotic process". The tissue-specific effect was calculated for 12 main anatomical structures of the human brain. Initial values of gene expression in these anatomical structures were taken from the Allen Brain Atlas database. The results of the predictions of the effect of suppressing the activity of target genes on apoptosis, calculated on average for all brain structures, were in good agreement with experimental data on siRNA-inhibition. Conclusions This theoretical paper presents an approach that can be used to assess tissue-specific gene knockout effect on gene expression of the studied biological process in various structures of the brain. Genes that, according to the predictions of the model, have the highest values of tissue-specific effects on the apoptosis network can be considered as

  15. Induction of apoptosis in cancer cells through N-acetyl-l-leucine-modified polyethylenimine-mediated p53 gene delivery.

    PubMed

    Li, Zhiyuan; Zhang, Liu; Li, Quanshun

    2015-11-01

    Herein, N-acetyl-L-leucine-modified polyethylenimine was successfully constructed through the EDC/NHS-mediated coupling reaction and employed as vectors to accomplish p53 gene delivery using HeLa (p53wt) and PC-3 cells (p53null) as models. Compared with PEI25K, the derivatives exhibited lower cytotoxicity, protein adsorption and hemolytic activity, together with satisfactory pDNA condensation capability and gene transfection efficiency. After p53 transfection, MTT analysis confirmed that the cell proliferation was inhibited. Flow cytometric analysis showed that the derivative-mediated p53 delivery could induce stronger early apoptosis than PEI25K and Lipofectamine(2000). Further, PC-3 cells showed higher sensitivity to the exogenous p53 transfection than HeLa cells. The mechanism for inducing apoptosis was determined to be up-regulation of p53 expression at both mRNA and protein levels using RT-PCR and western blotting analysis. Expression level and activity analysis of caspase-3, -8 and -9, and mitochondrial membrane potential measurement revealed that p53 transfection mediated by these derivatives facilitated early apoptosis of tumor cells via a mitochondria-dependent apoptosis pathway. Thus, the derivatives showed potential as biocompatible carriers for realizing effective tumor gene therapy. PMID:26322477

  16. Maitake (D fraction) mushroom extract induces apoptosis in breast cancer cells by BAK-1 gene activation.

    PubMed

    Soares, Raquel; Meireles, Manuela; Rocha, Ana; Pirraco, Ana; Obiol, Diego; Alonso, Eliana; Joos, Gisela; Balogh, Gabriela

    2011-06-01

    For many years mushrooms have been used empirically in traditional medicine to treat several diseases. Study of the maitake mushroom, with its immunomodulatory and antitumoral properties, has led to the isolation of several bioactive compounds. One of these, D fraction, is known to reduce tumor cell viability. This study examined the effect of isolated D fraction on viability and apoptosis of human breast cancer cells (MCF7). These cells were treated with maitake (D fraction) extract at 18 μg/mL, 36 μg/mL, 91 μg/mL, 183 μg/mL, or 367 μg/mL or were left untreated (control) for 24 hours. MCF7 incubation with the maitake extract resulted in decreased cell viability [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay] in a dose-dependent manner. Apoptosis was statistically significantly increased in a dose-dependent manner at every concentration tested (terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay). Upon incubation with D fraction, a microarray assay revealed upregulation of BAK-1 and cytochrome c transcripts, 2 proteins directly involved in the apoptotic pathway. Reverse transcriptase polymerase chain reaction studies confirmed these findings; BAK-1 was one of most overexpressed gene, as observed by microarray assay. These findings confirm the apoptotic effect of maitake D fraction in breast cancer cells and further highlight the involvement of cytochrome c release to the cytoplasm. Cytoplasmic release of cytochrome c, another player in the apoptotic pathway, was also increased after incubation with D fraction in a dose-dependent manner. This finding indicates that the effect of this compound involves mitochondrial dysfunction. The identification of the molecular mechanisms by which D fraction exerts its effects is crucial for the development of preventive and therapeutic strategies for cancer. PMID:21480800

  17. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs.

    PubMed Central

    Birnbaum, M J; Clem, R J; Miller, L K

    1994-01-01

    Two different baculovirus genes are known to be able to block apoptosis triggered upon infection of Spodoptera frugiperda cells with p35 mutants of the insect baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV):p35 (P35-encoding gene) of AcMNPV (R. J. Clem, M. Fechheimer, and L. K. Miller, Science 254:1388-1390, 1991) and iap (inhibitor of apoptosis gene) of Cydia pomonella granulosis virus (CpGV) (N. E. Crook, R. J. Clem, and L. K. Miller, J. Virol. 67:2168-2174, 1993). Using a genetic complementation assay to identify additional genes which inhibit apoptosis during infection with a p35 mutant, we have isolated a gene from Orgyia pseudotsugata NPV (OpMNPV) that was able to functionally substitute for AcMNPV p35. The nucleotide sequence of this gene, Op-iap, predicted a 30-kDa polypeptide product with approximately 58% amino acid sequence identity to the product of CpGV iap, Cp-IAP. Like Cp-IAP, the predicted product of Op-iap has a carboxy-terminal C3HC4 zinc finger-like motif. In addition, a pair of additional cysteine/histidine motifs were found in the N-terminal regions of both polypeptide sequences. Recombinant p35 mutant viruses carrying either Op-iap or Cp-iap appeared to have a normal phenotype in S. frugiperda cells. Thus, Cp-IAP and Op-IAP appear to be functionally analogous to P35 but are likely to block apoptosis by a different mechanism which may involve direct interaction with DNA. Images PMID:8139034

  18. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs.

    PubMed

    Birnbaum, M J; Clem, R J; Miller, L K

    1994-04-01

    Two different baculovirus genes are known to be able to block apoptosis triggered upon infection of Spodoptera frugiperda cells with p35 mutants of the insect baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV):p35 (P35-encoding gene) of AcMNPV (R. J. Clem, M. Fechheimer, and L. K. Miller, Science 254:1388-1390, 1991) and iap (inhibitor of apoptosis gene) of Cydia pomonella granulosis virus (CpGV) (N. E. Crook, R. J. Clem, and L. K. Miller, J. Virol. 67:2168-2174, 1993). Using a genetic complementation assay to identify additional genes which inhibit apoptosis during infection with a p35 mutant, we have isolated a gene from Orgyia pseudotsugata NPV (OpMNPV) that was able to functionally substitute for AcMNPV p35. The nucleotide sequence of this gene, Op-iap, predicted a 30-kDa polypeptide product with approximately 58% amino acid sequence identity to the product of CpGV iap, Cp-IAP. Like Cp-IAP, the predicted product of Op-iap has a carboxy-terminal C3HC4 zinc finger-like motif. In addition, a pair of additional cysteine/histidine motifs were found in the N-terminal regions of both polypeptide sequences. Recombinant p35 mutant viruses carrying either Op-iap or Cp-iap appeared to have a normal phenotype in S. frugiperda cells. Thus, Cp-IAP and Op-IAP appear to be functionally analogous to P35 but are likely to block apoptosis by a different mechanism which may involve direct interaction with DNA. PMID:8139034

  19. Physical contact with endothelial cells through β1- and β2- integrins rescues chronic lymphocytic leukemia cells from spontaneous and drug-induced apoptosis and induces a peculiar gene expression profile in leukemic cells

    PubMed Central

    Maffei, Rossana; Fiorcari, Stefania; Bulgarelli, Jenny; Martinelli, Silvia; Castelli, Ilaria; Deaglio, Silvia; Debbia, Giulia; Fontana, Marcella; Coluccio, Valeria; Bonacorsi, Goretta; Zucchini, Patrizia; Narni, Franco; Torelli, Giuseppe; Luppi, Mario; Marasca, Roberto

    2012-01-01

    Background Chronic lymphocytic leukemia B cells display prolonged survival in vivo, but when cultured in vitro rapidly undergo spontaneous apoptosis. We hypothesize that interactions with endothelial cells in infiltrated tissues and during recirculation may have a pathogenic role in chronic lymphocytic leukemia. Design and Methods We evaluated apoptosis of leukemic cells after co-culture on a monolayer of human umbilical vein endothelial cells with addition of fludarabine and antibodies that block adhesion. Then, we compared microarray-based gene expression profiles between leukemic cells at baseline and after co-culture. Results We found that the endothelial layer protected leukemic cells from apoptosis inducing a 2-fold mean decrement in apoptotic cells after 2 days of co-culture. Moreover, the endothelial layer decreased the sensitivity of chronic lymphocytic leukemia B cells to fludarabine-induced apoptosis. Physical contact with endothelium mediated by both β1- and β2- integrins is essential for the survival advantage of leukemic cells. In particular, blocking CD106 on endothelial cells or CD18 on leukemic B cells led to the almost complete abrogation of the survival advantage (>70% inhibition of viability). However, a reduction of apoptosis was also measured in leukemic cells cultured in conditioned medium collected after 2 days of co-culture, implying that survival is partially mediated by soluble factors. Overall, the contact with endothelial cells modulated 1,944 genes in chronic lymphocytic leukemia B cells, establishing a peculiar gene expression profile: up-regulation of angiogenesis-related genes, an increase of genes involved in TGFβ and Wnt signaling pathways, secretion of cytokines recruiting stromal cells and macrophages and up-regulation of anti-apoptotic molecules such as Bcl2 and Survivin. Conclusions Our study supports the notion that endothelial cells are major players in the chronic lymphocytic leukemia microenvironment. Adhesion to

  20. A Transcriptome Analysis Suggests Apoptosis-Related Signaling Pathways in Hemocytes of Spodoptera litura After Parasitization by Microplitis bicoloratus

    PubMed Central

    Zhang, Yan; Yu, Dongshuai; Yang, Minjun; Yang, Yang; Hu, Jiansheng; Luo, Kaijun

    2014-01-01

    Microplitis bicoloratus parasitism induction of apoptotic DNA fragmentation of host Spodoptera litura hemocytes has been reported. However, how M. bicoloratus parasitism regulates the host signaling pathways to induce DNA fragmentation during apoptosis remains unclear. To address this question, we performed a new RNAseq-based comparative analysis of the hemocytes transcriptomes of non-parasitized and parasitized S. litura. We were able to assemble a total of more than 11.63 Gbp sequence, to yield 20,571 unigenes. At least six main protein families encoded by M. bicoloratus bracovirus are expressed in the parasitized host hemocytes: Ankyrin-repeat, Ben domain, C-type lectin, Egf-like and Mucin-like, protein tyrosine phosphatase. The analysis indicated that during DNA fragmentation and cell death, 299 genes were up-regulated and 2,441 genes were down-regulated. Data on five signaling pathways related with cell death, the gap junctions, Ca2+, PI3K/Akt, NF-κB, ATM/p53 revealed that CypD, which is involved in forming a Permeability Transition Pore Complex (PTPC) to alter mitochondrial membrane permeabilization (MMP), was dramatically up-regulated. The qRT-PCR also provided that the key genes for cell survival were down-regulated under M. bicoloratus parasitism, including those encoding Inx1, Inx2 and Inx3 of the gap junction signaling pathway, p110 subunit of the PI3K/Akt signaling pathway, and the p50 and p65 subunit of the NF-κB signaling pathway. These findings suggest that M. bicoloratus parasitism may regulate host mitochondria to trigger internucleosomal DNA fragmentation. This study will facilitate the identification of immunosuppression-related genes and also improves our understanding of molecular mechanisms underlying polydnavirus-parasitoid-host interaction. PMID:25350281

  1. Synergistic Induction of Apoptosis in Primary B-CLL Cells after Treatment with Recombinant Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand and Histone Deacetylase Inhibitors

    PubMed Central

    Norian, Lyse A.; Kucaba, Tamara A.; Earel, James K.; Knutson, Tina; vanOosten, Rebecca L.; Griffith, Thomas S.

    2009-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is currently being investigated as a therapeutic agent for a variety of malignancies, as it triggers apoptosis specifically in transformed cells. However, TRAIL use as a stand alone therapeutic is hampered by the fact that many primary tumor cells are resistant to TRAIL-mediated apoptosis. Here, we investigated the extent to which pretreatment of TRAIL-resistant primary B-cell chronic lymphocytic leukemia (B-CLL) cells with histone deacetylase inhibitors (HDACis) could render them susceptible to killing by TRAIL. We found that HDAC inhibition in B-CLL cells led to increased TRAIL receptor expression, increased caspase activation, decreased expression of antiapoptotic regulators such as Bcl-2, and ultimately, enhanced TRAIL-induced apoptosis. Importantly, untransformed peripheral blood mononuclear cells remained largely resistant to TRAIL, even in the presence of HDACis. These results suggest that combination therapies using HDAC inhibition and TRAIL could prove beneficial for the treatment of B-CLL. PMID:19547714

  2. In vivo gene delivery of XIAP protects against myocardial apoptosis and infarction following ischemia/reperfusion in conscious rabbits

    PubMed Central

    Kim, Song-Jung; Kuklov, Alex; Crystal, George J.

    2011-01-01

    Aims We tested the hypothesis that an in vivo gene delivery of the pro-survival protein XIAP (X-chromosome linked inhibitor of apoptosis protein) protects against myocardial apoptosis and infarction following ischemia/reperfusion. Main Methods Nineteen rabbits were chronically instrumented with an hydraulic occluder placed around the circumflex coronary artery. Adenovirus harboring XIAP (Ad.XIAP; 1×1010 pfu/ml) or β-galactosidase (5×109 pfu/ml), as a control, was constructed and transfected into the heart using a catheter place into the left ventricle accompanied by cross-clamping. 1-2 weeks after gene delivery, myocardial ischemia was induced by a 30-min occlusion followed by reperfusion for four days. Protein expression was determined by Western blot and Apoptosis (% of myocytes) was quantified by TUNEL staining. Key Findings Myocardial infarct size, expressed as a fraction of the area at risk, was reduced in Ad.XIAP (n=5) compared to control (n=7) rabbits (21±3% vs. 30±2%, p<0.05). Apoptosis was reduced in Ad.XIAP rabbits compared to control rabbits (2.96±0.68% vs. 8.98±1.84%, p<0.01). This was associated with an approximate 60% decrease in the cleaved caspase-3 level in Ad.XIAP rabbits compared to control rabbits. Significances The current findings demonstrate that overexpression of XIAP via in vivo delivery in an adenovirus can reduce both myocardial apoptosis and infarction following ischemia/reperfusion, at least in part, due to the ability of XIAP to inhibit caspase-3. These findings confirm previous work suggesting a link between myocardial apoptosis and infarction i.e., anti-apoptotic therapy was effective in reducing myocardial infarct size. PMID:21277870

  3. Smad7 protein induces interferon regulatory factor 1-dependent transcriptional activation of caspase 8 to restore tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis.

    PubMed

    Hong, Suntaek; Kim, Hye-Youn; Kim, Jooyoung; Ha, Huyen Trang; Kim, Young-Mi; Bae, Eunjin; Kim, Tae Hyung; Lee, Kang Choon; Kim, Seong-Jin

    2013-02-01

    Smad7 has been known as a negative regulator for the transforming growth factor-β (TGF-β) signaling pathway through feedback regulation. However, Smad7 has been suspected to have other biological roles through the regulation of gene transcription. By screening differentially regulated genes, we found that the caspase 8 gene was highly up-regulated in Smad7-expressing cells. Smad7 was able to activate the caspase 8 promoter through recruitment of the interferon regulatory factor 1 (IRF1) transcription factor to the interferon-stimulated response element (ISRE) site. Interaction of Smad7 on the caspase 8 promoter was confirmed with electrophoretic mobility shift assay and chromatin immunoprecipitation experiment. Interestingly, Smad7 did not directly interact with the ISRE site, but it increased the binding activity of IRF1 with ISRE. These results support that Smad7 recruits IRF1 protein on the caspase 8 promoter and functions as a transcriptional coactivator. To confirm the biological significance of caspase 8 up-regulation, we tested tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated cell death assay in breast cancer cells. Smad7 in apoptosis-resistant MCF7 cells markedly sensitized the cells to TRAIL-induced cell death by restoring the caspase cascade. Furthermore, restoration of caspase 8-mediated apoptosis pathway repressed the tumor growth in the xenograft model. In conclusion, we suggest a novel role for Smad7 as a transcriptional coactivator for caspase 8 through the interaction with IRF1 in regulation of the cell death pathway. PMID:23255602

  4. Substrate stiffness regulates apoptosis and the mRNA expression of extracellular matrix regulatory genes in the rat annular cells.

