Sample records for application purex storage

  1. Hanford facility dangerous waste permit application, PUREX storage tunnels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, C. R.

    1997-09-08

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24).

  2. PUREX/UO{sub 3} deactivation project management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D.J.

    1993-12-01

    From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO{sub 3}) Plant, which converted the PUREX liquid uranium nitrate product to solid UO{sub 3} powder. Final UO{sub 3} Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO{sub 3} Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retainedmore » during the post-deactivation period. The PUREX/UO{sub 3} Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings.« less

  3. The application of N,N-dimethyl-3-oxa-glutaramic acid (DOGA) in the PUREX process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianchen, Wang; Jing, Chen

    2007-07-01

    The new salt-free complexant, DOGA for separating trace Pu(IV) and Np(IV) from U(VI) nitric acid solution was studied. DOGA has stronger complexing abilities to Pu(IV) and Np(IV), but complexing ability of DOGA to U(VI) was weaker. The DOGA can be used in the PUREX process to separate Pu(IV) and Np(IV) from U(VI) nitric solution. On one hand, U(IV) in the nitric acid solution containing trace Pu(IV) and Np(IV) was extracted by 30%TBP - kerosene(v/v) in the presence of DOGA, but Pu(IV) and Np(IV) were kept in the aqueous phase. On the other hand, Pu(IV) and Np(IV) loading in 30% TBPmore » - kerosene were effectively stripped by DOGA into the aqueous phase, but U(VI) loading in 30% TBP - kerosene was remained in 30% TBP - kerosene. DOGA is a promising complexant to separate Pu(IV) and Np(IV) from U(VI) solution in the U-cycle of the PUREX process. (authors)« less

  4. PUREX/UO3 Facilities deactivation lessons learned history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, M.S.

    1996-09-19

    Disconnecting the criticality alarm permanently in June 1996 signified that the hazards in the PUREX (plutonium-uranium extraction) plant had been so removed and reduced that criticality was no longer a credible event. Turning off the PUREX criticality alarm also marked a salient point in a historic deactivation project, 1 year before its anticipated conclusion. The PUREX/UO3 Deactivation Project began in October 1993 as a 5-year, $222.5- million project. As a result of innovations implemented during 1994 and 1995, the project schedule was shortened by over a year, with concomitant savings. In 1994, the innovations included arranging to send contaminated nitricmore » acid from the PUREX Plant to British Nuclear Fuels, Limited (BNFL) for reuse and sending metal solutions containing plutonium and uranium from PUREX to the Hanford Site tank farms. These two steps saved the project $36.9- million. In 1995, reductions in overhead rate, work scope, and budget, along with curtailed capital equipment expenditures, reduced the cost another $25.6 million. These savings were achieved by using activity-based cost estimating and applying technical schedule enhancements. In 1996, a series of changes brought about under the general concept of ``reengineering`` reduced the cost approximately another $15 million, and moved the completion date to May 1997. With the total savings projected at about $75 million, or 33.7 percent of the originally projected cost, understanding how the changes came about, what decisions were made, and why they were made becomes important. At the same time sweeping changes in the cultural of the Hanford Site were taking place. These changes included shifting employee relations and work structures, introducing new philosophies and methods in maintaining safety and complying with regulations, using electronic technology to manage information, and, adopting new methods and bases for evaluating progress. Because these changes helped generate cost savings

  5. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, N.

    1995-05-02

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

  6. Fundamental Chemical Kinetic And Thermodynamic Data For Purex Process Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, R.J.; Fox, O.D.; Sarsfield, M.J.

    2007-07-01

    To support either the continued operations of current reprocessing plants or the development of future fuel processing using hydrometallurgical processes, such as Advanced Purex or UREX type flowsheets, the accurate simulation of Purex solvent extraction is required. In recent years we have developed advanced process modeling capabilities that utilize modern software platforms such as Aspen Custom Modeler and can be run in steady state and dynamic simulations. However, such advanced models of the Purex process require a wide range of fundamental data including all relevant basic chemical kinetic and thermodynamic data for the major species present in the process. Thismore » paper will summarize some of these recent process chemistry studies that underpin our simulation, design and testing of Purex solvent extraction flowsheets. Whilst much kinetic data for actinide redox reactions in nitric acid exists in the literature, the data on reactions in the diluted TBP solvent phase is much rarer. This inhibits the accurate modelization of the Purex process particularly when species show a significant extractability in to the solvent phase or when cycling between solvent and aqueous phases occurs, for example in the reductive stripping of Pu(IV) by ferrous sulfamate in the Magnox reprocessing plant. To support current oxide reprocessing, we have investigated a range of solvent phase reactions: - U(IV)+HNO{sub 3}; - U(IV)+HNO{sub 2}; - U(IV)+HNO{sub 3} (Pu catalysis); - U(IV)+HNO{sub 3} (Tc catalysis); - U(IV)+ Np(VI); - U(IV)+Np(V); - Np(IV)+HNO{sub 3}; - Np(V)+Np(V); Rate equations have been determined for all these reactions and kinetic rate constants and activation energies are now available. Specific features of these reactions in the TBP phase include the roles of water and hydrolyzed intermediates in the reaction mechanisms. In reactions involving Np(V), cation-cation complex formation, which is much more favourable in TBP than in HNO{sub 3}, also occurs and

  7. Chemical interaction matrix between reagents in a Purex based process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brahman, R.K.; Hennessy, W.P.; Paviet-Hartmann, P.

    2008-07-01

    The United States Department of Energy (DOE) is the responsible entity for the disposal of the United States excess weapons grade plutonium. DOE selected a PUREX-based process to convert plutonium to low-enriched mixed oxide fuel for use in commercial nuclear power plants. To initiate this process in the United States, a Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) is under construction and will be operated by Shaw AREVA MOX Services at the Savannah River Site. This facility will be licensed and regulated by the U.S. Nuclear Regulatory Commission (NRC). A PUREX process, similar to the one used at La Hague,more » France, will purify plutonium feedstock through solvent extraction. MFFF employs two major process operations to manufacture MOX fuel assemblies: (1) the Aqueous Polishing (AP) process to remove gallium and other impurities from plutonium feedstock and (2) the MOX fuel fabrication process (MP), which processes the oxides into pellets and manufactures the MOX fuel assemblies. The AP process consists of three major steps, dissolution, purification, and conversion, and is the center of the primary chemical processing. A study of process hazards controls has been initiated that will provide knowledge and protection against the chemical risks associated from mixing of reagents over the life time of the process. This paper presents a comprehensive chemical interaction matrix evaluation for the reagents used in the PUREX-based process. Chemical interaction matrix supplements the process conditions by providing a checklist of any potential inadvertent chemical reactions that may take place. It also identifies the chemical compatibility/incompatibility of the reagents if mixed by failure of operations or equipment within the process itself or mixed inadvertently by a technician in the laboratories. (aut0010ho.« less

  8. Studies in support of an SNM cutoff agreement: The PUREX exercise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanbro, W.D.; Libby, R.; Segal, J.

    1995-07-01

    On September 23, 1993, President Clinton, in a speech before the United Nations General Assembly, called for an international agreement banning the production of plutonium and highly enriched uranium for nuclear explosive purposes. A major element of any verification regime for such an agreement would probably involve inspections of reprocessing plants in Nuclear Nonproliferation Treaty weapons states. Many of these are large facilities built in the 1950s with no thought that they would be subject to international inspection. To learn about some of the problems that might be involved in the inspection of such large, old facilities, the Department ofmore » Energy, Office of Arms Control and Nonproliferation, sponsored a mock inspection exercise at the PUREX plant on the Hanford Site. This exercise examined a series of alternatives for inspections of the PUREX as a model for this type of facility at other locations. A series of conclusions were developed that can be used to guide the development of verification regimes for a cutoff agreement at reprocessing facilities.« less

  9. Industrial storage applications overview

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.

    1980-01-01

    The implementation of a technology demonstration for the food processing industry, development and technology demonstrations for selected near-term, in-plant applications and advanced industrial applications of thermal energy storage are overviewed.

  10. Method of separating and recovering uranium and related cations from spent Purex-type systems

    DOEpatents

    Mailen, J.C.; Tallent, O.K.

    1987-02-25

    A process for separating uranium and related cations from a spent Purex-type solvent extraction system which contains degradation complexes of tributylphosphate wherein the system is subjected to an ion-exchange process prior to a sodium carbonate scrubbing step. A further embodiment comprises recovery of the separated uranium and related cations. 5 figs.

  11. Solar applications analysis for energy storage

    NASA Technical Reports Server (NTRS)

    Blanchard, T.

    1980-01-01

    The role of energy storage as it relates to solar energy systems is considered. Storage technologies to support solar energy applications, the status of storage technologies, requirements and specifications for storage technologies, and the adequacy of the current storage research and development program to meet these requirements are among the factors discussed. Emphasis is placed on identification of where the greatest potential exists for energy storage in support of those solar energy systems which could have a significant impact on the U.S. energy mix.

  12. Solar thermal power storage applications lead laboratory overview

    NASA Technical Reports Server (NTRS)

    Radosevich, L. G.

    1980-01-01

    The implementation of the applications elements of the thermal energy storage for Solar Thermal Applications program is described. The program includes the accelerated development of thermal storage technologies matched to solar thermal power system requirements and scheduled milestones. The program concentrates on storage development in the FY80 to 85 time period with emphasis on the more near-term solar thermal power system application.

  13. Solar thermal storage applications program

    NASA Astrophysics Data System (ADS)

    Peila, W. C.

    1982-12-01

    The efforts of the Storage Applications Program are reviewed. The program concentrated on the investigation of storage media and evaluation of storage methods. Extensive effort was given to experimental and analytical investigations of nitrate salts. Two tasks are the preliminary design of a 1200 MW/sub th/ system and the design, construction, operation, and evaluation of a subsystem research experiment, which utilized the same design. Some preliminary conclusions drawn from the subsystem research experiment are given.

  14. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    PubMed Central

    Wang, Yiran; Wei, Huige; Lu, Yang; Wei, Suying; Wujcik, Evan K.; Guo, Zhanhu

    2015-01-01

    Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials.These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples. PMID:28347034

  15. Commercial applications for optical data storage

    NASA Astrophysics Data System (ADS)

    Tas, Jeroen

    1991-03-01

    Optical data storage has spurred the market for document imaging systems. These systems are increasingly being used to electronically manage the processing, storage and retrieval of documents. Applications range from straightforward archives to sophisticated workflow management systems. The technology is developing rapidly and within a few years optical imaging facilities will be incorporated in most of the office information systems. This paper gives an overview of the status of the market, the applications and the trends of optical imaging systems.

  16. Twelve Principles for Green Energy Storage in Grid Applications.

    PubMed

    Arbabzadeh, Maryam; Johnson, Jeremiah X; Keoleian, Gregory A; Rasmussen, Paul G; Thompson, Levi T

    2016-01-19

    The introduction of energy storage technologies to the grid could enable greater integration of renewables, improve system resilience and reliability, and offer cost effective alternatives to transmission and distribution upgrades. The integration of energy storage systems into the electrical grid can lead to different environmental outcomes based on the grid application, the existing generation mix, and the demand. Given this complexity, a framework is needed to systematically inform design and technology selection about the environmental impacts that emerge when considering energy storage options to improve sustainability performance of the grid. To achieve this, 12 fundamental principles specific to the design and grid application of energy storage systems are developed to inform policy makers, designers, and operators. The principles are grouped into three categories: (1) system integration for grid applications, (2) the maintenance and operation of energy storage, and (3) the design of energy storage systems. We illustrate the application of each principle through examples published in the academic literature, illustrative calculations, and a case study with an off-grid application of vanadium redox flow batteries (VRFBs). In addition, trade-offs that can emerge between principles are highlighted.

  17. Pricing and Application of Electric Storage

    NASA Astrophysics Data System (ADS)

    Zhao, Jialin

    Electric storage provides a vehicle to store power for future use. It contributes to the grids in multiple aspects. For instance, electric storage is a more effective approach to provide electricity ancillary services than conventional methods. Additionally, electric storage, especially fast-responding units, allows owners to implement high-frequency power transactions in settings such as the 5-min real-time trading market. Such high-frequency power trades were limited in the past. However, as technology advances, the power markets have evolved. For instance, the California Independent System Operator now supports the 5-min real-time trading and the hourly day-ahead ancillary services bidding. Existing valuation models of electric storage were not designed to accommodate these recent market developments. To fill this gap, I focus on the fast-responding grid-level electric storage that provides both the real-time trading and the day-ahead ancillary services bidding. To evaluate such an asset, I propose a Monte Carlo Simulation-based valuation model. The foundation of my model is simulations of power prices. This study develops a new simulation model of electric prices. It is worth noting that, unlike existing models, my proposed simulation model captures the dependency of the real-time markets on the day-ahead markets. Upon such simulations, this study investigates the pricing and the application of electric storage at a 5-min granularity. Essentially, my model is a Dynamic Programming system with both endogenous variables (i.e., the State-of-Charge of electric storage) and exogenous variables (i.e., power prices). My first numerical example is the valuation of a fictitious 4MWh battery. Similarly, my second example evaluates the application of two units of 2MWh batteries. By comparing these two experiments, I investigate the issues related to battery configurations, such as the impacts of splitting storage capability on the valuation of electric storage.

  18. Hydrogen Storage for Aircraft Applications Overview

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  19. Energy Storage for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Loyselle, Patricia L.; Hoberecht, Mark A.; Manzo, Michelle A.; Kohout, Lisa L.; Burke, Kenneth A.; Cabrera, Carlos R.

    2001-01-01

    The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications.

  20. 242-A Evaporator/plutonium uranium extraction (PUREX) effluent treatment facility (ETF) nonradioactive air emission test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, J.S., Westinghouse Hanford

    1996-05-10

    This report shows the methods used to test the stack gas outlet concentration and emission rate of Volatile Organic Compounds as Total Non-Methane Hydrocarbons in parts per million by volume,grams per dry standard cubic meter, and grams per minute from the PUREX ETF stream number G6 on the Hanford Site. Test results are shown in Appendix B.1.

  1. 76 FR 12095 - Monroe Gas Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... Storage Company, LLC; Notice of Application Take notice that on February 18, 2011, Monroe Gas Storage... Monroe Gas Storage Project. Specifically, through this Application, Monroe seeks authorization to (1...) of high-deliverability working gas storage capacity, with about 4.46 Bcf of base gas. Nor is any...

  2. Applications and challenges for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Kannberg, L. D.; Tomlinson, J. T.

    1991-04-01

    New thermal energy storage (TES) technologies are being developed and applied as society strives to relieve increasing energy and environmental stresses. Applications for these new technologies range from residential and district heating and cooling using waste and solar energy, to high-temperature energy storage for power production and industrial processes. In the last two decades there has been great interest and development of heat storage systems, primarily for residential and commercial buildings. While development has continued, the rate of advancement has slowed with current technology considered adequate for electrically charged heat storage furnaces. Use of chill storage for building diurnal cooling has received substantial development.

  3. 77 FR 14771 - UGI Storage Company; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. CP12-78-000] UGI Storage Company; Notice of Application Take notice that on February 29, 2012, UGI Storage Company (UGI Storage..., UGI Storage requests authorization to acquire a pipeline segment that originates near the town of...

  4. Thermal Storage Applications Workshop. Volume 2: Contributed Papers

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar thermal and the thermal and thermochemical energy storage programs are described as well as the technology requirements for both external (electrical) and internal (thermal, chemical) modes for energy storage in solar power plants. Specific technical issues addressed include thermal storage criteria for solar power plants interfacing with utility systems; optimal dispatch of storage for solar plants in a conventional electric grid; thermal storage/temperature tradeoffs for solar total energy systems; the value of energy storage for direct-replacement solar thermal power plants; systems analysis of storage in specific solar thermal power applications; the value of seasonal storage of solar energy; criteria for selection of the thermal storage system for a 10 MW(2) solar power plant; and the need for specific requirements by storage system development teams.

  5. 78 FR 15712 - Arlington Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... Storage Company, LLC; Notice of Application Take notice that on February 26, 2013, Arlington Storage... Commission's regulations, requesting authorization to expand its Seneca Lake natural gas storage facility... ``Gallery 2''), previously used for propane storage, and related facilities to natural gas storage. The...

  6. 76 FR 52649 - Golden Triangle Storage, Inc.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... Triangle Storage, Inc.; Notice of Application On August 5, 2011, Golden Triangle Storage, Inc. (Golden... construct and operate two new salt dome storage caverns at its existing storage site located in Jefferson... Triangle Storage, Inc., 1200 Smith Street, Suite 900, Houston, TX 77002, (832) 397-8642 or John F...

  7. Simulating storage part of application with Simgrid

    NASA Astrophysics Data System (ADS)

    Wang, Cong

    2017-10-01

    Design of a file system simulation and visualization system, using simgrid API and visualization techniques to help users understanding and improving the file system portion of their application. The core of the simulator is the API provided by simgrid, cluefs tracks and catches the procedure of the I/O operation. Run the simulator simulating this application to generate the output visualization file, which can visualize the I/O action proportion and time series. Users can also change the parameters in the configuration file to change the parameters of the storage system such as reading and writing bandwidth, users can also adjust the storage strategy, test the performance, getting reference to be much easier to optimize the storage system. We have tested all the aspects of the simulator, the results suggest that the simulator performance can be believable.

  8. Optimal Sizing Tool for Battery Storage in Grid Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-24

    The battery storage sizing tool developed at Pacific Northwest National Laboratory can be used to evaluate economic performance and determine the optimal size of battery storage in different use cases considering multiple power system applications. The considered use cases include i) utility owned battery storage, and ii) battery storage behind customer meter. The power system applications from energy storage include energy arbitrage, balancing services, T&D deferral, outage mitigation, demand charge reduction etc. Most of existing solutions consider only one or two grid services simultaneously, such as balancing service and energy arbitrage. ES-select developed by Sandia and KEMA is able tomore » consider multiple grid services but it stacks the grid services based on priorities instead of co-optimization. This tool is the first one that provides a co-optimization for systematic and local grid services.« less

  9. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  10. Chemical hydrogen storage material property guidelines for automotive applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storagemore » material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.« less

  11. A model of cloud application assignments in software-defined storages

    NASA Astrophysics Data System (ADS)

    Bolodurina, Irina P.; Parfenov, Denis I.; Polezhaev, Petr N.; E Shukhman, Alexander

    2017-01-01

    The aim of this study is to analyze the structure and mechanisms of interaction of typical cloud applications and to suggest the approaches to optimize their placement in storage systems. In this paper, we describe a generalized model of cloud applications including the three basic layers: a model of application, a model of service, and a model of resource. The distinctive feature of the model suggested implies analyzing cloud resources from the user point of view and from the point of view of a software-defined infrastructure of the virtual data center (DC). The innovation character of this model is in describing at the same time the application data placements, as well as the state of the virtual environment, taking into account the network topology. The model of software-defined storage has been developed as a submodel within the resource model. This model allows implementing the algorithm for control of cloud application assignments in software-defined storages. Experimental researches returned this algorithm decreases in cloud application response time and performance growth in user request processes. The use of software-defined data storages allows the decrease in the number of physical store devices, which demonstrates the efficiency of our algorithm.

  12. 75 FR 36376 - Tallulah Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... Storage LLC; Notice of Application June 17, 2010. Take notice that on June 11, 2010, Tallulah Gas Storage... characteristics and the feasibility of developing the South Tallulah salt dome for natural gas storage and the... Storage LLC, 10370 Richmond Avenue, Suite 510, Houston, TX 77042, or by calling (713) 403-6454 (telephone...

  13. 78 FR 77445 - Tres Palacios Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... Gas Storage LLC; Notice of Application Take notice that on December 6, 2013, Tres Palacios Gas Storage... working gas storage capacity in its salt cavern natural gas storage facility located in Matagorda, Colorado, and Wharton Counties, Texas. Tres Palacios states that the proposed abandonment of storage...

  14. Applications of thermal energy storage to process heat storage and recovery in the paper and pulp industry

    NASA Technical Reports Server (NTRS)

    Carr, J. H.; Hurley, P. J.; Martin, P. J.

    1978-01-01

    Applications of Thermal Energy Storage (TES) in a paper and pulp mill power house were studied as one approach to the transfer of steam production from fossil fuel boilers to waste fuel of (hog fuel) boilers. Data from specific mills were analyzed, and various TES concepts evaluated for application in the process steam supply system. Constant pressure and variable pressure steam accumulators were found to be the most attractive storage concepts for this application.

  15. 78 FR 39720 - Atmos Pipeline and Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... and Storage, LLC; Notice of Application Take notice that on June 14, 2013, Atmos Pipeline and Storage... authorizing the construction and operation of the Fort Necessity Gas Storage Project (Project) and associated...) \\2\\. \\1\\ Atmos Pipeline and Storage, LLC, 127 FERC ] 61,260 (2009). \\2\\ Atmos Pipeline and Storage...

  16. Electron trapping data storage system and applications

    NASA Technical Reports Server (NTRS)

    Brower, Daniel; Earman, Allen; Chaffin, M. H.

    1993-01-01

    The advent of digital information storage and retrieval has led to explosive growth in data transmission techniques, data compression alternatives, and the need for high capacity random access data storage. Advances in data storage technologies are limiting the utilization of digitally based systems. New storage technologies will be required which can provide higher data capacities and faster transfer rates in a more compact format. Magnetic disk/tape and current optical data storage technologies do not provide these higher performance requirements for all digital data applications. A new technology developed at the Optex Corporation out-performs all other existing data storage technologies. The Electron Trapping Optical Memory (ETOM) media is capable of storing as much as 14 gigabytes of uncompressed data on a single, double-sided 54 inch disk with a data transfer rate of up to 12 megabits per second. The disk is removable, compact, lightweight, environmentally stable, and robust. Since the Write/Read/Erase (W/R/E) processes are carried out 100 percent photonically, no heating of the recording media is required. Therefore, the storage media suffers no deleterious effects from repeated Write/Read/Erase cycling.

  17. Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.

    1984-05-21

    A process has been developed for the extraction of multivalent lanthanide and actinide values from acidic waste solutions, and for the separation of these values from fission product and other values, which utilizes a new series of neutral bi-functional extractants, the alkyl(phenyl)-N, N-dialkylcarbamoylmethylphosphine oxides, in combination with a phase modifier to form an extraction solution. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.

  18. Thermal storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  19. Thermal Storage Applications Workshop. Volume 1: Plenary Session Analysis

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The importance of the development of inexpensive and efficient thermal and thermochemical energy storage technology to the solar power program is discussed in a summary of workship discussions held to exchange information and plan for future systems. Topics covered include storage in central power applications such as the 10 MW-e demonstration pilot receiver to be constructed in Barstow, California; storage for small dispersed systems, and problems associated with the development of storage systems for solar power plants interfacing with utility systems.

  20. 77 FR 8248 - Bluewater Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-51-000] Bluewater Gas Storage, LLC; Notice of Application Take notice that on January 27, 2012, Bluewater Gas Storage, LLC... Wilson Kisluk, Senior Attorney, Bluewater Gas Storage, LLC, 333 Clay Street, Suite 1500, Houston, Texas...

  1. 78 FR 58529 - Floridian Natural Gas Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... Natural Gas Storage Company, LLC; Notice of Application Take notice that on September 4, 2013, Floridian Natural Gas Storage Company, LLC (Floridian Gas Storage), 1000 Louisiana Street, Suite 4361, Houston, Texas 77002, filed in Docket No. CP13-541-000 an application under section 7(c) of the Natural Gas Act...

  2. 75 FR 57011 - Tallulah Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... Storage LLC; Notice of Application September 9, 2010. Take notice that on August 31, 2010, Tallulah Gas Storage LLC (Tallulah), 10370 Richmond Avenue, Suite 510, Houston, TX 77042, filed in Docket No. CP10-494... necessity authorizing Tallulah to construct and operate a natural gas storage facility and pipeline...

  3. Sewage sludge as fertiliser - environmental assessment of storage and land application options.

    PubMed

    Willén, A; Junestedt, C; Rodhe, L; Pell, M; Jönsson, H

    2017-03-01

    Sewage sludge (SS) contains beneficial plant nutrients and organic matter, and therefore application of SS on agricultural land helps close nutrient loops. However, spreading operations are restricted to certain seasons and hence the SS needs to be stored. Storage and land application of SS are both potential sources of greenhouse gases and ammonia, leading to global warming, acidification and eutrophication. Covering the stored SS, treating it with urea and choosing the correct time for land application all have the potential to reduce emissions from the system. Using life cycle assessment (LCA), this study compares storage and land application options of SS in terms of global warming potential (GWP), acidification potential, eutrophication potential and primary energy use. The system with covered storage has the lowest impact of all categories. Systems with autumn application are preferable to spring application for all impact categories but, when nitrate leaching is considered, spring application is preferable in terms of eutrophication and primary energy use and, for some SS treatments, GWP. Ammonia addition reduces nitrous oxide and ammonia emissions during storage, but increases these emissions after land application. Storage duration has a large impact on GWP, while amount of chemical nitrogen fertiliser substituted has a large impact on primary energy use.

  4. 77 FR 2715 - D'Lo Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... Storage, LLC; Notice of Application Take notice that on December 29, 2011, D'Lo Gas Storage, LLC (D'Lo... natural gas storage project to be located in Simpson County, Mississippi. Additionally, D'Lo requests a...- discriminatory firm interruptible natural gas storage services and hub services, and a blanket certificate...

  5. 75 FR 70727 - Perryville Gas Storage LLC ; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... Storage LLC ; Notice of Application November 10, 2010. Take notice that on November 5, 2010, Perryville Gas Storage LLC (Perryville), Three Riverway, Suite 1350, Houston, Texas 77056, filed in Docket No... interpretations for the location of the edge of the salt dome relative to the approved natural gas storage Cavern...

  6. 75 FR 21288 - Henry Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-125-000] Henry Gas Storage LLC; Notice of Application April 16, 2010. Take notice that on April 5, 2010, Henry Gas Storage... developing the Cote Blanche Island salt dome for natural gas storage in St. Mary Parish, Louisiana, all as...

  7. 40 CFR 429.100 - Applicability; description of the wet storage subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the wet... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wet Storage Subcategory § 429.100 Applicability; description of the wet storage subcategory. This subpart applies to...

  8. 40 CFR 429.100 - Applicability; description of the wet storage subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the wet... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wet Storage Subcategory § 429.100 Applicability; description of the wet storage subcategory. This subpart applies to...

  9. 76 FR 41235 - Tres Palacios Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Gas Storage LLC; Notice of Application Take notice that on July 5, 2011, Tres Palacios Gas Storage LLC.... CP07-90-000; authorizing TPGS to implement limited changes to the certificated Tres Palacios Storage... existing footprint of the Tres Palacios Storage Facility on previous cleared land. TPGS does not propose...

  10. Building heating and cooling applications thermal energy storage program overview

    NASA Technical Reports Server (NTRS)

    Eissenberg, D. M.

    1980-01-01

    Thermal energy storage technology and development of building heating and cooling applications in the residential and commercial sectors is outlined. Three elements are identified to undergo an applications assessment, technology development, and demonstration. Emphasis is given to utility load management thermal energy system application where the stress is on the 'customer side of the meter'. Thermal storage subsystems for space conditioning and conservation means of increased thermal mass within the building envelope and by means of low-grade waste heat recovery are covered.

  11. Electron trapping optical data storage system and applications

    NASA Technical Reports Server (NTRS)

    Brower, Daniel; Earman, Allen; Chaffin, M. H.

    1993-01-01

    A new technology developed at Optex Corporation out-performs all other existing data storage technologies. The Electron Trapping Optical Memory (ETOM) media stores 14 gigabytes of uncompressed data on a single, double-sided 130 mm disk with a data transfer rate of up to 120 megabits per second. The disk is removable, compact, lightweight, environmentally stable, and robust. Since the Write/Read/Erase (W/R/E) processes are carried out photonically, no heating of the recording media is required. Therefore, the storage media suffers no deleterious effects from repeated W/R/E cycling. This rewritable data storage technology has been developed for use as a basis for numerous data storage products. Industries that can benefit from the ETOM data storage technologies include: satellite data and information systems, broadcasting, video distribution, image processing and enhancement, and telecommunications. Products developed for these industries are well suited for the demanding store-and-forward buffer systems, data storage, and digital video systems needed for these applications.

  12. Investigation of storage system designs and techniques for optimizing energy conservation in integrated utility systems. Volume 2: (Application of energy storage to IUS)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The applicability of energy storage devices to any energy system depends on the performance and cost characteristics of the larger basic system. A comparative assessment of energy storage alternatives for application to IUS which addresses the systems aspects of the overall installation is described. Factors considered include: (1) descriptions of the two no-storage IUS baselines utilized as yardsticks for comparison throughout the study; (2) discussions of the assessment criteria and the selection framework employed; (3) a summary of the rationale utilized in selecting water storage as the primary energy storage candidate for near term application to IUS; (4) discussion of the integration aspects of water storage systems; and (5) an assessment of IUS with water storage in alternative climates.

  13. 77 FR 73635 - Northwest Storage GP, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-18-000; PF12-2-000] Northwest Storage GP, LLC; Notice of Application Take notice that on November 21, 2012, Northwest Storage GP..., Northwest Storage GP, LLC., 295 Chipeta Way, Salt Lake City, Utah 84108, by phone at 801-584-6857 or by...

  14. Method for extracting lanthanides and actinides from acid solutions by modification of purex solvent

    DOEpatents

    Horwitz, E. Philip; Kalina, Dale G.

    1986-01-01

    A process for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.

  15. Nanophase change for data storage applications.

    PubMed

    Shi, L P; Chong, T C

    2007-01-01

    Phase change materials are widely used for date storage. The most widespread and important applications are rewritable optical disc and Phase Change Random Access Memory (PCRAM), which utilizes the light and electric induced phase change respectively. For decades, miniaturization has been the major driving force to increase the density. Now the working unit area of the current data storage media is in the order of nano-scale. On the nano-scale, extreme dimensional and nano-structural constraints and the large proportion of interfaces will cause the deviation of the phase change behavior from that of bulk. Hence an in-depth understanding of nanophase change and the related issues has become more and more important. Nanophase change can be defined as: phase change at the scale within nano range of 100 nm, which is size-dependent, interface-dominated and surrounding materials related. Nanophase change can be classified into two groups, thin film related and structure related. Film thickness and clapping materials are key factors for thin film type, while structure shape, size and surrounding materials are critical parameters for structure type. In this paper, the recent development of nanophase change is reviewed, including crystallization of small element at nano size, thickness dependence of crystallization, effect of clapping layer on the phase change of phase change thin film and so on. The applications of nanophase change technology on data storage is introduced, including optical recording such as super lattice like optical disc, initialization free disc, near field, super-RENS, dual layer, multi level, probe storage, and PCRAM including, superlattice-like structure, side edge structure, and line type structure. Future key research issues of nanophase change are also discussed.

  16. 40 CFR 429.100 - Applicability; description of the wet storage subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the wet... Wet Storage Subcategory § 429.100 Applicability; description of the wet storage subcategory. This... logs or roundwood before or after removal of bark in self-contained bodies of water (mill ponds or log...

  17. 40 CFR 429.100 - Applicability; description of the wet storage subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Applicability; description of the wet... Wet Storage Subcategory § 429.100 Applicability; description of the wet storage subcategory. This... logs or roundwood before or after removal of bark in self-contained bodies of water (mill ponds or log...

  18. 40 CFR 429.100 - Applicability; description of the wet storage subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the wet... Wet Storage Subcategory § 429.100 Applicability; description of the wet storage subcategory. This... logs or roundwood before or after removal of bark in self-contained bodies of water (mill ponds or log...

  19. Biophotopol: A Sustainable Photopolymer for Holographic Data Storage Applications

    PubMed Central

    Ortuño, Manuel; Gallego, Sergi; Márquez, Andrés; Neipp, Cristian; Pascual, Inmaculada; Beléndez, Augusto

    2012-01-01

    Photopolymers have proved to be useful for different holographic applications such as holographic data storage or holographic optical elements. However, most photopolymers have certain undesirable features, such as the toxicity of some of their components or their low environmental compatibility. For this reason, the Holography and Optical Processing Group at the University of Alicante developed a new dry photopolymer with low toxicity and high thickness called biophotopol, which is very adequate for holographic data storage applications. In this paper we describe our recent studies on biophotopol and the main characteristics of this material. PMID:28817008

  20. Biophotopol: A Sustainable Photopolymer for Holographic Data Storage Applications.

    PubMed

    Ortuño, Manuel; Gallego, Sergi; Márquez, Andrés; Neipp, Cristian; Pascual, Inmaculada; Beléndez, Augusto

    2012-05-02

    Photopolymers have proved to be useful for different holographic applications such as holographic data storage or holographic optical elements. However, most photopolymers have certain undesirable features, such as the toxicity of some of their components or their low environmental compatibility. For this reason, the Holography and Optical Processing Group at the University of Alicante developed a new dry photopolymer with low toxicity and high thickness called biophotopol, which is very adequate for holographic data storage applications. In this paper we describe our recent studies on biophotopol and the main characteristics of this material.

  1. 75 FR 8318 - Petrologistics Natural Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Natural Gas Storage, LLC; Notice of Application February 17, 2010. Take notice that on February 12, 2010, Petrologistics Natural Gas Storage, LLC (Petrologistics), 4470 Bluebonnet Blvd., Baton Rouge, LA 70809, filed an application in Docket No. CP10-66-000, pursuant to section 7(c) of the Natural Gas Act (NGA), to amend its...

  2. Overview of Energy Storage Technologies for Space Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao

    2006-01-01

    This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.

  3. 76 FR 50724 - Sawgrass Storage, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. CP11-523-000; PF10-20-000] Sawgrass Storage, L.L.C.; Notice of Application Take notice that on July 27, 2011, Sawgrass Storage, L.L.C..., filed an application in Docket No. CP11-523-000 pursuant to Section 7(c) of the Natural Gas Act (NGA...

  4. 75 FR 57747 - Tres Palacios Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Gas Storage LLC; Notice of Application September 15, 2010. Take notice that on September 3, 2010, Tres Palacios Gas Storage LLC (Tres Palacios), 53 Riverside Avenue, Westport, Connecticut 06880, filed in Docket... natural gas storage caverns to the actual capacities available in each cavern as established by the most...

  5. 77 FR 789 - Tres Palacios Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... Gas Storage LLC; Notice of Application Take notice that on December 20, 2011, Tres Palacios Gas Storage LLC (Tres Palacios), Two Brush Creek Boulevard, Kansas City, Missouri 64112, filed in the above... on its storage facility header pipeline system by: (i) Constructing a 19.7-mile, 24-inch diameter...

  6. Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.

    1986-03-04

    A process is described for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula as shown in a diagram where [phi] is phenyl, R[sup 1] is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R[sup 2] is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions. 6 figs.

  7. 75 FR 35007 - Wyckoff Gas Storage Company LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-454-000] Wyckoff Gas Storage Company LLC; Notice of Application June 15, 2010. On June 10, 2010, Wyckoff Gas Storage Company..., Wyckoff Gas Storage Company, LLC, 6733 South Yale, Tulsa, OK 74136, (918) 491-4440 or [email protected

  8. Energy Storage Applications in Power Systems with Renewable Energy Generation

    NASA Astrophysics Data System (ADS)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  9. Research on the Orientation and Application of Distributed Energy Storage in Energy Internet

    NASA Astrophysics Data System (ADS)

    Zeng, Ming; Zhou, Pengcheng; Li, Ran; Zhou, Jingjing; Chen, Tao; Li, Zhe

    2018-01-01

    Energy storage is indispensable resources to achieve a high proportion of new energy power consumption in electric power system. As an important support to energy Internet, energy storage system can achieve a variety of energy integration operation to ensure maximum energy efficiency. In this paper, firstly, the SWOT analysis method is used to express the internal and external advantages and disadvantages of distributed energy storage participating in the energy Internet. Secondly, the function orientation of distributed energy storage in energy Internet is studied, based on which the application modes of distributed energy storage in virtual power plant, community energy storage and auxiliary services are deeply studied. Finally, this paper puts forward the development strategy of distributed energy storage which is suitable for the development of China’s energy Internet, and summarizes and prospects the application of distributed energy storage system.

  10. Review of Phase Change Materials Based on Energy Storage System with Applications

    NASA Astrophysics Data System (ADS)

    Thamaraikannn, R.; Kanimozhi, B.; Anish, M.; Jayaprabakar, J.; Saravanan, P.; Rohan Nicholas, A.

    2017-05-01

    The use of Different types of storage system using phase change materials (PCMs) is an effective way of storing energy and also to make advantages of heating and cooling systems are installed to maintain temperatures within the well-being zone. PCMs have been extensively used in various storage systems for heat pumps, solar engineering, and thermal control applications. The use of PCM’s for heating and cooling applications have been investigated during the past decade. There are large numbers of PCM’s, which melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also outline the investigation and analysis of Phase Change materials used in Different Types of storage systems with different applications.

  11. Analysis on applicable error-correcting code strength of storage class memory and NAND flash in hybrid storage

    NASA Astrophysics Data System (ADS)

    Matsui, Chihiro; Kinoshita, Reika; Takeuchi, Ken

    2018-04-01

    A hybrid of storage class memory (SCM) and NAND flash is a promising technology for high performance storage. Error correction is inevitable on SCM and NAND flash because their bit error rate (BER) increases with write/erase (W/E) cycles, data retention, and program/read disturb. In addition, scaling and multi-level cell technologies increase BER. However, error-correcting code (ECC) degrades storage performance because of extra memory reading and encoding/decoding time. Therefore, applicable ECC strength of SCM and NAND flash is evaluated independently by fixing ECC strength of one memory in the hybrid storage. As a result, weak BCH ECC with small correctable bit is recommended for the hybrid storage with large SCM capacity because SCM is accessed frequently. In contrast, strong and long-latency LDPC ECC can be applied to NAND flash in the hybrid storage with large SCM capacity because large-capacity SCM improves the storage performance.

  12. Centrifugal Spinning and Its Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Yao, Lu

    Lithium-ion batteries (LIBs) and supercapacitors are important electrochemical energy storage systems. LIBs have high specific energy density, long cycle life, good thermal stability, low self-discharge, and no memory effect. However, the low abundance of Li in the Earth's crust and the rising cost of LIBs urge the attempts to develop alternative energy storage systems. Recently, sodium-ion batteries (SIBs) have become an attractive alternative to LIBs due to the high abundance and low cost of Na. Although the specific capacity and energy density of SIBs are not as high as LIBs, SIBs can still be promising power sources for certain applications such as large-scale, stationary grids. Supercapacitors are another important class of energy storage devices. Electric double-layer capacitors (EDLCs) are one important type of supercapacitors and they exhibit high power density, long cycle life, excellent rate capability and environmental friendliness. The potential applications of supercapacitors include memory protection in electronic circuitry, consumer portable electronic devices, and electrical hybrid vehicles. The electrochemical performance of SIBs and EDLCs is largely dependent on the electrode materials. Therefore, development of superior electrodes is the key to achieve highperformance alternative energy storage systems. Recently, one-dimensional nano-/micro-fiber based electrodes have become promising candidates in energy storage because they possess a variety of desirable properties including large specific surface area, well-guided ionic/electronic transport, and good electrode-electrolyte contact, which contribute to enhanced electrochemical performance. Currently, most nano-/micro-fiber based electrodes are prepared via electrospinning method. However, the low production rate of this approach hinders its practical application in the production of fibrous electrodes. Thus, it is significantly important to employ a rapid, low-cost and scalable nano

  13. Outlook and application analysis of energy storage in power system with high renewable energy penetration

    NASA Astrophysics Data System (ADS)

    Feng, Junshu; Zhang, Fuqiang

    2018-02-01

    To realize low-emission and low-carbon energy production and consumption, large-scale development and utilization of renewable energy has been put into practice in China. And it has been recognized that power system of future high renewable energy shares can operate more reliably with the participation of energy storage. Considering the significant role of storage playing in the future power system, this paper focuses on the application of energy storage with high renewable energy penetration. Firstly, two application modes are given, including demand side application mode and centralized renewable energy farm application mode. Afterwards, a high renewable energy penetration scenario of northwest region in China is designed, and its production simulation with application of energy storage in 2050 has been calculated and analysed. Finally, a development path and outlook of energy storage is given.

  14. 77 FR 5788 - PetroLogistics Natural Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... Natural Gas Storage, LLC; Notice of Application Take notice that on January 27, 2012, PetroLogistics Natural Gas Storage, LLC (PetroLogistics), 4470 Bluebonnet Blvd., Baton Rouge, Louisiana 70809, filed in Docket No. CP11-50-001, an application pursuant to section 7(c) of the Natural Gas Act (NGA) and Part 157...

  15. 75 FR 49917 - PetroLogistics Natural Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Natural Gas Storage, LLC; Notice of Application August 3, 2010. Take notice that on July 21, 2010, PetroLogistics Natural Gas Storage, LLC (PetroLogistics), 4470 Bluebonnet Blvd., Baton Rouge, Louisiana 70809, filed in Docket No. CP10-473-000, an application pursuant to section 7(c) of the Natural Gas Act (NGA...

  16. 75 FR 8051 - Petal Gas Storage, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Storage, L.L.C.; Notice of Application February 12, 2010. Take notice that on January 29, 2010, Petal Gas Storage, L.L.C. (Petal), 1100 Louisiana Street, Houston, Texas, 77002, filed with the Federal Energy Regulatory Commission an abbreviated application pursuant to section 7(c) of the Natural Gas Act (NGA), as...

  17. Advanced energy storage for space applications: A follow-up

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Surampudi, Subbarao

    1994-01-01

    Viewgraphs on advanced energy storage for space applications are presented. Topics covered include: categories of space missions using batteries; battery challenges; properties of SOA and advanced primary batteries; lithium primary cell applications; advanced rechargeable battery applications; present limitations of advanced battery technologies; and status of Li-TiS2, Ni-MH, and Na-NiCl2 cell technologies.

  18. Candidate thermal energy storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  19. Synthesis of nanostructured marcasite FeS2 for energy storage applications

    NASA Astrophysics Data System (ADS)

    Kaur, Gurpreet; Sharma, Pooja D.; Thakur, Anup; Kumar, Manjeet; Bala, Rajni; Kumar, Akshay

    2018-05-01

    The synthesis of marcasite FeS2 is of great interest as this area is seldom studied due to its sophisticated synthesis methods. In fulfillment of growing energy demands, there is need of cost effective alternates for energy storage devices. Nanostructured marcasite iron disulfide (FeS2) is a promising candidate as anode material for energy storage devices. FeS2 exist in many phases out of which marcasite and pyrite are best suitable for energy storage applications. Purity of the phase is a big challenge for its application oriented use. Pure marcasite (FeS2) has been synthesized by low cost, environmentally friendly hydrothermal route. The synthesized material has been characterized by X-ray Diffraction (XRD). Cyclic voltammetry results show the significant electrochemical performance of marcasite. This work purposes a vision to develop marcasite based electrode material for energy storage devices.

  20. Application of electrochemical energy storage in solar thermal electric generation systems

    NASA Technical Reports Server (NTRS)

    Das, R.; Krauthamer, S.; Frank, H.

    1982-01-01

    This paper assesses the status, cost, and performance of existing electrochemical energy storage systems, and projects the cost, performance, and availability of advanced storage systems for application in terrestrial solar thermal electric generation. A 10 MWe solar plant with five hours of storage is considered and the cost of delivered energy is computed for sixteen different storage systems. The results indicate that the five most attractive electrochemical storage systems use the following battery types: zinc-bromine (Exxon), iron-chromium redox (NASA/Lewis Research Center, LeRC), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (Energy Development Associates, EDA).

  1. An Isotope-Powered Thermal Storage unit for space applications

    NASA Technical Reports Server (NTRS)

    Lisano, Michael E.; Rose, M. F.

    1991-01-01

    An Isotope-Powered Thermal Storage Unit (ITSU), that would store and utilize heat energy in a 'pulsed' fashion in space operations, is described. Properties of various radioisotopes are considered in conjunction with characteristics of thermal energy storage materials, to evaluate possible implementation of such a device. The utility of the unit is discussed in light of various space applications, including rocket propulsion, power generation, and spacecraft thermal management.

  2. 75 FR 52937 - Turtle Bayou Gas Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ...] Turtle Bayou Gas Storage Company, LLC; Notice of Application August 20, 2010. Take notice that on August 6, 2010, Turtle Bayou Gas Storage Company, LLC (Turtle Bayou), One Office Park Circle, Suite 300..., operate, and maintain a new salt dome natural gas storage facility in two caverns and related facilities...

  3. Innovative applications of energy storage in a restructured electricity marketplace : Phase III final report : a study for the DOE Energy Storage Systems Program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyer, James M.; Erdman, Bill; Iannucci, Joseph J., Jr.

    2005-03-01

    This report describes Phase III of a project entitled Innovative Applications of Energy Storage in a Restructured Electricity Marketplace. For this study, the authors assumed that it is feasible to operate an energy storage plant simultaneously for two primary applications: (1) energy arbitrage, i.e., buy-low-sell-high, and (2) to reduce peak loads in utility ''hot spots'' such that the utility can defer their need to upgrade transmission and distribution (T&D) equipment. The benefits from the arbitrage plus T&D deferral applications were estimated for five cases based on the specific requirements of two large utilities operating in the Eastern U.S. A numbermore » of parameters were estimated for the storage plant ratings required to serve the combined application: power output (capacity) and energy discharge duration (energy storage). In addition to estimating the various financial expenditures and the value of electricity that could be realized in the marketplace, technical characteristics required for grid-connected distributed energy storage used for capacity deferral were also explored.« less

  4. Graphene hybridization for energy storage applications.

    PubMed

    Li, Xianglong; Zhi, Linjie

    2018-05-08

    Graphene has attracted considerable attention due to its unique two-dimensional structure, high electronic mobility, exceptional thermal conductivity, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. To meet the ever increasing demand for portable electronic products, electric vehicles, smart grids, and renewable energy integrations, hybridizing graphene with various functions and components has been demonstrated to be a versatile and powerful strategy to significantly enhance the performance of various energy storage systems such as lithium-ion batteries, supercapacitors and beyond, because such hybridization can result in synergistic effects that combine the best merits of involved components and confer new functions and properties, thereby improving the charge/discharge efficiencies and capabilities, energy/power densities, and cycle life of these energy storage systems. This review will focus on diverse graphene hybridization principles and strategies for energy storage applications, and the proposed outline is as follows. First, graphene and its fundamental properties, followed by graphene hybrids and related hybridization motivation, are introduced. Second, the developed hybridization formulas of using graphene for lithium-ion batteries are systematically categorized from the viewpoint of material structure design, bulk electrode construction, and material/electrode collaborative engineering; the latest representative progress on anodes and cathodes of lithium-ion batteries will be reviewed following such classifications. Third, similar hybridization formulas for graphene-based supercapacitor electrodes will be summarized and discussed as well. Fourth, the recently emerging hybridization formulas for other graphene-based energy storage devices will be briefed in combination with typical examples. Finally, future prospects and directions on the exploration of graphene hybridization toward the design and construction of

  5. Perspectives on energy storage wheels for space station application

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.

