Science.gov

Sample records for application purex storage

  1. PUREX Storage Tunnels dangerous waste permit application

    SciTech Connect

    Not Available

    1991-12-01

    The PUREX Storage Tunnels are a mixed waste storage unit consisting of two underground railroad tunnels: Tunnel Number 1 designated 218-E-14 and Tunnel Number 2 designated 218-E-15. The two tunnels are connected by rail to the PUREX Plant and combine to provide storage space for 48 railroad cars (railcars). The PUREX Storage Tunnels provide a long-term storage location for equipment removed from the PUREX Plant. Transfers into the PUREX Storage Tunnels are made on an as-needed basis. Radioactively contaminated equipment is loaded on railcars and remotely transferred by rail into the PUREX Storage Tunnels. Railcars act as both a transport means and a storage platform for equipment placed into the tunnels. This report consists of part A and part B. Part A reports on amounts and locations of the mixed water. Part B permit application consists of the following: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report.

  2. PUREX Storage Tunnels dangerous waste permit application

    SciTech Connect

    Not Available

    1990-09-01

    The Hanford Site is operated by the US Department of Energy-Richland Operations Office. The PUREX Storage Tunnels are a storage unit located on the Hanford Site. The unit consists of two earth-covered railroad tunnels that are used for storage of process equipment (some containing dangerous waste) removed from the PUREX Plant. Radioactively contaminated equipment is loaded on railroad cars and remotely transferred into the tunnels for long-term storage. Westinghouse Hanford Company is a major contractor to the US Department of Energy-Richland Operations Office and serves as a co-operator of the PUREX Storage Tunnels, the waste management unit addressed by this permit application. The PUREX Storage Tunnels Dangerous Waste Permit Application (Revision O) consists of both a Part A and Part B permit application and is based on information available as of August 31, 1990. An explanation of the Part A revision submitted with this document is provided at the beginning of the Part A section. In this Part A revision, the PUREX Storage Tunnels have been redesignated as a miscellaneous unit. The Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology.

  3. PUREX Storage Tunnels dangerous waste permit application

    SciTech Connect

    Not Available

    1990-09-01

    The Hanford Site is operated by the US Department of Energy-Richland Operations Office. The PUREX Storage Tunnels are a storage unit located on the Hanford Site. The unit consists of two earth-covered railroad tunnels that are used for storage of process equipment (some containing dangerous waste) removed from the PUREX Plant. Radioactively contaminated equipment is loaded on railroad cars and remotely transferred into the tunnels for long-term storage. Westinghouse Hanford Company is a major contractor to the US Department of Energy-Richland Operations Office and serves as a co-operator of the PUREX Storage Tunnels, the waste management unit addressed by this permit application. This appendix contains Tunnel 1 Construction Specifications, HWS-5638, consisting of 49 pages.

  4. Hanford facility dangerous waste permit application, PUREX storage tunnels

    SciTech Connect

    Haas, C. R.

    1997-09-08

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24).

  5. Hanford facility dangerous waste permit application, PUREX storage tunnels

    SciTech Connect

    Price, S.M.

    1997-09-08

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the PUREX Storage Tunnels permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the PUREX Storage Tunnels permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this PUREX Storage Tunnels permit application documentation is current as of April 1997.

  6. PUREX Storage Tunnels dangerous waste permit application. Revision 1, Volume 1

    SciTech Connect

    Not Available

    1991-12-01

    The PUREX Storage Tunnels are a mixed waste storage unit consisting of two underground railroad tunnels: Tunnel Number 1 designated 218-E-14 and Tunnel Number 2 designated 218-E-15. The two tunnels are connected by rail to the PUREX Plant and combine to provide storage space for 48 railroad cars (railcars). The PUREX Storage Tunnels provide a long-term storage location for equipment removed from the PUREX Plant. Transfers into the PUREX Storage Tunnels are made on an as-needed basis. Radioactively contaminated equipment is loaded on railcars and remotely transferred by rail into the PUREX Storage Tunnels. Railcars act as both a transport means and a storage platform for equipment placed into the tunnels. This report consists of part A and part B. Part A reports on amounts and locations of the mixed water. Part B permit application consists of the following: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report.

  7. PUREX storage tunnels waste analysis plan

    SciTech Connect

    Haas, C.R., Westinghouse Hanford

    1996-07-10

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX Plant, as well as waste received from other on-site sources.

  8. PUREX storage tunnels waste analysis plan

    SciTech Connect

    Haas, C.R.

    1996-04-23

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX Plant, as well as waste received from other on-site sources.

  9. PUREX storage tunnels waste analysis plan

    SciTech Connect

    Haas, C.R.

    1995-10-16

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX plant, as well as waste received from other on-site sources

  10. PUREX Storage Tunnels waste analysis plan. Revision 1

    SciTech Connect

    Stephenson, M.J.

    1995-11-01

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX Plant, as well as waste received from other on-site sources.

  11. Radioactive air emissions notice of construction for deactivation of the PUREX storage tunnel number 2

    SciTech Connect

    JOHNSON, R.E.

    1999-10-11

    The Plutonium-Uranium Extraction (PUREX) Plant Storage Tunnel Number 2 (hereafter referred to as the PUREX Tunnel) was built in 1964. Since that time, the PUREX Tunnel has been used for storage of radioactive and mixed waste. In 1991, the PUREX Plant ceased operations and was transitioned to deactivation. The PUREX Tunnel continued to receive PUREX Plant waste material for storage during transition activities. Before 1995, a decision was made to store radioactive and mixed waste in the PUREX Tunnel generated from other onsite sources, on a case-by-case basis. This notice of construction (NOC) describes the activities associated with the reactivation of the PUREX Tunnel ventilation system and the transfer of up to 3.5 million curies (MCi) of radioactive waste to the PUREX Tunnel from any location on the Hanford Site. The unabated total effective dose equivalent (TEDE) estimated for the hypothetical offsite maximally exposed individual (MEI) is 5.6 E-2 millirem (mrem). The abated TEDE conservatively is estimated to account for 1.9 E-5 mrem to the MEI. The following text provides information requirements of Appendix A of Washington Administrative Code (WAC) 246-247 (requirements 1 through 18).

  12. PUREX Organic Waste Solidification

    SciTech Connect

    Langton, C.A.

    2002-12-12

    The objectives of this study were to evaluate solidification/stabilization as an alternative treatment technology for the organic phase of the SRS spent PUREX waste using simulated waste, and to evaluate waste forms prepared with actual spent organic PUREX waste for regulatory classification.

  13. Stabilization of Tank 33 and 35 Aqueous PUREX Waste

    SciTech Connect

    Langton, C.A.

    2002-04-10

    Approximately 38,000 gallons of PUREX waste are currently stored in the New Solvent Storage Tanks (NSST), Tanks 33 and 35. The waste consists of both an organic and aqueous fraction. Solidification is currently being evaluated for the 24,800 gallons of organic PUREX waste.

  14. PUREX facility hazards assessment

    SciTech Connect

    Sutton, L.N.

    1994-09-23

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  15. Industrial storage applications overview

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.

    1980-01-01

    The implementation of a technology demonstration for the food processing industry, development and technology demonstrations for selected near-term, in-plant applications and advanced industrial applications of thermal energy storage are overviewed.

  16. PUREX new substation ATR

    SciTech Connect

    Nelson, D.E.

    1997-05-12

    This document is the acceptance test report (ATR) for the New PUREX Main and Minisubstations. It covers the factory and vendor acceptance and commissioning test reports. Reports are presented for the Main 5 kV substation building, the building fire system, switchgear, and vacuum breaker; the minisubstation control building and switch gear; commissioning test; electrical system and loads inspection; electrical utilities transformer and cable; and relay setting changes based on operational experience.

  17. Comparison of silver sorbents for application to radioiodine control at the PUREX process facility modification. [Iodine 129

    SciTech Connect

    Scheele, R.D.; Burger, L.L.; Halko, B.T.

    1988-09-01

    In continued support of the design of the gaseous radioiodine control system for the PUREX Process Facility Modification (PFM), the Pacific Northwest Laboratory (PNL) conducted laboratory-scale measurements of the performance of four state-of-the-art sorbents for radioiodine in the dissolver offgas (DOG) of a nuclear reprocessing plant. The PFM is a new head-end treatment plant being designed by Westinghouse Hanford Company (WHC) for the PUREX Plant at the Hanford Site. The experiments performed measured the iodine effluent concentration from Norton silver mordenite (NAgZ), Linde silver mordenite (LAgZ), Linde silver faujasite (AgX), and silver nitrate-impregnated silicic acid (AgNO/sub 3/Si) during simulated normal operating conditions in the PFM after three shutdown/startup cycles, and during standby. At normal operating conditions the input gas is expected to have a dew point of 35/degree/C to 40/degree/C and contain 0.1 ..mu..mol I/L, 1 vol% NO, and 1 vol% NO /sub 2/. The sorbent bed would be at 150/degree/C. A shutdown/startup cycle consisted of eliminating iodine and NO/sub x/ from the input gas, cooling the bed to room temperature, stopping gas flow, and restarting the system. During standby conditions the input gas contained no iodine or NO/sub x/, the dew point was at 30/degree/C to 35/degree/C, and the bed temperature remained at 150/degree/C. This experimental study showed that 20 cm beds of NAgZ, LAgZ, and 18 wt% silver AgX could load up to 0.25 mmol I/g sorbent and routinely reduce the iodine concentration in a simulated PFM DOG from 0.1 ..mu..mol I/L to less than the target level of 10/sup /minus/5/ ..mu..mol I/L. In contrast, the AgNO/sub 3/Si unexpectedly failed to achieve this required level of performance, reducing the concentration on a routine basis only to 10/sup /minus/4/ to 10/sup /minus/2/ ..mu..mol I/L. 5 refs., 14 figs., 6 tabs.

  18. Functional design criteria for the 242-A evaporator and PUREX (Plutonium-Uranium Extraction) Plant condensate interim retention basin

    SciTech Connect

    Cejka, C.C.

    1990-01-01

    This document contains the functional design criteria for a 26- million-gallon retention basin and 10 million gallons of temporary storage tanks. The basin and tanks will be used to store 242-A Evaporator process condensate, the Plutonium-Uranium Extraction (PUREX) Plant process distillate discharge stream, and the PUREX Plant ammonia scrubber distillate stream. Completion of the project will allow both the 242-A Evaporator and the PUREX Plant to restart. 4 refs.

  19. Next generation Purex modeling by way of parallel processing with high performance computers

    SciTech Connect

    DeMuth, S.F.

    1993-08-01

    The Plutonium and Uranium Extraction (Purex) process is the predominant method used worldwide for solvent extraction in reprocessing spent nuclear fuels. Proper flowsheet design has a significant impact on the character of the process waste. Past Purex flowsheet modeling has been based on equilibrium conditions. It can be shown for the Purex process that optimum separation does not necessarily occur at equilibrium conditions. The next generation Purex flowsheet models should incorporate the fundamental diffusion and chemical kinetic processes required to study time-dependent behavior. Use of parallel processing with high-performance computers will permit transient multistage and multispecies design calculations based on mass transfer with simultaneous chemical reaction models. This paper presents an applicable mass transfer with chemical reaction model for the Purex system and presents a parallel processing solution methodology.

  20. Overview of energy storage applications

    SciTech Connect

    BOYES,JOHN D.

    2000-04-26

    Sandia National Laboratories has been studying Energy Storage Systems since the late 1970s. Sandia started by applying their defense program battery experience to larger stationary systems, eventually joining in the formation of the Utility Battery Group which has since evolved into the Energy Storage Association. Sandia's role, as a Department of Energy funded program is to look ahead at emerging technologies, perform early R and D and identify applications for Energy Storage Systems that offer significant benefit to the nation's electricity providers and users. In order to identify applications of energy storage, a two-phase Opportunities Analysis was conceptualized in FY94. Phase 1 of the project was completed and published in 1995 (SAND94-2605). Phase 2 of the project is an extension of Phase 1 to reexamine the identified applications in the dynamic environment of today. In a preliminary assessment of national benefits, SNL estimated that generation and transmission applications of storage could represent $17.2B in national benefits. In Phase 1 of the Opportunities Analysis, the T and D benefits were found to be significantly higher than previous estimates Phase 2 of the study, which began in late 1998, includes a refinement of the technical and economic understanding of the role of energy storage in the utility industry given the changing nature of the electricity provider industry. This is work in progress and current information is insufficient to estimate market size with a high degree of confidence, especially from a system supplier's perspective. Activity in Phase 2 has so far been primarily focused on the need to re-characterize the near and long-term utility application requirements for energy storage.

  1. Purex: process and equipment performance

    SciTech Connect

    Orth, D.A.

    1986-01-01

    The Purex process is the solvent extraction system that uses tributyl phosphate as the extractant for separating uranium and plutonium from irradiated reactor fuels. Since the first flowsheet was proposed at Oak Ridge National Laboratory in 1950, the process has endured for over 30 years with only minor modifications. The spread of the technology was rapid, and worldwide use or research on Purex-type processes was reported by the time of the 1955 Geneva Conference. The overall performance of the process has been so good that there are no serious contenders for replacing it soon. This paper presents: process description; equipment performance (mixer-settlers, pulse columns, rapid contactors); fission product decontamination; solvent effects (solvent degradation products); and partitioning of uranium and plutonium.

  2. Nanotechnology for Data Storage Applications

    NASA Astrophysics Data System (ADS)

    Sarid, Dror; McCarthy, Brendan; Jabbour, Ghassan

    This chapter considers atomic force microscopy (AFM) as an enabling technology for data storage applications, considering already existing technologies such as hard disk drives (HDD), optical disk drives (ODD) and flash memories that currently dominate the nonvolatile data storage market, together with future devices based on magnetoresistive and phase change effects. The issue at hand is the question of whether the novel AFM-based storage, dubbed probe storage, can offer a competing approach to the currently available technologies by playing the role of a disruptive technology. Probe storage will be contrasted to HDD and ODD, which are purely mechanical as they are based on a rotating disk that uses just a single probe to address billions of bits of data, and nonvolatile random-access memory (RAM) that has no moving parts yet requires billions of interconnects. In particular, capacity, areal density, transfer rate, form factor and the cost of various data storage devices will be discussed and the unique opportunity offered by probe storage in employing massive parallelism will be outlined. It will be shown that probe storage bridges the gap between HDD, ODD and other nonvolatile RAM, drawing from the strength of each one of these and adding a significant attribute neither of these has; namely, the possibility of addressing a very large number of nanoscale bits of data in parallel. This chapter differs from the other chapters in this book in that it addresses the important issue of whether a given scientific effort, namely, probe storage, is mature enough to evolve into a commercially viable technology. The answer seems to indicate that there is indeed a huge niche in the data storage arena that such a technology is uniquely qualified to fill, which is large enough to justify a major investment in research and development. Indeed, as other chapters indicate, such an effort is developing at a rapid pace, with hopes of having a viable product within a few years.

  3. Nanotechnology for Data Storage Applications

    NASA Astrophysics Data System (ADS)

    Sarid, Dror; McCarthy, Brendan; Jabbour, Ghassan E.

    This chapter considers atomic force microscopy (AFM) as an enabling technology for data storage applications, considering already existing technologies such as hard disk drives (HDD), optical disk drives (ODD) and Flash Memories that currently dominate the nonvolatile data storage market, together with future devices based on magnetoresistive and phase change effects. The issue at hand is the question of whether the novel AFM-based storage, dubbed "Probe Storage", can offer a competing approach to the currently available technologies by playing the role of a disruptive technology. Probe Storage will be contrasted to HDD and ODD who are purely mechanical, as they are based on a rotating disk that uses just a single probe to address billions of bits of data, and nonvolatile RAM that has no moving parts yet requires billions of interconnects. In particular, capacity, areal density, transfer rate, form factor and cost of various data storage devices will be discussed and the unique opportunity offered by Probe Storage in employing massive parallelism will be outlined. It will be shown that Probe Storage bridges the gap between HDD, ODD and other nonvolatile RAM, drawing from the strength of each one of these and adding a significant attribute neither of these has; namely, the possibility of addressing a very large number of nanoscale bits of data in parallel. This chapter differs from the other chapters in this book in that it addresses the important issue of whether a given scientific effort, namely, Probe Storage, is mature enough to evolve into a commercially viable technology. The answer seems to indicate that there indeed is a huge niche in the data storage arena that such a technology is uniquely qualified to fill, which is large enough to justify a major investment in research and development. Indeed, as other chapters indicate, such an effort is developing at a rapid pace, with hopes of having a viable product within a few years.

  4. Energy Storage for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Loyselle, Patricia L.; Hoberecht, Mark A.; Manzo, Michelle A.; Kohout, Lisa L.; Burke, Kenneth A.; Cabrera, Carlos R.

    2001-01-01

    The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications.

  5. PUREX Deactivation Health and Safety documentation

    SciTech Connect

    Dodd, E.N. III

    1995-01-01

    The purpose of the PUREX Deactivation Project is to establish a passively safe and environmentally secure configuration of PUREX at the Hanford Site, and to preserve that configuration for a 10-year horizon. The 10-year horizon is used to predict future maintenance requirements and represents they typical time duration expended to define, authorize, and initiate the follow-on Decontamination and Decommissioning (D&D) activities. This document was prepared to increase attention to worker safety issues during the deactivation project and, as such, identifies the documentation and programs associated with PUREX Deactivation Health and Safety.

  6. Utility energy storage applications studies

    SciTech Connect

    Schoenung, S.M.; Burns, C.

    1996-09-01

    The values of benefits and costs have been estimated for applying energy storage to three situations on the Niagara Mohawk Power Corporation system. One situation is a valuable industrial customer requiring high quality, reliable power. The second situation is the need for reliable power at the end of a radial distribution feeder. The third situation is a case of thermal overload on a transmission line to a growing load in an environmentally sensitive location. The first case requires a small storage system (30 MJ); the second and third require relatively large systems (250 and 550 MWh, respectively). A variety of energy storage technologies was considered for each case. This paper presents the benefit/cost results for the technologies considered for each case. The technologies compared in this study are superconducting magnetics energy storage, batteries, flywheels, capacitors, compressed air energy storage, compressed air in vessels, and pumped hydro storage.

  7. Applications and challenges for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Kannberg, L. D.; Tomlinson, J. T.

    1991-04-01

    New thermal energy storage (TES) technologies are being developed and applied as society strives to relieve increasing energy and environmental stresses. Applications for these new technologies range from residential and district heating and cooling using waste and solar energy, to high-temperature energy storage for power production and industrial processes. In the last two decades there has been great interest and development of heat storage systems, primarily for residential and commercial buildings. While development has continued, the rate of advancement has slowed with current technology considered adequate for electrically charged heat storage furnaces. Use of chill storage for building diurnal cooling has received substantial development.

  8. Thermal energy storage for cogeneration applications

    NASA Astrophysics Data System (ADS)

    Drost, M. K.; Antoniak, Z. I.

    1992-04-01

    Cogeneration is playing an increasingly important role in providing energy efficient power generation and thermal energy for space heating and industrial process heat applications. However, the range of applications for cogeneration could be further increased if the generation of electricity could be decoupled from the generation of process heat. Thermal energy storage (TES) can decouple power generation from the production of process heat, allowing the production of dispatchable power while fully utilizing the thermal energy available from the prime mover. The Pacific Northwest Laboratory (PNL) leads the US Department of Energy's Thermal Energy Storage Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility applications (utility thermal energy storage (UTES)). Several of these technologies can be used in a cogeneration facility. This paper discusses TES concepts relevant to cogeneration and describes the current status of these TES systems.

  9. Hydrogen Storage for Aircraft Applications Overview

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  10. Integrating safety and health during deactiviation: With lessons learned from PUREX

    SciTech Connect

    1995-09-29

    This report summarizes an integrated safety and health approach used during facility deactivation activities at the Department of Energy (DOE) Plutonium-Uranium Extraction (PUREX) Facility in Hanford, Washington. Resulting safety and health improvements and the potential, complex-wide application of this approach are discussed in this report through a description of its components and the impacts, or lessons-learned, of its use during the PUREX deactivation project. As a means of developing and implementing the integrated safety and health approach, the PUREX technical partnership was established in 1993 among the Office of Environment, Safety and Health`s Office of Worker Health and Safety (EH-5); the Office of Environmental Management`s Offices of Nuclear Material and Facility Stabilization (EM-60) and Compliance and Program Coordination (EM-20); the DOE Richland Operations Office; and the Westinghouse Hanford Company. It is believed that this report will provide guidance for instituting an integrated safety and health approach not only for deactivation activities, but for decommissioning and other clean-up activities as well. This confidence is based largely upon the rationality of the approach, often termed as common sense, and the measurable safety and health and project performance results that application of the approach produced during actual deactivation work at the PUREX Facility.

  11. Superconducting Magnetic Energy Storage and Applications

    NASA Astrophysics Data System (ADS)

    Rao, V. Vasudeva

    2008-10-01

    This paper gives an Introduction to Superconducting Magnetic Energy Storage (SMES) systems and their applications along with an overview of their present status. Further a brief description to a Micro SMES/UPS system of 0.5 MJ capacity that was developed/tested at IIT, Kharagpur is also included.

  12. Optical storage: Financial management and budget applications

    SciTech Connect

    Morris, J.D.; Emrich, M.L.

    1988-10-01

    Recent optical storage technology advances have improved the micro-computer's ability to handle large quantities of data. This paper will explain the evolution of this technology including the state of the art. The factors involved in this evolution will be described, namely the division of research into three distinct areas: Compact Disk Read Only Memory (CD-ROM); Write Once Read Many (WORM); and Erasable Optical Storage (EOS). The future implications of these areas will be reported. In addition, practical applications that utilize optical media in the financial environment will be highlighted. 3 figs., 1 tab., 10 refs.

  13. Nanophase change for data storage applications.

    PubMed

    Shi, L P; Chong, T C

    2007-01-01

    Phase change materials are widely used for date storage. The most widespread and important applications are rewritable optical disc and Phase Change Random Access Memory (PCRAM), which utilizes the light and electric induced phase change respectively. For decades, miniaturization has been the major driving force to increase the density. Now the working unit area of the current data storage media is in the order of nano-scale. On the nano-scale, extreme dimensional and nano-structural constraints and the large proportion of interfaces will cause the deviation of the phase change behavior from that of bulk. Hence an in-depth understanding of nanophase change and the related issues has become more and more important. Nanophase change can be defined as: phase change at the scale within nano range of 100 nm, which is size-dependent, interface-dominated and surrounding materials related. Nanophase change can be classified into two groups, thin film related and structure related. Film thickness and clapping materials are key factors for thin film type, while structure shape, size and surrounding materials are critical parameters for structure type. In this paper, the recent development of nanophase change is reviewed, including crystallization of small element at nano size, thickness dependence of crystallization, effect of clapping layer on the phase change of phase change thin film and so on. The applications of nanophase change technology on data storage is introduced, including optical recording such as super lattice like optical disc, initialization free disc, near field, super-RENS, dual layer, multi level, probe storage, and PCRAM including, superlattice-like structure, side edge structure, and line type structure. Future key research issues of nanophase change are also discussed. PMID:17455476

  14. Nanomaterials for Hydrogen Storage Applications: A Review

    DOE PAGESBeta

    Niemann, Michael U.; Srinivasan, Sesha S.; Phani, Ayala R.; Kumar, Ashok; Goswami, D. Yogi; Stefanakos, Elias K.

    2008-01-01

    Nmore » anomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices.anostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, TiS 2 / MoS 2 nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc.) and their hydrogen storage characteristics are outlined.« less

  15. Energy storage for wind-generator application

    NASA Astrophysics Data System (ADS)

    Russel, F. M.

    1982-09-01

    A low-cost method was developed for storing energy and stiffening power supplied by wind generators. It involved inflatable, fabric-reinforced elastic liners buried underground and containing a fluid, probably water, at an intermediate pressure. The ground would be subject to elastic deformation and the method could be applicable to unstable ground such as deep sand, heterogeneous sedimentary or other unconsolidated deposits in remote locations or hostile environments. While the density of energy storage was considered low, compared with pumped-hydro systems, the technology could be attractive for developing countries.

  16. 76 FR 52649 - Golden Triangle Storage, Inc.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Golden Triangle Storage, Inc.; Notice of Application On August 5, 2011, Golden Triangle Storage, Inc. (Golden Triangle) filed with the Federal Energy Regulatory...