    PubMed

    Zhang, Yue-Hui; Zhao, Chang-Qing; Jiang, Lei-Sheng; Dai, Li-Yang

    2011-03-01

    Cells are subjected to static tension of different magnitudes when cultured on substrates with different stiffnesses. It has long been recognized that mechanical stress is an important modulator of the intervertebral disc degeneration. Here we studied the influence of substrate stiffness on cell morphology, apoptosis and extracellular matrix (ECM) metabolism of the rat annulus fibrosus (AF) cells which are known to be mechanosensitive cells. Polyacrylamide gel substrates with three different stiffnesses were prepared by varying the concentration of acrylamide and bisacrylamide, and the elastic modulus of the different gel substrates were measured with atomic force microscopy (AFM). First-passage rat annular cells were cultured on soft, intermediate, rigid substrates or plastics for 24 or 48 h. The percentages of apoptotic cells were detected by flow cytometry and caspase-3 activity, and morphologic changes were visualized by Hoechst 33258 staining and F-actin staining. In addition, the expression of ECM genes (Col1α1, Col2α1, aggrecan, MMP-3, MMP-13 and ADAMTS-5) were analyzed by RT-PCR. The three different substrates had elastic moduli varying between 1±0.23 kPa (soft, 5% gel with 0.06% bis), 32±2.89 kPa (intermediate, 10% gel with 0.13% bis) and 63±3.45 kPa (rigid, 10% gel with 0.26% bis) with a thickness about 60-70 μm. Most of the rat AF cells appeared small and rounded, and lost most of their stress fibers when cultured on soft substrate. There was a significant increase in the percentage of apoptotic cells in the rat AF cells cultured on soft and intermediate substrates relative to those on plastic surface, with a parallel decrease in the area of cell spreading and nucleus. The AF cells grown on intermediate or rigid substrate had reduced expression of Col1α1, Col2α1 and aggrecan and enhanced expression of MMP-3, MMP-13, and ADAMTS-5 at 24h or 48 h, respectively, relative to those cultured on plastic surface. Conversely, we observed an up

  5. Reduced proliferative and differentiative activity of mouse pink-eyed dilution melanoblasts is related to apoptosis.

    PubMed

    Hirobe, Tomohisa; Terunuma, Emi

    2012-11-01

    The mouse pink-eyed dilution (p) locus is known to control the melanin content, melanosome morphology, and tyrosinase activity in melanocytes. However, it is not well known whether the p allele is involved in regulating melanocyte proliferation, differentiation, and death. The aim of this study is to investigate in detail the role of the p allele in melanocyte proliferation, differentiation, and death using a cell culture system. The epidermal cell suspensions of the neonatal dorsal skin derived from wild type mice at the p locus (black, C57BL/10JHir-P/P) and their congenic mutant (pink-eyed dilution, C57BL/10JHir-p/p) were cultured with serum-free melanoblast-proliferation medium (MDMDF) and melanocyte-proliferation medium (MDMD). The proliferation and differentiation of p/p melanoblasts in MDMDF or MDMD were greatly inhibited compared with those of P/P melanoblasts and melanocytes. It is possible that apoptosis is related to the reduced proliferative and differentiative activity of p/p melanoblasts/melanocytes. The addition of apoptosis-inhibitors, such as caspase-9 inhibitor (C9I) and Bax-inhibiting peptide (BIP) into MDMDF or MDMD stimulated the proliferation and differentiation of p/p melanoblasts. In contrast, in P/P melanoblasts and melanocytes, C9I and BIP failed to stimulate their proliferation and differentiation. The number of apoptotic keratinocytes and melanoblasts/melanocytes in p/p mice was greater than in P/P mice. Moreover, expression of C9 and Bax in keratinocytes and melanoblasts/melanocytes in p/p mice was greater than in P/P mice. These results suggest that the increased apoptosis in keratinocytes and melanoblasts/melanocytes is related to the reduced proliferative and differentiative activity of p/p melanoblasts. PMID:23106556

  6. Candidate tumor suppressor LUCA-15/RBM5/H37 modulates expression of apoptosis and cell cycle genes

    SciTech Connect

    Mourtada-Maarabouni, Mirna . E-mail: bia19@biol.keele.ac.uk; Keen, Jennifer; Clark, Jeremy; Cooper, Colin S.; Williams, Gwyn T. . E-mail: g.t.williams@keele.ac.uk

    2006-06-10

    RBM5 (RNA-binding motif protein 5/LUCA-15/H37) is encoded at the lung cancer tumor suppressor locus 3p21.3 and itself has several important characteristics of a tumor suppressor, including both potentiation of apoptosis and inhibition of the cell cycle. Here, we report the effects of both upregulation and downregulation of LUCA-15/RBM5 on gene expression monitored using cDNA microarrays. Many of the genes modulated by LUCA-15/RBM5 are involved in the control of apoptosis, the cell cycle, or both. These effects were confirmed for the most significant genes using real-time RT-PCR and/or Western blotting. In particular, LUCA-15/RBM5 increased the expression of Stat5b and BMP5 and decreased the expression of AIB1 (Amplified In Breast Cancer 1), proto-oncogene Pim-1, caspase antagonist BIRC3 (cIAP-2, MIHC), and CDK2 (cyclin-dependent kinase 2). These effects on multiple genes controlling both apoptosis and proliferation are in line with the functional effects of LUCA-15/RBM5 and indicate that it plays a central role in regulating cell fate consistent with its tumor suppressor activity.

  7. Lipocalin 2, a new GADD153 target gene, as an apoptosis inducer of endoplasmic reticulum stress in lung cancer cells

    SciTech Connect

    Hsin, I-Lun; Hsiao, Yueh-Chieh; Wu, Ming-Fang; Jan, Ming-Shiou; Tang, Sheau-Chung; Lin, Yu-Wen; Hsu, Chung-Ping; Ko, Jiunn-Liang

    2012-09-15

    Endoplasmic reticulum (ER) stress is activated under severe cellular conditions. GADD153, a member of the C/EBP family, is an unfolded protein response (UPR) responsive transcription factor. Increased levels of lipocalin 2, an acute phase protein, have been found in several epithelial cancers. The aim of this study is to investigate the function of lipocalin 2 in lung cancer cells under ER stress. Treatment with thapsigargin, an ER stress activator, led to increases in cytotoxicity, ER stress, apoptosis, and lipocalin 2 expression in A549 cells. GADD153 silencing decreased lipocalin 2 expression in A549 cells. On chromatin immunoprecipitation assay, ER stress increased GADD153 DNA binding to lipocalin 2 promoter. Furthermore, silencing of lipocalin 2 mitigated ER stress-mediated apoptosis in A549 cells. Our findings demonstrated that lipocalin 2 is a new GADD153 target gene that mediates ER stress-induced apoptosis. Highlights: ► We demonstrate that Lipocalin 2 is a new GADD153 target gene. ► Lipocalin 2 mediates ER stress-induced apoptosis. ► ER stress-induced lipocalin 2 expression is calcium-independent in A549 cells. ► Lipocalin 2 dose not play a major role in ER stress-induced autophagy.

  8. miR-29a up-regulation in AR42J cells contributes to apoptosis via targeting TNFRSF1A gene

    PubMed Central

    Fu, Qiang; Qin, Tao; Chen, Lin; Liu, Chuan-Jiang; Zhang, Xu; Wang, Yu-Zhu; Hu, Ming-Xing; Chu, Hao-Yuan; Zhang, Hong-Wei

    2016-01-01

    AIM: To investigate the expression of miR-29a in rat acute pancreatitis and its functional role in AR42J cell apoptosis. METHODS: Twelve SD rats were divided into a control group and an acute edematous pancreatitis (AEP) group randomly. AEP was induced by intraperitoneal injection of L-arginine (150 mg/kg) in the AEP group and equal volume of 0.9% NaCl was injected in the control group. The apoptosis of acinar cells in pancreatic tissue was determined by TUNEL assay. miRNA chip assay was performed to examine the expression of miRNAs in two groups. Besides, to further explore the role of miR-29a in apoptosis in vitro, recombinant rat TNF-α (50 ng/mL) was administered to treat the rat pancreatic acinar cell line AR42J for inducing AR42J cell apoptosis. Quantitative real-time PCR (qRT-PCR) was adopted to measure miR-29a expression. Then, miRNA mimic, miRNA antisense oligonucleotide (AMO) and control vector were used to transfect AR42J cells. The expression of miR-29a was confirmed by qRT-PCR and the apoptosis rate of AR42J cells was detected by flow cytometry analysis. Western blot was used to detect the expression of activated caspase3. Moreover, we used bioinformatics software and luciferase assay to test whether TNFRSF1A was the target gene of miR-29a. After transfection, qRT-PCR and Western blot was used to detect the expression of TNFRSF1A in AR42J cells after transfection. RESULTS: The expression of miR-29a was much higher in the AEP group compared with the control group as displayed by the miRNA chip assay. After inducing apoptosis of AR42J cells in vitro, the expression of miR-29a was significantly increased by 1.49 ± 0.04 times in comparison with the control group. As revealed by qRT-PCR assay, the expression of miR-29a was 2.68 ± 0.56 times higher in the miR-29a mimic group relative to the control vector group, accompanied with an obviously increased acinar cell apoptosis rate (42.83 ± 1.25 vs 24.97 ± 0.15, P < 0.05). Moreover, the expression of miR-29a

  9. Gene Transfers Between Distantly Related Organisms

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.

    2003-01-01

    With the completion of numerous microbial genome sequences, reports of individual gene transfers between distantly related prokaryotes have become commonplace. On the other hand, transfers between prokaryotes and eukaryotes still excite the imagination. Many of these claims may be premature, but some are certainly valid. In this chapter, the kinds of supporting data needed to propose transfers between distantly related organisms and cite some interesting examples are considered.

  10. Dichlorodiphenyltrichloroethane technical mixture regulates cell cycle and apoptosis genes through the activation of CAR and ERα in mouse livers

    SciTech Connect

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Pustylnyak, Vladimir O.

    2013-09-01

    Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CAR and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their cell

  11. A baculovirus anti-apoptosis gene homolog of the Trichoplusia ni granulovirus.

    PubMed

    Bideshi, D K; Anwar, A T; Federici, B A

    1999-01-01

    An inhibitor of apoptosis (iap) gene homolog (Tn-iap) of the Trichoplusia ni granulovirus (TnGV) was cloned, sequenced and mapped on the genome of TnGV. Tn-iap encoded a protein (Tn-IAP) of 301 amino acids with a predicted molecular mass of 35 kDa. The Tn-IAP contained the two sequence motifs, BIRs and RING finger, characteristic of IAP proteins, and shared identities of 21-27% and similarities of 28-53% with IAP proteins of Cydia pomonella GV (Cp-IAP), Orgyia pseudotsugata multinucleocapsid nucleopolyhedrovirus (MNPV) (Op-IAP1, 3), Autographa californica MNPV (Ac-IAP1), Bombyx mori NPV (Bm-IAP1), Lymantria dispar MNPV (Ld-IAP3) and Buzura suppressaria single nucleocapsid NPV (Bs-IAP1). However, Tn-IAP shared no significant homology with baculovirus IAP2 proteins. Using an antisense Tn-iap probe, two major transcripts of approximately 800 nt and 1600 nt were detected by Northern blot analysis of RNA extracted from the fat body of T. ni larvae infected with the TnGV. Unlike Cp-IAP and Op-IAP3, however, Tn-IAP did not rescue virion occlusion in SF21 cells infected with a p35-deficient AcMNPV mutant. Tn-IAP's synthesis in vivo but failure to rescue p35-deficient AcMNPV in SF21 cells suggests it is a functional IAP that is only effective in certain cell types. PMID:10541013

  12. TNF-related apoptosis-inducing ligand deficiency enhances survival in murine colon ascendens stent peritonitis

    PubMed Central

    Beyer, Katharina; Stollhof, Laura; Poetschke, Christian; von Bernstorff, Wolfram; Partecke, Lars Ivo; Diedrich, Stephan; Maier, Stefan; Bröker, Barbara M; Heidecke, Claus-Dieter

    2016-01-01

    Background Apart from inducing apoptosis in tumor cells, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) influences inflammatory reactions. Murine colon ascendens stent peritonitis (CASP) represents a model of diffuse peritonitis. Recently, it has been demonstrated that administration of exogenous TRAIL not only induces apoptosis in neutrophils but also enhances survival in this model. The aim of this study was to examine the impact of genetic TRAIL deficiency on the course of CASP. Methods Peritonitis was induced in 6- to 8-week-old female TRAIL−/− mice as well as in wild-type mice. The sepsis severity score and survival of mice were monitored. Bacterial loads in blood as well as in the lymphoid organs were examined. Additionally, the number of apoptotic cells within the lymphoid organs was determined. Results As early as 8 hours postinduction of CASP, TRAIL−/− mice were significantly more affected by sepsis than wild-type mice, as measured by the sepsis severity score. However, during the further course of sepsis, TRAIL deficiency led to significantly decreased sepsis severity scores, resulting in an enhanced overall survival in TRAIL−/− mice. The better survival of TRAIL−/− mice was accompanied by a decreased bacterial load within the blood. In marked contrast, the number of apoptotic cells within the lymphoid organs was highly increased in TRAIL−/− mice 20 hours after induction of CASP. Conclusion Hence, exogenous and endogenous TRAIL is protective during the early phase of sepsis, while endogenous TRAIL appears to be detrimental in the later course of this disease. PMID:27366100

  13. Oncolytic vaccine virus harbouring the IL-24 gene suppresses the growth of lung cancer by inducing apoptosis.

    PubMed

    Lv, Chunwei; Su, Qunshu; Liang, Yupei; Hu, Jinqing; Yuan, Sujing

    2016-07-15

    Lung cancer has an especially high incidence rate worldwide, and its resistance to cell death and chemotherapeutic drugs increases its intractability. The vaccinia virus has been shown to destroy neoplasm within a short time and disseminate rapidly and extensively as an enveloped virion throughout the circulatory system, and this virus has also demonstrated a strong ability to overexpress exogenous genes. Interleukin-24 (IL-24/mda-7) is an important cytokine that belongs to the activating caspase family and facilitates the inhibition of STAT3 when a cell enters the apoptosis pathway. In this study, we constructed a cancer-targeted vaccinia virus carrying the IL-24 gene knocked in the region of the viral thymidine kinase (TK) gene (VV-IL-24). Our results showed that VV-IL-24 efficiently infected and destroyed lung cancer cells via caspase-dependent apoptosis and decreased the expression of STAT3. In vivo, VV-IL-24 expressed IL-24 at a high level in the transplanted tumour, reduced STAT3 activity, and eventually led to apoptosis. In conclusion, we demonstrated that vv-IL-24 has the potential for use as a new human lung cancer treatment. PMID:27208781

  14. DIO-1 is a gene involved in onset of apoptosis in vitro, whose misexpression disrupts limb development

    PubMed Central

    García-Domingo, David; Leonardo, Esther; Grandien, Alf; Martínez, Pedro; Albar, Juan Pablo; Izpisúa-Belmonte, Juan Carlos; Martínez-A, Carlos

    1999-01-01

    The DIO-1 (death inducer-obliterator-1) gene, identified by differential display PCR in pre-B WOL-1 cells undergoing apoptosis, encodes a putative transcription factor whose protein has two Zn finger motifs, nuclear localization signals, and transcriptional activation domains, expressed in the limb interdigitating webs during development. When overexpressed, DIO-1 translocates to the nucleus and activates apoptosis in vitro. Nuclear translocation as well as induction of apoptosis are lost after deletion of the nuclear localization sequences. DIO-1 apoptotic induction is prevented by caspase inhibitors and Bcl-2 overexpression. The in vivo role of DIO-1 was studied by misexpressing DIO-1 during chicken limb development. The most frequently observed phenotype was an arrest in limb outgrowth, an effect that correlates with the inhibition of mesodermal and ectodermal genes involved in this process. Our data demonstrate the ability of DIO-1 to trigger apoptotic processes in vitro and suggest a role for this gene in cell death during development. PMID:10393935

  15. TNF-related apoptosis-inducing ligand (TRAIL) as a negative regulator of normal human erythropoiesis.

    PubMed

    Zamai, L; Secchiero, P; Pierpaoli, S; Bassini, A; Papa, S; Alnemri, E S; Guidotti, L; Vitale, M; Zauli, G

    2000-06-15

    The impact of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on normal hematopoietic development was investigated using adult peripheral blood CD34(+) hematopoietic progenitor cells, induced to differentiate along the erythroid, megakaryocytic, granulocytic, and monocytic lineages by the addition of specific cytokine cocktails. TRAIL selectively reduced the number of erythroblasts, showing intermediate levels of glycophorin A (glycophorin A(interm)) surface expression, which appeared in liquid cultures supplemented with stem cell factor + interleukin 3 + erythropoietin at days 7-10. However, neither immature (day 4) glycophorin A(dim) erythroid cells nor mature (day 14) glycophorin A(bright) erythroblasts were sensitive to TRAIL-mediated apoptosis. Moreover, pre-exposure to TRAIL significantly decreased the number and size of erythroid colonies in semisolid assays. These adverse effects of TRAIL were selective for erythropoiesis, as TRAIL did not significantly influence the survival of cells differentiating along the megakaryocytic, granulocytic, or monocytic lineages. Furthermore, TRAIL was detected by Western blot analysis in lysates obtained from normal bone marrow mononuclear cells. These findings indicate that TRAIL acts in a lineage- and stage of differentiation-specific manner, as a negative regulator of normal erythropoiesis. (Blood. 2000;95:3716-3724) PMID:10845902

  16. Parathyroid hormone-related protein overexpression protects goat mammary gland epithelial cells from calcium-sensing receptor activation-induced apoptosis.

    PubMed

    Li, Hui; Sun, Yongsen; Zheng, Huiling; Li, Lihui; Yu, Qian; Yao, Xiaotong

    2015-01-01

    Normal mammary gland epithelial cells and breast cancer cells express the calcium-sensing receptor (CaSR), which is the master regulator of systemic calcium metabolism. During lactation, activation of the CaSR in mammary epithelial cells downregulates parathyroid hormone-related protein (PTHrP) levels in milk and in the circulation, and increases calcium transport into milk. However, very little information is available on the role of CaSR in goat mammary gland epithelial cells (GMECs) apoptosis. In this investigation, the full-length cDNA of CaSR from Xinong Saanen dairy goats was cloned, which contains an open-reading frame of 3,258 bp encoding 1,085 amino acids with a predicted molecular weight of 121.0 kDa and an isoelectric point of 5.65. The amino acid sequence is highly homologous with sheep, and the goat CaSR gene is mapped to chromosome 1. Quantitative real-time PCR suggested that CaSR was predominantly expressed in the heart, kidney and mammary gland. Then, we found the stimulation of CaSR with its activator gadolinium chloride (GdCl3) contributed to increase CaSR mRNA levels in GMECs and simultaneously promoted cell apoptosis, and these effects were abrogated partially by NPS2390 which is an inhibitor of CaSR. We also demonstrated that Ca(2+) increased CaSR mRNA levels and induced GMECs apoptosis and restrained cell proliferation. In contrast, PTHrP overexpression protected GMECs from calcium-induced apoptosis, and promoted cell proliferation. In conclusion, these results suggest that PTHrP overexpression protects GMECs from CaSR activation-induced apoptosis. PMID:25266236

  17. Gene Ontology and KEGG Enrichment Analyses of Genes Related to Age-Related Macular Degeneration

    PubMed Central

    Zhang, Jian; Xing, ZhiHao; Ma, Mingming; Wang, Ning; Cai, Yu-Dong; Chen, Lei; Xu, Xun

    2014-01-01

    Identifying disease genes is one of the most important topics in biomedicine and may facilitate studies on the mechanisms underlying disease. Age-related macular degeneration (AMD) is a serious eye disease; it typically affects older adults and results in a loss of vision due to retina damage. In this study, we attempt to develop an effective method for distinguishing AMD-related genes. Gene ontology and KEGG enrichment analyses of known AMD-related genes were performed, and a classification system was established. In detail, each gene was encoded into a vector by extracting enrichment scores of the gene set, including it and its direct neighbors in STRING, and gene ontology terms or KEGG pathways. Then certain feature-selection methods, including minimum redundancy maximum relevance and incremental feature selection, were adopted to extract key features for the classification system. As a result, 720 GO terms and 11 KEGG pathways were deemed the most important factors for predicting AMD-related genes. PMID:25165703

  18. Ventromedial hypothalamic lesions change the expression of cell proliferation-related genes and morphology-related genes in rat pancreatic islets

    PubMed Central

    Kiba, Takayoshi; Ishigaki, Yasuhito

    2014-01-01

    Studies in normal rats and ob/ob mice indicated that islet neogenesis does not occur in the intact rodent pancreas. We previously reported that ventromedial hypothalamic (VMH) lesions stimulated cell proliferation of rat pancreatic islet B and acinar cells primarily through a cholinergic receptor mechanism and examined how gene families involved in cell proliferation in total pancreatic tissue are regulated after VMH lesions formation. This study examined how gene families involved in cell proliferation in pancreatic islets alone are regulated after VMH lesions formation. Pancreatic islet RNA was extracted, and differences in gene expression profiles between rats at day 3 after VMH lesioning and sham-VMH-lesioned rats were investigated using DNA microarray and real-time polymerase chain reaction. VMH lesions regulated genes that were involved in functions related to cell cycle and differentiation, growth, binding, apoptosis and morphology in pancreas islets. Real-time polymerase chain reaction also confirmed that gene expression of polo-like kinase 1 (Plk1) and topoisomerase (DNA) II α 170 kDa (Top2a), and stanniocalcin 1 (Stc1) were upregulated at day 3 after the VMH lesions. Ventromedial hypothalamic lesions may change the expression of cell proliferation-related genes and morphology-related genes in rat pancreatic islets. PMID:25658146

  19. Construction of p66Shc gene interfering lentivirus vectors and its effects on alveolar epithelial cells apoptosis induced by hyperoxia

    PubMed Central

    Zhang, Chan; Dong, Wen-Bin; Zhao, Shuai; Li, Qing-Ping; Kang, Lan; Lei, Xiao-Ping; Guo, Lin; Zhai, Xue-Song

    2016-01-01

    Background The aim of this study is to observe the inhibitive effects of p66Shc gene interfering lentivirus vectors on the expression of p66Shc, and to explore its effects on alveolar epithelial cells apoptosis induced by hyperoxia. Methods The gene sequences were cloned into the pLenR-GPH-shRNA lentiviral vector, which was selected by Genebank searches. The pLenR-GPH-shRNA and lentiviral vector packaging plasmid mix were cotransfected into 293T cells to package lentiviral particles. Culture virus supernatant was harvested, and then the virus titer was determined by serial dilution assay. A549 cells were transduced with the constructed lentiviral vectors, and real-time polymerase chain reaction (RT-PCR) and Western blot were used to evaluate p66Shc expression. This study is divided into a control group, a hyperoxia group, an A549-p66ShcshRNA hyperoxia group, and a negative lentivirus group. Cell apoptosis was detected by flow cytometry after 24 hours; the expression of X-linked inhibitor of apoptosis protein (XIAP) and caspase-9 were detected by immunohistochemistry assay. The production of reactive oxygen species and cellular mitochondria membrane potential (ΔΨm) were determined by fluorescence microscopy. Results We successfully established the p66Shc gene interfering lentivirus vectors, A549-p66ShcshRNA. The A549-p66ShcshRNA was transfected into alveolar epithelial cells, and the inhibitive effects on the expression of p66Shc were observed. Both RT-PCR and Western blot demonstrated downregulation of p66Shc expression in A549 cells. In the A549-p66ShcshRNA hyperoxia group, we found dampened oxidative stress. A549-p66ShcshRNA can cause p66Shc gene silencing, reduce mitochondrial reactive oxygen species generation, reduce membrane potential decrease, reduce the apoptosis of A549 cells, and reduce alveolar epithelial cell injury, while the lentiviral empty vector group had no such changes. Conclusion p66Shc gene interfering lentivirus vector can affect the

  20. Influence of infection route on the infectivity of baculovirus mutants lacking the apoptosis-inhibiting gene p35 and the adjacent gene p94.