    1984-01-01

    Several of the issues of the workshop are addressed from the perspective of a potential Space Station developer and energy wheel user. Systems' considerations are emphasized rather than component technology. The potential of energy storage wheel (ESW) concept is discussed. The current status of the technology base is described. Justification for advanced technology development is also discussed. The study concludes that energy storage in wheels is an attractive concept for immediate technology development and future Space Station application.

  6. Advanced high-temperature thermal energy storage media for industrial applications

    NASA Astrophysics Data System (ADS)

    Claar, T. D.; Waibel, R. T.

    1982-02-01

    An advanced thermal energy storage media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. The composite latent/sensible media concept and its potential advantages over state of the art latent heat systems is described. Media stability requirements, on-going materials development efforts, and planned thermal energy storage (TES) performance evaluation tests are discussed.

  7. Polyaniline as a material for hydrogen storage applications.

    PubMed

    Attia, Nour F; Geckeler, Kurt E

    2013-07-12

    The main challenge of commercialization of the hydrogen economy is the lack of convenient and safe hydrogen storage materials, which can adsorb and release a significant amount of hydrogen at ambient conditions. Finding and designing suitable cost-effective materials are vital requirements to overcome the drawbacks of investigated materials. Because of its outstanding electronic, thermal, and chemical properties, the electrically conducting polyaniline (PANI) has a high potential in hydrogen storage applications. In this review, the progress in the use of different structures of conducting PANI, its nanocomposites as well as activated porous materials based on PANI as hydrogen storage materials is presented and discussed. The effect of the unique electronic properties based on the π-electron system in the backbone of these materials in view of the hydrogen uptake and the relevant mechanisms are highlighted. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nuclear and chemical safety analysis: Purex Plant 1970 thorium campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boldt, A.L.; Oberg, G.C.

    The purpose of this document is to discuss the flowsheet and the related processing equipment with respect to nuclear and chemical safety. The analyses presented are based on equipment utilization and revised piping as outlined in the design criteria. Processing of thorium and uranium-233 in the Purex Plant can be accomplished within currently accepted levels of risk with respect to chemical and nuclear safety if minor instrumentation changes are made. Uranium-233 processing is limited to a rate of about 670 grams per hour by equipment capacities and criticality safety considerations. The major criticality prevention problems result from the potential accumulationmore » of uranium-233 in a solvent phase in E-H4 (ICU concentrator), TK-J1 (IUC receiver), and TK-J21 (2AF pump tank). The same potential problems exist in TK-J5 (3AF pump tank) and TK-N1 (3BU receiver), but the probabilities of reaching a critical condition are not as great. In order to prevent the excessive accumulation of uranium-233 in any of these vessels by an extraction mechanism, it is necessary to maintain the uranium-233 and salting agent concentrations below the point at which a critical concentration of uranium-233 could be reached in a solvent phase.« less

  9. 76 FR 544 - PetroLogistics Natural Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... Natural Gas Storage, LLC; Notice of Application December 28, 2010. Take notice that on December 14, 2010, PetroLogistics Natural Gas Storage, LLC (PetroLogistics), 4470 Bluebonnet Blvd., Baton Rouge, Louisiana... Natural Gas Act (NGA) and Part 157 of the Commission's regulations, requesting a certificate of public...

  10. 77 FR 23241 - Floridian Natural Gas Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-100-000] Floridian Natural Gas Storage Company, LLC; Notice of Application Take notice that on March 30, 2012, Floridian Natural Gas Storage Company, LLC (FGS), 1000 Louisiana Street, Suite 4361, Houston, Texas 77002, filed in...

  11. Thermal energy storage for smart grid applications

    NASA Astrophysics Data System (ADS)

    Al-Hallaj, Said; Khateeb, Siddique; Aljehani, Ahmed; Pintar, Mike

    2018-01-01

    Energy consumption for commercial building cooling accounts for 15% of all commercial building's electricity usage [1]. Electric utility companies charge their customers time of use consumption charges (/kWh) and additionally demand usage charges (/kW) to limit peak energy consumption and offset their high operating costs. Thus, there is an economic incentive to reduce both the electricity consumption charges and demand charges by developing new energy efficient technologies. Thermal energy storage (TES) systems using a phase change material (PCM) is one such technology that can reduce demand charges and shift the demand from on-peak to off-peak rates. Ice and chilled water have been used in thermal storage systems for many decades, but they have certain limitations, which include a phase change temperature of 0 degrees Celsius and relatively low thermal conductivity in comparison to other materials, which limit their applications as a storage medium. To overcome these limitations, a novel phase change composite (PCC) TES material was developed that has much higher thermal conductivity that significantly improves the charge / discharge rate and a customizable phase change temperature to allow for better integration with HVAC systems. Compared to ice storage, the PCC TES system is capable of very high heat transfer rate and has lower system and operational costs. Economic analysis was performed to compare the PCC TES system with ice system and favorable economics was proven. A 4.5 kWh PCC TES prototype system was also designed for testing and validation purpose.

  12. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    PubMed Central

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-01-01

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed. PMID:20717527

  13. Conducting polymer nanostructures: template synthesis and applications in energy storage.

    PubMed

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-07-02

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  14. Application of nanomaterials in solar thermal energy storage

    NASA Astrophysics Data System (ADS)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  15. Application of nanomaterials in solar thermal energy storage

    NASA Astrophysics Data System (ADS)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  16. Nanomaterials for Hydrogen Storage Applications: A Review

    DOE PAGES

    Niemann, Michael U.; Srinivasan, Sesha S.; Phani, Ayala R.; ...

    2008-01-01

    Nmore » anomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices. anostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, TiS 2 / MoS 2 nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc.) and their hydrogen storage characteristics are outlined.« less

  17. Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art.

    PubMed

    Lai, Qiwen; Paskevicius, Mark; Sheppard, Drew A; Buckley, Craig E; Thornton, Aaron W; Hill, Matthew R; Gu, Qinfen; Mao, Jianfeng; Huang, Zhenguo; Liu, Hua Kun; Guo, Zaiping; Banerjee, Amitava; Chakraborty, Sudip; Ahuja, Rajeev; Aguey-Zinsou, Kondo-Francois

    2015-09-07

    One of the limitations to the widespread use of hydrogen as an energy carrier is its storage in a safe and compact form. Herein, recent developments in effective high-capacity hydrogen storage materials are reviewed, with a special emphasis on light compounds, including those based on organic porous structures, boron, nitrogen, and aluminum. These elements and their related compounds hold the promise of high, reversible, and practical hydrogen storage capacity for mobile applications, including vehicles and portable power equipment, but also for the large scale and distributed storage of energy for stationary applications. Current understanding of the fundamental principles that govern the interaction of hydrogen with these light compounds is summarized, as well as basic strategies to meet practical targets of hydrogen uptake and release. The limitation of these strategies and current understanding is also discussed and new directions proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Applicability of canisters for sample storage in the determination of hazardous air pollutants

    NASA Astrophysics Data System (ADS)

    Kelly, Thomas J.; Holdren, Michael W.

    This paper evaluates the applicability of canisters for storage of air samples containing volatile organic compounds listed among the 189 hazardous air pollutants (HAPs) in the 1990 U.S. Clean Air Act Amendments. Nearly 100 HAPs have sufficient vapor pressure to be considered volatile compounds. Of those volatile organic HAPs, 52 have been tested previously for stability during storage in canisters. The published HAP stability studies are reviewed, illustrating that for most of the 52 HAPs tested, canisters are an effective sample storage approach. However, the published stability studies used a variety of canister types and test procedures, and generally considered only a few compounds in a very small set of canisters. A comparison of chemical and physical properties of the HAPs has also been conducted, to evaluate the applicability of canister sampling for other HAPs, for which canister stability testing has never been conducted. Of 45 volatile HAPs never tested in canisters, this comparison identifies nine for which canisters should be effective, and 17 for which canisters are not likely to be effective. For the other 19 HAPs, no clear decision can be reached on the likely applicability of air sample storage in canisters.

  19. High temperature metal hydrides as heat storage materials for solar and related applications.

    PubMed

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 degrees C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  20. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    PubMed Central

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described. PMID:19333448

  1. Conceptual design of thermal energy storage systems for near-term electric utility applications

    NASA Technical Reports Server (NTRS)

    Hall, E. W.

    1980-01-01

    Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.

  2. 76 FR 45252 - Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14125-000] Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On March 25, 2011, Reliable Storage 1 LLC, filed an...

  3. 76 FR 45251 - Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14121-000] Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On March 25, 2011, Reliable Storage 1 LLC, filed an...

  4. 76 FR 45252 - Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14122-000] Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On March 25, 2011, Reliable Storage 1 LLC, filed an...

  5. 76 FR 45251 - Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14124-000] Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On March 25, 2011, Reliable Storage 1 LLC, filed an...

  6. Thermal energy storage

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The planning and implementation of activities associated with lead center management role and the technical accomplishments pertaining to high temperature thermal energy storage subsystems are described. Major elements reported are: (1) program definition and assessment; (2) research and technology development; (3) industrial storage applications; (4) solar thermal power storage applications; and (5) building heating and cooling applications.

  7. Material handling robot system for flow-through storage applications

    NASA Astrophysics Data System (ADS)

    Dill, James F.; Candiloro, Brian; Downer, James; Wiesman, Richard; Fallin, Larry; Smith, Ron

    1999-01-01

    This paper describes the design, development and planned implementation of a system of mobile robots for use in flow through storage applications. The robots are being designed with on-board embedded controls so that they can perform their tasks as semi-autonomous workers distributed within a centrally controlled network. On the storage input side, boxes will be identified by bar-codes and placed into preassigned flow through bins. On the shipping side, orders will be forwarded to the robots from a central order processing station and boxes will be picked from designated storage bins following proper sequencing to permit direct loading into trucks for shipping. Because of the need to maintain high system availability, a distributed control strategy has been selected. When completed, the system will permit robots to be dynamically reassigned responsibilities if an individual unit fails. On-board health diagnostics and condition monitoring will be used to maintain high reliability of the units.

  8. 77 FR 20618 - PetroLogistics Natural Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... Natural Gas Storage, LLC; Notice of Application Take notice that on March 22, 2012, PetroLogistics Natural... Docket No. CP12-95-000, an application pursuant to section 7(c) of the Natural Gas Act (NGA) and Part 157... questions regarding this application should be directed to Kevin M. Miller, PetroLogistics Natural Gas...

  9. Wallboard with Latent Heat Storage for Passive Solar Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kedl, R.J.

    2001-05-31

    Conventional wallboard impregnated with octadecane paraffin [melting point-23 C (73.5 F)] is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling testsmore » showed no tendency of the paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM (melting point, melting range, and heat of fusion), as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. The confirmed computer model may now be used in conjunction with a building heating and cooling code to evaluate design parameters and operational characteristics of latent heat storage wallboard for passive solar applications.« less

  10. Hybrid Electric Energy Storages: Their Specific Features and Application (Review)

    NASA Astrophysics Data System (ADS)

    Popel', O. S.; Tarasenko, A. B.

    2018-05-01

    The article presents a review of various aspects related to development and practical use of hybrid electric energy storages (i.e., those uniting different energy storage technologies and devices in an integrated system) in transport and conventional and renewable power engineering applications. Such devices, which were initially developed for transport power installations, are increasingly being used by other consumers characterized by pronounced nonuniformities of their load schedule. A range of tasks solved using such energy storages is considered. It is shown that, owing to the advent of new types of energy storages and the extended spectrum of their performance characteristics, new possibilities for combining different types of energy storages and for developing hybrid systems have become available. This, in turn, opens up the possibility of making energy storages with better mass and dimension characteristics and achieving essentially lower operational costs. The possibility to secure more comfortable (base) operating modes of primary sources of energy (heat engines and renewable energy source based power installations) and to achieve a higher capacity utilization factor are unquestionable merits of hybrid energy storages. Development of optimal process circuit solutions, as well as energy conversion and control devices facilitating the fullest utilization of the properties of each individual energy storage included in the hybrid system, is among the important lines of research carried out in this field in Russia and abroad. Our review of existing developments has shown that there are no universal technical solutions in this field (the specific features of a consumer have an essential effect on the process circuit solutions and on the composition of a hybrid energy storage), a circumstance that dictates the need to extend the scope of investigations in this promising field.

  11. Terrestrial Applications of Zero Boil-Off Cryogen Storage

    NASA Technical Reports Server (NTRS)

    Salerno, L. J.; Gaby, J.; Hastings, L.; Johnson, R.; Kittel, P.; Marquardt, E.; Plachta, D.; Arnold, James O. (Technical Monitor)

    2000-01-01

    Storing cryogenic propellants with zero boil off (ZBO) using a combination of active (cryocoolers) and passive technologies has recently received a great deal of attention for applications such as future long-term space missions. This paper will examine a variety of potential near-term terrestrial applications for ZBO and, where appropriate, provide a rough order of magnitude cost benefit of implementing ZBO technology. NASA's Space Shuttle power system uses supercritical propellant tanks, which are filled several days before launch. If the launch does not occur within 48-96 hours, the tanks must be drained and refilled, further delaying the launch. By implementing ZBO, boil off could be eliminated and pad hold time extended. At the launch site, vented liquid hydrogen (LH2) storage dewars lose 1200-1600 gal/day through boiloff. Implementing ZBO would eliminate this, saving $300,000-$400,000 per year. Similarly, overland trucking of LH2 from the supplier to the launch site via roadable dewars results in a cryogen loss of ten percent per tanker (1500 gal/tanker). Providing a cryocooler on board the rig would prevent this loss. Previous work investigating variable density insulation found that a 50% reduction in evaporation from a 6000 gallon dewar would save $5000 per year. For a 20 year dewar lifetime, the payback period would be less than two years. Similar benefits could be realized at other storage facilities across the nation. Within the superconductivity community, there is skepticism about using coolers, based upon reliability concerns. By providing a cooler on the dewar, lifetime could be extended while retaining fail-safe capability. If the cooler failed, it would merely lower the storage life of the dewar.

  12. Solution synthesis of metal oxides for electrochemical energy storage applications.

    PubMed

    Xia, Xinhui; Zhang, Yongqi; Chao, Dongliang; Guan, Cao; Zhang, Yijun; Li, Lu; Ge, Xiang; Bacho, Ignacio Mínguez; Tu, Jiangping; Fan, Hong Jin

    2014-05-21

    This article provides an overview of solution-based methods for the controllable synthesis of metal oxides and their applications for electrochemical energy storage. Typical solution synthesis strategies are summarized and the detailed chemical reactions are elaborated for several common nanostructured transition metal oxides and their composites. The merits and demerits of these synthesis methods and some important considerations are discussed in association with their electrochemical performance. We also propose the basic guideline for designing advanced nanostructure electrode materials, and the future research trend in the development of high power and energy density electrochemical energy storage devices.

  13. The used nuclear fuel problem - can reprocessing and consolidated storage be complementary?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.; Thomas, I.

    2013-07-01

    This paper describes our CISF (Consolidated Interim Storage Facilities) and Reprocessing Facility concepts and show how they can be combined with a geologic repository to provide a comprehensive system for dealing with spent fuels in the USA. The performance of the CISF was logistically analyzed under six operational scenarios. A 3-stage plan has been developed to establish the CISF. Stage 1: the construction at the CISF site of only a rail receipt interface and storage pad large enough for the number of casks that will be received. The construction of the CISF Canister Handling Facility, the Storage Cask Fabrication Facility,more » the Cask Maintenance Facility and supporting infrastructure are performed during stage 2. The construction and placement into operation of a water-filled pool repackaging facility is completed for Stage 3. By using this staged approach, the capital cost of the CISF is spread over a number of years. It also allows more time for a final decision on the geologic repository to be made. A recycling facility will be built, this facility will used the NUEX recycling process that is based on the aqueous-based PUREX solvent extraction process, using a solvent of tri-N-butyl phosphate in a kerosene diluent. It is capable of processing spent fuels at a rate of 5 MT per day, at burn-ups up to 50 GWD per ton of spent fuels and a minimum of 5 years out-of-reactor cooling.« less

  14. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications.

    PubMed

    Zhao, Xin; Hayner, Cary M; Kung, Mayfair C; Kung, Harold H

    2011-11-22

    The unique combination of high surface area, high electrical conductivity and robust mechanical integrity has attracted great interest in the use of graphene sheets for future electronics applications. Their potential applications for high-power energy storage devices, however, are restricted by the accessible volume, which may be only a fraction of the physical volume, a consequence of the compact geometry of the stack and the ion mobility. Here we demonstrated that remarkably enhanced power delivery can be realized in graphene papers for the use in Li-ion batteries by controlled generation of in-plane porosity via a mechanical cavitation-chemical oxidation approach. These flexible, holey graphene papers, created via facile microscopic engineering, possess abundant ion binding sites, enhanced ion diffusion kinetics, and excellent high-rate lithium-ion storage capabilities, and are suitable for high-performance energy storage devices. © 2011 American Chemical Society

  15. Determination of Duty Cycle for Energy Storage Systems in a Renewables (Solar) Firming Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenwald, David A.; Ellison, James

    2016-04-01

    This report supplements the document, “Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems,” issued in a revised version in April 2016, which will include the renewables (solar) firming application for an energy storage system (ESS). This report provides the background and documentation associated with the determination of a duty cycle for an ESS operated in a renewables (solar) firming application for the purpose of measuring and expressing ESS performance in accordance with the ESS performance protocol.

  16. Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage.

    PubMed

    Wei, Qiulong; Xiong, Fangyu; Tan, Shuangshuang; Huang, Lei; Lan, Esther H; Dunn, Bruce; Mai, Liqiang

    2017-05-01

    Electrochemical energy storage technology is of critical importance for portable electronics, transportation and large-scale energy storage systems. There is a growing demand for energy storage devices with high energy and high power densities, long-term stability, safety and low cost. To achieve these requirements, novel design structures and high performance electrode materials are needed. Porous 1D nanomaterials which combine the advantages of 1D nanoarchitectures and porous structures have had a significant impact in the field of electrochemical energy storage. This review presents an overview of porous 1D nanostructure research, from the synthesis by bottom-up and top-down approaches with rational and controllable structures, to several important electrochemical energy storage applications including lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, lithium-oxygen batteries and supercapacitors. Highlights of porous 1D nanostructures are described throughout the review and directions for future research in the field are discussed at the end. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 76 FR 30936 - West Maui Pumped Storage Water Supply, LLC; Notice of Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... Storage Water Supply, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...-acre reservoir; (4) a turnout to supply project effluent water to an existing irrigation system; (5) a...,000 megawatt-hours. Applicant Contact: Bart M. O'Keeffe, West Maui Pumped Storage Water Supply, LLC, P...

  18. Small Form Factor Information Storage Devices for Mobile Applications in Korea

    NASA Astrophysics Data System (ADS)

    Park, Young-Pil; Park, No-Cheol; Kim, Chul-Jin

    Recently, the ubiquitous environment in which anybody can reach a lot of information data without any limitations on the place and time has become an important social issue. There are two basic requirements in the field of information storage devices which have to be satisfied; the first is the demand for the improvement of memory capacity to manage the increased data capacity in personal and official purposes. The second is the demand for new development of information storage devices small enough to be applied to mobile multimedia digital electronics, including digital camera, PDA and mobile phones. To summarize, for the sake of mobile applications, it is necessary to develop information storage devices which have simultaneously a large capacity and a small size. Korea possesses the necessary infrastructure for developing such small sized information storage devices. It has a good digital market, major digital companies, and various research institutes. Nowadays, many companies and research institutes including university cooperate together in the research on small sized information storage devices. Thus, it is expected that small form factor optical disk drives will be commercialized in the very near future in Korea.

  19. The Design and Application of Data Storage System in Miyun Satellite Ground Station

    NASA Astrophysics Data System (ADS)

    Xue, Xiping; Su, Yan; Zhang, Hongbo; Liu, Bin; Yao, Meijuan; Zhao, Shu

    2015-04-01

    China has launched Chang'E-3 satellite in 2013, firstly achieved soft landing on moon for China's lunar probe. Miyun satellite ground station firstly used SAN storage network system based-on Stornext sharing software in Chang'E-3 mission. System performance fully meets the application requirements of Miyun ground station data storage.The Stornext file system is a sharing file system with high performance, supports multiple servers to access the file system using different operating system at the same time, and supports access to data on a variety of topologies, such as SAN and LAN. Stornext focused on data protection and big data management. It is announced that Quantum province has sold more than 70,000 licenses of Stornext file system worldwide, and its customer base is growing, which marks its leading position in the big data management.The responsibilities of Miyun satellite ground station are the reception of Chang'E-3 satellite downlink data and management of local data storage. The station mainly completes exploration mission management, receiving and management of observation data, and provides a comprehensive, centralized monitoring and control functions on data receiving equipment. The ground station applied SAN storage network system based on Stornext shared software for receiving and managing data reliable.The computer system in Miyun ground station is composed by business running servers, application workstations and other storage equipments. So storage systems need a shared file system which supports heterogeneous multi-operating system. In practical applications, 10 nodes simultaneously write data to the file system through 16 channels, and the maximum data transfer rate of each channel is up to 15MB/s. Thus the network throughput of file system is not less than 240MB/s. At the same time, the maximum capacity of each data file is up to 810GB. The storage system planned requires that 10 nodes simultaneously write data to the file system through 16

  20. ERDA's Chemical Energy Storage Program

    NASA Technical Reports Server (NTRS)

    Swisher, J. H.; Kelley, J. H.

    1977-01-01

    The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.

  1. Nanostructured porous graphene and its composites for energy storage applications

    NASA Astrophysics Data System (ADS)

    Ramos Ferrer, Pablo; Mace, Annsley; Thomas, Samantha N.; Jeon, Ju-Won

    2017-10-01

    Graphene, 2D atomic-layer of sp2 carbon, has attracted a great deal of interest for use in solar cells, LEDs, electronic skin, touchscreens, energy storage devices, and microelectronics. This is due to excellent properties of graphene, such as a high theoretical surface area, electrical conductivity, and mechanical strength. The fundamental structure of graphene is also manipulatable, allowing for the formation of an even more extraordinary material, porous graphene. Porous graphene structures can be categorized as microporous, mesoporous, or macroporous depending on the pore size, all with their own unique advantages. These characteristics of graphene, which are further explained in this paper, may be the key to greatly improving a wide range of applications in energy storage systems.

  2. Nanostructured porous graphene and its composites for energy storage applications.

    PubMed

    Ramos Ferrer, Pablo; Mace, Annsley; Thomas, Samantha N; Jeon, Ju-Won

    2017-01-01

    Graphene, 2D atomic-layer of sp 2 carbon, has attracted a great deal of interest for use in solar cells, LEDs, electronic skin, touchscreens, energy storage devices, and microelectronics. This is due to excellent properties of graphene, such as a high theoretical surface area, electrical conductivity, and mechanical strength. The fundamental structure of graphene is also manipulatable, allowing for the formation of an even more extraordinary material, porous graphene. Porous graphene structures can be categorized as microporous, mesoporous, or macroporous depending on the pore size, all with their own unique advantages. These characteristics of graphene, which are further explained in this paper, may be the key to greatly improving a wide range of applications in energy storage systems.

  3. Synthesis of graphene nanomaterials and their application in electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Xiong, Guoping

    The need to store and use energy on diverse scales in a modern technological society necessitates the design of large and small energy systems, among which electrical energy storage systems such as batteries and capacitors have attracted much interest in the past several decades. Supercapacitors, also known as ultracapacitors, or electrochemical capacitors, with fast power delivery and long cycle life are complementing or even replacing batteries in many applications. The rapid development of miniaturized electronic devices has led to a growing need for rechargeable micro-power sources with high performance. Among different sources, electrochemical micro-capacitors or micro-supercapacitors provide higher power density than their counterparts and are gaining increased interest from the research and engineering communities. Rechargeable Li ion batteries with high energy and power density, long cycling life, high charge-discharge rate (1C - 3C) and safe operation are in high demand as power sources and power backup for hybrid electric vehicles and other applications. In the present work, graphene-based graphene materials have been designed and synthesized for electrochemical energy storage applications, e.g., conventional supercapacitors (macro-supercapacitors), microsupercapacitors and lithium ion batteries. Factors influencing the formation and structure of graphitic petals grown by microwave plasma-enhanced chemical vapor deposition on oxidized silicon substrates were investigated through process variation and materials analysis. Insights gained into the growth mechanism of these graphitic petals suggest a simple scribing method can be used to control both the location and formation of petals on flat Si substrates. Transitional metal oxides and conducting polymers have been coated on the graphitic petal-based electrodes by facile chemical methods for multifunctional energy storage applications. Detailed electrochemical characterization (e.g., cyclic voltammetry and

  4. Open systems storage platforms

    NASA Technical Reports Server (NTRS)

    Collins, Kirby

    1992-01-01

    The building blocks for an open storage system includes a system platform, a selection of storage devices and interfaces, system software, and storage applications CONVEX storage systems are based on the DS Series Data Server systems. These systems are a variant of the C3200 supercomputer with expanded I/O capabilities. These systems support a variety of medium and high speed interfaces to networks and peripherals. System software is provided in the form of ConvexOS, a POSIX compliant derivative of 4.3BSD UNIX. Storage applications include products such as UNITREE and EMASS. With the DS Series of storage systems, Convex has developed a set of products which provide open system solutions for storage management applications. The systems are highly modular, assembled from off the shelf components with industry standard interfaces. The C Series system architecture provides a stable base, with the performance and reliability of a general purpose platform. This combination of a proven system architecture with a variety of choices in peripherals and application software allows wide flexibility in configurations, and delivers the benefits of open systems to the mass storage world.

  5. Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.

    PubMed

    Salunkhe, Rahul R; Lee, Ying-Hui; Chang, Kuo-Hsin; Li, Jing-Mei; Simon, Patrice; Tang, Jing; Torad, Nagy L; Hu, Chi-Chang; Yamauchi, Yusuke

    2014-10-20

    Tremendous development in the field of portable electronics and hybrid electric vehicles has led to urgent and increasing demand in the field of high-energy storage devices. In recent years, many research efforts have been made for the development of more efficient energy-storage devices such as supercapacitors, batteries, and fuel cells. In particular, supercapacitors have great potential to meet the demands of both high energy density and power density in many advanced technologies. For the last half decade, graphene has attracted intense research interest for electrical double-layer capacitor (EDLC) applications. The unique electronic, thermal, mechanical, and chemical characteristics of graphene, along with the intrinsic benefits of a carbon material, make it a promising candidate for supercapacitor applications. This Review focuses on recent research developments in graphene-based supercapacitors, including doped graphene, activated graphene, graphene/metal oxide composites, graphene/polymer composites, and graphene-based asymmetric supercapacitors. The challenges and prospects of graphene-based supercapacitors are also discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The SERI solar energy storage program

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-01-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  7. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications.

    PubMed

    Young, Kwo-Hsiung; Nei, Jean

    2013-10-17

    In this review article, the fundamentals of electrochemical reactions involving metal hydrides are explained, followed by a report of recent progress in hydrogen storage alloys for electrochemical applications. The status of various alloy systems, including AB₅, AB₂, A₂B₇-type, Ti-Ni-based, Mg-Ni-based, BCC, and Zr-Ni-based metal hydride alloys, for their most important electrochemical application, the nickel metal hydride battery, is summarized. Other electrochemical applications, such as Ni-hydrogen, fuel cell, Li-ion battery, air-metal hydride, and hybrid battery systems, also have been mentioned.

  8. 76 FR 28025 - East Maui Pumped Storage Water Supply LCC; Notice of Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Storage Water Supply LCC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting... Act (FPA), proposing to study the feasibility of the East Maui Pumped Storage Water Supply Project to.... Bart M. O'Keeffe, East Maui Pumped Storage Water Supply LLC; P.O. Box 1916; Discovery Bay, CA 94505...

  9. Direct Synthesis of Lithium-Intercalated Graphene for Electrochemical Energy Storage Application

    DTIC Science & Technology

    2011-01-01

    for Electrochemical Energy Storage Application Ashavani Kumar,† Arava Leela Mohana Reddy,†,* Arnab Mukherjee,‡ Madan Dubey,§ Xiaobo Zhan,† Neelam...L.; Loper, A. L.; Rao , A. M.; Eklund, P. C. Electrochemical Oxidation of Single Wall Carbon Nanotube Bundles in Sulfuric Acid. J. Phys. Chem. B 1999

  10. Application of Electric Double-layer Capacitors for Energy Storage on Electric Railway

    NASA Astrophysics Data System (ADS)

    Hase, Shin-Ichi; Konishi, Takeshi; Okui, Akinobu; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi

    The methods to stabilize power sources, which are the measures against voltage drop, power loading fluctuation, regeneration power lapse and so on, have been important issues in DC feeding circuits. Therefore, an energy storage medium that uses power efficiently and reduces above-mentioned problems is much concerned about. In recent years, development of energy storage medium is remarkable for drive-power supplies of electric vehicles. A number of applications of energy storage, for instance, battery and flywheel, have been investigated so far. A large-scale electric double-layer capacitor which is rapidly charged and discharged and offers long life, maintenance-free, low pollution and high efficiency, has been developed in wide range. We have compared the ability to charge batteries and electric double-layer capacitors. Therefore, we carried out fundamental studies about electric double-layer capacitors and its control. And we produced a prototype of energy storage for the DC electric railway system that consists of electric double-layer capacitors, diode bridge rectifiers, chopper system and PWM converters. From the charge and discharge tests of the prototype, useful information was obtained. This paper describes its characteristics and experimental results of energy storage system.

  11. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications

    PubMed Central

    Young, Kwo-hsiung; Nei, Jean

    2013-01-01

    In this review article, the fundamentals of electrochemical reactions involving metal hydrides are explained, followed by a report of recent progress in hydrogen storage alloys for electrochemical applications. The status of various alloy systems, including AB5, AB2, A2B7-type, Ti-Ni-based, Mg-Ni-based, BCC, and Zr-Ni-based metal hydride alloys, for their most important electrochemical application, the nickel metal hydride battery, is summarized. Other electrochemical applications, such as Ni-hydrogen, fuel cell, Li-ion battery, air-metal hydride, and hybrid battery systems, also have been mentioned. PMID:28788349

  12. Development of thermal energy storage materials for biomedical applications.

    PubMed

    Shukla, A; Sharma, Atul; Shukla, Manjari; Chen, C R

    2015-01-01

    The phase change materials (PCMs) have been utilized widely for solar thermal energy storage (TES) devices. The quality of these materials to remain at a particular temperature during solid-liquid, liquid-solid phase transition can also be utilized for many biomedical applications as well and has been explored in recent past already. This study reports some novel PCMs developed by them, along with some existing PCMs, to be used for such biomedical applications. Interestingly, it was observed that the heating/cooling properties of these PCMs enhance the quality of a variety of biomedical applications with many advantages (non-electric, no risk of electric shock, easy to handle, easy to recharge thermally, long life, cheap and easily available, reusable) over existing applications. Results of the present study are quite interesting and exciting, opening a plethora of opportunities for more work on the subject, which require overlapping expertise of material scientists, biochemists and medical experts for broader social benefits.

  13. Seasonal manure application timing and storage effects on field and watershed level phosphorus losses

    USDA-ARS?s Scientific Manuscript database

    The timing of manure application to agricultural soils remains a contentious area of nutrient management, particularly with regard to the impact of timing on nutrient loss in runoff and downstream water quality. We examined the effect of seasonal manure application timing and manure storage capacity...

  14. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 2

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)

    1992-01-01

    This report contains copies of nearly all of the technical papers and viewgraphs presented at the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Application. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include the following: magnetic disk and tape technologies; optical disk and tape; software storage and file management systems; and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  15. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 3

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)

    1992-01-01

    This report contains copies of nearly all of the technical papers and viewgraphs presented at the National Space Science Data Center (NSSDC) Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990s.

  16. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage.

    PubMed

    Frey, Natalie A; Peng, Sheng; Cheng, Kai; Sun, Shouheng

    2009-09-01

    This tutorial review summarizes the recent advances in the chemical synthesis and potential applications of monodisperse magnetic nanoparticles. After a brief introduction to nanomagnetism, the review focuses on recent developments in solution phase syntheses of monodisperse MFe(2)O(4), Co, Fe, CoFe, FePt and SmCo(5) nanoparticles. The review further outlines the surface, structural, and magnetic properties of these nanoparticles for biomedicine and magnetic energy storage applications.

  17. Mission Applicability and Benefits of Thin-Film Integrated Power Generation and Energy Storage

    NASA Technical Reports Server (NTRS)

    Hoffman, David; Raffaelle, Ryne P.; Landis, Geoffrey A.; Hepp, Aloysius F.

    2001-01-01

    This paper discusses the space mission applicability and benefits of a thin-film integrated power generation and energy storage device, i.e., an "Integrated Power Source" or IPS. The characteristics of an IPS that combines thin-film photo-voltaic power generation with thin-film energy storage are described. Mission concepts for a thin-film IPS as a spacecraft main electrical power system, as a decentralized or distributed power source and as an uninterruptible power supply are discussed. For two specific missions, preliminary sizing of an IPS as a main power system is performed and benefits are assessed. IPS developmental challenges that need to be overcome in order to realize the benefits of an IPS are examined. Based on this preliminary assessment, it is concluded that the most likely and beneficial application of an IPS will be as the main power system on a very small "nanosatellite," or in specialized applications serving as a decentralized or distributed power source or uninterruptible power supply.

  18. Mission Applicability and Benefits of Thin-Film Integrated Power Generation and Energy Storage

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Raffaelle, Ryne P.; Landis, Geoffrey A.; Hepp, Aloysius F.

    2001-01-01

    This paper discusses the space mission applicability and benefits of a thin-film integrated power generation and energy storage device, i.e., an "Integrated Power Source" or IPS. The characteristics of an IPS that combines thin-film photovoltaic power generation with thin-film energy storage are described. Mission concepts for a thin-film IPS as a spacecraft main electrical power system, as a decentralized or distributed power source and as an uninterruptible power supply are discussed. For two specific missions, preliminary sizing of an IPS as a main power system is performed and benefits are assessed. IPS developmental challenges that need to be overcome in order to realize the benefits of an IPS are examined. Based on this preliminary assessment, it is concluded that the most likely and beneficial application of an IPS will be as the main power system on a very small "nanosatellite," or in specialized applications serving as a decentralized or distributed power source or uninterruptible power supply.

  19. Determination of Duty Cycle for Energy Storage Systems in a PV Smoothing Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenwald, David A.; Ellison, James

    This report supplements the document, "Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems," issued in a revised version in April 2016 (see [4]), which will include the photovoltaic (PV) smoothing application for an energy storage system (ESS). This report provides the background and documentation associated with the determination of a duty cycle for an ESS operated in a PV smoothing application for the purpose of measuring and expressing ESS performance in accordance with the ESS performance protocol. ACKNOWLEDGEMENTS The authors gratefully acknowledge the support of Dr. Imre Gyuk, program manager for the DOE Energy Storage Systemsmore » Program. The authors would also like to express their appreciation to all the stakeholders who participated as members of the PV Smoothing Subgroup. Without their thoughtful input and recommendations, the definitions, metrics, and duty cycle provided in this report would not have been possible. A complete listing of members of the PV Smoothing Subgroup appears in the first chapter of this report. Special recognition should go to the staffs at Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories (SNL) in collaborating on this effort. In particular, Mr. David Conover and Dr. Vish Viswanathan of PNNL and Dr. Summer Ferreira of SNL were especially helpful in their suggestions for the determination of a duty cycle for the PV Smoothing application.« less

  20. Advanced high-temperature thermal energy storage media for industrial applications

    NASA Astrophysics Data System (ADS)

    Clear, T. D.; Weibel, R. T.

    An advanced thermal energy storage (TES) media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. This paper describes the composite latent/sensible media concept and its potential advantages over state-of-the-art latent heat systems. Media stability requirements, on-going materials development efforts and planned TES performance evaluation tests are discussed.

  1. Ferroelectric Phase Transformations for Energy Conversion and Storage Applications

    NASA Astrophysics Data System (ADS)

    Jo, Hwan Ryul

    Ferroelectric materials possess a spontaneous polarization and actively respond to external mechanical, electrical, and thermal loads. Due to their coupled behavior, ferroelectric materials are used in products such as sensors, actuators, detectors, and transducers. However, most current applications rely on low-energy conversion that involves low magnitude fields. They utilize the low-field linear properties of ferroelectric materials (piezoelectric, pyroelectric) and do not take full advantage of the large-field nonlinear behavior (irreversible domain wall motion, phase transformations) that can occur in ferroelectric materials. When external fields exceed a certain critical level, a structural transformation of the crystal can occur. These phase transformations are accompanied by a much larger response than the linear piezoelectric and pyroelectric responses, by as much as a multiple of ten times in the magnitude. This makes the non-linear behavior in ferroelectric materials promising for energy harvesting and energy storage technologies which will benefit from large-energy conversion. Yet, the ferroelectric phase transformation behavior under large external fields have been less studied and only a few studies have been directed at utilizing this large material response in applications. This dissertation addresses the development ferroelectric phase transformation-based applications, with particular focus on the materials. Development of the ferroelectric phase transformation-based applications was approached in several steps. First, the phase transformation behavior was fully characterized and understood by measuring the phase transformation responses under mechanical, electrical, thermal, and combined loads. Once the behavior was well characterized, systems level applications were addressed. This required assessing the effect of the phase transformation behavior on system performance. The performance of ferroelectric devices is strongly dependent on material

  2. Synthesis and applications of carbon nanomaterials for energy generation and storage.

    PubMed

    Notarianni, Marco; Liu, Jinzhang; Vernon, Kristy; Motta, Nunzio

    2016-01-01

    The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage - the key to the portable electronics of the future.

  3. Synthesis and applications of carbon nanomaterials for energy generation and storage

    PubMed Central

    Notarianni, Marco; Liu, Jinzhang; Vernon, Kristy

    2016-01-01

    Summary The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future. PMID:26925363

  4. Diatomite-Templated Synthesis of Freestanding 3D Graphdiyne for Energy Storage and Catalysis Application.

    PubMed

    Li, Jiaqiang; Xu, Jing; Xie, Ziqian; Gao, Xin; Zhou, Jingyuan; Xiong, Yan; Chen, Changguo; Zhang, Jin; Liu, Zhongfan

    2018-05-01

    Graphdiyne (GDY), a new kind of two-dimensional (2D) carbon allotropes, has extraordinary electrical, mechanical, and optical properties, leading to advanced applications in the fields of energy storage, photocatalysis, electrochemical catalysis, and sensors. However, almost all reported methods require metallic copper as a substrate, which severely limits their large-scale application because of the high cost and low specific surface area (SSA) of copper substrate. Here, freestanding three-dimensional GDY (3DGDY) is successfully prepared using naturally abundant and inexpensive diatomite as template. In addition to the intrinsic properties of GDY, the fabricated 3DGDY exhibits a porous structure and high SSA that enable it to be directly used as a lithium-ion battery anode material and a 3D scaffold to create Rh@3DGDY composites, which would hold great potential applications in energy storage and catalysts, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A Flywheel Energy Storage System Demonstration for Space Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy

    2003-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented.

  6. Thermal energy storage

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Picklesimer, E. A.

    1978-01-01

    The general scope of study on thermal energy storage development includes: (1) survey and review possible concepts for storing thermal energy; (2) evaluate the potentials of the surveyed concepts for practical applications in the low and high temperature ranges for thermal control and storage, with particular emphasis on the low temperature range, and designate the most promising concepts; and (3) determine the nature of further studies required to expeditiously convert the most promising concept(s) to practical applications. Cryogenic temperature control by means of energy storage materials was also included.

  7. One-step fabrication of porous GaN crystal membrane and its application in energy storage

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Shouzhi; Shao, Yongliang; Wu, Yongzhong; Sun, Changlong; Huo, Qin; Zhang, Baoguo; Hu, Haixiao; Hao, Xiaopeng

    2017-03-01

    Single-crystal gallium nitride (GaN) membranes have great potential for a variety of applications. However, fabrication of single-crystalline GaN membranes remains a challenge owing to its chemical inertness and mechanical hardness. This study prepares large-area, free-standing, and single-crystalline porous GaN membranes using a one-step high-temperature annealing technique for the first time. A promising separation model is proposed through a comprehensive study that combines thermodynamic theories analysis and experiments. Porous GaN crystal membrane is processed into supercapacitors, which exhibit stable cycling life, high-rate capability, and ultrahigh power density, to complete proof-of-concept demonstration of new energy storage application. Our results contribute to the study of GaN crystal membranes into a new stage related to the elelctrochemical energy storage application.

  8. Technology Application of Environmental Friendly Refrigeration (Green Refrigeration) on Cold Storage for Fishery Industry

    NASA Astrophysics Data System (ADS)

    Rasta, IM; Susila, IDM; Subagia, IWA

    2018-01-01

    The application of refrigeration technology to postharvest fishery products is an very important. Moreover, Indonesia is a tropical region with relatively high temperatures. Fish storage age can be prolonged with a decrease in temperature. Frozen fish can even be stored for several months. Fish freezing means preparing fish for storage in low-temperature cold storage. The working fluid used in cold storage to cool low-temperature chambers and throw heat into high-temperature environments is refrigerant. So far refrigerant used in cold storage is Hydrochloroflourocarbons (HCFC) that is R-22. Chlor is a gas that causes ODP (Ozone Depleting Potential), while Flour is a gas that causes GWP (Global Warming Potential). Government policy began in 2015 to implement Hydrochloroflourocarbons Phase-Out Management Plan. Hydrocarbon (HC) is an alternative substitute for R-22. HC-22 (propane ≥ 99.5%) has several advantages, among others: environmentally friendly, indicated by a zero ODP value, and GWP = 3 (negligible), thermophysical property and good heat transfer characteristics, vapor phase density Which is low, and good solubility with mineral lubricants. The use of HC-22 in cold storage is less than R-22. From the analysis results obtained, cold storage system using HC-22 has better performance and energy consumption is more efficient than the R-22.

  9. Thermal storage for electric utilities

    NASA Technical Reports Server (NTRS)

    Swet, C. J.; Masica, W. J.

    1977-01-01

    Applications of the thermal energy storage (TES) principle (storage of sensible heat or latent heat, or heat storage in reversible chemical reactions) in power systems are evaluated. Load leveling behind the meter, load following at conventional thermal power plants, solar thermal power generation, and waste heat utilization are the principal TES applications considered. Specific TES examples discussed include: storage heaters for electric-resistance space heating, air conditioning TES in the form of chilled water or eutectic salt baths, hot water TES, and trans-seasonal storage in heated water in confined aquifers.

  10. Applications for activated carbons from waste tires: Natural gas storage and air pollution control

    USGS Publications Warehouse

    Brady, T.A.; Rostam-Abadi, M.; Rood, M.J.

    1996-01-01

    Natural gas storage for natural gas vehicles and the separation and removal of gaseous contaminants from gas streams represent two emerging applications for carbon adsorbents. A possible precursor for such adsorbents is waste tires. In this study, activated carbon has been developed from waste tires and tested for its methane storage capacity and SO2 removal from a simulated flue-gas. Tire-derived carbons exhibit methane adsorption capacities (g/g) within 10% of a relatively expensive commercial activated carbon; however, their methane storage capacities (Vm/Vs) are almost 60% lower. The unactivated tire char exhibits SO2 adsorption kinetics similar to a commercial carbon used for flue-gas clean-up. Copyright ?? 1996 Elsevier Science Ltd.

  11. Applications of CCTO supercapacitor in energy storage and electronics

    NASA Astrophysics Data System (ADS)

    Pandey, R. K.; Stapleton, W. A.; Tate, J.; Bandyopadhyay, A. K.; Sutanto, I.; Sprissler, S.; Lin, S.

    2013-06-01

    Since the discovery of colossal dielectric constant in CCTO supercapacitor in 2000, development of its practical application to energy storage has been of great interest. In spite of intensive efforts, there has been thus far, no report of proven application. The object of this research is to understand the reason for this lack of success and to find ways to overcome this limitation. Reported herein is the synthesis of our research in ceramic processing of this material and its characterization, particularly with the objective of identifying potential applications. Experimental results have shown that CCTO's permittivity and loss tangent, the two most essential dielectric parameters of fundamental importance for the efficiency of a capacitor device, are intrinsically coupled. They increase or decrease in tandem. Therefore, efforts to simultaneously retain the high permittivity while minimizing the loss tangent of CCTO might not succeed unless an entirely non-typical approach is taken for processing this material. Based on the experimental results and their analysis, it has been identified that it is possible to produce CCTO bulk ceramics with conventional processes having properties that can be exploited for fabricating an efficient energy storage device (EDS). We have additionally identified that CCTO can be used for the development of efficient solid state capacitors of Class II type comparable to the widely used barium titanate (BT) capacitors. Based on high temperature studies of the resistivity and the Seebeck coefficient it is found that CCTO is a wide bandgap n-type semiconductor material which could be used for high temperature electronics. The temperature dependence of the linear thermal expansion of CCTO shows the presence of possible phase changes at 220 and 770 °C the origin of which remains unexplained.

  12. 76 FR 10578 - Cuffs Run Pumped Storage, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13880-000] Cuffs Run Pumped..., Motions To Intervene, and Competing Applications On November 18, 2010, Cuffs Run Pumped Storage, LLC filed... to study the feasibility of the Cuffs Run Pumped Storage Project, located on Cuffs Run and the...

  13. Analysis of H2 storage needs for early market non-motive fuel cell applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Terry Alan; Moreno, Marcina; Arienti, Marco

    Hydrogen fuel cells can potentially reduce greenhouse gas emissions and the United States dependence on foreign oil, but issues with hydrogen storage are impeding their widespread use. To help overcome these challenges, this study analyzes opportunities for their near-term deployment in five categories of non-motive equipment: portable power, construction equipment, airport ground support equipment, telecom backup power, and man-portable power and personal electronics. To this end, researchers engaged end users, equipment manufacturers, and technical experts via workshops, interviews, and electronic means, and then compiled these data into meaningful and realistic requirements for hydrogen storage in specific target applications. In additionmore » to developing these requirements, end-user benefits (e.g., low noise and emissions, high efficiency, potentially lower maintenance costs) and concerns (e.g., capital cost, hydrogen availability) of hydrogen fuel cells in these applications were identified. Market data show potential deployments vary with application from hundreds to hundreds of thousands of units.« less

  14. Solar applications of thermal energy storage. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.; Taylor, L.; DeVries, J.