  17. Thermal Storage Applications Workshop. Volume 2: Contributed Papers

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar thermal and the thermal and thermochemical energy storage programs are described as well as the technology requirements for both external (electrical) and internal (thermal, chemical) modes for energy storage in solar power plants. Specific technical issues addressed include thermal storage criteria for solar power plants interfacing with utility systems; optimal dispatch of storage for solar plants in a conventional electric grid; thermal storage/temperature tradeoffs for solar total energy systems; the value of energy storage for direct-replacement solar thermal power plants; systems analysis of storage in specific solar thermal power applications; the value of seasonal storage of solar energy; criteria for selection of the thermal storage system for a 10 MW(2) solar power plant; and the need for specific requirements by storage system development teams.

  18. Plutonium uranium extraction (PUREX) end state basis for interim operation (BIO) for surveillance and maintenance

    SciTech Connect

    DODD, E.N.

    1999-05-12

    This Basis for Interim Operation (BIO) was developed for the PUREX end state condition following completion of the deactivation project. The deactivation project has removed or stabilized the hazardous materials within the facility structure and equipment to reduce the hazards posed by the facility during the surveillance and maintenance (S and M) period, and to reduce the costs associated with the S and M. This document serves as the authorization basis for the PUREX facility, excluding the storage tunnels, railroad cut, and associated tracks, for the deactivated end state condition during the S and M period. The storage tunnels, and associated systems and areas, are addressed in WHC-SD-HS-SAR-001, Rev. 1, PUREX Final Safety Analysis Report. During S and M, the mission of the facility is to maintain the conditions and equipment in a manner that ensures the safety of the workers, environment, and the public. The S and M phase will continue until the final decontamination and decommissioning (D and D) project and activities are begun. Based on the methodology of DOE-STD-1027-92, Hazards Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports, the final facility hazards category is identified as hazards category This considers the remaining material inventories, form and distribution of the material, and the energies present to initiate events of concern. Given the current facility configuration, conditions, and authorized S and M activities, there are no operational events identified resulting in significant hazard to any of the target receptor groups (e.g., workers, public, environment). The only accident scenarios identified with consequences to the onsite co-located workers were based on external natural phenomena, specifically an earthquake. The dose consequences of these events are within the current risk evaluation guidelines and are consistent with the expectations for a hazards category 2

  19. 77 FR 14771 - UGI Storage Company; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission UGI Storage Company; Notice of Application Take notice that on February 29, 2012, UGI Storage Company (UGI Storage), having its principal place of business at 5665 Leesport...

  20. Thermal storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  1. Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis

    SciTech Connect

    Akhil, A.A.; Butler, P.; Bickel, T.C.

    1993-11-01

    This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

  2. Thermal Storage Applications Workshop. Volume 1: Plenary Session Analysis

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The importance of the development of inexpensive and efficient thermal and thermochemical energy storage technology to the solar power program is discussed in a summary of workship discussions held to exchange information and plan for future systems. Topics covered include storage in central power applications such as the 10 MW-e demonstration pilot receiver to be constructed in Barstow, California; storage for small dispersed systems, and problems associated with the development of storage systems for solar power plants interfacing with utility systems.

  3. Nanostructured graphene nanoplatelets for energy storage applications

    NASA Astrophysics Data System (ADS)

    Monga, Anchita

    There is an increasing demand for high performance compact batteries for diverse applications ranging from portable electronics to electric automotive vehicles. This need has driven the direction of research towards newer materials, improved synthesis and architectured assembly. This research addresses the gravimetric and volumetric density challenges as well as the cost issues faced by energy storage devices by developing structured graphitic materials, aiming at better electrochemical performance, improved energy density and reduced cost. The few layer graphene nanoplatelets (GnP) used in this study can be produced from natural graphite in thicknesses from 1-10 nm and in widths from 0.3 to 50 microns via an acid intercalation/thermal exfoliation process. The GnP serves as an inexpensive alternative to carbon nanotubes and single graphene sheets. The ability to nanostructure GnP and tailor its inherent properties for lithium storage and electrical conductivity, allows it to be used for customized applications in three different lithium ion battery components viz., active anode material, current collector and conducting additive. Metal nanoparticle doped GnP in which nanosized metal particles are coated onto the GnP basal surface, have been assembled to make a 'pillared' nanostructure in which the particles maintain a fixed distance between adjacent GnPs facilitating improved transport and enhanced lithium storage capacity, especially at faster charge rates. Graphene nanoplatelets synthesized with different sizes of metal nanoparticles effectively create a nano-architectured GnP multilayer assembly with flexible interlayer spacing. The creation of a lithium ion battery anode with controllable GnP interlayer spacing facilitates lithium ion diffusion through the electrode, and this in turn leads to improved transport and enhanced capacity. Graphene nanoplatelets are also intrinsically excellent electrical conductors, which can be assembled into continuous conductive

  4. Value of Energy Storage for Grid Applications

    SciTech Connect

    Denholm, P.; Jorgenson, J.; Hummon, M.; Jenkin, T.; Palchak, D.; Kirby, B.; Ma, O.; O'Malley, M.

    2013-05-01

    This analysis evaluates several operational benefits of electricity storage, including load-leveling, spinning contingency reserves, and regulation reserves. Storage devices were simulated in a utility system in the western United States, and the operational costs of generation was compared to the same system without the added storage. This operational value of storage was estimated for devices of various sizes, providing different services, and with several sensitivities to fuel price and other factors. Overall, the results followed previous analyses that demonstrate relatively low value for load-leveling but greater value for provision of reserve services. The value was estimated by taking the difference in operational costs between cases with and without energy storage and represents the operational cost savings from deploying storage by a traditional vertically integrated utility. The analysis also estimated the potential revenues derived from a merchant storage plant in a restructured market, based on marginal system prices. Due to suppression of on-/off-peak price differentials and incomplete capture of system benefits (such as the cost of power plant starts), the revenue obtained by storage in a market setting appears to be substantially less than the net benefit provided to the system. This demonstrates some of the additional challenges for storage deployed in restructured energy markets.

  5. PUREX SAMCONS uninterruptible power supply (UPS) acceptance test report

    SciTech Connect

    Blackaby, W.B.

    1997-10-07

    This Acceptance Test Report for the PUREX Surveillance and Monitoring and Control System (SAMCONS) Uninterruptible Power Supply (UPS) Acceptance Test Procedure validates the operation of the UPS, all alarming and display functions and the ability of the UPS to supply power to the SAMCONS as designed. The proper installation of the PUREX SAMCONS Trailer UPS components and wiring will be systematically evaluated by performance of this procedure. Proper operation of the SAMCONS computer UPS will be verified by performance of a timed functional load test, and verification of associated alarms and trouble indications. This test procedure will be performed in the SAMCONS Trailer and will include verification of receipt of alarms at the SAMCONS computer stations. This test may be performed at any time after the completion of HNF-SD-CP-ATP-083, PUREX Surveillance and Monitoring and Control System (SAMCONS) Acceptance Test Procedure, when computer display and alarm functions have been proven to operate correctly.

  6. 1997 project of the year, PUREX deactivation project

    SciTech Connect

    Bailey, R.W.

    1998-02-13

    At the end of 1992, the PUREX and UO{sub 3} plants were deemed no longer necessary for the defense needs of the United States. Although no longer necessary, they were very costly to maintain in their post-operation state. The DOE embarked on a deactivation strategy for these plants to reduce the costs of providing continuous surveillance of the facilities and their hazards. Deactivation of the PUREX and UO{sub 3} plants was estimated to take 5 years and cost $222.5 million and result in an annual surveillance and maintenance cost of $2 million. Deactivation of the PUREX/UO{sub 3} plants officially began on October 1, 1993. The deactivation was 15 months ahead of the original schedule and $75 million under the original cost estimate. The annual cost of surveillance and maintenance of the plants was reduced to less than $1 million.

  7. Electric utility applications of hydrogen energy storage systems

    SciTech Connect

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  8. Applications of cogeneration with thermal energy storage technologies

    SciTech Connect

    Somasundaram, S.; Katipamula, S.; Williams, H.R.

    1995-03-01

    The Pacific Northwest Laboratory (PNL) leads the U.S. Department of Energy`s Thermal Energy Storage (TES) Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility-scale applications [utility thermal energy storage (UTES)]. Several of these storage technologies can be used in a new or an existing power generation facility to increase its efficiency and promote the use of the TES technology within the utility and the industrial sectors. The UTES project has included a study of both heat storage and cool storage systems for different utility-scale applications. The study reported here has shown that an oil/rock diurnal TES system, when integrated with a simple gas turbine cogeneration system, can produce on-peak power for $0.045 to $0.06 /kWh, while supplying a 24-hour process steam load. The molten salt storage system was found to be less suitable for simple as well as combined-cycle cogeneration applications. However, certain advanced TES concepts and storage media could substantially improve the performance and economic benefits. In related study of a chill TES system was evaluated for precooling gas turbine inlet air, which showed that an ice storage system could be used to effectively increase the peak generating capacity of gas turbines when operating in hot ambient conditions.

  9. PUREX/UO{sub 3} facilities deactivation lessons learned: History

    SciTech Connect

    Gerber, M.S.

    1997-11-25

    In May 1997, a historic deactivation project at the PUREX (Plutonium URanium EXtraction) facility at the Hanford Site in south-central Washington State concluded its activities (Figure ES-1). The project work was finished at $78 million under its original budget of $222.5 million, and 16 months ahead of schedule. Closely watched throughout the US Department of Energy (DOE) complex and by the US Department of Defense for the value of its lessons learned, the PUREX Deactivation Project has become the national model for the safe transition of contaminated facilities to shut down status.

  10. Preliminary requirements for thermal storage subsystems in solar thermal applications

    SciTech Connect

    Copeland, R.J.

    1980-04-01

    Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

  11. Cost analysis of energy storage systems for electric utility applications

    SciTech Connect

    Akhil, A.; Swaminathan, S.; Sen, R.K.

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  12. 77 FR 73635 - Northwest Storage GP, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Northwest Storage GP, LLC; Notice of Application Take notice that on November 21, 2012, Northwest Storage GP, LLC. (Northwest) filed with the Federal Energy...

  13. 77 FR 8248 - Bluewater Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Bluewater Gas Storage, LLC; Notice of Application Take notice that on January 27, 2012, Bluewater Gas Storage, LLC (Bluewater), 333 Clay Street, Suite 1500, Houston,...

  14. 75 FR 47587 - Wabash Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Wabash Gas Storage LLC; Notice of Application July 30, 2010. Take notice that on July 29, 2010, Wabash Gas Storage LLC (Petitioner), 1044 North 115th Street, Suite 400,...

  15. 75 FR 57011 - Tallulah Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Tallulah Gas Storage LLC; Notice of Application September 9, 2010. Take notice that on August 31, 2010, Tallulah Gas Storage LLC (Tallulah), 10370 Richmond Avenue, Suite...

  16. 78 FR 15712 - Arlington Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Arlington Storage Company, LLC; Notice of Application Take notice that on February 26, 2013, Arlington Storage Company, LLC (Arlington), Two Brush Creek Boulevard, Kansas...

  17. 75 FR 70727 - Perryville Gas Storage LLC ; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Perryville Gas Storage LLC ; Notice of Application November 10, 2010. Take notice that on November 5, 2010, Perryville Gas Storage LLC (Perryville), Three Riverway, Suite...

  18. 75 FR 21288 - Henry Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... Energy Regulatory Commission Henry Gas Storage LLC; Notice of Application April 16, 2010. Take notice that on April 5, 2010, Henry Gas Storage LLC (HGS), 1010 Lamar, Suite 1720, Houston, Texas 77002, filed... section 7(c)(1)(B) of the Natural Gas Act (NGA), to perform specific temporary activity related to...

  19. Sampling and Analysis Plan for PUREX canyon vessel flushing

    SciTech Connect

    Villalobos, C.N.

    1995-03-01

    A sampling and analysis plan is necessary to provide direction for the sampling and analytical activities determined by the data quality objectives. This document defines the sampling and analysis necessary to support the deactivation of the Plutonium-Uranium Extraction (PUREX) facility vessels that are regulated pursuant to Washington Administrative Code 173-303.

  20. PUREX/UO{sub 3} deactivation project management plan

    SciTech Connect

    Washenfelder, D.J.

    1993-12-01

    From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO{sub 3}) Plant, which converted the PUREX liquid uranium nitrate product to solid UO{sub 3} powder. Final UO{sub 3} Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO{sub 3} Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retained during the post-deactivation period. The PUREX/UO{sub 3} Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings.

  1. Chemical hydrogen storage material property guidelines for automotive applications

    SciTech Connect

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.

  2. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  3. Carbon Nanotube Films for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Kozinda, Alina

    an original CNT height of 40 micrometers is measured to be 7.0 mF/cm2. To further increase the surface area of the energy storage electrode, a thin, conformal coating of amorphous silicon is deposited onto a vertically aligned carbon nanotube forest using low pressure chemical vapor deposition (LPCVD). Various silicon film thickness depositions are tested as supercapacitor electrodes. A coating of 35 nm is shown to improve the specific capacitance by a factor of 2 as compared to a bare CNT electrode. For applications in which a larger operating voltage is desirable, the electrochemical window of the supercapacitor devices are increased by tailoring the electrolyte used. Using an ionic liquid electrolyte (1-ethyl-3-methylimidazolium tetrafluoroborate, or EMIM-BF4) improves the voltage window from 1 V (in aqueous electrolyte) to 4 V, yielding a power density from the range of 19 to 53 kW/kg. In addition, the CNT-Mo film is shown to outperform an activated carbon (AC) electrode in this ionic liquid in terms of volumetric capacitance by a factor of 12 (388 mF/cm3 versus 31 mF/cm3 for the CNT-Mo film and the AC, respectively). The cycling life of the film in ionic liquid at a number of current densities is also analyzed, and shown to be stable over 7000 charge-discharge cycles. Finally, the CNT-Mo film architecture is further utilized and tested as a lithium ion battery electrode. The high surface area, excellent CNT conductivities, and the extremely high lithium ion intercalation capacity of silicon all promise long-lived and energy-dense lithium ion electrodes. Preliminary results show high energy density of 4000 mAh/g initially. The value quickly drops to 600 mAh/g after 5 charge/discharge cycles and stay the same until failure after 15 cycles. Further studies into thinner silicon coatings and electrolyte selections may result in better performance and longer cycling life.

  4. Advanced energy storage for space applications: A follow-up

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Surampudi, Subbarao

    1994-01-01

    Viewgraphs on advanced energy storage for space applications are presented. Topics covered include: categories of space missions using batteries; battery challenges; properties of SOA and advanced primary batteries; lithium primary cell applications; advanced rechargeable battery applications; present limitations of advanced battery technologies; and status of Li-TiS2, Ni-MH, and Na-NiCl2 cell technologies.

  5. Scenery Storage Technology Application in Power Station System

    NASA Astrophysics Data System (ADS)

    Shi, Hong; Geng, Hao; Feng, Lei; Xu, Xing

    Scenery storage technology can effectively utilize wind power and photovoltaic power generation in the natural complementary of energy and time, improve the reliability of power supply, has attracted more and more attention. At present, the scenery storage research in the field application of the technology is relatively small, based on the actual substation as the research object, put forward the scenery storage technology as substation load power supply three applications of lighting power, standby power station and DC system, and through the detailed implementation of the program design, investment analysis, research the scenery with the feasibility of electrical energy storage technology system application in station. To solve the weak power grid, substation remote and backward areas should not be from the outside to obtain reliable power supply problems, the station area electric system design provides a new way of thinking, which has important practical engineering value.

  6. Twelve Principles for Green Energy Storage in Grid Applications.

    PubMed

    Arbabzadeh, Maryam; Johnson, Jeremiah X; Keoleian, Gregory A; Rasmussen, Paul G; Thompson, Levi T

    2016-01-19

    The introduction of energy storage technologies to the grid could enable greater integration of renewables, improve system resilience and reliability, and offer cost effective alternatives to transmission and distribution upgrades. The integration of energy storage systems into the electrical grid can lead to different environmental outcomes based on the grid application, the existing generation mix, and the demand. Given this complexity, a framework is needed to systematically inform design and technology selection about the environmental impacts that emerge when considering energy storage options to improve sustainability performance of the grid. To achieve this, 12 fundamental principles specific to the design and grid application of energy storage systems are developed to inform policy makers, designers, and operators. The principles are grouped into three categories: (1) system integration for grid applications, (2) the maintenance and operation of energy storage, and (3) the design of energy storage systems. We illustrate the application of each principle through examples published in the academic literature, illustrative calculations, and a case study with an off-grid application of vanadium redox flow batteries (VRFBs). In addition, trade-offs that can emerge between principles are highlighted. PMID:26629882

  7. PLUTONIUM-URANIUM EXTRACTION (PUREX) FACILITY ALARACT DEMONSTRATION FOR FILTER HOUSING

    SciTech Connect

    LEBARON GJ

    2008-11-25

    This document presents an As Low As Reasonably Achievable Control Technology (ALARACT) demonstration for evaluating corrosion on the I-beam supporting filter housing No.9 for the 291-A-l emission unit of the Plutonium-Uranium Extraction (PUREX) Facility, located in the 200 East Area of the Hanford Site. The PUREX facility is currently in surveillance and maintenance mode. During a State of Washington, Department of Health (WDOH) 291-A-l emission unit inspection, a small amount of corrosion was observed at the base of a high-efficiency particulate air (HEPA) filter housing. A series of internal and external inspections identified the source of the corrosion material as oxidation of a small section of one of the carbon steel I-beams that provides support to the stainless steel filter housing. The inspections confirmed the corrosion is isolated to one I-beam support location and does not represent any compromise of the structural support or filter housing integrity. Further testing and inspections of the support beam corrosion and its cause were conducted but did not determine the cause. No definitive evidence was found to support any degradation of the housing. Although no degradation of the housing was found, a conservative approach will be implemented. The following actions will be taken: (1) The current operating filter housing No.9 will be removed from service. (2) The only remaining available filter housings (No.1, No.2, and No.3) will be placed in service. These filter housings have new HEPA filters fitted with stainless steel frames and faceguards which were installed in the spring of 2007. (3) Filter housings No.5 and No.10 will be put on standby as backups. To document the assessment of the unit, a draft ALARACT filter housing demonstration for the PUREX filter housing was prepared, and informally provided to WDOH on August 7, 2008. A follow up WDOH response to the draft ALARACT filter housing demonstration for the PUREX filter housing questioned whether

  8. Redox storage systems for solar applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.; Thaller, L. H.

    1980-01-01

    The NASA Redox energy storage system is described. The system is based on soluble aqueous iron and chromium chloride redox couples. The needed technology advances in the two elements (electrodes and membranes) that are key to its technological feasibility have been achieved and system development has begun. The design, construction, and test of a 1 kilowatt system integrated with a solar photovoltaic array is discussed.

  9. Borehole data package for well 699-37-47A, PUREX Plant Cribs, CY 1996

    SciTech Connect

    Lindberg, J.W.; Williams, B.A.; Spane, F.A.

    1997-02-01

    A new groundwater monitoring well (699-37-47A) was installed in 1996 as a downgradient well near the PUREX Plant Cribs Treatment, Storage, and Disposal Facility at Hanford. This document provides data from the well drilling and construction operations, as well as data from subsequent characterization of groundwater and sediment samples collected during the drilling process. The data include: well construction documentation, geologist`s borehole logs, results of laboratory analysis of groundwater samples collected during drilling and of physical tests conducted on sediment samples collected during drilling, borehole geophysics, and results of aquifer testing including slug tests and flowmeter analysis. This well (699-37-47A) was constructed in support of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestone M-24-00H and interim milestone M-24-35 (Ecology et al. 1994), and was funded under Project W-152.

  10. Building heating and cooling applications thermal energy storage program overview

    NASA Technical Reports Server (NTRS)

    Eissenberg, D. M.

    1980-01-01

    Thermal energy storage technology and development of building heating and cooling applications in the residential and commercial sectors is outlined. Three elements are identified to undergo an applications assessment, technology development, and demonstration. Emphasis is given to utility load management thermal energy system application where the stress is on the 'customer side of the meter'. Thermal storage subsystems for space conditioning and conservation means of increased thermal mass within the building envelope and by means of low-grade waste heat recovery are covered.

  11. Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications

    SciTech Connect

    Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

    2012-04-16

    Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

  12. Perspectives on energy storage wheels for space station application

    SciTech Connect

    Oglevie, R.E.

    1984-11-01

    Several of the issues of the workshop are addressed from the perspective of a potential Space Station developer and energy wheel user. Systems considerations are emphasized rather than component technology. The potential of energy storage wheel (ESW) concept is discussed. The current status of the technology base is described. Justification for advanced technology development is also discussed. The study concludes that energy storage in wheels is an attractive concept for immediate technology development and future Space Station application.

  13. An Isotope-Powered Thermal Storage unit for space applications

    NASA Technical Reports Server (NTRS)

    Lisano, Michael E.; Rose, M. F.

    1991-01-01

    An Isotope-Powered Thermal Storage Unit (ITSU), that would store and utilize heat energy in a 'pulsed' fashion in space operations, is described. Properties of various radioisotopes are considered in conjunction with characteristics of thermal energy storage materials, to evaluate possible implementation of such a device. The utility of the unit is discussed in light of various space applications, including rocket propulsion, power generation, and spacecraft thermal management.

  14. PUREX/UO{sub 3} facilities deactivation lessons learned history

    SciTech Connect

    Hamrick, D.G.; Gerber, M.S.

    1995-01-01

    The Plutonium-Uranium Extraction (PUREX) Facility operated from 1956-1972, from 1983-1988, and briefly during 1989-1990 to produce for national defense at the Hanford Site in Washington State. The Uranium Trioxide (UO{sub 3}) Facility operated at the Hanford Site from 1952-1972, 1984-1988, and briefly in 1993. Both plants were ordered to permanent shutdown by the U.S. Department of Energy (DOE) in December 1992, thus initiating their deactivation phase. Deactivation is that portion of a facility`s life cycle that occurs between operations and final decontamination and decommissioning (D&D). This document details the history of events, and the lessons learned, from the time of the PUREX Stabilization Campaign in 1989-1990, through the end of the first full fiscal year (FY) of the deactivation project (September 30, 1994).

  15. PUREX (SAMCONS) uninterruptible power supply (UPS) acceptance test procedure

    SciTech Connect

    Blackaby, W.B.

    1997-09-01

    This Acceptance Test Procedure for the PUREX Surveillance and Monitoring and Control System (SAMCONS) Uninterruptible Power Supply (UPS) provides for testing and verifying the proper operation of the control panel alarms and trouble functions, the 6roper functioning of the AC inverter, ability of the battery supply to maintain the SAMCONS load for a minimum of two hours , and proper interaction with the SAMCONS Video graphic displays for alarm displays.

  16. Flowsheet for shear/leach processing of N Reactor fuel at PUREX

    SciTech Connect

    Enghusen, M.B.

    1995-04-13

    This document was originally prepared to support the restart of the PUREX plant using a new Shear/Leach head end process. However, the PUREX facility was shutdown and processing of the remaining N Reactor fuel is no longer considered an alternative for fuel disposition. This document is being issued for reference only to document the activities which were investigated to incorporate the shear/leach process in the PUREX plant.

  17. Test profiles for stationary energy-storage applications

    NASA Astrophysics Data System (ADS)

    Butler, P. C.; Cole, J. F.; Taylor, P. A.

    Evaluation of battery and other energy-storage technologies for stationary uses is progressing rapidly toward application-specific testing. This testing uses computer-based data acquisition and control equipment, active electronic loads and power supplies, and customized software, to enable sophisticated test regimes which simulate actual use conditions. These simulated-use tests provide more accurate performance and life evaluations than simple constant resistance or current testing regimes. Several organizations are cooperating to develop simulated-use tests for utility-scale storage systems, especially battery energy-storage systems (BESSs). Some of the tests use stepped constant-power charge and discharge regimes to simulate conditions created by electric utility applications such as frequency regulation (FR) and spinning reserve (SR). Other test profiles under development simulate conditions for the energy-storage component of remote-area power supplies (RAPSs) which include renewable and/or fossil-fuelled generators. Various RAPS applications have unique sets of service conditions that require specialized test profiles. Almost all RAPS tests and many tests that represent other stationary applications need, however, to simulate significant time periods that storage devices operate at low-to-medium states-of-charge without full recharge. Consideration of these and similar issues in simulated-use test regimes is necessary to predict effectively the responses of the various types of batteries in specific stationary applications. This paper describes existing and evolving stationary applications for energy-storage technologies and test regimes which are designed to simulate them. The paper also discusses efforts to develop international testing standards.