    PubMed Central

    Clem, R J; Robson, M; Miller, L K

    1994-01-01

    The infectivity of Autographa californica nuclear polyhedrosis virus mutants lacking the apoptosis-inhibiting gene p35 is decreased 1,000-fold or more in larvae of the insect Spodoptera frugiperda if the budded form of the virus is administered by hemocoelic injection; this decrease is correlated with the antiviral effects of apoptosis (R. J. Clem and L. K. Miller, J. Virol. 67:3730-3738, 1993). We have extended this correlation by showing that the infectivity of p35 mutant budded virus is restored to wild-type levels by expression of an unrelated baculovirus apoptosis-inhibiting gene, Cp-iap. We have also examined the oral infectivity of the occluded form of mutants lacking p35, the neighboring p94 gene, or both genes by feeding insects occluded virus. The oral infectivity of the p35 mutant was significantly reduced in S. frugiperda larvae, but this reduction (25-fold) was less than that observed for the hemocoelic route of infection (1,000-fold). The disruption of p94 alone had no apparent effect on infectivity by either route. Unexpectedly, however, the disruption of both p35 and p94 restored oral infectivity to nearly wild-type levels but did not exert this compensatory effect on infectivity by hemocoelic injection. Thus, the infectivity of the double p35/p94 mutant is affected in a route-specific manner in S. frugiperda larvae, suggesting a tissue-specific response to p35 and/or p94. Infectivity in a different host, Trichoplusia ni, was unaffected by all the mutants tested, consistent with previous studies indicating a lack of sensitivity to apoptosis in this species. However, T. ni and S. frugiperda larvae infected with p35 mutants failed to exhibit the symptom of morphological disintegration ("melting") typical of a wild-type infection, suggesting that p35 is required for the infection of some tissues in both species. PMID:8084009

  1. Gene expression in enhanced apoptosis of human lymphoma U937 cells treated with the combination of different free radical generators and hyperthermia.

    PubMed

    Wada, Shigehito; Tabuchi, Yoshiaki; Kondo, Takashi; Cui, Zheng-Guo; Zhao, Qing-Li; Takasaki, Ichiro; Salunga, Thucydides L; Ogawa, Ryohei; Arai, Toshiyuki; Makino, Keisuke; Furuta, Isao

    2007-01-01

    The effects of various free radicals derived from 6-formylpterin (6-FP), alpha-phenyl-tert-butyl nitrone (PBN) and 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) combined with hyperthermia, on gene expression in similarly enhanced apoptosis of human lymphoma U937 cells were investigated using cDNA microarrays containing approximately 16,600 genes and computational gene expression analysis tools. When the cells were treated for 10 min at 44 degrees C (15% apoptosis level), 39 up-regulated and 3 down-regulated genes were identified. In the up-regulated genes, apoptosis- and unfolded protein response-associated genes were contained. The combined treatment with heat and either chemical enhanced apoptosis level (approximately 30%) and showed a chemical-specific gene expression pattern. Furthermore, the expression levels of selected genes were confirmed by a real-time quantitative PCR. The present results will provide a basis for further understanding the molecular mechanisms in enhancement of heat-induced apoptosis by different intracellular oxidative stress. PMID:17164180

  2. The genomic underpinnings of apoptosis in the silkworm, Bombyx mori

    PubMed Central

    2010-01-01

    Background Apoptosis is regulated in an orderly fashion by a series of genes, and has a crucial role in important physiological processes such as growth development, immunological response and so on. Recently, substantial studies have been undertaken on apoptosis in model animals including humans, fruit flies, and the nematode. However, the lack of genomic data for silkworms limits their usefulness in apoptosis studies, despite the advantages of silkworm as a representative of Lepidoptera and an effective model system. Herein we have identified apoptosis-related genes in the silkworm Bombyx mori and compared them to those from insects, mammals, and nematodes. Results From the newly assembled genome databases, a genome-wide analysis of apoptosis-related genes in Bombyx mori was performed using both nucleotide and protein Blast searches. Fifty-two apoptosis-related candidate genes were identified, including five caspase family members, two tumor necrosis factor (TNF) superfamily members, one Bcl-2 family member, four baculovirus IAP (inhibitor of apoptosis) repeat (BIR) domain family members and 1 RHG (Reaper, Hid, Grim, and Sickle; Drosophila cell death activators) family member. Moreover, we identified a new caspase family member, BmCaspase-New, two splice variants of BmDronc, and Bm3585, a mammalian TNF superfamily member homolog. Twenty-three of these apoptosis-related genes were cloned and sequenced using cDNA templates isolated from BmE-SWU1 cells. Sequence analyses revealed that these genes could have key roles in apoptosis. Conclusions Bombyx mori possesses potential apoptosis-related genes. We hypothesized that the classic intrinsic and extrinsic apoptotic pathways potentially are active in Bombyx mori. These results lay the foundation for further apoptosis-related study in Bombyx mori. PMID:21040523

  3. The age related markers lipofuscin and apoptosis show different genetic architecture by QTL mapping in short-lived Nothobranchius fish

    PubMed Central

    Ng'oma, Enoch; Reichwald, Kathrin; Dorn, Alexander; Wittig, Michael; Balschun, Tobias; Franke, Andre; Platzer, Matthias; Cellerino, Allesandro

    2014-01-01

    Annual fish of the genus Nothobranchius show large variations in lifespan and expression of age-related phenotypes between closely related populations. We studied N. kadleci and its sister species N. furzeri GRZ strain, and found that N.kadleci is longer-lived than the N. furzeri. Lipofuscin and apoptosis measured in the liver increased with age in N. kadleci with different profiles: lipofuscin increased linearly, while apoptosis declined in the oldest animals. More lipofuscin (P < 0.001) and apoptosis (P < 0.001) was observed in N. furzeri than in N. kadleci at 16w age. Lipofuscin and apoptotic cells were then quantified in hybrids from the mating of N. furzeri to N. kadleci. F1 individuals showed heterosis for lipofuscin but additive effects for apoptosis. These two age-related phenotypes were not correlated in F2 hybrids. Quantitative trait loci analysis of 287 F2 fish using 237 markers identified two QTL accounting for 10% of lipofuscin variance (P < 0.001) with overdominance effect. Apoptotic cells revealed three significant- and two suggestive QTL explaining 19% of variance (P < 0.001), showing additive and dominance effects, and two interacting loci. Our results show that lipofuscin and apoptosis are markers of different age-dependent biological processes controlled by different genetic mechanisms. PMID:25093339

  4. Genetic dissection of susceptibility to radiation-induced apoptosis of thymocytes and mapping of Rapop1, a novel susceptibility gene

    SciTech Connect

    Mori, Nobuko; Okumoto, Masaaki; Esaki, Kozaburo

    1995-02-10

    Genetic dissection of susceptibility to radiation-induced apoptosis of thymocytes was performed by counting dead cells in histologically processed thymuses after 0.5 Gy of whole-body X-irradiation, using recombinant congenic (CcS/Dem) strains derived from inbred mouse strains BALB/cHeA (susceptible) and STS/A (resistant). A high (8/20) number of strains with lower dead cell scores than BALB/cHeA among CcS/Dem recombinant congenic strains (RCS), which contain 12.5% of STS/A genome in the genetic background of BALB/cHeA strain, indicates that the difference between BALB/cHeA and STS/A is caused by several genes and that susceptibility probably requires BALB/ cHeA alleles at more than one locus. Similar results were obtained with CXS/Hg recombinant inbred (CXS/ Hg) strains. Analysis of F{sub 2} hybrids between BALB/ cHeA and CcS-7, one of the CcS/Dem strains that showed lower dead cell scores than BALB/cHeA, demonstrated that a novel gene (Rapop1, radiation-induced apoptosis 1) controlling susceptibility to radiation-induced apoptosis in the thymus is located in the proximal region of mouse chromosome 16. 40 refs., 2 figs., 2 tabs.

  5. P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation

    PubMed Central

    2011-01-01

    Background Metastatic melanoma represents a major clinical problem. Its incidence continues to rise in western countries and there are currently no curative treatments. While mutation of the P53 tumour suppressor gene is a common feature of many types of cancer, mutational inactivation of P53 in melanoma is uncommon; however, its function often appears abnormal. Methods In this study whole genome bead arrays were used to examine the transcript expression of P53 target genes in extracts from 82 melanoma metastases and 6 melanoma cell lines, to provide a global assessment of aberrant P53 function. The expression of these genes was also examined in extracts derived from diploid human melanocytes and fibroblasts. Results The results indicated that P53 target transcripts involved in apoptosis were under-expressed in melanoma metastases and melanoma cell lines, while those involved in the cell cycle were over-expressed in melanoma cell lines. There was little difference in the transcript expression of P53 target genes between cell lines with null/mutant P53 compared to those with wild-type P53, suggesting that altered expression in melanoma was not related to P53 status. Similarly, down-regulation of P53 by short-hairpin RNA (shRNA) had limited effect on P53 target gene expression in melanoma cells, whereas there were a large number of P53 target genes whose mRNA expression was significantly altered by P53 inhibition in melanocytes. Analysis of whole genome gene expression profiles indicated that the ability of P53 to regulate genes involved in the cell cycle was significantly reduced in melanoma cells. Moreover, inhibition of P53 in melanocytes induced changes in gene expression profiles that were characteristic of melanoma cells and resulted in increased proliferation. Conversely, knockdown of P53 in melanoma cells resulted in decreased proliferation. Conclusions These results indicate that P53 target genes involved in apoptosis and cell cycle regulation are aberrantly

  6. Susceptibility to Acute Rheumatic Fever Based on Differential Expression of Genes Involved in Cytotoxicity, Chemotaxis, and Apoptosis

    PubMed Central

    Smyth, Gordon K.; Gooding, Travis; Oshlack, Alicia; Harrington, Zinta; Currie, Bart; Carapetis, Jonathan R.; Robins-Browne, Roy; Curtis, Nigel

    2014-01-01

    It is unknown why only some individuals are susceptible to acute rheumatic fever (ARF). We investigated whether there are differences in the immune response, detectable by gene expression, between individuals who are susceptible to ARF and those who are not. Peripheral blood mononuclear cells (PBMCs) from 15 ARF-susceptible and 10 nonsusceptible (control) adults were stimulated with rheumatogenic (Rh+) group A streptococci (GAS) or nonrheumatogenic (Rh−) GAS. RNA from stimulated PBMCs from each subject was cohybridized with RNA from unstimulated PBMCs on oligonucleotide arrays to compare gene expression. Thirty-four genes were significantly differentially expressed between ARF-susceptible and control groups after stimulation with Rh+ GAS. A total of 982 genes were differentially expressed between Rh+ GAS- and Rh− GAS-stimulated samples from ARF-susceptible individuals. Thirteen genes were differentially expressed in the same direction (predominantly decreased) between the two study groups and between the two stimulation conditions, giving a strong indication of their involvement. Seven of these were immune response genes involved in cytotoxicity, chemotaxis, and apoptosis. There was variability in the degree of expression change between individuals. The high proportion of differentially expressed apoptotic and immune response genes supports the current model of autoimmune and cytokine dysregulation in ARF. This study also raises the possibility that a “failed” immune response, involving decreased expression of cytotoxic and apoptotic genes, contributes to the immunopathogenesis of ARF. PMID:24478089

  7. Susceptibility to acute rheumatic fever based on differential expression of genes involved in cytotoxicity, chemotaxis, and apoptosis.

    PubMed

    Bryant, Penelope A; Smyth, Gordon K; Gooding, Travis; Oshlack, Alicia; Harrington, Zinta; Currie, Bart; Carapetis, Jonathan R; Robins-Browne, Roy; Curtis, Nigel

    2014-02-01

    It is unknown why only some individuals are susceptible to acute rheumatic fever (ARF). We investigated whether there are differences in the immune response, detectable by gene expression, between individuals who are susceptible to ARF and those who are not. Peripheral blood mononuclear cells (PBMCs) from 15 ARF-susceptible and 10 nonsusceptible (control) adults were stimulated with rheumatogenic (Rh+) group A streptococci (GAS) or nonrheumatogenic (Rh-) GAS. RNA from stimulated PBMCs from each subject was cohybridized with RNA from unstimulated PBMCs on oligonucleotide arrays to compare gene expression. Thirty-four genes were significantly differentially expressed between ARF-susceptible and control groups after stimulation with Rh+ GAS. A total of 982 genes were differentially expressed between Rh+ GAS- and Rh- GAS-stimulated samples from ARF-susceptible individuals. Thirteen genes were differentially expressed in the same direction (predominantly decreased) between the two study groups and between the two stimulation conditions, giving a strong indication of their involvement. Seven of these were immune response genes involved in cytotoxicity, chemotaxis, and apoptosis. There was variability in the degree of expression change between individuals. The high proportion of differentially expressed apoptotic and immune response genes supports the current model of autoimmune and cytokine dysregulation in ARF. This study also raises the possibility that a "failed" immune response, involving decreased expression of cytotoxic and apoptotic genes, contributes to the immunopathogenesis of ARF. PMID:24478089

  8. [PRRT2 gene-related paroxysmal disorders].

    PubMed

    Li, Jin; Mao, Xiao; Wang, Junling; Li, Nan; Tang, Beisha

    2014-10-01

    Proline-rich transmembrane protein 2 (PRRT2), the causative gene of paroxysmal kinesigenic dyskinesias (PKD), benign familial infantile seizures (BFIS) and infantile convulsions with paroxysmal choreoathetosis (ICCA), also causes a variety of neurological paroxysmal disorders. These diseases share the same characteristics which may be due to the same genetic defect. We therefore propose to name them as PRRT2-related paroxysmal disorders (PRPDs) in order to assist clinical diagnosis, treatment and prognosis. This paper has reviewed the clinical phenotype, common features and pathogenesis of the PRPDs. PMID:25297589

  9. The Complete Genome Sequence of Plodia Interpunctella Granulovirus: Evidence for Horizontal Gene Transfer and Discovery of an Unusual Inhibitor-of-Apoptosis Gene.

    PubMed

    Harrison, Robert L; Rowley, Daniel L; Funk, C Joel

    2016-01-01

    The Indianmeal moth, Plodia interpunctella (Lepidoptera: Pyralidae), is a common pest of stored goods with a worldwide distribution. The complete genome sequence for a larval pathogen of this moth, the baculovirus Plodia interpunctella granulovirus (PiGV), was determined by next-generation sequencing. The PiGV genome was found to be 112, 536 bp in length with a 44.2% G+C nucleotide distribution. A total of 123 open reading frames (ORFs) and seven homologous regions (hrs) were identified and annotated. Phylogenetic inference using concatenated alignments of 36 baculovirus core genes placed PiGV in the "b" clade of viruses from genus Betabaculovirus with a branch length suggesting that PiGV represents a distinct betabaculovirus species. In addition to the baculovirus core genes and orthologues of other genes found in other betabaculovirus genomes, the PiGV genome sequence contained orthologues of the bidensovirus NS3 gene, as well as ORFs that occur in alphabaculoviruses but not betabaculoviruses. While PiGV contained an orthologue of inhibitor of apoptosis-5 (iap-5), an orthologue of inhibitor of apoptosis-3 (iap-3) was not present. Instead, the PiGV sequence contained an ORF (PiGV ORF81) encoding an IAP homologue with sequence similarity to insect cellular IAPs, but not to viral IAPs. Phylogenetic analysis of baculovirus and insect IAP amino acid sequences suggested that the baculovirus IAP-3 genes and the PiGV ORF81 IAP homologue represent different lineages arising from more than one acquisition event. The presence of genes from other sources in the PiGV genome highlights the extent to which baculovirus gene content is shaped by horizontal gene transfer. PMID:27472489

  10. The Complete Genome Sequence of Plodia Interpunctella Granulovirus: Evidence for Horizontal Gene Transfer and Discovery of an Unusual Inhibitor-of-Apoptosis Gene

    PubMed Central

    Harrison, Robert L.; Rowley, Daniel L.; Funk, C. Joel

    2016-01-01

    The Indianmeal moth, Plodia interpunctella (Lepidoptera: Pyralidae), is a common pest of stored goods with a worldwide distribution. The complete genome sequence for a larval pathogen of this moth, the baculovirus Plodia interpunctella granulovirus (PiGV), was determined by next-generation sequencing. The PiGV genome was found to be 112, 536 bp in length with a 44.2% G+C nucleotide distribution. A total of 123 open reading frames (ORFs) and seven homologous regions (hrs) were identified and annotated. Phylogenetic inference using concatenated alignments of 36 baculovirus core genes placed PiGV in the “b” clade of viruses from genus Betabaculovirus with a branch length suggesting that PiGV represents a distinct betabaculovirus species. In addition to the baculovirus core genes and orthologues of other genes found in other betabaculovirus genomes, the PiGV genome sequence contained orthologues of the bidensovirus NS3 gene, as well as ORFs that occur in alphabaculoviruses but not betabaculoviruses. While PiGV contained an orthologue of inhibitor of apoptosis-5 (iap-5), an orthologue of inhibitor of apoptosis-3 (iap-3) was not present. Instead, the PiGV sequence contained an ORF (PiGV ORF81) encoding an IAP homologue with sequence similarity to insect cellular IAPs, but not to viral IAPs. Phylogenetic analysis of baculovirus and insect IAP amino acid sequences suggested that the baculovirus IAP-3 genes and the PiGV ORF81 IAP homologue represent different lineages arising from more than one acquisition event. The presence of genes from other sources in the PiGV genome highlights the extent to which baculovirus gene content is shaped by horizontal gene transfer. PMID:27472489

  11. Mountain grown ginseng induces apoptosis in HL-60 cells and its mechanism have little relation with TNF-alpha production.