    A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)

  15. 78 FR 73566 - Standard Format and Content for a License Application for an Independent Spent Fuel Storage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment draft regulatory guide (DG), DG-3042, ``Standard Format and Content for a License Application for an Independent Spent Fuel Storage Installation or a Monitored Retrievable Storage Facility.'' This draft regulatory guide is proposed revision 2 of Regulatory Guide 3.50, which provides a format that the NRC considers acceptable for submitting the information for license applications to store spent nuclear fuel, high-level radioactive waste, and/or reactor-related Greater than Class C waste.

  16. 40 CFR Table 1 to Subpart Bbbbbb... - Applicability Criteria, Emission Limits, and Management Practices for Storage Tanks

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and operate each internal and external floating roof gasoline storage tank according to the applicable... (b) Equip each internal floating roof gasoline storage tank according to the requirements in § 60... the requirements in § 60.112b(a)(1)(iv) through (ix) of this chapter; and (c) Equip each external...

  17. ACCELERATORS: Preliminary application of turn-by-turn data analysis to the SSRF storage ring

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Hui; Zhao, Zhen-Tang

    2009-07-01

    There is growing interest in utilizing the beam position monitor turn-by-turn (TBT) data to debug accelerators. TBT data can be used to determine the linear optics, coupled optics and nonlinear behaviors of the storage ring lattice. This is not only a useful complement to other methods of determining the linear optics such as LOCO, but also provides a possibility to uncover more hidden phenomena. In this paper, a preliminary application of a β function measurement to the SSRF storage ring is presented.

  18. 78 FR 18329 - Gulf South Pipeline Company, LP; Petal Gas Storage, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. CP13-96-000; PF12-21-000] Gulf South Pipeline Company, LP; Petal Gas Storage, L.L.C.; Notice of Application Take notice that on..., Texas 77046, and Petal Gas Storage, L.L.C. (Petal), 9 Greenway Plaza, Suite 2800, Houston, Texas 77046...

  19. Proceedings of the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Blackwell, Kim; Blasso, Len (Editor); Lipscomb, Ann (Editor)

    1991-01-01

    The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  20. Development of heat-storage building materials for passive-solar applications

    NASA Astrophysics Data System (ADS)

    Fletcher, J. W.

    A heat storage building material to be used for passive solar applications and general load leveling within building spaces was developed. Specifically, PCM-filled plastic panels are to be developed as wallboard and ceiling panels. Three PCMs (CaCl2, 6H2O; Na2SO4, 10H2O; LiNO3, 3H2O are to be evaluated for use in the double walled, hollow channeled plastic panels. Laboratory development of the panels will include determination of filling and sealing techniques, behavior of the PCMs, container properties and materials compatibility. Testing will include vapor transmission, thermal cycle, dynamic performance, accelerated life and durability tests. In addition to development and testing, an applications analysis will be performed for specific passive solar applications. Conceptual design of a single family passive solar residence will be prepared and performance evaluated. Screening of the three PCM candidates is essentially complete.

  1. Optical response of photopolymer materials for holographic data storage applications.

    PubMed

    Sheridan, J T; Gleeson, M R; Close, C E; Kelly, J V

    2007-01-01

    We briefly review the application of photopolymer recording materials in the area of holographic data storage. In particular we discuss the recent development of the Non-local Polymerisation Driven Diffusion model. Applying this model we develop simple first-order analytic expressions describing the spatial frequency response of photopolymer materials. The assumptions made in the derivation of these formulae are described and their ranges of validity are examined. The effects of particular physical parameters of a photopolymer on the material response are discussed.

  2. Wallboard with latent heat storage for passive solar applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kedl, R.J.

    1991-05-01

    Conventional wallboard impregnated with octadecane paraffin is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling tests showed no tendency of themore » paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM, as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. 11 refs., 25 figs., 2 tabs.« less

  3. Optical Digital Disk Storage: An Application for News Libraries.

    ERIC Educational Resources Information Center

    Crowley, Mary Jo

    1988-01-01

    Describes the technology, equipment, and procedures necessary for converting a historical newspaper clipping collection to optical disk storage. Alternative storage systems--microforms, laser scanners, optical storage--are also retrieved, and the advantages and disadvantages of optical storage are considered. (MES)

  4. Electrochemical energy storage systems for solar thermal applications

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  5. A new storage-ring light source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Alex

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  6. Wind-energy storage

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1980-01-01

    Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.

  7. Design Flexibility of Redox Flow Systems. [for energy storage applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.; Thaller, L. H.

    1982-01-01

    The characteristics inherent in Redox flow systems permit considerable latitude in designing systems for specific storage applications. The first of these characteristics is the absence of plating/deplating reactions with their attendant morphology changes at the electrodes. This permits a given Redox system to operate over a wide range of depths of discharge and charge/discharge rates. The second characteristic is the separation of power generating components (stacks) from the energy storage components (tanks). This results in cost effective system design, ease of system growth via modularization, and freedom from sizing restraints so that the whole spectrum of applications, from utilities down to single residence can be considered. The final characteristic is the commonality of the reactant fluids which assures that all cells at all times are receiving reactants at the same state of charge. Since no cell can be out of balance with respect to any other cell, it is possible for some cells to be charged while others are discharging, in effect creating a DC to DC transformer. It is also possible for various groups of cells to be connected to separate loads, thus supplying a range of output voltages. Also, trim cells can be used to maintain constant bus voltage as the load is changed or as the depth of discharge increases. The commonality of reactant fluids also permits any corrective measures such as rebalancing to occur at the system level instead of at the single cell level.

  8. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the storage of solid waste military munitions. (a) Criteria for hazardous waste regulation of...

  9. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the storage of solid waste military munitions. (a) Criteria for hazardous waste regulation of...

  10. Nanoporous Ni with High Surface Area for Potential Hydrogen Storage Application.

    PubMed

    Zhou, Xiaocao; Zhao, Haibo; Fu, Zhibing; Qu, Jing; Zhong, Minglong; Yang, Xi; Yi, Yong; Wang, Chaoyang

    2018-06-01

    Nanoporous metals with considerable specific surface areas and hierarchical pore structures exhibit promising applications in the field of hydrogen storage, electrocatalysis, and fuel cells. In this manuscript, a facile method is demonstrated for fabricating nanoporous Ni with a high surface area by using SiO₂ aerogel as a template, i.e., electroless plating of Ni into an SiO₂ aerogel template followed by removal of the template at moderate conditions. The effects of the prepared conditions, including the electroless plating time, temperature of the structure, and the magnetism of nanoporous Ni are investigated in detail. The resultant optimum nanoporous Ni with a special 3D flower-like structure exhibited a high specific surface area of about 120.5 m²/g. The special nanoporous Ni exhibited a promising prospect in the field of hydrogen storage, with a hydrogen capacity of 0.45 wt % on 4.5 MPa at room temperature.

  11. Applications of ultrafast laser direct writing: from polarization control to data storage

    NASA Astrophysics Data System (ADS)

    Donko, A.; Gertus, T.; Brambilla, G.; Beresna, M.

    2018-02-01

    Ultrafast laser direct writing is a fascinating technology which emerged more than two decades from fundamental studies of material resistance to high-intensity optical fields. Its development saw the discovery of many puzzling phenomena and demonstration of useful applications. Today, ultrafast laser writing is seen as a technology with great potential and is rapidly entering the industrial environment. Whereas, less than 10 years ago, ultrafast lasers were still confined within the research labs. This talk will overview some of the unique features of ultrafast lasers and give examples of its applications in optical data storage, polarization control and optical fibers.

  12. Densities of some molten fluoride salt mixtures suitable for heat storage in space power applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Liquid densities were determined for a number of fluoride salt mixtures suitable for heat storage in space power applications, using a procedure that consisted of measuring the loss of weight of an inert bob in the melt. The density apparatus was calibrated with pure LiF and NaF at different temperatures. Density data for safe binary and ternary fluoride salt eutectics and congruently melting intermediate compounds are presented. In addition, a comparison was made between the volumetric heat storage capacity of different salt mixtures.

  13. Conventional wallboard with latent heat storage for passive solar applications

    NASA Astrophysics Data System (ADS)

    Kedl, R. J.

    Conventional wallboard impregnated with octadecane paraffin (melting point -- 73.5 F) is being developed as a building material with latent heat storage for passive solar applications. Impregnation was accomplished simply by soaking the wallboard in molten paraffin. Concentrations of paraffin in the combined product as high as 35 percent by weight were achieved. In support of this concept, a computer model was developed to describe thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions where the PCM melts at a specific melting point. However, agreement between the model and an experimentally produced thermal transient involving impregnated wallboard was only good after the model was modified to allow the paraffin to melt over a temperature range. This was accomplished by replacing the heat of fusion with a triangular heat capacity relationship that mimics the triangular melt curve found through differential scanning calorimetry. When this change was made, agreement between the model and the experimental transient was very good.

  14. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications.

    PubMed

    Su, Dang Sheng; Schlögl, Robert

    2010-02-22

    Electrochemical energy storage is one of the important technologies for a sustainable future of our society, in times of energy crisis. Lithium-ion batteries and supercapacitors with their high energy or power densities, portability, and promising cycling life are the cores of future technologies. This Review describes some materials science aspects on nanocarbon-based materials for these applications. Nanostructuring (decreasing dimensions) and nanoarchitecturing (combining or assembling several nanometer-scale building blocks) are landmarks in the development of high-performance electrodes for with long cycle lifes and high safety. Numerous works reviewed herein have shown higher performances for such electrodes, but mostly give diverse values that show no converging tendency towards future development. The lack of knowledge about interface processes and defect dynamics of electrodes, as well as the missing cooperation between material scientists, electrochemists, and battery engineers, are reasons for the currently widespread trial-and-error strategy of experiments. A concerted action between all of these disciplines is a prerequisite for the future development of electrochemical energy storage devices.

  15. Synthesis of biomass derived carbon materials for environmental engineering and energy storage applications

    NASA Astrophysics Data System (ADS)

    Huggins, Mitchell Tyler

    Biomass derived carbon (BC) can serve as an environmentally and cost effective material for both remediation and energy production/storage applications. The use of locally derived biomass, such as unrefined wood waste, provides a renewable feedstock for carbon material production compared to conventional unrenewable resources like coal. Additionally, energy and capital cost can be reduced through the reduction in transport and processing steps and the use of spent material as a soil amendment. However, little work has been done to evaluate and compare biochar to conventional materials such as granular activated carbon or graphite in advanced applications of Environmental Engineering. In this work I evaluated the synthesis and compared the performance of biochar for different applications in wastewater treatment, nutrient recovery, and energy production and storage. This includes the use of biochar as an electrode and filter media in several bioelectrochemical systems (BES) treating synthetic and industrial wastewater. I also compared the treatment efficiency of granular biochar as a packed bed adsorbent for the primary treatment of high strength brewery wastewater. My studies conclude with the cultivation of fungal biomass to serve as a template for biochar synthesis, controlling the chemical and physical features of the feedstock and avoiding some of the limitations of waste derived materials.

  16. CANE FIBERBOARD DEGRADATION WITHIN THE 9975 SHIPPING PACKAGE DURING LONG-TERM STORAGE APPLICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W.; Dunn, K.; Hackney, B.

    The 9975 shipping package is used as part of the configuration for long-term storage of special nuclear materials in the K Area Complex at the Savannah River Site. The cane fiberboard overpack in the 9975 package provides thermal insulation, impact absorption and criticality control functions relevant to this application. The Savannah River National Laboratory has conducted physical, mechanical and thermal tests on aged fiberboard samples to identify degradation rates and support the development of aging models and service life predictions in a storage environment. This paper reviews the data generated to date, and preliminary models describing degradation rates of canemore » fiberboard in elevated temperature – elevated humidity environments.« less

  17. Storage-ring Electron Cooler for Relativistic Ion Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fanglei; Derbenev, Yaroslav; Douglas, David R.

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This papermore » reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.« less

  18. QoS support for end users of I/O-intensive applications using shared storage systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Marion Kei; Zhang, Xuechen; Jiang, Song

    2011-01-19

    I/O-intensive applications are becoming increasingly common on today's high-performance computing systems. While performance of compute-bound applications can be effectively guaranteed with techniques such as space sharing or QoS-aware process scheduling, it remains a challenge to meet QoS requirements for end users of I/O-intensive applications using shared storage systems because it is difficult to differentiate I/O services for different applications with individual quality requirements. Furthermore, it is difficult for end users to accurately specify performance goals to the storage system using I/O-related metrics such as request latency or throughput. As access patterns, request rates, and the system workload change in time,more » a fixed I/O performance goal, such as bounds on throughput or latency, can be expensive to achieve and may not lead to a meaningful performance guarantees such as bounded program execution time. We propose a scheme supporting end-users QoS goals, specified in terms of program execution time, in shared storage environments. We automatically translate the users performance goals into instantaneous I/O throughput bounds using a machine learning technique, and use dynamically determined service time windows to efficiently meet the throughput bounds. We have implemented this scheme in the PVFS2 parallel file system and have conducted an extensive evaluation. Our results show that this scheme can satisfy realistic end-user QoS requirements by making highly efficient use of the I/O resources. The scheme seeks to balance programs attainment of QoS requirements, and saves as much of the remaining I/O capacity as possible for best-effort programs.« less

  19. Experimental and thermodynamic study of Co-Fe and Mn-Fe based mixed metal oxides for thermochemical energy storage application

    NASA Astrophysics Data System (ADS)

    André, Laurie; Abanades, Stéphane; Cassayre, Laurent

    2017-06-01

    Metal oxides are potential materials for thermochemical heat storage, and among them, cobalt oxide and manganese oxide are attracting attention. Furthermore, studies on mixed oxides are ongoing, as the synthesis of mixed oxides could be a way to answer the drawbacks of pure metal oxides, such as slow reaction kinetics, loss-in-capacity over cycles or sintering, selected for thermochemical heat storage application. The addition of iron oxide is under investigation and the obtained results are presented. This work proposes a comparison of thermodynamic modelling with experimental data in order to identify the impact of iron oxide addition to cobalt oxide and manganese oxide. Fe addition decreased the redox activity and energy storage capacity of Co3O4, whereas the cycling stability of Mn2O3 was significantly improved with added Fe amounts above 20 mol% while the energy storage capacity was unchanged. The thermodynamic modelling method to predict the behavior of the Mn-Fe-O and Co-Fe-O systems was validated, and the possibility to identify other mixed oxides becomes conceivable, by enabling the selection of transition metals additives for metal oxides destined for thermochemical energy storage applications.

  20. Nanostructure of highly aromatic graphene nanosheets -- From optoelectronics to electrochemical energy storage applications

    NASA Astrophysics Data System (ADS)

    Biswas, Sanjib

    The exceptional electrical properties along with intriguing physical and chemical aspects of graphene nanosheets can only be realized by nanostructuring these materials through the homogeneous and orderly distribution of these nanosheets without compromising the aromaticity of the native basal plane. Graphene nanosheets prepared by direct exfoliation as opposed to the graphene oxide route are necessary in order to preserve the native chemical properties of graphene basal planes. This research has been directed at optimally combining the diverse physical and chemical aspects of graphene nanosheets such as particle size, surface area and edge chemistry to fabricate nanostructured architectures for optoelectronics and high power electrochemical energy storage applications. In the first nanostructuring effort, a monolayer of these ultrathin, highly hydrophobic graphene nanosheets was prepared on a large area substrate via self-assembly at the liquid-liquid interface. Driven by the minimization of interfacial energy these planar graphene nanosheets produce a close packed monolayer structure at the liquid-liquid interface. The resulting monolayer film exhibits high electrical conductivity of more than 1000 S/cm and an optical transmission of more than 70-80% between wavelengths of 550 nm and 2000 nm making it an ideal candidate for optoelectronic applications. In the second part of this research, nanostructuring was used to create a configuration suitable for supercapacitor applications. A free standing, 100% binder free multilayer, flexible film consisting of monolayers of graphene nanosheets was prepared by utilizing the van der Waals forces of attraction between the basal plans of the graphene nanosheets coupled with capillary driven and drying-induced collapse. A major benefit in this approach is that the graphene nanosheet's attractive physical and chemical characteristics can be synthesized into an architecture consisting of large and small nanosheets to create an

  1. Solid-state structures and properties of scandium hydride; hydrogen storage and switchable mirrors application

    NASA Astrophysics Data System (ADS)

    Khodja, Khadidja; Bouhadda, Youcef; Seddik, Larbi; Benyelloul, Kamel

    2016-05-01

    First-principles calculation has been performed on the rare earth hydride ScH2 for hydrogen storage and switchable mirror applications, using the pseudo-potentials and plane waves based on the density-functional theory (DFT). The electronic and structural properties are studied within both local-density and generalized gradient approximations for exchange energy. The formation energy and the optical properties have been investigated and discussed. Our calculated results are generally in good agreement with theoretical and experimental data. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  2. On-chip liquid storage and dispensing for lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Bodén, Roger; Lehto, Marcus; Margell, Joakim; Hjort, Klas; Schweitz, Jan-Åke

    2008-07-01

    This work presents novel components for on-chip storage and dispensing inside a lab-on-a-chip (LOC) for applications in immunoassay point-of-care testing (POCT), where incubation and washing steps are essential. It involves easy-to-use on-chip solutions for the sequential thermo-hydraulic actuation of liquids. The novel concept of combining the use of a rubber plug, both as a non-return valve cap and as a liquid injection interface of a sealed reservoir, allows simple filling of a sterilized cavity, as well as the storage and dispensing of reagent and washing buffer liquids. Segmenting the flow with air spacers enables effective rinsing and the use of small volumes of on-chip stored liquids. The chip uses low-resistance resistors as heaters in the paraffin actuator, providing the low-voltage actuation that is preferred for handheld battery driven instruments.

  3. Integrated Power/Attitude Control System (IPACS) study. Volume 1: Feasibility studies. [application of flywheels for power storage and generation

    NASA Technical Reports Server (NTRS)

    Notti, J. E.; Cormack, A., III; Schmill, W. C.

    1974-01-01

    An Integrated Power/Attitude Control System (IPACS) concept consisting of an array of spinning flywheels, with or without gimbals, capable of performing the dual function of power storage and generation, as well as attitude control has been investigated. This system provides attitude control through momentum storage, and replaces the storage batteries onboard the spacecraft. The results of the investigation are presented in two volumes. The trade-off studies performed to establish the feasibility, cost effectiveness, required level of development, and boundaries of application of IPACS to a wide variety of spacecraft are discussed. The conceptual designs for a free-flying research application module (RAM), and for a tracking and data relay satellite (TDRS) are presented. Results from dynamic analyses and simulations of the IPACS conceptual designs are included.

  4. Ammonia emissions factors from broiler litter in barns, in storage, and after land application

    USDA-ARS?s Scientific Manuscript database

    Ammonia (NH3) emissions from poultry litter can cause high levels of NH3 in poultry rearing facilities, as well as atmospheric pollution. The objectives of this study were to: (1) measure NH3 emissions from litter in broiler houses, during storage and following land application, and (2) conduct a m...

  5. 2D Metal Chalcogenides Incorporated into Carbon and their Assembly for Energy Storage Applications.

    PubMed

    Deng, Zongnan; Jiang, Hao; Li, Chunzhong

    2018-05-01

    2D metal chalcogenides have become a popular focus in the energy storage field because of their unique properties caused by their single-atom thicknesses. However, their high surface energy and van der Waals attraction easily cause serious stacking and restacking, leading to the generation of more inaccessible active sites with rapid capacity fading. The hybridization of 2D metal chalcogenides with highly conductive materials, particularly, incorporating ultrasmall and few-layered metal chalcogenides into carbon frameworks, can not only maximize the exposure of active sites but also effectively avoid their stacking and aggregation during the electrochemical reaction process. Therefore, a satisfactory specific capacity will be achieved with a long cycle life. In this Concept, the representative progress on such intriguing nanohybrids and their applications in energy storage devices are mainly summarized. Finally, an outlook of the future development and challenges of such nanohybrids for achieving an excellent energy storage capability is also provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Conventional wallboard with latent heat storage for passive solar applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kedl, R.J.

    1990-01-01

    Conventional wallboard impregnated with octadecane paraffin (Melting Point -- 73.5{degree}F) is being developed as a building material with latent heat storage for passive solar applications. Impregnation was accomplished simply by soaking the wallboard in molten paraffin. Concentrations of paraffin in the combined product as high as 35{percent} by weight were achieved. In support of this concept, a computer model was developed to describe thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions where the PCM melts at a specific melting point. However, agreementmore » between the model and an experimentally produced thermal transient involving impregnated wallboard was only good after the model was modified to allow the paraffin to melt over a temperature range. This was accomplished by replacing the heat of fusion with a triangular heat capacity relationship that mimics the triangular melt curve found through differential scanning calorimetry. When this change was made, agreement between the model and the experimental transient was very good. 4 refs., 8 figs.« less

  7. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery.

    PubMed

    Yang, Jun; Sudik, Andrea; Wolverton, Christopher; Siegel, Donald J

    2010-02-01

    Widespread adoption of hydrogen as a vehicular fuel depends critically upon the ability to store hydrogen on-board at high volumetric and gravimetric densities, as well as on the ability to extract/insert it at sufficiently rapid rates. As current storage methods based on physical means--high-pressure gas or (cryogenic) liquefaction--are unlikely to satisfy targets for performance and cost, a global research effort focusing on the development of chemical means for storing hydrogen in condensed phases has recently emerged. At present, no known material exhibits a combination of properties that would enable high-volume automotive applications. Thus new materials with improved performance, or new approaches to the synthesis and/or processing of existing materials, are highly desirable. In this critical review we provide a practical introduction to the field of hydrogen storage materials research, with an emphasis on (i) the properties necessary for a viable storage material, (ii) the computational and experimental techniques commonly employed in determining these attributes, and (iii) the classes of materials being pursued as candidate storage compounds. Starting from the general requirements of a fuel cell vehicle, we summarize how these requirements translate into desired characteristics for the hydrogen storage material. Key amongst these are: (a) high gravimetric and volumetric hydrogen density, (b) thermodynamics that allow for reversible hydrogen uptake/release under near-ambient conditions, and (c) fast reaction kinetics. To further illustrate these attributes, the four major classes of candidate storage materials--conventional metal hydrides, chemical hydrides, complex hydrides, and sorbent systems--are introduced and their respective performance and prospects for improvement in each of these areas is discussed. Finally, we review the most valuable experimental and computational techniques for determining these attributes, highlighting how an approach that

  8. A study of the applicability/compatibility of inertial energy storage systems to future space missions

    NASA Technical Reports Server (NTRS)

    Weldon, W. F.

    1980-01-01

    The applicability/compatibility of inertial energy storage systems like the homopolar generator (HPG) and the compensated pulsed alternator (CPA) to future space missions is explored. Areas of CPA and HPG design requiring development for space applications are identified. The manner in which acceptance parameters of the CPA and HPG scale with operating parameters of the machines are explored and the types of electrical loads which are compatible with the CPA and HPG are examined. Potential applications including the magnetoplasmadynamic (MPD) thruster, pulsed data transmission, laser ranging, welding and electromagnetic space launch are discussed.

  9. Development and Validation of a Slurry Model for Chemical Hydrogen Storage in Fuel Cell Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.

    2014-07-25

    The US Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOE’s Technical Targets and a set of four drive cycles. The purpose of this research is to describe the models developed for slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and endothermic system based on alane were developed and modeled in Simulink®. Oncemore » complete the reactor and radiator components of the model were validated with experimental data. The model was then run using a highway cycle, an aggressive cycle, cold-start cycle and hot drive cycle. The system design was adjusted to meet these drive cycles. A sensitivity analysis was then performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction greater than 11 kJ/mol H2 generated and a slurry hydrogen capacity of greater than 11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.« less

  10. Investigating longevity of corrosion inhibitors and performance of deicer products under storage or after pavement application.

    DOT National Transportation Integrated Search

    2011-06-01

    This study evaluated the longevity of corrosion inhibitors and the performance of inhibited deicer products under storage or after pavement application. No significant degradation of corrosion inhibitor or loss of chlorides was seen during the months...

  11. Novel bamboo structured TiO2 nanotubes for energy storage/production applications

    NASA Astrophysics Data System (ADS)

    Samuel, J. J.; Beh, K. P.; Cheong, Y. L.; Yusuf, W. A. A.; Yam, F. K.

    2018-04-01

    Nanostructured TiO2 received much attention owing to its high surface-to-volume ratio, which can be advantageous in energy storage and production applications. However, the increase in energy consumption at present and possibly the foreseeable future has demanded energy storage and production devices of even higher performance. A direct approach would be manipulating the physical aspects of TiO2 nanostructures, particularly, nanotubes. In this work, dual voltage anodization system has been implemented to fabricate bamboo shaped TiO2 nanotubes, which offers even greater surface area. This unique nanostructure would be used in Dye Sensitized Solar Cell (DSSC) fabrication and its performance will be evaluated and compared along other forms of TiO2 nanotubes. The results showed that bamboo shaped nanotubes indeed are superior morphologically, with an increase of efficiency of 107% at 1.130% efficiency when compared to smooth walled nanotubes at 0.546% efficiency.

  12. Specific storage volumes: A useful tool for CO2 storage capacity assessment

    USGS Publications Warehouse

    Brennan, S.T.; Burruss, R.C.

    2006-01-01

    Subsurface geologic strata have the potential to store billions of tons of anthropogenic CO2; therefore, geologic carbon sequestration can be an effective mitigation tool used to slow the rate at which levels of atmospheric CO2 are increasing. Oil and gas reservoirs, coal beds, and saline reservoirs can be used for CO2 storage; however, it is difficult to assess and compare the relative storage capacities of these different settings. Typically, CO2 emissions are reported in units of mass, which are not directly applicable to comparing the CO2 storage capacities of the various storage targets. However, if the emission values are recalculated to volumes per unit mass (specific volume) then the volumes of geologic reservoirs necessary to store CO2 emissions from large point sources can be estimated. The factors necessary to convert the mass of CO2 emissions to geologic storage volume (referred to here as Specific Storage Volume or 'SSV') can be reported in units of cubic meters, cubic feet, and petroleum barrels. The SSVs can be used to estimate the reservoir volume needed to store CO2 produced over the lifetime of an individual point source, and to identify CO2 storage targets of sufficient size to meet the demand from that given point source. These storage volumes also can then be projected onto the land surface to outline a representative "footprint," which marks the areal extent of storage. This footprint can be compared with the terrestrial carbon sequestration capacity of the same land area. The overall utility of this application is that the total storage capacity of any given parcel of land (from surface to basement) can be determined, and may assist in making land management decisions. ?? Springer Science+Business Media, LLC 2006.

  13. 77 FR 34031 - Petal Gas Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Application Take notice that on May 21, 2012, Petal Gas Storage, L.L.C. (Petal) and Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg... pursuant to sections 7(c) and 7(b) of the Natural Gas Act (NGA), for authorization for Petal to acquire the...

  14. Ammonia emission factors from broiler litter in barns, in storage, and after land application.

    PubMed

    Moore, Philip A; Miles, Dana; Burns, Robert; Pote, Dan; Berg, Kess; Choi, In Hag

    2011-01-01

    We measured NH₃ emissions from litter in broiler houses, during storage, and after land application and conducted a mass balance of N in poultry houses. Four state-of-the-art tunnel-ventilated broiler houses in northwest Arkansas were equipped with NH₃ sensors, anemometers, and data loggers to continuously record NH₃ concentrations and ventilation for 1 yr. Gaseous fluxes of NH₃, N₂O, CH₄, and CO₂ from litter were measured. Nitrogen (N) inputs and outputs were quantified. Ammonia emissions during storage and after land application were measured. Ammonia emissions during the flock averaged approximately 15.2 kg per day-house (equivalent to 28.3 g NH₃per bird marketed). Emissions between flocks equaled 9.09 g NH₃ per bird. Hence, in-house NH₃ emissions were 37.5 g NH₃ per bird, or 14.5 g kg(-1) bird marketed (50-d-old birds). The mass balance study showed N inputs for the year to the four houses totaled 71,340 kg N, with inputs from bedding, chicks, and feed equal to 303, 602, and 70,435 kg, respectively (equivalent to 0.60, 1.19, and 139.56 g N per bird). Nitrogen outputs totaled 70,396 kg N. Annual N output from birds marketed, NH₃ emissions, litter or cake, mortality, and NO₂ emissions was 39,485, 15,571, 14,464, 635, and 241 kg N, respectively (equivalent to 78.2, 30.8, 28.7, 1.3, and 0.5 g N per bird). The percent N recovery for the N mass balance study was 98.8%. Ammonia emissions from stacked litter during a 16-d storage period were 172 g Mg(-1) litter, which is equivalent to 0.18 g NH₃ per bird. Ammonia losses from poultry litter broadcast to pastures were 34 kg N ha (equivalent to 15% of total N applied or 7.91 g NH₃ per bird). When the litter was incorporated into the pasture using a new knifing technique, NH₃ losses were virtually zero. The total NH₃ emission factor for broilers measured in this study, which includes losses in-house, during storage, and after land application, was 45.6 g NH₃ per bird marketed. by the

  15. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  16. Evaluation of actuator energy storage and power sources for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Young, Fred M.

    1993-01-01

    The objective of this evaluation is to determine an optimum energy storage/power source combination for electrical actuation systems for existing (Solid Rocket Booster (SRB), Shuttle) and future (Advanced Launch System (ALS), Shuttle Derivative) vehicles. Characteristic of these applications is the requirement for high power pulses (50-200 kW) for short times (milliseconds to seconds), coupled with longer-term base or 'housekeeping' requirements (5-16 kW). Specific study parameters (e.g., weight, volume, etc.) as stated in the proposal and specified in the Statement of Work (SOW) are included.

  17. Inertial energy storage for advanced space station applications

    NASA Technical Reports Server (NTRS)

    Van Tassel, K. E.; Simon, W. E.

    1985-01-01

    Because the NASA Space Station will spend approximately one-third of its orbital time in the earth's shadow, depriving it of solar energy and requiring an energy storage system to meet system demands, attention has been given to flywheel energy storage systems. These systems promise high mechanical efficiency, long life, light weight, flexible design, and easily monitored depth of discharge. An assessment is presently made of three critical technology areas: rotor materials, magnetic suspension bearings, and motor-generators for energy conversion. Conclusions are presented regarding the viability of inertial energy storage systems and of problem areas requiring further technology development efforts.

  18. Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices.

    PubMed

    Watanabe, Masayoshi; Thomas, Morgan L; Zhang, Shiguo; Ueno, Kazuhide; Yasuda, Tomohiro; Dokko, Kaoru

    2017-05-24

    Ionic liquids (ILs) are liquids consisting entirely of ions and can be further defined as molten salts having melting points lower than 100 °C. One of the most important research areas for IL utilization is undoubtedly their energy application, especially for energy storage and conversion materials and devices, because there is a continuously increasing demand for clean and sustainable energy. In this article, various application of ILs are reviewed by focusing on their use as electrolyte materials for Li/Na ion batteries, Li-sulfur batteries, Li-oxygen batteries, and nonhumidified fuel cells and as carbon precursors for electrode catalysts of fuel cells and electrode materials for batteries and supercapacitors. Due to their characteristic properties such as nonvolatility, high thermal stability, and high ionic conductivity, ILs appear to meet the rigorous demands/criteria of these various applications. However, for further development, specific applications for which these characteristic properties become unique (i.e., not easily achieved by other materials) must be explored. Thus, through strong demands for research and consideration of ILs unique properties, we will be able to identify indispensable applications for ILs.

  19. Blister pouches for effective reagent storage and release for low cost point-of-care diagnostic applications

    NASA Astrophysics Data System (ADS)

    Smith, Suzanne; Sewart, Rene; Land, Kevin; Roux, Pieter; Gärtner, Claudia; Becker, Holger

    2016-03-01

    Lab-on-a-chip devices are often applied to point-of-care diagnostic solutions as they are low-cost, compact, disposable, and require only small sample volumes. For such devices, various reagents are required for sample preparation and analysis and, for an integrated solution to be realized, on-chip reagent storage and automated introduction are required. This work describes the implementation and characterization of effective liquid reagent storage and release mechanisms utilizing blister pouches applied to various point-of-care diagnostic device applications. The manufacturing aspects as well as performance parameters are evaluated.

  20. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  1. Conceptual design of thermal energy storage systems for near term electric utility applications. Volume 1: Screening of concepts

    NASA Technical Reports Server (NTRS)

    Hausz, W.; Berkowitz, B. J.; Hare, R. C.

    1978-01-01

    Over forty thermal energy storage (TES) concepts gathered from the literature and personal contacts were studied for their suitability for the electric utility application of storing energy off-peak discharge during peak hours. Twelve selections were derived from the concepts for screening; they used as storage media high temperature water (HTW), hot oil, molten salts, and packed beds of solids such as rock. HTW required pressure containment by prestressed cast-iron or concrete vessels, or lined underground cavities. Both steam generation from storage and feedwater heating from storage were studied. Four choices were made for further study during the project. Economic comparison by electric utility standard cost practices, and near-term availability (low technical risk) were principal criteria but suitability for utility use, conservation potential, and environmental hazards were considered.

  2. Fixed-base flywheel storage systems for electric-utility applications: An assessment of economic viability and R and D priorities

    NASA Astrophysics Data System (ADS)

    Olszewski, M.; Steele, R. S.

    1983-02-01

    Electric utility side meter storage options were assessed for the daily 2 h peaking spike application. The storage options considered included compressed air, batteries, and flywheels. The potential role for flywheels in this application was assessed and research and development (R and D) priorities were established for fixed base flywheel systems. Results of the worth cost analysis indicate that where geologic conditions are favorable, compressed air energy storage (CAES) is a strong competitor against combustion turbines. Existing battery and flywheel systems rated about equal, both being, at best, marginally uncompetitive with turbines. Advanced batteries, if existing cost and performance goals are met, could be competitive with CAES. A three task R and D effort for flywheel development appears warranted. The first task, directed at reducing fabrication coss and increasing performance of a chopped fiber, F-glass, solid disk concept, could produce a competitive flywheel system.

  3. Influence of technology on magnetic tape storage device characteristics

    NASA Technical Reports Server (NTRS)

    Gniewek, John J.; Vogel, Stephen M.

    1994-01-01

    There are available today many data storage devices that serve the diverse application requirements of the consumer, professional entertainment, and computer data processing industries. Storage technologies include semiconductors, several varieties of optical disk, optical tape, magnetic disk, and many varieties of magnetic tape. In some cases, devices are developed with specific characteristics to meet specification requirements. In other cases, an existing storage device is modified and adapted to a different application. For magnetic tape storage devices, examples of the former case are 3480/3490 and QIC device types developed for the high end and low end segments of the data processing industry respectively, VHS, Beta, and 8 mm formats developed for consumer video applications, and D-1, D-2, D-3 formats developed for professional video applications. Examples of modified and adapted devices include 4 mm, 8 mm, 12.7 mm and 19 mm computer data storage devices derived from consumer and professional audio and video applications. With the conversion of the consumer and professional entertainment industries from analog to digital storage and signal processing, there have been increasing references to the 'convergence' of the computer data processing and entertainment industry technologies. There has yet to be seen, however, any evidence of convergence of data storage device types. There are several reasons for this. The diversity of application requirements results in varying degrees of importance for each of the tape storage characteristics.

  4. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonicationmore » in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.« less

  5. An analytic solution of the stochastic storage problem applicable to soil water

    USGS Publications Warehouse

    Milly, P.C.D.

    1993-01-01

    The accumulation of soil water during rainfall events and the subsequent depletion of soil water by evaporation between storms can be described, to first order, by simple accounting models. When the alternating supplies (precipitation) and demands (potential evaporation) are viewed as random variables, it follows that soil-water storage, evaporation, and runoff are also random variables. If the forcing (supply and demand) processes are stationary for a sufficiently long period of time, an asymptotic regime should eventually be reached where the probability distribution functions of storage, evaporation, and runoff are stationary and uniquely determined by the distribution functions of the forcing. Under the assumptions that the potential evaporation rate is constant, storm arrivals are Poisson-distributed, rainfall is instantaneous, and storm depth follows an exponential distribution, it is possible to derive the asymptotic distributions of storage, evaporation, and runoff analytically for a simple balance model. A particular result is that the fraction of rainfall converted to runoff is given by (1 - R−1)/(eα(1−R−1) − R−1), in which R is the ratio of mean potential evaporation to mean rainfall and a is the ratio of soil water-holding capacity to mean storm depth. The problem considered here is analogous to the well-known problem of storage in a reservoir behind a dam, for which the present work offers a new solution for reservoirs of finite capacity. A simple application of the results of this analysis suggests that random, intraseasonal fluctuations of precipitation cannot by themselves explain the observed dependence of the annual water balance on annual totals of precipitation and potential evaporation.

  6. A review of the semiconductor storage of television signals. Part 2: Applications 1975-1986

    NASA Astrophysics Data System (ADS)

    Riley, J. L.

    1987-08-01

    This is the second of two reports. In the first, the emerging semiconductor memory technology over the last two decades and some of the important operational characteristics of each ensuing generation of device are described together with the design philosophy for forming the devices into useful tools for the storage of television signals. The second of these reports describes some of the applications. These include improved television synchronizers, high quality PAL decoders, television noise reducers, film dirt concealment equipment and buffer storage for television picture processing equipment such as stills stores. The continuing developments in the technology promise still further increases of memory capacity and there is a proposal to build a mass semiconductor television picture sequence store, initially as a research tool.

  7. Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications

    PubMed Central

    Wang, Zhihang; Udmark, Jonas; Börjesson, Karl; Rodrigues, Rita; Roffey, Anna; Abrahamsson, Maria

    2017-01-01

    Abstract Efficient solar energy storage is a key challenge in striving toward a sustainable future. For this reason, molecules capable of solar energy storage and release through valence isomerization, for so‐called molecular solar thermal energy storage (MOST), have been investigated. Energy storage by photoconversion of the dihydroazulene/vinylheptafulvene (DHA/VHF) photothermal couple has been evaluated. The robust nature of this system is determined through multiple energy storage and release cycles at elevated temperatures in three different solvents. In a nonpolar solvent such as toluene, the DHA/VHF system can be cycled more than 70 times with less than 0.01 % degradation per cycle. Moreover, the [Cu(CH3CN)4]PF6‐catalyzed conversion of VHF into DHA was demonstrated in a flow reactor. The performance of the DHA/VHF couple was also evaluated in prototype photoconversion devices, both in the laboratory by using a flow chip under simulated sunlight and under outdoor conditions by using a parabolic mirror. Device experiments demonstrated a solar energy storage efficiency of up to 0.13 % in the chip device and up to 0.02 % in the parabolic collector. Avenues for future improvements and optimization of the system are also discussed. PMID:28644559

  8. Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications.

    PubMed

    Wang, Zhihang; Udmark, Jonas; Börjesson, Karl; Rodrigues, Rita; Roffey, Anna; Abrahamsson, Maria; Nielsen, Mogens Brøndsted; Moth-Poulsen, Kasper

    2017-08-10

    Efficient solar energy storage is a key challenge in striving toward a sustainable future. For this reason, molecules capable of solar energy storage and release through valence isomerization, for so-called molecular solar thermal energy storage (MOST), have been investigated. Energy storage by photoconversion of the dihydroazulene/vinylheptafulvene (DHA/VHF) photothermal couple has been evaluated. The robust nature of this system is determined through multiple energy storage and release cycles at elevated temperatures in three different solvents. In a nonpolar solvent such as toluene, the DHA/VHF system can be cycled more than 70 times with less than 0.01 % degradation per cycle. Moreover, the [Cu(CH 3 CN) 4 ]PF 6 -catalyzed conversion of VHF into DHA was demonstrated in a flow reactor. The performance of the DHA/VHF couple was also evaluated in prototype photoconversion devices, both in the laboratory by using a flow chip under simulated sunlight and under outdoor conditions by using a parabolic mirror. Device experiments demonstrated a solar energy storage efficiency of up to 0.13 % in the chip device and up to 0.02 % in the parabolic collector. Avenues for future improvements and optimization of the system are also discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Development of Structural Energy Storage for Aeronautics Applications

    NASA Technical Reports Server (NTRS)

    Santiago-Dejesus, Diana; Loyselle, Patricia L.; Demattia, Brianne; Bednarcyk, Brett; Olson, Erik; Smith, Russell; Hare, David

    2017-01-01

    The National Aeronautics and Space Administration (NASA) has identified Multifunctional Structures for High Efficiency Lightweight Load-bearing Storage (M-SHELLS) as critical to development of hybrid gas-electric propulsion for commercial aeronautical transport in the N+3 timeframe. The established goals include reducing emissions by 80 and fuel consumption by 60 from todays state of the art. The advancement will enable technology for NASA Aeronautics Research Mission Directorates (ARMD) Strategic Thrust 3 to pioneer big leaps in efficiency and environmental performance for ultra-efficient commercial transports, as well as Strategic Thrust 4 to pioneer low-carbon propulsion technology in the transition to that scheme. The M-SHELLS concept addresses the hybrid gas-electric highest risk with its primary objective: to save structures energy storage system weight for future commercial hybrid electric propulsion aircraft by melding the load-carrying structure with energy storage in a single material. NASA's multifunctional approach also combines supercapacitor and battery chemistries in a synergistic energy storage arrangement in tandem with supporting good mechanical properties. The arrangement provides an advantageous combination of specific power, energy, and strength.

  10. Energy Storage Systems Are Coming: Are You Ready

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conover, David R.

    2015-12-05

    Energy storage systems (batteries) are not a new concept, but the technology being developed and introduced today with an increasing emphasis on energy storage, is new. The increased focus on energy, environmental and economic issues in the built environment is spurring increased application of renewables as well as reduction in peak energy use - both of which create a need for energy storage. This article provides an overview of current and anticipated energy storage technology, focusing on ensuring the safe application and use of energy storage on both the grid and customer side of the utility meter.

  11. High-temperature molten salt thermal energy storage systems for solar applications

    NASA Technical Reports Server (NTRS)

    Petri, R. J.; Claar, T. D.; Ong, E.

    1983-01-01

    Experimental results of compatibility screening studies of 100 salt/containment/thermal conductivity enhancement (TCE) combinations for the high temperature solar thermal application range of 704 deg to 871 C (1300 to 1600 F) are presented. Nine candidate containment/HX alloy materials and two TCE materials were tested with six candidate solar thermal alkali and alkaline earth carbonate storage salts (both reagent and technical grade of each). Compatibility tests were conducted with salt encapsulated in approx. 6.0 inch x 1 inch welded containers of test material from 300 to 3000 hours. Compatibility evaluations were end application oriented, considering the potential 30 year lifetime requirement of solar thermal power plant components. Analyses were based on depth and nature of salt side corrosion of materials, containment alloy thermal aging effects, weld integrity in salt environment, air side containment oxidation, and chemical and physical analyses of the salt. A need for more reliable, and in some cases first time determined thermophysical and transport property data was also identified for molten carbonates in the 704 to 871 C temperature range. In particular, accurate melting point (mp) measurements were performed for Li2CO3 and Na2CO3 while melting point, heat of fusion, and specific heat determinations were conducted on 81.3 weight percent Na2CO3-18.7 weight percent K2CO3 and 52.2 weight percent BaCO3-47.8 weight percent Na2CO3 to support future TES system design and ultimate scale up of solar thermal energy storage (TES) subsystems.

  12. Land Application of Wastes: An Educational Program. Climate and Wastewater Storage - Module 8, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module discusses the hydrologic considerations that apply to land application of wastes. These are precipitation, infiltration and percolation, evapotranspiration, runoff, and groundwater. Climatic considerations that relate to wastewater storage are also discussed. Particular emphasis is given to wastewater flow, precipitation, evaporation,…

  13. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Production, Storage, and Transport. Part 3

    NASA Technical Reports Server (NTRS)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Hydrogen storage and in-space hydrogen transport research focused on developing and verifying design concepts for efficient, safe, lightweight liquid hydrogen cryogenic storage systems. Research into hydrogen production had a specific goal of further advancing proton conducting membrane technology in the laboratory at a larger scale. System and process trade studies evaluated the proton conducting membrane technology, specifically, scale-up issues.

  14. Creation of a Unified Educational Space within a SLA University Classroom Using Cloud Storage and On-Line Applications

    ERIC Educational Resources Information Center

    Karabayeva, Kamilya Zhumartovna

    2016-01-01

    In the present article the author gives evidence of effective application of cloud storage and on-line applications in the educational process of the higher education institution, as well as considers the problems and prospects of using cloud technologies in the educational process, when creating a unified educational space in the foreign language…

  15. Research on an IP disaster recovery storage system

    NASA Astrophysics Data System (ADS)

    Zeng, Dong; Wang, Yusheng; Zhu, Jianfeng

    2008-12-01

    According to both the Fibre Channel (FC) Storage Area Network (SAN) switch and Fabric Application Interface Standard (FAIS) mechanism, an iSCSI storage controller is put forward and based upon it, an internet Small Computer System Interface (iSCSI) SAN construction strategy for disaster recovery (DR) is proposed and some multiple sites replication models and a closed queue performance analysis method are also discussed in this paper. The iSCSI storage controller lies in the fabric level of the networked storage infrastructure, and it can be used to connect to both the hybrid storage applications and storage subsystems, besides, it can provide virtualized storage environment and support logical volume access control, and by cooperating with the remote peerparts, a disaster recovery storage system can be built on the basis of the data replication, block-level snapshot and Internet Protocol (IP) take-over functions.

  16. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analysesmore » and forms, inspection logs, equipment identification, etc.« less

  17. On Information Storage Models.

    ERIC Educational Resources Information Center

    Leimkuhler, Ferdinand F.

    The transfer of information through space and time in communication systems is often accompanied by significant delays which give rise to meaningful storage problems. Mathematical models have been developed for the study of these kinds of problems which are applicable to the design of manual, library-type, or mechanized information storage and…

  18. 76 FR 15971 - Liberty Gas Storage, LLC and LA Storage, LLC; Notice of Joint Application for Abandonment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... Convenience and Necessity Take notice that on March 4, 2011, Liberty Gas Storage, LLC (Liberty) and LA Storage... Liberty to abandon by transfer certain facilities to LA Storage; (ii) a certificate of public convenience...

  19. Scientific Data Storage for Cloud Computing

    NASA Astrophysics Data System (ADS)

    Readey, J.

    2014-12-01

    Traditionally data storage used for geophysical software systems has centered on file-based systems and libraries such as NetCDF and HDF5. In contrast cloud based infrastructure providers such as Amazon AWS, Microsoft Azure, and the Google Cloud Platform generally provide storage technologies based on an object based storage service (for large binary objects) complemented by a database service (for small objects that can be represented as key-value pairs). These systems have been shown to be highly scalable, reliable, and cost effective. We will discuss a proposed system that leverages these cloud-based storage technologies to provide an API-compatible library for traditional NetCDF and HDF5 applications. This system will enable cloud storage suitable for geophysical applications that can scale up to petabytes of data and thousands of users. We'll also cover other advantages of this system such as enhanced metadata search.