  18. Development of regenerable energy storage for space multimegawatt applications

    SciTech Connect

    Olszewski, M.

    1986-01-01

    A program has recently been initiated as a part of the national Strategic Defense Initiative (SDI) to develop energy storage technology for space power applications. This program is jointly conducted by the Department of Energy and the Department of Defense. It is focused on the development of advanced technologies in regenerable energy storage that will be required for generation of multimegawatt levels of sprint power for SDI space missions. Energy storage technology considered in the program relate to devices that have a high specific capacity for energy storage, which can provide high levels of electric power on demand, and which may be recharged with electric power. The devices of principal interest are electrochemical batteries, chemical fuel cells, and electromechanical flywheels (the latter includes the motors and generators used to provide the electrical to mechanical coupling). The intent of the program is to resolve technical feasibility issues associated with an electrically regenerable energy storage system satisfying SDI needs. Specifically, energy storage technology will be developed through the proof-of-concept stage within the next six years that provides a specific power greater than 2.5 kW/kg with an energy storage density of at least 450 kJ/kg.

  19. PUREX/UO3 Facilities deactivation lessons learned history

    SciTech Connect

    Gerber, M.S.

    1996-09-19

    Disconnecting the criticality alarm permanently in June 1996 signified that the hazards in the PUREX (plutonium-uranium extraction) plant had been so removed and reduced that criticality was no longer a credible event. Turning off the PUREX criticality alarm also marked a salient point in a historic deactivation project, 1 year before its anticipated conclusion. The PUREX/UO3 Deactivation Project began in October 1993 as a 5-year, $222.5- million project. As a result of innovations implemented during 1994 and 1995, the project schedule was shortened by over a year, with concomitant savings. In 1994, the innovations included arranging to send contaminated nitric acid from the PUREX Plant to British Nuclear Fuels, Limited (BNFL) for reuse and sending metal solutions containing plutonium and uranium from PUREX to the Hanford Site tank farms. These two steps saved the project $36.9- million. In 1995, reductions in overhead rate, work scope, and budget, along with curtailed capital equipment expenditures, reduced the cost another $25.6 million. These savings were achieved by using activity-based cost estimating and applying technical schedule enhancements. In 1996, a series of changes brought about under the general concept of ``reengineering`` reduced the cost approximately another $15 million, and moved the completion date to May 1997. With the total savings projected at about $75 million, or 33.7 percent of the originally projected cost, understanding how the changes came about, what decisions were made, and why they were made becomes important. At the same time sweeping changes in the cultural of the Hanford Site were taking place. These changes included shifting employee relations and work structures, introducing new philosophies and methods in maintaining safety and complying with regulations, using electronic technology to manage information, and, adopting new methods and bases for evaluating progress. Because these changes helped generate cost savings and were

  20. 76 FR 24018 - Storage Development Partners, LLC; Notice of Preliminary Permit Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... Federal Energy Regulatory Commission Storage Development Partners, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On April 1, 2011, Storage Development Partners, LLC, filed an application for a preliminary...

  1. 76 FR 24017 - Storage Development Partners, LLC; Notice of Preliminary Permit Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... Energy Regulatory Commission Storage Development Partners, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On April 1, 2011, Storage Development Partners, LLC, filed an application for a preliminary permit, pursuant...

  2. Electron trapping optical data storage system and applications

    NASA Technical Reports Server (NTRS)

    Brower, Daniel; Earman, Allen; Chaffin, M. H.

    1993-01-01

    A new technology developed at Optex Corporation out-performs all other existing data storage technologies. The Electron Trapping Optical Memory (ETOM) media stores 14 gigabytes of uncompressed data on a single, double-sided 130 mm disk with a data transfer rate of up to 120 megabits per second. The disk is removable, compact, lightweight, environmentally stable, and robust. Since the Write/Read/Erase (W/R/E) processes are carried out photonically, no heating of the recording media is required. Therefore, the storage media suffers no deleterious effects from repeated W/R/E cycling. This rewritable data storage technology has been developed for use as a basis for numerous data storage products. Industries that can benefit from the ETOM data storage technologies include: satellite data and information systems, broadcasting, video distribution, image processing and enhancement, and telecommunications. Products developed for these industries are well suited for the demanding store-and-forward buffer systems, data storage, and digital video systems needed for these applications.

  3. Overview of Energy Storage Technologies for Space Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao

    2006-01-01

    This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.

  4. Trends in Concentrator, Receiver, and Storage Development for Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Roschke, E. J.; Owen, W. A.; Menard, W. A.; Fujita, T.

    1984-01-01

    The experience gained and the technical trends of the DOE-sponsored terrestrial solar thermal power systems project are summarized with respect to concentrator and receiver/storage development. Relevance of this experience to space power applications, and the perceived critical barriers of this technology, are discussed. It is concluded that, despite different objectives, the terrestrial program provides a strong basis of expertise valuable to space power applications development.

  5. Third international workshop on ice storage for cooling applications

    SciTech Connect

    Gorski, A.J.

    1986-04-01

    The third international workshop on ice storage for cooling applications which was informal and interactive in nature, was open to persons interested in all ice-growing technologies and in ice storage, both seasonal and diurnal. Presentations were made on some 20 topics, ranging from freezers in Alaska to ice cooling of commercial jet aircraft. Workshop tours included visits to ice-storage systems at Commonwealth Edison's facilities in Bolingbrook and Des Plaines Valley, the A.C. Neilsen builing in Northbrook, and the new State of Illinois Center in Chicago. The first workshop in the present series considered the future of ice storage and predicted applications in the agricultural sector, desalinization, and commercial ice production. Progress has been rapid in the intervening two years, and an important topic at the third workshop was the possible use of ''warm ices'' (clathrate hydrates) for energy storage. This report consists primarily of abstracts of presentations made at the workshop. Persons wishing to obtain further information about particular papers should contact the speakers directly; speakers' addresses and telephone numbers are listed in this report.

  6. Grapefruit gland oil composition is affected by wax application, storage temperature, and storage time.

    PubMed

    Sun, D; Petracek, P D

    1999-05-01

    The effect of wax application, storage temperature (4 or 21 degrees C), and storage time (14 or 28 days after wax application) on grapefruit gland oil composition was examined by capillary gas chromatography. Wax application decreases nonanal and nootkatone levels. beta-Pinene, alpha-phellandrene, 3-carene, ocimene, octanol, trans-linalool oxide, and cis-p-mentha-2,8-dien-1-ol levels increase, but limonene levels decrease, with temperature. Levels of alpha-pinene, limonene, linalool, citronellal, alpha-terpineol, neral, dodecanal, and alpha-humulene decrease with time. Levels of alpha-phellandrene, 3-carene, ocimene, and trans-linalool oxide increase with time. No compound level was affected by the interactive action of temperature and wax application, suggesting that these two factors cause grapefruit oil gland collapse (postharvest pitting) through means other than changing gland oil composition. Compounds that are toxic to the Caribbean fruit fly (alpha-pinene, limonene, alpha-terpineol, and some aldehydes) decrease with time, thus suggesting grapefruit becomes increasingly susceptible to the fly during storage. PMID:10552497

  7. Storage, transportation, and atomization of CWF for residential applications

    SciTech Connect

    Grimanis, M.P.; Breault, R.W. ); Smit, F.J.; Jha, M.C. )

    1991-11-01

    This project investigated the properties and behavior with regard to handling, storage, and atomization in small-scale applications of different CWFs (coal water fuels) prepared from different parent coals and various beneficiation techniques as well as consideration for bulk storage and distribution. The CWFs that were prepared included Upper Elkhorn No. 3, Illinois No. 6, and Upper Wyodak coal cleaned by heavy media separation. Also, several CWFs were prepared with Upper Elkhorn No. 3 coal cleaned by heavy media separation with filtration, chemical cleaning, oil agglomeration, and froth flotation.

  8. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    SciTech Connect

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  9. Engineered nanocomposites for energy storage, electrochromic, and anticorrosion applications

    NASA Astrophysics Data System (ADS)

    Wei, Huige

    Polymer nanocomposites exhibit unique properties that cannot be obtained each material acting alone. Till now, polymer nanocomposites have attracted significant research interest due to their promising potential for versatile applications ranging from environmental remediation, energy storage, electromagnetic (EM) absorption, sensing and actuation, transportation and safety, defense system, information industry, to novel catalysts, etc. Herein, innovative polymer nanocomposites for energy storage, energy saving, and anticorrosion applications have been synthesized, characterized, and evaluated. Specifically, conductive polymer, i.e., polyamine and polypyrrole, nanocomposites prepared via chemical or electrochemical oxidative polymerization techniques have been investigated for electrochemical supercapacitor electrode materials applications; Conductive polyurethane (PU) nanocomposite coatings filled with multiwalled carbon nanotubes (MWNTs) fabricated by employing an in situ surface-initiated-polymerization (SIP) method have been tested for corrosion prevention purpose.

  10. Material handling robot system for flow-through storage applications

    NASA Astrophysics Data System (ADS)

    Dill, James F.; Candiloro, Brian; Downer, James; Wiesman, Richard; Fallin, Larry; Smith, Ron

    1999-01-01

    This paper describes the design, development and planned implementation of a system of mobile robots for use in flow through storage applications. The robots are being designed with on-board embedded controls so that they can perform their tasks as semi-autonomous workers distributed within a centrally controlled network. On the storage input side, boxes will be identified by bar-codes and placed into preassigned flow through bins. On the shipping side, orders will be forwarded to the robots from a central order processing station and boxes will be picked from designated storage bins following proper sequencing to permit direct loading into trucks for shipping. Because of the need to maintain high system availability, a distributed control strategy has been selected. When completed, the system will permit robots to be dynamically reassigned responsibilities if an individual unit fails. On-board health diagnostics and condition monitoring will be used to maintain high reliability of the units.

  11. Synthesis of Ammonia Borane for Hydrogen Storage Applications

    SciTech Connect

    Heldebrant, David J.; Karkamkar, Abhijeet J.; Linehan, John C.; Autrey, Thomas

    2008-07-05

    A new synthetic procedure to make the condensed phase hydrogen storage material, ammonia borane (NH3BH3, abbreviated as AB), is described and compared with previous literature procedures. Ammonia borane with a gravimetric density ca. 194 gm H2/kg and a volumetric density ca. 146 H2/liter, is a promising chemical hydrogen storage material for fuel cell powered applications. The work shows that ammonium borohydride, NH4BH4, formed in situ by the metathesis of NH4X and MBH4 salts (M = Na, Li; X = Cl, F) in liquid NH3, can be induced to decompose in an organic ether to yield AB in near quantitative yield. The purity of the AB prepared by this one-pot synthetic strategy is sufficient to meet the thermal stability requirements for on-board hydrogen storage.

  12. TBP and diluent mass balances in the PUREX Plant at Hanford, 1955--1991

    SciTech Connect

    Sederburg, J.P.; Reddick, J.A.

    1994-12-01

    The purpose of this report is to develop an estimate of the quantities of tributyl phosphate and diluent discharged in aqueous waste streams to the tank farms from the Hanford Purex Plant over its operating life. Purex was not the sole source of organics in the tank farms, but was a major contributor. Tributyl phosphate (TBP) and diluent, which changed from Shell E-2342{reg_sign} to Soltrol-170{reg_sign} and then to normal paraffin hydrocarbon (NPH), were organic chemicals used in the Purex solvent extraction process at Hanford to separate plutonium and uranium from spent nuclear fuels. This report is an estimate of the material balances for these chemicals in the Purex Plant at Hanford over its entire operating life. The Purex Plant had cold start up in November 1955 and shut down in 1990. It`s process used a solution of 30 vol% TBP in diluent.

  13. 76 FR 15971 - Liberty Gas Storage, LLC and LA Storage, LLC; Notice of Joint Application for Abandonment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... Federal Energy Regulatory Commission Liberty Gas Storage, LLC and LA Storage, LLC; Notice of Joint... Regulatory Commission (Commission) a joint application under section 7 for (i) Authorization from the.... Questions regarding the joint application may be directed to William Rapp, Counsel for Liberty and...

  14. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    PubMed Central

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-01-01

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed. PMID:20717527

  15. PUMA - a new mathematical model for the rapid calculation of steady-state concentration profiles in mixer-settler extraction, partitioning, and stripping contactors using the Purex process

    SciTech Connect

    Geldard, J.F.

    1986-11-01

    The mathematical basis for a computer code PUMA (Plutonium-Uranium-Matrix-Algorithm) is described. The code simulates steady-state concentration profiles of solvent extraction contactors used in the Purex process, directly without first generating the transient behavior. The computational times are reduced, with no loss of accuracy, by about tenfold over those required by codes that generate the steady-state profiles via transient state conditions. Previously developed codes that simulate the steady-state conditions directly are not applicable to partitioning contactors, whereas PUMA is applicable to all contactors in the Purex process. Since most difficulties are encountered with partitioning contactors when simulating steady-state profiles via transient state conditions, it is with these contactors that the greatest saving in computer times is achieved.

  16. Lithium Ion Cell Development for Photovoltaic Energy Storage Applications

    SciTech Connect

    Babinec, Susan

    2012-02-08

    with this material will be to maintain proven performance when this composite is coated onto a thicker electrode; as well the high temperature storage must meet application requirements. One continuing program challenge was the lack of specific performance variables for this PV application and so the low power requirements of PHEV/EV transportation markets were again used.

  17. Applications of thermal energy storage to process heat storage and recovery in the paper and pulp industry

    NASA Technical Reports Server (NTRS)

    Carr, J. H.; Hurley, P. J.; Martin, P. J.

    1978-01-01

    Applications of Thermal Energy Storage (TES) in a paper and pulp mill power house were studied as one approach to the transfer of steam production from fossil fuel boilers to waste fuel of (hog fuel) boilers. Data from specific mills were analyzed, and various TES concepts evaluated for application in the process steam supply system. Constant pressure and variable pressure steam accumulators were found to be the most attractive storage concepts for this application.

  18. Energy Storage Applications in Power Systems with Renewable Energy Generation

    NASA Astrophysics Data System (ADS)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  19. Development of thermal energy storage materials for biomedical applications.

    PubMed

    Shukla, A; Sharma, Atul; Shukla, Manjari; Chen, C R

    2015-01-01

    The phase change materials (PCMs) have been utilized widely for solar thermal energy storage (TES) devices. The quality of these materials to remain at a particular temperature during solid-liquid, liquid-solid phase transition can also be utilized for many biomedical applications as well and has been explored in recent past already. This study reports some novel PCMs developed by them, along with some existing PCMs, to be used for such biomedical applications. Interestingly, it was observed that the heating/cooling properties of these PCMs enhance the quality of a variety of biomedical applications with many advantages (non-electric, no risk of electric shock, easy to handle, easy to recharge thermally, long life, cheap and easily available, reusable) over existing applications. Results of the present study are quite interesting and exciting, opening a plethora of opportunities for more work on the subject, which require overlapping expertise of material scientists, biochemists and medical experts for broader social benefits. PMID:26103988

  20. Wallboard with Latent Heat Storage for Passive Solar Applications

    SciTech Connect

    Kedl, R.J.

    2001-05-31

    Conventional wallboard impregnated with octadecane paraffin [melting point-23 C (73.5 F)] is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling tests showed no tendency of the paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM (melting point, melting range, and heat of fusion), as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. The confirmed computer model may now be used in conjunction with a building heating and cooling code to evaluate design parameters and operational characteristics of latent heat storage wallboard for passive solar applications.

  1. Modified Purex first-cycle extraction for neptunium recovery

    SciTech Connect

    Dinh, Binh; Moisy, Philippe; Baron, Pascal; Calor, Jean-Noel; Espinoux, Denis; Lorrain, Brigitte; Benchikouhne-Ranchoux, Magali

    2008-07-01

    A new PUREX first-cycle flowsheet was devised to enhance the extraction yield of neptunium at the extraction step of this cycle. Simulation results (using a qualified process-simulation tool), le d to raising the nitric acid concentration of the feed from 3 M to 4.5 M to allow extraction of more than 99% of the neptunium. This flowsheet was operated in the shielded process cell of ATALANTE facility using pulsed columns and mixer-settlers banks. A 15 kg quantity of genuine oxide fuel of average burn up of 52 GWd/t with cooling time of nearly five years was treated, and the neptunium extraction yield obtained was greater than 99.6%. (authors)

  2. Borated stainless steel application in spent-fuel storage racks

    SciTech Connect

    Smith, R.J.; Loomis, G.W.; Deltete, C.P.

    1992-06-01

    EPRI is continuing to investigate the application of borated stainless steel products within the commercial nuclear power industry through participation in code development and material testing. This effort provides documentation of the material properties of interest in design applications utilizing the borated stainless steel products as structural elements as well as serving as neutron absorbers. The properties of most concern in the design of spent fuel storage racks, shipping casks, and other containment type applications are the materials' ductility, tensile strength, corrosion resistance and resistance to degradation due to radiation and temperature. The data presented in this report indicate that practical designs can be achieved utilizing borated stainless steels and that the materials can be cost effectively applied.

  3. 76 FR 30340 - Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... waters owned by others without the owners' express permission. The proposed pumped storage project would... Energy Regulatory Commission Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted..., Reliable Storage 1 LLC filed an application, pursuant to section 4(f) of the Federal Power Act,...

  4. 78 FR 58529 - Floridian Natural Gas Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... Energy Regulatory Commission Floridian Natural Gas Storage Company, LLC; Notice of Application Take notice that on September 4, 2013, Floridian Natural Gas Storage Company, LLC (Floridian Gas Storage... application under section 7(c) of the Natural Gas Act (NGA) and Part 157 of the Commission's...

  5. A highly scalable and high-performance storage architecture for multimedia applications

    NASA Astrophysics Data System (ADS)

    Liu, Zhaobin; Xie, Changsheng; Fu, Xianglin; Cao, Qiang

    2002-12-01

    Due to the excitement of Internet and high bandwidth, there are more and more multimedia applications involving digital industry. However the storage and the real-time of the conventional storage architecture cannot cater for the requirements of continuous media. The most important storage architecture used in past is Direct Attached Storage (DAS) and RAID cabinet, and recently, both Network Attached Storage (NAS) and Storage Area Networks (SAN) are the alterative storage network topology. But as for the multimedia characters, there need more storage capacity and more simultaneous streams. In this paper, we have introduced a novel concept 'Unified Storage Network' (USN) to build efficient SAN over IP, to bridge the gap of NAS and SAN, furthermore to resolve the scalability problem of storage for multimedia applications.

  6. Storage, transportation, and atomization of CWF for residential applications

    SciTech Connect

    Grimanis, M.P.; Breault, R.W.

    1991-06-01

    The properties and behavior with regard to handling, storage, and atomization in small-scale applications of different coal-water fuels (CWFs) prepared from different parent coals and various beneficiation techniques, were investigated. The CWFs that were prepared included Upper Elkhorn No. 3, Illinois No. 6, and Upper Wyodak coal cleaned by heavy media separation. Also, several CWFs were prepared with Upper Elkhorn No. 3 coal cleaned by heavy media separation with filtration, chemical cleaning, oil agglomeration, and froth flotation. Pressure drop measurements in tubes and viscometer measurements were used to construct rheograms of the seven CWFs that were prepared for shear rates up to 1000 1/s. Analysis of each CWF included proximate, ultimate and ash fusion temperatures. A fully automatic demonstration storage facility was designed and fabricated. The viscosity at higher shear rates (150,000 1/s) will be measured in a capillary viscometer to determine the viscosity at shear rate typically obtained with atomizers. The demonstration storage/handling facility will be tested. A cost analysis of a residential facility will be conducted. The seven CWFs will be burned in the residential combustor developed by Tecogen under contract DE-AC22-87PC79650. 41 figs., 12 tabs.

  7. Wallboard with latent heat storage for passive solar applications

    SciTech Connect

    Kedl, R.J.

    1991-05-01

    Conventional wallboard impregnated with octadecane paraffin is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling tests showed no tendency of the paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM, as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. 11 refs., 25 figs., 2 tabs.

  8. A Flywheel Energy Storage System Demonstration for Space Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy

    2003-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented.

  9. Sensible heat storage technologies for solar thermal applications

    SciTech Connect

    Dincer, I.; Dost, S.; Li, X.

    1997-07-01

    This study mainly deals with the sensible heat storage (SHS) systems and their performance evaluations. In this respect, a detailed investigation on the availability of SHS techniques for solar thermal applications, selection criteria of SHS systems, economics of SHS systems, main issues for evaluating SHS systems, the viability of SHS systems, environmental impacts of SHS systems and criteria for a SHS feasibility study, as well as energy saving options is presented. In addition, several definitions of energy and exergy efficiency for the performance of SHS systems are provided with an illustrative example.

  10. Candidate thermal energy storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  11. Design Flexibility of Redox Flow Systems. [for energy storage applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.; Thaller, L. H.

    1982-01-01

    The characteristics inherent in Redox flow systems permit considerable latitude in designing systems for specific storage applications. The first of these characteristics is the absence of plating/deplating reactions with their attendant morphology changes at the electrodes. This permits a given Redox system to operate over a wide range of depths of discharge and charge/discharge rates. The second characteristic is the separation of power generating components (stacks) from the energy storage components (tanks). This results in cost effective system design, ease of system growth via modularization, and freedom from sizing restraints so that the whole spectrum of applications, from utilities down to single residence can be considered. The final characteristic is the commonality of the reactant fluids which assures that all cells at all times are receiving reactants at the same state of charge. Since no cell can be out of balance with respect to any other cell, it is possible for some cells to be charged while others are discharging, in effect creating a DC to DC transformer. It is also possible for various groups of cells to be connected to separate loads, thus supplying a range of output voltages. Also, trim cells can be used to maintain constant bus voltage as the load is changed or as the depth of discharge increases. The commonality of reactant fluids also permits any corrective measures such as rebalancing to occur at the system level instead of at the single cell level.

  12. Partitioning of actinides and fission products in highly-active raffinate from purex process by mixer-settlers

    SciTech Connect

    Ozawa, M.; Nemoto, S.; Togashi, A.; Kawata, T.; Onishi, K. )

    1992-12-01

    Batch, and counter-current flowsheet tests using mixer-settlers have been carried out in the chemical processing facility (CPF). Tokai-works, PNC. Counter-current experiments aim to provide the data for prediction of the Truex process applicability in actinides partitioning in high level liquid waste (HLLW) from the Purex process. Real highly-active (HA) raffinate from FBR spent fuel reprocessing experiments were used in these runs without adjusting the acidity. A mixed solvent composed of 0.2M CMPO in the purex solvent was employed as a Truex solvent. Some noteworthy behaviors for ruthenium were recognized; The rare earths and some fraction of ruthenium were coextracted to the actinides stream. Although they were stripped out by dilute nitric acid as expected, plutonium and some of ruthenium also remained in the organic phase during the stripping of americium. A peculiar extraction behavior of ruthenium of changing its D values stage by stage suggests a mixture of various kinds of complexes in the HA raffinate. A series of counter-current tests resulted in giving sufficiently low alpha contaminated waste giving DF's of over 10[sup 3] for major actinides separation, which will endorse the Truex process. In successive counter-current runs after 1992, an effort for the selective(Am/Np/Pu/U) stripping will be continued including the solvent cleanup step as one of the separation steps. 9 refs., 10 figs., 2 tabs.

  13. Optical Digital Disk Storage: An Application for News Libraries.

    ERIC Educational Resources Information Center

    Crowley, Mary Jo

    1988-01-01

    Describes the technology, equipment, and procedures necessary for converting a historical newspaper clipping collection to optical disk storage. Alternative storage systems--microforms, laser scanners, optical storage--are also retrieved, and the advantages and disadvantages of optical storage are considered. (MES)

  14. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    SciTech Connect

    Sullivan, N.