    PubMed

    Koo, Hyun-Na; Jeong, Hyun-Ja; Choi, In-Young; An, Hyo-Jin; Moon, Phil-Dong; Kim, Seong-Jin; Jee, Seon-Young; Um, Jae-Young; Hong, Seung-Heon; Shin, Soon-Shik; Yang, Deok-Chun; Seo, Yong-Suk; Kim, Hyung-Min

    2007-01-01

    The root of ginseng is one of the most popular natural tonics in Oriental countries. Ginseng grown in the wild, deep in the mountains, is known as Sansam (mountain grown ginseng, MGG). MGG belongs to Araliaceae and Panax. In this study, we investigated the effects of MGG on the cytotoxicity, induction of apoptosis and the putative pathways of its actions in human promyelocytic leukemia cells, HL-60. Using apoptosis analysis, we found that MGG is a potent inducer of apoptosis, but it has less effect on human peripheral blood mononuclear cells. Caspase-3 activation and subsequent apoptotic cell death in MGG-treated cells were partially blocked by the caspase-3 inhibitor, Z-DEVD-FMK. MGG also inhibited the caspase-8 activity. To determine whether MGG-induced apoptosis is involved in tumor necrosis factor-alpha (TNF-alpha) secretion, TNF-alpha secretion was quantified by enzyme-linked immunosorbent assay (ELISA) method. Unexpectedly, MGG significantly decreased the TNF-alpha secretion compared to the control. These results suggest that MGG-induced cytotoxicity have little relation with the secretion of TNF-alpha in HL-60 cells. Furthermore, MGG with rIFN-gamma synergistically increased nitric oxide (NO) production in mouse peritoneal macrophages. Taken together, our data indicate that MGG is a potent inducer of apoptosis on HL-60 cells and these abilities could be used clinically for the treatment of cancer. PMID:17265560

  12. Roles of dynamin-related protein 1 in the regulation of mitochondrial fission and apoptosis in response to UV stimuli

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenzhen; Feng, Jie; Wu, Shengnan

    2011-03-01

    Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, it remains unclear whether this event has a significant impact on the rate of cell death or only accompanies apoptosis as an epiphenomenon. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial morphology and apoptosis in response to UV irradiation in human lung adenocarcinoma cells (ASTC-a-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Down-regulation of Drp1 by shRNA inhibits UV-induced apoptosis. Our results suggest that Drp1 is involved in the regulation of transition from a reticulo-tubular to a punctiform mitochondrial phenotype and mitochondrial fission plays an important role in UV-induced apoptosis.

  13. Characterization of immune-related genes in the yellow catfish Pelteobagrus fulvidraco in response to LPS challenge.

    PubMed

    Liu, Qiu-Ning; Xin, Zhao-Zhe; Chai, Xin-Yue; Jiang, Sen-Hao; Li, Chao-Feng; Zhang, Hua-Bin; Ge, Bao-Ming; Zhang, Dai-Zhen; Zhou, Chun-Lin; Tang, Bo-Ping

    2016-09-01

    Fish are considered an excellent model for studies in comparative immunology as they are a representative population of lower vertebrates linked to invertebrate evolution. To gain a better understanding of the immune response in fish, we constructed a subtractive cDNA library from the head kidney of lipopolysaccharide-stimulated yellow catfish (Pelteobagrus fulvidraco) using suppression subtractive hybridization (SSH). A total of 300 putative EST clones were identified which contained 95 genes, including 27 immune-related genes, 7 cytoskeleton-related genes, 3 genes involved in the cell cycle and apoptosis, 9 respiration and energy metabolism-related genes, 7 genes related to transport, 24 metabolism-related genes, 10 genes involved in stress responses, seven genes involved in regulation of transcription and translation and 59 unknown genes. Using real-time quantitative reverse transcription PCR, a subset of randomly selected genes involved in the immune response to lipopolysaccharide challenge were investigated to verify the reliability of the SSH data which identified 16 up-regulated genes. The genes identified in this study provide novel insight into the immune response in fish. PMID:27235365

  14. GNRs@SiO₂-FA in combination with radiotherapy induces the apoptosis of HepG2 cells by modulating the expression of apoptosis-related proteins.

    PubMed

    Gao, Bin; Shen, Lei; He, Ke-Wu; Xiao, Wei-Hua

    2015-11-01

    The aim of the present study was to examine the apoptosis of the hepatocellular carcinoma cell line, HepG2, induced by treatment with folic acid-conjugated silica-coated gold nanorods (GNRs@SiO2-FA) in combination with radiotherapy, and to determine the involvement of apoptosis-related proteins. An MTT colorimetric assay was used to assess the biocompatibility of GNRs@SiO2-FA. The distribution of GNRs@SiO2-FA into the cells was observed using transmission electron microscopy (TEM). HepG2 cells cultured in vitro were divided into the following 4 groups: i)the control group (untreated), ii) the GNRs@SiO2-FA group, iii) the radiotherapy group (iodine 125 seeds) and iv) the combination group (treated with GNRs@SiO2-FA and iodine 125 seeds) groups. The apoptosis of the HepG2 cells was detected by flow cytometry. The concentration range of <40 µg/ml GNRs@SiO2-FA was found to be safe for the biological activity of the HepG2 cells. GNRs@SiO2-FA entered the cytoplasm through endocytosis. The apoptotic rates of the HepG2 cells were higher in the GNRs@SiO2-FA and radiotherapy groups than in the control group (P<0.05). The apoptotic rate was also significantly higher in the combination group than the GNRs@SiO2-FA and radiotherapy groups (P<0.05). Taken together, these findings demonstrate that the combination of GNRs@SiO2-FA and radiotherapy more effectively induces the apoptosis of HepG2 cells. These apoptotic effects are achieved by increasing the protein expression of Bax and caspase-3, and inhibiting the protein expression of Bcl-2 and Ki-67. The combination of GNRs@SiO2-FA and radiotherapy may thus prove to be a new approach in the treatment of primary liver cancer. PMID:26648274

  15. GNRs@SiO2-FA in combination with radiotherapy induces the apoptosis of HepG2 cells by modulating the expression of apoptosis-related proteins

    PubMed Central

    GAO, BIN; SHEN, LEI; HE, KE-WU; XIAO, WEI-HUA

    2015-01-01

    The aim of the present study was to examine the apoptosis of the hepatocellular carcinoma cell line, HepG2, induced by treatment with folic acid-conjugated silica-coated gold nanorods (GNRs@SiO2-FA) in combination with radiotherapy, and to determine the involvement of apoptosis-related proteins. An MTT colorimetric assay was used to assess the biocompatibility of GNRs@SiO2-FA. The distribution of GNRs@SiO2-FA into the cells was observed using transmission electron microscopy (TEM). HepG2 cells cultured in vitro were divided into the following 4 groups: i)the control group (untreated), ii) the GNRs@SiO2-FA group, iii) the radiotherapy group (iodine 125 seeds) and iv) the combination group (treated with GNRs@SiO2-FA and iodine 125 seeds) groups. The apoptosis of the HepG2 cells was detected by flow cytometry. The concentration range of <40 µg/ml GNRs@SiO2-FA was found to be safe for the biological activity of the HepG2 cells. GNRs@SiO2-FA entered the cytoplasm through endocytosis. The apoptotic rates of the HepG2 cells were higher in the GNRs@SiO2-FA and radiotherapy groups than in the control group (P<0.05). The apoptotic rate was also significantly higher in the combination group than the GNRs@SiO2-FA and radiotherapy groups (P<0.05). Taken together, these findings demonstrate that the combination of GNRs@SiO2-FA and radiotherapy more effectively induces the apoptosis of HepG2 cells. These apoptotic effects are achieved by increasing the protein expression of Bax and caspase-3, and inhibiting the protein expression of Bcl-2 and Ki-67. The combination of GNRs@SiO2-FA and radiotherapy may thus prove to be a new approach in the treatment of primary liver cancer. PMID:26648274

  16. Serum from patients with hepatitis E virus-related acute liver failure induces human liver cell apoptosis

    PubMed Central

    WU, FAN; WANG, MINXIN; TIAN, DEYING

    2014-01-01

    The pathogenesis of acute liver failure has not been fully elucidated. The present study investigated the effects of the serum from patients with hepatitis E virus (HEV)-related acute liver failure on human liver cell survival and apoptosis, and evaluated the protective effects of anti-lipopolysaccharide(LPS) antibody recognizing core polysaccharide against acute liver failure serum-induced apoptosis. Serum was collected from patients with HEV-related acute liver failure. The levels of endotoxin (LPS) in the serum were measured using a quantitative tachypleus amebocyte lysate endotoxin detection kit with a chromogenic endpoint. Serum with a mean concentration of LPS was incubated with L02 human liver cells and the rate of apoptosis was detected by flow cytometry. The apoptotic rate was also evaluated in liver cells incubated with antibody and the HEV-related acute liver failure serum. The results indicated that the concentration of LPS in the serum of patients with HEV-related acute liver failure was 0.26±0.02 EU/ml, which was significantly higher than that of the control group (P<0.05). The rate of apoptosis in the human liver cells induced by acute liver failure serum was 5.83±0.42%, which was significantly increased compared with that in the cells treated with the serum of healthy individuals (P<0.05). The apoptotic rate of the cells incubated with antibody and the acute liver failure serum was 5.53±0.51%, which was lower than that of the cells incubated with acute liver failure serum alone (P>0.05). These results indicate that the serum of patients with HEV-related acute liver failure induces the apoptosis of human liver cells. LPS may be directly involved in the apoptosis of human liver cells. Moreover, the presence of the antibody did not significantly reduce the level of apoptosis of liver cells exposed to HEV-related acute liver failure serum. PMID:24348810

  17. Gene expression in human lupus: bone marrow differentiates active from inactive patients and displays apoptosis and granulopoiesis signatures

    PubMed Central

    Nakou, Magdalene; Knowlton, Nicholas; Frank, Mark B.; Bertsias, George; Osban, Jeanette; Sandel, Clayton E.; Papadaki, Eleni; Raptopoulou, Amalia; Sidiropoulos, Prodromos; Kritikos, Heraklis; Tassiulas, Ioannis; Centola, Michael; Boumpas, Dimitrios T.

    2009-01-01

    Objective The cells of the immune system originate from the bone marrow (BM), where many of them also mature. To better understand the aberrant immune response in systemic lupus erythematosus (SLE), we examined the BM in lupus patients using DNA microarrays and compared it to the peripheral blood (PB). Patients and Methods Bone marrow mononuclear cells (BMMCs) from 20 SLE patients (11 with active disease and 9 with inactive disease) and peripheral blood mononuclear cells (PBMCs) from 27 patients (16 active/ 11 inactive); BMMCs and PBMCs from 7 healthy individuals and 3 osteoarthritis patients served as controls. Samples were analyzed on genome-scale microarrays with 21,329 genes represented. Results We found 102 differentially expressed genes between patients’ and controls’ BMMCs (unpaired student t-test), involved in various biologic processes; 53 of them are involved in major networks including cell death, growth, signaling and proliferation. Comparative analysis between BM and PB of patients identified 88 genes differentially expressed; 61 out of 88 participate in cell growth and differentiation, cellular movement and morphology, immune response and other hematopoietic cell functions. Unsupervised clustering of highly expressed genes revealed two major SLE patient clusters (active and inactive) in BM, but not in PB. The upregulated genes in the bone marrow of active patients included genes involved in cell death and granulopoiesis. Conclusion Microarray analysis of the bone marrow differentiates active from inactive lupus patients and provides further evidence for the role of apoptosis and granulocytes in the pathogenesis of the disease. PMID:18975309

  18. Calcitonin Gene-Related Peptide (CGRP)

    PubMed Central

    Russo, Andrew F.

    2015-01-01

    Migraine is a neurological disorder that manifests as a debilitating headache associated with altered sensory perception. The neuropeptide calcitonin gene-related peptide (CGRP) is now firmly established as a key player in migraine. Clinical trials carried out during the past decade have proved that CGRP receptor antagonists are effective for treating migraine, and antibodies to the receptor and CGRP are currently under investigation. Despite this progress in the clinical arena, the mechanisms by which CGRP triggers migraine remain uncertain. This review discusses mechanisms whereby CGRP enhances sensitivity to sensory input at multiple levels in both the periphery and central nervous system. Future studies on epistatic and epigenetic regulators of CGRP actions are expected to shed further light on CGRP actions in migraine. In conclusion, targeting CGRP represents an approachable therapeutic strategy for migraine. PMID:25340934

  19. Levels of circulating TNF-related apoptosis-inducing ligand in celiac disease

    PubMed Central

    CELEGHINI, CLAUDIO; NOT, TARCISIO; NORCIO, ALESSIA; MONASTA, LORENZO; SECCHIERO, PAOLA

    2014-01-01

    It has previously been demonstrated that the circulating levels of TNF-related apoptosis-inducing ligand (TRAIL) are significantly lower in patients with type 1 diabetes (T1D) than in normal age- and gender-matched controls. Since celiac disease (CD) is often associated with T1D, a retrospective study was performed to analyze the sera of a cohort of pediatric subjects: i) patients with CD at onset (n=100); ii) patients with potential CD (n=45); iii) patients with CD associated with other auto-immune diseases (n=17); and iv) patients with eosinophilic esophagitis (n=15). Among the patients with CD, 49 were also analyzed after six months on a gluten-free diet, while data were also available for 13 patients after one year on a gluten-free diet. No significant differences were found in the circulating levels of TRAIL between the patients with CD and the patients with either eosinophilic esophagitis or potential CD. Patients with CD associated with other auto-immune diseases showed significantly lower levels of TRAIL when compared with patients with CD alone. The gluten-free diet did not significantly modify the levels of circulating TRAIL at 6 or 12 months. Thus, although T1D and CD share common immunological features, the circulating levels of TRAIL show a significant difference between the two pathologies, and do not appear to be modulated in CD. PMID:25371753

  20. Site-specific Effects of DUOX1-Related Peroxidase on Intercellular Apoptosis Signaling.

    PubMed

    Heinzelmann, Sonja; Bauer, Georg

    2015-11-01

    Intercellular apoptosis-inducing HOCl signaling is known as an interplay between superoxide anions/H₂O₂ of transformed target cells and dual oxidase 1 (DUOX1)-related peroxidase that is released from neighboring non-transformed or transformed effector cells. Effector cells are dispensable when the release of the peroxidase domain of DUOX1 from target cells is prevented through inhibition of matrix metalloproteinase (MMP) activity. Membrane-associated peroxidase is then co-localized to NADPH oxidase 1 (NOX1) and establishes HOCl signaling specifically in transformed cells, using the same biochemical pathways as classical intercellular HOCl signaling. Membrane-associated peroxidase protects against exogenous HOCl through reversal of the peroxidase reaction. In addition, membrane-associated peroxidase protects against NO/peroxynitrite signaling as it oxidates NO and decomposes peroxynitrite. The protective function of membrane-associated peroxidase (in the absence of MMP) is analogous to that of catalase, whereas the destructive effect of the enzyme, i.e. the synthesis of HOCl, is independent of its localization and of MMP activity. PMID:26504019

  1. Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt

    PubMed Central

    Zong, Yanfang; Huang, Yaqian; Chen, Siyao; Zhu, Mingzhu; Chen, Qinghua; Feng, Shasha; Sun, Yan; Zhang, Qingyou; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2015-01-01

    Background. The study aimed to investigate whether endogenous H2S pathway was involved in high-salt-stimulated mitochondria-related vascular endothelial cell (VEC) apoptosis. Methods. Cultured human umbilical vein endothelial cells (HUVECs) were used in the study. H2S content in the supernatant was detected. Western blot was used to detect expression of cystathionine gamma-lyase (CSE), cleaved-caspase-3, and mitochondrial and cytosolic cytochrome c (cytc). Fluorescent probes were used to quantitatively detect superoxide anion generation and measure the in situ superoxide anion generation in HUVEC. Mitochondrial membrane pore opening, mitochondrial membrane potential, and caspase-9 activities were measured. The cell apoptosis was detected by cell death ELISA and TdT-mediated dUTP nick end labeling (TUNEL) methods. Results. High-salt treatment downregulated the endogenous VEC H2S/CSE pathway, in association with increased generation of oxygen free radicals, decreased mitochondrial membrane potential, enhanced the opening of mitochondrial membrane permeability transition pore and leakage of mitochondrial cytc, activated cytoplasmic caspase-9 and caspase-3 and subsequently induced VEC apoptosis. However, supplementation of H2S donor markedly inhibited VEC oxidative stress and mitochondria-related VEC apoptosis induced by high salt. Conclusion. H2S/CSE pathway is an important endogenous defensive system in endothelial cells antagonizing high-salt insult. The protective mechanisms for VEC damage might involve inhibiting oxidative stress and protecting mitochondrial injury. PMID:26078816

  2. Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells

    PubMed Central

    Velma, Venkatramreddy; Dasari, Shaloam R.; Tchounwou, Paul B.