  20. Final Project Report for DOE/EERE High-Capacity and Low-Cost Hydrogen-Storage Sorbents for Automotive Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hong-Cai; Liu, Di-Jia

    This report provides a review of the objectives, progress, and milestones of the research conducted during this project on the topic of developing innovative metal-organic frameworks (MOFs) and porous organic polymers (POPs) for high-capacity and low-cost hydrogen-storage sorbents in automotive applications.1 The objectives of the proposed research were to develop new materials as next-generation hydrogen storage sorbents that meet or exceed DOE’s 2017 performance targets of gravimetric capacity of 0.055 kg H 2/kg system and volumetric capacity of 0.040 kg H 2/L system at a cost of $400/kg H 2 stored. Texas A&M University (TAMU) and Argonne National Laboratory (ANL)more » collaborated in developing low-cost and high-capacity hydrogen-storage sorbents with appropriate stability, sorption kinetics, and thermal conductivity. The research scope and methods developed to achieve the project’s goals include the following: Advanced ligand design and synthesis to construct MOF sorbents with optimal hydrogen storage capacities, low cost and high stability; Substantially improve the hydrogen uptake capacity and chemical stability of MOF-based sorbents by incorporating high valent metal ions during synthesis or through the post-synthetic metal metathesis oxidation approach; Enhance sorbent storage capacity through material engineering and characterization; Generate a better understanding of the H 2-sorbent interaction through advanced characterization and simulation. Over the course of the project 5 different MOFs were developed and studied: PCN-250, PCN-12, PCN-12’, PCN-608 and PCN-609.2-3 Two different samples were submitted to the National Renewable Energy Laboratory (NREL) in order to validate their hydrogen adsorption capacity, PCN-250 and PCN-12. Neither of these samples reached the project’s Go/No-Go requirements but the data obtained did further prove the hypothesis that the presence of open metal sites oriented towards MOF pores help to surpass the predicted

  1. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, J. C.

    2011-09-01

    It is clearly understood that lower overall costs are a key factor to make renewable energy technologies competitive with traditional energy sources. Energy storage technology is one path to increase the value and reduce the cost of all renewable energy supplies. Concentrating solar power (CSP) technologies have the ability to dispatch electrical output to match peak demand periods by employing thermal energy storage (TES). Energy storage technologies require efficient materials with high energy density. Latent heat TES systems using phase change material (PCM) are useful because of their ability to charge and discharge a large amount of heat from amore » small mass at constant temperature during a phase transformation like melting-solidification. PCM technology relies on the energy absorption/liberation of the latent heat during a physical transformation. The main objective of this report is to provide an assessment of molten salts and metallic alloys proposed as candidate PCMs for TES applications, particularly in solar parabolic trough electrical power plants at a temperature range from 300..deg..C to 500..deg.. C. The physical properties most relevant for PCMs service were reviewed from the candidate selection list. Some of the PCM candidates were characterized for: chemical stability with some container materials; phase change transformation temperatures; and latent heats.« less

  2. Optical storage networking

    NASA Astrophysics Data System (ADS)

    Mohr, Ulrich

    2001-11-01

    For efficient business continuance and backup of mission- critical data an inter-site storage network is required. Where traditional telecommunications costs are prohibitive for all but the largest organizations, there is an opportunity for regional carries to deliver an innovative storage service. This session reveals how a combination of optical networking and protocol-aware SAN gateways can provide an extended storage networking platform with the lowest cost of ownership and the highest possible degree of reliability, security and availability. Companies of every size, with mainframe and open-systems environments, can afford to use this integrated service. Three mayor applications are explained; channel extension, Network Attached Storage (NAS), Storage Area Networks (SAN) and how optical networks address the specific requirements. One advantage of DWDM is the ability for protocols such as ESCON, Fibre Channel, ATM and Gigabit Ethernet, to be transported natively and simultaneously across a single fiber pair, and the ability to multiplex many individual fiber pairs over a single pair, thereby reducing fiber cost and recovering fiber pairs already in use. An optical storage network enables a new class of service providers, Storage Service Providers (SSP) aiming to deliver value to the enterprise by managing storage, backup, replication and restoration as an outsourced service.

  3. Cost-Efficient Storage of Cryogens

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Sass, J. P.; Nagy, Z.; Sojoumer, S. J.; Morris, D. L.; Augustynowicz, S. D.

    2007-01-01

    NASA's cryogenic infrastructure that supports launch vehicle operations and propulsion testing is reaching an age where major refurbishment will soon be required. Key elements of this infrastructure are the large double-walled cryogenic storage tanks used for both space vehicle launch operations and rocket propulsion testing at the various NASA field centers. Perlite powder has historically been the insulation material of choice for these large storage tank applications. New bulk-fill insulation materials, including glass bubbles and aerogel beads, have been shown to provide improved thermal and mechanical performance. A research testing program was conducted to investigate the thermal performance benefits as well as to identify operational considerations and associated risks associated with the application of these new materials in large cryogenic storage tanks. The program was divided into three main areas: material testing (thermal conductivity and physical characterization), tank demonstration testing (liquid nitrogen and liquid hydrogen), and system studies (thermal modeling, economic analysis, and insulation changeout). The results of this research work show that more energy-efficient insulation solutions are possible for large-scale cryogenic storage tanks worldwide and summarize the operational requirements that should be considered for these applications.

  4. Thermal Energy Storage: Fourth Annual Review Meeting

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The development of low cost thermal energy storage technologies is discussed in terms of near term oil savings, solar energy applications, and dispersed energy systems for energy conservation policies. Program definition and assessment and research and technology development are considered along with industrial storage, solar thermal power storage, building heating and cooling, and seasonal thermal storage. A bibliography on seasonal thermal energy storage emphasizing aquifer thermal energy is included.

  5. Applications of thermal energy storage in the cement industry

    NASA Technical Reports Server (NTRS)

    Jaeger, F. A.; Beshore, D. G.; Miller, F. M.; Gartner, E. M.

    1978-01-01

    In the manufacture of cement, literally trillions of Btu's are rejected to the environment each year. The purpose of this feasibility study program was to determine whether thermal energy storage could be used to conserve or allow alternative uses of this rejected energy. This study identifies and quantifies the sources of rejected energy in the cement manufacturing process, established use of this energy, investigates various storage system concepts, and selects energy conservation systems for further study. Thermal performance and economic analyses are performed on candidate storage systems for four typical cement plants representing various methods of manufacturing cement. Through the use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 10 to the 13th power Btu/year, or an equivalent on investment of the proposed systems are an incentive for further development.

  6. High-performance mass storage system for workstations

    NASA Technical Reports Server (NTRS)

    Chiang, T.; Tang, Y.; Gupta, L.; Cooperman, S.

    1993-01-01

    Reduced Instruction Set Computer (RISC) workstations and Personnel Computers (PC) are very popular tools for office automation, command and control, scientific analysis, database management, and many other applications. However, when using Input/Output (I/O) intensive applications, the RISC workstations and PC's are often overburdened with the tasks of collecting, staging, storing, and distributing data. Also, by using standard high-performance peripherals and storage devices, the I/O function can still be a common bottleneck process. Therefore, the high-performance mass storage system, developed by Loral AeroSys' Independent Research and Development (IR&D) engineers, can offload a RISC workstation of I/O related functions and provide high-performance I/O functions and external interfaces. The high-performance mass storage system has the capabilities to ingest high-speed real-time data, perform signal or image processing, and stage, archive, and distribute the data. This mass storage system uses a hierarchical storage structure, thus reducing the total data storage cost, while maintaining high-I/O performance. The high-performance mass storage system is a network of low-cost parallel processors and storage devices. The nodes in the network have special I/O functions such as: SCSI controller, Ethernet controller, gateway controller, RS232 controller, IEEE488 controller, and digital/analog converter. The nodes are interconnected through high-speed direct memory access links to form a network. The topology of the network is easily reconfigurable to maximize system throughput for various applications. This high-performance mass storage system takes advantage of a 'busless' architecture for maximum expandability. The mass storage system consists of magnetic disks, a WORM optical disk jukebox, and an 8mm helical scan tape to form a hierarchical storage structure. Commonly used files are kept in the magnetic disk for fast retrieval. The optical disks are used as archive

  7. Bismuth chalcogenide compounds Bi 2 × 3 (X=O, S, Se): Applications in electrochemical energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Jiangfeng; Bi, Xuanxuan; Jiang, Yu

    2017-04-01

    Bismuth chalcogenides Bi2×3 (X=O, S, Se) represent a unique type of materials in diverse polymorphs and configurations. Multiple intrinsic features of Bi2×3 such as narrow bandgap, ion conductivity, and environmental friendliness, have render them attractive materials for a wide array of energy applications. In particular, their rich structural voids and the alloying capability of Bi enable the chalcogenides to be alternative electrodes for energy storage such as hydrogen (H), lithium (Li), sodium (Na) storage and supercapacitors. However, the low conductivity and poor electrochemical cycling are two key challenges for the practical utilization of Bi2×3 electrodes. Great efforts have been devotedmore » to mitigate these challenges and remarkable progresses have been achieved, mainly taking profit of nanotechnology and material compositing engineering. In this short review, we summarize state-of-the-art research advances in the rational design of diverse Bi2×3 electrodes and their electrochemical energy storage performance for H, Li, and Na and supercapacitors. We also highlight the key technical issues at present and provide insights for the future development of bismuth based materials in electrochemical energy storage devices.« less

  8. Electrochemistry and Storage Panel Report

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.; Halpert, G.

    1984-01-01

    Design and performance requirements for electrochemical power storage systems are discussed and some of the approaches towards satisfying these constraints are described. Geosynchronous and low Earth orbit applications, radar type load constraints, and high voltage systems requirements are addressed. In addition, flywheel energy storage is discussed.

  9. Article for thermal energy storage

    DOEpatents

    Salyer, Ival O.

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  10. Graphene and graphene-based materials for energy storage applications.

    PubMed

    Zhu, Jixin; Yang, Dan; Yin, Zongyou; Yan, Qingyu; Zhang, Hua

    2014-09-10

    With the increased demand in energy resources, great efforts have been devoted to developing advanced energy storage and conversion systems. Graphene and graphene-based materials have attracted great attention owing to their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities that render them great choices as alternative electrode materials for electrochemical energy storage systems. This Review summarizes the recent progress in graphene and graphene-based materials for four energy storage systems, i.e., lithium-ion batteries, supercapacitors, lithium-sulfur batteries and lithium-air batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Computational study of sodium magnesium hydride for hydrogen storage applications

    NASA Astrophysics Data System (ADS)

    Soto Valle, Fernando Antonio

    Hydrogen offers considerable potential benefits as an energy carrier. However, safe and convenient storage of hydrogen is one of the biggest challenges to be resolved in the near future. Sodium magnesium hydride (NaMgH 3) has attracted attention as a hydrogen storage material due to its light weight and high volumetric hydrogen density of 88 kg/m3. Despite the advantages, hydrogen release in this material occurs at approximately 670 K, which is well above the operable range for on-board hydrogen storage applications. In this regard, hydrogen release may be facilitated by substitution doping of transition-metals. This dissertation describes first-principles computational methods that enable an examination of the hydrogen storage properties of NaMgH3. The novel contribution of this dissertation includes a combination of crystal, supercell, and surface slab calculations that provides new and relevant insights about the thermodynamic and kinetic properties of NaMgH3. First-principles calculations on the pristine crystal structure provide a starting reference point for the study of this material as a hydrogen storage material. To the best of our knowledge, it is reported for the first time that a 25% mol doping concentration of Ti, V, Cu, and Zn dopants reduce the reaction enthalpy of hydrogen release for NaMgH3. The largest decrease in the DeltaH(298 K) value corresponds to the Zn-doped model (67.97 kJ/(mol H2)). Based on cohesive energy calculations, it is reported that at the 6.25% mol doping concentration, Ti and Zn dopants are the only transition metals that destabilize the NaMgH3 hydride. In terms of hydrogen removal energy, it is quantified that the energy cost to remove a single H from the Ti-doped supercell model is 0.76 eV, which is lower with respect to the pristine model and other prototypical hydrogen storage materials. From the calculation of electronic properties such as density of states, electron density difference, and charge population analysis

  12. Nanostructured Thin Film Synthesis by Aerosol Chemical Vapor Deposition for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Chadha, Tandeep S.

    Renewable energy sources offer a viable solution to the growing energy demand while mitigating concerns for greenhouse gas emissions and climate change. This has led to a tremendous momentum towards solar and wind-based energy harvesting technologies driving efficiencies higher and costs lower. However, the intermittent nature of these energy sources necessitates energy storage technologies, which remain the Achilles heel in meeting the renewable energy goals. This dissertation focusses on two approaches for addressing the needs of energy storage: first, targeting direct solar to fuel conversion via photoelectrochemical water-splitting and second, improving the performance of current rechargeable batteries by developing new electrode architectures and synthesis processes. The aerosol chemical vapor deposition (ACVD) process has emerged as a promising single-step approach for nanostructured thin film synthesis directly on substrates. The relationship between the morphology and the operating parameters in the process is complex. In this work, a simulation based approach has been developed to understand the relationship and acquire the ability of predicting the morphology. These controlled nanostructured morphologies of TiO2 , compounded with gold nanoparticles of various shapes, are used for solar water-splitting applications. Tuning of light absorption in the visible-light range along with reduced electron-hole recombination in the composite structures has been demonstrated. The ACVD process is further extended to a novel single-step synthesis of nanostructured TiO2 electrodes directly on the current collector for applications as anodes in lithium-ion batteries, mainly for electric vehicles and hybrid electric vehicles. The effect of morphology of the nanostructures has been investigated via experimental studies and electrochemical transport modelling. Results demonstrate the exceptional performance of the single crystal one-dimensional nanostructures over granular

  13. Saying goodbye to optical storage technology.

    PubMed

    McLendon, Kelly; Babbitt, Cliff

    2002-08-01

    The days of using optical disk based mass storage devices for high volume applications like health care document imaging are coming to an end. The price/performance curve for redundant magnetic disks, known as RAID, is now more positive than for optical disks. All types of application systems, across many sectors of the marketplace are using these newer magnetic technologies, including insurance, banking, aerospace, as well as health care. The main components of these new storage technologies are RAID and SAN. SAN refers to storage area network, which is a complex mechanism of switches and connections that allow multiple systems to store huge amounts of data securely and safely.

  14. Study of Early Transition Metal Carbides for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Dall'Agnese, Yohan

    An increase in energy and power density is needed to match the growing energy storage demands linked with the development of renewable energy production, and portable electronics. Several energy storage technologies exist including lithium-ion batteries, sodium-ion batteries, fuel cells and supercapacitors. These systems are mutually complementary. For example, supercapacitors can deliver high power densities whereas batteries can be used for high energy density applications. The first objective of this work was to investigate the electrochemical performances of a new family of 2-D materials called MXenes by cyclic voltammetry and galvanostatic charge-discharge measurements and to propose new solutions to tackle the energy storage concern. To achieve this goal, several directions have been explored. The first part of the research focused on Ti3C 2-based MXenes behavior as electrode materials for supercapacitors in aqueous electrolytes. The charge storage mechanisms in basic and neutral aqueous electrolytes, investigated by X-ray diffraction, were demonstrated to be attributed to cations intercalation between Ti3C2 layers. X-ray photoelectron spectroscopy highlighted the contribution of oxygenated functional groups on surface redox reactions in sulfuric acid. High capacitances were achieved, up to 520 F/cm3 and 325 F/g. Then the electrochemical behaviors of MXenes in sodium-based organic electrolytes were explored. A new hybrid system of sodium-ion capacitor was proposed. It was demonstrated that V2C-based MXene electrodes were suitable to be used as positive electrodes with an operating potential from 1 V to 3.5 V vs. Na+/Na. Continuous intercalation and de-intercalation of sodium ions between the V2C layers during sodiation and desodiation were showed by X-ray diffraction. An asymmetric sodium-ion capacitor full cell was assembled using hard carbon as negative electrode and showed promising results, with a capacity of 50 mAh/g. The last part was focused on the

  15. 76 FR 30341 - Reliable Storage 1 LLC;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... DEPARTMENT OF ENERGY [Project No. 14152-000] Reliable Storage 1 LLC; Notice of Preliminary Permit... March 25, 2011, Reliable Storage 1 LLC filed an application, pursuant to section 4(f) of the Federal... waters owned by others without the owners' express permission. The proposed pumped storage project would...

  16. Transient dynamics of terrestrial carbon storage: Mathematical foundation and its applications

    DOE PAGES

    Luo, Yiqi; Shi, Zheng; Lu, Xingjie; ...

    2017-01-12

    Terrestrial ecosystems have absorbed roughly 30% of anthropogenic CO 2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g.,more » net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions

  17. Transient dynamics of terrestrial carbon storage: Mathematical foundation and its applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiqi; Shi, Zheng; Lu, Xingjie

    Terrestrial ecosystems have absorbed roughly 30% of anthropogenic CO 2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g.,more » net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions

  18. Application of neem (Azadirachta indica) as biological pesticides in cocoa seed (Theobroma cacao) storage using various local adsorbent media

    NASA Astrophysics Data System (ADS)

    Mardiyani, S. A.; Sunawan; Pawestri, A. E.

    2018-03-01

    Cocoa seeds are recalcitrant (the water content is more than 40%) that require special handling. The use of adsorbent media to reduce the decrease in the quality of cocoa seeds and extend their shelf life in this storage has not been widely done. Local adsorbent media such as sawdust, sand and ash have the potential to maintain the viability of cocoa seeds. The objective of this research was to determine the interaction of the application of neem (Azadirachta indica) as biological pesticides and the use of various natural adsorbent media in the storage of cocoa seeds (Theobroma cacao). It was an experimental study with a factorial design composed of three factors. The first factor was the medium adsorbent type for the storage of cocoa seed, which consists of three levels (river sand, ash, and sawdust). The second factor was the concentration of neem leaves for pre-storage treatment with three levels (10, 20, and 30%). The third factor was the storage time (10 and 20 days). The results of the study indicated that the combination of the three factors showed a significant interaction in the height of the plant and the diameter of the stem of the seedling at 28 days after sowing. The fresh weight of the seedlings of the seeds that were stored in ash media gave a better result than the seedlings of seeds that had been stored in the river sand and the sawdust as adsorbent media. The application of 20% extract of neem leaves gave the best influence for the seeds that were stored for 20 days.

  19. 75 FR 78984 - South Run Pumped Storage, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... with the project. Applicant Contact: Daniel R. Irvin, Free Flow Power Corporation, 33 Commercial Street... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13876-000] South Run Pumped... the Federal Power Act (FPA), proposing to study the feasibility of the South Run Pumped Storage...

  20. Energy Conversion and Storage Program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  1. Towards Cryogenic Liquid-Vapor Energy Storage Units for space applications

    NASA Astrophysics Data System (ADS)

    Afonso, Josiana Prado

    With the development of mechanical coolers and very sensitive cryogenic sensors, it could be interesting to use Energy Storage Units (ESU) and turn off the cryocooler to operate in a free micro vibration environment. An ESU would also avoid cryogenic systems oversized to attenuate temperature fluctuations due to thermal load variations which is useful particularly for space applications. In both cases, the temperature drift must remain limited to keep good detector performances. In this thesis, ESUs based on the high latent heat associated to liquid-vapor phase change to store energy have been studied. To limit temperature drifts while keeping small size cell at low temperature, a potential solution consists in splitting the ESU in two volumes: a low temperature cell coupled to a cryocooler cold finger through a thermal heat switch and an expansion volume at room temperature to reduce the temperature increase occurring during liquid evaporation. To obtain a vanishing temperature drift, a new improvement has been tested using two-phase nitrogen: a controlled valve was inserted between the two volumes in order to control the cold cell pressure. In addition, a porous material was used inside the cell to turn the ESU gravity independent and suitable for space applications. In this case, experiments reveal not fully understood results concerning both energy storage and liquid-wall temperature difference. To capture the thermal influence of the porous media, a dedicated cell with poorly conductive lateral wall was built and operated with two-phase helium. After its characterization outside the saturation conditions (conduction, convection), experiments were performed, with and without porous media, heating at the top or the bottom of the cell with various heat fluxes and for different saturation temperatures. In parallel, a model describing the thermal response for a cell containing liquid and vapor with a porous medium heated at the top ("against gravity") was developed

  2. Intricate Hollow Structures: Controlled Synthesis and Applications in Energy Storage and Conversion.

    PubMed

    Zhou, Liang; Zhuang, Zechao; Zhao, Huihui; Lin, Mengting; Zhao, Dongyuan; Mai, Liqiang

    2017-05-01

    Intricate hollow structures garner tremendous interest due to their aesthetic beauty, unique structural features, fascinating physicochemical properties, and widespread applications. Here, the recent advances in the controlled synthesis are discussed, as well as applications of intricate hollow structures with regard to energy storage and conversion. The synthetic strategies toward complex multishelled hollow structures are classified into six categories, including well-established hard- and soft-templating methods, as well as newly emerging approaches based on selective etching of "soft@hard" particles, Ostwald ripening, ion exchange, and thermally induced mass relocation. Strategies for constructing structures beyond multishelled hollow structures, such as bubble-within-bubble, tube-in-tube, and wire-in-tube structures, are also covered. Niche applications of intricate hollow structures in lithium-ion batteries, Li-S batteries, supercapacitors, Li-O 2 batteries, dye-sensitized solar cells, photocatalysis, and fuel cells are discussed in detail. Some perspectives on the future research and development of intricate hollow structures are also provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Advanced materials for energy storage.

    PubMed

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  4. INVESTIGATION OF INORGANIC PHOTOTROPIC MATERIALS AS A BI-OPTIC ELEMENT APPLICABLE IN HIGH DENSITY STORAGE COMPUTER MEMORIES

    DTIC Science & Technology

    A general valuation of the various types of phototropic (i.e., reversible, light induced, color producing) phenomenon is given regarding the...application of phototropic material to bioptic high density storage media for compu er memories. The inorganic ’’F’’ center type phototropic systems were

  5. Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion.

    PubMed

    Cao, Xiehong; Tan, Chaoliang; Sindoro, Melinda; Zhang, Hua

    2017-05-22

    Metal-organic frameworks (MOFs), an important class of inorganic-organic hybrid crystals with intrinsic porous structures, can be used as versatile precursors or sacrificial templates for preparation of numerous functional nanomaterials for various applications. Recent developments of MOF-derived hybrid micro-/nano-structures, constructed by more than two components with varied functionalities, have revealed their extensive capabilities to overcome the weaknesses of the individual counterparts and thus give enhanced performance for energy storage and conversion. In this tutorial review, we summarize the recent advances in MOF-derived hybrid micro-/nano-structures. The synthetic strategies for preparing MOF-derived hybrid micro-/nano-structures are first introduced. Focusing on energy storage and conversion, we then discuss their potential applications in lithium-ion batteries, lithium-sulfur batteries, supercapacitors, lithium-oxygen batteries and fuel cells. Finally, we give our personal insights into the challenges and opportunities for the future research of MOF-derived hybrid micro-/nano-structures.

  6. Impedance and self-discharge mechanism studies of nickel metal hydride batteries for energy storage applications

    NASA Astrophysics Data System (ADS)

    Zhu, Wenhua; Zhu, Ying; Tatarchuk, Bruce

    2013-04-01

    Nickel metal hydride battery packs have been found wide applications in the HEVs (hybrid electric vehicles) through the on-board rapid energy conservation and efficient storage to decrease the fossil fuel consumption rate and reduce CO2 emissions as well as other harmful exhaust gases. In comparison to the conventional Ni-Cd battery, the Ni-MH battery exhibits a relatively higher self-discharge rate. In general, there are quite a few factors that speed up the self-discharge of the electrodes in the sealed nickel metal hydride batteries. This disadvantage eventually reduces the overall efficiency of the energy conversion and storage system. In this work, ac impedance data were collected from the nickel metal hydride batteries. The self-discharge mechanism and battery capacity degradation were analyzed and discussed for further performance improvement.

  7. High temperature superconducting magnetic energy storage for future NASA missions

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Rudnick, Stanley J.

    1988-01-01

    Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.

  8. Redox-active Hybrid Materials for Pseudocapacitive Energy Storage

    NASA Astrophysics Data System (ADS)

    Boota, Muhammad

    Organic-inorganic hybrid materials show a great promise for the purpose of manufacturing high performance electrode materials for electrochemical energy storage systems and beyond. Molecular level combination of two best suited components in a hybrid material leads to new or sometimes exceptional sets of physical, chemical, mechanical and electrochemical properties that makes them attractive for broad ranges of applications. Recently, there has been growing interest in producing redox-active hybrid nanomaterials for energy storage applications where generally the organic component provides high redox capacitance and the inorganic component offers high conductivity and robust support. While organic-inorganic hybrid materials offer tremendous opportunities for electrochemical energy storage applications, the task of matching the right organic material out of hundreds of natural and nearly unlimited synthetic organic molecules to appropriate nanostructured inorganic support hampers their electrochemical energy storage applications. We aim to present the recent development of redox-active hybrid materials for pseudocapacitive energy storage. We will show the impact of combination of suitable organic materials with distinct carbon nanostructures and/or highly conductive metal carbides (MXenes) on conductivity, charge storage performance, and cyclability. Combined experimental and molecular simulation results will be discussed to shed light on the interfacial organic-inorganic interactions, pseudocapacitive charge storage mechanisms, and likely orientations of organic molecules on conductive supports. Later, the concept of all-pseudocapacitive organic-inorganic asymmetric supercapacitors will be highlighted which open up new avenues for developing inexpensive, sustainable, and high energy density aqueous supercapacitors. Lastly, future challenges and opportunities to further tailor the redox-active hybrids will be highlighted.

  9. Investigation of potential waste material insulating properties at different temperature for thermal storage application

    NASA Astrophysics Data System (ADS)

    Ali, T. Z. S.; Rosli, A. B.; Gan, L. M.; Billy, A. S.; Farid, Z.

    2013-12-01

    Thermal energy storage system (TES) is developed to extend the operation of power generation. TES system is a key component in a solar energy power generation plant, but the main issue in designing the TES system is its thermal capacity of storage materials, e.g. insulator. This study is focusing on the potential waste material acts as an insulator for thermal energy storage applications. As the insulator is used to absorb heat, it is needed to find suitable material for energy conversion and at the same time reduce the waste generation. Thus, a small-scale experimental testing of natural cooling process of an insulated tank within a confined room is conducted. The experiment is repeated by changing the insulator from the potential waste material and also by changing the heat transfer fluid (HTF). The analysis presented the relationship between heat loss and the reserved period by the insulator. The results show the percentage of period of the insulated tank withstands compared to tank insulated by foam, e.g. newspaper reserved the period of 84.6% as much as foam insulated tank to withstand the heat transfer of cooking oil to the surrounding. The paper finally justifies the most potential waste material as an insulator for different temperature range of heat transfer fluid.

  10. Gas storage using fullerene based adsorbents

    NASA Technical Reports Server (NTRS)

    Mikhael, Michael G. (Inventor); Loutfy, Raouf O. (Inventor); Lu, Xiao-Chun (Inventor); Li, Weijiong (Inventor)

    2000-01-01

    This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage. They are also suitable for storing gases and vapors such as hydrogen, nitrogen, carbon dioxide, and water vapor.

  11. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Used oil storage. 279.64 Section 279... for Energy Recovery § 279.64 Used oil storage. Used oil burners are subject to all applicable Spill.... Used oil burners are also subject to the Underground Storage Tank (40 CFR part 280) standards for used...

  12. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Used oil storage. 279.64 Section 279... for Energy Recovery § 279.64 Used oil storage. Used oil burners are subject to all applicable Spill.... Used oil burners are also subject to the Underground Storage Tank (40 CFR part 280) standards for used...

  13. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Used oil storage. 279.64 Section 279... for Energy Recovery § 279.64 Used oil storage. Used oil burners are subject to all applicable Spill.... Used oil burners are also subject to the Underground Storage Tank (40 CFR part 280) standards for used...

  14. Research progress about chemical energy storage of solar energy

    NASA Astrophysics Data System (ADS)

    Wu, Haifeng; Xie, Gengxin; Jie, Zheng; Hui, Xiong; Yang, Duan; Du, Chaojun

    2018-01-01

    In recent years, the application of solar energy has been shown obvious advantages. Solar energy is being discontinuity and inhomogeneity, so energy storage technology becomes the key to the popularization and utilization of solar energy. Chemical storage is the most efficient way to store and transport solar energy. In the first and the second section of this paper, we discuss two aspects about the solar energy collector / reactor, and solar energy storage technology by hydrogen production, respectively. The third section describes the basic application of solar energy storage system, and proposes an association system by combining solar energy storage and power equipment. The fourth section briefly describes several research directions which need to be strengthened.

  15. Evolving Requirements for Magnetic Tape Data Storage Systems

    NASA Technical Reports Server (NTRS)

    Gniewek, John J.

    1996-01-01

    Magnetic tape data storage systems have evolved in an environment where the major applications have been back-up/restore, disaster recovery, and long term archive. Coincident with the rapidly improving price-performance of disk storage systems, the prime requirements for tape storage systems have remained: (1) low cost per MB, (2) a data rate balanced to the remaining system components. Little emphasis was given to configuring the technology components to optimize retrieval of the stored data. Emerging new applications such as network attached high speed memory (HSM), and digital libraries, place additional emphasis and requirements on the retrieval of the stored data. It is therefore desirable to consider the system to be defined both by STorage And Retrieval System (STARS) requirements. It is possible to provide comparative performance analysis of different STARS by incorporating parameters related to (1) device characteristics, and (2) application characteristics in combination with queuing theory analysis. Results of these analyses are presented here in the form of response time as a function of system configuration for two different types of devices and for a variety of applications.

  16. Synthesis of SWNT/Pt nanocomposites for their effective role in hydrogen storage applications

    NASA Astrophysics Data System (ADS)

    Sharma, Anshu; Andreas, Rossos; Nehra, S. P.

    2018-05-01

    Single Wall Carbon Nanotubes (SWNTs) decorated with platinum were synthesized for hydrogen storage applications. Platinum was deposited on the nanotubes using hexachloroplatinic acid (H2PtCl6.6H2O) as a precursor. Commercial SWNTs were also used to compare the results. The obtained SWNTs/Pt nanocomposite was characterized by various techniques such as powder X-ray diffractrometry (XRD), Raman Spectroscopy and Scanning Electron Microscopy (SEM). Furthermore, in the case of SWNTs/Pt, Pt nanoparticles are found to be uniformly dispersed and bound to the SWNTs acting like a single atom catalyst.

  17. 49 CFR 173.311 - Metal hydride storage systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage systems...

  18. 49 CFR 173.311 - Metal hydride storage systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage systems...

  19. 49 CFR 173.311 - Metal hydride storage systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage systems...

  20. Energy conversion and storage program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy conversion; (4) characterization of complex chemical processes; and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  1. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronnebro, Ewa

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale thatmore » is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.« less

  2. High discharge efficiency of (Sr, Pb, Bi) TiO3 relaxor ceramics for energy-storage application

    NASA Astrophysics Data System (ADS)

    Chao, Mingming; Liu, Jingsong; Zeng, Mengshi; Wang, Debin; Yu, Hongtao; Yuan, Ying; Zhang, Shuren

    2018-05-01

    We report herein on the energy storage and discharge properties of the relaxor ferroelectric ceramic Sr0.8Pb0.1Bi0.1TiO3 (SPBT). This material has a slanted hysteresis loop, and all samples show low remnant polarization and low coercive field, which leads to a high discharge efficiency. The maximum polarization is 10.1 μC/cm2, the minimum coercive field is 0.229 kV/cm, and the maximum efficiency is 94.2%. The discharge current waveforms are sinusoidal, the first discharge period is 140 ns, and the power density is approximately 4.2 × 107 W/kg. The high discharge speed and high discharge power density indicate that SPBT ceramics are very promising materials for energy storage applications.

  3. Quantifying watershed surface depression storage: determination and application in a hydrologic model

    Treesearch

    Joseph K. O. Amoah; Devendra M. Amatya; Soronnadi Nnaji

    2012-01-01

    Hydrologic models often require correct estimates of surface macro-depressional storage to accurately simulate rainfall–runoff processes. Traditionally, depression storage is determined through model calibration or lumped with soil storage components or on an ad hoc basis. This paper investigates a holistic approach for estimating surface depressional storage capacity...

  4. Effect of subsoiling in fallow period on soil water storage and grain protein accumulation of dryland wheat and its regulatory effect by nitrogen application.

    PubMed

    Sun, Min; Gao, ZhiQiang; Zhao, WeiFeng; Deng, LianFeng; Deng, Yan; Zhao, HongMei; Ren, AiXia; Li, Gang; Yang, ZhenPing

    2013-01-01

    To provide a new way to increase water storage and retention of dryland wheat, a field study was conducted at Wenxi experimental site of Shanxi Agricultural University. The effect of subsoiling in fallow period on soil water storage, accumulation of proline, and formation of grain protein after anthesis were determined. Our results showed that subsoiling in fallow period could increase water storage in the 0-300 cm soil at pre-sowing stage and at anthesis stage with low or medium N application, especially for the 60-160 cm soil. However, the proline content, glutamine synthetase (GS) activity, glutamate dehydrogenase (GDH) activity in flag leaves and grains were all decreased by subsoiling in fallow period. In addition, the content of albumin, gliadin, and total protein in grains were also decreased while globulin content, Glu/Gli, protein yield, and glutelin content were increased. With N application increasing, water storage of soil layers from 20 to 200 cm was decreased at anthesis stage. High N application resulted in the increment of proline content and GS activity in grains. Besides, correlation analysis showed that soil storage in 40-160 cm soil was negatively correlated with proline content in grains; proline content in grains was positively correlated with GS and GDH activity in flag leaves. Contents of albumin, globulin and total protein in grains were positively correlated with proline content in grains and GDH activity in flag leaves. In conclusion, subsoiling in fallow period, together with N application at 150 kg·hm(-2), was beneficial to increase the protein yield and Glu/Gli in grains which improve the quality of wheat.

  5. Effect of Subsoiling in Fallow Period on Soil Water Storage and Grain Protein Accumulation of Dryland Wheat and Its Regulatory Effect by Nitrogen Application

    PubMed Central

    Sun, Min; Gao, ZhiQiang; Zhao, WeiFeng; Deng, LianFeng; Deng, Yan; Zhao, HongMei; Ren, AiXia; Li, Gang; Yang, ZhenPing

    2013-01-01

    To provide a new way to increase water storage and retention of dryland wheat, a field study was conducted at Wenxi experimental site of Shanxi Agricultural University. The effect of subsoiling in fallow period on soil water storage, accumulation of proline, and formation of grain protein after anthesis were determined. Our results showed that subsoiling in fallow period could increase water storage in the 0–300 cm soil at pre-sowing stage and at anthesis stage with low or medium N application, especially for the 60–160 cm soil. However, the proline content, glutamine synthetase (GS) activity, glutamate dehydrogenase (GDH) activity in flag leaves and grains were all decreased by subsoiling in fallow period. In addition, the content of albumin, gliadin, and total protein in grains were also decreased while globulin content, Glu/Gli, protein yield, and glutelin content were increased. With N application increasing, water storage of soil layers from 20 to 200 cm was decreased at anthesis stage. High N application resulted in the increment of proline content and GS activity in grains. Besides, correlation analysis showed that soil storage in 40–160 cm soil was negatively correlated with proline content in grains; proline content in grains was positively correlated with GS and GDH activity in flag leaves. Contents of albumin, globulin and total protein in grains were positively correlated with proline content in grains and GDH activity in flag leaves. In conclusion, subsoiling in fallow period, together with N application at 150 kg·hm−2, was beneficial to increase the protein yield and Glu/Gli in grains which improve the quality of wheat. PMID:24098371

  6. Applications of mutant yeast strains with low glycogen storage capability

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Schubert, W. W.; Stokes, B. O.

    1981-01-01

    Several strains of Hansenula polymorpha were selected for possible low glycogen storage characteristics based on a selective I2 staining procedure. The levels of storage carbohydrates in the mutant strains were found to be 44-70% of the levels in the parent strain for cultures harvested in stationary phase. Similar differences generally were not found for cells harvested in exponential phase. Yeast strains deficient in glycogen storage capability are valuable in increasing the relative protein value of microbial biomass and also may provide significant cost savings in substrate utilization in fermentative processes.

  7. Single bi-temperature thermal storage tank for application in solar thermal plant

    DOEpatents

    Litwin, Robert Zachary; Wait, David; Lancet, Robert T.

    2017-05-23

    Thermocline storage tanks for solar power systems are disclosed. A thermocline region is provided between hot and cold storage regions of a fluid within the storage tank cavity. One example storage tank includes spaced apart baffles fixed relative to the tank and arranged within the thermocline region to substantially physically separate the cavity into hot and cold storage regions. In another example, a flexible baffle separated the hot and cold storage regions and deflects as the thermocline region shifts to accommodate changing hot and cold volumes. In yet another example, a controller is configured to move a baffle within the thermocline region in response to flow rates from hot and cold pumps, which are used to pump the fluid.

  8. Carbon material for hydrogen storage

    DOEpatents

    Bourlinos, Athanasios; Steriotis, Theodore; Stubos, Athanasios; Miller, Michael A

    2016-09-13

    The present invention relates to carbon based materials that are employed for hydrogen storage applications. The material may be described as the pyrolysis product of a molecular precursor such as a cyclic quinone compound. The pyrolysis product may then be combined with selected transition metal atoms which may be in nanoparticulate form, where the metals may be dispersed on the material surface. Such product may then provide for the reversible storage of hydrogen. The metallic nanoparticles may also be combined with a second metal as an alloy to further improve hydrogen storage performance.

  9. Applicability of Thermal Storage Systems to Air Force Facilities

    DTIC Science & Technology

    1990-09-01

    Analisis of Region 6 Upper Limit Retrofit Scenario 30% Reduction .... ............. 4.52 4.58 Economic Analysis of Region 7 Upper Limit Retrofit Scenario...or a dynamic-direct contact type. They usually include all the controls, chilling and storage equipment in one self-contained, skid mounted, factory ...SCS technology. One promising trend in reducing system construction costs is the factory -packaged thermal storage cooling unit. As of February 1989

  10. Multifunctional composites for energy storage

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif I.; Karim, Hasanul; Rajib, Md; Delfin, Diego; Lin, Yirong

    2014-03-01

    Electrochemical super-capacitors have become one of the most important topics in both academia and industry as novel energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been an increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles and portable electronics. These multifunctional structural super-capacitors provide lighter structures combining energy storage and load bearing functionalities. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area and fast ion diffusion rates. Scanning Electron Microscopy (SEM) and XRay Diffraction (XRD) measurements were used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing has been performed using a potentio-galvanostat. The results show that gold sputtered nanowire hybrid carbon fiber provides 65.9% better performance than bare carbon fiber cloth as super-capacitor.

  11. Redox storage systems for solar applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.; Thaller, L. H.

    1980-01-01

    The NASA Redox energy storage system is described. The system is based on soluble aqueous iron and chromium chloride redox couples. The needed technology advances in the two elements (electrodes and membranes) that are key to its technological feasibility have been achieved and system development has begun. The design, construction, and test of a 1 kilowatt system integrated with a solar photovoltaic array is discussed.

  12. Groundwater Storage Changes: Present Status from GRACE Observations

    NASA Technical Reports Server (NTRS)

    Chen, Jianli; Famiglietti, James S.; Scanlon, Bridget R.; Rodell, Matthew

    2015-01-01

    Satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) provide quantitative measurement of terrestrial water storage (TWS) changes with unprecedented accuracy. Combining GRACE-observed TWS changes and independent estimates of water change in soil and snow and surface reservoirs offers a means for estimating groundwater storage change. Since its launch in March 2002, GRACE time-variable gravity data have been successfully used to quantify long-term groundwater storage changes in different regions over the world, including northwest India, the High Plains Aquifer and the Central Valley in the USA, the North China Plain, Middle East, and southern Murray-Darling Basin in Australia, where groundwater storage has been significantly depleted in recent years (or decades). It is difficult to rely on in situ groundwater measurements for accurate quantification of large, regional-scale groundwater storage changes, especially at long timescales due to inadequate spatial and temporal coverage of in situ data and uncertainties in storage coefficients. The now nearly 13 years of GRACE gravity data provide a successful and unique complementary tool for monitoring and measuring groundwater changes on a global and regional basis. Despite the successful applications of GRACE in studying global groundwater storage change, there are still some major challenges limiting the application and interpretation of GRACE data. In this paper, we present an overview of GRACE applications in groundwater studies and discuss if and how the main challenges to using GRACE data can be addressed.

  13. Compiler-Directed File Layout Optimization for Hierarchical Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Wei; Zhang, Yuanrui; Kandemir, Mahmut

    File layout of array data is a critical factor that effects the behavior of storage caches, and has so far taken not much attention in the context of hierarchical storage systems. The main contribution of this paper is a compiler-driven file layout optimization scheme for hierarchical storage caches. This approach, fully automated within an optimizing compiler, analyzes a multi-threaded application code and determines a file layout for each disk-resident array referenced by the code, such that the performance of the target storage cache hierarchy is maximized. We tested our approach using 16 I/O intensive application programs and compared its performancemore » against two previously proposed approaches under different cache space management schemes. Our experimental results show that the proposed approach improves the execution time of these parallel applications by 23.7% on average.« less

  14. Compiler-Directed File Layout Optimization for Hierarchical Storage Systems

    DOE PAGES

    Ding, Wei; Zhang, Yuanrui; Kandemir, Mahmut; ...

    2013-01-01

    File layout of array data is a critical factor that effects the behavior of storage caches, and has so far taken not much attention in the context of hierarchical storage systems. The main contribution of this paper is a compiler-driven file layout optimization scheme for hierarchical storage caches. This approach, fully automated within an optimizing compiler, analyzes a multi-threaded application code and determines a file layout for each disk-resident array referenced by the code, such that the performance of the target storage cache hierarchy is maximized. We tested our approach using 16 I/O intensive application programs and compared its performancemore » against two previously proposed approaches under different cache space management schemes. Our experimental results show that the proposed approach improves the execution time of these parallel applications by 23.7% on average.« less

  15. Thermophysical parameters of coconut oil and its potential application as the thermal energy storage system in Indonesia

    NASA Astrophysics Data System (ADS)

    Putri, Widya A.; Fahmi, Zulfikar; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2016-08-01

    The high consumption of electric energy for room air conditioning (AC) system in Indonesia has driven the research of potential thermal energy storage system as a passive temperature controller. The application of coconut oil (CO) as the potential candidate for this purpose has been motivated since its working temperature just around the human thermal comfort zone in the tropical area as Indonesia. In this research we report the time-dependent temperature data of CO, which is adopting the T-history method. The analysis of the data revealed a set of thermophysical parameters, consist of the mean specific heats of the solid and liquid, as well as the latent heat of fusion for the phase change transition. The performance of CO to decrease the air temperature was measured in the thermal chamber. From the results it is shown that the latent phase of CO related to the solid-liquid phase transition show the highest capability in heat absorption, directly showing the potential application of CO as thermal energy storage system in Indonesia.

  16. ICI optical data storage tape

    NASA Technical Reports Server (NTRS)

    Mclean, Robert A.; Duffy, Joseph F.

    1991-01-01

    Optical data storage tape is now a commercial reality. The world's first successful development of a digital optical tape system is complete. This is based on the Creo 1003 optical tape recorder with ICI 1012 write-once optical tape media. Several other optical tape drive development programs are underway, including one using the IBM 3480 style cartridge at LaserTape Systems. In order to understand the significance and potential of this step change in recording technology, it is useful to review the historical progress of optical storage. This has been slow to encroach on magnetic storage, and has not made any serious dent on the world's mountains of paper and microfilm. Some of the reasons for this are the long time needed for applications developers, systems integrators, and end users to take advantage of the potential storage capacity; access time and data transfer rate have traditionally been too slow for high-performance applications; and optical disk media has been expensive compared with magnetic tape. ICI's strategy in response to these concerns was to concentrate its efforts on flexible optical media; in particular optical tape. The manufacturing achievements, media characteristics, and media lifetime of optical media are discussed.

  17. Magnetic bearings for inertial energy storage

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. Ernest; Eakin, Vickie

    1987-01-01

    Advanced flywheels utilizing high strength fibers must operate at high rotational speeds and as such must operate in vacuum to reduce windage losses. The utilization of magnetic bearings in the flywheels overcome lubrication and seal problems, resulting in an energy storage system offering potential improvements over conventional electrochemical energy storage. Magnetic bearings evolved in the 1950s from the simple application of permanent magnets positioned to exert repulsive forces to the present where permanent magnets and electromagnets have been combined to provide axial and radial suspension. Further development of magnetic suspension has led to the design of a shaftless flywheel system for aerospace application. Despite the lack of proof of concept, integrated magnetic suspension in inertial storage systems can provide significant performance improvements to warrant development and tests.

  18. Energy storage crystalline gel materials for 3D printing application

    NASA Astrophysics Data System (ADS)

    Mao, Yuchen; Miyazaki, Takuya; Gong, Jin; Zhu, Meifang

    2017-04-01

    Phase change materials (PCMs) are considered one of the most reliable latent heat storage and thermoregulation materials. In this paper, a vinyl monomer is used to provide energy storage capacity and synthesize gel with phase change property. The side chain of copolymer form crystal microcell to storage/release energy through phase change. The crosslinking structure of the copolymer can protect the crystalline micro-area maintaining the phase change stable in service and improving the mechanical strength. By selecting different monomers and adjusting their ratios, we design the chemical structure and the crystallinity of gels, which in further affect their properties, such as strength, flexibility, thermal absorb/release transition temperature, transparency and the water content. Using the light-induced polymerization 3D printing techniques, we synthesize the energy storage gel and shape it on a 3D printer at the same time. By optimizing the 3D printing conditions, including layer thickness, curing time and light source, etc., the 3D printing objects are obtained.

  19. Optimizing Storage and Renewable Energy Systems with REopt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgqvist, Emma M.; Anderson, Katherine H.; Cutler, Dylan S.

    Under the right conditions, behind the meter (BTM) storage combined with renewable energy (RE) technologies can provide both cost savings and resiliency. Storage economics depend not only on technology costs and avoided utility rates, but also on how the technology is operated. REopt, a model developed at NREL, can be used to determine the optimal size and dispatch strategy for BTM or off-grid applications. This poster gives an overview of three applications of REopt: Optimizing BTM Storage and RE to Extend Probability of Surviving Outage, Optimizing Off-Grid Energy System Operation, and Optimizing Residential BTM Solar 'Plus'.