    1995-05-02

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

  15. Light metal alanates and amides for reversible hydrogen storage applications

    NASA Astrophysics Data System (ADS)

    Lu, Jun

    Hydrogen is undoubtedly one of the key alternatives to replace petroleum products as a clean energy carrier for both transportation and stationary applications. Although there have been numerous material systems studied as potential candidates for hydrogen storage applications, none of the materials known to date has demonstrated sufficient hydrogen capacity or efficiency in the required operating temperature ranges. There are still considerable opportunities for the discovery of new materials that could lead to advances in science as well as commercial technologies in this area. In this study, two new hydrogen-storage systems, i.e. alanate/amide and LiMgN, are investigated. Firstly, we found that if LiAlH4 and LiNH2 are allowed to react in a proper molar ratio, the LiH that forms as an intermediate product of the dehydrogenation of LiAlH4 can subsequently react with LiNH2 to release H2 at temperatures below 300°C, much lower than that without LiNH2. However, this system is only partially reversible. The difficulty of reversing the reaction is attributed to the irreversibility of the dehydrogenation reaction of LiAlH4 to Li3AlH6. Further experimental results showed that the reversible storage capacity of the combined alanate/amide material system is increased to 7.0 wt% under 300°C, if LiNH2 were reacted with Li3AlH6, instead of LiAlH4, in a 3:1 molar ratio. We also found that the re-formation of Li3AlH 6 depends strongly on the heating rate during the hydrogenation process. To improve the kinetic and thermodynamic properties of the Li-Al-N-H systems, the reaction between Li3AlH6 and Mg(NH2) 2 was studied based on the understanding of the destabilizing effect of amide on alanates. The Li-Al-Mg-N-H system would have better kinetic properties than the Li-Al-N-H system due to the addition of Mg, based on the published research results on the comparison between the Li-Mg-N-H and Li-N-H systems. A reversible 6.2 wt% H2 storage capacity has been demonstrated under the

  16. Conventional wallboard with latent heat storage for passive solar applications

    SciTech Connect

    Kedl, R.J.

    1990-01-01

    Conventional wallboard impregnated with octadecane paraffin (Melting Point -- 73.5{degree}F) is being developed as a building material with latent heat storage for passive solar applications. Impregnation was accomplished simply by soaking the wallboard in molten paraffin. Concentrations of paraffin in the combined product as high as 35{percent} by weight were achieved. In support of this concept, a computer model was developed to describe thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions where the PCM melts at a specific melting point. However, agreement between the model and an experimentally produced thermal transient involving impregnated wallboard was only good after the model was modified to allow the paraffin to melt over a temperature range. This was accomplished by replacing the heat of fusion with a triangular heat capacity relationship that mimics the triangular melt curve found through differential scanning calorimetry. When this change was made, agreement between the model and the experimental transient was very good. 4 refs., 8 figs.

  17. Nanoporous and Nanostructured Materials for Energy Storage and Sensor Applications

    NASA Astrophysics Data System (ADS)

    Vu, Anh D.

    The major objective of this work is to design nanostructured and nanoporous materials targeting the special needs of the energy storage and sensing fields. Nanostructured and nanoporous materials are increasingly finding applications in many fields, including electrical energy storage and explosive sensing. The advancement of energy storage devices is important to the development of three fields that have strong effects on human society: renewable energy, transportation, and portable devices. More sensitive explosive sensors will help to prevent terrorism activities and boost national security. Hierarchically porous LiFePO4 (LFP)/C composites were prepared using a surfactant and colloidal crystals as dual templates. The surfactant serves as the template for mesopores and polymeric colloidal spheres serve as the template for macropores. The confinement of the surfactant-LFP-carbon precursor in the colloidal templates is crucial to suppress the fast crystallization of LFP and helps to maintain the ordered structure. The obtained composites with high surface areas and ordered porous structure showed excellent rate performance when used as cathode materials for LIBs, which will allow them to be used as a power source for EVs and HEVs. The synthesis of LiFePO 4 in three dimensionally confined spaces within the colloidal template resulted in the formation of spherical particles. Densely packed LiFePO 4 spheres in a carbon matrix were obtained by spin-casting the LFP-carbon precursor on a quartz substrate and then pyrolyzing it. The product showed high capacity and could be charged /discharged with very little capacity fading over many cycles. Three-dimensionally ordered mesoporous carbons were prepared from nano-sized silica sphere colloidal crystal templates. These materials with very high surface areas and ordered porous structure showed high capacitance and excellent rate capability when used as electrodes for supercapacitors. Mesoporous silica thin films of different

  18. Study of Early Transition Metal Carbides for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Dall'Agnese, Yohan

    An increase in energy and power density is needed to match the growing energy storage demands linked with the development of renewable energy production, and portable electronics. Several energy storage technologies exist including lithium-ion batteries, sodium-ion batteries, fuel cells and supercapacitors. These systems are mutually complementary. For example, supercapacitors can deliver high power densities whereas batteries can be used for high energy density applications. The first objective of this work was to investigate the electrochemical performances of a new family of 2-D materials called MXenes by cyclic voltammetry and galvanostatic charge-discharge measurements and to propose new solutions to tackle the energy storage concern. To achieve this goal, several directions have been explored. The first part of the research focused on Ti3C 2-based MXenes behavior as electrode materials for supercapacitors in aqueous electrolytes. The charge storage mechanisms in basic and neutral aqueous electrolytes, investigated by X-ray diffraction, were demonstrated to be attributed to cations intercalation between Ti3C2 layers. X-ray photoelectron spectroscopy highlighted the contribution of oxygenated functional groups on surface redox reactions in sulfuric acid. High capacitances were achieved, up to 520 F/cm3 and 325 F/g. Then the electrochemical behaviors of MXenes in sodium-based organic electrolytes were explored. A new hybrid system of sodium-ion capacitor was proposed. It was demonstrated that V2C-based MXene electrodes were suitable to be used as positive electrodes with an operating potential from 1 V to 3.5 V vs. Na+/Na. Continuous intercalation and de-intercalation of sodium ions between the V2C layers during sodiation and desodiation were showed by X-ray diffraction. An asymmetric sodium-ion capacitor full cell was assembled using hard carbon as negative electrode and showed promising results, with a capacity of 50 mAh/g. The last part was focused on the

  19. 75 FR 8051 - Petal Gas Storage, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Energy Regulatory Commission Petal Gas Storage, L.L.C.; Notice of Application February 12, 2010. Take notice that on January 29, 2010, Petal Gas Storage, L.L.C. (Petal), 1100 Louisiana Street, Houston, Texas..., Vice President and Regulatory Counsel, Petal Gas Storage, L.L.C., 1100 Louisiana Street, Houston,...

  20. 77 FR 2715 - D'Lo Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... Energy Regulatory Commission D'Lo Gas Storage, LLC; Notice of Application Take notice that on December 29, 2011, D'Lo Gas Storage, LLC (D'Lo), 1002 East St. Mary Blvd., Lafayette, Louisiana 70503, filed in... D'Lo to construct, operate, and maintain a new natural gas storage project to be located in...

  1. Uranium for hydrogen storage applications : a materials science perspective.

    SciTech Connect

    Shugard, Andrew D.; Tewell, Craig R.; Cowgill, Donald F.; Kolasinski, Robert D.

    2010-08-01

    Under appropriate conditions, uranium will form a hydride phase when exposed to molecular hydrogen. This makes it quite valuable for a variety of applications within the nuclear industry, particularly as a storage medium for tritium. However, some aspects of the U+H system have been characterized much less extensively than other common metal hydrides (particularly Pd+H), likely due to radiological concerns associated with handling. To assess the present understanding, we review the existing literature database for the uranium hydride system in this report and identify gaps in the existing knowledge. Four major areas are emphasized: {sup 3}He release from uranium tritides, the effects of surface contamination on H uptake, the kinetics of the hydride phase formation, and the thermal desorption properties. Our review of these areas is then used to outline potential avenues of future research.

  2. Computational study of sodium magnesium hydride for hydrogen storage applications

    NASA Astrophysics Data System (ADS)

    Soto Valle, Fernando Antonio

    Hydrogen offers considerable potential benefits as an energy carrier. However, safe and convenient storage of hydrogen is one of the biggest challenges to be resolved in the near future. Sodium magnesium hydride (NaMgH 3) has attracted attention as a hydrogen storage material due to its light weight and high volumetric hydrogen density of 88 kg/m3. Despite the advantages, hydrogen release in this material occurs at approximately 670 K, which is well above the operable range for on-board hydrogen storage applications. In this regard, hydrogen release may be facilitated by substitution doping of transition-metals. This dissertation describes first-principles computational methods that enable an examination of the hydrogen storage properties of NaMgH3. The novel contribution of this dissertation includes a combination of crystal, supercell, and surface slab calculations that provides new and relevant insights about the thermodynamic and kinetic properties of NaMgH3. First-principles calculations on the pristine crystal structure provide a starting reference point for the study of this material as a hydrogen storage material. To the best of our knowledge, it is reported for the first time that a 25% mol doping concentration of Ti, V, Cu, and Zn dopants reduce the reaction enthalpy of hydrogen release for NaMgH3. The largest decrease in the DeltaH(298 K) value corresponds to the Zn-doped model (67.97 kJ/(mol H2)). Based on cohesive energy calculations, it is reported that at the 6.25% mol doping concentration, Ti and Zn dopants are the only transition metals that destabilize the NaMgH3 hydride. In terms of hydrogen removal energy, it is quantified that the energy cost to remove a single H from the Ti-doped supercell model is 0.76 eV, which is lower with respect to the pristine model and other prototypical hydrogen storage materials. From the calculation of electronic properties such as density of states, electron density difference, and charge population analysis

  3. Nanostructures design and fabrication for magnetic storage applications

    NASA Astrophysics Data System (ADS)

    Luo, Yong

    The advent of nanofabrication technology offers capabilities in patterning materials and modifying the magnetic properties. The focus of this research is to design and fabricate magnetic nanostructures and understand the magnetic behavior modified by nanostructures, to generate new devices for magnetic storage applications. First, novel techniques have been successfully developed to fabricate nanostructures with different shapes and dimensions below the resolution limit of photolithography tool. Anisotropic nanostructures, diamonds and triangles, have been obtained by over-exposure technique; nano-rings, both centered and de-centered, have been obtained by lateral etch technique and ALD spacer mask technique. All these techniques are simple and use conventional photolithography. Large area, high density nanostructures have been obtained at low cost. Second, anisotropic nanostructures have been characterized correlated with simulation to understand the shape anisotropy effect on magnetic behavior. Coercivity change and angular dependent behavior result from pinning the magnet by the nanostructures and these have been explored. Dimensions of nanostructure also play an important role in changing the magnetic properties. Third, nano-rings have been characterized correlated with simulation to study the magnetic state switching process. Various dimensions of rings have been compared and have revealed that the vortex state in rings is affected by the dimensions of inner diameter, width and thickness. The shape anisotropy and magnetostatic energy play an important role in vortex state formation and maintenance. The interaction effect in ring array has also been explored for high density MRAM design application. Fourth, feasible design and fabrication of de-centered rings have been developed for vortex chirality control. The asymmetry in the de-centered rings controls the movement direction of the domain walls, leading to predictable vortex chirality. Finally, future

  4. 78 FR 39720 - Atmos Pipeline and Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Atmos Pipeline and Storage, LLC; Notice of Application Take notice that on June 14, 2013, Atmos Pipeline and Storage, LLC. (Atmos), filed with the Federal Energy Regulatory Commission an application under section 7(b)...

  5. 76 FR 30327 - Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted..., Reliable Storage 1 LLC filed an application, pursuant to section 4(f) of the Federal Power Act,...

  6. 76 FR 45251 - Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Reliable Storage 1 LLC; Notice of Preliminary Permit Application..., 2011, Reliable Storage 1 LLC, filed an application, pursuant to section 4(f) of the Federal Power...

  7. 76 FR 45252 - Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted..., Reliable Storage 1 LLC, filed an application, pursuant to section 4(f) of the Federal Power Act,...

  8. 76 FR 45251 - Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted..., Reliable Storage 1 LLC, filed an application, pursuant to section 4(f) of the Federal Power Act,...

  9. 76 FR 30339 - Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted..., Reliable Storage 1 LLC filed an application, pursuant to section 4(f) of the Federal Power Act,...

  10. 76 FR 30340 - Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted..., Reliable Storage 1 LLC filed an application, pursuant to section 4(f) of the Federal Power Act,...

  11. 77 FR 9229 - Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted..., Reliable Storage 1 LLC filed an application, pursuant to section 4(f) of the Federal Power Act,...

  12. 77 FR 5788 - PetroLogistics Natural Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... Energy Regulatory Commission PetroLogistics Natural Gas Storage, LLC; Notice of Application Take notice that on January 27, 2012, PetroLogistics Natural Gas Storage, LLC (PetroLogistics), 4470 Bluebonnet... previously filed application in Docket No. CP11-50-000. Specifically, PetroLogistics request to amend...

  13. Evaluation of thermal-storage concepts for solar cooling applications

    NASA Astrophysics Data System (ADS)

    Hughes, P. J.; Morehouse, J. H.; Choi, M. K.; White, N. M.; Scholten, W. B.

    1981-10-01

    Various configuration concepts for utilizing thermal energy storage to improve the thermal and economic performance of solar cooling systems for buildings were analyzed. The storge concepts evaluated provide short-term thermal storge via the bulk containment of water or salt hydrates. The evaluations were made for both residential-size cooling systems (3-ton) and small commercial-size cooling systems (25-ton). The residential analysis considers energy requirements for space heating, space cooling and water heating, while the commercial building analysis is based only on energy requirements for space cooling. The commercial building analysis considered a total of 10 different thermal storage/solar systems, 5 each for absorption and Rankine chiller concepts. The residential analysis considered 4 thermal storage/solar systems, all utilizing an absorption chiller. The trade-offs considered include: cold-side versus hot-side storage, single vs multiple stage storage, and phase-change vs sensible heat storage.

  14. ADAPTING A CERTIFIED SHIPPING PACKAGE FOR STORAGE APPLICATIONS

    SciTech Connect

    Loftin, B.; Abramczyk, G.

    2012-06-05

    For years shipping packages have been used to store radioactive materials at many DOE sites. Recently, the K-Area Material Storage facility at the Savannah River Site became interested in and approved the Model 9977 Shipping Package for use as a storage package. In order to allow the 9977 to be stored in the facility, there were a number of evaluations and modifications that were required. There were additional suggested modifications to improve the performance of the package as a storage container that were discussed but not incorporated in the design that is currently in use. This paper will discuss the design being utilized for shipping and storage, suggested modifications that have improved the storage configuration but were not used, as well as modifications that have merit for future adaptations for both the 9977 and for other shipping packages to be used as storage packages.

  15. Disposition of PUREX facility tanks D5 and E6 uranium and plutonium solutions. Final report

    SciTech Connect

    Harty, D.P.

    1993-12-01

    Approximately 9 kilograms of plutonium and 5 metric tons of uranium in a 1 molar nitric acid solution are being stored in two PUREX facility vessels, tanks D5 and E6. The plutonium was accumulated during cleanup activities of the plutonium product area of the PUREX facility. Personnel at PUREX recently completed a formal presentation to the Surplus Materials Peer Panel (SMPP) regarding disposition of the material currently in these tanks. The peer panel is a group of complex-wide experts who have been chartered by EM-64 (Office of Site and Facility Transfer) to provide a third party independent review of disposition decisions. The information presented to the peer panel is provided in the first section of this report. The panel was generally receptive to the information provided at that time and the recommendations which were identified.

  16. A brief history of the PUREX and UO{sub 3} facilities

    SciTech Connect

    Gerber, M.S.

    1993-11-01

    The Plutonium-Uranium Extraction (PUREX) Plant, conceived during the early Cold War years, was a vehicle to increase significantly US nuclear weapons production capacity. The original PUREX Plant was a concrete rectangle 1,005 feet long and 61.5 feet wide. The shielding capacity of the concrete was designed so that personnel in non-regulated service areas would not receive radiation in excess of 0.1 millirem per hour. This report discusses the design of the PUREX Plant, the production chronology, projects and equipment changes, equipment decontamination and reuse, waste management, and contamination events that have occurred during the operation of the plant. Additionally, the development and history of the Uranium Trioxide Plant are also covered.

  17. Conceptual design of thermal energy storage systems for near-term electric utility applications

    NASA Technical Reports Server (NTRS)

    Hall, E. W.

    1980-01-01

    Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.

  18. Application of electrochemical energy storage in solar thermal electric generation systems

    NASA Technical Reports Server (NTRS)

    Das, R.; Krauthamer, S.; Frank, H.

    1982-01-01

    This paper assesses the status, cost, and performance of existing electrochemical energy storage systems, and projects the cost, performance, and availability of advanced storage systems for application in terrestrial solar thermal electric generation. A 10 MWe solar plant with five hours of storage is considered and the cost of delivered energy is computed for sixteen different storage systems. The results indicate that the five most attractive electrochemical storage systems use the following battery types: zinc-bromine (Exxon), iron-chromium redox (NASA/Lewis Research Center, LeRC), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (Energy Development Associates, EDA).

  19. Value of Energy Storage for Grid Applications (Report Summary) (Presentation)

    SciTech Connect

    Denholm, P.; Jorgenson, J.; Hummon, M.; Jenkin, T.; Palchak, D.; Kirby, B.; Ma, O.; O'Malley, M.

    2013-06-01

    This analysis evaluates several operational benefits of electricity storage, including load-leveling, spinning contingency reserves, and regulation reserves. Storage devices were simulated in a utility system in the western United States, and the operational costs of generation was compared to the same system without the added storage. This operational value of storage was estimated for devices of various sizes, providing different services, and with several sensitivities to fuel price and other factors. Overall, the results followed previous analyses that demonstrate relatively low value for load-leveling but greater value for provision of reserve services. The value was estimated by taking the difference in operational costs between cases with and without energy storage and represents the operational cost savings from deploying storage by a traditional vertically integrated utility. The analysis also estimated the potential revenues derived from a merchant storage plant in a restructured market, based on marginal system prices. Due to suppression of on-/off-peak price differentials and incomplete capture of system benefits (such as the cost of power plant starts), the revenue obtained by storage in a market setting appears to be substantially less than the net benefit provided to the system. This demonstrates some of the additional challenges for storage deployed in restructured energy markets.

  20. The Value of Energy Storage for Grid Applications

    SciTech Connect

    Denholm, Paul; Jorgenson, Jennie; Hummon, Marissa; Jenkin, Thomas; Palchak, David; Kirby, Brendan; Ma, Ookie; O'Malley, Mark

    2013-05-01

    This analysis evaluates several operational benefits of electricity storage, including load-leveling, spinning contingency reserves, and regulation reserves. Storage devices were simulated in a utility system in the western United States, and the operational costs of generation was compared to the same system without the added storage. This operational value of storage was estimated for devices of various sizes, providing different services, and with several sensitivities to fuel price and other factors. Overall, the results followed previous analyses that demonstrate relatively low value for load-leveling but greater value for provision of reserve services. The value was estimated by taking the difference in operational costs between cases with and without energy storage and represents the operational cost savings from deploying storage by a traditional vertically integrated utility. The analysis also estimated the potential revenues derived from a merchant storage plant in a restructured market, based on marginal system prices. Due to suppression of on-/off-peak price differentials and incomplete capture of system benefits (such as the cost of power plant starts), the revenue obtained by storage in a market setting appears to be substantially less than the net benefit provided to the system. This demonstrates some of the additional challenges for storage deployed in restructured energy markets.

  1. Electrochemical energy storage systems for solar thermal applications

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  2. Exchange coupling and its applications in magnetic data storage.

    PubMed

    Li, Kebin; Wu, Yihong; Guo, Zaibing; Zheng, Yuankai; Han, Guchang; Qiu, Jinjun; Luo, Ping; An, Lihua; Zhou, Tiejun

    2007-01-01

    The continuing scaling of magnetic recording is facing more and more scientific and technological challenges because both the read sensor and recording bit are approaching sub-50 nm regime with the ever increasing areal density in hard disk drives. One of the key and indispensable elements for both high-sensitivity sensors and high-density media is the exchange bias between a ferromagnetic and an antiferromagnetic layer or the exchange coupling between two ferromagnets via a non-magnetic spacer. In the nanometer regime, the exchange coupling between ferromagnet and antiferromagnet or two ferromagnets through a conductive spacer is governed by the intergrain exchange interaction which has its origin in electron spins. Interlayer exchange coupling in multilayer or trilayer essentially originates from the quantum confinement effect. In this paper, we first review the physical origin and various theoretical models of the two types of exchange couplings, followed by a review of the applications of the exchange bias and interlayer exchange coupling in data storage with emphasis on the advanced read sensor and advanced media including perpendicular media and patterned media. PMID:17455474

  3. Carbon Nanomaterials for Energy Storage, Actuators and Environmental Applications

    NASA Astrophysics Data System (ADS)

    Wang, Chengwei

    Carbon nanomaterials have caught tremendous attention in the last few decades due to their unique physical and chemical properties. Tremendous effort has been made to develop new synthesis techniques for carbon nanomaterials and investigate their properties for different applications. In this work, carbon nanospheres (CNSs), carbon foams (CF), and single-walled carbon nanotubes (SWNTs) were studied for various applications, including water treatment, energy storage, actuators, and sensors. A facile spray pyrolysis synthesis technique was developed to synthesize individual CNSs with specific surface area (SSA) up to 1106 m2/g. The hollow CNSs showed adsorption of up to 300 mg rhodamine B dye per gram carbon, which is more than 15 times higher than that observed for conventional carbon black. They were also evaluated as adsorbents for removal of arsenate and selenate from water and displayed good binding to both species, outperforming commercial activated carbons for arsenate removal in pH > 8. When evaluated as supercapacitor electrode materials, specific capacitances of up to 112 F/g at a current density of 0.1 A/g were observed. When used as Li-ion battery anode materials, the CNSs achieved a discharge capacity of 270 mAh/g at a current density of 372 mA/g (1C), which is 4-fold higher than that of commercial graphite anode. Carbon foams were synthesized using direct pyrolysis and had SSA up to 2340 m2/g. When used as supercapacitor electrode materials, a specific capacitance up to 280 F/g was achieved at current density of 0.1 A/g and remained as high as 207 F/g, even at a high current density of 10 A/g. A printed walking robot was made from common plastic films and coatings of SWNTs. The solid-state thermal bimorph actuators were multifunctional energy transducers powered by heat, light, or electricity. The actuators were also investigated for photo/thermal detection. Electrochemical actuators based on MnO2 were also studied for potential underwater applications

  4. Applications of mutant yeast strains with low glycogen storage capability

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Schubert, W. W.; Stokes, B. O.

    1981-01-01

    Several strains of Hansenula polymorpha were selected for possible low glycogen storage characteristics based on a selective I2 staining procedure. The levels of storage carbohydrates in the mutant strains were found to be 44-70% of the levels in the parent strain for cultures harvested in stationary phase. Similar differences generally were not found for cells harvested in exponential phase. Yeast strains deficient in glycogen storage capability are valuable in increasing the relative protein value of microbial biomass and also may provide significant cost savings in substrate utilization in fermentative processes.

  5. Inertial energy storage for advanced space station applications

    NASA Technical Reports Server (NTRS)

    Van Tassel, K. E.; Simon, W. E.

    1985-01-01

    Because the NASA Space Station will spend approximately one-third of its orbital time in the earth's shadow, depriving it of solar energy and requiring an energy storage system to meet system demands, attention has been given to flywheel energy storage systems. These systems promise high mechanical efficiency, long life, light weight, flexible design, and easily monitored depth of discharge. An assessment is presently made of three critical technology areas: rotor materials, magnetic suspension bearings, and motor-generators for energy conversion. Conclusions are presented regarding the viability of inertial energy storage systems and of problem areas requiring further technology development efforts.

  6. Graphene and graphene-based materials for energy storage applications.

    PubMed

    Zhu, Jixin; Yang, Dan; Yin, Zongyou; Yan, Qingyu; Zhang, Hua

    2014-09-10

    With the increased demand in energy resources, great efforts have been devoted to developing advanced energy storage and conversion systems. Graphene and graphene-based materials have attracted great attention owing to their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities that render them great choices as alternative electrode materials for electrochemical energy storage systems. This Review summarizes the recent progress in graphene and graphene-based materials for four energy storage systems, i.e., lithium-ion batteries, supercapacitors, lithium-sulfur batteries and lithium-air batteries. PMID:24431122

  7. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    PubMed Central

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described. PMID:19333448

  8. High temperature metal hydrides as heat storage materials for solar and related applications.

    PubMed

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 degrees C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described. PMID:19333448

  9. Investigation of storage system designs and techniques for optimizing energy conservation in integrated utility systems. Volume 2: (Application of energy storage to IUS)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The applicability of energy storage devices to any energy system depends on the performance and cost characteristics of the larger basic system. A comparative assessment of energy storage alternatives for application to IUS which addresses the systems aspects of the overall installation is described. Factors considered include: (1) descriptions of the two no-storage IUS baselines utilized as yardsticks for comparison throughout the study; (2) discussions of the assessment criteria and the selection framework employed; (3) a summary of the rationale utilized in selecting water storage as the primary energy storage candidate for near term application to IUS; (4) discussion of the integration aspects of water storage systems; and (5) an assessment of IUS with water storage in alternative climates.