    2016-01-01

    Cisplatin is a known antitumor drug, but its mechanisms of action are not fully elucidated. In this research, we studied the anticancer potential of cisplatin at doses of 1, 2, or 3 µM using HL-60 cells as a test model. We investigated cisplatin effects at the molecular level using RNA sequencing, cell cycle analysis, and apoptotic assay after 24, 48, 72, and 96 hours of treatment. The results show that many genes responsible for molecular and cellular functions were significantly altered. Cisplatin treatment also caused the cells to be arrested at the DNA synthesis phase, and as the time increases, the cells gradually accumulated at the sub-G1 phase. Also, as the dose increases, a significant number of cells entered into the apoptotic and necrotic stages. Altogether, the data show that low doses of cisplatin significantly impact the viability of HL-60 cells, through modulation of gene expression, cell cycle, and apoptosis. PMID:27594783

  3. Prostate apoptosis response 4 gene is not associated with methamphetamine-use disorder in the Japanese population.

    PubMed

    Kishi, Taro; Ikeda, Masashi; Kitajima, Tsuyoshi; Yamanouchi, Yoshio; Kinoshita, Yoko; Kawashima, Kunihiro; Inada, Toshiya; Harano, Mutsuo; Komiyama, Tokutaro; Hori, Toru; Yamada, Mitsuhiko; Iyo, Masaomi; Sora, Ichiro; Sekine, Yoshimoto; Ozaki, Norio; Ujike, Hiroshi; Iwata, Nakao

    2008-10-01

    Abnormal intracellular signaling molecules in dopamine signal transduction are thought to be associated with the pathophysiology of methamphetamine (METH)-use disorder. A recent study reported that a new intracellular protein, prostate apoptosis response 4 (Par-4), plays a critical role in dopamine 2 receptor signaling. We therefore analyzed the association between the Par-4 gene (PAWR) and METH-use disorder in a Japanese population (191 patients with METH-use disorder and 466 healthy controls). Using the recommended "gene-based" association analysis, we selected five tagging SNPs in PAWR from the HapMap database. No significant allele/genotype-wise or haplotype-wise association was found between PAWR and METH-use disorder. These results suggest that PAWR does not play a major role in METH-use disorders in the Japanese population. PMID:18991852

  4. Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells.

    PubMed

    Velma, Venkatramreddy; Dasari, Shaloam R; Tchounwou, Paul B

    2016-01-01

    Cisplatin is a known antitumor drug, but its mechanisms of action are not fully elucidated. In this research, we studied the anticancer potential of cisplatin at doses of 1, 2, or 3 µM using HL-60 cells as a test model. We investigated cisplatin effects at the molecular level using RNA sequencing, cell cycle analysis, and apoptotic assay after 24, 48, 72, and 96 hours of treatment. The results show that many genes responsible for molecular and cellular functions were significantly altered. Cisplatin treatment also caused the cells to be arrested at the DNA synthesis phase, and as the time increases, the cells gradually accumulated at the sub-G1 phase. Also, as the dose increases, a significant number of cells entered into the apoptotic and necrotic stages. Altogether, the data show that low doses of cisplatin significantly impact the viability of HL-60 cells, through modulation of gene expression, cell cycle, and apoptosis. PMID:27594783

  5. Molecular pathways: gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention.

    PubMed

    Bultman, Scott J

    2014-02-15

    Gene-environment interactions are so numerous and biologically complicated that it can be challenging to understand their role in cancer. However, dietary fiber and colorectal cancer prevention may represent a tractable model system. Fiber is fermented by colonic bacteria into short-chain fatty acids such as butyrate. One molecular pathway that has emerged involves butyrate having differential effects depending on its concentration and the metabolic state of the cell. Low-moderate concentrations, which are present near the base of colonic crypts, are readily metabolized in the mitochondria to stimulate cell proliferation via energetics. Higher concentrations, which are present near the lumen, exceed the metabolic capacity of the colonocyte. Unmetabolized butyrate enters the nucleus and functions as a histone deacetylase (HDAC) inhibitor that epigenetically regulates gene expression to inhibit cell proliferation and induce apoptosis as the colonocytes exfoliate into the lumen. Butyrate may therefore play a role in normal homeostasis by promoting turnover of the colonic epithelium. Because cancerous colonocytes undergo the Warburg effect, their preferred energy source is glucose instead of butyrate. Consequently, even moderate concentrations of butyrate accumulate in cancerous colonocytes and function as HDAC inhibitors to inhibit cell proliferation and induce apoptosis. These findings implicate a bacterial metabolite with metaboloepigenetic properties in tumor suppression. PMID:24270685

  6. Melanoma differentiation-associated gene-7/IL-24 gene enhances NF-kappa B activation and suppresses apoptosis induced by TNF.

    PubMed

    Aggarwal, Sita; Takada, Yasunari; Mhashilkar, Abner M; Sieger, Kerry; Chada, Sunil; Aggarwal, Bharat B

    2004-10-01

    Melanoma differentiation-associated gene-7 (mda-7), also referred to as IL-24, is a novel growth regulatory cytokine that has been shown to regulate the immune system by inducing the expression of inflammatory cytokines, such as TNF, IL-1, and IL-6. Whether the induction of these cytokines by MDA-7 is mediated through activation of NF-kappaB or whether it regulates cytokine signaling is not known. In the present report we investigated the effect of MDA-7 on NF-kappaB activation and on TNF-induced NF-kappaB activation and apoptosis in human embryonic kidney 293 cells. Stable or transient transfection with mda-7 into 293 cells failed to activate NF-kappaB. However, TNF-induced NF-kappaB activation was significantly enhanced in mda-7-transfected cells, as indicated by DNA binding, p65 translocation, and NF-kappaB-dependent reporter gene expression. Mda-7 transfection also potentiated NF-kappaB reporter activation induced by TNF receptor-associated death domain and TNF receptor-associated factor-2. Cytoplasmic MDA-7 with deleted signal sequence was as effective as full-length MDA-7 in potentiating TNF-induced NF-kappaB reporter activity. Secretion of MDA-7 was not required for the potentiation of TNF-induced NF-kappaB activation. TNF-induced expression of the NF-kappaB-regulated gene products cyclin D1 and cyclooxygenase-2, were significantly up-regulated by stable expression of MDA-7. Furthermore, MDA-7 expression abolished TNF-induced apoptosis, and suppression of NF-kappaB by IkappaBalpha kinase inhibitors enhanced apoptosis. Overall, our results indicate that stable or transient MDA-7 expression alone does not substantially activate NF-kappaB, but potentiates TNF-induced NF-kappaB activation and NF-kappaB-regulated gene expression. Potentiation of NF-kappaB survival signaling by MDA-7 inhibits TNF-mediated apoptosis. PMID:15383566

  7. Changes of Antioxidant Function and the mRNA Expression Levels of Apoptosis Genes in Duck Ovaries Caused by Molybdenum or/and Cadmium.

    PubMed

    Cao, Huabin; Xia, Bing; Zhang, Mengmeng; Liao, Yilin; Yang, Zhi; Hu, Guoliang; Zhang, Caiying

    2016-06-01

    To investigate the effects of molybdenum (Mo) combined with cadmium (Cd) on the antioxidant function and the mRNA expression levels of apoptosis-related genes in duck ovaries, 60 healthy 11-old-day female ducks were treated with hexaammonium molybdate ([(NH4)6Mo7O24·4H2O]) or/and cadmium sulfate (3CdSO4·8H2O) at different doses on a daily basis for 120 days. On the 120th day, ten female birds in each group were euthanized, and the ovaries and blood were collected to determine the antioxidant indexes and the mRNA expression levels of Bak-1, Bcl-2, and caspase-3 in ovaries. In addition, ovary tissues were subjected to histopathological analysis with optical microscope. The total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity decreased significantly (P < 0.01) in treated groups comparing with control while the nitric oxide synthase (NOS) activity increased (P < 0.01) both in ovary tissue and serum. The Bak-1 and caspase-3 expressions were upregulated while the Bcl-2 was downgraded by Mo or/and Cd. Biomolecules were affected in all metal-treated groups, whereas combined-treated animals showed greater effects. What is more, pathological damage in Mo and Cd combination treated groups was more severe. The results from the present study indicated that Mo or/and Cd caused oxidative stress and apoptosis in duck ovaries. Combination of Mo and Cd showed additive or synergistic effect leading to apoptosis and oxidative stress, and the pathway might be the mitochondrial pathway. PMID:26446861

  8. NES1/KLK10 gene represses proliferation, enhances apoptosis and down-regulates glucose metabolism of PC3 prostate cancer cells

    PubMed Central

    Hu, Jiajia; Lei, Hu; Fei, Xiaochun; Liang, Sheng; Xu, Hanzhang; Qin, Dongjun; Wang, Yue; Wu, Yingli; Li, Biao

    2015-01-01

    The normal epithelial cell-specific-1 (NES1) gene, also named as KLK10, is recognised as a novel putative tumour suppressor in breast cancer, but few studies have focused on the function of KLK10 in human prostate cancer. Our study confirms that the expression of KLK10 in prostate cancer tissue and cell lines (PC3, DU145, and LNCaP clone FGC) is low. Given that the androgen-independent growth characteristic of the PC3 cell line is more similar to clinical castration-resistant prostate cancer, we studied the role of KLK10 in PC3. In vitro and in vivo assays showed that over-expressing KLK10 in PC3 could decelerate tumour proliferation, which was accompanied with an increase in apoptosis and suppression of glucose metabolism. The related proteins, such as Bcl-2 and HK-2, were down-regulated subsequently. Furthermore, by up-regulating Bcl-2 or HK-2 respectively in the PC3-KLK10 cell line, we observed a subsequent increase of cell proliferation and a synchronous up-regulation of HK-2 and Bcl-2. Besides, KLK10 expression was also increased by Bcl-2 and HK-2, which suggests that there is a negative feedback loop between KLK10 and Bcl-2/HK-2. Thus, our results demonstrated that KLK10 may function as a tumour suppressor by repressing proliferation, enhancing apoptosis and decreasing glucose metabolism in PC3 cells. PMID:26616394

  9. Gene expression profiling analysis reveals arsenic-induced cell cycle arrest and apoptosis in p53-proficient and p53-deficient cells through differential gene pathways

    SciTech Connect

    Yu Xiaozhong Robinson, Joshua F.; Gribble, Elizabeth; Hong, Sung Woo; Sidhu, Jaspreet S.; Faustman, Elaine M.

    2008-12-15

    Arsenic (As) is a well-known environmental toxicant and carcinogen as well as an effective chemotherapeutic agent. The underlying mechanism of this dual capability, however, is not fully understood. Tumor suppressor gene p53, a pivotal cell cycle checkpoint signaling protein, has been hypothesized to play a possible role in mediating As-induced toxicity and therapeutic efficiency. In this study, we found that arsenite (As{sup 3+}) induced apoptosis and cell cycle arrest in a dose-dependent manner in both p53{sup +/+} and p53{sup -/-} mouse embryonic fibroblasts (MEFs). There was, however, a distinction between genotypes in the apoptotic response, with a more prominent induction of caspase-3 in the p53{sup -/-} cells than in the p53{sup +/+} cells. To examine this difference further, a systems-based genomic analysis was conducted comparing the critical molecular mechanisms between the p53 genotypes in response to As{sup 3+}. A significant alteration in the Nrf2-mediated oxidative stress response pathway was found in both genotypes. In p53{sup +/+} MEFs, As{sup 3+} induced p53-dependent gene expression alterations in DNA damage and cell cycle regulation genes. However, in the p53{sup -/-} MEFs, As{sup 3+} induced a significant up-regulation of pro-apoptotic genes (Noxa) and down-regulation of genes in immune modulation. Our findings demonstrate that As-induced cell death occurs through a p53-independent pathway in p53 deficient cells while apoptosis induction occurs through p53-dependent pathway in normal tissue. This difference in the mechanism of apoptotic responses between the genotypes provides important information regarding the apparent dichotomy of arsenic's dual mechanisms, and potentially leads to further advancement of its utility as a chemotherapeutic agent.

  10. Gene expression profiling analysis reveals arsenic-induced cell cycle arrest and apoptosis in p53-proficient and p53-deficient cells through differential gene pathways

    PubMed Central

    Yu, Xiaozhong; Robinson, Joshua F.; Gribble, Elizabeth; Hong, Sung Woo; Sidhu, Jaspreet S; Faustman, Elaine M

    2008-01-01

    Arsenic (As) is a well-known environmental toxicant and carcinogen as well as an effective chemotherapeutic agent. The underlying mechanism of this dual capability, however, is not fully understood. Tumor suppressor gene p53, a pivotal cell cycle checkpoint signaling protein, has been hypothesized to play a possible role in mediating As-induced toxicity and therapeutic efficiency. In this study, we found that arsenite (As3+) induced apoptosis and cell cycle arrest in a dose-dependent manner in both p53+/+ and p53−/− mouse embryonic fibroblasts (MEFs). There was, however, a distinction between genotypes in the apoptotic response, with a more prominent induction of caspase-3 in the p53−/− cells than in the p53+/+ cells. To examine this difference further, a systems-based genomic analysis was conducted comparing the critical molecular mechanisms between the p53 genotypes in response to As3+. A significant alteration in the Nrf2-mediated oxidative stress response pathway were found in both genotypes. In p53+/+ MEFs, As3+ induced p53-dependent gene expression alterations in DNA damage and cell cycle regulation genes. However, in the p53−/− MEFs, As3+ induced a significant up-regulation of pro-apoptotic genes (Noxa) and down-regulation of genes in immune modulation. Our findings demonstrate that As-induced cell death occurs through a p53-independent pathway in p53 deficient cells while apoptosis induction occurs through p53-dependent pathway in normal tissue. This difference in the mechanism of apoptotic responses between the genotypes provides important information regarding the apparent dichotomy of arsenic’s dual mechanisms, and potentially leads to further advancement of its utility as a chemotherapeutic agent. PMID:18929588

  11. Meloxicam combined with sorafenib synergistically inhibits tumor growth of human hepatocellular carcinoma cells via ER stress-related apoptosis.

    PubMed

    Zhong, Jingtao; Xiu, Peng; Dong, Xiaofeng; Wang, Fuhai; Wei, Honglong; Wang, Xin; Xu, Zongzhen; Liu, Feng; Li, Tao; Wang, Yong; Li, Jie

    2015-10-01

    Sorafenib (SOR) is a promising treatment for advanced hepatocellular carcinoma (HCC). However, the precise mechanisms of toxicity and drug resistance have not been fully explored and new strategies are urgently needed for HCC therapy. Meloxicam (MEL) is a selective cyclooxygenase-2 (COX-2) inhibitor which elicits antitumor effects in human HCC cells. In the present study, we investigated the interaction between MEL and SOR in human SMMC‑7721 cells and the role endoplasmic reticulum (ER) stress exerts in the combination of SOR with MEL treatment-induced cytotoxicity. Our results revealed that the combination treatment synergistically inhibited cell proliferation and enhanced apoptosis. Furthermore, the combination treatment enhanced ER stress-related molecules which involved in SMMC-7721 cell apoptosis. GRP78 knockdown by siRNA or co-treatment with MG132 significantly increased this combination treatment-induced apoptosis. In addition, we found that the combination treatment suppressed tumor growth by way of activation of ER stress in in vivo models. We concluded that the combination of SOR with MEL treatment-induced ER stress, and eventually apoptosis in human SMMC-7721 cells. Knockdown of GRP78 using siRNA or proteosome inhibitor enhanced the cytotoxicity of the combination of SOR with MEL-treatment in SMMC-7721 cells. These findings provided a new potential treatment strategy against HCC. PMID:26252057

  12. Radiation induced apoptosis and initial DNA damage are inversely related in locally advanced breast cancer patients

    PubMed Central

    2010-01-01

    Background DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Methods Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Results Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p < 0.0001 in all cases). Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). A statistically significant inverse correlation was found between initial damage to DNA and radio-induced apoptosis at 1 Gy (p = 0.034). A trend toward 2 Gy (p = 0.057) and 8 Gy (p = 0.067) was observed after 24 hours of incubation. Conclusions An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity. PMID:20868468

  13. The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals

    PubMed Central

    Kvitt, Hagit; Rosenfeld, Hanna; Tchernov, Dan

    2016-01-01

    Recent studies suggest that controlled apoptotic response provides an essential mechanism, enabling corals to respond to global warming and ocean acidification. However, the molecules involved and their functions are still unclear. To better characterize the apoptotic response in basal metazoans, we studied the expression profiles of selected genes that encode for putative pro- and anti-apoptotic mediators in the coral Stylophora pistillata under thermal stress and bleaching conditions. Upon thermal stress, as attested by the elevation of the heat-shock protein gene HSP70’s mRNA levels, the expression of all studied genes, including caspase, Bcl-2, Bax, APAF-1 and BI-1, peaked at 6–24 h of thermal stress (hts) and declined at 72 hts. Adversely, the expression levels of the survivin gene showed a shifted pattern, with elevation at 48–72 hts and a return to basal levels at 168 hts. Overall, we show the quantitative anti-apoptotic traits of the coral Bcl-2 protein, which resemble those of its mammalian counterpart. Altogether, our results highlight the similarities between apoptotic networks operating in simple metazoans and in higher animals and clearly demonstrate the activation of pro-cell survival regulators at early stages of the apoptotic response, contributing to the decline of apoptosis and the acclimation to chronic stress. PMID:27460544

  14. The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals.

    PubMed

    Kvitt, Hagit; Rosenfeld, Hanna; Tchernov, Dan

    2016-01-01

    Recent studies suggest that controlled apoptotic response provides an essential mechanism, enabling corals to respond to global warming and ocean acidification. However, the molecules involved and their functions are still unclear. To better characterize the apoptotic response in basal metazoans, we studied the expression profiles of selected genes that encode for putative pro- and anti-apoptotic mediators in the coral Stylophora pistillata under thermal stress and bleaching conditions. Upon thermal stress, as attested by the elevation of the heat-shock protein gene HSP70's mRNA levels, the expression of all studied genes, including caspase, Bcl-2, Bax, APAF-1 and BI-1, peaked at 6-24 h of thermal stress (hts) and declined at 72 hts. Adversely, the expression levels of the survivin gene showed a shifted pattern, with elevation at 48-72 hts and a return to basal levels at 168 hts. Overall, we show the quantitative anti-apoptotic traits of the coral Bcl-2 protein, which resemble those of its mammalian counterpart. Altogether, our results highlight the similarities between apoptotic networks operating in simple metazoans and in higher animals and clearly demonstrate the activation of pro-cell survival regulators at early stages of the apoptotic response, contributing to the decline of apoptosis and the acclimation to chronic stress. PMID:27460544

  15. The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals

    NASA Astrophysics Data System (ADS)

    Kvitt, Hagit; Rosenfeld, Hanna; Tchernov, Dan

    2016-07-01

    Recent studies suggest that controlled apoptotic response provides an essential mechanism, enabling corals to respond to global warming and ocean acidification. However, the molecules involved and their functions are still unclear. To better characterize the apoptotic response in basal metazoans, we studied the expression profiles of selected genes that encode for putative pro- and anti-apoptotic mediators in the coral Stylophora pistillata under thermal stress and bleaching conditions. Upon thermal stress, as attested by the elevation of the heat-shock protein gene HSP70’s mRNA levels, the expression of all studied genes, including caspase, Bcl-2, Bax, APAF-1 and BI-1, peaked at 6–24 h of thermal stress (hts) and declined at 72 hts. Adversely, the expression levels of the survivin gene showed a shifted pattern, with elevation at 48–72 hts and a return to basal levels at 168 hts. Overall, we show the quantitative anti-apoptotic traits of the coral Bcl-2 protein, which resemble those of its mammalian counterpart. Altogether, our results highlight the similarities between apoptotic networks operating in simple metazoans and in higher animals and clearly demonstrate the activation of pro-cell survival regulators at early stages of the apoptotic response, contributing to the decline of apoptosis and the acclimation to chronic stress.