  20. Developing semi-analytical solution for multiple-zone transient storage model with spatially non-uniform storage

    NASA Astrophysics Data System (ADS)

    Deng, Baoqing; Si, Yinbing; Wang, Jia

    2017-12-01

    Transient storages may vary along the stream due to stream hydraulic conditions and the characteristics of storage. Analytical solutions of transient storage models in literature didn't cover the spatially non-uniform storage. A novel integral transform strategy is presented that simultaneously performs integral transforms to the concentrations in the stream and in storage zones by using the single set of eigenfunctions derived from the advection-diffusion equation of the stream. The semi-analytical solution of the multiple-zone transient storage model with the spatially non-uniform storage is obtained by applying the generalized integral transform technique to all partial differential equations in the multiple-zone transient storage model. The derived semi-analytical solution is validated against the field data in literature. Good agreement between the computed data and the field data is obtained. Some illustrative examples are formulated to demonstrate the applications of the present solution. It is shown that solute transport can be greatly affected by the variation of mass exchange coefficient and the ratio of cross-sectional areas. When the ratio of cross-sectional areas is big or the mass exchange coefficient is small, more reaches are recommended to calibrate the parameter.

  1. Control of a High Speed Flywheel System for Energy Storage in Space Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy; Santiago, Walter

    2004-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented demonstrating the successful operation of the flywheel control up to the rated speed of 60,000 rpm.

  2. A Method of Signal Scrambling to Secure Data Storage for Healthcare Applications.

    PubMed

    Bao, Shu-Di; Chen, Meng; Yang, Guang-Zhong

    2017-11-01

    A body sensor network that consists of wearable and/or implantable biosensors has been an important front-end for collecting personal health records. It is expected that the full integration of outside-hospital personal health information and hospital electronic health records will further promote preventative health services as well as global health. However, the integration and sharing of health information is bound to bring with it security and privacy issues. With extensive development of healthcare applications, security and privacy issues are becoming increasingly important. This paper addresses the potential security risks of healthcare data in Internet-based applications and proposes a method of signal scrambling as an add-on security mechanism in the application layer for a variety of healthcare information, where a piece of tiny data is used to scramble healthcare records. The former is kept locally and the latter, along with security protection, is sent for cloud storage. The tiny data can be derived from a random number generator or even a piece of healthcare data, which makes the method more flexible. The computational complexity and security performance in terms of theoretical and experimental analysis has been investigated to demonstrate the efficiency and effectiveness of the proposed method. The proposed method is applicable to all kinds of data that require extra security protection within complex networks.

  3. Ada programming guidelines for deterministic storage management

    NASA Technical Reports Server (NTRS)

    Auty, David

    1988-01-01

    Previous reports have established that a program can be written in the Ada language such that the program's storage management requirements are determinable prior to its execution. Specific guidelines for ensuring such deterministic usage of Ada dynamic storage requirements are described. Because requirements may vary from one application to another, guidelines are presented in a most-restrictive to least-restrictive fashion to allow the reader to match appropriate restrictions to the particular application area under investigation.

  4. Damsel: A Data Model Storage Library for Exascale Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Alok; Liao, Wei-keng

    Computational science applications have been described as having one of seven motifs (the “seven dwarfs”), each having a particular pattern of computation and communication. From a storage and I/O perspective, these applications can also be grouped into a number of data model motifs describing the way data is organized and accessed during simulation, analysis, and visualization. Major storage data models developed in the 1990s, such as Network Common Data Format (netCDF) and Hierarchical Data Format (HDF) projects, created support for more complex data models. Development of both netCDF and HDF5 was influenced by multi-dimensional dataset storage requirements, but their accessmore » models and formats were designed with sequential storage in mind (e.g., a POSIX I/O model). Although these and other high-level I/O libraries have had a beneficial impact on large parallel applications, they do not always attain a high percentage of peak I/O performance due to fundamental design limitations, and they do not address the full range of current and future computational science data models. The goal of this project is to enable exascale computational science applications to interact conveniently and efficiently with storage through abstractions that match their data models. The project consists of three major activities: (1) identifying major data model motifs in computational science applications and developing representative benchmarks; (2) developing a data model storage library, called Damsel, that supports these motifs, provides efficient storage data layouts, incorporates optimizations to enable exascale operation, and is tolerant to failures; and (3) productizing Damsel and working with computational scientists to encourage adoption of this library by the scientific community. The product of this project, Damsel library, is openly available for download from http://cucis.ece.northwestern.edu/projects/DAMSEL. Several case studies and application programming

  5. Gaseous emissions and modification of slurry composition during storage and after field application: Effect of slurry additives and mechanical separation.

    PubMed

    Owusu-Twum, Maxwell Yeboah; Polastre, Adele; Subedi, Raghunath; Santos, Ana Sofia; Mendes Ferreira, Luis Miguel; Coutinho, João; Trindade, Henrique

    2017-09-15

    The aim of the study was to evaluate the impact of slurry treatment by additives (EU200 ® (EU200), Bio-buster ® (BB), JASS ® and sulphuric acid (H 2 SO 4 )) and mechanical separation on the physical-chemical characteristics, gaseous emissions (NH 3 , CH 4 , CO 2 and N 2 O) during anaerobic storage at ∼20 °C (experiment 1) and NH 3 losses after field application (experiment 2). The treatments studied in experiment 1 were: whole slurry (WS), WS+H 2 SO 4 to a pH of 6.0, WS+EU200 and WS+BB. Treatments for experiment 2 were: WS, slurry liquid fraction (LF), composted solid fraction (CSF), LFs treated with BB (LFB), JASS ® (LFJ), H 2 SO 4 to a pH of 5.5 (LFA) and soil only (control). The results showed an inhibition of the degradation of organic materials (cellulose, hemicellulose, dry matter organic matter and total carbon) in the WS+H 2 SO 4 relative to the WS. When compared to the WS, the WS+H 2 SO 4 increased electrical conductivity, ammonium (NH 4 + ) and sulphur (S) concentrations whilst reducing slurry pH after storage. The WS+H 2 SO 4 reduced NH 3 volatilization by 69% relative to the WS but had no effect on emissions of CH 4 , CO 2 and N 2 O during storage. Biological additive treatments (WS+EU200 and WS+BB) had no impact on slurry characteristics and gaseous emissions relative to the WS during storage. After field application, the cumulative NH 3 lost in the LF was almost 50% lower than the WS. The losses in the LFA were reduced by 92% relative to the LF. The LFB and LFJ had no impact on NH 3 losses relative to the LF. A significant effect of treatment on NH 4 + concentration was found at the top soil layer (0-5 cm) after NH 3 measurements with higher concentrations in the LF treatments relative to the WS. Overall, the use of the above biological additives to decrease pollutant gases and to modify slurry characteristics are questionable. Reducing slurry dry matter through mechanical separation can mitigate NH 3 losses after field application. Slurry

  6. Control of a lithium-ion battery storage system for microgrid applications

    NASA Astrophysics Data System (ADS)

    Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol

    2014-12-01

    The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.

  7. High Density Digital Data Storage System

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.

    1991-01-01

    The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.

  8. A system approach to archival storage

    NASA Technical Reports Server (NTRS)

    Corcoran, John W.

    1991-01-01

    The introduction and viewgraphs of a discussion on a system approach to archival storage presented at the National Space Science Data Center (NSSDC) Mass Storage Workshop is included. The use of D-2 iron particles for archival storage is discussed along with how acceleration factors relating short-term tests to archival life times can be justified. Ampex Recording Systems is transferring D-2 video technology to data storage applications, and encountering concerns about corrosion. To protect the D-2 standard, Battelle tests were done on all four tapes in the Class 2 environment. Error rates were measured before and after the test on both exposed and control groups.

  9. An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications

    NASA Astrophysics Data System (ADS)

    Whitacre, J. F.; Wiley, T.; Shanbhag, S.; Wenzhuo, Y.; Mohamed, A.; Chun, S. E.; Weber, E.; Blackwood, D.; Lynch-Bell, E.; Gulakowski, J.; Smith, C.; Humphreys, D.

    2012-09-01

    An approach to making large format economical energy storage devices based on a sodium-interactive set of electrodes in a neutral pH aqueous electrolyte is described. The economics of materials and manufacturing are examined, followed by a description of an asymmetric/hybrid device that has λ-MnO2 positive electrode material and low cost activated carbon as the negative electrode material. Data presented include materials characterization of the active materials, cyclic voltammetry, galvanostatic charge/discharge cycling, and application-specific performance of an 80 V, 2.4 kW h pack. The results indicate that this set of electrochemical couples is stable, low cost, requires minimal battery management control electronics, and therefore has potential for use in stationary applications where device energy density is not a concern.

  10. Engineered Nanomaterials for Energy Harvesting and Storage Applications

    NASA Astrophysics Data System (ADS)

    Gullapalli, Hemtej

    Energy harvesting and storage are independent mechanisms, each having their own significance in the energy cycle. Energy is generally harvested from temperature variations, mechanical vibrations and other phenomena which are inherently sporadic in nature, harvested energy stands a better chance of efficient utilization if it can be stored and used later, depending on the demand. In essence a comprehensive device that can harness power from surrounding environment and provide a steady and reliable source of energy would be ideal. Towards realizing such a system, for the harvesting component, a piezoelectric nano-composite material consisting of ZnO nanostructures embedded into the matrix of 'Paper' has been developed. Providing a flexible backbone to a brittle material makes it a robust architecture. Energy harvesting by scavenging both mechanical and thermal fluctuations using this flexible nano-composite is discussed in this thesis. On the energy storage front, Graphene based materials developed with a focus towards realizing ultra-thin lithium ion batteries and supercapacitors are introduced. Efforts for enhancing the energy storage performance of such graphitic carbon are detailed. Increasing the rate capability by direct CVD synthesis of graphene on current collectors, enhancing its electrochemical capacity through doping and engineering 3D metallic structures to increase the areal energy density have been studied.

  11. Ferroelectric polymer dielectrics: Emerging materials for future electrostatic energy storage applications

    NASA Astrophysics Data System (ADS)

    Panda, Maheswar

    2018-05-01

    In this manuscript, the dielectric behavior of a variety of ferroelectric polymer dielectrics (FPD), which may bethe materials for future electrostatic energy storage application shave been discussed. The variety of polymer dielectrics, comprising of ferroelectric polymer[polyvinylidene fluoride (PVDF)]/non-polarpolymer [low density polyethylene (LDPE)] and different sizes of metal particles (Ni, quasicrystal of Al-Cu-Fe) as filler, were prepared through different process conditions (cold press/hot press) and are investigated experimentally. Very high values of effective dielectric constants (ɛeff) with low loss tangent (Tan δ) were observed forall the prepared FPD at their respective percolation thresholds (fc). The enhancement of ɛeff and Tan δ at the insulator to metal transition (IMT) is explained through the boundary layer capacitor effect and the percolation theory respectively. The non-universal fc/critical exponents across the IMT have been explained through percolation theory andis attributed to the fillerparticle size& shape, interaction between the components, method of their preparation, adhesiveness, connectivity and homogeneity, etc. of the samples. Recent results on developed FPD with high ɛeff and low Tan δ prepared through cold press have proven themselves to be the better candidates for low frequency and static dielectric applications.

  12. Striped tertiary storage arrays

    NASA Technical Reports Server (NTRS)

    Drapeau, Ann L.

    1993-01-01

    Data stripping is a technique for increasing the throughput and reducing the response time of large access to a storage system. In striped magnetic or optical disk arrays, a single file is striped or interleaved across several disks; in a striped tape system, files are interleaved across tape cartridges. Because a striped file can be accessed by several disk drives or tape recorders in parallel, the sustained bandwidth to the file is greater than in non-striped systems, where access to the file are restricted to a single device. It is argued that applying striping to tertiary storage systems will provide needed performance and reliability benefits. The performance benefits of striping for applications using large tertiary storage systems is discussed. It will introduce commonly available tape drives and libraries, and discuss their performance limitations, especially focusing on the long latency of tape accesses. This section will also describe an event-driven tertiary storage array simulator that is being used to understand the best ways of configuring these storage arrays. The reliability problems of magnetic tape devices are discussed, and plans for modeling the overall reliability of striped tertiary storage arrays to identify the amount of error correction required are described. Finally, work being done by other members of the Sequoia group to address latency of accesses, optimizing tertiary storage arrays that perform mostly writes, and compression is discussed.

  13. Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen Storage for Automotive Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westman, Matthew P.; Chun, Jaehun; Choi, Young Joon

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high hydrogen content of 14-16 wt% below 200°C and high volumetric density. In our previous paper, we selected AB in silicone oil as a role model for a slurry hydrogen storage system. Materials engineering properties were optimized by increasing solid loading by using an ultra-sonic process. In this paper, we proceeded to scale up to liter size batches with solid loadings up to 50 wt% (8 wt% H2) with dynamic viscositiesmore » less than 1000cP at 25°C. The use of a non-ionic surfactant, Triton X-15, shows significant promise in controlling the level of foaming produced during the thermal dehydrogenation of the AB. Through the development of new and efficient processing techniques and the ability to adequately control the foaming, stable homogenous slurries of high solid loading have been demonstrated as a viable hydrogen delivery source.« less

  14. 76 FR 47577 - Enstor Grama Ridge Storage and Transportation, L.L.C.; Enstor Katy Storage and Transportation, L...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-97-003; Docket No. PR10-101-003; Not Consolidated] Enstor Grama Ridge Storage and Transportation, L.L.C.; Enstor Katy Storage and Transportation, L.P.; Notice of Filing Take notice that on July 29, 2011, the applicants listed...

  15. Lunar-derived titanium alloys for hydrogen storage

    NASA Technical Reports Server (NTRS)

    Love, S.; Hertzberg, A.; Woodcock, G.

    1992-01-01

    Hydrogen gas, which plays an important role in many projected lunar power systems and industrial processes, can be stored in metallic titanium and in certain titanium alloys as an interstitial hydride compound. Storing and retrieving hydrogen with titanium-iron alloy requires substantially less energy investment than storage by liquefaction. Metal hydride storage systems can be designed to operate at a wide range of temperatures and pressures. A few such systems have been developed for terrestrial applications. A drawback of metal hydride storage for lunar applications is the system's large mass per mole of hydrogen stored, which rules out transporting it from earth. The transportation problem can be solved by using native lunar materials, which are rich in titanium and iron.

  16. Ferroelectric polymer-ceramic composite thick films for energy storage applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Paritosh; Borkar, Hitesh; Singh, B. P.

    2014-08-15

    We have successfully fabricated large area free standing polyvinylidene fluoride -Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PVDF-PZT) ferroelectric polymer-ceramic composite (wt% 80–20, respectively) thick films with an average diameter (d) ∼0.1 meter and thickness (t) ∼50 μm. Inclusion of PZT in PVDF matrix significantly enhanced dielectric constant (from 10 to 25 at 5 kHz) and energy storage capacity (from 11 to 14 J/cm{sup 3}, using polarization loops), respectively, and almost similar leakage current and mechanical strength. Microstructural analysis revealed the presence of α and β crystalline phases and homogeneous distribution of PZT crystals in PVDF matrix. It was also found that apartmore » from the microcrystals, well defined naturally developed PZT nanocrystals were embedded in PVDF matrix. The observed energy density indicates immense potential in PVDF-PZT composites for possible applications as green energy and power density electronic elements.« less

  17. 2D Black Phosphorus: from Preparation to Applications for Electrochemical Energy Storage

    PubMed Central

    Wu, Shuxing

    2018-01-01

    Abstract Black phosphorus (BP) is rediscovered as a 2D layered material. Since its first isolation in 2014, 2D BP has triggered tremendous interest in the fields of condensed matter physics, chemistry, and materials science. Given its unique puckered monolayer geometry, 2D BP displays many unprecedented properties and is being explored for use in numerous applications. The flexibility, large surface area, and good electric conductivity of 2D BP make it a promising electrode material for electrochemical energy storage devices (EESDs). Here, the experimental and theoretical progress of 2D BP is presented on the basis of its preparation methods. The structural and physiochemical properties, air instability, passivation, and EESD applications of 2D BP are discussed systemically. Specifically, the latest research findings on utilizing 2D BP in EESDs, such as lithium‐ion batteries, supercapacitors, and emerging technologies (lithium–sulfur batteries, magnesium‐ion batteries, and sodium‐ion batteries), are summarized. On the basis of the current progress, a few personal perspectives on the existing challenges and future research directions in this developing field are provided. PMID:29876201

  18. Robust holographic storage system design.

    PubMed

    Watanabe, Takahiro; Watanabe, Minoru

    2011-11-21

    Demand is increasing daily for large data storage systems that are useful for applications in spacecraft, space satellites, and space robots, which are all exposed to radiation-rich space environment. As candidates for use in space embedded systems, holographic storage systems are promising because they can easily provided the demanded large-storage capability. Particularly, holographic storage systems, which have no rotation mechanism, are demanded because they are virtually maintenance-free. Although a holographic memory itself is an extremely robust device even in a space radiation environment, its associated lasers and drive circuit devices are vulnerable. Such vulnerabilities sometimes engendered severe problems that prevent reading of all contents of the holographic memory, which is a turn-off failure mode of a laser array. This paper therefore presents a proposal for a recovery method for the turn-off failure mode of a laser array on a holographic storage system, and describes results of an experimental demonstration. © 2011 Optical Society of America

  19. Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions

    PubMed Central

    Hussain, Saddam; Zheng, Manman; Khan, Fahad; Khaliq, Abdul; Fahad, Shah; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2015-01-01

    Seed priming is a commercially successful practice, but reduced longevity of primed seeds during storage may limit its application. We established a series of experiments on rice to test: (1) whether prolonged storage of primed and non-primed rice seeds for 210 days at 25°C or −4°C would alter their viability, (2) how long primed rice seed would potentially remain viable at 25°C storage, and (3) whether or not post-storage treatments (re-priming or heating) would reinstate the viability of stored primed seeds. Two different rice cultivars and three priming agents were used in all experiments. Prolonged storage of primed seeds at 25°C significantly reduced the germination (>90%) and growth attributes (>80%) of rice compared with un-stored primed seeds. However, such negative effects were not observed in primed seeds stored at −4°C. Beneficial effects of seed priming were maintained only for 15 days of storage at 25°C, beyond which the performance of primed seeds was worse even than non-primed seeds. The deteriorative effects of 25°C storage were related with hampered starch metabolism in primed rice seeds. None of the post-storage treatments could reinstate the lost viability of primed seeds suggesting that seeds become unviable by prolonged post-priming storage at 25°C. PMID:25631923

  20. Modeling and experimental validation of a Hybridized Energy Storage System for automotive applications

    NASA Astrophysics Data System (ADS)

    Fiorenti, Simone; Guanetti, Jacopo; Guezennec, Yann; Onori, Simona

    2013-11-01

    This paper presents the development and experimental validation of a dynamic model of a Hybridized Energy Storage System (HESS) consisting of a parallel connection of a lead acid (PbA) battery and double layer capacitors (DLCs), for automotive applications. The dynamic modeling of both the PbA battery and the DLC has been tackled via the equivalent electric circuit based approach. Experimental tests are designed for identification purposes. Parameters of the PbA battery model are identified as a function of state of charge and current direction, whereas parameters of the DLC model are identified for different temperatures. A physical HESS has been assembled at the Center for Automotive Research The Ohio State University and used as a test-bench to validate the model against a typical current profile generated for Start&Stop applications. The HESS model is then integrated into a vehicle simulator to assess the effects of the battery hybridization on the vehicle fuel economy and mitigation of the battery stress.

  1. Damsel: A Data Model Storage Library for Exascale Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koziol, Quincey

    The goal of this project is to enable exascale computational science applications to interact conveniently and efficiently with storage through abstractions that match their data models. We will accomplish this through three major activities: (1) identifying major data model motifs in computational science applications and developing representative benchmarks; (2) developing a data model storage library, called Damsel, that supports these motifs, provides efficient storage data layouts, incorporates optimizations to enable exascale operation, and is tolerant to failures; and (3) productizing Damsel and working with computational scientists to encourage adoption of this library by the scientific community.

  2. Method for forming a bladder for fluid storage vessels

    DOEpatents

    Mitlitsky, Fred; Myers, Blake; Magnotta, Frank

    2000-01-01

    A lightweight, low permeability liner for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using torispherical or near torispherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film seamed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life.

  3. Relaxor-ferroelectric BaLnZT (Ln = La, Nd, Sm, Eu, and Sc) ceramics for actuator and energy storage application

    NASA Astrophysics Data System (ADS)

    Ghosh, Sarit K.; Mallick, Kaushik; Tiwari, B.; Sinha, E.; Rout, S. K.

    2018-01-01

    Lead free ceramics Ba1-x Ln2x/3Zr0.3Ti0.7O3 (Ln = La, Nd, Sm, Eu and Sc), x = 0.02-0.10 are investigated for electrostrictive effect and energy storage properties in the proximity of relaxor-paraelectric phase boundary. Relaxor phase evidence from slim hysteresis loop and low remnant polarization are the key parameters responsible for improve the electrostrictive effect and energy storage properties simultaneously. With increase in rare earth content negative strain disappeared and almost hysteresis free strain is achieved. Strain-hysteresis profile in term of S-E, S-E 2 and S-P 2 is used to analyze the electrostrictive behavior of these ceramics. An average strain (S%) ˜ 0.03%, is accomplished at initial concentrations of x = 0.02-0.04 and electrostrictive coefficients (Q 11, and M 11) as well as the energy storage density is improved by a factor of 1.2 and 2.6 respectively when compare with pure (x = 0.0) ceramic. Above x ≥ 0.06, all compositions show a stable behavior which suggested the possibilities of these relaxor ceramics towards high precision actuators and energy storage application.

  4. CO2 storage resources, reserves, and reserve growth: Toward a methodology for integrated assessment of the storage capacity of oil and gas reservoirs and saline formations

    USGS Publications Warehouse

    Burruss, Robert

    2009-01-01

    Geologically based methodologies to assess the possible volumes of subsurface CO2 storage must apply clear and uniform definitions of resource and reserve concepts to each assessment unit (AU). Application of the current state of knowledge of geologic, hydrologic, geochemical, and geophysical parameters (contingencies) that control storage volume and injectivity allows definition of the contingent resource (CR) of storage. The parameters known with the greatest certainty are based on observations on known traps (KTs) within the AU that produced oil, gas, and water. The aggregate volume of KTs within an AU defines the most conservation volume of contingent resource. Application of the concept of reserve growth to CR volume provides a logical path for subsequent reevaluation of the total resource as knowledge of CO2 storage processes increases during implementation of storage projects. Increased knowledge of storage performance over time will probably allow the volume of the contingent resource of storage to grow over time, although negative growth is possible.

  5. CO2 storage resources, reserves, and reserve growth: Toward a methodology for integrated assessment of the storage capacity of oil and gas reservoirs and saline formations

    USGS Publications Warehouse

    Burruss, R.C.

    2009-01-01

    Geologically based methodologies to assess the possible volumes of subsurface CO2 storage must apply clear and uniform definitions of resource and reserve concepts to each assessment unit (AU). Application of the current state of knowledge of geologic, hydrologic, geochemical, and geophysical parameters (contingencies) that control storage volume and injectivity allows definition of the contingent resource (CR) of storage. The parameters known with the greatest certainty are based on observations on known traps (KTs) within the AU that produced oil, gas, and water. The aggregate volume of KTs within an AU defines the most conservation volume of contingent resource. Application of the concept of reserve growth to CR volume provides a logical path for subsequent reevaluation of the total resource as knowledge of CO2 storage processes increases during implementation of storage projects. Increased knowledge of storage performance over time will probably allow the volume of the contingent resource of storage to grow over time, although negative growth is possible. ?? 2009 Elsevier Ltd. All rights reserved.

  6. Development of an energy storage tank model

    NASA Astrophysics Data System (ADS)

    Buckley, Robert Christopher

    A linearized, one-dimensional finite difference model employing an implicit finite difference method for energy storage tanks is developed, programmed with MATLAB, and demonstrated for different applications. A set of nodal energy equations is developed by considering the energy interactions on a small control volume. The general method of solving these equations is described as are other features of the simulation program. Two modeling applications are presented: the first using a hot water storage tank with a solar collector and an absorption chiller to cool a building in the summer, the second using a molten salt storage system with a solar collector and steam power plant to generate electricity. Recommendations for further study as well as all of the source code generated in the project are also provided.

  7. Space Station thermal storage/refrigeration system research and development

    NASA Astrophysics Data System (ADS)

    Dean, W. G.; Karu, Z. S.

    1993-02-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  8. Space Station thermal storage/refrigeration system research and development

    NASA Technical Reports Server (NTRS)

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  9. Optical storage media data integrity studies

    NASA Technical Reports Server (NTRS)

    Podio, Fernando L.

    1994-01-01

    Optical disk-based information systems are being used in private industry and many Federal Government agencies for on-line and long-term storage of large quantities of data. The storage devices that are part of these systems are designed with powerful, but not unlimited, media error correction capacities. The integrity of data stored on optical disks does not only depend on the life expectancy specifications for the medium. Different factors, including handling and storage conditions, may result in an increase of medium errors in size and frequency. Monitoring the potential data degradation is crucial, especially for long term applications. Efforts are being made by the Association for Information and Image Management Technical Committee C21, Storage Devices and Applications, to specify methods for monitoring and reporting to the user medium errors detected by the storage device while writing, reading or verifying the data stored in that medium. The Computer Systems Laboratory (CSL) of the National Institute of Standard and Technology (NIST) has a leadership role in the development of these standard techniques. In addition, CSL is researching other data integrity issues, including the investigation of error-resilient compression algorithms. NIST has conducted care and handling experiments on optical disk media with the objective of identifying possible causes of degradation. NIST work in data integrity and related standards activities is described.

  10. Federated data storage and management infrastructure

    NASA Astrophysics Data System (ADS)

    Zarochentsev, A.; Kiryanov, A.; Klimentov, A.; Krasnopevtsev, D.; Hristov, P.

    2016-10-01

    The Large Hadron Collider (LHC)’ operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. Computing models for the High Luminosity LHC era anticipate a growth of storage needs of at least orders of magnitude; it will require new approaches in data storage organization and data handling. In our project we address the fundamental problem of designing of architecture to integrate a distributed heterogeneous disk resources for LHC experiments and other data- intensive science applications and to provide access to data from heterogeneous computing facilities. We have prototyped a federated storage for Russian T1 and T2 centers located in Moscow, St.-Petersburg and Gatchina, as well as Russian / CERN federation. We have conducted extensive tests of underlying network infrastructure and storage endpoints with synthetic performance measurement tools as well as with HENP-specific workloads, including the ones running on supercomputing platform, cloud computing and Grid for ALICE and ATLAS experiments. We will present our current accomplishments with running LHC data analysis remotely and locally to demonstrate our ability to efficiently use federated data storage experiment wide within National Academic facilities for High Energy and Nuclear Physics as well as for other data-intensive science applications, such as bio-informatics.

  11. 40 CFR 279.22 - Used oil storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Used oil storage. 279.22 Section 279...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.22 Used oil storage. Used oil generators are subject to all applicable Spill Prevention, Control and Countermeasures (40 CFR...

  12. 40 CFR 279.22 - Used oil storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Used oil storage. 279.22 Section 279...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.22 Used oil storage. Used oil generators are subject to all applicable Spill Prevention, Control and Countermeasures (40 CFR...

  13. Activated Carbon Fibers For Gas Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchell, Timothy D; Contescu, Cristian I; Gallego, Nidia C

    The advantages of Activated Carbon Fibers (ACF) over Granular Activated Carbon (GAC) are reviewed and their relationship to ACF structure and texture are discussed. These advantages make ACF very attractive for gas storage applications. Both adsorbed natural gas (ANG) and hydrogen gas adsorption performance are discussed. The predicted and actual structure and performance of lignin-derived ACF is reviewed. The manufacture and performance of ACF derived monolith for potential automotive natural gas (NG) storage applications is reported Future trends for ACF for gas storage are considered to be positive. The recent improvements in NG extraction coupled with the widespread availability ofmore » NG wells means a relatively inexpensive and abundant NG supply in the foreseeable future. This has rekindled interest in NG powered vehicles. The advantages and benefit of ANG compared to compressed NG offer the promise of accelerated use of ANG as a commuter vehicle fuel. It is to be hoped the current cost hurdle of ACF can be overcome opening ANG applications that take advantage of the favorable properties of ACF versus GAC. Lastly, suggestions are made regarding the direction of future work.« less

  14. One-dimensional nanomaterials for energy storage

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Fan, Yuqi; Gu, Jianhang; Wu, Liming; Passerini, Stefano; Mai, Liqiang

    2018-03-01

    The search for higher energy density, safer, and longer cycling-life energy storage systems is progressing quickly. One-dimensional (1D) nanomaterials have a large length-to-diameter ratio, resulting in their unique electrical, mechanical, magnetic and chemical properties, and have wide applications as electrode materials in different systems. This article reviews the latest hot topics in applying 1D nanomaterials, covering both their synthesis and their applications. 1D nanomaterials can be grouped into the categories: carbon, silicon, metal oxides, and conducting polymers, and we structure our discussion accordingly. Then, we survey the unique properties and application of 1D nanomaterials in batteries and supercapacitors, and provide comments on the progress and advantages of those systems, paving the way for a better understanding of employing 1D nanomaterials for energy storage.

  15. Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage.

    PubMed

    Wang, Libin; Hu, Xianluo

    2018-06-18

    Climate change and the energy crisis have promoted the rapid development of electrochemical energy-storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy-storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy-storage devices, such as lithium-ion batteries, supercapacitors, and lithium-ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon-based energy-storage materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Robo-line storage: Low latency, high capacity storage systems over geographically distributed networks

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.; Anderson, Thomas E.; Ousterhout, John K.; Patterson, David A.

    1991-01-01

    Rapid advances in high performance computing are making possible more complete and accurate computer-based modeling of complex physical phenomena, such as weather front interactions, dynamics of chemical reactions, numerical aerodynamic analysis of airframes, and ocean-land-atmosphere interactions. Many of these 'grand challenge' applications are as demanding of the underlying storage system, in terms of their capacity and bandwidth requirements, as they are on the computational power of the processor. A global view of the Earth's ocean chlorophyll and land vegetation requires over 2 terabytes of raw satellite image data. In this paper, we describe our planned research program in high capacity, high bandwidth storage systems. The project has four overall goals. First, we will examine new methods for high capacity storage systems, made possible by low cost, small form factor magnetic and optical tape systems. Second, access to the storage system will be low latency and high bandwidth. To achieve this, we must interleave data transfer at all levels of the storage system, including devices, controllers, servers, and communications links. Latency will be reduced by extensive caching throughout the storage hierarchy. Third, we will provide effective management of a storage hierarchy, extending the techniques already developed for the Log Structured File System. Finally, we will construct a protototype high capacity file server, suitable for use on the National Research and Education Network (NREN). Such research must be a Cornerstone of any coherent program in high performance computing and communications.

  17. Integrating new Storage Technologies into EOS

    NASA Astrophysics Data System (ADS)

    Peters, Andreas J.; van der Ster, Dan C.; Rocha, Joaquim; Lensing, Paul

    2015-12-01

    The EOS[1] storage software was designed to cover CERN disk-only storage use cases in the medium-term trading scalability against latency. To cover and prepare for long-term requirements the CERN IT data and storage services group (DSS) is actively conducting R&D and open source contributions to experiment with a next generation storage software based on CEPH[3] and ethernet enabled disk drives. CEPH provides a scale-out object storage system RADOS and additionally various optional high-level services like S3 gateway, RADOS block devices and a POSIX compliant file system CephFS. The acquisition of CEPH by Redhat underlines the promising role of CEPH as the open source storage platform of the future. CERN IT is running a CEPH service in the context of OpenStack on a moderate scale of 1 PB replicated storage. Building a 100+PB storage system based on CEPH will require software and hardware tuning. It is of capital importance to demonstrate the feasibility and possibly iron out bottlenecks and blocking issues beforehand. The main idea behind this R&D is to leverage and contribute to existing building blocks in the CEPH storage stack and implement a few CERN specific requirements in a thin, customisable storage layer. A second research topic is the integration of ethernet enabled disks. This paper introduces various ongoing open source developments, their status and applicability.

  18. Thermodynamics and performance of the Mg-H-F system for thermochemical energy storage applications.

    PubMed

    Tortoza, Mariana S; Humphries, Terry D; Sheppard, Drew A; Paskevicius, Mark; Rowles, Matthew R; Sofianos, M Veronica; Aguey-Zinsou, Kondo-Francois; Buckley, Craig E

    2018-01-24

    Magnesium hydride (MgH 2 ) is a hydrogen storage material that operates at temperatures above 300 °C. Unfortunately, magnesium sintering occurs above 420 °C, inhibiting its application as a thermal energy storage material. In this study, the substitution of fluorine for hydrogen in MgH 2 to form a range of Mg(H x F 1-x ) 2 (x = 1, 0.95, 0.85, 0.70, 0.50, 0) composites has been utilised to thermodynamically stabilise the material, so it can be used as a thermochemical energy storage material that can replace molten salts in concentrating solar thermal plants. These materials have been studied by in situ synchrotron X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, temperature-programmed-desorption mass spectrometry and Pressure-Composition-Isothermal (PCI) analysis. Thermal analysis has determined that the thermal stability of Mg-H-F solid solutions increases proportionally with fluorine content, with Mg(H 0.85 F 0.15 ) 2 having a maximum rate of H 2 desorption at 434 °C, with a practical hydrogen capacity of 4.6 ± 0.2 wt% H 2 (theoretical 5.4 wt% H 2 ). An extremely stable Mg(H 0.43 F 0.57 ) 2 phase is formed upon the decomposition of each Mg-H-F composition of which the remaining H 2 is not released until above 505 °C. PCI measurements of Mg(H 0.85 F 0.15 ) 2 have determined the enthalpy (ΔH des ) to be 73.6 ± 0.2 kJ mol -1 H 2 and entropy (ΔS des ) to be 131.2 ± 0.2 J K -1 mol -1 H 2 , which is slightly lower than MgH 2 with ΔH des of 74.06 kJ mol -1 H 2 and ΔS des = 133.4 J K -1 mol -1 H 2 . Cycling studies of Mg(H 0.85 F 0.15 ) 2 over six absorption/desorption cycles between 425 and 480 °C show an increased usable cycling temperature of ∼80 °C compared to bulk MgH 2 , increasing the thermal operating temperatures for technological applications.

  19. 75 FR 17707 - Arlington Storage Company, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... Storage Company, LLC; Notice of Filing March 30, 2010. Take notice that on March 24, 2010, Arlington Storage Company, LLC (ASC), Two Brush Creek Boulevard, Kansas City, Missouri 64112, filed an application... existing underground natural gas storage facility located in Schuyler County, New York known as the Seneca...

  20. Methane storage in metal-organic frameworks.

    PubMed

    He, Yabing; Zhou, Wei; Qian, Guodong; Chen, Banglin

    2014-08-21

    Natural gas (NG), whose main component is methane, is an attractive fuel for vehicular applications. Realization of safe, cheap and convenient means and materials for high-capacity methane storage can significantly facilitate the implementation of natural gas fuelled vehicles. The physisorption based process involving porous materials offers an efficient storage methodology and the emerging porous metal-organic frameworks have been explored as potential candidates because of their extraordinarily high porosities, tunable pore/cage sizes and easily immobilized functional sites. In this view, we provide an overview of the current status of metal-organic frameworks for methane storage.

  1. Analysis Insights: Energy Storage - Possibilities for Expanding Electric Grid Flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-02-01

    NREL Analysis Insights mines our body of analysis work to synthesize topical insights and key findings. In this issue, we explore energy storage and the role it is playing and could potentially play in increasing grid flexibility and renewable energy integration. We explore energy storage as one building block for a more flexible power system, policy and R and D as drivers of energy storage deployment, methods for valuing energy storage in grid applications, ways that energy storage supports renewable integration, and emerging opportunities for energy storage in the electric grid.

  2. Battery energy storage market feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, S.; Akhil, A.

    1997-07-01

    Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as amore » means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).« less

  3. Organic n-type materials for charge transport and charge storage applications.

    PubMed

    Stolar, Monika; Baumgartner, Thomas

    2013-06-21

    Conjugated materials have attracted much attention toward applications in organic electronics in recent years. These organic species offer many advantages as potential replacement for conventional materials (i.e., silicon and metals) in terms of cheap fabrication and environmentally benign devices. While p-type (electron-donating or hole-conducting) materials have been extensively reviewed and researched, their counterpart n-type (electron-accepting or electron-conducting) materials have seen much less popularity despite the greater need for improvement. In addition to developing efficient charge transport materials, it is equally important to provide a means of charge storage, where energy can be used on an on-demand basis. This perspective is focused on discussing a selection of representative n-type materials and the efforts toward improving their charge-transport efficiencies. Additionally, this perspective will also highlight recent organic materials for battery components and the efforts that have been made to improve their environmental appeal.

  4. Microwave synthesis of noncentrosymmetric BaTiO3 truncated nanocubes for charge storage applications.

    PubMed

    Swaminathan, V; Pramana, Stevin S; White, T J; Chen, L; Chukka, Rami; Ramanujan, R V

    2010-11-01

    Truncated nanocubes of barium titanate (BT) were synthesized using a rapid, facile microwave-assisted hydrothermal route. Stoichiometric composition of pellets of nanocube BT powders was prepared by two-stage microwave process. Characterization by powder XRD, Rietveld refinement, SEM, TEM, and dielectric and polarization measurements was performed. X-ray diffraction revealed a polymorphic transformation from cubic Pm3̅m to tetragonal P4mm after 15 min of microwave irradiation, arising from titanium displacement along the c-axis. Secondary electron images were examined for nanocube BT synthesis and annealed at different timings. Transmission electron microscopy showed a narrow particle size distribution with an average size of 70 ± 9 nm. The remanence and saturation polarization were 15.5 ± 1.6 and 19.3 ± 1.2 μC/cm(2), respectively. A charge storage density of 925 ± 47 nF/cm(2) was obtained; Pt/BT/Pt multilayer ceramic capacitor stack had an average leakage current density of 5.78 ± 0.46 × 10(-8) A/cm(2) at ±2 V. The significance of this study shows an inexpensive and facile processing platform for synthesis of high-k dielectric for charge storage applications.

  5. Synthesis, morphological, electromechanical characterization of (CaMgFex)Fe1-xTi3O12-δ/PDMS nanocomposite thin films for energy storage application

    NASA Astrophysics Data System (ADS)

    Tripathy, Ashis; Sharma, Priyaranjan; Sahoo, Narayan

    2018-03-01

    At the present time, flexible and stretchable electronics has intended to use the new cutting-edge technologies for advanced electronic application. Currently, Polymers are being employed for such applications but they are not effective due to their low dielectric constant. To enhance the dielectric properties of polymer for energy storage application, it is necessary to add ceramic material of high dielectric constant to synthesize a polymer-ceramic composite. Therefore, a novel attempt has been made to enhance the dielectric properties of the Polydimethylsiloxane (PDMS) polymer by adding (CaMgFex)Fe1-xTi3O12-δ(0 90%), which can make it a potential material for advanced flexible electronic devices, energy storage and biomedical applications.

  6. Daily GRACE storage anomaly data for characterization of dynamic storage-discharge relationships of natural drainage basins

    NASA Astrophysics Data System (ADS)

    Sharma, D.; Patnaik, S.; Reager, J. T., II; Biswal, B.

    2017-12-01

    Despite the fact that streamflow occurs mainly due to depletion of storage, our knowledge on how a drainage basin stores and releases water is very limited because of measurement limitations. As a result storage has largely remained an elusive entity in hydrological analysis and modelling. A window of opportunity, however, is given to us by GRACE satellite mission that provides storage anomaly (TWSA) data for the entire globe. Many studies have used TWSA data for storage-discharge analysis, uncovering a range of potential applications of TWSA data. Here we argue that the capability of GRACE satellite mission has not been fully explored as most of the studies in the past have performed storage-discharge analysis using monthly TWSA data for large river basins. With such coarse data we are quite unlikely to fully understand variation of storage and discharge in space and time. In this study, we therefore use daily TWSA data for several mid-sized catchments and perform storage-discharge analysis. Daily storage-discharge relationship is highly dynamic, which generates large amount of scatter in storage-discharge plots. Yet a careful analysis of those scatter plots reveals interesting information on storage-discharge relationships of basins, particularly by looking at the relationships during individual recession events. It is observed that storage-discharge relationship is exponential in nature, contrary to the general assumption that the relationship is linear. We find that there is a strong relationship between power-law recession coefficient and initial storage (TWSA at the beginning of recession event). Furthermore, appreciable relationships are observed between recession coefficient and past TWSA values implying that storage takes time to deplete completely. Overall, insights drawn from this study expands our knowledge on how discharge is dynamically linked to storage.

  7. 75 FR 71101 - Monroe Gas Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... to comment only on the environmental review of this project should submit an original and two copies... Monroe to make changes to the certificated design of the Monroe Gas Storage Project. Specifically... high-deliverability working gas storage capacity, with about 4.46 Bcf of base gas. Nor is any change...

  8. Economics of internal and external energy storage in solar power plant operation

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1977-01-01

    A simple approach is formulated to investigate the effect of energy storage on the bus-bar electrical energy cost of solar thermal power plants. Economic analysis based on this approach does not require detailed definition of a specific storage system. A wide spectrum of storage system candidates ranging from hot water to superconducting magnets can be studied based on total investment and a rough knowledge of energy in and out efficiencies. Preliminary analysis indicates that internal energy storage (thermal) schemes offer better opportunities for energy cost reduction than external energy storage (nonthermal) schemes for solar applications. Based on data and assumptions used in JPL evaluation studies, differential energy costs due to storage are presented for a 100 MWe solar power plant by varying the energy capacity. The simple approach presented in this paper provides useful insight regarding the operation of energy storage in solar power plant applications, while also indicating a range of design parameters where storage can be cost effective.

  9. The Application of Graphene and Its Derivatives to Energy Conversion, Storage, and Environmental and Biosensing Devices.

    PubMed

    Ali Tahir, Asif; Ullah, Habib; Sudhagar, Pitchaimuthu; Asri Mat Teridi, Mohd; Devadoss, Anitha; Sundaram, Senthilarasu

    2016-06-01

    Graphene (GR) and its derivatives are promising materials on the horizon of nanotechnology and material science and have attracted a tremendous amount of research interest in recent years. The unique atom-thick 2D structure with sp(2) hybridization and large specific surface area, high thermal conductivity, superior electron mobility, and chemical stability have made GR and its derivatives extremely attractive components for composite materials for solar energy conversion, energy storage, environmental purification, and biosensor applications. This review gives a brief introduction of GR's unique structure, band structure engineering, physical and chemical properties, and recent energy-related progress of GR-based materials in the fields of energy conversion (e.g., photocatalysis, photoelectrochemical water splitting, CO2 reduction, dye-sensitized and organic solar cells, and photosensitizers in photovoltaic devices) and energy storage (batteries, fuel cells, and supercapacitors). The vast coverage of advancements in environmental applications of GR-based materials for photocatalytic degradation of organic pollutants, gas sensing, and removal of heavy-metal ions is presented. Additionally, the use of graphene composites in the biosensing field is discussed. We conclude the review with remarks on the challenges, prospects, and further development of GR-based materials in the exciting fields of energy, environment, and bioscience. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Transcriptional regulatory networks controlling woolliness in peach in response to preharvest gibberellin application and cold storage.

    PubMed

    Pegoraro, Camila; Tadiello, Alice; Girardi, César L; Chaves, Fábio C; Quecini, Vera; de Oliveira, Antonio Costa; Trainotti, Livio; Rombaldi, Cesar Valmor

    2015-11-18

    Postharvest fruit conservation relies on low temperatures and manipulations of hormone metabolism to maintain sensory properties. Peaches are susceptible to chilling injuries, such as 'woolliness' that is caused by juice loss leading to a 'wooly' fruit texture. Application of gibberellic acid at the initial stages of pit hardening impairs woolliness incidence, however the mechanisms controlling the response remain unknown. We have employed genome wide transcriptional profiling to investigate the effects of gibberellic acid application and cold storage on harvested peaches. Approximately half of the investigated genes exhibited significant differential expression in response to the treatments. Cellular and developmental process gene ontologies were overrepresented among the differentially regulated genes, whereas sequences in cell death and immune response categories were underrepresented. Gene set enrichment demonstrated a predominant role of cold storage in repressing the transcription of genes associated to cell wall metabolism. In contrast, genes involved in hormone responses exhibited a more complex transcriptional response, indicating an extensive network of crosstalk between hormone signaling and low temperatures. Time course transcriptional analyses demonstrate the large contribution of gene expression regulation on the biochemical changes leading to woolliness in peach. Overall, our results provide insights on the mechanisms controlling the complex phenotypes associated to postharvest textural changes in peach and suggest that hormone mediated reprogramming previous to pit hardening affects the onset of chilling injuries.

  11. REDOX electrochemical energy storage

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1980-01-01

    Reservoirs of chemical solutions can store electrical energy with high efficiency. Reactant solutions are stored outside conversion section where charging and discharging reactions take place. Conversion unit consists of stacks of cells connected together in parallel hydraulically, and in series electrically. Stacks resemble fuel cell batteries. System is 99% ampere-hour efficient, 75% watt hour efficient, and has long projected lifetime. Applications include storage buffering for remote solar or wind power systems, and industrial load leveling. Cost estimates are $325/kW of power requirement plus $51/kWh storage capacity. Mass production would reduce cost by about factor of two.

  12. GLIDES – Efficient Energy Storage from ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momen, Ayyoub M.; Abu-Heiba, Ahmad; Odukomaiya, Wale

    2016-03-01

    The research shown in this video features the GLIDES (Ground-Level Integrated Diverse Energy Storage) project, which has been under development at Oak Ridge National Laboratory (ORNL) since 2013. GLIDES can store energy via combined inputs of electricity and heat, and deliver dispatchable electricity. Supported by ORNL’s Laboratory Director’s Research and Development (LDRD) fund, this energy storage system is low-cost, and hybridizes compressed air and pumped-hydro approaches to allow for storage of intermittent renewable energy at high efficiency. A U.S. patent application for this novel energy storage concept has been submitted, and research findings suggest it has the potential to bemore » a flexible, low-cost, scalable, high-efficiency option for energy storage, especially useful in residential and commercial buildings.« less

  13. Characterization of iron-doped lithium niobate for holographic storage applications

    NASA Technical Reports Server (NTRS)

    Shah, R. R.; Kim, D. M.; Rabson, T. A.; Tittel, F. K.

    1976-01-01

    A comprehensive characterization of chemical and holographic properties of eight systematically chosen Fe:LiNbO3 crystals is performed in order to determine optimum performance of the crystals in holographic storage and display applications. The discussion covers determination of Fe(2+) and Fe(3+) ion concentrations in Fe:LiNbO3 system from optical absorption and EPR measurements; establishment of the relation between the photorefractive sensitivity of Fe(2+) and Fe(3+) concentrations; study of the spectral dependence, the effect of oxygen annealing, and of other impurities on the photorefractive sensitivity; analysis of the diffraction efficiency curves for different crystals and corresponding sensitivities with the dynamic theory of hologram formation; and determination of the bulk photovoltaic fields as a function of Fe(2+) concentrations. In addition to the absolute Fe(2+) concentration, the relative concentrations of Fe(2+) and Fe(3+) ions are also important in determining the photorefractive sensitivity. There exists an optimal set of crystal characteristics for which the photorefractive sensitivity is most favorable.