  10. Applications of thermal energy storage in the cement industry

    NASA Technical Reports Server (NTRS)

    Jaeger, F. A.; Beshore, D. G.; Miller, F. M.; Gartner, E. M.

    1978-01-01

    In the manufacture of cement, literally trillions of Btu's are rejected to the environment each year. The purpose of this feasibility study program was to determine whether thermal energy storage could be used to conserve or allow alternative uses of this rejected energy. This study identifies and quantifies the sources of rejected energy in the cement manufacturing process, established use of this energy, investigates various storage system concepts, and selects energy conservation systems for further study. Thermal performance and economic analyses are performed on candidate storage systems for four typical cement plants representing various methods of manufacturing cement. Through the use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 10 to the 13th power Btu/year, or an equivalent on investment of the proposed systems are an incentive for further development.

  11. 76 FR 41235 - Tres Palacios Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Tres Palacios Gas Storage LLC; Notice of Application Take notice that on July 5, 2011, Tres Palacios Gas Storage LLC (TPGS), Two Brush Creek Blvd., Suite 200, Kansas...

  12. 75 FR 35007 - Wyckoff Gas Storage Company LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Wyckoff Gas Storage Company LLC; Notice of Application June 15, 2010. On June 10, 2010, Wyckoff Gas Storage Company, LLC, (``Wyckoff''), 6733 South Yale, Tulsa, OK...

  13. 78 FR 77445 - Tres Palacios Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Tres Palacios Gas Storage LLC; Notice of Application Take notice that on December 6, 2013, Tres Palacios Gas Storage LLC (Tres Palacios) 700 Louisiana Street, Suite 2060,...

  14. 75 FR 52937 - Turtle Bayou Gas Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Energy Regulatory Commission Turtle Bayou Gas Storage Company, LLC; Notice of Application August 20, 2010. Take notice that on August 6, 2010, Turtle Bayou Gas Storage Company, LLC (Turtle Bayou), One Office... caverns and related facilities to be located in Chambers and Liberty Counties, Texas. Turtle Bayou...

  15. 76 FR 50724 - Sawgrass Storage, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Sawgrass Storage, L.L.C.; Notice of Application Take notice that on July 27, 2011, Sawgrass Storage, L.L.C. (Sawgrass), having its principal place of business at 3333...

  16. 77 FR 23241 - Floridian Natural Gas Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... Energy Regulatory Commission Floridian Natural Gas Storage Company, LLC; Notice of Application Take notice that on March 30, 2012, Floridian Natural Gas Storage Company, LLC (FGS), 1000 Louisiana Street... section 7 of the Natural Gas Act (NGA) and Part 157 of the Commission's regulations to amend...

  17. 75 FR 8318 - Petrologistics Natural Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Energy Regulatory Commission Petrologistics Natural Gas Storage, LLC; Notice of Application February 17, 2010. Take notice that on February 12, 2010, Petrologistics Natural Gas Storage, LLC (Petrologistics... to section 7(c) of the Natural Gas Act (NGA), to amend its Certificate of Public Convenience...

  18. 76 FR 544 - PetroLogistics Natural Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... Energy Regulatory Commission PetroLogistics Natural Gas Storage, LLC; Notice of Application December 28, 2010. Take notice that on December 14, 2010, PetroLogistics Natural Gas Storage, LLC (PetroLogistics... parallel PetroLogistics' existing header; (3) constructing two new compressor units, totaling...

  19. 77 FR 20618 - PetroLogistics Natural Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... Energy Regulatory Commission PetroLogistics Natural Gas Storage, LLC; Notice of Application Take notice that on March 22, 2012, PetroLogistics Natural Gas Storage, LLC (PetroLogistics), 4470 Bluebonnet Blvd..., and CP07-429-000, as amended in Docket No. CP10-66-000. Specifically, PetroLogistics request to...

  20. 75 FR 49917 - PetroLogistics Natural Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Energy Regulatory Commission PetroLogistics Natural Gas Storage, LLC; Notice of Application August 3, 2010. Take notice that on July 21, 2010, PetroLogistics Natural Gas Storage, LLC (PetroLogistics), 4470..., measuring, and appurtenant facilities in order to connect the cavern to PetroLogistics' existing...

  1. 77 FR 19279 - Long Canyon Pumped Storage Project; Notice of Preliminary Permit Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Energy Regulatory Commission Long Canyon Pumped Storage Project; Notice of Preliminary Permit Application... section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of the Long Canyon Pumped Storage Project to be located near the town of Moab, Grand County, Utah. The ] project would...

  2. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2A

    SciTech Connect

    Bowman, R.C.

    1994-04-01

    This permit application for the 616 Nonradioactive Dangerous Waste Storage Facility consists for 15 chapters. Topics of discussion include the following: facility description and general provisions; waste characteristics; process information; personnel training; reporting and record keeping; and certification.

  3. Thermodynamic Properties of Organometallic Dihydrogen Complexes for Hydrogen Storage Applications

    NASA Astrophysics Data System (ADS)

    Abrecht, David Gregory

    appropriate ranges for hydrogen storage applications. Simulated thermodynamic values for Fe complexes were found to significantly underestimate experimental behavior, demonstrating the importance of the magnetic spin state of the molecule to hydrogen binding properties.

  4. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 3

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)

    1992-01-01

    This report contains copies of nearly all of the technical papers and viewgraphs presented at the National Space Science Data Center (NSSDC) Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990s.

  5. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 2

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)

    1992-01-01

    This report contains copies of nearly all of the technical papers and viewgraphs presented at the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Application. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include the following: magnetic disk and tape technologies; optical disk and tape; software storage and file management systems; and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  6. Workshop on compact storage ring technology: applications to lithography

    SciTech Connect

    Not Available

    1986-05-30

    Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems. (LEW)

  7. BALLISTICS TESTING OF THE 9977 SHIPPING PACKAGE FOR STORAGE APPLICATIONS

    SciTech Connect

    Loftin, B.; Abramczyk, G.; Koenig, R.

    2012-06-06

    Radioactive materials are stored in a variety of locations throughout the DOE complex. At the Savannah River Site (SRS), materials are stored within dedicated facilities. Each of those facilities has a documented safety analysis (DSA) that describes accidents that the facility and the materials within it may encounter. Facilities at the SRS are planning on utilizing the certified Model 9977 Shipping Package as a long term storage package and one of these facilities required ballistics testing. Specifically, in order to meet the facility DSA, the radioactive materials (RAM) must be contained within the storage package after impact by a .223 caliber round. In order to qualify the Model 9977 Shipping Package for storage in this location, the package had to be tested under these conditions. Over the past two years, the Model 9977 Shipping Package has been subjected to a series of ballistics tests. The purpose of the testing was to determine if the 9977 would be suitable for use as a storage package at a Savannah River Site facility. The facility requirements are that the package must not release any of its contents following the impact in its most vulnerable location by a .223 caliber round. A package, assembled to meet all of the design requirements for a certified 9977 shipping configuration and using simulated contents, was tested at the Savannah River Site in March of 2011. The testing was completed and the package was examined. The results of the testing and examination are presented in this paper.

  8. Small form factor (SFF) optical data storage devices for mobile applications

    NASA Astrophysics Data System (ADS)

    Park, Young-Pil; Park, No-Cheol; Kim, Chul-Jin

    2005-09-01

    There are two basic requirements in the field of optical storage data devices. The first is the demand for the improvement of memory capacity to manage the increased data capacity in personal and official purposes. The second is the demand for small sized optical storage devices for mobile multimedia digital electronics, including digital camera, PDA and mobile phones. To summarize, for the sake of mobile applications, it is necessary to develop optical data storage devices which have simultaneously a large capacity and a small size. Small form factor optical disk drive (SFF ODD) is expected to become a good match for mobile applications due its advantages over other devices in cost and removability. Nowadays, many companies and research institutes including universities cooperate together in the research on SFF ODD and other related optical storage devices. Due such active researches, it is expected that SFF ODD will be widely used in mobile applications in the very near future.

  9. Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications

    SciTech Connect

    Atcitty, S.; Gray-Fenner, A.; Ranade, S.

    1998-09-01

    The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

  10. Application of buffer thermal energy storage to an Air Brayton Solar Engine

    NASA Astrophysics Data System (ADS)

    Strumpf, H. J.; Barr, K. P.

    1982-02-01

    The application of latent heat buffer thermal energy (TES) storage to a point focusing solar receiver equipped with an air Brayton engine is discussed. The 85-kw(th) Air Brayton Solar Receiver (ABSR) and Mod "O" engine were used as a baseline system. The operating life of a Brayton engine depends, in general, upon the number of start-stop cycles. The main advantage of buffer thermal energy storage is that it enables the engine to continue running during periods of cloud cover, thus reducing the number of engine shutdowns and increasing engine life. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written for complete transient/steady/state Brayton cycle performance. The solar insolation input was minute by minute data. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. It was also found that the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns. It was also indicated that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life. At low predicted life, thermal storage is economically attractive; for highly reliable, long lived engines, thermal storage is not economical.

  11. Review of power quality applications of energy storage systems

    SciTech Connect

    Swaminathan, S.; Sen, R.K.

    1997-05-01

    Under the sponsorship of the US Department of Energy (DOE) Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories contracted Sentech, Inc., to assess the impact of power quality problems on the electricity supply system. This report contains the results of several studies that have identified the cost of power quality events for electricity users and providers. The large annual cost of poor power quality represents a national inefficiency and is reflected in the cost of goods sold, reducing US competitiveness. The Energy Storage Systems (ESS) Program takes the position that mitigation merits the attention of not only the DOE but affected industries as well as businesses capable of assisting in developing solutions to these problems. This study represents the preliminary stages of an overall strategy by the ESS Program to understand the magnitude of these problems so as to begin the process of engaging industry partners in developing solutions.

  12. Composite latent/sensible energy storage media for high-temperature industrial applications

    SciTech Connect

    Olszewski, M.

    1984-01-01

    An advanced thermal energy storage media concept is being developed for industrial process and reject heat applications. This composite medium consists of a phase-change carbonate salt, supported and immobilized within a submicron-sized capillary structure of a particulate ceramic matrix of porous sintered ceramic. Immobilization of the molten salt within the ceramic structure permits operation of the composite pellets, bricks or other shapes in direct contact with compatible fluids. Energy storage occurs in both sensible and latent forms with the composite providing higher energy storage densities than standard sensible heat storage systems. This paper describes the composite latent/sensible media concept and its potential advantage over state-ofthe-art systems. Current development activities concerning media stability and fabrication are described. Economic viability of the concept, especially in comparison to extant sensible heat storage systems, is also presented.

  13. Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art.

    PubMed

    Lai, Qiwen; Paskevicius, Mark; Sheppard, Drew A; Buckley, Craig E; Thornton, Aaron W; Hill, Matthew R; Gu, Qinfen; Mao, Jianfeng; Huang, Zhenguo; Liu, Hua Kun; Guo, Zaiping; Banerjee, Amitava; Chakraborty, Sudip; Ahuja, Rajeev; Aguey-Zinsou, Kondo-Francois

    2015-09-01

    One of the limitations to the widespread use of hydrogen as an energy carrier is its storage in a safe and compact form. Herein, recent developments in effective high-capacity hydrogen storage materials are reviewed, with a special emphasis on light compounds, including those based on organic porous structures, boron, nitrogen, and aluminum. These elements and their related compounds hold the promise of high, reversible, and practical hydrogen storage capacity for mobile applications, including vehicles and portable power equipment, but also for the large scale and distributed storage of energy for stationary applications. Current understanding of the fundamental principles that govern the interaction of hydrogen with these light compounds is summarized, as well as basic strategies to meet practical targets of hydrogen uptake and release. The limitation of these strategies and current understanding is also discussed and new directions proposed. PMID:26033917

  14. Application of MCNP{trademark} to storage facility dose rate assessment

    SciTech Connect

    Urban, W.T.; Roberts, R.R.; Estes, G.P.; Taylor, W.M.

    1996-12-31

    The MCNP code is widely used in the determination of neutral particle dose rate analyses. In this paper we examine the application of MCNP to several storage facilities containing special nuclear material, SNM, wherein the neutron dose rate is the primary quantity of interest. In particular, we describe the special geometry, modeling assumptions, and physics considerations encountered in each of three applications.

  15. Purex Plant gaseous iodine-129 control capability and process development requirements

    SciTech Connect

    Evoniuk, C.J.

    1981-01-01

    This report describes the ability of the Purex Plant to effectively control iodine-129 emissions. Based on historical evidence, the current Purex Plant iodine control system appears capable of meeting the goal of limiting gaseous iodine-129 emissions at the point of discharge to levels stipulated by the Department of Energy (DOE) for an uncontrolled area. Expected decontamination factors (DF`s) with the current system will average about 100 and will be above the calculated DF`s of 2.2 and 87 required to meet DOE yearly average concentration limits for controlled and uncontrolled areas respectively, but below the calculated DF of 352 required for meeting the proposed Environmental Protection Agency (EPA) mass emission limit. Chemical costs for maintaining compliance with the DOE limits will be approximately $166 per metric ton of fuel processed (based on a silver nitrate price of $12.38/oz). Costs will increase in proportion to increases in silver prices.

  16. (Thermal energy storage technologies for heating and cooling applications)

    SciTech Connect

    Tomlinson, J.J.

    1990-12-19

    Recent results from selected TES research activities in Germany and Sweden under an associated IEA annex are discussed. In addition, several new technologies for heating and cooling of buildings and automobiles were reviewed and found to benefit similar efforts in the United states. Details of a meeting with Didier-Werke AG, a leading German ceramics manufacturer who will provide TES media necessary for the United States to complete field tests of an advanced high temperature latent heat storage material, are presented. Finally, an overview of the December 1990 IEA Executive Committee deliberations on TES is presented.

  17. Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications

    SciTech Connect

    Hua, Thanh; Ahluwalia, Rajesh; Peng, J. -K; Kromer, Matt; Lasher, Stephen; McKenney, Kurtis; Law, Karen; Sinha, Jayanti

    2010-09-01

    This technical report describes DOE's assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab) and high-volume manufacturing cost (by TIAX LLC) were estimated for compressed hydrogen storage tanks. The results were compared to DOE's 2010, 2015, and ultimate full fleet hydrogen storage targets. The Well-to-Tank (WTT) efficiency as well as the off-board performance and cost of delivering compressed hydrogen were also documented in the report.

  18. PUREX environmental radiological surveillance - preoperational and operational support program conducted by Pacific Northwest Laboratory

    SciTech Connect

    Sula, M.J.; Price, K.R.

    1983-10-01

    This report describes the radiological environmental sampling program that is being conducted at the US Department of Energy's (DOE) Hanford Site in support of resumed operation of the PUREX fuel processing plant. The report also summarizes preoperational radiological environmental data collected to date. The activities described herein are part of the ongoing Hanford Environmental Surveillance Program, operated by the Pacific Northwest Laboratory (PNL) for the DOE.

  19. Experimental analysis of Hybridised Energy Storage Systems for automotive applications

    NASA Astrophysics Data System (ADS)

    Sarwar, Wasim; Engstrom, Timothy; Marinescu, Monica; Green, Nick; Taylor, Nigel; Offer, Gregory J.

    2016-08-01

    The requirements of the Energy Storage System (ESS) for an electrified vehicle portfolio consisting of a range of vehicles from micro Hybrid Electric Vehicle (mHEV) to a Battery Electric Vehicle (BEV) vary considerably. To reduce development cost of an electrified powertrain portfolio, a modular system would ideally be scaled across each vehicle; however, the conflicting requirements of a mHEV and BEV prevent this. This study investigates whether it is possible to combine supercapacitors suitable for an mHEV with high-energy batteries suitable for use in a BEV to create a Hybridised Energy Storage System (HESS) suitable for use in a HEV. A passive HESS is found to be capable of meeting the electrical demands of a HEV drive cycle; the operating principles of HESSs are discussed and factors limiting system performance are explored. The performance of the HESS is found to be significantly less temperature dependent than battery-only systems, however the heat generated suggests a requirement for thermal management. As the HESS degrades (at a similar rate to a specialised high-power-battery), battery resistance rises faster than supercapacitor resistance; as a result, the supercapacitor provides a greater current contribution, therefore the energy throughput, temperature rise and degradation of the batteries is reduced.

  20. Hydrogen storage for vehicular applications: Technology status and key development areas

    SciTech Connect

    Robinson, S.L.; Handrock, J.L.

    1994-04-01

    The state-of-the-art of hydrogen storage technology is reviewed, including gaseous, liquid, hydride, surface adsorbed media, glass microsphere, chemical reaction, and liquid chemical technologies. The review of each technology includes a discussion of advantages, disadvantages, likelihood of success, and key research and development activities. A preferred technological path for the development of effective near-term hydrogen storage includes both cur-rent DOT qualified and advanced compressed storage for down-sized highly efficient but moderate range vehicles, and liquid storage for fleet vehicle applications. Adsorbate media are also suitable for fleet applications but not for intermittent uses. Volume-optimized transition metal hydride beds are also viable for short range applications. Long-term development of coated nanoparticulate or metal matrix high conductivity magnesium alloy, is recommended. In addition, a room temperature adsorbate medium should be developed to avoid cryogenic storage requirements. Chemical storage and oxidative schemes present serious obstacles which must be addressed for these technologies to have a future role.

  1. Natural Carbonation of Peridotite and Applications for Carbon Storage

    NASA Astrophysics Data System (ADS)

    Streit, E.; Kelemen, P.; Matter, J.

    2009-05-01

    Natural carbonation of peridotite in the Samail Ophiolite of Oman is surprisingly rapid and could be further enhanced to provide a safe, permanent method of CO2 storage through in situ formation of carbonate minerals. Carbonate veins form by low-temperature reaction between peridotite and groundwater in a shallow weathering horizon. Reaction with peridotite drives up the pH of the water, and extensive travertine terraces form where this groundwater emerges at the surface in alkaline springs. The potential sink for CO2 in peridotite is enormous: adding 1wt% CO2 to the peridotite in Oman could consume 1/4 of all atmospheric carbon, and several peridotite bodies of comparable size exist throughout the world. Thus carbonation rate and cost, not reservoir size, are the limiting factors on the usefulness of in situ mineral carbonation of peridotite for carbon storage. The carbonate veins in Oman are much younger than previously believed, yielding average 14C ages of 28,000 years. Age data plus estimated volumes of carbonate veins and terraces suggest 10,000 to 100,000 tons per year of CO2 are consumed by these peridotite weathering reactions in Oman. This rate can be enhanced by drilling, hydraulic fracture, injecting CO2-rich fluid, and increasing reaction temperature. Drilling and hydraulic fracture can increase volume of peridotite available for reaction. Additional fracture may occur due to the solid volume increase of the carbonation reaction, and field observations suggest that such reaction-assisted fracture may be responsible for hierarchical carbonate vein networks in peridotite. Natural carbonation of peridotite in Oman occurs at low pCO2, resulting in partial carbonation of peridotite, forming magnesite and serpentine. Raising pCO2 increases carbonation efficiency, forming of magnesite + talc, or at complete carbonation, magnesite + quartz, allowing ˜30wt% CO2 to be added to the peridotite. Increasing the temperature to 185°C can improve the reaction rate by

  2. Lignin Based Carbon Materials for Energy Storage Applications

    SciTech Connect

    Chatterjee, Sabornie; Saito, Tomonori; Rios, Orlando; Johs, Alexander

    2014-01-01

    The implementation of Li-ion battery technology into electric and hybrid electric vehicles and portable electronic devices such as smart phones, laptops and tablets, creates a demand for efficient, economic and sustainable materials for energy storage. However, the high cost and long processing time associated with manufacturing battery-grade anode and cathode materials are two big constraints for lowering the total cost of batteries and environmentally friendly electric vehicles. Lignin, a byproduct of the pulp and paper industry and biorefinery, is one of the most abundant and inexpensive natural biopolymers. It can be efficiently converted to low cost carbon fibers with optimal properties for use as anode materials. Recent developments in the preparation of lignin precursors and conversion to carbon fiber-based anode materials have created a new class of anode materials with excellent electrochemical characteristics suitable for immediate use in existing Li- or Na-ion battery technologies.

  3. Method and apparatus for thermal energy storage. [Patent application

    DOEpatents

    Gruen, D.M.

    1975-08-19

    A method and apparatus for storing energy by converting thermal energy to potential chemically bound energy in which a first metal hydride is heated to dissociation temperature, liberating hydrogen gas which is compressed and reacted with a second metal to form a second metal hydride while releasing thermal energy. Cooling the first metal while warming the second metal hydride to dissociation temperature will reverse the flow of hydrogen gas back to the first metal, releasing additional thermal energy. The method and apparatus are particularly useful for the storage and conversion of thermal energy from solar heat sources and for the utilization of this energy for space heating purposes, such as for homes or offices.

  4. Nanostructured Materials for Advanced Electrochemical Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Wilson, Benjamin E.

    This dissertation discusses work aimed at developing and improving nanostructured materials for electrochemical energy storage, specifically electrochemical double layer capacitors (EDLCs) and lithium-ion batteries (LIBs). This was achieved through a combination of templating, precursor selection, and heteroatom doping to control the morphology and composition of the materials for improved performance in both types of energy storage. The first part of the thesis discusses EDLCs. First, a new method to produce soft-templated carbon materials is described. This process allows for improved production of mesoporous carbon made through soft templating. The work continues with using ionic liquids to dope nitrogen into hard templated mesoporous carbon. This led to a 40% improvement in specific capacitance due to improved conductivity. The section concludes with an investigation of physical and electrochemical properties of twelve ionic liquid electrolytes to determine which parameters are most important to achieve a high energy density. The second part discusses my work on LIBs, starting with a design of a low-cost electrochemical cell for in-situ X-ray diffraction monitoring during galvanostatic cycling. It continues with the development of a novel cathode material, Li8ZrO6, with a high lithium content. In this material, the redox activity is localized on oxygen atoms. Li8ZrO6 displays initial capacities higher than those of commercial materials but has large polarization. The capacity is further improved with transition metal doping, leading to a final specific capacity of over 175 mAh/g after 140 cycles at a rate of C/5.

  5. 76 FR 30936 - West Maui Pumped Storage Water Supply, LLC; Notice of Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... Maui Pumped Storage Project, which would use effluent water from the existing West Maui sewage... Energy Regulatory Commission West Maui Pumped Storage Water Supply, LLC; Notice of Preliminary Permit... April 1, 2011, West Maui Pumped Storage Water Supply, LLC, filed an application for a preliminary...

  6. Magnetic domain wall shift registers for data storage applications

    NASA Astrophysics Data System (ADS)

    Read, Dan; O'Brien, L.; Zeng, H. T.; Lewis, E. R.; Petit, D.; Sampaio, J.; Thevenard, L.; Cowburn, R. P.

    2009-03-01

    Data storage devices based on magnetic domain walls (DWs) propagating through permalloy (Py) nanowires have been proposed [Allwood et al. Science 309, 1688 (2005), S. S. Parkin, US Patent 6,834,005 (2004)] and have attracted a great deal of attention. We experimentally demonstrate such a device using shift registers constructed from magnetic NOT gates used in combination with a globally applied rotating magnetic field. We have demonstrated data writing, propagation, and readout in individually addressable Py nanowires 90 nm wide and 10 nm thick. Electrical data writing is achieved using the Oersted field due to current pulses in gold stripes (4 μm wide, 150 nm thick), patterned on top of and perpendicular to the nanowires. The conduit-like properties of the nanowires allow the propagation of data sequences over distances greater than 100 μm. Using spatially resolved magneto-optical Kerr effect (MOKE) measurements we can directly detect the propagation of single DWs in individual nanostructures without requiring data averaging. Electrical readout was demonstrated by detecting the presence of DWs at deliberately introduced pinning sites in the wire.