  16. Inhibition of myocardin-related transcription factor/serum response factor signaling decreases lung fibrosis and promotes mesenchymal cell apoptosis.

    PubMed

    Sisson, Thomas H; Ajayi, Iyabode O; Subbotina, Natalya; Dodi, Amos E; Rodansky, Eva S; Chibucos, Lauren N; Kim, Kevin K; Keshamouni, Venkateshwar G; White, Eric S; Zhou, Yong; Higgins, Peter D R; Larsen, Scott D; Neubig, Richard R; Horowitz, Jeffrey C

    2015-04-01

    Myofibroblasts are crucial to the pathogenesis of tissue fibrosis. Their formation of stress fibers results in the release of myocardin-related transcription factor (MRTF), a transcriptional coactivator of serum response factor (SRF). MRTF-A (Mkl1)-deficient mice are protected from lung fibrosis. We hypothesized that the SRF/MRTF pathway inhibitor CCG-203971 would modulate myofibroblast function in vitro and limit lung fibrosis in vivo. Normal and idiopathic pulmonary fibrosis lung fibroblasts were treated with/without CCG-203971 (N-[4-chlorophenyl]-1-[3-(2-furanyl)benzoyl]-3-piperidine carboxamide) and/or Fas-activating antibody in the presence/absence of transforming growth factor (TGF)-β1, and apoptosis was assessed. In vivo studies examined the effect of therapeutically administered CCG-203971 on lung fibrosis in two distinct murine models of fibrosis induced by bleomycin or targeted type II alveolar epithelial injury. In vitro, CCG-203971 prevented nuclear localization of MRTF-A; increased the apoptotic susceptibility of normal and idiopathic pulmonary fibrosis fibroblasts; blocked TGF-β1-induced myofibroblast differentiation; and inhibited TGF-β1-induced expression of fibronectin, X-linked inhibitor of apoptosis, and plasminogen activator inhibitor-1. TGF-β1 did not protect fibroblasts or myofibroblasts from apoptosis in the presence of CCG-203971. In vivo, CCG-203971 significantly reduced lung collagen content in both murine models while decreasing alveolar plasminogen activator inhibitor-1 and promoting myofibroblast apoptosis. These data support a central role of the SRF/MRTF pathway in the pathobiology of lung fibrosis and suggest that its inhibition can help resolve lung fibrosis by promoting fibroblast apoptosis. PMID:25681733

  17. Inhibition of Myocardin-Related Transcription Factor/Serum Response Factor Signaling Decreases Lung Fibrosis and Promotes Mesenchymal Cell Apoptosis

    PubMed Central

    Sisson, Thomas H.; Ajayi, Iyabode O.; Subbotina, Natalya; Dodi, Amos E.; Rodansky, Eva S.; Chibucos, Lauren N.; Kim, Kevin K.; Keshamouni, Venkateshwar G.; White, Eric S.; Zhou, Yong; Higgins, Peter D.R.; Larsen, Scott D.; Neubig, Richard R.; Horowitz, Jeffrey C.

    2016-01-01

    Myofibroblasts are crucial to the pathogenesis of tissue fibrosis. Their formation of stress fibers results in the release of myocardin-related transcription factor (MRTF), a transcriptional coactivator of serum response factor (SRF). MRTF-A (Mkl1)-deficient mice are protected from lung fibrosis. We hypothesized that the SRF/MRTF pathway inhibitor CCG-203971 would modulate myofibroblast function in vitro and limit lung fibrosis in vivo. Normal and idiopathic pulmonary fibrosis lung fibroblasts were treated with/without CCG-203971 (N-[4-chlorophenyl]-1-[3-(2-furanyl)benzoyl]-3-piperidine carboxamide) and/or Fas-activating antibody in the presence/absence of transforming growth factor (TGF)-β1, and apoptosis was assessed. In vivo studies examined the effect of therapeutically administered CCG-203971 on lung fibrosis in two distinct murine models of fibrosis induced by bleomycin or targeted type II alveolar epithelial injury. In vitro, CCG-203971 prevented nuclear localization of MRTF-A; increased the apoptotic susceptibility of normal and idiopathic pulmonary fibrosis fibroblasts; blocked TGF-β1–induced myofibroblast differentiation; and inhibited TGF-β1–induced expression of fibronectin, X-linked inhibitor of apoptosis, and plasminogen activator inhibitor-1. TGF-β1 did not protect fibroblasts or myofibroblasts from apoptosis in the presence of CCG-203971. In vivo, CCG-203971 significantly reduced lung collagen content in both murine models while decreasing alveolar plasminogen activator inhibitor-1 and promoting myofibroblast apoptosis. These data support a central role of the SRF/MRTF pathway in the pathobiology of lung fibrosis and suggest that its inhibition can help resolve lung fibrosis by promoting fibroblast apoptosis. PMID:25681733

  18. Dynamin-related protein 1 mediates mitochondria-dependent apoptosis in chlorpyrifos-treated SH-SY5Y cells.

    PubMed

    Park, Jae Hyeon; Ko, Juyeon; Hwang, Jungwook; Koh, Hyun Chul

    2015-12-01

    Recent studies have demonstrated that dynamin-related protein 1 (Drp1), a mitochondrial fission protein, mediates mitochondria-dependent apoptosis through mitochondrial division. However, little is known about the mechanism by which Drp1 modulates apoptosis in response to chlorpyrifos (CPF)-induced toxicity. In this study, we determined that CPF-induced mitochondrial apoptosis is mediated by Drp1 translocation in SH-SY5Y human neuroblastoma cells. Our results showed that CPF treatment induced intrinsic apoptosis by activating caspase-9, caspase-3, and cytochrome c release in SH-SY5Y cells. Cytosolic Drp1 translocated to the mitochondria in CPF-treated cells and was phosphorylated at Ser616. Treating cells with CPF induced the generation of reactive oxygen species (ROS) and activation of mitogen-activated protein kinases (MAPKs). Inhibiting this ROS generation and MAPK activation abolished CPF-induced expression of phospho-Drp1. Furthermore, Drp1 was required for p53 to translocate to the mitochondria under CPF-induced oxidative stress. Treating cells with mitochondrial-division inhibitor-1 (mdivi-1), which blocks Drp1 translocation, increased the viability of CPF-treated cells by abrogating Drp1 translocation and caspase-3 activation. Specifically, pretreating cells with mdivi-1 inhibited Bax translocation to the mitochondria by blocking p53 signaling. Taken together, these data reveal a novel mechanism by which Drp1 activates mitochondrial-dependent apoptosis and indicate that inhibiting Dpr1 function can protect against CPF-induced cytotoxicity. We propose that inhibiting Drp1 is a possible therapeutic approach for pesticide-induced toxicity when hyperactivated Drp1 contributes to pathology. PMID:26598294

  19. Nupr1/Chop signal axis is involved in mitochondrion-related endothelial cell apoptosis induced by methamphetamine

    PubMed Central

    Cai, D; Huang, E; Luo, B; Yang, Y; Zhang, F; Liu, C; Lin, Z; Xie, W-B; Wang, H

    2016-01-01

    Methamphetamine (METH) abuse has been a serious global public health problem for decades. Previous studies have shown that METH causes detrimental effects on the nervous and cardiovascular systems. METH-induced cardiovascular toxicity has been, in part, attributed to its destructive effect on vascular endothelial cells. However, the underlying mechanism of METH-caused endothelium disruption has not been investigated systematically. In this study, we identified a novel pathway involved in endothelial cell apoptosis induced by METH. We demonstrated that exposure to METH caused mitochondrial apoptosis in human umbilical vein endothelial cells and rat cardiac microvascular endothelial cells in vitro as well as in rat cardiac endothelial cells in vivo. We found that METH mediated endothelial cell apoptosis through Nupr1–Chop/P53–PUMA/Beclin1 signaling pathway. Specifically, METH exposure increased the expression of Nupr1, Chop, P53 and PUMA. Elevated p53 expression raised up PUMA expression, which initiated mitochondrial apoptosis by downregulating antiapoptotic Bcl-2, followed by upregulation of proapoptotic Bax, resulting in translocation of cytochrome c (cyto c), an apoptogenic factor, from the mitochondria to cytoplasm and activation of caspase-dependent pathways. Interestingly, increased Beclin1, upregulated by Chop, formed a ternary complex with Bcl-2, thereby decreasing the dissociative Bcl-2. As a result, the ratio of dissociative Bcl-2 to Bax was also significantly decreased, which led to translocation of cyto c and initiated more drastic apoptosis. These findings were supported by data showing METH-induced apoptosis was significantly inhibited by silencing Nupr1, Chop or P53, or by PUMA or Beclin1 knockdown. Based on the present data, a novel mechanistic model of METH-induced endothelial cell toxicity is proposed. Collectively, these results highlight that the Nupr1–Chop/P53–PUMA/Beclin1 pathway is essential for mitochondrion-related METH

  20. Nupr1/Chop signal axis is involved in mitochondrion-related endothelial cell apoptosis induced by methamphetamine.

    PubMed

    Cai, D; Huang, E; Luo, B; Yang, Y; Zhang, F; Liu, C; Lin, Z; Xie, W-B; Wang, H

    2016-01-01

    Methamphetamine (METH) abuse has been a serious global public health problem for decades. Previous studies have shown that METH causes detrimental effects on the nervous and cardiovascular systems. METH-induced cardiovascular toxicity has been, in part, attributed to its destructive effect on vascular endothelial cells. However, the underlying mechanism of METH-caused endothelium disruption has not been investigated systematically. In this study, we identified a novel pathway involved in endothelial cell apoptosis induced by METH. We demonstrated that exposure to METH caused mitochondrial apoptosis in human umbilical vein endothelial cells and rat cardiac microvascular endothelial cells in vitro as well as in rat cardiac endothelial cells in vivo. We found that METH mediated endothelial cell apoptosis through Nupr1-Chop/P53-PUMA/Beclin1 signaling pathway. Specifically, METH exposure increased the expression of Nupr1, Chop, P53 and PUMA. Elevated p53 expression raised up PUMA expression, which initiated mitochondrial apoptosis by downregulating antiapoptotic Bcl-2, followed by upregulation of proapoptotic Bax, resulting in translocation of cytochrome c (cyto c), an apoptogenic factor, from the mitochondria to cytoplasm and activation of caspase-dependent pathways. Interestingly, increased Beclin1, upregulated by Chop, formed a ternary complex with Bcl-2, thereby decreasing the dissociative Bcl-2. As a result, the ratio of dissociative Bcl-2 to Bax was also significantly decreased, which led to translocation of cyto c and initiated more drastic apoptosis. These findings were supported by data showing METH-induced apoptosis was significantly inhibited by silencing Nupr1, Chop or P53, or by PUMA or Beclin1 knockdown. Based on the present data, a novel mechanistic model of METH-induced endothelial cell toxicity is proposed. Collectively, these results highlight that the Nupr1-Chop/P53-PUMA/Beclin1 pathway is essential for mitochondrion-related METH-induced endothelial

  1. Overexpression of miR-506 suppresses proliferation and promotes apoptosis of osteosarcoma cells by targeting astrocyte elevated gene-1

    PubMed Central

    Yao, Jie; Qin, Li; Miao, Sen; Wang, Xiangshan; Wu, Xuejian

    2016-01-01

    There is increasing evidence that microRNAs (miRs) are implicated in tumor development and progression; however, their specific roles in osteosarcoma are not well understood. The aim of the present study was to investigate the role of miR-506 in the pathogenesis of osteosarcoma. The expression levels of miR-506 and astrocyte elevated gene-1 (AEG-1) mRNA were detected using quantitative polymerase chain reaction, and the protein levels of AEG-1, β-catenin, c-myc and cyclin D1 were determined using western blot analysis. The effects of miR-506 and AEG-1 on cell viability, colony forming ability and apoptosis were assessed using MTT assay, colony formation assay, and flow cytometry, respectively. Lucifer reporter assays were used to demonstrate whether AEG-1 is a direct target of miR-506. The present study identified that miR-506 was downregulated in osteosarcoma tissues and cells. Overexpression of miR-506 suppressed the proliferation and induced apoptosis in osteosarcoma cells in vitro and inhibited tumor formation in vivo. Overexpression of miR-506 significantly inhibited the luciferase activity of AEG-1 with a wild-type 3′-untranslated region, providing clear evidence that AEG-1 was a direct and functional downstream target of miR-506. Similar to the overexpression of miR-506, downregulation of AEG-1 lead to an inhibitory effect on osteosarcoma in vitro. Furthermore, overexpression of miR-506 or downregulation of AEG-1 inhibited the Wnt/β-catenin signaling pathway, and inhibition of this pathway by β-catenin small interfering RNA or CGP049090, a small molecule inhibitor, suppressed cell proliferation and induced apoptosis in vitro. Overall, the present data indicated that miR-506 functions as a tumor suppressor by targeting AEG-1 in osteosarcoma via the regulation of the Wnt/β-catenin signaling pathway. PMID:27602115

  2. Ventromedial hypothalamic lesions change the expression of neuron-related genes and immune-related genes in rat liver.

    PubMed

    Kiba, Takayoshi; Kintaka, Yuri; Suzuki, Yoko; Nakata, Eiko; Ishigaki, Yasuhito; Inoue, Shuji

    2009-05-01

    There are no reports that hypothalamus can directly affect the expression of neuron-related genes and immune-related genes in liver. We identified genes of which expression profiles showed significant modulation in rat liver after ventromedial hypothalamic (VMH) lesions. Total RNA was extracted, and differences in the gene expression profiles between rats at day 3 after VMH lesioning and sham-VMH lesioned rats were investigated using DNA microarray analysis. The result revealed that VMH lesions regulated the genes that were involved in functions related to neuronal development and immunofunction in the liver. Real-time PCR also confirmed that gene expression of SULT4A1 was upregulated, but expression of ACSL1 and CISH were downregulated at day 3 after VMH lesions. VMH lesions may change the expression of neuron-related genes and immune-related genes in rat liver. PMID:19429097

  3. Cloning the Gravity and Shear Stress Related Genes from MG-63 Cells by Subtracting Hybridization

    NASA Astrophysics Data System (ADS)

    Zhang, Shu; Dai, Zhong-quan; Wang, Bing; Cao, Xin-sheng; Li, Ying-hui; Sun, Xi-qing

    2008-06-01

    Background The purpose of the present study was to clone the gravity and shear stress related genes from osteoblast-like human osteosarcoma MG-63 cells by subtractive hybridization. Method MG-63 cells were divided into two groups (1G group and simulated microgravity group). After cultured for 60 h in two different gravitational environments, two groups of MG-63 cells were treated with 1.5Pa fluid shear stress (FSS) for 60 min, respectively. The total RNA in cells was isolated. The gravity and shear stress related genes were cloned by subtractive hybridization. Result 200 clones were gained. 30 positive clones were selected using PCR method based on the primers of vector and sequenced. The obtained sequences were analyzed by blast. changes of 17 sequences were confirmed by RT-PCR and these genes are related to cell proliferation, cell differentiation, protein synthesis, signal transduction and apoptosis. 5 unknown genes related to gravity and shear stress were found. Conclusion In this part of our study, our result indicates that simulated microgravity may change the activities of MG-63 cells by inducing the functional alterations of specific genes.

  4. Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-κB Pathway

    PubMed Central

    Zeng, Wenrong; Liu, Qingjun; Chen, Zhida; Wu, Xinyu; Zhong, Yuanfu; Wu, Jin

    2016-01-01

    Recently, the human ether à go-go (eag) related gene 1 (hERG1) channel, a member of the voltage-dependent potassium channel (Kv) family, was determined to have a critical role in cancer cell proliferation, invasion, tumorigenesis and apoptosis. However, the expression levels and functions of hERG1 in osteosarcoma cells remain poorly characterized. In this study, hERG1 transcript and protein levels in osteosarcoma cells and tissues were measured using semi-quantitative real time PCR (RT-PCR), Western blot, and immunohistochemistry. The effects of hERG1 knockdown on osteosarcoma cell proliferation, apoptosis and invasion were examined using CCK-8, colony formation, flow cytometry, caspase-3 activity, wound healing and transwell based assays. Furthermore, semi-quantitative RT-PCR, Western blot and a luciferase reporter assay were used to assess the effects of hERG1 inhibition on the nuclear factor-κB (NF-κB) pathway. In addition, the effect of NF-κB p65-siRNA and NF-κB p65 expression on the survival of osteosarcoma cells was investigated. Through this work, a relationship for hERG1 with the NF-κB pathway was identified. Osteosarcoma cells and tissues were found to express high levels of hERG1. Knockdown of hERG1 significantly suppressed cellular proliferation and invasion, and induced apoptosis, while inhibition of hERG1 significantly decreased activation of NF-κB. Overall, hERG1 may stimulate nuclear translocation of p65, thus regulating the NF-κB pathway through the activation of the hERG1/beta1 integrin complex and PI3K/AKT signaling. Taken together, these results demonstrate that hERG1 is necessary for regulation of osteosarcoma cellular proliferation, apoptosis and migration. Furthermore, this regulation by hERG1 is, at least in part, through mediation of the NF-κB pathway. PMID:27076857

  5. Knockdown of prolactin receptors in a pancreatic beta cell line: effects on DNA synthesis, apoptosis, and gene expression.