  14. ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LANDI, J.T.; PLIVELICH, R.F.

    2006-04-30

    Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

  15. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81more » Water Services waste water.« less

  16. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications.

    PubMed

    Liu, Yongfeng; Yang, Yaxiong; Gao, Mingxia; Pan, Hongge

    2016-02-01

    Solid-state hydrogen storage using various materials is expected to provide the ultimate solution for safe and efficient on-board storage. Complex hydrides have attracted increasing attention over the past two decades due to their high gravimetric and volumetric hydrogen densities. In this account, we review studies from our lab on tailoring the thermodynamics and kinetics for hydrogen storage in complex hydrides, including metal alanates, borohydrides and amides. By changing the material composition and structure, developing feasible preparation methods, doping high-performance catalysts, optimizing multifunctional additives, creating nanostructures and understanding the interaction mechanisms with hydrogen, the operating temperatures for hydrogen storage in metal amides, alanates and borohydrides are remarkably reduced. This temperature reduction is associated with enhanced reaction kinetics and improved reversibility. The examples discussed in this review are expected to provide new inspiration for the development of complex hydrides with high hydrogen capacity and appropriate thermodynamics and kinetics for hydrogen storage. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Application of Cold Storage for Raja Sere Banana (Musa acuminata colla)

    NASA Astrophysics Data System (ADS)

    Crismas, S. R. S.; Purwanto, Y. A.; Sutrisno

    2018-05-01

    Raja Sere is one of the indigenous banana cultivars in Indonesia. This cultivar has a yellow color when ripen, small size and sweet taste. Traditionally, the growers market this banana cultivar to the market without any treatment to delay the ripening process. Banana fruits are commonly being harvested at the condition of hard green mature. At this condition of hard green mature, banana fruits can be stored for a long-term period. The objective of this study was to examine the effect of cold storage on the quality of raja sere banana that stored at 13°C. Banana fruits cultivar Raja Sere were harvested from local farmer field at the condition of hard green mature (about 14 weeks age after the flower bloom). Fifteen bunches of banana were stored in cold storage with a temperature of 13°C for 0, 3, 6, 9, and 12 days, respectively. For the control, room temperature storage (28°C) was used. At a storage period, samples of banana fruits ripened in the ripening chamber by injecting 100 ppm of ethylene gas at 25°C for 24 hours. The quality parameters namely respiration rate, hardness, total soluble solids (TSS), change in color, and weight loss were measured. For those banana fruits stored at room temperature, the shelf-life of banana was only reached up to 6 days. For those banana fruits stored in cold storage, the condition of banana fruits was reached up to 12 days. After cold storage and ripening, the third day measurement was the optimal time for bananas to be consumed which indicated by the yellow color (lightness value = 68.51, a* = 4.74 and value b* = 62.63), TSS 24.30 °Brix and hardness 0.48 kgf, weight loss about 7.53-16.45% and CO2 respiration rate of 100.37 mLCO2 / kg.hr.

  18. Application of a chitosan coating as a carrier for natamycin to maintain the storage quality of ground cherry (Physalis pubescens L.)*

    PubMed Central

    Hao, Xiao-lei; Zhang, Jiao-jiao; Li, Xi-hong; Wang, Wei

    2017-01-01

    Ground cherry (Physalis pubescens L.) is a kind of berry fruit favored by consumers in China; however, this fruit is particularly vulnerable to physiological senescence and pathogen attack during the traditional cold storage period. In order to maintain storage quality, a 1.5% (w/w) chitosan (CS) water solution containing 50 mg/L of natamycin (NA) was introduced. After all treatments were completed, the fruit was stored at 0 °C and sampled every 10 d. At each sampling date, the following tests were performed: mold and yeast analyses; enzyme activity and content analyses which included superoxide dismutase (SOD), ascorbate peroxidase (APX), and malondialdehyde (MDA); and color analysis. In addition, a sensory evaluation was carried out for quality assessment at the end of the storage period. The results showed that the application of a chitosan coating combined with natamycin (CSNA) enhanced the activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX), reduced the physiological rate of senescence, and inhibited pathogen attack. Thus, CSNA treatment can maintain ground cherries at an acceptable level of storage quality for 50 d.

  19. Applications of functional carbon nanomaterials from hydrogen storage to drug delivery

    NASA Astrophysics Data System (ADS)

    Leonard, Ashley Dawn

    This dissertation describes the modification and functionalization of single-walled carbon nanotubes (SWCNTs). These SWCNTs were then investigated for their use in medical applications and for the storage of hydrogen. A technique was developed that leads to highly customized, individually suspended aqueous solutions of SWCNTs. These newly generated water-soluble SWCNTs were then functionalized further in water, thereby permitting the second functionalization addends to be chemically sensitive functional groups, for example drugs, that would not withstand the strongly acidic conditions of the first functionalization. The radical scavenging properties of nanovectors derived from SWCNTs were investigated and it was found that even the poorest SWCNT nanovector studied was nearly 40 times more effective at scavenging radicals than dendrite-fullerene DF-1, which has been shown to be a radioprotective to zebrafish via an antioxidant niechanism. This was used as the base to investigate using SWCNTs as protectors and mitigators of radiation exposure. SWCNTs were then explored for their use as drug delivery agents, in particular, the water insoluble chemotherapy drug, paclitaxel. SWCNTs showed promising in vivo and in vitro efficacy in the delivery of paclitaxel. Toxicity and biodistribution studies of the SWCNTs as drug delivery agents were performed in vivo using SWCNTs functionalized with radiolabeled indium. It was found that SWCNTs could be used for hydrogen storage by chemically crosslinking 3-dimensional frameworks of SWCNT fibers. These frameworks were shown to physisorb twice as much hydrogen, at low pressures, with respect to their surface areas, than typical macroporous carbon materials. This makes these SWCNT frameworks attractive materials for the development of a hydrogen vehicle fuel tank.

  20. New perspectives on potential hydrogen storage materials using high pressure.

    PubMed

    Song, Yang

    2013-09-21

    In addressing the global demand for clean and renewable energy, hydrogen stands out as the most suitable candidate for many fuel applications that require practical and efficient storage of hydrogen. Supplementary to the traditional hydrogen storage methods and materials, the high-pressure technique has emerged as a novel and unique approach to developing new potential hydrogen storage materials. Static compression of materials may result in significant changes in the structures, properties and performance that are important for hydrogen storage applications, and often lead to the formation of unprecedented phases or complexes that have profound implications for hydrogen storage. In this perspective article, 22 types of representative potential hydrogen storage materials that belong to four major classes--simple hydride, complex hydride, chemical hydride and hydrogen containing materials--were reviewed. In particular, their structures, stabilities, and pressure-induced transformations, which were reported in recent experimental works together with supporting theoretical studies, were provided. The important contextual aspects pertinent to hydrogen storage associated with novel structures and transitions were discussed. Finally, the summary of the recent advances reviewed and the insight into the future research in this direction were given.

  1. Technology for national asset storage systems

    NASA Technical Reports Server (NTRS)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard

    1993-01-01

    An industry-led collaborative project, called the National Storage Laboratory, was organized to investigate technology for storage systems that will be the future repositories for our national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and the provider of applications. The expected result is an evaluation of a high performance storage architecture assembled from commercially available hardware and software, with some software enhancements to meet the project's goals. It is anticipated that the integrated testbed system will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte class files at gigabit-per-second data rates. The National Storage Laboratory was officially launched on 27 May 1992.

  2. Enabling Co-Design of Multi-Layer Exascale Storage Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carothers, Christopher

    Growing demands for computing power in applications such as energy production, climate analysis, computational chemistry, and bioinformatics have propelled computing systems toward the exascale: systems with 10 18 floating-point operations per second. These systems, to be designed and constructed over the next decade, will create unprecedented challenges in component counts, power consumption, resource limitations, and system complexity. Data storage and access are an increasingly important and complex component in extreme-scale computing systems, and significant design work is needed to develop successful storage hardware and software architectures at exascale. Co-design of these systems will be necessary to find the best possiblemore » design points for exascale systems. The goal of this work has been to enable the exploration and co-design of exascale storage systems by providing a detailed, accurate, and highly parallel simulation of exascale storage and the surrounding environment. Specifically, this simulation has (1) portrayed realistic application checkpointing and analysis workloads, (2) captured the complexity, scale, and multilayer nature of exascale storage hardware and software, and (3) executed in a timeframe that enables “what if'” exploration of design concepts. We developed models of the major hardware and software components in an exascale storage system, as well as the application I/O workloads that drive them. We used our simulation system to investigate critical questions in reliability and concurrency at exascale, helping guide the design of future exascale hardware and software architectures. Additionally, we provided this system to interested vendors and researchers so that others can explore the design space. We validated the capabilities of our simulation environment by configuring the simulation to represent the Argonne Leadership Computing Facility Blue Gene/Q system and comparing simulation results for application I/O patterns to

  3. Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong

    2015-06-17

    Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can bemore » assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.« less

  4. Smart storage technologies applied to fresh foods: A review.

    PubMed

    Wang, Jingyu; Zhang, Min; Gao, Zhongxue; Adhikari, Benu

    2017-06-30

    Fresh foods are perishable, seasonal and regional in nature and their storage, transportation, and preservation of freshness are quite challenging. Smart storage technologies can online detection and monitor the changes of quality parameters and storage environment of fresh foods during storage, so that operators can make timely adjustments to reduce the loss. This article reviews the smart storage technologies from two aspects: online detection technologies and smartly monitoring technologies for fresh foods. Online detection technologies include electronic nose, nuclear magnetic resonance (NMR), near infrared spectroscopy (NIRS), hyperspectral imaging and computer vision. Smartly monitoring technologies mainly include some intelligent indicators for monitoring the change of storage environment. Smart storage technologies applied to fresh foods need to be highly efficient and nondestructive and need to be competitively priced. In this work, we have critically reviewed the principles, applications, and development trends of smart storage technologies.

  5. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  6. Thermal energy storage effort at JPL

    NASA Technical Reports Server (NTRS)

    Young, D. L.

    1980-01-01

    The technical, operational, and economic readiness of parabolic dish systems for electric and thermal applications was investigated. A parabolic dish system was then developed to the point at which subsequent commercialization activities can lead to successful market penetration. The immediate possible applications of the dish system to thermal energy storage are discussed.

  7. Storage stability of biodegradable polyethylene glycol microspheres

    NASA Astrophysics Data System (ADS)

    Jain, Era; Sheth, Saahil; Polito, Kristen; Sell, Scott A.; Zustiak, Silviya P.

    2017-10-01

    Degradable hydrogel microspheres are popular choices for multiple biomedical applications, including drug, protein, or cell carriers for minimally invasive delivery. Clinical transitioning of such new, sensitive pharmaceutical preparations requires investigation of storage methods that retain key properties for extended time. In this study, we sought to determine the influence of seven common storage conditions on the physical and mechanical properties of degradable polyethylene glycol (PEG) hydrogel microspheres: 25 °C, 4 °C, -80 °C, lyophilization/-20 °C, dimethyl sulfoxide/-80 °C, dimethyl sulfoxide/lyophilization/-20 °C, vacuum/-20 °C. We have outlined the storage conditions in detail and explained their effect on swelling ratio, stiffness and degradation rate post-storage. Additionally, we have implemented protein-loaded hydrogels to evaluate the effect of storage conditions on diffusivity as well as protein stability post-storage. We found that hydrogels could be stored short-term (1-4 d) under moist conditions (i.e. storage without drying) without a substantial loss of properties. For extended storage (7-28 d), they could be stored either at  -80 °C (moist condition) or vacuum drying (dry condition).

  8. Grid-Level Application of Electrical Energy Storage: Example Use Cases in the United States and China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingchen; Gevorgian, Vahan; Wang, Caixia

    Electrical energy storage (EES) systems are expected to play an increasing role in helping the United States and China-the world's largest economies with the two largest power systems-meet the challenges of integrating more variable renewable resources and enhancing the reliability of power systems by improving the operating capabilities of the electric grid. EES systems are becoming integral components of a resilient and efficient grid through a diverse set of applications that include energy management, load shifting, frequency regulation, grid stabilization, and voltage support.

  9. Natural convection along a heated vertical plate immersed in a nonlinearly stratified medium: application to liquefied gas storage

    NASA Astrophysics Data System (ADS)

    Forestier, M.; Haldenwang, P.

    We consider free convection driven by a heated vertical plate immersed in a nonlinearly stratified medium. The plate supplies a uniform horizontal heat flux to a fluid, the bulk of which has a stable stratification, characterized by a non-uniform vertical temperature gradient. This gradient is assumed to have a typical length scale of variation, denoted Z0, while 0, and the physical properties of the medium.We then apply the new theory to the natural convection affecting the vapour phase in a liquefied pure gas tank (e.g. the cryogenic storage of hydrogen). It is assumed that the cylindrical storage tank is subject to a constant uniform heat flux on its lateral and top walls. We are interested in the vapour motion above a residual layer of liquid in equilibrium with the vapour. High-precision axisymmetric numerical computations show that the flow remains steady for a large range of parameters, and that a bulk stratification characterized by a quadratic temperature profile is undoubtedly present. The application of the theory permits a comparison of the numerical and analytic results, showing that the theory satisfactorily predicts the primary dynamical and thermal properties of the storage tank.

  10. Quantifying induced effects of subsurface renewable energy storage

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Beyer, Christof; Pfeiffer, Tilmann; Boockmeyer, Anke; Popp, Steffi; Delfs, Jens-Olaf; Wang, Bo; Li, Dedong; Dethlefsen, Frank; Dahmke, Andreas

    2015-04-01

    New methods and technologies for energy storage are required for the transition to renewable energy sources. Subsurface energy storage systems such as salt caverns or porous formations offer the possibility of hosting large amounts of energy or substance. When employing these systems, an adequate system and process understanding is required in order to assess the feasibility of the individual storage option at the respective site and to predict the complex and interacting effects induced. This understanding is the basis for assessing the potential as well as the risks connected with a sustainable usage of these storage options, especially when considering possible mutual influences. For achieving this aim, in this work synthetic scenarios for the use of the geological underground as an energy storage system are developed and parameterized. The scenarios are designed to represent typical conditions in North Germany. The types of subsurface use investigated here include gas storage and heat storage in porous formations. The scenarios are numerically simulated and interpreted with regard to risk analysis and effect forecasting. For this, the numerical simulators Eclipse and OpenGeoSys are used. The latter is enhanced to include the required coupled hydraulic, thermal, geomechanical and geochemical processes. Using the simulated and interpreted scenarios, the induced effects are quantified individually and monitoring concepts for observing these effects are derived. This presentation will detail the general investigation concept used and analyze the parameter availability for this type of model applications. Then the process implementation and numerical methods required and applied for simulating the induced effects of subsurface storage are detailed and explained. Application examples show the developed methods and quantify induced effects and storage sizes for the typical settings parameterized. This work is part of the ANGUS+ project, funded by the German Ministry

  11. Managing aging effects on dry cask storage systems for extended long-term storage and transportation of used fuel - rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O.K.; Diercks, D.; Fabian, R.

    The cancellation of the Yucca Mountain repository program in the United States raises the prospect of extended long-term storage (i.e., >120 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S. Nuclear Regulatory Commission (NRC) at the expiration of the license term upon application by the licensee for a periodmore » not to exceed 40 years. Application for ISFSI license renewals must include the following: (1) Time-limited aging analyses (TLAAs) that demonstrate that structures, systems, and components (SSCs) important to safety will continue to perform their intended function for the requested period of extended operation; and (2) a description of the aging management program (AMP) for management of issues associated with aging that could adversely affect SSCs important to safety. In addition, the application must also include design bases information as documented in the most recent updated final safety analysis report as required by 10 CFR 72.70. Information contained in previous applications, statements, or reports filed with the Commission under the license may be incorporated by reference provided that those references are clear and specific. The NRC has recently issued the Standard Review Plan (SRP) for renewal of used-fuel dry cask storage system (DCSS) licenses and Certificates of Compliance (CoCs), NUREG-1927, under which NRC may renew a specific license or a CoC for a term not to exceed 40 years. Both the license and the CoC renewal applications must contain revised technical requirements and operating conditions (fuel storage, surveillance and maintenance, and other requirements) for the ISFSI and DCSS that address aging effects

  12. Energy Storage Systems Program Report for FY99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOYES,JOHN D.

    2000-06-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

  13. Thermal energy storage flight experiments

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1989-01-01

    Consideration is given to the development of an experimental program to study heat transfer, energy storage, fluid movement, and void location under microgravity. Plans for experimental flight packages containing Thermal Energy Storage (TES) material applicable for advanced solar heat receivers are discussed. Candidate materials for TES include fluoride salts, salt eutectics, silicides, and metals. The development of a three-dimensional computer program to describe TES material behavior undergoing melting and freezing under microgravity is also discussed. The TES experiment concept and plans for ground and flight tests are outlined.

  14. Stationary flywheel energy storage systems

    NASA Astrophysics Data System (ADS)

    Gilhaus, A.; Hau, E.; Gassner, G.; Huss, G.; Schauberger, H.

    1982-07-01

    A study intended to discover industrial applications of Stationary Flywheel Energy Accumulators. The economic value for the consumer and the effects on the power supply grid were investigated. A possibility for energy storage by flywheels exists where energy otherwise lost can be used effectively as in brake energy storage in vehicles. The future use of flywheels in wind power plants also seems to be promising. Attractive savings of energy can be obtained by introducing modern flywheel technology for emergency power supply units which are employed, for instance, in telecommunication systems.

  15. Thermal Assessment of a Latent-Heat Energy Storage Module During Melting and Freezing for Solar Energy Applications

    NASA Astrophysics Data System (ADS)

    Ramos Archibold, Antonio

    Capital investment reduction, exergetic efficiency improvement and material compatibility issues have been identified as the primary techno-economic challenges associated, with the near-term development and deployment of thermal energy storage (TES) in commercial-scale concentrating solar power plants. Three TES techniques have gained attention in the solar energy research community as possible candidates to reduce the cost of solar-generated electricity, namely (1) sensible heat storage, (2) latent heat (tank filled with phase change materials (PCMs) or encapsulated PCMs packed in a vessel) and (3) thermochemical storage. Among these the PCM macro-encapsulation approach seems to be one of the most-promising methods because of its potential to develop more effective energy exchange, reduce the cost associated with the tank and increase the exergetic efficiency. However, the technological barriers to this approach arise from the encapsulation techniques used to create a durable capsule, as well as an assessment of the fundamental thermal energy transport mechanisms during the phase change. A comprehensive study of the energy exchange interactions and induced fluid flow during melting and solidification of a confined storage medium is reported in this investigation from a theoretical perspective. Emphasis has been placed on the thermal characterization of a single constituent storage module rather than an entire storage system, in order to, precisely capture the energy exchange contributions of all the fundamental heat transfer mechanisms during the phase change processes. Two-dimensional, axisymmetric, transient equations for mass, momentum and energy conservation have been solved numerically by the finite volume scheme. Initially, the interaction between conduction and natural convection energy transport modes, in the absence of thermal radiation, is investigated for solar power applications at temperatures (300--400°C). Later, participating thermal radiation

  16. Cost projections for Redox Energy storage systems

    NASA Technical Reports Server (NTRS)

    Michaels, K.; Hall, G.

    1980-01-01

    A preliminary design and system cost analysis was performed for the redox energy storage system. A conceptual design and cost estimate was prepared for each of two energy applications: (1) electric utility 100-MWh requirement (10-MW for ten hours) for energy storage for utility load leveling application, and (2) a 500-kWh requirement (10-kW for 50 hours) for use with a variety of residential or commercial applications, including stand alone solar photovoltaic systems. The conceptual designs were based on cell performance levels, system design parameters, and special material costs. These data were combined with estimated thermodynamic and hydraulic analysis to provide preliminary system designs. Results indicate that the redox cell stack to be amenable to mass production techniques with a relatively low material cost.

  17. Regenerative Hydrogen-oxygen Fuel Cell-electrolyzer Systems for Orbital Energy Storage

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1984-01-01

    Fuel cells have found application in space since Gemini. Over the years technology advances have been factored into the mainstream hardware programs. Performance levels and service lives have been gradually improving. More recently, the storage application for fuel cell-electrolyzer combinations are receiving considerable emphasis. The regenerative system application described here is part of a NASA Fuel Cell Program which was developed to advance the fuel cell and electrolyzer technology required to satisfy the identified power generation and energy storage need of the Agency for space transportation and orbital applications to the year 2000.

  18. 76 FR 58741 - Storage Reporting Requirements of Interstate and Intrastate Natural Gas Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... sets of pipelines must include: (1) The identity of each customer injecting gas into storage and/or withdrawing gas from storage (including, for interstate pipelines, any affiliate relationship), (2) The rate... applicable to each storage customer, (4) For each storage customer, the volume of gas (in dekatherms...

  19. An object-based storage model for distributed remote sensing images

    NASA Astrophysics Data System (ADS)

    Yu, Zhanwu; Li, Zhongmin; Zheng, Sheng

    2006-10-01

    It is very difficult to design an integrated storage solution for distributed remote sensing images to offer high performance network storage services and secure data sharing across platforms using current network storage models such as direct attached storage, network attached storage and storage area network. Object-based storage, as new generation network storage technology emerged recently, separates the data path, the control path and the management path, which solves the bottleneck problem of metadata existed in traditional storage models, and has the characteristics of parallel data access, data sharing across platforms, intelligence of storage devices and security of data access. We use the object-based storage in the storage management of remote sensing images to construct an object-based storage model for distributed remote sensing images. In the storage model, remote sensing images are organized as remote sensing objects stored in the object-based storage devices. According to the storage model, we present the architecture of a distributed remote sensing images application system based on object-based storage, and give some test results about the write performance comparison of traditional network storage model and object-based storage model.

  20. Effective Hypothermic Storage of Human Pluripotent Stem Cell-Derived Cardiomyocytes Compatible With Global Distribution of Cells for Clinical Applications and Toxicology Testing

    PubMed Central

    Correia, Cláudia; Koshkin, Alexey; Carido, Madalena; Espinha, Nuno; Šarić, Tomo; Lima, Pedro A.; Alves, Paula M.

    2016-01-01

    To fully explore the potential of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), efficient methods for storage and shipment of these cells are required. Here, we evaluated the feasibility to cold store monolayers and aggregates of functional CMs obtained from different PSC lines using a fully defined clinical-compatible preservation formulation and investigated the time frame that hPSC-CMs could be subjected to hypothermic storage. We showed that two-dimensional (2D) monolayers of hPSC-CMs can be efficiently stored at 4°C for 3 days without compromising cell viability. However, cell viability decreased when the cold storage interval was extended to 7 days. We demonstrated that hPSC-CMs are more resistant to prolonged hypothermic storage-induced cell injury in three-dimensional aggregates than in 2D monolayers, showing high cell recoveries (>70%) after 7 days of storage. Importantly, hPSC-CMs maintained their typical (ultra)structure, gene and protein expression profile, electrophysiological profiles, and drug responsiveness. Significance The applicability of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) in the clinic/industry is highly dependent on the development of efficient methods for worldwide shipment of these cells. This study established effective clinically compatible strategies for cold (4°C) storage of hPSC-CMs cultured as two-dimensional (2D) monolayers and three-dimensional (3D) aggregates. Cell recovery of 2D monolayers of hPSC-CMs was found to be dependent on the time of storage, and 3D cell aggregates were more resistant to prolonged cold storage than 2D monolayers. Of note, it was demonstrated that 7 days of cold storage did not affect hPSC-CM ultrastructure, phenotype, or function. This study provides important insights into the cold preservation of PSC-CMs that could be valuable in improving global commercial distribution of hPSC-CMs. PMID:27025693

  1. Effective Hypothermic Storage of Human Pluripotent Stem Cell-Derived Cardiomyocytes Compatible With Global Distribution of Cells for Clinical Applications and Toxicology Testing.

    PubMed

    Correia, Cláudia; Koshkin, Alexey; Carido, Madalena; Espinha, Nuno; Šarić, Tomo; Lima, Pedro A; Serra, Margarida; Alves, Paula M

    2016-05-01

    To fully explore the potential of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), efficient methods for storage and shipment of these cells are required. Here, we evaluated the feasibility to cold store monolayers and aggregates of functional CMs obtained from different PSC lines using a fully defined clinical-compatible preservation formulation and investigated the time frame that hPSC-CMs could be subjected to hypothermic storage. We showed that two-dimensional (2D) monolayers of hPSC-CMs can be efficiently stored at 4°C for 3 days without compromising cell viability. However, cell viability decreased when the cold storage interval was extended to 7 days. We demonstrated that hPSC-CMs are more resistant to prolonged hypothermic storage-induced cell injury in three-dimensional aggregates than in 2D monolayers, showing high cell recoveries (>70%) after 7 days of storage. Importantly, hPSC-CMs maintained their typical (ultra)structure, gene and protein expression profile, electrophysiological profiles, and drug responsiveness. The applicability of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) in the clinic/industry is highly dependent on the development of efficient methods for worldwide shipment of these cells. This study established effective clinically compatible strategies for cold (4°C) storage of hPSC-CMs cultured as two-dimensional (2D) monolayers and three-dimensional (3D) aggregates. Cell recovery of 2D monolayers of hPSC-CMs was found to be dependent on the time of storage, and 3D cell aggregates were more resistant to prolonged cold storage than 2D monolayers. Of note, it was demonstrated that 7 days of cold storage did not affect hPSC-CM ultrastructure, phenotype, or function. This study provides important insights into the cold preservation of PSC-CMs that could be valuable in improving global commercial distribution of hPSC-CMs. ©AlphaMed Press.

  2. Long-term cryogenic space storage system

    NASA Technical Reports Server (NTRS)

    Hopkins, R. A.; Chronic, W. L.

    1973-01-01

    Discussion of the design, fabrication and testing of a 225-cu ft spherical cryogenic storage system for long-term subcritical applications under zero-g conditions in storing subcritical cryogens for space vehicle propulsion systems. The insulation system design, the analytical methods used, and the correlation between the performance test results and analytical predictions are described. The best available multilayer insulation materials and state-of-the-art thermal protection concepts were applied in the design, providing a boiloff rate of 0.152 lb/hr, or 0.032% per day, and an overall heat flux of 0.066 Btu/sq ft hr based on a 200 sq ft surface area. A six to eighteen month cryogenic storage is provided by this system for space applications.

  3. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications

    NASA Astrophysics Data System (ADS)

    Senthilkumar, S. T.; Abirami, Mari; Kim, Junsoo; Go, Wooseok; Hwang, Soo Min; Kim, Youngsik

    2017-02-01

    Sustainable, safe, and low-cost energy storage systems are essential for large-scale electrical energy storage. Herein, we report a sodium (Na)-ion hybrid electrolyte battery with a replaceable cathode system, which is separated from the Na metal anode by a Na superionic conducting ceramic. By using a fast Na-ion-intercalating nickel hexacyanoferrate (NiHCF) cathode along with an eco-friendly seawater catholyte, we demonstrate good cycling performance with an average discharge voltage of 3.4 V and capacity retention >80% over 100 cycles and >60% over 200 cycle. Remarkably, such high capacity retention is observed for both the initial as well as replaced cathodes. Moreover, a Na-metal-free hybrid electrolyte battery containing hard carbon as the anode exhibits an energy density of ∼146 Wh kg-1 at a current density of 10 mA g-1, which is comparable to that of lead-acid batteries and much higher than that of conventional aqueous Na-ion batteries. These results pave the way for further advances in sustainable energy storage technology.

  4. Battery Storage Evaluation Tool, version 1.x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-02

    The battery storage evaluation tool developed at Pacific Northwest National Laboratory is used to run a one-year simulation to evaluate the benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a lookahead optimization is first formulated and solved to determine the battery base operating point. The minute-by-minute simulation is then performed to simulate the actual battery operation.

  5. Mathematical Storage-Battery Models

    NASA Technical Reports Server (NTRS)

    Chapman, C. P.; Aston, M.

    1985-01-01

    Empirical formula represents performance of electrical storage batteries. Formula covers many battery types and includes numerous coefficients adjusted to fit peculiarities of each type. Battery and load parameters taken into account include power density in battery, discharge time, and electrolyte temperature. Applications include electric-vehicle "fuel" gages and powerline load leveling.

  6. The role of thermal energy storage in industrial energy conservation

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1979-01-01

    Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems is shown to be extremely beneficial for several applications. Recent system studies resulting from contracts awarded by the Department of Energy (DOE) identified four especially significant industries where TES appears attractive - food processing, paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near term TES systems for these industries is over 9,000,000 bbl of oil. This savings is due to recuperation and storage in the food processing industry, direct fuel substitution in the paper and pulp industry and reduction in electric utility peak fuel use through inplant production of electricity from utilization of reject heat in the steel and cement industries.

  7. Redox Bulk Energy Storage System Study, Volume 1

    NASA Technical Reports Server (NTRS)

    Ciprios, G.; Erskine, W., Jr.; Grimes, P. G.

    1977-01-01

    Opportunities were found for electrochemical energy storage devices in the U.S. electric utility industry. Application requirements for these devices were defined, including techno-economic factors. A new device, the Redox storage battery was analyzed. The Redox battery features a decoupling of energy storage and power conversion functions. General computer methods were developed to simulate Redox system operations. These studies showed that the Redox system is potentially attractive if certain performance goals can be achieved. Pathways for reducing the cost of the Redox system were identified.

  8. Assessment of Energy Storage Alternatives in the Puget Sound Energy System Volume 2: Energy Storage Evaluation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di; Jin, Chunlian; Balducci, Patrick J.

    2013-12-01

    This volume presents the battery storage evaluation tool developed at Pacific Northwest National Laboratory (PNNL), which is used to evaluate benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a look-ahead optimization is first formulated and solved to determine battery base operating point. The minute by minute simulation is then performed to simulate the actual battery operation. This volume provide backgroundmore » and manual for this evaluation tool.« less

  9. STORAGE/SEDIMENTATION FACILITIES FOR CONTROL OF STORM AND COMBINED SEWER OVERFLOW: DESIGN MANUAL

    EPA Science Inventory

    This manual describes applications of storage facilities in wet-weather flow management and presents step-by-step procedures for analysis and design of storage-treatment facilities. Retention, detention, and sedimentation storage information is classified and described. Internati...

  10. Multiplexed Holographic Data Storage in Bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Mehrl, David J.; Krile, Thomas F.

    1999-01-01

    Biochrome photosensitive films in particular Bacteriorhodopsin exhibit features which make these materials an attractive recording medium for optical data storage and processing. Bacteriorhodopsin films find numerous applications in a wide range of optical data processing applications; however the short-term memory characteristics of BR limits their applications for holographic data storage. The life-time of the BR can be extended using cryogenic temperatures [1], although this method makes the system overly complicated and unstable. Longer life-times can be provided in one modification of BR - the "blue" membrane BR [2], however currently available films are characterized by both low diffraction efficiency and difficulties in providing photoreversible recording. In addition, as a dynamic recording material, the BR requires different wavelengths for recording and reconstructing of optical data in order to prevent the information erasure during its readout. This fact also put constraints on a BR-based Optical Memory, due to information loss in holographic memory systems employing the two-lambda technique for reading-writing thick multiplexed holograms.

  11. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion.

    PubMed

    Liang, Zibin; Qu, Chong; Guo, Wenhan; Zou, Ruqiang; Xu, Qiang

    2017-11-22

    Metal-organic frameworks (MOFs), a new class of crystalline porous organic-inorganic hybrid materials, have recently attracted increasing interest in the field of energy storage and conversion. Herein, recent progress of MOFs and MOF composites for energy storage and conversion applications, including photochemical and electrochemical fuel production (hydrogen production and CO 2 reduction), water oxidation, supercapacitors, and Li-based batteries (Li-ion, Li-S, and Li-O 2 batteries), is summarized. Typical development strategies (e.g., incorporation of active components, design of smart morphologies, and judicious selection of organic linkers and metal nodes) of MOFs and MOF composites for particular energy storage and conversion applications are highlighted. A broad overview of recent progress is provided, which will hopefully promote the future development of MOFs and MOF composites for advanced energy storage and conversion applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Highly Active 2D Layered MoS 2 -rGO Hybrids for Energy Conversion and Storage Applications.

    PubMed

    Kamila, Swagatika; Mohanty, Bishnupad; Samantara, Aneeya K; Guha, Puspendu; Ghosh, Arnab; Jena, Bijayalaxmi; Satyam, Parlapalli V; Mishra, B K; Jena, Bikash Kumar

    2017-08-21

    The development of efficient materials for the generation and storage of renewable energy is now an urgent task for future energy demand. In this report, molybdenum disulphide hollow sphere (MoS 2 -HS) and its reduced graphene oxide hybrid (rGO/MoS 2 -S) have been synthesized and explored for energy generation and storage applications. The surface morphology, crystallinity and elemental composition of the as-synthesized materials have been thoroughly analysed. Inspired by the fascinating morphology of the MoS 2 -HS and rGO/MoS 2 -S materials, the electrochemical performance towards hydrogen evolution and supercapacitor has been demonstrated. The rGO/MoS 2 -S shows enhanced gravimetric capacitance values (318 ± 14 Fg -1 ) with higher specific energy/power outputs (44.1 ± 2.1 Whkg -1 and 159.16 ± 7.0 Wkg -1 ) and better cyclic performances (82 ± 0.95% even after 5000 cycles). Further, a prototype of the supercapacitor in a coin cell configuration has been fabricated and demonstrated towards powering a LED. The unique balance of exposed edge site and electrical conductivity of rGO/MoS 2 -S shows remarkably superior HER performances with lower onset over potential (0.16 ± 0.05 V), lower Tafel slope (75 ± 4 mVdec -1 ), higher exchange current density (0.072 ± 0.023 mAcm -2 ) and higher TOF (1.47 ± 0.085 s -1 ) values. The dual performance of the rGO/MoS 2 -S substantiates the promising application for hydrogen generation and supercapacitor application of interest.

  13. A distributed parallel storage architecture and its potential application within EOSDIS

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Tierney, Brian; Feuquay, Jay; Butzer, Tony

    1994-01-01

    We describe the architecture, implementation, use of a scalable, high performance, distributed-parallel data storage system developed in the ARPA funded MAGIC gigabit testbed. A collection of wide area distributed disk servers operate in parallel to provide logical block level access to large data sets. Operated primarily as a network-based cache, the architecture supports cooperation among independently owned resources to provide fast, large-scale, on-demand storage to support data handling, simulation, and computation.

  14. NASA preprototype redox storage system for a photovoltaic stand-alone application

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.

    1981-01-01

    A 1 kW preprototype redox storage system underwent characterization tests and was operated as the storage device for a 5 kW (peak) photovoltaic array. The system is described and performance data are presented. Loss mechanisms are discussed and simple design changes leading to significant increases in efficiency are suggested. The effects on system performance of nonequilibrium between the predominant species of complexed chromic ion in the negative electrode reactant solution are indicated.

  15. Review of Current State of the Art and Key Design Issues With Potential Solutions for Liquid Hydrogen Cryogenic Storage Tank Structures for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Gyekenyesi, John Z.; Arnold, Steven M.; Sullivan, Roy M.; Manderscheid, Jane M.; Murthy, Pappu L. N.

    2006-01-01

    Due to its high specific energy content, liquid hydrogen (LH2) is emerging as an alternative fuel for future aircraft. As a result, there is a need for hydrogen tank storage systems, for these aircraft applications, that are expected to provide sufficient capacity for flight durations ranging from a few minutes to several days. It is understood that the development of a large, lightweight, reusable cryogenic liquid storage tank is crucial to meet the goals of and supply power to hydrogen-fueled aircraft, especially for long flight durations. This report provides an annotated review (including the results of an extensive literature review) of the current state of the art of cryogenic tank materials, structural designs, and insulation systems along with the identification of key challenges with the intent of developing a lightweight and long-term storage system for LH2. The broad classes of insulation systems reviewed include foams (including advanced aerogels) and multilayer insulation (MLI) systems with vacuum. The MLI systems show promise for long-term applications. Structural configurations evaluated include single- and double-wall constructions, including sandwich construction. Potential wall material candidates are monolithic metals as well as polymer matrix composites and discontinuously reinforced metal matrix composites. For short-duration flight applications, simple tank designs may suffice. Alternatively, for longer duration flight applications, a double-wall construction with a vacuum-based insulation system appears to be the most optimum design. The current trends in liner material development are reviewed in the case that a liner is required to minimize or eliminate the loss of hydrogen fuel through permeation.

  16. Methods and devices for determining quality of services of storage systems

    DOEpatents

    Seelam, Seetharami R [Yorktown Heights, NY; Teller, Patricia J [Las Cruces, NM

    2012-01-17

    Methods and systems for allowing access to computer storage systems. Multiple requests from multiple applications can be received and processed efficiently to allow traffic from multiple customers to access the storage system concurrently.

  17. National Storage Laboratory: a collaborative research project

    NASA Astrophysics Data System (ADS)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  18. Buffer thermal energy storage for a solar Brayton engine

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    A study has been completed on the application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine. To aid in the study, a computer program was written for complete transient/stead-state Brayton cycle performance. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. However, the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns.

  19. Storage system architectures and their characteristics

    NASA Technical Reports Server (NTRS)

    Sarandrea, Bryan M.

    1993-01-01

    Not all users storage requirements call for 20 MBS data transfer rates, multi-tier file or data migration schemes, or even automated retrieval of data. The number of available storage solutions reflects the broad range of user requirements. It is foolish to think that any one solution can address the complete range of requirements. For users with simple off-line storage requirements, the cost and complexity of high end solutions would provide no advantage over a more simple solution. The correct answer is to match the requirements of a particular storage need to the various attributes of the available solutions. The goal of this paper is to introduce basic concepts of archiving and storage management in combination with the most common architectures and to provide some insight into how these concepts and architectures address various storage problems. The intent is to provide potential consumers of storage technology with a framework within which to begin the hunt for a solution which meets their particular needs. This paper is not intended to be an exhaustive study or to address all possible solutions or new technologies, but is intended to be a more practical treatment of todays storage system alternatives. Since most commercial storage systems today are built on Open Systems concepts, the majority of these solutions are hosted on the UNIX operating system. For this reason, some of the architectural issues discussed focus around specific UNIX architectural concepts. However, most of the architectures are operating system independent and the conclusions are applicable to such architectures on any operating system.

  20. Functionalization of graphene for efficient energy conversion and storage.

    PubMed

    Dai, Liming

    2013-01-15

    As global energy consumption accelerates at an alarming rate, the development of clean and renewable energy conversion and storage systems has become more important than ever. Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. As a building block for carbon materials of all other dimensionalities (such as 0D buckyball, 1D nanotube, 3D graphite), the two-dimensional (2D) single atomic carbon sheet of graphene has emerged as an attractive candidate for energy applications due to its unique structure and properties. Like other materials, however, a graphene-based material that possesses desirable bulk properties rarely features the surface characteristics required for certain specific applications. Therefore, surface functionalization is essential, and researchers have devised various covalent and noncovalent chemistries for making graphene materials with the bulk and surface properties needed for efficient energy conversion and storage. In this Account, I summarize some of our new ideas and strategies for the controlled functionalization of graphene for the development of efficient energy conversion and storage devices, such as solar cells, fuel cells, supercapacitors, and batteries. The dangling bonds at the edge of graphene can be used for the covalent attachment of various chemical moieties while the graphene basal plane can be modified via either covalent or noncovalent functionalization. The asymmetric functionalization of the two opposite surfaces of individual graphene sheets with different moieties can lead to the self-assembly of graphene sheets into hierarchically structured materials. Judicious

  1. Research and implementation on improving I/O performance of streaming media storage system

    NASA Astrophysics Data System (ADS)

    Lu, Zheng-wu; Wang, Yu-de; Jiang, Guo-song

    2008-12-01

    In this paper, we study the special requirements of a special storage system: streaming media server, and propose a solution to improve I/O performance of RAID storage system. The solution is suitable for streaming media applications. A streaming media storage subsystem includes the I/O interfaces, RAID arrays, I/O scheduling and device drivers. The solution is implemented on the top of the storage subsystem I/O Interface. Storage subsystem is the performance bottlenecks of a streaming media system, and I/O interface directly affect the performance of the storage subsystem. According to theoretical analysis, 64 KB block-size is most appropriate for streaming media applications. We carry out experiment in detail, and verified that the proper block-size really is 64KB. It is in accordance with our analysis. The experiment results also show that by using DMA controller, efficient memory management technology and mailbox interface design mechanism, streaming media storage system achieves a high-speed data throughput.

  2. Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conover, David R.; Crawford, Alasdair J.; Fuller, Jason

    This Protocol provides a set of “best practices” for characterizing energy storage systems (ESSs) and measuring and reporting their performance. It serves as a basis for assessing how an ESS will perform with respect to key performance attributes relevant to different applications. It is intended to provide a valid and accurate basis for the comparison of different ESSs. By achieving the stated purpose, the Protocol will enable more informed decision-making in the selection of ESSs for various stationary applications. The Protocol identifies general information and technical specifications relevant in describing an ESS and also defines a set of test, measurement,more » and evaluation criteria with which to express the performance of ESSs that are intended for energy-intensive and/or power-intensive stationary applications. An ESS includes a storage device, battery management system, and any power conversion systems installed with the storage device. The Protocol is agnostic with respect to the storage technology and the size and rating of the ESS. The Protocol does not apply to single-use storage devices and storage devices that are not coupled with power conversion systems, nor does it address safety, security, or operations and maintenance of ESSs, or provide any pass/fail criteria.« less

  3. Autonomic Management in a Distributed Storage System

    NASA Astrophysics Data System (ADS)

    Tauber, Markus

    2010-07-01

    This thesis investigates the application of autonomic management to a distributed storage system. Effects on performance and resource consumption were measured in experiments, which were carried out in a local area test-bed. The experiments were conducted with components of one specific distributed storage system, but seek to be applicable to a wide range of such systems, in particular those exposed to varying conditions. The perceived characteristics of distributed storage systems depend on their configuration parameters and on various dynamic conditions. For a given set of conditions, one specific configuration may be better than another with respect to measures such as resource consumption and performance. Here, configuration parameter values were set dynamically and the results compared with a static configuration. It was hypothesised that under non-changing conditions this would allow the system to converge on a configuration that was more suitable than any that could be set a priori. Furthermore, the system could react to a change in conditions by adopting a more appropriate configuration. Autonomic management was applied to the peer-to-peer (P2P) and data retrieval components of ASA, a distributed storage system. The effects were measured experimentally for various workload and churn patterns. The management policies and mechanisms were implemented using a generic autonomic management framework developed during this work. The experimental evaluations of autonomic management show promising results, and suggest several future research topics. The findings of this thesis could be exploited in building other distributed storage systems that focus on harnessing storage on user workstations, since these are particularly likely to be exposed to varying, unpredictable conditions.

  4. Holographic Optical Data Storage

    NASA Technical Reports Server (NTRS)

    Timucin, Dogan A.; Downie, John D.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Although the basic idea may be traced back to the earlier X-ray diffraction studies of Sir W. L. Bragg, the holographic method as we know it was invented by D. Gabor in 1948 as a two-step lensless imaging technique to enhance the resolution of electron microscopy, for which he received the 1971 Nobel Prize in physics. The distinctive feature of holography is the recording of the object phase variations that carry the depth information, which is lost in conventional photography where only the intensity (= squared amplitude) distribution of an object is captured. Since all photosensitive media necessarily respond to the intensity incident upon them, an ingenious way had to be found to convert object phase into intensity variations, and Gabor achieved this by introducing a coherent reference wave along with the object wave during exposure. Gabor's in-line recording scheme, however, required the object in question to be largely transmissive, and could provide only marginal image quality due to unwanted terms simultaneously reconstructed along with the desired wavefront. Further handicapped by the lack of a strong coherent light source, optical holography thus seemed fated to remain just another scientific curiosity, until the field was revolutionized in the early 1960s by some major breakthroughs: the proposition and demonstration of the laser principle, the introduction of off-axis holography, and the invention of volume holography. Consequently, the remainder of that decade saw an exponential growth in research on theory, practice, and applications of holography. Today, holography not only boasts a wide variety of scientific and technical applications (e.g., holographic interferometry for strain, vibration, and flow analysis, microscopy and high-resolution imagery, imaging through distorting media, optical interconnects, holographic optical elements, optical neural networks, three-dimensional displays, data storage, etc.), but has become a prominent am advertising

  5. Last chance for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Scott, Vivian; Gilfillan, Stuart; Markusson, Nils; Chalmers, Hannah; Haszeldine, R. Stuart

    2013-02-01

    Anthropogenic energy-related CO2 emissions are higher than ever. With new fossil-fuel power plants, growing energy-intensive industries and new sources of fossil fuels in development, further emissions increase seems inevitable. The rapid application of carbon capture and storage is a much heralded means to tackle emissions from both existing and future sources. However, despite extensive and successful research and development, progress in deploying carbon capture and storage has stalled. No fossil-fuel power plants, the greatest source of CO2 emissions, are using carbon capture and storage, and publicly supported demonstration programmes are struggling to deliver actual projects. Yet, carbon capture and storage remains a core component of national and global emissions-reduction scenarios. Governments have to either increase commitment to carbon capture and storage through much more active market support and emissions regulation, or accept its failure and recognize that continued expansion of power generation from burning fossil fuels is a severe threat to attaining objectives in mitigating climate change.

  6. Archival storage solutions for PACS

    NASA Astrophysics Data System (ADS)

    Chunn, Timothy

    1997-05-01

    While they are many, one of the inhibitors to the wide spread diffusion of PACS systems has been robust, cost effective digital archive storage solutions. Moreover, an automated Nearline solution is key to a central, sharable data repository, enabling many applications such as PACS, telemedicine and teleradiology, and information warehousing and data mining for research such as patient outcome analysis. Selecting the right solution depends on a number of factors: capacity requirements, write and retrieval performance requirements, scaleability in capacity and performance, configuration architecture and flexibility, subsystem availability and reliability, security requirements, system cost, achievable benefits and cost savings, investment protection, strategic fit and more.This paper addresses many of these issues. It compares and positions optical disk and magnetic tape technologies, which are the predominant archive mediums today. Price and performance comparisons will be made at different archive capacities, plus the effect of file size on storage system throughput will be analyzed. The concept of automated migration of images from high performance, high cost storage devices to high capacity, low cost storage devices will be introduced as a viable way to minimize overall storage costs for an archive. The concept of access density will also be introduced and applied to the selection of the most cost effective archive solution.