  7. Storage and production of hydrogen for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Aiello, Rita

    The increased utilization of proton-exchange membrane (PEM) fuel cells as an alternative to internal combustion engines is expected to increase the demand for hydrogen, which is used as the energy source in these systems. The objective of this work is to develop and test new methods for the storage and production of hydrogen for fuel cells. Six ligand-stabilized hydrides were synthesized and tested as hydrogen storage media for use in portable fuel cells. These novel compounds are more stable than classical hydrides (e.g., NaBH4, LiAlH4) and react to release hydrogen less exothermically upon hydrolysis with water. Three of the compounds produced hydrogen in high yield (88 to 100 percent of the theoretical) and at significantly lower temperatures than those required for the hydrolysis of NaBH4 and LiAlH4. However, a large excess of water and acid were required to completely wet the hydride and keep the pH of the reaction medium neutral. The hydrolysis of the classical hydrides with steam can overcome these limitations. This reaction was studied in a flow reactor and the results indicate that classical hydrides can be hydrolyzed with steam in high yields at low temperatures (110 to 123°C) and in the absence of acid. Although excess steam was required, the pH of the condensed steam was neutral. Consequently, steam could be recycled back to the reactor. Production of hydrogen for large-scale transportation fuel cells is primarily achieved via the steam reforming, partial oxidation or autothermal reforming of natural gas or the steam reforming of methanol. However, in all of these processes CO is a by-product that must be subsequently removed because the Pt-based electrocatalyst used in the fuel cells is poisoned by its presence. The direct cracking of methane over a Ni/SiO2 catalyst can produce CO-free hydrogen. In addition to hydrogen, filamentous carbon is also produced. This material accumulates on the catalyst and eventually deactivates it. The Ni/SiO2 catalyst

  8. Analysis Tools for Sizing and Placement of Energy Storage for Grid Applications - A Literature Review

    SciTech Connect

    Hoffman, Michael G.; Kintner-Meyer, Michael CW; Sadovsky, Artyom; DeSteese, John G.

    2010-09-24

    The purpose of this report was to review pertinent literature and studies that might reveal models capable of optimizing the siting, sizing and economic value of energy storage in the future smart grid infrastructure. Energy storage technology and utility system deployment have been subjects of intense research and development for over three decades. During this time, many models have been developed that consider energy storage implementation in the electric power industry and other applications. Nevertheless, this review of literature discovered no actual models and only a few software tools that relate specifically to the application environment and expected requirements of the evolving smart grid infrastructure. This report indicates the existing need for such a model and describes a pathway for developing it.

  9. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Standards applicable to the storage of solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS...

  10. 76 FR 70440 - Table Mountain Pumped Storage Project; Notice of Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... Mountain Hydro, LLC., 1210 W. Franklin St., Ste. 2, Boise, ID 83702; phone (208) 246-9925. FERC Contact... Energy Regulatory Commission Table Mountain Pumped Storage Project; Notice of Preliminary Permit... September 14, 2011, Table Mountain Hydro, LLC, Arizona, filed an application for a preliminary...

  11. Ammonia emissions factors from broiler litter in barns, storage, and after land application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia (NH3) emissions from poultry litter can cause high levels of NH3 in poultry rearing facilities, as well as atmospheric pollution. The objectives of this study were to: (1) measure NH3 emissions from litter in broiler houses, during storage and following land application, and (2) conduct a m...

  12. 76 FR 45252 - Reliable Storage 1 LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... theTennessee Valley Authority. Applicant Contact: Ramya Swaminathan, Free Flow Power Corporation, 239... surface area of 128.6 acres and an 7,914.4 acre-foot storage capacity; (3) a 180-foot-high, 1,248-foot- long earth embankment dam creating; (4) a lower reservoir with a surface area of 101 acres and an...

  13. Issues Involved in Developing Integrated Optical Jukebox Storage Systems for Customized Applications.

    ERIC Educational Resources Information Center

    Augsburger, Wayne; McNary, Larry

    1992-01-01

    Suggests a process for evaluating and planning integrated optical jukebox storage systems. Considerations regarding architecture and system performance are summarized, and a modeling program for tailoring system response to specific applications is presented. Five robotics algorithms are examined to illustrate different hardware configurations.…

  14. Land Application of Wastes: An Educational Program. Climate and Wastewater Storage - Module 8, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module discusses the hydrologic considerations that apply to land application of wastes. These are precipitation, infiltration and percolation, evapotranspiration, runoff, and groundwater. Climatic considerations that relate to wastewater storage are also discussed. Particular emphasis is given to wastewater flow, precipitation, evaporation,…

  15. Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications

    SciTech Connect

    Lawder, M. T.; Suthar, B.; Northrop, P. W. C.; De, S.; Hoff, C. M.; Leitermann, O.; Crow, M. L.; Santhanagopalan, S.; Subramanian, V. R.

    2014-05-07

    The current electric grid is an inefficient system that wastes significant amounts of the electricity it produces because there is a disconnect between the amount of energy consumers require and the amount of energy produced from generation sources. Power plants typically produce more power than necessary to ensure adequate power quality. By taking advantage of energy storage within the grid, many of these inefficiencies can be removed. Advanced modeling is required when using battery energy storage systems (BESS) for grid storage in order to accurately monitor and control the storage system. Battery management systems (BMS) control how the storage system will be used and a BMS that utilizes advanced physics-based models will offer for much more robust operation of the storage system. The paper outlines the current state of the art for modeling in BMS and the advanced models required to fully utilize BMS for both lithium-ion batteries and vanadium redox-flow batteries. In addition, system architecture and how it can be useful in monitoring and control is discussed. A pathway for advancing BMS to better utilize BESS for grid-scale applications is outlined.

  16. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage

    PubMed Central

    Frey, Natalie A.; Peng, Sheng; Cheng, Kai; Sun, Shouheng

    2009-01-01

    This tutorial review summarizes the recent advances in the chemical synthesis and potential applications of monodisperse magnetic nanoparticles. After a brief introduction to nanomagnetism, the review focuses on recent developments in solution phase syntheses of monodisperse MFe2O4, Co, Fe, CoFe, FePt and SmCo5 nanoparticles. The review further outlines the surface, structural, and magnetic properties of these nanoparticles for biomedicine and magnetic energy storage applications. PMID:19690734

  17. Super-capacitor and Thin Film Battery Hybrid Energy Storage for Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Wang, Wensi; Wang, Ningning; Vinco, Alessandro; Siddique, Rashid; Hayes, Mike; O'Flynn, Brendan; O'Mathuna, Cian

    2013-12-01

    This paper presents the design of hybrid energy storage unit (HESU) for energy harvesting applications using super-capacitor and thin film battery (TFB). The power management circuits of this hybrid energy storage unit are proposed to perform "smart" charge/discharge control in order to optimize the HESU from the perspectives of energy loss due to leakage current and equivalent series resistance (ESR). This paper shows the characterizations of ESUs for energy harvesting powered wireless sensor networks (WSN) applications. A new design of power management circuits is proposed in order to utilize the low ESR characteristics of super-capacitor and the low leakage current characteristics of the TFB in the hybrid energy storage. The average power loss due to leakage current is measured at 38μW in the proposed system. When Compared to the super-capacitor energy storage with the similar capacity, the proposed hybrid energy storage unit reduces the leakage power by approximately 45% whilst maintains a similar (<100 mΩ) ESR.

  18. Investigation of modified graphene for energy storage applications.

    PubMed

    Shuvo, Mohammad Arif Ishtiaque; Khan, Md Ashiqur Rahaman; Karim, Hasanul; Morton, Philip; Wilson, Travis; Lin, Yirong

    2013-08-28

    Lithium-ion batteries (LIB) have been receiving extensive attention because of the high specific energy density for wide applications such as electronic vehicles, commercial mobile electronics, and military applications. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To overcome this obstacle, nanostructured anode assembly has been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown propitious results for enhanced lithium intercalation. Recently, nanowire/graphene hybrids were developed for the enhancement of LIB performance; however, almost all previous efforts employed nanowires on graphene in a random fashion, which limited lithium-ion diffusion rate. Therefore, we demonstrate a new approach by hydrothermally growing uniform nanowires on graphene aerogel to further improve the performance. This nanowire/graphene aerogel hybrid not only uses the high surface area of the graphene aerogel but also increases the specific surface area for electrode-electrolyte interaction. Therefore, this new nanowire/graphene aerogel hybrid anode material could enhance the specific capacity and charge-discharge rate. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) are used for materials characterization. Battery analyzer and potentio-galvanostat are used for measuring the electrical performance of the battery. The testing results show that nanowire graphene hybrid anode gives significantly improved performance compared to graphene anode. PMID:23806171

  19. 76 FR 8729 - Bison Peak Pumped Storage, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... Energy Regulatory Commission Bison Peak Pumped Storage, LLC; Notice of Preliminary Permit Application..., 2010, the Bison Peak Pumped Storage, LLC., filed an application for a preliminary permit, pursuant to section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of the Bison Peak...

  20. 76 FR 62399 - Bison Peak Pumped Storage, LLC.; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... Energy Regulatory Commission Bison Peak Pumped Storage, LLC.; Notice of Preliminary Permit Application..., 2011, the Bison Peak Pumped Storage, LLC., filed an application for a preliminary permit, pursuant to section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of the Bison Peak...

  1. 76 FR 10578 - Cuffs Run Pumped Storage, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... Energy Regulatory Commission Cuffs Run Pumped Storage, LLC; Notice of Preliminary Permit Application... 18, 2010, Cuffs Run Pumped Storage, LLC filed an application for a preliminary permit, pursuant to section 4(f) of the Federal Power Act, proposing to study the feasibility of the Cuffs Run Pumped...

  2. Densities of some molten fluoride salt mixtures suitable for heat storage in space power applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Liquid densities were determined for a number of fluoride salt mixtures suitable for heat storage in space power applications, using a procedure that consisted of measuring the loss of weight of an inert bob in the melt. The density apparatus was calibrated with pure LiF and NaF at different temperatures. Density data for safe binary and ternary fluoride salt eutectics and congruently melting intermediate compounds are presented. In addition, a comparison was made between the volumetric heat storage capacity of different salt mixtures.

  3. CANE FIBERBOARD DEGRADATION WITHIN THE 9975 SHIPPING PACKAGE DURING LONG-TERM STORAGE APPLICATION

    SciTech Connect

    Daugherty, W.; Dunn, K.; Hackney, B.

    2013-06-19

    The 9975 shipping package is used as part of the configuration for long-term storage of special nuclear materials in the K Area Complex at the Savannah River Site. The cane fiberboard overpack in the 9975 package provides thermal insulation, impact absorption and criticality control functions relevant to this application. The Savannah River National Laboratory has conducted physical, mechanical and thermal tests on aged fiberboard samples to identify degradation rates and support the development of aging models and service life predictions in a storage environment. This paper reviews the data generated to date, and preliminary models describing degradation rates of cane fiberboard in elevated temperature – elevated humidity environments.

  4. Solid-state structures and properties of scandium hydride; hydrogen storage and switchable mirrors application

    NASA Astrophysics Data System (ADS)

    Khodja, Khadidja; Bouhadda, Youcef; Seddik, Larbi; Benyelloul, Kamel

    2016-05-01

    First-principles calculation has been performed on the rare earth hydride ScH2 for hydrogen storage and switchable mirror applications, using the pseudo-potentials and plane waves based on the density-functional theory (DFT). The electronic and structural properties are studied within both local-density and generalized gradient approximations for exchange energy. The formation energy and the optical properties have been investigated and discussed. Our calculated results are generally in good agreement with theoretical and experimental data. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  5. ACCELERATORS: Preliminary application of turn-by-turn data analysis to the SSRF storage ring

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Hui; Zhao, Zhen-Tang

    2009-07-01

    There is growing interest in utilizing the beam position monitor turn-by-turn (TBT) data to debug accelerators. TBT data can be used to determine the linear optics, coupled optics and nonlinear behaviors of the storage ring lattice. This is not only a useful complement to other methods of determining the linear optics such as LOCO, but also provides a possibility to uncover more hidden phenomena. In this paper, a preliminary application of a β function measurement to the SSRF storage ring is presented.

  6. Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.

    1984-05-21

    A process has been developed for the extraction of multivalent lanthanide and actinide values from acidic waste solutions, and for the separation of these values from fission product and other values, which utilizes a new series of neutral bi-functional extractants, the alkyl(phenyl)-N, N-dialkylcarbamoylmethylphosphine oxides, in combination with a phase modifier to form an extraction solution. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.

  7. Partitioning of actinides from high level waste of PUREX origin using octylphenyl-N,N{prime}-diisobutylcarbamoylmethyl phosphine oxide (CMPO)-based supported liquid membrane

    SciTech Connect

    Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Dudwadkar, N.L.; Chitnis, R.R.; Mathur, J.N.

    1999-06-01

    The present studies deal with the application of the supported liquid membrane (SLM) technique for partitioning of actinides from high level waste of PUREX origin. The process uses a solution of octylphenyl-N,N{prime}-diisobutylcarbamoylmethyl phosphine oxide (CMPO) in n-dodecane as a carrier with a polytetrafluoroethylene support and a mixture of citric acid, formic acid, and hydrazine hydrate as the receiving phase. The studies involve the investigation of such parameters as carrier concentration in SLM, acidity of the feed, and the feed composition. The studies indicated good transport of actinides like neptunium, americium, and plutonium across the membrane from nitric acid medium. A high concentration of uranium in the feed retards the transport of americium, suggesting the need for prior removal of uranium from the waste. The separation of actinides from uranium-lean simulated samples as well as actual high level waste has been found to be feasible using the above technique.

  8. Organotin polymeric dielectrics for energy-storage applications

    NASA Astrophysics Data System (ADS)

    Tran, Huan; Kumar, Arun; Wang, Chenchen; Baldwin, Aaron; Ma, Rui; Sotzing, Gregory; Ramprasad, Rampi

    2014-03-01

    We present a first-principles study on a family of organotin polymers which are based on -COO-Sn(CH3)2-OCC-(CH2)n as the repeating unit (here n = 0 - 10). Among several members of this family which were recently synthesized, poly(dimethyltin glutarate) (corresponding to n = 3), is a promising candidate for high energy-density materials.[1] Given that the composition of each polymer is provided, we use the minima-hopping method to predict their stable structures. While the structural motifs predicted for these polymers are observed in several related existing polymers, other calculated physical properties, e.g., band gap Eg and dielectric constant ɛ, agree well with the experimental data obtained for the synthesized members. Comparing to polypropylene, the standard material for high energy-density applications, these polymers have smaller calculated Eg but significantly higher calculated ɛ. Overall, this whole family of organotin polymers are all promising for the purpose of capacitively storing energy. Our work is supported by the Office of Naval Research through the Multidisciplinary University Research Initiative (MURI).

  9. Analysis of H2 storage needs for early market non-motive fuel cell applications.

    SciTech Connect

    Johnson, Terry Alan; Moreno, Marcina; Arienti, Marco; Pratt, Joseph William; Shaw, Leo; Klebanoff, Leonard E.

    2012-03-01

    Hydrogen fuel cells can potentially reduce greenhouse gas emissions and the United States dependence on foreign oil, but issues with hydrogen storage are impeding their widespread use. To help overcome these challenges, this study analyzes opportunities for their near-term deployment in five categories of non-motive equipment: portable power, construction equipment, airport ground support equipment, telecom backup power, and man-portable power and personal electronics. To this end, researchers engaged end users, equipment manufacturers, and technical experts via workshops, interviews, and electronic means, and then compiled these data into meaningful and realistic requirements for hydrogen storage in specific target applications. In addition to developing these requirements, end-user benefits (e.g., low noise and emissions, high efficiency, potentially lower maintenance costs) and concerns (e.g., capital cost, hydrogen availability) of hydrogen fuel cells in these applications were identified. Market data show potential deployments vary with application from hundreds to hundreds of thousands of units.

  10. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Production, Storage, and Transport. Part 3

    NASA Technical Reports Server (NTRS)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Hydrogen storage and in-space hydrogen transport research focused on developing and verifying design concepts for efficient, safe, lightweight liquid hydrogen cryogenic storage systems. Research into hydrogen production had a specific goal of further advancing proton conducting membrane technology in the laboratory at a larger scale. System and process trade studies evaluated the proton conducting membrane technology, specifically, scale-up issues.

  11. Applications for activated carbons from waste tires: Natural gas storage and air pollution control

    USGS Publications Warehouse

    Brady, T.A.; Rostam-Abadi, M.; Rood, M.J.

    1996-01-01

    Natural gas storage for natural gas vehicles and the separation and removal of gaseous contaminants from gas streams represent two emerging applications for carbon adsorbents. A possible precursor for such adsorbents is waste tires. In this study, activated carbon has been developed from waste tires and tested for its methane storage capacity and SO2 removal from a simulated flue-gas. Tire-derived carbons exhibit methane adsorption capacities (g/g) within 10% of a relatively expensive commercial activated carbon; however, their methane storage capacities (Vm/Vs) are almost 60% lower. The unactivated tire char exhibits SO2 adsorption kinetics similar to a commercial carbon used for flue-gas clean-up. Copyright ?? 1996 Elsevier Science Ltd.

  12. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery.

    PubMed

    Yang, Jun; Sudik, Andrea; Wolverton, Christopher; Siegel, Donald J

    2010-02-01

    Widespread adoption of hydrogen as a vehicular fuel depends critically upon the ability to store hydrogen on-board at high volumetric and gravimetric densities, as well as on the ability to extract/insert it at sufficiently rapid rates. As current storage methods based on physical means--high-pressure gas or (cryogenic) liquefaction--are unlikely to satisfy targets for performance and cost, a global research effort focusing on the development of chemical means for storing hydrogen in condensed phases has recently emerged. At present, no known material exhibits a combination of properties that would enable high-volume automotive applications. Thus new materials with improved performance, or new approaches to the synthesis and/or processing of existing materials, are highly desirable. In this critical review we provide a practical introduction to the field of hydrogen storage materials research, with an emphasis on (i) the properties necessary for a viable storage material, (ii) the computational and experimental techniques commonly employed in determining these attributes, and (iii) the classes of materials being pursued as candidate storage compounds. Starting from the general requirements of a fuel cell vehicle, we summarize how these requirements translate into desired characteristics for the hydrogen storage material. Key amongst these are: (a) high gravimetric and volumetric hydrogen density, (b) thermodynamics that allow for reversible hydrogen uptake/release under near-ambient conditions, and (c) fast reaction kinetics. To further illustrate these attributes, the four major classes of candidate storage materials--conventional metal hydrides, chemical hydrides, complex hydrides, and sorbent systems--are introduced and their respective performance and prospects for improvement in each of these areas is discussed. Finally, we review the most valuable experimental and computational techniques for determining these attributes, highlighting how an approach that

  13. A study of the applicability/compatibility of inertial energy storage systems to future space missions

    NASA Technical Reports Server (NTRS)

    Weldon, W. F.

    1980-01-01

    The applicability/compatibility of inertial energy storage systems like the homopolar generator (HPG) and the compensated pulsed alternator (CPA) to future space missions is explored. Areas of CPA and HPG design requiring development for space applications are identified. The manner in which acceptance parameters of the CPA and HPG scale with operating parameters of the machines are explored and the types of electrical loads which are compatible with the CPA and HPG are examined. Potential applications including the magnetoplasmadynamic (MPD) thruster, pulsed data transmission, laser ranging, welding and electromagnetic space launch are discussed.

  14. Small Form Factor Information Storage Devices for Mobile Applications in Korea

    NASA Astrophysics Data System (ADS)

    Park, Young-Pil; Park, No-Cheol; Kim, Chul-Jin

    Recently, the ubiquitous environment in which anybody can reach a lot of information data without any limitations on the place and time has become an important social issue. There are two basic requirements in the field of information storage devices which have to be satisfied; the first is the demand for the improvement of memory capacity to manage the increased data capacity in personal and official purposes. The second is the demand for new development of information storage devices small enough to be applied to mobile multimedia digital electronics, including digital camera, PDA and mobile phones. To summarize, for the sake of mobile applications, it is necessary to develop information storage devices which have simultaneously a large capacity and a small size. Korea possesses the necessary infrastructure for developing such small sized information storage devices. It has a good digital market, major digital companies, and various research institutes. Nowadays, many companies and research institutes including university cooperate together in the research on small sized information storage devices. Thus, it is expected that small form factor optical disk drives will be commercialized in the very near future in Korea.

  15. dCache with tape storage for High Energy Physics applications

    NASA Astrophysics Data System (ADS)

    Agarwal, A.; Enge, R.; Fransham, K.; Kolb, E.; Leavett-Brown, C.; Leske, D.; Lewall, K.; Reitsma, H.; Rempel, E.; Sobie, R.

    2010-04-01

    An interface between dCache and the local Tivoli Storage Manager (TSM) tape storage facility has been developed at the University of Victoria (UVic) for High Energy Physics (HEP) applications. The interface is responsible for transferring the data from disk pools to tape and retrieving data from tape to disk pools. It also checks the consistency between the PNFS filename space and the TSM database. The dCache system, consisting of a single admin node with two pool nodes, is configured to have two read pools and one write pool. The pools are attached to the TSM storage that has a capacity of about 100TB. This system is being used in production at UVic as part of a Tier A site for BaBar Tau analysis. An independent dCache system is also in production for the storage element (SE) of the ATLAS experiment as a part of Canadian Tier-2 sites. This system does not currently employ a tape storage facility, however, it can be added in the future.

  16. Development and Validation of a Slurry Model for Chemical Hydrogen Storage in Fuel Cell Applications

    SciTech Connect

    Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.

    2014-07-25

    The US Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOE’s Technical Targets and a set of four drive cycles. The purpose of this research is to describe the models developed for slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and endothermic system based on alane were developed and modeled in Simulink®. Once complete the reactor and radiator components of the model were validated with experimental data. The model was then run using a highway cycle, an aggressive cycle, cold-start cycle and hot drive cycle. The system design was adjusted to meet these drive cycles. A sensitivity analysis was then performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction greater than 11 kJ/mol H2 generated and a slurry hydrogen capacity of greater than 11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.

  17. Development and validation of a slurry model for chemical hydrogen storage in fuel cell vehicle applications

    NASA Astrophysics Data System (ADS)

    Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.

    2014-12-01

    The U.S. Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOE's Technical Targets and a set of four drive cycles. PNNL developed models to simulate the performance and suitability of slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and an endothermic system based on alane were developed and modeled in Simulink®. Once complete, the reactor and radiator components of the model were validated with experimental data. The system design parameters were adjusted to allow the model to successfully meet a highway cycle, an aggressive cycle, a cold-start cycle, and a hot drive cycle. Finally, a sensitivity analysis was performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction >11 kJ mol-1 H2 generated and a slurry hydrogen capacity of >11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.

  18. Dynamic modeling of hybrid energy storage systems coupled to photovoltaic generation in residential applications

    NASA Astrophysics Data System (ADS)

    Maclay, James D.; Brouwer, Jacob; Samuelsen, G. Scott

    A model of a photovoltaic (PV) powered residence in stand-alone configuration was developed and evaluated. The model assesses the sizing, capital costs, control strategies, and efficiencies of reversible fuel cells (RFC), batteries, and ultra-capacitors (UC) both individually, and in combination, as hybrid energy storage devices. The choice of control strategy for a hybrid energy storage system is found to have a significant impact on system efficiency, hydrogen production and component utilization. A hybrid energy storage system comprised of batteries and RFC has the advantage of reduced cost (compared to using a RFC as the sole energy storage device), high system efficiency and hydrogen energy production capacity. A control strategy that preferentially used the RFC before the battery in meeting load demand allows both grid independent operation and better RFC utilization compared to a system that preferentially used the battery before the RFC. Ultra-capacitors coupled with a RFC in a hybrid energy storage system contain insufficient energy density to meet dynamic power demands typical of residential applications.

  19. Innovative applications of energy storage in a restructured electricity marketplace : Phase III final report : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Eyer, James M.; Erdman, Bill; Iannucci, Joseph J., Jr.

    2005-03-01

    This report describes Phase III of a project entitled Innovative Applications of Energy Storage in a Restructured Electricity Marketplace. For this study, the authors assumed that it is feasible to operate an energy storage plant simultaneously for two primary applications: (1) energy arbitrage, i.e., buy-low-sell-high, and (2) to reduce peak loads in utility ''hot spots'' such that the utility can defer their need to upgrade transmission and distribution (T&D) equipment. The benefits from the arbitrage plus T&D deferral applications were estimated for five cases based on the specific requirements of two large utilities operating in the Eastern U.S. A number of parameters were estimated for the storage plant ratings required to serve the combined application: power output (capacity) and energy discharge duration (energy storage). In addition to estimating the various financial expenditures and the value of electricity that could be realized in the marketplace, technical characteristics required for grid-connected distributed energy storage used for capacity deferral were also explored.