    PubMed

    Arumugam, Ramamani; Fleenor, Don; Freemark, Michael

    2014-08-01

    Prolactin (PRL) and placental lactogen stimulate beta cell replication and insulin production in vitro and in vivo. The molecular mechanisms by which lactogens promote beta cell expansion are unclear. We treated rat insulinoma cells with a PRL receptor (PRLR) siRNA to determine if PRLR signaling is required for beta cell DNA synthesis and cell survival and to identify beta cell cycle genes whose expression depends upon lactogen action. Effects of PRLR knockdown were compared with those of PRL treatment. PRLR knockdown (-80 %) reduced DNA synthesis, increased apoptosis, and inhibited expression of cyclins D2 and B2, IRS-2, Tph1, and the anti-apoptotic protein PTTG1; p21 and BCL6 mRNAs increased. Conversely, PRL treatment increased DNA synthesis, reduced apoptosis, and enhanced expression of A, B and D2 cyclins, CDK1, IRS-2, FoxM1, BCLxL, and PTTG1; BCL6 declined. PRLR signaling is required for DNA synthesis and survival of rat insulinoma cells. The effects of lactogens are mediated by down-regulation of cell cycle inhibitors (BCL6, p21) and induction of A, B, and D2 cyclins, IRS-2, Tph1, FoxM1, and the anti-apoptotic proteins BCLxL and PTTG1. PMID:24114406

  6. Fibrinogen-like protein 2 gene silencing inhibits cardiomyocytes apoptosis, improves heart function of streptozotocin-induced diabetes rats and the molecular mechanism involved

    PubMed Central

    Zhenzhong, Zheng; Yafa, Yu; Jin, Liang

    2015-01-01

    Fibrinogen-like protein 2 (Fgl2) is involved in apoptosis, angiogenesis and inflammatory response. Diabetes is closely associated with apoptosis, angiogenesis and coagulation. So it allowed us to assume that Fgl2 plays an important role during the process of diabetic cardiomyopathy (DCM). In the present study, we test that the feasibility of Fgl2 as a therapeutic target for the treatment of DCM and its possible molecular mechanism involved. We found that Fgl2 gene silencing inhibits apoptosis and improves heart function of streptozotocin (STZ)-induced diabetes rats, the possible mechanism maybe that Fgl2 gene silencing reduces the tumour necrosis factor (TNF)±levels, decreases the expression of B-cell lymphoma-2 (bcl2), bcl-2-associated X (bax), toll-like receptors 4 (TLR4) and p38 mitogen-activated protein kinase (MAPK). In conclusion, Fgl2 is a potent target to treat DCM. PMID:26182381

  7. Fluoxetine synergizes with temozolomide to induce the CHOP-dependent endoplasmic reticulum stress-related apoptosis pathway in glioma cells

    PubMed Central

    Ma, Jian; Yang, Yan-Ru; Chen, Wei; Chen, Mei-Hua; Wang, Hao; Wang, Xiao-Dan; Sun, Li-Li; Wang, Feng-Ze; Wang, De-Cai

    2016-01-01

    Although temozolomide (TMZ) is the most effective chemotherapy agent for glioma, chemotherapy resistance has limited its clinical use. Fluoxetine (FLT), which is widely used in cancer-related depression, has exhibited potent anticancer properties in different cancer cell types. The aim of this study was i) to evaluate the antitumor mechanism of FLT, and ii) to further evaluate the effects of a combination of FLT and TMZ on glioma cells. Glioma cell lines were exposed to FLT and/or TMZ. Cell viability and apoptosis were examined by CCK-8 assay, flow cytometry and caspase-3 activity assay, respectively. The expression of endoplasmic reticulum-stress (ERS) apoptosis-related proteins was measured using real-time PCR and western blotting. Synergism between the two drugs was evaluated by the combination index (CI) through CompuSyn software. FLT significantly and dose-dependently inhibited the proliferation of various glioma cell lines, and rat glioma C6 cells had a highly sensitive response to the addition of FLT. FLT treatment increased the early apoptosis rate, induced typical apoptotic morphology in the C6 cells and activated caspase-3 with no change in the mitochondrial membrane potential. Further study showed that FLT activated the ERS marker, CHOP. This induction was associated with activation of the PERK-eIF2α-ATF4 and ATF6 cascade. Concomitantly, GADD34, a downstream molecule of CHOP, was also increased. Combined FLT and TMZ treatment showed a synergistic cytotoxic effect in the C6 glioma cells. Knockdown of CHOP expression abolished the synergistic effect of FLT and TMZ in the C6 cells, which suggests that FLT may sensitize glioma cells to TMZ through activation of the CHOP-dependent apoptosis pathway. These results revealed that FLT induced glioma cell apoptosis and sensitized glioma cells to TMZ through activation of the CHOP-dependent apoptosis pathway. The present study provides a primary basis for using the combination of these drugs in patients with

  8. Fluoxetine synergizes with temozolomide to induce the CHOP-dependent endoplasmic reticulum stress-related apoptosis pathway in glioma cells.

    PubMed

    Ma, Jian; Yang, Yan-Ru; Chen, Wei; Chen, Mei-Hua; Wang, Hao; Wang, Xiao-Dan; Sun, Li-Li; Wang, Feng-Ze; Wang, De-Cai

    2016-08-01

    Although temozolomide (TMZ) is the most effective chemotherapy agent for glioma, chemotherapy resistance has limited its clinical use. Fluoxetine (FLT), which is widely used in cancer-related depression, has exhibited potent anticancer properties in different cancer cell types. The aim of this study was i) to evaluate the antitumor mechanism of FLT, and ii) to further evaluate the effects of a combination of FLT and TMZ on glioma cells. Glioma cell lines were exposed to FLT and/or TMZ. Cell viability and apoptosis were examined by CCK-8 assay, flow cytometry and caspase-3 activity assay, respectively. The expression of endoplasmic reticulum-stress (ERS) apoptosis-related proteins was measured using real-time PCR and western blotting. Synergism between the two drugs was evaluated by the combination index (CI) through CompuSyn software. FLT significantly and dose-dependently inhibited the proliferation of various glioma cell lines, and rat glioma C6 cells had a highly sensitive response to the addition of FLT. FLT treatment increased the early apoptosis rate, induced typical apoptotic morphology in the C6 cells and activated caspase-3 with no change in the mitochondrial membrane potential. Further study showed that FLT activated the ERS marker, CHOP. This induction was associated with activation of the PERK-eIF2α-ATF4 and ATF6 cascade. Concomitantly, GADD34, a downstream molecule of CHOP, was also increased. Combined FLT and TMZ treatment showed a synergistic cytotoxic effect in the C6 glioma cells. Knockdown of CHOP expression abolished the synergistic effect of FLT and TMZ in the C6 cells, which suggests that FLT may sensitize glioma cells to TMZ through activation of the CHOP-dependent apoptosis pathway. These results revealed that FLT induced glioma cell apoptosis and sensitized glioma cells to TMZ through activation of the CHOP‑dependent apoptosis pathway. The present study provides a primary basis for using the combination of these drugs in patients with

  9. Hepatic Xbp1 Gene Deletion Promotes Endoplasmic Reticulum Stress-induced Liver Injury and Apoptosis.

    PubMed

    Olivares, Shantel; Henkel, Anne S

    2015-12-11

    Endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR), a highly conserved signaling cascade that functions to alleviate stress and promote cell survival. If, however, the cell is unable to adapt and restore homeostasis, then the UPR activates pathways that promote apoptotic cell death. The molecular mechanisms governing the critical transition from adaptation and survival to initiation of apoptosis remain poorly understood. We aim to determine the role of hepatic Xbp1, a key mediator of the UPR, in controlling the adaptive response to ER stress in the liver. Liver-specific Xbp1 knockout mice (Xbp1(LKO)) and Xbp1(fl/fl) control mice were subjected to varying levels and durations of pharmacologic ER stress. Xbp1(LKO) and Xbp1(fl/fl) mice showed robust and equal activation of the UPR acutely after induction of ER stress. By 24 h, Xbp1(fl/fl) controls showed complete resolution of UPR activation and no liver injury, indicating successful adaptation to the stress. Conversely, Xbp1(LKO) mice showed ongoing UPR activation associated with progressive liver injury, apoptosis, and, ultimately, fibrosis by day 7 after induction of ER stress. These data indicate that hepatic XBP1 controls the adaptive response of the UPR and is critical to restoring homeostasis in the liver in response to ER stress. PMID:26504083

  10. Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis

    PubMed Central

    Yamaguchi, Osamu; Watanabe, Tetsuya; Nishida, Kazuhiko; Kashiwase, Kazunori; Higuchi, Yoshiharu; Takeda, Toshihiro; Hikoso, Shungo; Hirotani, Shinichi; Asahi, Michio; Taniike, Masayuki; Nakai, Atsuko; Tsujimoto, Ikuko; Matsumura, Yasushi; Miyazaki, Jun-ichi; Chien, Kenneth R.; Matsuzawa, Atsushi; Sadamitsu, Chiharu; Ichijo, Hidenori; Baccarini, Manuela; Hori, Masatsugu; Otsu, Kinya

    2004-01-01

    The Raf/MEK/extracellular signal–regulated kinase (ERK) signaling pathway regulates diverse cellular processes such as proliferation, differentiation, and apoptosis and is implicated as an important contributor to the pathogenesis of cardiac hypertrophy and heart failure. To examine the in vivo role of Raf-1 in the heart, we generated cardiac muscle–specific Raf-1–knockout (Raf CKO) mice with Cre-loxP–mediated recombination. The mice demonstrated left ventricular systolic dysfunction and heart dilatation without cardiac hypertrophy or lethality. The Raf CKO mice showed a significant increase in the number of apoptotic cardiomyocytes. The expression level and activation of MEK1/2 or ERK showed no difference, but the kinase activity of apoptosis signal–regulating kinase 1 (ASK1), JNK, or p38 increased significantly compared with that in controls. The ablation of ASK1 rescued heart dysfunction and dilatation as well as cardiac fibrosis. These results indicate that Raf-1 promotes cardiomyocyte survival through a MEK/ERK–independent mechanism. PMID:15467832

  11. The efficiency of silencing expression of the gene coding STAT3 transcriptional factor and susceptibility of bladder cancer cells to apoptosis

    PubMed Central

    Bednarek, Ilona; Sypniewski, Daniel; Gawlik, Natalia; Goraus, Karol

    2012-01-01

    Aim of the study Abnormalities in signaling as well as altered gene expression have been identified in numerous diseases, including cancer. The biological functions of signal transducer and activator of transcription 3 (STAT3) are very broad. It is thought that STAT3 can also contribute to oncogenesis. RNA interference (RNAi) is one of the most efficient tools for silencing gene expression within cells. The main goal of the study was to verify the effectiveness of STAT3 gene silencing and its influence on cell proliferation and activation of apoptosis in bladder cancer cells. Material and methods The study was conducted on cellular material, which was the stable human bladder cancer cell line T24. The synthesis of shRNA (short hairpin RNA) interfering with the STAT3 gene was based on pSUPER. neo expression vector. The gene expression at the mRNA level was determined by the real-time PCR method. The influence of STAT3 gene silencing on apoptosis induced in cells with modulated STAT3 expression was evaluated using parallel quantification of mono- and oligonucleosomal DNA degradation of genomic DNA. Results In transfected T24 cells, the STAT3 mRNA expression decreased to the level of 68.3% compared to the scrambled (SCR) control. Silencing the STAT3 gene induced changes in the phenotype of T24 cells. Statistically significant differences in cell proliferation (p = 0.0318) and apoptosis induction (p = 0.0376) were observed. Conclusions Application of the designed shRNA for the STAT3 gene contributed to a decrease of expression of the examined gene. It also decreased the proliferation and increased the susceptibility to apoptosis in T24 bladder cancer cells. PMID:23788901

  12. Monitoring of gliomas in vivo by diffusion MRI and (1)H MRS during gene therapy-induced apoptosis: interrelationships between water diffusion and mobile lipids.

    PubMed

    Liimatainen, Timo; Hakumäki, Juhana M; Kauppinen, Risto A; Ala-Korpela, Mika

    2009-04-01

    The measurement of water diffusion by diffusion-weighted MRI (DWI) in vivo offers a non-invasive method for assessing tissue responses to anti-cancer therapies. The pathway of cell death after anti-cancer treatment is often apoptosis, which leads to accumulation of mobile lipids detectable by (1)H MRS in vivo. However, it is not known how these discrete MR markers of cell death relate to each other. In a rodent tumour model [i.e. ganciclovir-treated herpes simplex thymidine kinase (HSV-tk) gene-transfected BT4C gliomas], we studied the interrelationships between water diffusion (Trace{D}) and mobile lipids during apoptosis. Water diffusion and water-referenced concentrations of mobile lipids showed clearly increasing and interconnected trends during treatment. Of the accumulating (1)H MRS-visible lipids, the fatty acid --CH==CH-- groups and cholesterol compounds showed the strongest associations with water diffusion (r(2) = 0.30; P < 0.05 and r(2) = 0.48; P < 0.01, respectively). These results indicate that the tumour histopathology and apoptotic processes during tumour shrinkage can be interrelated in vivo by DWI of tissue water and (1)H MRS of mobile lipids, respectively. However, there is considerable individual variation in the associations, particularly at the end of the treatment period, and in the relative compositions of the accumulating NMR-visible lipids. The findings suggest that the assessment of individual treatment response in vivo may benefit from combining DWI and (1)H MRS. Absolute and relative changes in mobile lipids may indicate initiation of tumour shrinkage even when changes in tissue water diffusion are still small. Conversely, greatly increased water diffusion probably indicates that substantial cell decomposition has taken place in the tumour tissue when the (1)H MRS resonances of mobile lipids alone can no longer give a reliable estimate of tissue conditions. PMID:19009568

  13. Activation of PPARgamma is required for curcumin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro.

    PubMed

    Zheng, Shizhong; Chen, Anping

    2004-11-15

    During liver fibrogenesis, quiescent HSC (hepatic stellate cells) become active, a transformation that is associated with enhanced cell proliferation and overproduction of ECM (extracellular matrix). Inhibition of cell proliferation and induction of apoptosis are potential strategies to block the activation of HSC for the prevention and treatment of liver fibrosis. Levels of PPARgamma (peroxisome proliferator-activated receptor gamma) are dramatically diminished in parallel with HSC activation. Stimulation of PPARgamma by its agonists inhibits HSC activation in vitro and in vivo. We demonstrated recently that curcumin, the yellow pigment in curry, inhibited HSC activation in vitro, reducing cell proliferation, inducing apoptosis and inhibiting ECM gene expression. Further studies indicated that curcumin induced the gene expression of PPARgamma and stimulated its activity in activated HSC in vitro, which was required for curcumin to inhibit HSC proliferation. The aims of the present study were to evaluate the roles of PPARgamma activation in the induction of apoptosis and suppression of ECM gene expression by curcumin in activated HSC, and to elucidate the underlying mechanisms. Our results demonstrated that blocking PPARgamma activation abrogated the effects of curcumin on the induction of apoptosis and inhibition of the expression of ECM genes in activated HSC in vitro. Further experiments demonstrated that curcumin suppressed the gene expression of TGF-beta (transforming growth factor-beta) receptors and interrupted the TGF-beta signalling pathway in activated HSC, which was mediated by PPARgamma activation. Taken together, our results demonstrate that curcumin stimulated PPARgamma activity in activated HSC in vitro, which was required for curcumin to reduce cell proliferation, induce apoptosis and suppress ECM gene expression. These results provide novel insight into the mechanisms responsible for the inhibition of HSC activation by curcumin. The characteristics

  14. [The molecular evolution of rice stress-related genes].

    PubMed

    Song, Xiaojun; Xie, Kaibin; Zhang, Yanping; Jin, Ping

    2014-10-01

    In the processes of evolution, plants have formed a perfect regulation system to tolerate adverse environmental conditions. However, there has not been any report about the molecular evolution of rice stress-related genes. We derived a family of 22 stress-related genes in rice from Plant Stress Gene Database, and analyzed it by bioinformatics and comparative genome method. The results showed that these genes are relatively conservative in low organisms, and their copy numbers increase along with the environmental changes and the evolution. We also found four conserved sequence motifs and three other specific motifs. We propose that these motifs are closely associated with the function of rice stress-related genes. The analysis of selection pressure showed that about 50% rice stress-related genes have positive selection sites, although they were subject to a strong purifying selection. Positive selection sites might be very significant for plants to adapt to environmental changes. PMID:25406251

  15. Molecular Cloning and Gene Expression of Canine Apoptosis Inhibitor of Macrophage

    PubMed Central

    TOMURA, Shintaro; UCHIDA, Mona; YONEZAWA, Tomohiro; KOBAYASHI, Masato; BONKOBARA, Makoto; ARAI, Satoko; MIYAZAKI, Toru; TAMAHARA, Satoshi; MATSUKI, Naoaki

    2014-01-01

    Apoptosis inhibitor of macrophage (AIM) plays roles in survival of macrophages. In this study, we cloned canine AIM cDNA and observed its transcriptional expression levels in various tissues. The coding sequence of canine AIM was 1,023 bp encoding 340 amino acid residues, which had around 65% homology with those of the human, mouse and rat. Transcriptional expression of AIM was observed in the spleen, lung, liver and lymph node, which confirmed the expression of canine AIM in tissue macrophages. Moreover, AIM was highly expressed in one of the canine histiocytic sarcoma cell lines. CD36, the receptor of AIM, was also expressed in various tissues and these cell lines. These findings are useful to reveal the actual functions of canine AIM. PMID:25649949

  16. Secreted Frizzled related protein-4 (sFRP4) promotes epidermal differentiation and apoptosis

    SciTech Connect

    Maganga, Richard; Giles, Natalie; Adcroft, Katharine; Unni, Ambili; Keeney, Diane; Wood, Fiona; Fear, Mark Dharmarajan, Arunasalam

    2008-12-12

    The skin provides vital protection from infection and dehydration. Maintenance of the skin is through a constant program of proliferation, differentiation and apoptosis of epidermal cells, whereby proliferating cells in the basal layer differentiating to form the keratinized, anucleated stratum corneum. The WNT signalling pathway is known to be important in the skin. WNT signalling has been shown to be important both in epidermal development and in the maintenance and cycling of hair follicles and epidermal stem cells. However, the precise role for this pathway in epidermal differentiation remains unknown. We investigated the role of the WNT signalling inhibitor sFRP4 in epidermal differentiation. sFRP4 is expressed in both normal skin and keratinocytes in culture. Expression of sFRP4 mRNA and protein increases with keratinocyte differentiation and apoptosis, whilst exposure of keratinocytes to exogenous sFRP4 promotes apoptosis and expression of the terminal differentiation marker Involucrin. These data suggest sFRP4 promotes epidermal differentiation.

  17. Antiproliferative and Apoptotic Effect of Curcumin and TRAIL (TNF Related Apoptosis inducing Ligand) in Chronic Myeloid Leukaemic Cells

    PubMed Central

    Iqbal, Bushra; Sahabjada; Singh, Shraddha; Arshad, Mohd.; Mahdi, Abbas Ali; Tiwari, Sunita

    2016-01-01

    Introduction Curcumin, traditionally utilized as a flavouring zest as a part of Indian cooking, has been accounted to decrease the proliferation potential of most cancer cells. Apoptosis is a mechanism by which most anticancer therapies including chemotherapy, radiation and antihormonal therapy kill tumour/cancer cells. Novel agents that may sensitize drug-resistant tumour cells for induction of apoptosis by customary treatments could lead to the regression and improved prognosis of the refractory disease. Indeed, chemotherapeutic agents have been shown to sensitize cancer cells to killing by death ligands such as tumour necrosis factor-α. Aim To investigate cytotoxicity and apoptotic effect of curcumin in chronic myeloid leukaemic cell line KCL-22. Materials and Methods In present study, different doses of curcumin (10,25,50,75,100μM) and tumour necrosis factor–related apoptosis-inducing ligand (TRAIL) (25,50 μM) alone and combine regimen were exposed to myeloid leukaemic cell KCL-22. The cell viability was monitored by MTT assay, apoptotic activity by binding of Annexin V-FITC using fluorescence microscopy and cell cycle check points by flow cytometry. Results Cytotoxic assay revealed that curcumin and TRAIL induced both dose and time-dependent decrease in cell viability. Significant cell cytotoxicity was seen in combine regimen of both curcumin and TRAIL at 48 h of exposure. Cells treated with curcumin and TRAIL was arrested at the S phase, as revealed by flow cytometric analysis. Subtoxic concentrations of the curcumin-TRAIL combination induced strong apoptotic response in KCL-22 cells as demonstrated by the binding of Annexin V-FITC. Conclusion Our study conclude that curcumin inhibits the cancer cell growth by inducing apoptosis and enhance the therapeutic potential of TRAIL which recommends that both curcumin alone or in combination with TRAIL might be useful for leukaemic prevention and better therapeutic responses. PMID:27190933

  18. Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer.