  7. Latent Heat Thermal Energy Storage: Effect of Metallic Mesh Size on Storage Time and Capacity

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.

    2015-11-01

    Use of metallic meshes in latent heat thermal storage system shortens the charging time (total melting of the phase change material), which is favorable in practical applications. In the present study, effect of metallic mesh size on the thermal characteristics of latent heat thermal storage system is investigated. Charging time is predicted for various mesh sizes, and the influence of the amount of mesh material on the charging capacity is examined. An experiment is carried out to validate the numerical predictions. It is found that predictions of the thermal characteristics of phase change material with presence of metallic meshes agree well with the experimental data. High conductivity of the metal meshes enables to transfer heat from the edges of the thermal system towards the phase change material while forming a conduction tree in the system. Increasing number of meshes in the thermal system reduces the charging time significantly due to increased rate of conduction heat transfer in the thermal storage system; however, increasing number of meshes lowers the latent heat storage capacity of the system.

  8. Optical data storage and metallization of polymers

    NASA Technical Reports Server (NTRS)

    Roland, C. M.; Sonnenschein, M. F.

    1991-01-01

    The utilization of polymers as media for optical data storage offers many potential benefits and consequently has been widely explored. New developments in thermal imaging are described, wherein high resolution lithography is accomplished without thermal smearing. The emphasis was on the use of poly(ethylene terephthalate) film, which simultaneously serves as both the substrate and the data storage medium. Both physical and chemical changes can be induced by the application of heat and, thereby, serve as a mechanism for high resolution optical data storage in polymers. The extension of the technique to obtain high resolution selective metallization of poly(ethylene terephthalate) is also described.

  9. Survey of solar thermal energy storage subsystems for thermal/electric applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segaser, C. L.

    1978-08-01

    A survey of the current technology and estimated costs of subsystems for storing the thermal energy produced by solar collectors is presented. The systems considered were capable of producing both electricity and space conditioning for three types of loads: a single-family detached residence, an apartment complex of 100 units, and a city of 30,000 residents, containing both single-family residences and apartments. Collector temperatures will be in four ranges: (1) 100 to 250/sup 0/F (used for space heating and single-cycle air conditioners and organic Rankine low-temperature turbines); (2) 300 to 400/sup 0/F (used for dual-cycle air conditioners and low-temperature turbines); (3)more » 400 to 600/sup 0/F (using fluids from parabolic trough collectors to run Rankine turbines); (4) 800 to 1000/sup 0/F (using fluids from heliostats to run closed-cycle gas turbines and steam Rankine turbines). The solar thermal energy subsystems will require from 60 to 36 x 10/sup 5/ kWhr (2.05 x 10/sup 5/ to 1.23 x 10/sup 10/ Btu) of thermal storage capacity. In addition to sensible heat and latent heat storage materials, several other media were investigated as potential thermal energy storage materials, including the clathrate and semiclathrate hydrates, various metal hydrides, and heat storage based on inorganic chemical reactions.« less

  10. Optimizing tertiary storage organization and access for spatio-temporal datasets

    NASA Technical Reports Server (NTRS)

    Chen, Ling Tony; Rotem, Doron; Shoshani, Arie; Drach, Bob; Louis, Steve; Keating, Meridith

    1994-01-01

    We address in this paper data management techniques for efficiently retrieving requested subsets of large datasets stored on mass storage devices. This problem represents a major bottleneck that can negate the benefits of fast networks, because the time to access a subset from a large dataset stored on a mass storage system is much greater that the time to transmit that subset over a network. This paper focuses on very large spatial and temporal datasets generated by simulation programs in the area of climate modeling, but the techniques developed can be applied to other applications that deal with large multidimensional datasets. The main requirement we have addressed is the efficient access of subsets of information contained within much larger datasets, for the purpose of analysis and interactive visualization. We have developed data partitioning techniques that partition datasets into 'clusters' based on analysis of data access patterns and storage device characteristics. The goal is to minimize the number of clusters read from mass storage systems when subsets are requested. We emphasize in this paper proposed enhancements to current storage server protocols to permit control over physical placement of data on storage devices. We also discuss in some detail the aspects of the interface between the application programs and the mass storage system, as well as a workbench to help scientists to design the best reorganization of a dataset for anticipated access patterns.

  11. Energy storage using phase-change materials for active solar heating and cooling: An evaluation of future research and development direction

    NASA Astrophysics Data System (ADS)

    Borkowski, R. J.; Stovall, T. K.; Kedl, R. J.; Tomlinson, J. J.

    1982-04-01

    The current state of the art and commercial potential of active solar heating and cooling systems for buildings, and the use of thermal energy storage with these systems are assessed. The need for advanced latent heat storage subsystems in these applications and priorities for their development are determined. Latent storage subsystems are advantageous in applications where their compactness may be exploited. It is suggested that subsystems could facilitate storage in retrofit applications in which storage would be physically impossible otherwise.

  12. Fuel Aging in Storage and Transportation (FAST): Accelerated Characterization and Performance Assessment of the Used Nuclear Fuel Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDeavitt, Sean

    2016-08-02

    This Integrated Research Project (IRP) was established to characterize key limiting phenomena related to the performance of used nuclear fuel (UNF) storage systems. This was an applied engineering project with a specific application in view (i.e., UNF dry storage). The completed tasks made use of a mixture of basic science and engineering methods. The overall objective was to create, or enable the creation of, predictive tools in the form of observation methods, phenomenological models, and databases that will enable the design, installation, and licensing of dry UNF storage systems that will be capable of containing UNF for extended period ofmore » time.« less

  13. Towards the Interoperability of Web, Database, and Mass Storage Technologies for Petabyte Archives

    NASA Technical Reports Server (NTRS)

    Moore, Reagan; Marciano, Richard; Wan, Michael; Sherwin, Tom; Frost, Richard

    1996-01-01

    At the San Diego Supercomputer Center, a massive data analysis system (MDAS) is being developed to support data-intensive applications that manipulate terabyte sized data sets. The objective is to support scientific application access to data whether it is located at a Web site, stored as an object in a database, and/or storage in an archival storage system. We are developing a suite of demonstration programs which illustrate how Web, database (DBMS), and archival storage (mass storage) technologies can be integrated. An application presentation interface is being designed that integrates data access to all of these sources. We have developed a data movement interface between the Illustra object-relational database and the NSL UniTree archival storage system running in a production mode at the San Diego Supercomputer Center. With this interface, an Illustra client can transparently access data on UniTree under the control of the Illustr DBMS server. The current implementation is based on the creation of a new DBMS storage manager class, and a set of library functions that allow the manipulation and migration of data stored as Illustra 'large objects'. We have extended this interface to allow a Web client application to control data movement between its local disk, the Web server, the DBMS Illustra server, and the UniTree mass storage environment. This paper describes some of the current approaches successfully integrating these technologies. This framework is measured against a representative sample of environmental data extracted from the San Diego Ba Environmental Data Repository. Practical lessons are drawn and critical research areas are highlighted.

  14. Interagency coordination meeting on energy storage. [15 papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-01-01

    This report contains summaries of 15 presentations and 4 extemporaneous remarks of the Interagency Meeting on energy storage technology. The 15 presentations are: Energy Storage--Strategy for the Future, George F. Pezdirtz; Physical Energy Storage Program in ERDA's Division of Energy Storage Systems, Robert R. Reeves; Thermal Energy Storage R and D Program for Solar Heating and Cooling, Allan I. Michaels and Stephen L. Sargent; Summary of Energy Storage Activities Within ERDA's Division of Solar Energy Central Receiver Program, T.D. Brumleve; Transport of Water and Heat in an Aquifer Used for Hot Water Storage--Digital Simulation of Field Results, S.P. Larson; Energymore » Storage Boiler Tank Progress Report, T.A. Chubb, J.J. Nemecek, and D.E. Simmons; Summary of Energy Storage Projects at the NASA Lewis Research Center, William J. Masica; Review of a Study Concerning Institutional Factors Affecting Vehicle Choice, William J. Devereaux; Flywheel Projects in the Department of Transportation, Part 2--Research at the University of Wisconsin (discussion only), Robert Husted; UMTA Flywheel Energy Storage Program, James F. Campbell; Flywheel Projects in the Department of Transportation, Part 4--Flywheels for Railroad Propulsion (discussion only), John Koper; NASA's Support of ERDA's Hydrogen Energy Storage Program, E.A. Laumann; EPRI's Energy Storage Program; Thomas R. Schneider, Electric Power Research Institute; Battery Storage Program, Kurt W. Klunder; Utility Applications Energy Storage Programs, J. Charles Smith. Extemporaneous remarks by James D. Busi, Donald K. Stevens, F. Dee Stevenson, and Harold A. Spuhler are included. (MCW)« less

  15. Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Chin; Maier, Joachim

    2018-02-01

    The requirements for rechargeable batteries place high demands on the electrodes. Efficient storage means accommodating both ions and electrons, not only in substantial amounts, but also with substantial velocities. The materials' space could be largely extended by decoupling the roles of ions and electrons such that transport and accommodation of ions take place in one phase of a composite, and transport and accommodation of electrons in the other phase. Here we discuss this synergistic concept being equally applicable for positive and negative electrodes along with examples from the literature for Li-based and Ag-based cells. Not only does the concept have the potential to mitigate the trade-off between power density and energy density, it also enables a generalized view of bulk and interfacial storage as necessary for nanocrystals. It furthermore allows for testable predictions of heterogeneous storage in passivation layers, dependence of transfer resistance on the state of charge, or heterogeneous storage of hydrogen at appropriate contacts. We also present an outlook on constructing artificial mixed-conductor electrodes that have the potential to achieve both high energy density and high power density.

  16. Energy Storage.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  17. Investigation of storage system designs and techniques for optimizing energy conservation in integrated utility systems. Volume 3: (Assessment of technical and cost characteristics of candidate IUS energy storage devices)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Six energy storage technologies (inertial, superconducting magnetic, electrochemical, chemical, compressed air, and thermal) were assessed and evaluated for specific applicability to the IUS. To provide a perspective for the individual storage technologies, a brief outline of the general nature of energy storage and its significance to the user is presented.

  18. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage.

    PubMed

    Tan, Xiao-Fei; Liu, Shao-Bo; Liu, Yun-Guo; Gu, Yan-Ling; Zeng, Guang-Ming; Hu, Xin-Jiang; Wang, Xin; Liu, Shao-Heng; Jiang, Lu-Hua

    2017-03-01

    There is a growing interest of the scientific community on production of activated carbon using biochar as potential sustainable precursors pyrolyzed from biomass wastes. Physical activation and chemical activation are the main methods applied in the activation process. These methods could have significantly beneficial effects on biochar chemical/physical properties, which make it suitable for multiple applications including water pollution treatment, CO 2 capture, and energy storage. The feedstock with different compositions, pyrolysis conditions and activation parameters of biochar have significant influences on the properties of resultant activated carbon. Compared with traditional activated carbon, activated biochar appears to be a new potential cost-effective and environmentally-friendly carbon materials with great application prospect in many fields. This review not only summarizes information from the current analysis of activated biochar and their multiple applications for further optimization and understanding, but also offers new directions for development of activated biochar. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A database application for pre-processing, storage and comparison of mass spectra derived from patients and controls

    PubMed Central

    Titulaer, Mark K; Siccama, Ivar; Dekker, Lennard J; van Rijswijk, Angelique LCT; Heeren, Ron MA; Sillevis Smitt, Peter A; Luider, Theo M

    2006-01-01

    Background Statistical comparison of peptide profiles in biomarker discovery requires fast, user-friendly software for high throughput data analysis. Important features are flexibility in changing input variables and statistical analysis of peptides that are differentially expressed between patient and control groups. In addition, integration the mass spectrometry data with the results of other experiments, such as microarray analysis, and information from other databases requires a central storage of the profile matrix, where protein id's can be added to peptide masses of interest. Results A new database application is presented, to detect and identify significantly differentially expressed peptides in peptide profiles obtained from body fluids of patient and control groups. The presented modular software is capable of central storage of mass spectra and results in fast analysis. The software architecture consists of 4 pillars, 1) a Graphical User Interface written in Java, 2) a MySQL database, which contains all metadata, such as experiment numbers and sample codes, 3) a FTP (File Transport Protocol) server to store all raw mass spectrometry files and processed data, and 4) the software package R, which is used for modular statistical calculations, such as the Wilcoxon-Mann-Whitney rank sum test. Statistic analysis by the Wilcoxon-Mann-Whitney test in R demonstrates that peptide-profiles of two patient groups 1) breast cancer patients with leptomeningeal metastases and 2) prostate cancer patients in end stage disease can be distinguished from those of control groups. Conclusion The database application is capable to distinguish patient Matrix Assisted Laser Desorption Ionization (MALDI-TOF) peptide profiles from control groups using large size datasets. The modular architecture of the application makes it possible to adapt the application to handle also large sized data from MS/MS- and Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry

  20. A database application for pre-processing, storage and comparison of mass spectra derived from patients and controls.

    PubMed

    Titulaer, Mark K; Siccama, Ivar; Dekker, Lennard J; van Rijswijk, Angelique L C T; Heeren, Ron M A; Sillevis Smitt, Peter A; Luider, Theo M

    2006-09-05

    Statistical comparison of peptide profiles in biomarker discovery requires fast, user-friendly software for high throughput data analysis. Important features are flexibility in changing input variables and statistical analysis of peptides that are differentially expressed between patient and control groups. In addition, integration the mass spectrometry data with the results of other experiments, such as microarray analysis, and information from other databases requires a central storage of the profile matrix, where protein id's can be added to peptide masses of interest. A new database application is presented, to detect and identify significantly differentially expressed peptides in peptide profiles obtained from body fluids of patient and control groups. The presented modular software is capable of central storage of mass spectra and results in fast analysis. The software architecture consists of 4 pillars, 1) a Graphical User Interface written in Java, 2) a MySQL database, which contains all metadata, such as experiment numbers and sample codes, 3) a FTP (File Transport Protocol) server to store all raw mass spectrometry files and processed data, and 4) the software package R, which is used for modular statistical calculations, such as the Wilcoxon-Mann-Whitney rank sum test. Statistic analysis by the Wilcoxon-Mann-Whitney test in R demonstrates that peptide-profiles of two patient groups 1) breast cancer patients with leptomeningeal metastases and 2) prostate cancer patients in end stage disease can be distinguished from those of control groups. The database application is capable to distinguish patient Matrix Assisted Laser Desorption Ionization (MALDI-TOF) peptide profiles from control groups using large size datasets. The modular architecture of the application makes it possible to adapt the application to handle also large sized data from MS/MS- and Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry experiments. It is expected that the

  1. The architecture of the High Performance Storage System (HPSS)

    NASA Technical Reports Server (NTRS)

    Teaff, Danny; Watson, Dick; Coyne, Bob

    1994-01-01

    The rapid growth in the size of datasets has caused a serious imbalance in I/O and storage system performance and functionality relative to application requirements and the capabilities of other system components. The High Performance Storage System (HPSS) is a scalable, next-generation storage system that will meet the functionality and performance requirements or large-scale scientific and commercial computing environments. Our goal is to improve the performance and capacity of storage by two orders of magnitude or more over what is available in the general or mass marketplace today. We are also providing corresponding improvements in architecture and functionality. This paper describes the architecture and functionality of HPSS.

  2. Reduced Graphene Oxide/Carbon Nanotube Composites as Electrochemical Energy Storage Electrode Applications.

    PubMed

    Yang, Wenyao; Chen, Yan; Wang, Jingfeng; Peng, Tianjun; Xu, Jianhua; Yang, Bangchao; Tang, Ke

    2018-06-15

    We demonstrate an electrochemical reduction method to reduce graphene oxide (GO) to electrochemically reduced graphene oxide (ERGO) with the assistance of carbon nanotubes (CNTs). The faster and more efficient reduction of GO can be achieved after proper addition of CNTs into GO during the reduction process. This nanotube/nanosheet composite was deposited on electrode as active material for electrochemical energy storage applications. It has been found that the specific capacitance of the composite film was strongly affected by the mass ratio of GO/CNTs and the scanning ratio of cyclic voltammetry. The obtained ERGO/CNT composite electrode exhibited a 279.4 F/g-specific capacitance and showed good cycle rate performance with the evidence that the specific capacitance maintained above 90% after 6000 cycles. The synergistic effect between ERGO and CNTs as well as crossing over of CNTs into ERGO is attributed to the high electrochemical performance of composite electrode.

  3. 77 FR 31840 - Perryville Gas Storage LLC; Notice of Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-460-000] Perryville Gas Storage LLC; Notice of Amendment Take notice that on May 11, 2012, Perryville Gas Storage LLC (Perryville), Three Riverway, Suite 1350, Houston, Texas 77056, filed in the above referenced docket an application...

  4. Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop

    NASA Astrophysics Data System (ADS)

    Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.

    2018-04-01

    The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.

  5. Preparation of fine powdered composite for latent heat storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fořt, Jan, E-mail: jan.fort.1@fsv.cvut.cz; Trník, Anton, E-mail: anton.trnik@fsv.cvut.cz; Pavlíková, Milena, E-mail: milena.pavlikova@fsv.cvut.cz

    Application of latent heat storage building envelope systems using phase-change materials represents an attractive method of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. This study deals with a preparation of a new type of powdered phase change composite material for thermal energy storage. The idea of a composite is based upon the impregnation of a natural silicate material by a reasonably priced commercially produced pure phase change material and forming the homogenous composite powdered structure. For the preparation of the composite, vacuum impregnation method is used. The particlemore » size distribution accessed by the laser diffraction apparatus proves that incorporation of the organic phase change material into the structure of inorganic siliceous pozzolana does not lead to the clustering of the particles. The compatibility of the prepared composite is characterized by the Fourier transformation infrared analysis (FTIR). Performed DSC analysis shows potential of the developed composite for thermal energy storage that can be easily incorporated into the cement-based matrix of building materials. Based on the obtained results, application of the developed phase change composite can be considered with a great promise.« less

  6. Thermal energy storage for solar power generation - State of the art

    NASA Astrophysics Data System (ADS)

    Shukla, K. N.

    1981-12-01

    High temperature storage for applications in solar-thermal electric systems is considered. Noting that thermal storage is in either the form of latent, sensible or chemically stored heat, sensible heat storage is stressed as the most developed of the thermal storage technologies, spanning direct heating of a storage medium from 120-1250 C. Current methods involve solids, packed beds, fluidized beds, liquids, hot water, organic liquids, and inorganic liquids and molten salts. Latent heat storage comprises phase-change materials that move from solid to liquid with addition of heat and liquid to solid with the removal of heat. Metals or inorganic salts are candidates, and the energy balances are outlined. Finally, chemical heat storage is examined, showing possible high energy densities through catalytic, thermal dissociation reactions.

  7. Innovation on Energy Power Technology (7)Development and Practical Application of Sodium-Sulfur Battery for Electric Energy Storage System

    NASA Astrophysics Data System (ADS)

    Rachi, Hideki

    Sodium-Sulfur battery (NAS battery), which has more than 3 times of energy density compared with the conventional lead-acid battery and can be compactly established, has a great installation effects as a distributed energy storage system in the urban area which consumes big electric power. For the power company, NAS battery contributes to the load leveling, the supply capability up at the peak period, the efficient operation of the electric power equipment and the reduction of the capital expenditure. And for the customer, it is possible to enjoy the reduction of the electricity charges by utilizing nighttime electric power and the securing of a security. The contribution to the highly sophisticated information society where the higher electric power quality is desired, mainly office buildings and factories by the progress of IT, is very big. Tokyo Electric Power Company (TEPCO) developed the elementary technology of NAS battery from 1984 and ended the development of practical battery which has long-term durability and the safety and the performance verification of the megawatt scale. Finally TEPCO accomplished the practical application and commercialization of the stationary energy storage technology by NAS battery. In this paper, we introduces about conquered problems until practical application and commercialization.

  8. Flexible Graphene-based Energy Storage Devices for Space Application Project

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2014-01-01

    Develop prototype graphene-based reversible energy storage devices that are flexible, thin, lightweight, durable, and that can be easily attached to spacesuits, rovers, landers, and equipment used in space.

  9. Battery energy storage market feasibility study -- Expanded report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, S.; Akhil, A.

    1997-09-01

    Under the sponsorship of the US Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the battery energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed battery storage as an important technology to enable increased use of renewable energy and asmore » a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).« less

  10. Self-Powered Adaptive Switched Architecture Storage

    NASA Astrophysics Data System (ADS)

    El Mahboubi, F.; Bafleur, M.; Boitier, V.; Alvarez, A.; Colomer, J.; Miribel, P.; Dilhac, J.-M.

    2016-11-01

    Ambient energy harvesting coupled to storage is a way to improve the autonomy of wireless sensors networks. Moreover, in some applications with harsh environment or when a long service lifetime is required, the use of batteries is prohibited. Ultra-capacitors provide in this case a good alternative for energy storage. Such storage must comply with the following requirements: a sufficient voltage during the initial charge must be rapidly reached, a significant amount of energy should be stored and the unemployed residual energy must be minimised at discharge. To answer these apparently contradictory criteria, we propose a selfadaptive switched architecture consisting of a matrix of switched ultra-capacitors. We present the results of a self-powered adaptive prototype that shows the improvement in terms of charge time constant, energy utilization rate and then energy autonomy.

  11. Introduction to energy storage with market analysis and outlook

    NASA Astrophysics Data System (ADS)

    Schmid, Robert; Pillot, Christophe

    2014-06-01

    At first, the rechargeable battery market in 2012 will be described by technology - lead acid, NiCd, NiMH, lithium ion - and application - portable electronics, power tools, e-bikes, automotive, energy storage. This will be followed by details of the lithium ion battery market value chain from the raw material to the final application. The lithium ion battery market of 2012 will be analyzed and split by applications, form factors and suppliers. There is also a focus on the cathode, anode, electrolyte and separator market included. This report will also give a forecast for the main trends and the market in 2020, 2025. To conclude, a forecast for the rechargeable battery market by application for 2025 will be presented. Since energy storage plays an important role for the growing Electric Vehicle (EV) market, this EV issue is closely considered throughout this analysis.

  12. GLIDES – Efficient Energy Storage from ORNL

    ScienceCinema

    Momen, Ayyoub M.; Abu-Heiba, Ahmad; Odukomaiya, Wale; Akinina, Alla

    2018-06-25

    The research shown in this video features the GLIDES (Ground-Level Integrated Diverse Energy Storage) project, which has been under development at Oak Ridge National Laboratory (ORNL) since 2013. GLIDES can store energy via combined inputs of electricity and heat, and deliver dispatchable electricity. Supported by ORNL’s Laboratory Director’s Research and Development (LDRD) fund, this energy storage system is low-cost, and hybridizes compressed air and pumped-hydro approaches to allow for storage of intermittent renewable energy at high efficiency. A U.S. patent application for this novel energy storage concept has been submitted, and research findings suggest it has the potential to be a flexible, low-cost, scalable, high-efficiency option for energy storage, especially useful in residential and commercial buildings.

  13. Flywheel energy storage workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Kain, D.; Carmack, J.

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies,more » and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.« less

  14. Implications of Differential Stress Response Activation Following Non-Frozen Hepatocellular Storage

    PubMed Central

    Corwin, William L.; Baust, John G.; Van Buskirk, Robert G.

    2013-01-01

    Hepatocytes are critical for numerous cell therapies and in vitro investigations. A limiting factor for their use in these applications is the ability to process and preserve them without loss of viability or functionality. Normal rat hepatocytes (NHEPs) and human hepatoma (C3A) cells were stored at either 4°C or 37°C to examine post-processing stress responses. Resveratrol and salubrinal were used during storage to determine how targeted molecular stress pathway modulation would affect cell survival. This study revealed that storage outcome is dependent upon numerous factors including: cell type, storage media, storage length, storage temperature, and chemical modulator. These data implicate a molecular-based stress response that is not universal but is specific to the set of conditions under which cells are stored. Further, these findings allude to the potential for targeted protection or destruction of particular cell types for numerous applications, from diagnostic cell selection to cell-based therapy. Ultimately, this study demonstrates the need for further in-depth molecular investigations into the cellular stress response to bioprocessing and preservation. PMID:24845253

  15. Metal-functionalized silicene for efficient hydrogen storage.

    PubMed

    Hussain, Tanveer; Chakraborty, Sudip; Ahuja, Rajeev

    2013-10-21

    First-principles calculations based on density functional theory are used to investigate the electronic structure along with the stability, bonding mechanism, band gap, and charge transfer of metal-functionalized silicene to envisage its hydrogen-storage capacity. Various metal atoms including Li, Na, K, Be, Mg, and Ca are doped into the most stable configuration of silicene. The corresponding binding energies and charge-transfer mechanisms are discussed from the perspective of hydrogen-storage compatibility. The Li and Na metal dopants are found to be ideally suitable, not only for strong metal-to-substrate binding and uniform distribution over the substrate, but also for the high-capacity storage of hydrogen. The stabilities of both Li- and Na-functionalized silicene are also confirmed through molecular dynamics simulations. It is found that both of the alkali metals, Li(+) and Na(+), can adsorb five hydrogen molecules, attaining reasonably high storage capacities of 7.75 and 6.9 wt %, respectively, with average adsorption energies within the range suitable for practical hydrogen-storage applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Gas storage materials, including hydrogen storage materials

    DOEpatents

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  17. Gas storage materials, including hydrogen storage materials

    DOEpatents

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  18. Microfluidic and micro-core methods for enhanced oil recovery and carbon storage applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Phong

    Injection of CO2 into the subsurface, for both storage and oil recovery, is an emerging strategy to mitigate atmospheric CO2 emissions and associated climate change. In this thesis microfluidic and micro-core methods were developed to inform combined CO2-storage and oil recovery operations and determine relevant fluid properties. Pore scale studies of nanoparticle stabilized CO2-in-water foam and its application in oil recovery to show significant improvement in oil recovery rate with different oils from around the world (light, medium, and heavy). The CO2 nanoparticle-stabilized CO2 foams generate a three-fold increase in oil recovery (an additional 15% of initial oil in place) as compared to an otherwise similar CO2 gas flood. Nanoparticle-stabilized CO2 foam flooding also results in significantly smaller oil-in-water emulsion sizes. All three oils show substantial additional oil recovery and a positive reservoir homogenization effect. A supporting microfluidic approach is developed to quantify the minimum miscibility pressure (MMP) -- a critical parameter for combined CO 2 storage and enhanced oil recovery. The method leverages the inherent fluorescence of crude oils, is faster than conventional technologies, and provides quantitative, operator-independent measurements. In terms of speed, a pressure scan for a single minimum miscibility pressure measurement required less than 30 min, in stark contrast to days or weeks with existing rising bubble and slimtube methods. In practice, subsurface geology also interacts with injected CO 2. Commonly carbonate dissolution results in pore structure, porosity, and permeability changes. These changes are measured by x-ray microtomography (micro-CT), liquid permeability measurements, and chemical analysis. Chemical composition of the produced liquid analyzed by inductively coupled plasma-atomic emission spectrometer (ICP-AES) shows concentrations of magnesium and calcium. This work leverages established advantages of

  19. Solar thermoelectricity via advanced latent heat storage: A cost-effective small-scale CSP application

    NASA Astrophysics Data System (ADS)

    Glatzmaier, G. C.; Rea, J.; Olsen, M. L.; Oshman, C.; Hardin, C.; Alleman, J.; Sharp, J.; Weigand, R.; Campo, D.; Hoeschele, G.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2017-06-01

    We are developing a novel concentrating solar electricity-generating technology that is both modular and dispatchable. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) uses concentrated solar flux to generate high-temperature thermal energy, which directly converts to electricity via thermoelectric generators (TEGs), stored within a phase-change material (PCM) for electricity generation at a later time, or both allowing for simultaneous charging of the PCM and electricity generation. STEALS has inherent features that drive its cost-competitive scale to be much smaller than current commercial concentrating solar power (CSP) plants. Most obvious is modularity of the solid-state TEG, which favors smaller scales in the kilowatt range as compared to CSP steam turbines, which are minimally 50 MWe for commercial power plants. Here, we present techno-economic and market analyses that show STEALS can be a cost-effective electricity-generating technology with particular appeal to small-scale microgrid applications. We evaluated levelized cost of energy (LCOE) for STEALS and for a comparable photovoltaic (PV) system with battery storage. For STEALS, we estimated capital costs and the LCOE as functions of the type of PCM including the use of recycled aluminum alloys, and evaluated the cost tradeoffs between plasma spray coatings and solution-based boron coatings that are applied to the wetted surfaces of the PCM subsystem. We developed a probabilistic cost model that accounts for uncertainties in the cost and performance inputs to the LCOE estimation. Our probabilistic model estimated LCOE for a 100-kWe STEALS system that had 5 hours of thermal storage and 8-10 hours of total daily power generation. For these cases, the solar multiple for the heliostat field varied between 1.12 and 1.5. We identified microgrids as a likely market for the STEALS system. We characterized microgrid markets in terms of nominal power, dispatchability, geographic location, and

  20. Solar Thermoelectricity via Advanced Latent Heat Storage: A Cost-Effective Small-Scale CSP Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glatzmaier, Greg C.; Rea, J.; Olsen, Michele L.

    We are developing a novel concentrating solar electricity-generating technology that is both modular and dispatchable. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) uses concentrated solar flux to generate high-temperature thermal energy, which directly converts to electricity via thermoelectric generators (TEGs), stored within a phase-change material (PCM) for electricity generation at a later time, or both allowing for simultaneous charging of the PCM and electricity generation. STEALS has inherent features that drive its cost-competitive scale to be much smaller than current commercial concentrating solar power (CSP) plants. Most obvious is modularity of the solid-state TEG, which favors smaller scales inmore » the kilowatt range as compared to CSP steam turbines, which are minimally 50 MWe for commercial power plants. Here, we present techno-economic and market analyses that show STEALS can be a cost-effective electricity-generating technology with particular appeal to small-scale microgrid applications. We evaluated levelized cost of energy (LCOE) for STEALS and for a comparable photovoltaic (PV) system with battery storage. For STEALS, we estimated capital costs and the LCOE as functions of the type of PCM including the use of recycled aluminum alloys, and evaluated the cost tradeoffs between plasma spray coatings and solution-based boron coatings that are applied to the wetted surfaces of the PCM subsystem. We developed a probabilistic cost model that accounts for uncertainties in the cost and performance inputs to the LCOE estimation. Our probabilistic model estimated LCOE for a 100-kWe STEALS system that had 5 hours of thermal storage and 8-10 hours of total daily power generation. For these cases, the solar multiple for the heliostat field varied between 1.12 and 1.5. We identified microgrids as a likely market for the STEALS system. We characterized microgrid markets in terms of nominal power, dispatchability, geographic location

  1. PACS storage technology update: holographic storage.

    PubMed

    Colang, John E; Johnston, James N

    2006-01-01

    This paper focuses on the emerging technology of holographic storage and its effect on picture archiving and communication systems (PACS). A review of the emerging technology is presented, which includes a high level description of holographic drives and the associated substrate media, the laser and optical technology, and the spatial light modulator. The potential advantages and disadvantages of holographic drive and storage technology are evaluated. PACS administrators face myriad complex and expensive storage solutions and selecting an appropriate system is time-consuming and costly. Storage technology may become obsolete quickly because of the exponential nature of the advances in digital storage media. Holographic storage may turn out to be a low cost, high speed, high volume storage solution of the future; however, data is inconclusive at this early stage of the technology lifecycle. Despite the current lack of quantitative data to support the hypothesis that holographic technology will have a significant effect on PACS and standards of practice, it seems likely from the current information that holographic technology will generate significant efficiencies. This paper assumes the reader has a fundamental understanding of PACS technology.

  2. Nanowire modified carbon fibers for enhanced electrical energy storage

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  3. High-temperature molten salt thermal energy storage systems for solar applications

    NASA Astrophysics Data System (ADS)

    Petri, R. J.; Claar, T. D.

    1980-03-01

    Alkali and alkaline earth carbonate latent-heat storage salts, metallic containment materials, and thermal conductivity enhancement materials were investigated to satisfy the high temperature (704 to 871 C) thermal energy storage requirements of advanced solar-thermal power generation concepts are described. Properties of the following six salts selected for compatibility studies are given: three pure carbonates, K2CO3, Li2CO3 and Na2CO3; two eutectic mixtures, BaCO3/Na2CO3 and K2CO3/NaCO3, and one off-eutectic mixture of Na2CO3/K2CO3.

  4. High-temperature molten salt thermal energy storage systems for solar applications

    NASA Technical Reports Server (NTRS)

    Petri, R. J.; Claar, T. D.

    1980-01-01

    Alkali and alkaline earth carbonate latent-heat storage salts, metallic containment materials, and thermal conductivity enhancement materials were investigated to satisfy the high temperature (704 to 871 C) thermal energy storage requirements of advanced solar-thermal power generation concepts are described. Properties of the following six salts selected for compatibility studies are given: three pure carbonates, K2CO3, Li2CO3 and Na2CO3; two eutectic mixtures, BaCO3/Na2CO3 and K2CO3/NaCO3, and one off-eutectic mixture of Na2CO3/K2CO3.

  5. Thermal energy storage for power generation applications

    NASA Astrophysics Data System (ADS)

    Drost, M. K.; Antoniak, Zen I.; Brown, D. R.

    1990-03-01

    Studies strongly indicate that the United States will face widespread electrical power constraints in the 1990s. In many cases, the demand for increased power will occur during peak and intermediate demand periods. While natural gas is currently plentiful and economically attractive for meeting peak and intermediate loads, the development of a coal-fired peaking option would give utilities insurance against unexpected supply shortages or cost increases. This paper discusses a conceptual evaluation of using thermal energy storage (TES) to improve the economics of coal-fired peak and intermediate load power generation. The use of TES can substantially improve the economic attractiveness of meeting peak and intermediate loads with coal-fired power generation. In this case, conventional pulverized coal combustion equipment is continuously operated to heat molten nitrate salt, which is then stored. During peak demand periods, hot salt is withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allows the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The general impact is to decouple the generation of thermal energy from its conversion to electricity. The present study compares a conventional cycling pulverized coal-fired power plant to a pulverized coal-fired plant using nitrate salt TES. The study demonstrates that a coal-fired salt heater is technically feasible and should be less expensive than a similar coal-fired boiler. The results show the use of nitrate salt TES reduced the levelized cost of power by between 5 and 24 percent, depending on the operating schedule.

  6. Artificial Permafrost and the Application to the Low Temperature Storage for Foodstuffs

    NASA Astrophysics Data System (ADS)

    Ryokai, Kimitoshi; Fukuda, Masami

    In the cold regions like Hokkaido and Tohoku Districts, they have been advocating snow-overcoming, advantages of snow and effective utilization of cold climate. In fact, they have been positively trying to make use of snow and coldness as water resources, energy sources, structural materials and so on. One of energy utilization is for low temperature storage of foods. Since the potatoes have properties of adapting themselves to cold temperature when they are stored under cold environment, they have the tendency of growing in their sugar contents. As the results, all those foods which are stored under these cold environments will be the products of higher additional value. Here we will introduce the present situation of low temperature storage of foods by artificial permafrost, not only as the construction materials for cold storage house itself but also utilizing its own cold temperature.

  7. Exascale Storage Systems the SIRIUS Way

    NASA Astrophysics Data System (ADS)

    Klasky, S. A.; Abbasi, H.; Ainsworth, M.; Choi, J.; Curry, M.; Kurc, T.; Liu, Q.; Lofstead, J.; Maltzahn, C.; Parashar, M.; Podhorszki, N.; Suchyta, E.; Wang, F.; Wolf, M.; Chang, C. S.; Churchill, M.; Ethier, S.

    2016-10-01

    As the exascale computing age emerges, data related issues are becoming critical factors that determine how and where we do computing. Popular approaches used by traditional I/O solution and storage libraries become increasingly bottlenecked due to their assumptions about data movement, re-organization, and storage. While, new technologies, such as “burst buffers”, can help address some of the short-term performance issues, it is essential that we reexamine the underlying storage and I/O infrastructure to effectively support requirements and challenges at exascale and beyond. In this paper we present a new approach to the exascale Storage System and I/O (SSIO), which is based on allowing users to inject application knowledge into the system and leverage this knowledge to better manage, store, and access large data volumes so as to minimize the time to scientific insights. Central to our approach is the distinction between the data, metadata, and the knowledge contained therein, transferred from the user to the system by describing “utility” of data as it ages.

  8. Using semantic data modeling techniques to organize an object-oriented database for extending the mass storage model

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Short, Nicholas M., Jr.; Roelofs, Larry H.; Dorfman, Erik

    1991-01-01

    A methodology for optimizing organization of data obtained by NASA earth and space missions is discussed. The methodology uses a concept based on semantic data modeling techniques implemented in a hierarchical storage model. The modeling is used to organize objects in mass storage devices, relational database systems, and object-oriented databases. The semantic data modeling at the metadata record level is examined, including the simulation of a knowledge base and semantic metadata storage issues. The semantic data model hierarchy and its application for efficient data storage is addressed, as is the mapping of the application structure to the mass storage.

  9. Introduction to energy storage with market analysis and outlook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmid, Robert; Pillot, Christophe

    At first, the rechargeable battery market in 2012 will be described by technology - lead acid, NiCd, NiMH, lithium ion - and application - portable electronics, power tools, e-bikes, automotive, energy storage. This will be followed by details of the lithium ion battery market value chain from the raw material to the final application. The lithium ion battery market of 2012 will be analyzed and split by applications, form factors and suppliers. There is also a focus on the cathode, anode, electrolyte and separator market included. This report will also give a forecast for the main trends and the marketmore » in 2020, 2025. To conclude, a forecast for the rechargeable battery market by application for 2025 will be presented. Since energy storage plays an important role for the growing Electric Vehicle (EV) market, this EV issue is closely considered throughout this analysis.« less

  10. 18 CFR 284.501 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Applicability. 284.501 Section 284.501 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT... Applications for Market-Based Rates for Storage § 284.501 Applicability. Any pipeline or storage service...

  11. Symmetric Electrodes for Electrochemical Energy-Storage Devices.

    PubMed

    Zhang, Lei; Dou, Shi Xue; Liu, Hua Kun; Huang, Yunhui; Hu, Xianluo

    2016-12-01

    Increasing environmental problems and energy challenges have so far attracted urgent demand for developing green and efficient energy-storage systems. Among various energy-storage technologies, sodium-ion batteries (SIBs), electrochemical capacitors (ECs) and especially the already commercialized lithium-ion batteries (LIBs) are playing very important roles in the portable electronic devices or the next-generation electric vehicles. Therefore, the research for finding new electrode materials with reduced cost, improved safety, and high-energy density in these energy storage systems has been an important way to satisfy the ever-growing demands. Symmetric electrodes have recently become a research focus because they employ the same active materials as both the cathode and anode in the same energy-storage system, leading to the reduced manufacturing cost and simplified fabrication process. Most importantly, this feature also endows the symmetric energy-storage system with improved safety, longer lifetime, and ability of charging in both directions. In this Progress Report, we provide the comprehensive summary and comment on different symmetric electrodes and focus on the research about the applications of symmetric electrodes in different energy-storage systems, such as the above mentioned SIBs, ECs and LIBs. Further considerations on the possibility of mass production have also been presented.

  12. Merits of flywheels for spacecraft energy storage

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1984-01-01

    Flywheel energy storage systems which have a very good potential for use in spacecraft are discussed. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special importance, relative to batteries, are lighter weight, longer cycle and operating life, and high efficiency which minimizes solar array size and the amount of orbital makeup fuel required. Flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have characteristics which would be useful for military applications. The major disadvantages of flywheel energy storage systems are that: power is not available during the launch phase without special provisions; and in flight failure of units may force shutdown of good counter rotating units, amplifying the effects of failure and limiting power distribution system options; no inherent emergency power capability unless specifically designed for, and a high level of complexity compared with batteries. The potential advantages of the flywheel energy storage system far outweigh the disadvantages.

  13. Stability of lutein encapsulated whey protein nano-emulsion during storage

    PubMed Central

    Guo, Mingruo

    2018-01-01

    Lutein is a hydrophobic carotenoid that has multiple health functions. However, the application of lutein is limited due to its poor solubility in water and instability under certain conditions during storage. Hereby we generated lutein loaded nano-emulsions using whey protein isolate (WPI) or polymerized whey protein isolate (PWP) with assistance of high intensity ultrasound and evaluate their stability during storage at different conditions. We measured the particle size, zeta-potential, physical stability and lutein content change. Results showed that the PWP based nano-emulsion system was not stable in the tested Oil/Water/Ethanol system indicated by the appearance of stratification within only one week. The WPI based nano-emulsion system showed stable physiochemical stability during the storage at 4°C. The lutein content of the system was reduced by only 4% after four weeks storage at 4°C. In conclusion, our whey protein based nano-emulsion system provides a promising strategy for encapsulation of lutein or other hydrophobic bioactive molecules to expand their applications. PMID:29415071

  14. Program definition and assessment overview. [for thermal energy storage project management

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1980-01-01

    The implementation of a program level assessment of thermal energy storage technology thrusts for the near and far term to assure overall coherent energy storage program is considered. The identification and definition of potential thermal energy storage applications, definition of technology requirements, and appropriate market sectors are discussed along with the necessary coordination, planning, and preparation associated with program reviews, workshops, multi-year plans and annual operating plans for the major laboratory tasks.

  15. Modeling of the Assiniboine Delta Aquifer (ADA) of Manitoba using the Groundwater Storage from GRACE

    NASA Astrophysics Data System (ADS)

    Yirdaw-Zeleke, S.; Snelgrove, K.

    2007-12-01

    This paper investigates the use of GRACE (Gravity Recovery and Climate Experiment) moisture storages for modeling of the Assiniboine Delta Aquifer (ADA) of Manitoba, Canada. There are great promises from GRACE in capturing regional groundwater storages that are potentially used for modeling application. However, it is well known that these storages are difficult to measure over the scales needed for hydrological model applications. Therefore, prior to modeling the aquifer using GRACE moisture storages, the storages need to be downscaled in to regional groundwater storages using the measured groundwater head data available in the area. Previous studies in the ADA have shown that the downscaled moisture storage estimates compared favorably with the measured groundwater storage over the area. This study focuses on the modeling of the ADA aquifer using the downscaled GRACE moisture storages. These storages will be used to initialize, calibration and potentially steer the hydrologic simulation. The calibrated model then will be validated independently using the measured data. These validations will hopefully provide better explanations for the underlying reasons for the differences in model predictions and measurements. This will identify some of the key assumptions and uncertainties in predicting moisture storage, and so highlight topics for further discussion and research.

  16. Better latent heat and specific heat of stearic acid with magnetite/graphene nanocomposite addition for thermal storage application

    NASA Astrophysics Data System (ADS)

    Andiarto, R.; Nuryadin, M. K.; Taufik, A.; Saleh, R.

    2017-04-01

    In our previous study, the addition of Magnetite (Fe3O4) into Stearic acid (Sa) as an organic phase change material (PCM) shows an enhancement in the latent heat for thermal energy storage applications. The latent heat of the PCM can also be increased by adding graphene material. Therefore, in this research, the thermal properties of Sa have been studied by the sonication method for several different concentrations of Fe3O4/Graphene nanocomposite additions. The structural properties of all of the samples were observed by X-Ray diffraction (XRD). Melting-solidifying behavior and specific heat value were measured by differential scanning calorimetry (DSC). The thermal degradation process of all samples was investigated by thermogravimetric analysis (TGA). Based on the DSC results, the presence of Fe3O4/Graphene in the Sa enhances the latent heat up to 20%. The specific heat value of the mixture was also found to be increased as the concentration of Fe3O4/Graphene to Sa increased. The TGA results show a lowered thermal degradation process of the Sa by the addition of the Fe3O4/Graphene which indicates a higher thermal stability of the mixture. In conclusion, the results demonstrate that the addition of Fe3O4/Graphene to Sa improves both the sensible heat and the latent heat of the mixture which are very important for thermal energy storage applications

  17. Analysis and Research on Spatial Data Storage Model Based on Cloud Computing Platform

    NASA Astrophysics Data System (ADS)

    Hu, Yong

    2017-12-01

    In this paper, the data processing and storage characteristics of cloud computing are analyzed and studied. On this basis, a cloud computing data storage model based on BP neural network is proposed. In this data storage model, it can carry out the choice of server cluster according to the different attributes of the data, so as to complete the spatial data storage model with load balancing function, and have certain feasibility and application advantages.

  18. Applying a cloud computing approach to storage architectures for spacecraft

    NASA Astrophysics Data System (ADS)

    Baldor, Sue A.; Quiroz, Carlos; Wood, Paul

    As sensor technologies, processor speeds, and memory densities increase, spacecraft command, control, processing, and data storage systems have grown in complexity to take advantage of these improvements and expand the possible missions of spacecraft. Spacecraft systems engineers are increasingly looking for novel ways to address this growth in complexity and mitigate associated risks. Looking to conventional computing, many solutions have been executed to solve both the problem of complexity and heterogeneity in systems. In particular, the cloud-based paradigm provides a solution for distributing applications and storage capabilities across multiple platforms. In this paper, we propose utilizing a cloud-like architecture to provide a scalable mechanism for providing mass storage in spacecraft networks that can be reused on multiple spacecraft systems. By presenting a consistent interface to applications and devices that request data to be stored, complex systems designed by multiple organizations may be more readily integrated. Behind the abstraction, the cloud storage capability would manage wear-leveling, power consumption, and other attributes related to the physical memory devices, critical components in any mass storage solution for spacecraft. Our approach employs SpaceWire networks and SpaceWire-capable devices, although the concept could easily be extended to non-heterogeneous networks consisting of multiple spacecraft and potentially the ground segment.

  19. 75 FR 47587 - Wabash Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... LLC (Petitioner), 1044 North 115th Street, Suite 400, Omaha, NE 68154-4446, filed in Docket No. CP10... Storage LLC, 1044 North 115th Street, Suite 400, Omaha, NE 68154-4446, or by calling (402) 691- 9711...

  20. Flywheel Energy Storage Technology Workshop

    NASA Astrophysics Data System (ADS)

    Okain, D.; Howell, D.

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in flywheel energy storage (FES) technologies. FES offers several advantages over conventional electrochemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  1. SIMWEST - A simulation model for wind energy storage systems

    NASA Technical Reports Server (NTRS)

    Edsinger, R. W.; Warren, A. W.; Gordon, L. H.; Chang, G. C.

    1978-01-01

    This paper describes a comprehensive and efficient computer program for the modeling of wind energy systems with storage. The level of detail of SIMWEST (SImulation Model for Wind Energy STorage) is consistent with evaluating the economic feasibility as well as the general performance of wind energy systems with energy storage options. The software package consists of two basic programs and a library of system, environmental, and control components. The first program is a precompiler which allows the library components to be put together in building block form. The second program performs the technoeconomic system analysis with the required input/output, and the integration of system dynamics. An example of the application of the SIMWEST program to a current 100 kW wind energy storage system is given.