  20. The Design and Application of Data Storage System in Miyun Satellite Ground Station

    NASA Astrophysics Data System (ADS)

    Xue, Xiping; Su, Yan; Zhang, Hongbo; Liu, Bin; Yao, Meijuan; Zhao, Shu

    2015-04-01

    China has launched Chang'E-3 satellite in 2013, firstly achieved soft landing on moon for China's lunar probe. Miyun satellite ground station firstly used SAN storage network system based-on Stornext sharing software in Chang'E-3 mission. System performance fully meets the application requirements of Miyun ground station data storage.The Stornext file system is a sharing file system with high performance, supports multiple servers to access the file system using different operating system at the same time, and supports access to data on a variety of topologies, such as SAN and LAN. Stornext focused on data protection and big data management. It is announced that Quantum province has sold more than 70,000 licenses of Stornext file system worldwide, and its customer base is growing, which marks its leading position in the big data management.The responsibilities of Miyun satellite ground station are the reception of Chang'E-3 satellite downlink data and management of local data storage. The station mainly completes exploration mission management, receiving and management of observation data, and provides a comprehensive, centralized monitoring and control functions on data receiving equipment. The ground station applied SAN storage network system based on Stornext shared software for receiving and managing data reliable.The computer system in Miyun ground station is composed by business running servers, application workstations and other storage equipments. So storage systems need a shared file system which supports heterogeneous multi-operating system. In practical applications, 10 nodes simultaneously write data to the file system through 16 channels, and the maximum data transfer rate of each channel is up to 15MB/s. Thus the network throughput of file system is not less than 240MB/s. At the same time, the maximum capacity of each data file is up to 810GB. The storage system planned requires that 10 nodes simultaneously write data to the file system through 16

  1. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    SciTech Connect

    Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

    2013-11-01

    Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

  2. Studies in support of an SNM cutoff agreement: The PUREX exercise

    SciTech Connect

    Stanbro, W.D.; Libby, R.; Segal, J.

    1995-07-01

    On September 23, 1993, President Clinton, in a speech before the United Nations General Assembly, called for an international agreement banning the production of plutonium and highly enriched uranium for nuclear explosive purposes. A major element of any verification regime for such an agreement would probably involve inspections of reprocessing plants in Nuclear Nonproliferation Treaty weapons states. Many of these are large facilities built in the 1950s with no thought that they would be subject to international inspection. To learn about some of the problems that might be involved in the inspection of such large, old facilities, the Department of Energy, Office of Arms Control and Nonproliferation, sponsored a mock inspection exercise at the PUREX plant on the Hanford Site. This exercise examined a series of alternatives for inspections of the PUREX as a model for this type of facility at other locations. A series of conclusions were developed that can be used to guide the development of verification regimes for a cutoff agreement at reprocessing facilities.

  3. Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

    SciTech Connect

    Ahluwalia, R. K.; Hua, T. Q.; Peng, J. -K; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J.

    2011-06-21

    In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program’s Multiyear Research, Development, and Demonstration Plan. This joint performance (ANL) and cost analysis (TIAX) report summarizes the results of this assessment. These results should be considered only in conjunction with the assumptions used in selecting, evaluating, and costing the systems discussed here and in the Appendices.

  4. Harmonics suppression in electromagnets with application to the ALS storage ring corrector magnet design

    SciTech Connect

    Schlueter, R.D.

    1991-01-28

    This memo presents an analytical development for prediction of skew harmonics in a iron core C-magnet to due arbitrarily positioned electromagnet coils. A structured approach is presented for the suppression of an arbitrary number of harmonic components to arbitrarily low values. Application of the analytical harmonic strength calculations coupled to the structured harmonic suppression approach is presented in the context of the design of the ALS storage ring corrector magnets.

  5. Super-capacitor energy storage for micro-satellites: Feasibility and potential mission applications

    NASA Astrophysics Data System (ADS)

    Shimizu, Tatsuo; Underwood, Craig

    2013-04-01

    Small satellites, weighting between 100 and 200 kg, have witnessed increasing use for a variety of space applications including remote sensing constellations and technology demonstrations. The energy storage/stored power demands of most spacecraft, including small satellites, are currently accommodated by rechargeable batteries—typically nickel-cadmium cells (specific energy of 50 Wh kg-1), or more recently lithium-ion cells (150 Wh kg-1). High energy density is a primary concern for spacecraft energy storage design, and these batteries have been sufficient for most applications. However, constraints on the allowable on-board battery size have limited peak power performance such that the maximum power supply capability of small satellites currently ranges between only 70 and 200 W. This relatively low maximum power limits the capabilities of small satellites in terms of payload design and selection. In order to enhance these satellites' power performance, the research reported in this paper focused on the implementation of super-capacitors as practical rechargeable energy storage medium, and as an alternative to chemical batteries. Compared to batteries, some super-capacitors are able to supply high power at high energy-efficiency, but unfortunately they still have a very low energy density (5-30 Wh kg-1). However, the provision of this high power capability would considerably widen the range of small satellite applications.

  6. 242-A Evaporator/plutonium uranium extraction (PUREX) effluent treatment facility (ETF) nonradioactive air emission test report

    SciTech Connect

    Hill, J.S., Westinghouse Hanford

    1996-05-10

    This report shows the methods used to test the stack gas outlet concentration and emission rate of Volatile Organic Compounds as Total Non-Methane Hydrocarbons in parts per million by volume,grams per dry standard cubic meter, and grams per minute from the PUREX ETF stream number G6 on the Hanford Site. Test results are shown in Appendix B.1.

  7. 10 CFR 72.103 - Geological and seismological characteristics for applications for dry cask modes of storage on or...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Geological and seismological characteristics for applications for dry cask modes of storage on or after October 16, 2003. 72.103 Section 72.103 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND...

  8. 10 CFR 72.103 - Geological and seismological characteristics for applications for dry cask modes of storage on or...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Geological and seismological characteristics for applications for dry cask modes of storage on or after October 16, 2003. 72.103 Section 72.103 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND...

  9. 10 CFR 72.103 - Geological and seismological characteristics for applications for dry cask modes of storage on or...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Geological and seismological characteristics for applications for dry cask modes of storage on or after October 16, 2003. 72.103 Section 72.103 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND...

  10. Status and Challenges in Electrochemical Energy Storage Technologies for Stationary Applications

    SciTech Connect

    Yang, Zhenguo

    2010-08-06

    There are a number of EES technologies that exist and are potential candidates for the stationary applications. Among the most promising ones are batteries that store electrical energy via electrochemical conversion and release it according to demands. But all the exiting battery technologies are facing challenges in cost and performance for the particular applications. To advance the technology and accelerate market penetration requires substantial progress in advanced materials and chemistries, along with design and engineering. Given this is a relative new field to the materials community, this issue JOM includes a topic on the stationary electrical energy storage, with focus on the needs, requirements and status and challenges in technologies.

  11. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    SciTech Connect

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.; Chun, Jaehun; Ronnebro, Ewa

    2015-09-01

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonication in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.

  12. Theoretical investigation of the borazine-melamine polymer as a novel candidate for hydrogen storage applications.

    PubMed

    Dabbagh, Hossein A; Shahraki, Maryam; Farrokhpour, Hossein

    2014-06-14

    Ab initio calculations and molecular dynamic simulation were employed to study the interaction of molecular hydrogen with the borazine-melamine polymer (BMP) in order to explore its potential for hydrogen storage applications. The calculations were performed using the long range corrected version of density functional theory, the Coulomb-attenuating method (CAM-B3LYP) and the second order Møller-Plesset perturbation theory (MP2). The results showed that the average adsorption energy per hydrogen is about -0.7 and -0.3 kcal mol(-1) at the MP2/6-311+G(d,p) and CAMB3LYP/6-311+G(d,p) levels of theory, respectively. The adsorption energies were corrected for the basis set superposition error (BSSE) by the counterpoise method. It was found that the hydrogen storage capacity of the BMP is about 6.49 wt%, which is close to the values reported for the other selected materials for the hydrogen storage in the literature. The maximum number of hydrogen molecules, which were adsorbed by the BMP building block, is about ten. Molecular dynamic simulation was performed to assess the potential of BMP for hydrogen storage. PMID:24736673

  13. Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications

    SciTech Connect

    Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; Holladay, Jamelyn D.

    2011-10-05

    A fixed bed reactor was designed, modeled and simulated for hydrogen storage on-board the vehicle for PEM fuel cell applications. Ammonia Borane (AB) was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to {approx}16% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. The design evaluated consisted of a tank with 8 thermally isolated sections in which H2 flows freely between sections to provide ballast. Heating elements are used to initiate reactions in each section when pressure drops below a specified level in the tank. Reactor models in Excel and COMSOL were developed to demonstrate the proof-of-concept, which was then used to develop systems models in Matlab/Simulink. Experiments and drive cycle simulations showed that the storage system meets thirteen 2010 DOE targets in entirety and the remaining four at greater than 60% of the target.

  14. Application of new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells

    SciTech Connect

    1995-04-01

    Based on the information presented in this report, our conclusions regarding the potential for new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells are as follows: New and improved gas storage well revitalization methods have the potential to save industry on the order of $20-25 million per year by mitigating deliverability decline and reducing the need for costly infill wells Fracturing technologies have the potential to fill this role, however operators have historically been reluctant to utilize this approach due to concerns with reservoir seal integrity. With advanced treatment design tools and methods, however, this risk can be minimized. Of the three major fracturing classifications, namely hydraulic, pulse and explosive, two are believed to hold potential to gas storage applications (hydraulic and pulse). Five particular fracturing technologies, namely tip-screenout fracturing, fracturing with liquid carbon dioxide, and fracturing with gaseous nitrogen, which are each hydraulic methods, and propellant and nitrogen pulse fracturing, which are both pulse methods, are believed to hold potential for gas storage applications and will possibly be tested as part of this project. Field evidence suggests that, while traditional well remediation methods such as blowing/washing, mechanical cleaning, etc. do improve well deliverability, wells are still left damaged afterwards, suggesting that considerable room for further deliverability enhancement exists. Limited recent trials of hydraulic fracturing imply that this approach does in fact provide superior deliverability results, but further RD&D work is needed to fully evaluate and demonstrate the benefits and safe application of this as well as other fracture stimulation technologies.

  15. DNA hybrid dielectric film devices for energy storage and bioelectronics applications

    NASA Astrophysics Data System (ADS)

    Joyce, Donna M.; Venkat, Narayanan; Ouchen, Fahima; Singh, Kristi M.; Smith, Steven R.; Grote, James G.

    2013-10-01

    DNA biopolymer hybrids have been investigated for energy storage applications and also as potential high k gate dielectrics in bioelectronics applications such as BioFETs. DNA-based hybrid films incorporating sol-gel-derived ceramics have shown strong promise as insulating dielectrics for high voltage capacitor applications. Our studies of DNA-CTMA complex/sol-gel hybrid thin film devices have demonstrated reproducibility and stability in temperature-and frequency-dependent dielectric properties as well as reliability in DC voltage breakdown measurements, attaining values consistently in the 300 - 350 V/um range. We have also investigated DNA-inorganic hybrids by ex situ blending of aqueous solutions of DNA with high k ceramics such as BaTiO3 and TiO2. These systems are currently being investigated as potential gate dielectrics for BioFETs by virtue of their relatively high dielectric constant, high DC electrical resistivity, and lower leakage currents than pristine DNA. Functionally layered devices have also been designed, fabricated and characterized to determine any added benefit in dielectric applications. The electrical/dielectric characteristics of DNA and DNA-CTMA with sol-gel-derived ceramics, high k ceramic fillers, and in layered devices were examined to determine their effect on vital dielectric parameters for energy storage and bioelectronics applications.

  16. Proceedings of the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Blackwell, Kim; Blasso, Len (Editor); Lipscomb, Ann (Editor)

    1991-01-01

    The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  17. Applications of differential algebra to single-particle dynamics in storage rings

    SciTech Connect

    Yan, Y.

    1991-09-01

    Recent developments in the use of differential algebra to study single-particle beam dynamics in charged-particle storage rings are the subject of this paper. Chapter 2 gives a brief review of storage rings. The concepts of betatron motion and synchrotron motion, and their associated resonances, are introduced. Also introduced are the concepts of imperfections, such as off-momentum, misalignment, and random and systematic errors, and their associated corrections. The chapter concludes with a discussion of numerical simulation principles and the concept of one-turn periodic maps. In Chapter 3, the discussion becomes more focused with the introduction of differential algebras. The most critical test for differential algebraic mapping techniques -- their application to long-term stability studies -- is discussed in Chapter 4. Chapter 5 presents a discussion of differential algebraic treatment of dispersed betatron motion. The paper concludes in Chapter 6 with a discussion of parameterization of high-order maps.

  18. Application of modular vault dry storage to Public Service of Colorado-Fort St. Vrain

    SciTech Connect

    Lehr, M. ); Ealing, C.J. ); Agarwal, B.K. )

    1990-05-01

    This paper discusses NRC approval for the first dry vault storage system to be submitted for nonsite specific design approval. It describes the first site specific application of the FW/GEC modular vault dry store (MVDS) for the Public Service of Colorado---Fort St. Vrain site. The decision to permanently shut down the Fort St. Vrain high temperature gas-cooled reactor provides the need to store on site 1,482 irradiated fuel blocks and a quantity of other reactor core components categorized as greater than Class C wastes. The MVDS system has been selected for the safe storage of these items in a facility designed to receive, store and discharge fuel to the repository totally independent from the original reactor facilities.

  19. Impedance and self-discharge mechanism studies of nickel metal hydride batteries for energy storage applications

    NASA Astrophysics Data System (ADS)

    Zhu, Wenhua; Zhu, Ying; Tatarchuk, Bruce

    2013-04-01

    Nickel metal hydride battery packs have been found wide applications in the HEVs (hybrid electric vehicles) through the on-board rapid energy conservation and efficient storage to decrease the fossil fuel consumption rate and reduce CO2 emissions as well as other harmful exhaust gases. In comparison to the conventional Ni-Cd battery, the Ni-MH battery exhibits a relatively higher self-discharge rate. In general, there are quite a few factors that speed up the self-discharge of the electrodes in the sealed nickel metal hydride batteries. This disadvantage eventually reduces the overall efficiency of the energy conversion and storage system. In this work, ac impedance data were collected from the nickel metal hydride batteries. The self-discharge mechanism and battery capacity degradation were analyzed and discussed for further performance improvement.

  20. Electrodeposited reduced-graphene oxide/cobalt oxide electrodes for charge storage applications

    NASA Astrophysics Data System (ADS)

    García-Gómez, A.; Eugénio, S.; Duarte, R. G.; Silva, T. M.; Carmezim, M. J.; Montemor, M. F.

    2016-09-01

    In the present work, electrochemically reduced-graphene oxide/cobalt oxide composites for charge storage electrodes were prepared by a one-step pulsed electrodeposition route on stainless steel current collectors and after that submitted to a thermal treatment at 200 °C. A detailed physico-chemical characterization was performed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Raman spectroscopy. The electrochemical response of the composite electrodes was studied by cyclic voltammetry and charge-discharge curves and related to the morphological and phase composition changes induced by the thermal treatment. The results revealed that the composites were promising materials for charge storage electrodes for application in redox supercapacitors, attaining specific capacitances around 430 F g-1 at 1 A g-1 and presenting long-term cycling stability.

  1. Synthesis of graphene nanomaterials and their application in electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Xiong, Guoping

    The need to store and use energy on diverse scales in a modern technological society necessitates the design of large and small energy systems, among which electrical energy storage systems such as batteries and capacitors have attracted much interest in the past several decades. Supercapacitors, also known as ultracapacitors, or electrochemical capacitors, with fast power delivery and long cycle life are complementing or even replacing batteries in many applications. The rapid development of miniaturized electronic devices has led to a growing need for rechargeable micro-power sources with high performance. Among different sources, electrochemical micro-capacitors or micro-supercapacitors provide higher power density than their counterparts and are gaining increased interest from the research and engineering communities. Rechargeable Li ion batteries with high energy and power density, long cycling life, high charge-discharge rate (1C - 3C) and safe operation are in high demand as power sources and power backup for hybrid electric vehicles and other applications. In the present work, graphene-based graphene materials have been designed and synthesized for electrochemical energy storage applications, e.g., conventional supercapacitors (macro-supercapacitors), microsupercapacitors and lithium ion batteries. Factors influencing the formation and structure of graphitic petals grown by microwave plasma-enhanced chemical vapor deposition on oxidized silicon substrates were investigated through process variation and materials analysis. Insights gained into the growth mechanism of these graphitic petals suggest a simple scribing method can be used to control both the location and formation of petals on flat Si substrates. Transitional metal oxides and conducting polymers have been coated on the graphitic petal-based electrodes by facile chemical methods for multifunctional energy storage applications. Detailed electrochemical characterization (e.g., cyclic voltammetry and

  2. Health0hazard evaluation report HETA 84-132-1703, Purex Industrial Division, Marion, Ohio

    SciTech Connect

    Stephenson, R.L.; Aw, T.C.

    1986-06-01

    Due to reports of employee symptoms of headaches, irritation of the nose, throat and respiratory tract, and muscular weakness, possible chemical exposures during the manufacturing and packaging of various institutional and janitorial maintenance chemicals and allied products at the Purex Industrial Division Facility, Ohio were evaluated. Long-term personal breathing zone air samples revealed: acetone, 104 milligrams/cubic meter (mg/m/sup 3/) to 939 mg/m/sup 3/; ammonia, not detectable to 68.8 mg/m/sup 3/; ethanolamine, 1.5 mg/m/sup 3/; methylene-chloride, 171 to 561 mg/m/sup 3/; sodium-hydroxide, 0.4 to 1.3 mg/m/sup 3/; and styrene, 6.0 to 66.9 mg/m/sup 3/. No detectable airborne concentrations of butyl cellosolve formaldehyde, or morpholine were found. The author concludes that during the survey, employees were overexposed to ammonia and methylene-chloride.

  3. Controllability of plutonium concentration for FBR fuel at a solvent extraction process in the PUREX process

    SciTech Connect

    Enokida, Youichi; Kitano, Motoki; Sawada, Kayo

    2013-07-01

    Typical Purex solvent extraction systems for the reprocessing of spent nuclear fuel have a feed material containing dilute, 1% in weight, plutonium, along with uranium and fission products. Current reprocessing proposals call for no separation of the pure plutonium. The work described in this paper studied, by computer simulation, the fundamental feasibility of preparing a 20% concentrated plutonium product solution from the 1% feed by adjusting only the feed rates and acid concentrations of the incoming streams and without the addition of redox reagents for the plutonium. A set of process design flowsheets has been developed to realize a concentrated plutonium solution of a 20% stream from the dilute plutonium feed without using redox reagents. (authors)

  4. ICPSEF: a user's manual for the computer mathematical model of the ICPP purex solvent extraction system

    SciTech Connect

    Bendixsen, C L

    1982-11-01

    A computer-based mathematical program, ICPSEF, was developed for the first-cycle extraction system at the Idaho Chemical Processing Plant (ICPP). At the ICPP, spent nuclear fuels are processed to recover unfissioned uranium. The uranium is recovered from aqueous solutions in a pulse column, solvent extraction system using tributyl phosphate (TBP) solvent (purex process). A previously developed SEPHIS-MOD4 computer program was added to and modified to provide a model for the ICPP system. Major modifications included addition of: (1) partial theoretical stages to permit more accurate modeling of ICPP columns, (2) modeling ammonium hydroxide neutralization of nitric acid in a scrubbing column, and (3) equilibrium data for 5 to 10 vol % TBP. The model was verified by comparison with actual operating data. Detailed instructions for using the ICPSEF model and sample results of the model are included.

  5. Method for extracting lanthanides and actinides from acid solutions by modification of purex solvent

    DOEpatents

    Horwitz, E. Philip; Kalina, Dale G.

    1986-01-01

    A process for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.

  6. Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.

    1986-03-04

    A process is described for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula as shown in a diagram where [phi] is phenyl, R[sup 1] is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R[sup 2] is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions. 6 figs.

  7. Recent studies related to head-end fuel processing at the Hanford PUREX plant

    SciTech Connect

    Swanson, J.L.

    1988-08-01

    This report presents the results of studies addressing several problems in the head-end processing (decladding, metathesis, and core dissolution) of N Reactor fuel elements in the Hanford PUREX plant. These studies were conducted over 2 years: FY 1986 and FY 1987. The studies were divided into three major areas: 1) differences in head-end behavior of fuels having different histories, 2) suppression of /sup 106/Ru volatilization when the ammonia scrubber solution resulting from decladding is decontaminated by distillation prior to being discharged, and 3) suitability of flocculating agents for lowering the amount of transuranic (TRU) element-containing solids that accompany the decladding solution to waste. 16 refs., 43 figs.

  8. Measurement of achievable plutonium decontamination from gallium by means of PUREX solvent extraction

    SciTech Connect

    Collins, E.D.; Campbell, D.O.; Felker, L.K.

    2000-01-01

    The objective of the work described herein was to measure, experimentally, the achievable decontamination of plutonium from gallium by means of the PUREX solvent extraction process. Gallium is present in surplus weapons-grade plutonium (WG-Pu) at a concentration of approximately 1 wt%. Plans are to dispose of surplus WG-Pu by converting it to UO{sub 2}-PuO{sub 2} mixed oxide (MOX) fuel and irradiating it in commercial power reactors. However, the presence of high concentrations of gallium in plutonium is a potential corrosion problem during the process of MOX fuel irradiation. The batch experiments performed in this study were designed to measure the capability of the PUREX solvent extraction process to separate gallium from plutonium under idealized conditions. Radioactive tracing of the gallium with {sup 72}Ga enabled the accurate measurement of low concentrations of extractable gallium. The experiments approximated the proposed flowsheet for WG-Pu purification, except that only one stage was used for each process: extraction, scrubbing, and stripping. With realistic multistage countercurrent systems, much more efficient separations are generally obtained. The gallium decontamination factor (DF) obtained after one extraction stage was about 3 x 10{sup 6}. After one scrub stage, all gallium measurements were less than the detection limit, which corresponded to DFs >5 x 10{sup 6}. All these values exceed a 10{sup 6} DF needed to meet a hypothetical 10-ppb gallium impurity limit in MOX fuel. The results of this study showed no inherent or fundamental problem with regard to removing gallium from plutonium.

  9. Borated stainless steel application in spent-fuel storage racks. Final report

    SciTech Connect

    Smith, R.J.; Loomis, G.W.; Deltete, C.P.

    1992-06-01

    EPRI is continuing to investigate the application of borated stainless steel products within the commercial nuclear power industry through participation in code development and material testing. This effort provides documentation of the material properties of interest in design applications utilizing the borated stainless steel products as structural elements as well as serving as neutron absorbers. The properties of most concern in the design of spent fuel storage racks, shipping casks, and other containment type applications are the materials` ductility, tensile strength, corrosion resistance and resistance to degradation due to radiation and temperature. The data presented in this report indicate that practical designs can be achieved utilizing borated stainless steels and that the materials can be cost effectively applied.

  10. Prediction equations for corrosion rates of a A-537 and A-516 steels in Double Shell Slurry, Future PUREX, and Hanford Facilities Wastes

    SciTech Connect

    Divine, J.R.; Bowen, W.M.; Mackey, D.B.; Bates, D.J.; Pool, K.H.

    1985-06-01

    Even though the interest in the corrosion of radwaste tanks goes back to the mid-1940's when waste storage was begun, and a fair amount of corrosion work has been done since then, the changes in processes and waste types have outpaced the development of new data pertinent to the new double shell tanks. As a consequence, Pacific Northwest Laboratory (PNL) began a development of corrosion data on a broad base of waste compositions in 1980. The objective of the program was to provide operations personnel with corrosion rate data as a function of waste temperature and composition. The work performed in this program examined A-537 tank steel in Double Shell Slurry and Future PUREX Wastes, at temperatures between 40 and 180/sup 0/C as well as in Hanford Facilities Waste at 25 and 50/sup 0/C. In general, the corrosion rates were less than 1 mpy (0.001 in./y) and usually less than 0.5 mpy. Excessive corrosion rates (>1 mpy) were only found in dilute waste compositions or in concentrated caustic compositions at temperatures above 140/sup 0/C. Stress corrosion cracking was only observed under similar conditions. The results are presented as polynomial prediction equations with examples of the output of existing computer codes. The codes are not provided in the text but are available from the authors. 12 refs., 5 figs., 19 tabs.

  11. Energy storage

    NASA Astrophysics Data System (ADS)

    Kaier, U.

    1981-04-01

    Developments in the area of energy storage are characterized, with respect to theory and laboratory, by an emergence of novel concepts and technologies for storing electric energy and heat. However, there are no new commercial devices on the market. New storage batteries as basis for a wider introduction of electric cars, and latent heat storage devices, as an aid for solar technology applications, with satisfactory performance standards are not yet commercially available. Devices for the intermediate storage of electric energy for solar electric-energy systems, and for satisfying peak-load current demands in the case of public utility companies are considered. In spite of many promising novel developments, there is yet no practical alternative to the lead-acid storage battery. Attention is given to central heat storage for systems transporting heat energy, small-scale heat storage installations, and large-scale technical energy-storage systems.