    PubMed

    Fulda, S; Küfer, M U; Meyer, E; van Valen, F; Dockhorn-Dworniczak, B; Debatin, K M

    2001-09-13

    Resistance of tumors to treatment with cytotoxic drugs, irradiation or immunotherapy may be due to disrupted apoptosis programs. Here, we report in a variety of different tumor cells including Ewing tumor, neuroblastoma, malignant brain tumors and melanoma that caspase-8 expression acts as a key determinant of sensitivity for apoptosis induced by death-inducing ligands or cytotoxic drugs. In tumor cell lines resistant to TRAIL, anti-CD95 or TNFalpha, caspase-8 protein and mRNA expression was decreased or absent without caspase-8 gene loss. Methylation-specific PCR revealed hypermethylation of caspase-8 regulatory sequences in cells with impaired caspase-8 expression. Treatment with the demethylation agent 5-Aza-2'-deoxycytidine (5-dAzaC) reversed hypermethylation of caspase-8 resulting in restoration of caspase-8 expression and recruitment and activation of caspase-8 at the CD95 DISC upon receptor cross-linking thereby sensitizing for death receptor-, and importantly, also for drug-induced apoptosis. Inhibition of caspase-8 activity also inhibited apoptosis sensitization by 5-dAzaC. Similar to demethylation, introduction of caspase-8 by gene transfer sensitized for apoptosis induction. Hypermethylation of caspase-8 was linked to reduced caspase-8 expression in different tumor cell lines in vitro and, most importantly, also in primary tumor samples. Thus, these findings indicate that re-expression of caspase-8, e.g. by demethylation or caspase-8 gene transfer, might be an effective strategy to restore sensitivity for chemotherapy- or death receptor-induced apoptosis in various tumors in vivo. PMID:11593392

  19. Taip2 is a novel cell death-related gene expressed in the brain during development

    SciTech Connect

    Yamada, Kazumi; Akiyama, Nobutake; Yamada, Shuichi; Tanaka, Hiromitsu; Saito, Saburo; Hiraoka, Masahiro; Kizaka-Kondoh, Shinae

    2008-05-02

    TAIP2 was isolated as one of the homologous genes of TAIP3 (TGF-{beta}-up-regulated apoptosis-inducing-protein chromosome 3). The transcript of the mouse counterpart of TAIP2, designated mTaip2, was detected in several tissue specimens from embryos to adults, while mTaip2 was dominantly expressed in the embryonic brain. The overexpression of the full-length mTaip2 induced cell death in various cell lines. An analysis of mTaip2 deletion mutants revealed that the N-terminal half of mTaip2, but not the C-terminal half, had nuclear localization and cell death-inducing activities. The results indicate that mTaip2 is a novel cell death-related gene dominantly expressed in the embryonic brain, thus suggesting that mTaip2 may play a role in development of the brain.

  20. Cloning of murine G1RP, a novel gene related to Drosophila melanogaster g1.

    PubMed

    Baker, S J; Reddy, E P

    2000-05-01

    To study the nature of genes that are induced during the apoptotic death of myeloid precursor cells, we performed representational difference analysis (RDA) using 32Dcl3 myeloblastic cells that were deprived of IL-3 for 24h. We have isolated a novel cDNA (g1-related protein, G1RP) that is homologous to g1, a Drosophila melanogaster zinc-finger protein that is expressed in the mesoderm. Northern blot analysis using RNAs derived from 32Dcl3 cells that have been grown in the absence of IL-3 demonstrates that the G1RP message is upregulated in these cells following the removal of IL-3, suggesting that this gene may regulate growth factor withdrawal-induced apoptosis of myeloid precursor cells. PMID:10806348

  1. Combining Hierarchical and Associative Gene Ontology Relations with Textual Evidence in Estimating Gene and Gene Product Similarity

    SciTech Connect

    Sanfilippo, Antonio P.; Posse, Christian; Gopalan, Banu; Riensche, Roderick M.; Beagley, Nathaniel; Baddeley, Bob L.; Tratz, Stephen C.; Gregory, Michelle L.

    2007-03-01

    Gene and gene product similarity is a fundamental diagnostic measure in analyzing biological data and constructing predictive models for functional genomics. With the rising influence of the Gene Ontology, two complementary approaches have emerged where the similarity between two genes or gene products is obtained by comparing Gene Ontology (GO) annotations associated with the genes or gene products. One approach captures GO-based similarity in terms of hierarchical relations within each gene subontology. The other approach identifies GO-based similarity in terms of associative relations across the three gene subontologies. We propose a novel methodology where the two approaches can be merged with ensuing benefits in coverage and accuracy, and demonstrate that further improvements can be obtained by integrating textual evidence extracted from relevant biomedical literature.

  2. Si Shen Wan Inhibits mRNA Expression of Apoptosis-Related Molecules in p38 MAPK Signal Pathway in Mice with Colitis

    PubMed Central

    Zhao, Hai-Mei; Huang, Xiao-Ying; Zhou, Feng; Tong, Wen-Ting; Wan, Pan-Ting; Huang, Min-Fang; Ye, Qing; Liu, Duan-Yong

    2013-01-01

    Si Shen Wan (SSW) is used to effectively treat ulcerative colitis (UC) as a formula of traditional Chinese medicine. To explore the mechanism of SSW-inhibited apoptosis of colonic epithelial cell, the study observed mRNA expression of apoptosis-related molecules in p38 MAPK signal pathway in colonic mucosa in colitis mice treated with SSW. Experimental colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice; meanwhile, the mice were administrated daily either SSW (5 g/kg) or p38 MAPK inhibitor (2 mg/kg) or vehicle (physiological saline) for 10 days. While microscopical evaluation was observed, apoptosis rate of colonic epithelial cell and mRNA expression of apoptosis-related molecules were tested. Compared with colitis mice without treatment, SSW alleviated colonic mucosal injuries and decreased apoptosis rate of colonic epithelial cell, while the mRNA expressions of p38 MAPK, p53, caspase-3, c-jun, c-fos, Bax, and TNF-α were decreased in the colonic mucosa in colitis mice treated with SSW, and Bcl-2 mRNA and the ratio of Bcl-2/Bax were increased. The present study demonstrated that SSW inhibited mRNA expression of apoptosis-related molecules in p38 MAPK signal pathway to downregulate colonic epithelial cells apoptosis in colonic mucosa in mice with colitis. PMID:24223057

  3. High expression of S100A8 gene is associated with drug resistance to etoposide and poor prognosis in acute myeloid leukemia through influencing the apoptosis pathway

    PubMed Central

    Yang, Xiao-yan; Zhang, Ming-ying; Zhou, Qi; Wu, Shui-yan; Zhao, Ye; Gu, Wei-ying; Pan, Jian; Cen, Jian-nong; Chen, Zi-xing; Guo, Wen-ge; Chen, Chien-shing; Yan, Wen-hua; Hu, Shao-yan

    2016-01-01

    S100A8 has been increasingly recognized as a biomarker in multiple solid tumors and has played pivotal roles in hematological malignancies. S100A8 is potentially an indicator for poor survival in acute myeloid leukemia (AML) in retrospective studies. However, the mechanisms of S100A8 are diverse in cancers. In this study, we investigated the correlation of S100A8 at the transcription level with clinical parameters in 91 de novo AML patients and explored its mechanisms of chemoresistance to etoposide in vitro. The transcription level of S100A8 was significantly lower at initial and relapse stages of AML samples than at complete remission (P<0.001) and than in the control group (P=0.0078), while no significant difference could be found between initial and relapse stages (P=0.257). Patients with high transcription levels of S100A8 exhibited a shorter overall survival (P=0.0012). HL-60 cells transfected with S100A8 showed resistance to etoposide with a higher level IC50 value and lower apoptosis rate compared with HL-60 cells transfected with empty vector. Thirty-six genes were significantly downregulated and 12 genes were significantly upregulated in S100A8 overexpression group compared with control group in which 360 genes involved in apoptotic genes array were performed by real-time reverse transcriptase polymerase chain reaction. Among them, the caspase-3, Bcl-2, and Bax were verified by Western blot analysis which indicated that the role of S100A8 in resistance to chemotherapy was closely related with antiapoptosis. In conclusion, critical S100A8 provided useful clinical information in predicting the outcome of AML. The main mechanism of S100A8 which promoted chemoresistance was antiapoptosis. PMID:27540302

  4. Dral Is a P53-Responsive Gene Whose Four and a Half Lim Domain Protein Product Induces Apoptosis

    PubMed Central

    Scholl, Florence A.; McLoughlin, Patricia; Ehler, Elisabeth; de Giovanni, Carla; Schäfer, Beat W.

    2000-01-01

    DRAL is a four and a half LIM domain protein identified because of its differential expression between normal human myoblasts and the malignant counterparts, rhabdomyosarcoma cells. In the current study, we demonstrate that transcription of the DRAL gene can be stimulated by p53, since transient expression of functional p53 in rhabdomyosarcoma cells as well as stimulation of endogenous p53 by ionizing radiation in wild-type cells enhances DRAL mRNA levels. In support of these observations, five potential p53 target sites could be identified in the promoter region of the human DRAL gene. To obtain insight into the possible functions of DRAL, ectopic expression experiments were performed. Interestingly, DRAL expression efficiently triggered apoptosis in three cell lines of different origin to the extent that no cells could be generated that stably overexpressed this protein. However, transient transfection experiments as well as immunofluorescence staining of the endogenous protein allowed for the localization of DRAL in different cellular compartments, namely cytoplasm, nucleus, focal contacts, as well as Z-discs and to a lesser extent the M-bands in cardiac myofibrils. These data suggest that downregulation of DRAL might be involved in tumor development. Furthermore, DRAL expression might be important for heart function. PMID:11062252

  5. Whole Genome Gene Expression Analysis Reveals Casiopeína-Induced Apoptosis Pathways

    PubMed Central

    Valencia-Cruz, Alejandra Idan; Uribe-Figueroa, Laura I.; Galindo-Murillo, Rodrigo; Baca-López, Karol; Gutiérrez, Anllely G.; Vázquez-Aguirre, Adriana; Ruiz-Azuara, Lena; Hernández-Lemus, Enrique; Mejía, Carmen

    2013-01-01

    Copper-based chemotherapeutic compounds Casiopeínas, have been presented as able to promote selective programmed cell death in cancer cells, thus being proper candidates for targeted cancer therapy. DNA fragmentation and apoptosis–in a process mediated by reactive oxygen species–for a number of tumor cells, have been argued to be the main mechanisms. However, a detailed functional mechanism (a model) is still to be defined and interrogated for a wide variety of cellular conditions before establishing settings and parameters needed for their wide clinical application. In order to shorten the gap in this respect, we present a model proposal centered in the role played by intrinsic (or mitochondrial) apoptosis triggered by oxidative stress caused by the chemotherapeutic agent. This model has been inferred based on genome wide expression profiling in cervix cancer (HeLa) cells, as well as statistical and computational tests, validated via functional experiments (both in the same HeLa cells and also in a Neuroblastoma model, the CHP-212 cell line) and assessed by means of data mining studies. PMID:23382936

  6. The RING for gypsy moth control: Topical application of fragment of its nuclear polyhedrosis virus anti-apoptosis gene as insecticide.

    PubMed

    Oberemok, Volodymyr V; Laikova, Kateryna V; Zaitsev, Aleksei S; Gushchin, Vladimir A; Skorokhod, Oleksii A

    2016-07-01

    Numerous studies suggest a cellular origin for the Lymantria dispar multicapsid nuclear polyhedrosis virus (LdMNPV) anti-apoptosis genes IAPs, thus opening a possibility to use the fragments of these genes for modulation of host metabolism. We report here the strong insecticidal and metabolic effect of single-stranded antisense DNA fragment from RING (really interesting new gene) domain of gypsy moth LdMNPV IAP-3 gene: specifically, on reduction of biomass (by 35%) and survival of L. dispar caterpillars. The treatment with this DNA fragment leads to a significantly higher mortality rates of female insects (1.7 fold) accompanied with the signs of apoptosis. Additionally, we show increased expression of host IAP-1, caspase-4 and gelsolin genes in eggs laid by survived females treated with RING DNA fragment accompanied with calcium and magnesium imbalance, indicating that the strong stress reactions and metabolic effects are not confined to treated insects but likely led to apoptosis in eggs too. The proposed new approach for insect pest management, which can be considered as advancement of "microbial pesticides", is based on the application of the specific virus DNA, exploiting the knowledge about virus-pest interactions and putting it to the benefit of mankind. PMID:27265824

  7. Long-term caloric restriction in mice may prevent age-related learning impairment via suppression of apoptosis.

    PubMed

    Ma, Lina; Wang, Rong; Dong, Wen; Li, Yun; Xu, Baolei; Zhang, Jingshuang; Zhao, Zhiwei

    2016-12-15

    Caloric restriction (CR) is the most reliable intervention to extend lifespan and prevent age-related disorders in various species from yeast to rodents. However, the underlying mechanisms have not yet been clearly defined. Therefore, we aimed to identify the underlying mechanisms of long-term CR on age-related learning impairment in C57/BL mice. Thirty six-week-old male C57/BL mice were randomly divided into three groups: normal control group (NC group, n=10), high energy group (HE group, n=10), and CR group (n=10). After 10 months, the Morris water maze test was performed to monitor learning abilities. Western blotting, immunohistochemistry and real-time polymerase chain reaction were used to monitor changes in protein and mRNA levels associated with apoptosis-related proteins in the hippocampus. The average escape latency was lower in the CR group compared with the NC group, and the average time taken to first cross the platform in the CR group was significantly shorter than the HE group. Both Bcl-2 protein and mRNA expression levels in the CR group were significantly higher than those of the NC group and HE group. The expression of Bax, Caspase-3 and PARP protein in the CR group was significantly lower than the NC group. Our findings demonstrate that long-term CR may prevent age-related learning impairments via suppressing apoptosis in mice. PMID:27452805

  8. A candidate gene approach for virally-induced cancer with application to HIV-related Kaposi’s sarcoma

    PubMed Central

    Aissani, Brahim; Wiener, Howard W.; Zhang, Kui; Kaslow, Richard A.; Ogwaro, Kisani M.; Shrestha, Sadeep; Jacobson, Lisa P.

    2014-01-01

    Like other members of the γ-herpesvirus family, human herpes virus 8 (HHV-8), the etiologic agent of classic and HIV-related Kaposi’s sarcoma (HIV-KS) acquired and evolved several human genes with key immune modulatory and cellular growth control functions. The encoded viral homologs substitute for their human counterparts but escape cellular regulation, leading to uncontrolled cell proliferation. We postulated that DNA variants in the human homologs of viral genes that potentially alter the expression or the binding of the encoded factors controlling the antiviral response may facilitate viral interference. To test whether cellular homologs are candidate susceptibility genes, we evaluated the association of DNA variants in 92 immune-related genes including 7 cellular homologs with the risk for HIV-KS in a matched case and control study nested in the Multicenter AIDS Cohort Study. Low- and high-risk gene-by-gene interactions were estimated by multifactor dimensionality reduction and used as predictors in conditional logistic models. Among the most significant gene interactions at risk (OR=2.84–3.92; Bonferroni-adjusted p= 9.9×10−3−2.6×10−4), three comprised human homologs of two latently expressed viral genes, cyclin D1 (CCND1) and interleukin-6 (IL-6), in conjunction with angiogenic genes (VEGF, EDN-1 and EDNRB). At lower significance thresholds (adjusted p < 0.05), human homologs related to apoptosis (CFLAR) and chemotaxis (CCL2) emerged as candidates. This “proof of concept” study identified human homologs involved in the regulation of type I interferon-induced signaling, cell cycle and apoptosis potentially as important determinants of HIV-KS PMID:23818101

  9. Testis-specific Fank1 gene in knockdown mice produces oligospermia via apoptosis

    PubMed Central

    Dong, Wan-Wei; Huang, Hua-Liang; Yang, Wei; Liu, Jia; Yu, Yang; Zhou, Sheng-Lai; Wang, Wei; Lv, Xiang-Chuan; Li, Zhao-Yang; Zhang, Mei-Ying; Zheng, Zhi-Hong; Yan, Wei

    2014-01-01

    Fank1 is exclusively expressed in the testis from the meiosis phase to the haploid phase of spermatogenesis. In this study, we examined the function of Fank1 by establishing a Fank1-knockdown transgenic mouse model. The apoptotic statuses of the testes of the transgenic mice were tested using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method. The FANK1 consensus DNA-binding sequence was identified using cyclic amplification of sequence target (CAST) analysis. Differentially expressed genes were examined using microarray analysis. A reduction in sperm number and an increase in apoptotic spermatocytes were observed in Fank1-knockdown mice, and the apoptotic cells were found to be primarily spermatogonia and spermatocytes. The CAST results demonstrated that the consensus DNA-binding sequence was AAAAAG, in which the percentage occurrence of each base at each position ranged from 55 to 86%. This sequence was present in the promoter regions of 10 differentially expressed genes that were examined using microarray analysis. In total, 17 genes were differentially expressed with changes in their expression levels greater than twofold. The abnormal expression of Fank1 target genes that were regulated directly or indirectly by Fank1 reduced the number of sperm in the knockdown mice. Thus, FANK1 may play a pivotal role in spermatogenesis as a transcription factor. PMID:24369145

  10. Anticarcinogenic effects of diet-related apoptosis in the colorectal mucosa.

    PubMed

    Johnson, I T

    2002-08-01

    The crypt is the fundamental unit of epithelial proliferation in the intestinal mucosa. The progeny of the pluripotent stem cells located near the base of the crypt migrate towards the crypt orifice, divide once or twice more, and then undergo differentiation, senescence and exfoliation. Programmed cell death (apoptosis) also occurs deep in the proliferative zone. Various lines of evidence suggest that apoptosis provides a protective mechanism against neoplasia by removing genetically damaged stem cells from the epithelium before they can undergo clonal expansion. Several different classes of food constituents, including certain polyunsaturated fatty acids, the short-chain fatty acid butyrate, and some phytochemicals including flavonoids and glucosinolates breakdown products, can modulate both cellular proliferation and programmed death. Each of these food components has also been shown to suppress the emergence of aberrant crypt foci in animal models of carcinogenesis. Further mechanistic and clinical studies are required to establish whether such dietary effects can be exploited to achieve preventive or therapeutic effects in humans. PMID:12067580