  2. Piezoelectric wafer active sensors under gamma radiation exposure toward applications for structural health monitoring of nuclear dry cask storage systems

    NASA Astrophysics Data System (ADS)

    Faisal Haider, Mohammad; Mei, Hanfei; Lin, Bin; Yu, Lingyu; Giurgiutiu, Victor; Lam, Poh-Sang; Verst, Christopher

    2018-03-01

    Structural health monitoring (SHM) is in urgent need and must be integrated into the nuclear-spent fuel storage systems to guarantee the safe operation. The dry cask storage system (DCSS) is such storage facility, which is licensed for temporary storage for nuclear-spent fuel at the independent spent fuel storage installations (ISFSIs) for certain predetermined period of time. Gamma radiation is one of the major radiation sources near DCSS. Therefore, a detailed experimental investigation was completed on the gamma radiation endurance of piezoelectric wafer active sensors (PWAS) transducers for SHM applications to the DCSS system. The irradiation test was done in a Co-60 gamma irradiator. Lead Zirconate Titanate (PZT) and Gallium Orthophosphate (GaPO4) PWAS transducers were exposed to 40.7 kGy gamma radiation. Total radiation dose was achieved in two different radiation dose rates: (a) slower radiation rate at 0.1 kGy/hr for 20 hours (b) accelerated radiation rate at 1.233 kGy/hr for 32 hours. The total cumulative radiation dose of 40.7 kGy is equivalent to 45 years of operation in DCSS system. Electro-mechanical impedance and admittance (EMIA) signatures and electrical capacitance were measured to evaluate the PWAS performance after each gamma radiation exposure. The change in resonance frequency of PZT-PWAS transducer for both in-plane and thickness mode was observed. The GaPO4-PWAS EMIA spectra do not show a significant shift in resonance frequency after gamma irradiation exposure. Radiation endurance of new high-temperature HPZ-HiT PWAS transducer was also evaluated. The HPZ-HiT transducers were exposed to gamma radiation at 1.233 kGy/hr for 160 hours with 80 hours interval. Therefore, the total accumulated gamma radiation dose is 184 kGy. No significant change in impedance spectra was observed due to gamma radiation exposure.

  3. Analysis of Life-Cycle Costs and Market Applications of Flywheel Energy-Storage Transit Vehicles

    DOT National Transportation Integrated Search

    1979-07-01

    The Urban Mass Transportation Administration (UMTA) has recently completed the Phase I activities of its Flywheel Energy Storage Program involving an analysis of the operational requirements and the conceptual design of flywheel energy storage vehicl...

  4. Physics issues in diffraction limited storage ring design

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Bai, ZhengHe; Gao, WeiWei; Feng, GuangYao; Li, WeiMin; Wang, Lin; He, DuoHui

    2012-05-01

    Diffraction limited electron storage ring is considered a promising candidate for future light sources, whose main characteristics are higher brilliance, better transverse coherence and better stability. The challenge of diffraction limited storage ring design is how to achieve the ultra low beam emittance with acceptable nonlinear performance. Effective linear and nonlinear parameter optimization methods based on Artificial Intelligence were developed for the storage ring physical design. As an example of application, partial physical design of HALS (Hefei Advanced Light Source), which is a diffraction limited VUV and soft X-ray light source, was introduced. Severe emittance growth due to the Intra Beam Scattering effect, which is the main obstacle to achieve ultra low emittance, was estimated quantitatively and possible cures were discussed. It is inspiring that better performance of diffraction limited storage ring can be achieved in principle with careful parameter optimization.

  5. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 1

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)

    1992-01-01

    Papers and viewgraphs from the conference are presented. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disks and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  6. Offshore Storage Resource Assessment - Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Bill; Ozgen, Chet

    reservoirs. This simulator was fast and easy to utilize and provided a valuable enhanced assessment and refinement of the estimated CO 2 storage volume for each reservoir simulated. The user interface was expanded to allow for calculation of a probability based assessment of the CO 2 storage volume based on typical uncertainties in operating conditions and reservoir properties during the CO 2 injection period. This modeling of the CO 2 storage estimates for the simulated reservoirs resulted in definition of correlations applicable to all reservoir types (a refined DOE equation) which can be used for predictive purposes using available public data. Application of the correlations to the 675 depleted fields yielded a total CO 2 storage capacity of 4,748 MM tons. The CO 2 storage assessments were supplemented with simulation modeling of eleven (11) oil reservoirs that quantified the change in the stored CO 2 storage volume with the addition of CO 2-EOR (Enhanced Oil Recovery) production. Application of CO 2-EOR to oil reservoirs resulted in higher volumes of CO 2 storage.« less

  7. Chemical energy storage: Part of a systemic solution

    NASA Astrophysics Data System (ADS)

    Schlögl, Robert

    2017-07-01

    This paper is a primer into concepts and opportunities of chemical energy storage. Starting from the quest for decarbonisation we reveal the possibilities of chemical energy storage. We briefly discuss the critical role of catalysis as enabling technology. We concentrate on options of large-scale production of chemicals from CO2 and green hydrogen. We discuss one potential application of fueling future combustion engines that could run with minimal regulated emissions without exhaust purifications and legal tricks.

  8. RAID Disk Arrays for High Bandwidth Applications

    NASA Technical Reports Server (NTRS)

    Moren, Bill

    1996-01-01

    High bandwidth applications require large amounts of data transferred to/from storage devices at extremely high data rates. Further, these applications often are 'real time' in which access to the storage device must take place on the schedule of the data source, not the storage. A good example is a satellite downlink - the volume of data is quite large and the data rates quite high (dozens of MB/sec). Further, a telemetry downlink must take place while the satellite is overhead. A storage technology which is ideally suited to these types of applications is redundant arrays of independent discs (RAID). Raid storage technology, while offering differing methodologies for a variety of applications, supports the performance and redundancy required in real-time applications. Of the various RAID levels, RAID-3 is the only one which provides high data transfer rates under all operating conditions, including after a drive failure.

  9. Fabrication of Porous Carbon-based Nanostructure for Energy Storage and Transfer Applications

    DTIC Science & Technology

    2014-06-09

    in the voltage range of 3.0 to 0.005 V (versus Li/Li+). Cyclic voltammetry (CV) was performed on a computer controlled MacPile II unit (Biological...performed at current density of 37mAg–1, voltage: 3.0-0.005V vs. Li/Li+. Cyclic voltammetry was performed at a scan rate of 58 µs/V. Red plots...pseudocapacitve storage behaviour of the electrode.19 The Li storage mechanism of both electrodes can also be studied carefully by slow scanning cyclic

  10. Design rules for phase-change materials in data storage applications.

    PubMed

    Lencer, Dominic; Salinga, Martin; Wuttig, Matthias

    2011-05-10

    Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and dicusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. PIMS: Memristor-Based Processing-in-Memory-and-Storage.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Jeanine

    Continued progress in computing has augmented the quest for higher performance with a new quest for higher energy efficiency. This has led to the re-emergence of Processing-In-Memory (PIM) ar- chitectures that offer higher density and performance with some boost in energy efficiency. Past PIM work either integrated a standard CPU with a conventional DRAM to improve the CPU- memory link, or used a bit-level processor with Single Instruction Multiple Data (SIMD) control, but neither matched the energy consumption of the memory to the computation. We originally proposed to develop a new architecture derived from PIM that more effectively addressed energymore » efficiency for high performance scientific, data analytics, and neuromorphic applications. We also originally planned to implement a von Neumann architecture with arithmetic/logic units (ALUs) that matched the power consumption of an advanced storage array to maximize energy efficiency. Implementing this architecture in storage was our original idea, since by augmenting storage (in- stead of memory), the system could address both in-memory computation and applications that accessed larger data sets directly from storage, hence Processing-in-Memory-and-Storage (PIMS). However, as our research matured, we discovered several things that changed our original direc- tion, the most important being that a PIM that implements a standard von Neumann-type archi- tecture results in significant energy efficiency improvement, but only about a O(10) performance improvement. In addition to this, the emergence of new memory technologies moved us to propos- ing a non-von Neumann architecture, called Superstrider, implemented not in storage, but in a new DRAM technology called High Bandwidth Memory (HBM). HBM is a stacked DRAM tech- nology that includes a logic layer where an architecture such as Superstrider could potentially be implemented.« less

  12. Natural Carbonation of Peridotite and Applications for Carbon Storage

    NASA Astrophysics Data System (ADS)

    Streit, E.; Kelemen, P.; Matter, J.

    2009-05-01

    Natural carbonation of peridotite in the Samail Ophiolite of Oman is surprisingly rapid and could be further enhanced to provide a safe, permanent method of CO2 storage through in situ formation of carbonate minerals. Carbonate veins form by low-temperature reaction between peridotite and groundwater in a shallow weathering horizon. Reaction with peridotite drives up the pH of the water, and extensive travertine terraces form where this groundwater emerges at the surface in alkaline springs. The potential sink for CO2 in peridotite is enormous: adding 1wt% CO2 to the peridotite in Oman could consume 1/4 of all atmospheric carbon, and several peridotite bodies of comparable size exist throughout the world. Thus carbonation rate and cost, not reservoir size, are the limiting factors on the usefulness of in situ mineral carbonation of peridotite for carbon storage. The carbonate veins in Oman are much younger than previously believed, yielding average 14C ages of 28,000 years. Age data plus estimated volumes of carbonate veins and terraces suggest 10,000 to 100,000 tons per year of CO2 are consumed by these peridotite weathering reactions in Oman. This rate can be enhanced by drilling, hydraulic fracture, injecting CO2-rich fluid, and increasing reaction temperature. Drilling and hydraulic fracture can increase volume of peridotite available for reaction. Additional fracture may occur due to the solid volume increase of the carbonation reaction, and field observations suggest that such reaction-assisted fracture may be responsible for hierarchical carbonate vein networks in peridotite. Natural carbonation of peridotite in Oman occurs at low pCO2, resulting in partial carbonation of peridotite, forming magnesite and serpentine. Raising pCO2 increases carbonation efficiency, forming of magnesite + talc, or at complete carbonation, magnesite + quartz, allowing ˜30wt% CO2 to be added to the peridotite. Increasing the temperature to 185°C can improve the reaction rate by

  13. Lead free Bi0.5Na0.5TiO3 (BNT) and polyvinylidene fluoride (PVDF) based nanocomposite for energy storage applications

    NASA Astrophysics Data System (ADS)

    Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Sunil; Kar, Manoranjan

    2018-05-01

    Novel ceramic-polymer nanocomposites have great potential for electrical energy storage applications due to its high energy storage density. In the present work, BNT and PVDF based flexible polymer nanocomposites (BNT-PVDF) with different volume fraction (ϕ = 0, 5, 10, 15) were fabricated by solution casting method. Enhancement in beta phase of PVDF polymer matrix with the volume fraction (ϕ = 5, 10, 15) of BNT has been confirmed by X-ray diffraction (XRD) technique as well as Fourier transform infrared (FTIR) spectroscopy analysis. The enhancement of β phase increases as compared to (α) phases with volume fraction (ϕ) of nanofiller (BNT) in the matrix (PVDF) due to internal stress at the interface as well as structural modification of PVDF matrix. BNT-PVDF nanocomposites (with ϕ=10) showed a high dielectric constant (ɛr ≈ 78) relative to pure PVDF (ɛr ≈ 10) at 100 Hz. In addition to this, it exhibits relaxor type ferroelectric behavior with energy storage efficiency up to 77% for the volume fraction (ϕ) of 10.

  14. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine.

    PubMed

    Sun, Ming-Hui; Huang, Shao-Zhuan; Chen, Li-Hua; Li, Yu; Yang, Xiao-Yu; Yuan, Zhong-Yong; Su, Bao-Lian

    2016-06-13

    Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.

  15. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    NASA Technical Reports Server (NTRS)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    Sizing procedures are presented for latent heat thermal energy storage systems that can be used for electric utility off-peak energy storage, solar power plants and other preliminary design applications.

  16. Voltage-Dependent Charge Storage in Cladded Zn0.56Cd0.44Se Quantum Dot MOS Capacitors for Multibit Memory Applications

    NASA Astrophysics Data System (ADS)

    Khan, J.; Lingalugari, M.; Al-Amoody, F.; Jain, F.

    2013-11-01

    As conventional memories approach scaling limitations, new storage methods must be utilized to increase Si yield and produce higher on-chip memory density. Use of II-VI Zn0.56Cd0.44Se quantum dots (QDs) is compatible with epitaxial gate insulators such as ZnS-ZnMgS. Voltage-dependent charging effects in cladded Zn0.56Cd0.44Se QDs are presented in a conventional metal-oxide-semiconductor capacitor structure. Charge storage capabilities in Si and ZnMgS QDs have been reported by various researchers; this work is focused on II-VI material Zn0.56Cd0.44Se QDs nucleated using photoassisted microwave plasma metalorganic chemical vapor deposition. Using capacitance-voltage hysteresis characterization, the multistep charging and discharging capabilities of the QDs at room temperature are presented. Three charging states are presented within a 10 V charging voltage range. These characteristics exemplify discrete charge states in the QD layer, perfect for multibit, QD-functionalized high-density memory applications. Multiple charge states with low operating voltage provide device characteristics that can be used for multibit storage by allowing varying charges to be stored in a QD layer based on the applied "write" voltage.

  17. Trap Depth Engineering of SrSi2O2N2:Ln2+,Ln3+ (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) Persistent Luminescence Materials for Information Storage Applications.

    PubMed

    Zhuang, Yixi; Lv, Ying; Wang, Le; Chen, Wenwei; Zhou, Tian-Liang; Takeda, Takashi; Hirosaki, Naoto; Xie, Rong-Jun

    2018-01-17

    Deep-trap persistent luminescence materials exhibit unique properties of energy storage and controllable photon release under additional stimulation, allowing for both wavelength and intensity multiplexing to realize high-capacity storage in the next-generation information storage system. However, the lack of suitable persistent luminescence materials with deep traps is the bottleneck of such storage technologies. In this study, we successfully developed a series of novel deep-trap persistent luminescence materials in the Ln 2+ /Ln 3+ -doped SrSi 2 O 2 N 2 system (Ln 2+ = Yb, Eu; Ln 3+ = Dy, Ho, Er) by applying the strategy of trap depth engineering. Interestingly, the trap depth can be tailored by selecting different codopants, and it monotonically increases from 0.90 to 1.18 eV in the order of Er, Ho, and Dy. This is well explained by the energy levels indicated in the host-referred binding energy scheme. The orange-red-emitting SrSi 2 O 2 N 2 :Yb,Dy and green-emitting SrSi 2 O 2 N 2 :Eu,Dy phosphors are demonstrated to be good candidates of information storage materials, which are attributed to their deep traps, narrow thermoluminescence glow bands, high emission efficiency, and excellent chemical stability. This work not only validates the suitability of deep-trap persistent luminescence materials in the information storage applications, but also broadens the avenue to explore such kinds of new materials for applications in anticounterfeiting and advanced displays.

  18. Metal oxide-carbon composites for energy conversion and storage

    NASA Astrophysics Data System (ADS)

    Perera, Sanjaya Dulip

    The exponential growth of the population and the associated energy demand requires the development of new materials for sustainable energy conversion and storage. Expanding the use of renewable energy sources to generate electricity is still not sufficient enough to fulfill the current energy demand. Electricity generation by wind and solar is the most promising alternative energy resources for coal and oil. The first part of the dissertation addresses an alternative method for preparing TiO2 nanotube based photoanodes for DSSCs. This would involve smaller diameter TiO2 nanotubes (˜10 nm), instead of nanoparticles or electrochemically grown larger nanotubes. Moreover, TiO2 nanotube-graphene based photocatalysts were developed to treat model pollutants. In the second part of this dissertation, the development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed. Among different types of energy storage systems, batteries are the most convenient method to store electrical energy. However, the low power performance of batteries limits the application in different types of electrical energy storage. The development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed.

  19. The applications of carbon nanomaterials in fiber-shaped energy storage devices

    NASA Astrophysics Data System (ADS)

    Wu, Jingxia; Hong, Yang; Wang, Bingjie

    2018-01-01

    As a promising candidate for future demand, fiber-shaped electrochemical energy storage devices, such as supercapacitors and lithium-ion batteries have obtained considerable attention from academy to industry. Carbon nanomaterials, such as carbon nanotube and graphene, have been widely investigated as electrode materials due to their merits of light weight, flexibility and high capacitance. In this review, recent progress of carbon nanomaterials in flexible fiber-shaped energy storage devices has been summarized in accordance with the development of fibrous electrodes, including the diversified electrode preparation, functional and intelligent device structure, and large-scale production of fibrous electrodes or devices. Project supported by the National Natural Science Foundation of China (Nos. 21634003, 21604012).

  20. An efficient numerical solution of the transient storage equations for solute transport in small streams

    USGS Publications Warehouse

    Runkel, Robert L.; Chapra, Steven C.

    1993-01-01

    Several investigators have proposed solute transport models that incorporate the effects of transient storage. Transient storage occurs in small streams when portions of the transported solute become isolated in zones of water that are immobile relative to water in the main channel (e.g., pools, gravel beds). Transient storage is modeled by adding a storage term to the advection-dispersion equation describing conservation of mass for the main channel. In addition, a separate mass balance equation is written for the storage zone. Although numerous applications of the transient storage equations may be found in the literature, little attention has been paid to the numerical aspects of the approach. Of particular interest is the coupled nature of the equations describing mass conservation for the main channel and the storage zone. In the work described herein, an implicit finite difference technique is developed that allows for a decoupling of the governing differential equations. This decoupling method may be applied to other sets of coupled equations such as those describing sediment-water interactions for toxic contaminants. For the case at hand, decoupling leads to a 50% reduction in simulation run time. Computational costs may be further reduced through efficient application of the Thomas algorithm. These techniques may be easily incorporated into existing codes and new applications in which simulation run time is of concern.

  1. A review on on-board challenges of magnesium-based hydrogen storage materials for automobile applications

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Wasikur

    2017-06-01

    The attempt of the review is to realize on-board hydrogen storage technologies concerning magnesium based solid-state matrix to allow fuel cell devices to facilitate sufficient storage capacity, cost, safety and performance requirements to be competitive with current vehicles. Hydrogen, a potential and clean fuel, can be applied in the state-of-the-art technology of `zero emission' vehicles. Hydrogen economy infrastructure both for stationary and mobile purposes is complicated due to its critical physico-chemical properties and materials play crucial roles in every stage of hydrogen production to utilization in fuel cells in achieving high conversion efficiency, safety and robustness of the technologies involved. Moreover, traditional hydrogen storage facilities are rather complicated due to its anomalous properties such as highly porous solids and polymers have intrinsic microporosity, which is the foremost favorable characteristics of fast kinetics and reversibility, but the major drawback is the low storage capacity. In contrast, metal hydrides and complex hydrides have high hydrogen storage capacity but thermodynamically unfavorable. Therefore, hydrogen storage is a real challenge to realize `hydrogen economy' that will solve the critical issues of humanity such as energy depletion, greenhouse emission, air pollution and ultimately climate change. Magnesium based materials, particularly magnesium hydride (MgH2) has been proposed as a potential hydrogen storage material due to its high gravimetric and volumetric capacity as well as environmentally benign properties to work the grand challenge out.

  2. Postharvest salicylic acid treatment reduces storage rots in water-stressed but no unstressed sugarbeet roots

    USDA-ARS?s Scientific Manuscript database

    Exogenous application of salicylic acid (SA) reduces storage rots in a number of postharvest crops. SA’s ability to protect sugarbeet (Beta vulgaris L.) taproots from common storage rot pathogens, however, is unknown. To determine the potential of SA to reduce storage losses caused by three common...

  3. Experimental analysis of the performance of optimized fin structures in a latent heat energy storage test rig

    NASA Astrophysics Data System (ADS)

    Johnson, Maike; Hübner, Stefan; Reichmann, Carsten; Schönberger, Manfred; Fiß, Michael

    2017-06-01

    Energy storage systems are a key technology for developing a more sustainable energy supply system and lowering overall CO2 emissions. Among the variety of storage technologies, high temperature phase change material (PCM) storage is a promising option with a wide range of applications. PCM storages using an extended finned tube storage concept have been designed and techno-economically optimized for solar thermal power plant operations. These finned tube components were experimentally tested in order to validate the optimized design and simulation models used. Analysis of the charging and discharging characteristics of the storage at the pilot scale gives insight into the heat distribution both axially as well as radially in the storage material, thereby allowing for a realistic validation of the design. The design was optimized for discharging of the storage, as this is the more critical operation mode in power plant applications. The data show good agreement between the model and the experiments for discharging.

  4. Thermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review

    PubMed Central

    Zhu, Min; Lu, Yanshan; Ouyang, Liuzhang; Wang, Hui

    2013-01-01

    Mg-based hydrides are one of the most promising hydrogen storage materials because of their relatively high storage capacity, abundance, and low cost. However, slow kinetics and stable thermodynamics hinder their practical application. In contrast to the substantial progress in the enhancement of the hydrogenation/dehydrogenation kinetics, thermodynamic tuning is still a great challenge for Mg-based alloys. At present, the main strategies to alter the thermodynamics of Mg/MgH2 are alloying, nanostructuring, and changing the reaction pathway. Using these approaches, thermodynamic tuning has been achieved to some extent, but it is still far from that required for practical application. In this article, we summarize the advantages and disadvantages of these strategies. Based on the current progress, finding reversible systems with high hydrogen capacity and effectively tailored reaction enthalpy offers a promising route for tuning the thermodynamics of Mg-based hydrogen storage alloys. PMID:28788353

  5. Triboelectrification-Enabled Self-Powered Data Storage.

    PubMed

    Kuang, Shuang Yang; Zhu, Guang; Wang, Zhong Lin

    2018-02-01

    Data storage by any means usually requires an electric driving power for writing or reading. A novel approach for self-powered, triboelectrification-enabled data storage (TEDS) is presented. Data are incorporated into a set of metal-based surface patterns. As a probe slides across the patterned surface, triboelectrification between the scanning probe and the patterns produces alternatively varying voltage signal in quasi-square wave. The trough and crest of the quasi-square wave signal are coded as binary bits of "0" and "1," respectively, while the time span of the trough and the crest is associated with the number of bits. The storage of letters and sentences is demonstrated through either square-shaped or disc-shaped surface patterns. Based on experimental data and numerical calculation, the theoretically predicted maximum data storage density could reach as high as 38.2 Gbit in -2 . Demonstration of real-time data retrieval is realized with the assistance of software interface. For the TEDS reported in this work, the measured voltage signal is self-generated as a result of triboelectrification without the reliance on an external power source. This feature brings about not only low power consumption but also a much more simplified structure. Therefore, this work paves a new path to a unique approach of high-density data storage that may have widespread applications.

  6. Integrated heat exchanger design for a cryogenic storage tank

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Tomsik, T. M.; Bonner, T.; Oliveira, J. M.; Conyers, H. J.; Johnson, W. L.; Notardonato, W. U.

    2014-01-01

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  7. Integrated heat exchanger design for a cryogenic storage tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindricalmore » tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.« less

  8. Storage and retrieval of medical images from data warehouses

    NASA Astrophysics Data System (ADS)

    Tikekar, Rahul V.; Fotouhi, Farshad A.; Ragan, Don P.

    1995-11-01

    As our applications continue to become more sophisticated, the demand for more storage continues to rise. Hence many businesses are looking toward data warehousing technology to satisfy their storage needs. A warehouse is different from a conventional database and hence deserves a different approach while storing data that might be retrieved at a later point in time. In this paper we look at the problem of storing and retrieving medical image data from a warehouse. We regard the warehouse as a pyramid with fast storage devices at the top and slower storage devices at the bottom. Our approach is to store the most needed information abstract at the top of the pyramid and more detailed and storage consuming data toward the end of the pyramid. This information is linked for browsing purposes. In a similar fashion, during the retrieval of data, the user is given a sample representation with browse option of the detailed data and, as required, more and more details are made available.

  9. iSDS: a self-configurable software-defined storage system for enterprise

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Shyen Eric; Huang, Chun-Fang; Huang, Ming-Jen

    2018-01-01

    Storage is one of the most important aspects of IT infrastructure for various enterprises. But, enterprises are interested in more than just data storage; they are interested in such things as more reliable data protection, higher performance and reduced resource consumption. Traditional enterprise-grade storage satisfies these requirements at high cost. It is because traditional enterprise-grade storage is usually designed and constructed by customised field-programmable gate array to achieve high-end functionality. However, in this ever-changing environment, enterprises request storage with more flexible deployment and at lower cost. Moreover, the rise of new application fields, such as social media, big data, video streaming service etc., makes operational tasks for administrators more complex. In this article, a new storage system called intelligent software-defined storage (iSDS), based on software-defined storage, is described. More specifically, this approach advocates using software to replace features provided by traditional customised chips. To alleviate the management burden, it also advocates applying machine learning to automatically configure storage to meet dynamic requirements of workloads running on storage. This article focuses on the analysis feature of iSDS cluster by detailing its architecture and design.

  10. Bismuth pyrochlore-based thin films for dielectric energy storage

    NASA Astrophysics Data System (ADS)

    Michael, Elizabeth K.

    The drive towards the miniaturization of electronic devices has created a need for dielectric materials with large energy storage densities. These materials, which are used in capacitors, are a critical component in many electrical systems. Here, the development of dielectric energy storage materials for pulsed power applications, which require materials with the ability to accumulate a large amount of energy and then deliver it to the system rapidly, is explored. The amount of electrostatic energy that can be stored by a material is a function of the induced polarization and the dielectric breakdown strength of the material. An ideal energy storage dielectric would possess a high relative permittivity, high dielectric breakdown strength, and low loss tangent under high applied electric fields. The bismuth pyrochlores are a compositionally tunable family of materials that meet these requirements. Thin films of cubic pyrochlore bismuth zinc niobate, bismuth zinc tantalate, and bismuth zinc niobate tantalate, were fabricated using a novel solution chemistry based upon the Pechini method. This solution preparation is advantageous because it avoids the use of teratogenic solvents, such as 2-methoxyethanol. Crystalline films fabricated using this solution chemistry had very small grains that were approximately 27 nm in lateral size and 35 nm through the film thickness. Impedance measurements found that the resistivity of the grain boundaries was two orders of magnitude higher than the resistivity of the grain interior. The presence of many resistive grain boundaries impeded conduction through the films, resulting in high breakdown strengths for these materials. In addition to high breakdown strengths, this family of materials exhibited moderate relative permittivities of between 55 +/- 2 and 145 +/- 5, for bismuth zinc tantalate and bismuth zinc niobate, respectively, and low loss tangents on the order of 0.0008 +/- 0.0001. Increases in the concentration of the tantalum

  11. 10 CFR 72.240 - Conditions for spent fuel storage cask reapproval.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... has been determined by the NRC. The application must be accompanied by a safety analysis report (SAR). The new SAR may reference the SAR originally submitted for the approved spent fuel storage cask design. (c) The design of a spent fuel storage cask will be reapproved if the conditions in § 72.238 are met...

  12. Could Blobs Fuel Storage-Based Convergence between HPC and Big Data?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matri, Pierre; Alforov, Yevhen; Brandon, Alvaro

    The increasingly growing data sets processed on HPC platforms raise major challenges for the underlying storage layer. A promising alternative to POSIX-IO- compliant file systems are simpler blobs (binary large objects), or object storage systems. Such systems offer lower overhead and better performance at the cost of largely unused features such as file hierarchies or permissions. Similarly, blobs are increasingly considered for replacing distributed file systems for big data analytics or as a base for storage abstractions such as key-value stores or time-series databases. This growing interest in such object storage on HPC and big data platforms raises the question:more » Are blobs the right level of abstraction to enable storage-based convergence between HPC and Big Data? In this paper we study the impact of blob-based storage for real-world applications on HPC and cloud environments. The results show that blobbased storage convergence is possible, leading to a significant performance improvement on both platforms« less

  13. Evolutionary Metal Oxide Clusters for Novel Applications: Toward High-Density Data Storage in Nonvolatile Memories.

    PubMed

    Chen, Xiaoli; Zhou, Ye; Roy, Vellaisamy A L; Han, Su-Ting

    2018-01-01

    Because of current fabrication limitations, miniaturizing nonvolatile memory devices for managing the explosive increase in big data is challenging. Molecular memories constitute a promising candidate for next-generation memories because their properties can be readily modulated through chemical synthesis. Moreover, these memories can be fabricated through mild solution processing, which can be easily scaled up. Among the various materials, polyoxometalate (POM) molecules have attracted considerable attention for use as novel data-storage nodes for nonvolatile memories. Here, an overview of recent advances in the development of POMs for nonvolatile memories is presented. The general background knowledge of the structure and property diversity of POMs is also summarized. Finally, the challenges and perspectives in the application of POMs in memories are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Advanced latent heat of fusion thermal energy storage for solar power systems

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Stearns, J. W.

    1985-01-01

    The use of solar thermal power systems coupled with thermal energy storage (TES) is being studied for both terrestrial and space applications. In the case of terrestrial applications, it was found that one or two hours of TES could shift the insolation peak (solar noon) to coincide with user peak loads. The use of a phase change material (PCM) is attractive because of the higher energy storage density which can be achieved. However, the use of PCM has also certain disadvantages which must be addressed. Proof of concept testing was undertaken to evaluate corrosive effects and thermal ratcheting effects in a slurry system. It is concluded that the considered alkali metal/alkali salt slurry approach to TES appears to be very viable, taking into account an elimination of thermal ratcheting in storage systems and the reduction of corrosive effects. The approach appears to be useful for an employment involving temperatures applicable to Brayton or Stirling cycles.

  15. Nonaqueous electrolyte for electrical storage devices

    DOEpatents

    McEwen, Alan B.; Yair, Ein-Eli

    1999-01-01

    Improved nonaqueous electrolytes for application in electrical storage devices such as electrochemical capacitors or batteries are disclosed. The electrolytes of the invention contain salts consisting of alkyl substituted, cyclic delocalized aromatic cations, and their perfluoro derivatives, and certain polyatomic anions having a van der Waals volume less than or equal to 100 .ANG..sup.3, preferably inorganic perfluoride anions and most preferably PF.sub.6.sup.-, the salts being dissolved in organic liquids, and preferably alkyl carbonate solvents, or liquid sulfur dioxide or combinations thereof, at a concentration of greater than 0.5M and preferably greater than 1.0M. Exemplary electrolytes comprise 1-ethyl-3-methylimidazolium hexafluorophosphate dissolved in a cyclic or acylic alkyl carbonate, or methyl formate, or a combination therof. These improved electrolytes have useful characteristics such as higher conductivity, higher concentration, higher energy storage capabilities, and higher power characteristics compared to prior art electrolytes. Stacked capacitor cells using electrolytes of the invention permit high energy, high voltage storage.

  16. NASA preprototype redox storage system for a photovoltaic stand-alone application

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.

    1981-01-01

    A 1-kW preprototype redox storage system that has undergone characterization tests and been operated as the storage device for a 5-kW (peak) photovoltaic array is described and performance data are presented. Loss mechanisms are discussed, and simple design changes leading to appreciable increases in efficiency are suggested. The effects on system performance of nonequilibrium between the predominant species of complexed chromic ion in the negative electrode reactant solution are summarized. It is noted that with the aid of the prototype system, control concepts have been shown to be valid and trouble free and some insight has been gained into interactions at the mutual interfaces of the redox system, the photovoltaic array, the load, and the control devices.

  17. 40 CFR 113.2 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Applicability. 113.2 Section 113.2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS LIABILITY LIMITS FOR SMALL ONSHORE STORAGE FACILITIES Oil Storage Facilities § 113.2 Applicability. This subpart applies to...

  18. 40 CFR 113.2 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Applicability. 113.2 Section 113.2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS LIABILITY LIMITS FOR SMALL ONSHORE STORAGE FACILITIES Oil Storage Facilities § 113.2 Applicability. This subpart applies to...

  19. 40 CFR 63.110 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.110 Applicability. (a) This subpart applies to all process vents, storage vessels, transfer racks, wastewater streams, and in-process..., subpart III, NNN, or RRR, as applicable. (e) Overlap with other regulations for wastewater. (1) After the...

  20. 40 CFR 63.110 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.110 Applicability. (a) This subpart applies to all process vents, storage vessels, transfer racks, wastewater streams, and in-process..., subpart III, NNN, or RRR, as applicable. (e) Overlap with other regulations for wastewater. (1) After the...

  1. Storage battery aspects of air-electrode research

    NASA Astrophysics Data System (ADS)

    Buzelli, E. S.; Berk, L. B.; Demczyk, B. G.; Zuckerbrod, D.

    The use of air electrodes in secondary, alkaline energy storage systems offers several significant advantages over other conventional cathode systems. The oxygen, required for operation, is not stored or carried within the battery system. The weight of the air electrode is significantly lower than alternative cathode couples for the same mission. The cost of the air electrode is potentially low. As a result of these characteristics, alkaline electrolyte energy storage systems with air electrodes have the potential for achieving energy density levels in excess of 150 Whr/kg at low costs, $30-$40/kWh. The primary key to a successful metal-air secondary battery for an EV application is the development of a bifunctinal air electrode. This paper discusses the various aspects of air electrode research for this application, as well as the physical and performance requirements of the air electrode in this advanced technology battery system.

  2. Methane storage in nanoporous material at supercritical temperature over a wide range of pressures

    PubMed Central

    Wu, Keliu; Chen, Zhangxin; Li, Xiangfang; Dong, Xiaohu

    2016-01-01

    The methane storage behavior in nanoporous material is significantly different from that of a bulk phase, and has a fundamental role in methane extraction from shale and its storage for vehicular applications. Here we show that the behavior and mechanisms of the methane storage are mainly dominated by the ratio of the interaction between methane molecules and nanopores walls to the methane intermolecular interaction, and a geometric constraint. By linking the macroscopic properties of the methane storage to the microscopic properties of a system of methane molecules-nanopores walls, we develop an equation of state for methane at supercritical temperature over a wide range of pressures. Molecular dynamic simulation data demonstrates that this equation is able to relate very well the methane storage behavior with each of the key physical parameters, including a pore size and shape and wall chemistry and roughness. Moreover, this equation only requires one fitted parameter, and is simple, reliable and powerful in application. PMID:27628747

  3. Alkaline regenerative fuel cell systems for energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Reid, M. A.; Martin, R. E.

    1981-01-01

    A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.

  4. A Dependable Massive Storage Service for Medical Imaging.

    PubMed

    Núñez-Gaona, Marco Antonio; Marcelín-Jiménez, Ricardo; Gutiérrez-Martínez, Josefina; Aguirre-Meneses, Heriberto; Gonzalez-Compean, José Luis

    2018-05-18

    We present the construction of Babel, a distributed storage system that meets stringent requirements on dependability, availability, and scalability. Together with Babel, we developed an application that uses our system to store medical images. Accordingly, we show the feasibility of our proposal to provide an alternative solution for massive scientific storage and describe the software architecture style that manages the DICOM images life cycle, utilizing Babel like a virtual local storage component for a picture archiving and communication system (PACS-Babel Interface). Furthermore, we describe the communication interface in the Unified Modeling Language (UML) and show how it can be extended to manage the hard work associated with data migration processes on PACS in case of updates or disaster recovery.

  5. Application of Ganghwa Mugwort in Combination with Ascorbic Acid for the Reduction of Residual Nitrite in Pork Sausage during Refrigerated Storage

    PubMed Central

    Hwang, Ko-Eun; Kim, Hyun-Wook; Song, Dong-Heon; Kim, Yong-Jae; Ham, Youn-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Kim, Cheon-Jei

    2014-01-01

    The application of ganghwa mugwort (GM), ascorbic acid (AC), and their combinations for reduction of residual nitrite contents was analyzed in pork sausages during storage of 28 d. Six treatments of pork sausages contained the following: Control (no antioxidant added), AC (0.05% AC), GM 0.1 (0.1% GM), GM 0.2 (0.2% GM), AC+GM 0.1 (0.05% AC + 0.1% GM) and AC+GM 0.2 (0.05% AC + 0.2% GM). Results showed that the mixture of 0.05% AC and 0.2% GM was most effective for reducing thiobarbituric acid reactive substances (TBARS) and residual nitrite contents than the control and GM added sausages alone (p<0.05). The color values of all treatments were significantly affected by adding GM (either alone or with AC). Additionally, the total color difference (ΔE) and hue angle (H°) values of treatments added with GM were higher than those of the control as the amount of GM increased (p<0.05). However, there were no significant differences in the pH values between the control and all treatments during the storage period (p>0.05). Our results showed possible applications of antioxidant combination, for preventing the lipid oxidation and decreasing the residual nitrite levels of meat products. PMID:26760936

  6. Experimental and Numerical Investigation of Combined Sensible/Latent Thermal Energy Storage for High-Temperature Applications.

    PubMed

    Geissbühler, Lukas; Zavattoni, Simone; Barbato, Maurizio; Zanganeh, Giw; Haselbacher, Andreas; Steinfeld, Aldo

    2015-01-01

    Combined sensible/latent heat storage allows the heat-transfer fluid outflow temperature during discharging to be stabilized. A lab-scale combined storage consisting of a packed bed of rocks and steel-encapsulated AlSi(12) was investigated experimentally and numerically. Due to the small tank-to-particle diameter ratio of the lab-scale storage, void-fraction variations were not negligible, leading to channeling effects that cannot be resolved in 1D heat-transfer models. The void-fraction variations and channeling effects can be resolved in 2D models of the flow and heat transfer in the storage. The resulting so-called bypass fraction extracted from the 2D model was used in the 1D model and led to good agreement with experimental measurements.

  7. Proactive replica checking to assure reliability of data in cloud storage with minimum replication

    NASA Astrophysics Data System (ADS)

    Murarka, Damini; Maheswari, G. Uma

    2017-11-01

    The two major issues for cloud storage systems are data reliability and storage costs. For data reliability protection, multi-replica replication strategy which is used mostly in current clouds acquires huge storage consumption, leading to a large storage cost for applications within the loud specifically. This paper presents a cost-efficient data reliability mechanism named PRCR to cut back the cloud storage consumption. PRCR ensures data reliability of large cloud information with the replication that might conjointly function as a price effective benchmark for replication. The duplication shows that when resembled to the standard three-replica approach, PRCR will scale back to consume only a simple fraction of the cloud storage from one-third of the storage, thence considerably minimizing the cloud storage price.

  8. Sensors-network and its application in the intelligent storage security

    NASA Astrophysics Data System (ADS)

    Zhang, Qingying; Nicolescu, Mihai; Jiang, Xia; Zhang, Ying; Yue, Weihong; Xiao, Weihong

    2004-11-01

    Intelligent storage systems run on different advanced technologies, such as linear layout, business intelligence and data mining. Security, the basic desire of the storage system, has been focused on with the indraught of multimedia communication technology and sensors" network. Along with the developing of science and the social demands, multifarious alarming system has been designed and improved to be intelligentized, modularized and have network connections. It is of great moment to make the storage, and further more, the logistics system more and more efficient and perfect with modern science and technology. Diversified information on the spot should be caught by different kinds of sensors. Those signals are treated and communicated to the control center to give the further actions. For fire-proofing, broad-spectrum gas sensors, fume sensors, flame sensors and temperature sensors are used to catch the information in their own ways. Once the fire is taken somewhere, the sensors work by the fume, temperature, and flame as well as gas immediately. Meanwhile the intelligent control system starts. It passes the tidings to the center unit. At the same time, it sets those movable walls on to work quickly to obstruct the fire"s spreading. While for guarding the warehouse against theft, cut-off sensors, body sensors, photoelectric sensors, microwave sensors and closed-circuit television as well as electronic clocks are available to monitor the warehouse reasonably. All of those sensors work in a net way. The intelligent control system is made with a digital circuit instead of traditional switch one. This system can work in a better way in many cases. Its reliability is high and the cost is low.

  9. The Design and Evolution of Jefferson Lab's Jasmine Mass Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan Hess; M. Andrew Kowalski; Michael Haddox-Schatz

    We describe the Jasmine mass storage system, in operation since 2001. Jasmine has scaled to meet the challenges of grid applications, petabyte class storage, and hundreds of MB/sec throughput using commodity hardware, Java technologies, and a small but focused development team. The evolution of the integrated disk cache system, which provides a managed online subset of the tape contents, is examined in detail. We describe how the storage system has grown to meet the special needs of the batch farm, grid clients, and new performance demands.

  10. Chemically Integrated Inorganic-Graphene Two-Dimensional Hybrid Materials for Flexible Energy Storage Devices.

    PubMed

    Peng, Lele; Zhu, Yue; Li, Hongsen; Yu, Guihua

    2016-12-01

    State-of-the-art energy storage devices are capable of delivering reasonably high energy density (lithium ion batteries) or high power density (supercapacitors). There is an increasing need for these power sources with not only superior electrochemical performance, but also exceptional flexibility. Graphene has come on to the scene and advancements are being made in integration of various electrochemically active compounds onto graphene or its derivatives so as to utilize their flexibility. Many innovative synthesis techniques have led to novel graphene-based hybrid two-dimensional nanostructures. Here, the chemically integrated inorganic-graphene hybrid two-dimensional materials and their applications for energy storage devices are examined. First, the synthesis and characterization of different kinds of inorganic-graphene hybrid nanostructures are summarized, and then the most relevant applications of inorganic-graphene hybrid materials in flexible energy storage devices are reviewed. The general design rules of using graphene-based hybrid 2D materials for energy storage devices and their current limitations and future potential to advance energy storage technologies are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Buffer thermal energy storage for an air Brayton solar engine

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  12. Considerations and measurements of latent-heat-storage salts for secondary thermal battery applications

    NASA Astrophysics Data System (ADS)

    Koenig, A. A.; Braithwaite, J. W.; Armijo, J. R.

    1988-05-01

    Given its potential benefits, the practicality of using a latent heat-storage material as the basis for a passive thermal management system is being assessed by Chloride Silent Power Ltd. (CSPL) with technical assistance from Beta Power, Inc. and Sandia National Laboratories (SNL). Based on the experience gained in large-scale solar energy storage programs, fused salts were selected as the primary candidates for the heat-storage material. The initial phase of this assessment was directed to an EV battery being designed at CSPL for the ETX-II program. Specific tasks included the identification and characterization of potential fused salts, a determination of placement options for the salts within the battery, and an assessment of the ultimate benefit to the battery system. The results obtained to date for each of these tasks are presented in this paper.

  13. Considerations and measurements of latent-heat-storage salts for secondary thermal battery applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenig, A.A.; Braithwaite, J.W.; Armijo, J.R.

    Given its potential benefits, the practicality of using a latent heat-storage material as the basis for a passive thermal management system is being assessed by Chloride Silent Power Ltd. (CSPL) with technical assistance from Beta Power, Inc. and Sandia National Laboratories (SNL). Based on the experience gained in large-scale solar energy storage programs, fused salts were selected as the primary candidates for the heat-storage material. The initial phase of this assessment was directed to an EV battery being designed at CSPL for the ETX-II program. Specific tasks included the identification and characterization of potential fused salts, a determination of placementmore » options for the salts within the battery, and an assessment of the ultimate benefit to the battery system. The results obtained to date for each of these tasks are presented in this paper.« less

  14. Bioinspired fractal electrodes for solar energy storages.

    PubMed

    Thekkekara, Litty V; Gu, Min

    2017-03-31

    Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10 -3  Whcm -3 . In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10 -1  Whcm -3 - more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.

  15. Surface-Enhanced Raman Optical Data Storage system

    DOEpatents

    Vo-Dinh, T.

    1994-06-28

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level. 18 figures.

  16. Surface-enhanced raman optical data storage system

    DOEpatents

    Vo-Dinh, Tuan

    1994-01-01

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level.

  17. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    PubMed Central

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-01-01

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications. PMID:26393596

  18. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    PubMed

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  19. Thermal oxidation synthesis hollow MoO{sub 3} microspheres and their applications in lithium storage and gas-sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xinyu; School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003; Cao, Minhua, E-mail: caomh@bit.edu.cn

    2013-06-01

    Graphical abstract: MoO{sub 3} hollow microspheres were synthesized via a facile and template-free solvothermal route and subsequent heat treatment in air. The MoO{sub 3} hollow microspheres exhibit an improved lithium storage and gas-sensing performance. Highlights: ► Hollow MoO{sub 3} microspheres were synthesized by thermal oxidation of hollow MoO{sub 2}. ► The MoO{sub 3} hollow microspheres have a relatively high specific surface area. ► The MoO{sub 3} hollow microspheres exhibit improved lithium storage performance. ► The MoO{sub 3} hollow microspheres show good responses to ammonia gas. - Abstract: In this paper, MoO{sub 3} hollow microspheres were synthesized via a facile andmore » template-free solvothermal route and subsequent heat treatment in air. The MoO{sub 3} hollow microspheres have a relatively high specific surface area, and with such a feature, the as-synthesized MoO{sub 3} hollow microspheres have potential applications in Li-ion battery and gas-sensor. When tested as a Li-storage anode material, the MoO{sub 3} hollow microspheres show a higher discharge capacity of 1377.1 mA h g{sup −1} in the first discharge and a high reversible capacity of 780 mA h g{sup −1} after 100 cycles at a rate of 1 C. Furthermore, as a gas sensing material, the MoO{sub 3} hollow microspheres exhibit an improved sensitivity and short response/recovery time to trace levels of ammonia gas.« less

  20. BiFeO3-doped (K0.5,Na0.5)(Mn0.005,Nb0.995)O3 ferroelectric thin film capacitors for high energy density storage applications

    NASA Astrophysics Data System (ADS)

    Won, Sung Sik; Kawahara, Masami; Kuhn, Lindsay; Venugopal, Vineeth; Kwak, Jiyeon; Kim, Ill Won; Kingon, Angus I.; Kim, Seung-Hyun

    2017-04-01

    Environmentally benign lead-free ferroelectric (K0.5,Na0.5)(Mn0.005,Nb0.995)O3 (KNMN) thin film capacitors with a small concentration of a BiFeO3 (BF) dopant were prepared by a cost effective chemical solution deposition method for high energy density storage device applications. 6 mol. % BF-doped KNMN thin films showed very slim hysteresis loops with high maximum and near-zero remanent polarization values due to a phase transition from the orthorhombic structure to the pseudo-cubic structure. Increasing the electric field up to 2 MV/cm, the total energy storage density (Jtotal), the effective recoverable energy density (Jeff), and the energy conversion efficiency (η) of lead-free KNMN-BF thin film capacitors were 31.0 J/cm3, 28.0 J/cm3, and 90.3%, respectively. In addition, these thin film capacitors exhibited a fast discharge time of a few μs and a high temperature stability up to 200 °C, proving their strong potential for high energy density storage and conversion applications.