  12. Synthesis and applications of carbon nanomaterials for energy generation and storage

    PubMed Central

    Notarianni, Marco; Liu, Jinzhang; Vernon, Kristy

    2016-01-01

    Summary The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future. PMID:26925363

  13. Synthesis and applications of carbon nanomaterials for energy generation and storage.

    PubMed

    Notarianni, Marco; Liu, Jinzhang; Vernon, Kristy; Motta, Nunzio

    2016-01-01

    The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage - the key to the portable electronics of the future. PMID:26925363

  14. Mission Applicability and Benefits of Thin-Film Integrated Power Generation and Energy Storage

    NASA Technical Reports Server (NTRS)

    Hoffman, David; Raffaelle, Ryne P.; Landis, Geoffrey A.; Hepp, Aloysius F.

    2001-01-01

    This paper discusses the space mission applicability and benefits of a thin-film integrated power generation and energy storage device, i.e., an "Integrated Power Source" or IPS. The characteristics of an IPS that combines thin-film photo-voltaic power generation with thin-film energy storage are described. Mission concepts for a thin-film IPS as a spacecraft main electrical power system, as a decentralized or distributed power source and as an uninterruptible power supply are discussed. For two specific missions, preliminary sizing of an IPS as a main power system is performed and benefits are assessed. IPS developmental challenges that need to be overcome in order to realize the benefits of an IPS are examined. Based on this preliminary assessment, it is concluded that the most likely and beneficial application of an IPS will be as the main power system on a very small "nanosatellite," or in specialized applications serving as a decentralized or distributed power source or uninterruptible power supply.

  15. Mission Applicability and Benefits of Thin-Film Integrated Power Generation and Energy Storage

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Raffaelle, Ryne P.; Landis, Geoffrey A.; Hepp, Aloysius F.

    2001-01-01

    This paper discusses the space mission applicability and benefits of a thin-film integrated power generation and energy storage device, i.e., an "Integrated Power Source" or IPS. The characteristics of an IPS that combines thin-film photovoltaic power generation with thin-film energy storage are described. Mission concepts for a thin-film IPS as a spacecraft main electrical power system, as a decentralized or distributed power source and as an uninterruptible power supply are discussed. For two specific missions, preliminary sizing of an IPS as a main power system is performed and benefits are assessed. IPS developmental challenges that need to be overcome in order to realize the benefits of an IPS are examined. Based on this preliminary assessment, it is concluded that the most likely and beneficial application of an IPS will be as the main power system on a very small "nanosatellite," or in specialized applications serving as a decentralized or distributed power source or uninterruptible power supply.

  16. Technical assessment of compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect

    Hua, T.; Ahluwalia, R.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J.

    2011-02-01

    The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar ({approx}5000 psi) and 700 bar ({approx}10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%.

  17. Investigation of potential waste material insulating properties at different temperature for thermal storage application

    NASA Astrophysics Data System (ADS)

    Ali, T. Z. S.; Rosli, A. B.; Gan, L. M.; Billy, A. S.; Farid, Z.

    2013-12-01

    Thermal energy storage system (TES) is developed to extend the operation of power generation. TES system is a key component in a solar energy power generation plant, but the main issue in designing the TES system is its thermal capacity of storage materials, e.g. insulator. This study is focusing on the potential waste material acts as an insulator for thermal energy storage applications. As the insulator is used to absorb heat, it is needed to find suitable material for energy conversion and at the same time reduce the waste generation. Thus, a small-scale experimental testing of natural cooling process of an insulated tank within a confined room is conducted. The experiment is repeated by changing the insulator from the potential waste material and also by changing the heat transfer fluid (HTF). The analysis presented the relationship between heat loss and the reserved period by the insulator. The results show the percentage of period of the insulated tank withstands compared to tank insulated by foam, e.g. newspaper reserved the period of 84.6% as much as foam insulated tank to withstand the heat transfer of cooking oil to the surrounding. The paper finally justifies the most potential waste material as an insulator for different temperature range of heat transfer fluid.

  18. Technical assessment of compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect

    Hua, T. Q.; Ahluwalia, R. K.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J.

    2011-02-09

    The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar ({approx}5000 psi) and 700 bar ({approx}10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%. These results are summarized.

  19. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications

    SciTech Connect

    Gomez, J. C.

    2011-09-01

    It is clearly understood that lower overall costs are a key factor to make renewable energy technologies competitive with traditional energy sources. Energy storage technology is one path to increase the value and reduce the cost of all renewable energy supplies. Concentrating solar power (CSP) technologies have the ability to dispatch electrical output to match peak demand periods by employing thermal energy storage (TES). Energy storage technologies require efficient materials with high energy density. Latent heat TES systems using phase change material (PCM) are useful because of their ability to charge and discharge a large amount of heat from a small mass at constant temperature during a phase transformation like melting-solidification. PCM technology relies on the energy absorption/liberation of the latent heat during a physical transformation. The main objective of this report is to provide an assessment of molten salts and metallic alloys proposed as candidate PCMs for TES applications, particularly in solar parabolic trough electrical power plants at a temperature range from 300..deg..C to 500..deg.. C. The physical properties most relevant for PCMs service were reviewed from the candidate selection list. Some of the PCM candidates were characterized for: chemical stability with some container materials; phase change transformation temperatures; and latent heats.

  20. Control of a High Speed Flywheel System for Energy Storage in Space Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy; Santiago, Walter

    2004-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented demonstrating the successful operation of the flywheel control up to the rated speed of 60,000 rpm.

  1. Evaluation of actuator energy storage and power sources for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Young, Fred M.

    1993-01-01

    The objective of this evaluation is to determine an optimum energy storage/power source combination for electrical actuation systems for existing (Solid Rocket Booster (SRB), Shuttle) and future (Advanced Launch System (ALS), Shuttle Derivative) vehicles. Characteristic of these applications is the requirement for high power pulses (50-200 kW) for short times (milliseconds to seconds), coupled with longer-term base or 'housekeeping' requirements (5-16 kW). Specific study parameters (e.g., weight, volume, etc.) as stated in the proposal and specified in the Statement of Work (SOW) are included.

  2. Metallic Permeation Barrier for Cryogenic Composite Propellant Storage and Transfer Applications

    NASA Astrophysics Data System (ADS)

    Drescher, O.; Njuhovic, E.; Glode, S.; Persson, J.; Altstadt, V.

    2012-07-01

    Mass savings for cryogenic transfer and storage applications using fibre-reinforced polymers (FRP) is a key approach at MAGNA STEYR’s Aerospace division. The permeable nature of FRP materials requires an impermeable metallic barrier; its development forms the herein presented project. The described results are the outcome of a comprehensive two-dimensional (2-D) sample test programme defining the essential sub-processes of the metallisation before entering the three-dimensional (3- D) component test and furthermore the demonstrator verification phase.

  3. The CUNY Energy Institute Electrical Energy Storage Development for Grid Applications

    SciTech Connect

    Banerjee, Sanjoy

    2013-03-31

    1. Project Objectives The objectives of the project are to elucidate science issues intrinsic to high energy density electricity storage (battery) systems for smart-grid applications, research improvements in such systems to enable scale-up to grid-scale and demonstrate a large 200 kWh battery to facilitate transfer of the technology to industry. 2. Background Complex and difficult to control interfacial phenomena are intrinsic to high energy density electrical energy storage systems, since they are typically operated far from equilibrium. One example of such phenomena is the formation of dendrites. Such dendrites occur on battery electrodes as they cycle, and can lead to internal short circuits, reducing cycle life. An improved understanding of the formation of dendrites and their control can improve the cycle life and safety of many energy storage systems, including rechargeable lithium and zinc batteries. Another area where improved understanding is desirable is the application of ionic liquids as electrolytes in energy storage systems. An ionic liquid is typically thought of as a material that is fully ionized (consisting only of anions and cations) and is fluid at or near room temperature. Some features of ionic liquids include a generally high thermal stability (up to 450 °C), a high electrochemical window (up to 6 V) and relatively high intrinsic conductivities. Such features make them attractive as battery or capacitor electrolytes, and may enable batteries which are safer (due to the good thermal stability) and of much higher energy density (due to the higher voltage electrode materials which may be employed) than state of the art secondary (rechargeable) batteries. Of particular interest is the use of such liquids as electrolytes in metal air batteries, where energy densities on the order of 1-2,000 Wh / kg are possible; this is 5-10 times that of existing state of the art lithium battery technology. The Energy Institute has been engaged in the

  4. Modeling thermochemical heat storage in porous media with local thermal nonequilibrium - From constitutive theory to application

    NASA Astrophysics Data System (ADS)

    Nagel, T.; Shao, H.; Linder, M.; Wörner, A.; Kolditz, O.

    2013-12-01

    Heat processes in industry and for power generation can be made more cost-efficient and climate friendly by the integration of thermal energy storage devices. Due to high storage densities and superior long term storage characteristics, systems relying on thermochemical reactions are of great interest and often based on porous or granular media. As such, they share characteristic features in terms of mass and heat transport that are strongly coupled by physical and chemical phenomena. We have employed the theory of porous media to establish a model featuring reactive multicomponent compressible fluid mass transport through solid particle bed coupled to local thermal nonequilibrium heat transport. The model development has been based on an extensive evaluation of the Clausius-Duhem inequality to derive thermodynamically consistent constitutive relations for secondary variables as well as direct and indirect coupling terms. The model has then been implemented into the open source scientific simulation code OpenGeoSys using the finite element method. Lab and pilot scale thermochemical heat storage reactors with different reaction systems (oxidation reactions, hydration reactions) have been simulated successfully using axisymmetric geometries. The simulations show the strong coupling of pressure, concentration and temperature fields as well as the gas-solid reactions occurring inside the reactors. The effect of certain process parameters, such as mass flow and particle size, on the occurrence of local thermal nonequilibrium is illustrated. It is shown that the reactors can be used in a number of operating modes such as the extraction or release of heat accompanied by significant temperature drops or raises; the buffering or smoothing of temperature fluctuations at the inlet; the up- or downgrading of heat. The developed model therefore represents a useful tool to understand reactor behavior, optimize operating parameters, estimate thermal and parasitic losses, and

  5. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect

    Ahluwalia, R. K.; Hua, T. Q.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Nuclear Engineering Division; TIAX LLC

    2010-03-03

    On-board and off-board performance and cost of cryo-compressed hydrogen storage has been assessed and compared to the DOE 2010, 2015 and ultimate targets for automotive applications. The Gen-3 prototype system of Lawrence Livermore National Laboratory was modeled to project the performance of a scaled-down 5.6-kg usable hydrogen storage system. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers 1.5 kg/min of liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm (4000 psi). The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) and by central electrolysis using electricity from renewable sources. The main conclusions from the assessment are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity and the 2015 target for system volumetric capacity (see Table I). The system compares favorably with targets for durability and operability although additional work is needed to understand failure modes for combined pressure and temperature cycling. The system may meet the targets for hydrogen loss during dormancy under certain conditions of minimum daily driving. The high-volume manufacturing cost is projected to be 2-4 times the current 2010 target of $4/kWh. For the reference conditions considered most applicable, the fuel cost for the SMR hydrogen production and liquid H{sub 2} delivery scenario is 60%-140% higher than the current target of $2-$3/gge while the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

  6. Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.

    PubMed

    Salunkhe, Rahul R; Lee, Ying-Hui; Chang, Kuo-Hsin; Li, Jing-Mei; Simon, Patrice; Tang, Jing; Torad, Nagy L; Hu, Chi-Chang; Yamauchi, Yusuke

    2014-10-20

    Tremendous development in the field of portable electronics and hybrid electric vehicles has led to urgent and increasing demand in the field of high-energy storage devices. In recent years, many research efforts have been made for the development of more efficient energy-storage devices such as supercapacitors, batteries, and fuel cells. In particular, supercapacitors have great potential to meet the demands of both high energy density and power density in many advanced technologies. For the last half decade, graphene has attracted intense research interest for electrical double-layer capacitor (EDLC) applications. The unique electronic, thermal, mechanical, and chemical characteristics of graphene, along with the intrinsic benefits of a carbon material, make it a promising candidate for supercapacitor applications. This Review focuses on recent research developments in graphene-based supercapacitors, including doped graphene, activated graphene, graphene/metal oxide composites, graphene/polymer composites, and graphene-based asymmetric supercapacitors. The challenges and prospects of graphene-based supercapacitors are also discussed. PMID:25251360

  7. The Application of Graphene and Its Derivatives to Energy Conversion, Storage, and Environmental and Biosensing Devices.

    PubMed

    Ali Tahir, Asif; Ullah, Habib; Sudhagar, Pitchaimuthu; Asri Mat Teridi, Mohd; Devadoss, Anitha; Sundaram, Senthilarasu

    2016-06-01

    Graphene (GR) and its derivatives are promising materials on the horizon of nanotechnology and material science and have attracted a tremendous amount of research interest in recent years. The unique atom-thick 2D structure with sp(2) hybridization and large specific surface area, high thermal conductivity, superior electron mobility, and chemical stability have made GR and its derivatives extremely attractive components for composite materials for solar energy conversion, energy storage, environmental purification, and biosensor applications. This review gives a brief introduction of GR's unique structure, band structure engineering, physical and chemical properties, and recent energy-related progress of GR-based materials in the fields of energy conversion (e.g., photocatalysis, photoelectrochemical water splitting, CO2 reduction, dye-sensitized and organic solar cells, and photosensitizers in photovoltaic devices) and energy storage (batteries, fuel cells, and supercapacitors). The vast coverage of advancements in environmental applications of GR-based materials for photocatalytic degradation of organic pollutants, gas sensing, and removal of heavy-metal ions is presented. Additionally, the use of graphene composites in the biosensing field is discussed. We conclude the review with remarks on the challenges, prospects, and further development of GR-based materials in the exciting fields of energy, environment, and bioscience. PMID:27230414

  8. 78 FR 73566 - Standard Format and Content for a License Application for an Independent Spent Fuel Storage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... COMMISSION Standard Format and Content for a License Application for an Independent Spent Fuel Storage... public comment draft regulatory guide (DG), DG-3042, ``Standard Format and Content for a License... Waste'' (Ref. 1), Subpart B, ``License Application, Form, and Contents,'' specifies the information...

  9. Understanding Superconducting Magnetic Energy Storage (SMES) technology, applications, and economics, for end-use workshop

    SciTech Connect

    Ferraro, R.J.; McConnell, B.W.

    1993-06-01

    The overall objective of this project was to determine the state-of-the-art and to what extent existing SMES is a viable option in meeting the needs of utilities and their customers for improving electric service power quality. By defining and analyzing SMES electrical/mechanical performance characteristics, and comparing SMES application benefits with competitive stored energy systems, industry will be able to determine SMES unique applications and potential market penetration. Building on this information base, it would also be possible to evaluate the impact of high temperature superconductors (77 K and 20-35 K) on SMES technology applications. The authors of this report constructed a network of industry contacts and research consultants that were used to collect, update, and analyze ongoing SMES R&D and marketing activities in industries, utilities, and equipment manufacturers. These key resources were utilized to assemble performance characteristics on existing SMES, battery, capacitor, flywheel, and high temperature superconductor (HTS) stored energy technologies. From this information, preliminary stored energy system comparisons were accomplished. In this way, the electric load needs would be readily comparable to the potential solutions and applications offered by each aforementioned energy storage technology.

  10. Waveguide Structures for RF Undulators with Applications to FELs and Storage Rings

    SciTech Connect

    Yeddulla, M.; Geng, H.G.; Huang, Z.; Ma, Z.; Tantawi, S.G.; /SLAC

    2011-11-02

    RF undulators, suggested a long time ago, have the advantage of fast dynamic control of polarization, undulator strength and wavelength. However, RF undulators require very strong RF fields in order to produce radiation of the same order as conventional static devices. Very high power RF energy confined inside a waveguide or a cavity can provide the necessary RF fields to undulate the electron beam. However, the wall losses in the waveguide should be low enough to make it practically feasible as a CW or quasi CW undulator and, hence, competitive with static devices for applications to storage rings and FELs. Here we present various waveguide structures such as smooth walled and corrugated walled waveguides and various RF modes. We will show that there are some advantages in operating with higher order modes and also with hybrid modes in the corrugated guide. We will show that the RF power requirement for some of these modes will permit a quasi CW operation of the undulator, thus permitting its operation in a storage ring.

  11. Resource constraints on the battery energy storage potential for grid and transportation applications

    NASA Astrophysics Data System (ADS)

    Wadia, Cyrus; Albertus, Paul; Srinivasan, Venkat

    Batteries have great promise for facilitating the grid integration of renewable energy and powering electric vehicles. One critical concern for the scale-up of battery production is the availability of the elements used in battery couples. We provide the first systematic comparison of supply limits and extraction costs of the elements in battery couples against short- and long-term scaling goals. Several couples can scale well beyond short- and long-term grid-storage goals, including: Na/S, Zn/Cl 2, and FeCl 2/CrCl 3. Li-based couples currently have the performance characteristics most suitable for electric vehicles, yet scaling beyond 10 MM vehicles per year will demand significant increases in Li production. We also provide a framework to evaluate new couples, such as those based on Mg, which may be an alternative to Li-based couples. While the extraction costs of the elements used in current battery couples are, in many cases, below 10 kWh -1, the cost of finished battery cells is in the range of 150-1000 kWh -1, well above cost targets of 100 kWh -1 for both grid and transportation applications. Currently high costs remain a critical barrier to the widespread scale-up of battery energy storage.

  12. Microwave synthesis of noncentrosymmetric BaTiO3 truncated nanocubes for charge storage applications.

    PubMed

    Swaminathan, V; Pramana, Stevin S; White, T J; Chen, L; Chukka, Rami; Ramanujan, R V

    2010-11-01

    Truncated nanocubes of barium titanate (BT) were synthesized using a rapid, facile microwave-assisted hydrothermal route. Stoichiometric composition of pellets of nanocube BT powders was prepared by two-stage microwave process. Characterization by powder XRD, Rietveld refinement, SEM, TEM, and dielectric and polarization measurements was performed. X-ray diffraction revealed a polymorphic transformation from cubic Pm3̅m to tetragonal P4mm after 15 min of microwave irradiation, arising from titanium displacement along the c-axis. Secondary electron images were examined for nanocube BT synthesis and annealed at different timings. Transmission electron microscopy showed a narrow particle size distribution with an average size of 70 ± 9 nm. The remanence and saturation polarization were 15.5 ± 1.6 and 19.3 ± 1.2 μC/cm(2), respectively. A charge storage density of 925 ± 47 nF/cm(2) was obtained; Pt/BT/Pt multilayer ceramic capacitor stack had an average leakage current density of 5.78 ± 0.46 × 10(-8) A/cm(2) at ±2 V. The significance of this study shows an inexpensive and facile processing platform for synthesis of high-k dielectric for charge storage applications. PMID:20945870

  13. Carbon storage in a heavy clay soil landfill site after biosolid application.

    PubMed

    Bolan, N S; Kunhikrishnan, A; Naidu, R

    2013-11-01

    Applying organic amendments including biosolids and composts to agricultural land could increase carbon (C) storage in soils and contribute significantly to the reduction of greenhouse gas emissions. Although a number of studies have examined the potential value of biosolids as a soil conditioner and nutrient source, there has been only limited work on the impact of biosolid application on C sequestration in soils. The objective of this study was to examine the potential value of biosolids in C sequestration in soils. Two types of experiments were conducted to examine the effect of biosolid application on C sequestration. In the first laboratory incubation experiment, the rate of decomposition of a range of biosolid samples was compared with other organic amendments including composts and biochars. In the second field experiment, the effect of biosolids on the growth of two bioenergy crops, Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) on a landfill site was examined in relation to biomass production and C sequestration. The rate of decomposition varied amongst the organic amendments, and followed: composts>biosolids>biochar. There was a hundred fold difference in the rate of decomposition between biochar and other organic amendments. The rate of decomposition of biosolids decreased with increasing iron (Fe) and aluminum (Al) contents of biosolids. Biosolid application increased the dry matter yield of both plant species (by 2-2.5 fold), thereby increasing the biomass C input to soils. The rate of net C sequestration resulting from biosolid application (Mg C ha(-1) yr(-1) Mg(-1) biosolids) was higher for mustard (0.103) than sunflower (0.087). Biosolid application is likely to result in a higher level of C sequestration when compared to other management strategies including fertilizer application and conservation tillage, which is attributed to increased microbial biomass, and Fe and Al oxide-induced immobilization of C. PMID:23380138

  14. Nonradioactive Air Emissions Notice of Construction (NOC) Application for the Central Waste Complex (CSC) for Storage of Vented Waste Containers

    SciTech Connect

    KAMBERG, L.D.

    2000-04-01

    This Notice of Construction (NOC) application is submitted for the storage and management of waste containers at the Central Waste Complex (CWC) stationary source. The CWC stationary source consists of multiple sources of diffuse and fugitive emissions, as described herein. This NOC is submitted in accordance with the requirements of Washington Administrative Code (WAC) 173-400-110 (criteria pollutants) and 173-460-040 (toxic air pollutants), and pursuant to guidance provided by the Washington State Department of Ecology (Ecology). Transuranic (TRU) mixed waste containers at CWC are vented to preclude the build up of hydrogen produced as a result of radionuclide decay, not as safety pressure releases. The following activities are conducted within the CWC stationary source: Storage and inspection; Transfer and staging; Packaging; Treatment; and Sampling. This NOC application is intended to cover all existing storage structures within the current CWC treatment, storage, and/or disposal (TSD) boundary, as well as any storage structures, including waste storage pads and staging areas, that might be constructed in the future within the existing CWC boundary.

  15. Fabrication of Nb2O5 Nanosheets for High-rate Lithium Ion Storage Applications

    PubMed Central

    Liu, Meinan; Yan, Cheng; Zhang, Yuegang

    2015-01-01

    Nb2O5 nanosheets are successfully synthesized through a facile hydrothermal reaction and followed heating treatment in air. The structural characterization reveals that the thickness of these sheets is around 50 nm and the length of sheets is 500 ~ 800 nm. Such a unique two dimensional structure enables the nanosheet electrode with superior performance during the charge-discharge process, such as high specific capacity (~184 mAh·g−1) and rate capability. Even at a current density of 1 A·g−1, the nanosheet electrode still exhibits a specific capacity of ~90 mAh·g−1. These results suggest the Nb2O5 nanosheet is a promising candidate for high-rate lithium ion storage applications. PMID:25659574

  16. Green preparation of reduced graphene oxide for sensing and energy storage applications

    NASA Astrophysics Data System (ADS)

    Bo, Zheng; Shuai, Xiaorui; Mao, Shun; Yang, Huachao; Qian, Jiajing; Chen, Junhong; Yan, Jianhua; Cen, Kefa

    2014-04-01

    Preparation of graphene from chemical reduction of graphene oxide (GO) is recognized as one of the most promising methods for large-scale and low-cost production of graphene-based materials. This study reports a new, green, and efficient reducing agent (caffeic acid/CA) for GO reduction. The CA-reduced GO (CA-rGO) shows a high C/O ratio (7.15) that is among the best rGOs prepared with green reducing reagents. Electronic gas sensors and supercapacitors have been fabricated with the CA-rGO and show good performance, which demonstrates the potential of CA-rGO for sensing and energy storage applications.

  17. Application of passive dosimetry for detection of leaking underground storage tanks

    SciTech Connect

    DeGiano, F.A.; Leith, D.; Elliott, D.W.; Pate, B.; Napfel, C.M.

    1992-06-01

    Several modifications to conventional uses of passive dosimetry in industrial hygiene were explored to make the method attractive for both long-term monitoring of underground storage tanks and short-term site assessments of ground water contamination. Methods for both vapor and aqueous phase measurements were of interest. In addition, a colorimetric method was tried to eliminate the need for return of the dosimeter to the laboratory for chemical analysis. The results suggest that passive dosimetry can be a useful qualitative tool for the mapping of the sub-surface of a contaminated area. It is recommended that the dosimeter be used for short-term site-assessments, rather than long-term compliance monitoring applications. A more extensive comparison with other methods of leak detection than was possible in the research may be needed before convincing the private sector to develop a product based on commercial use of these prototype dosimetry devices.

  18. Applications of UV-storage ring free electron lasers: the case of super-ACO

    NASA Astrophysics Data System (ADS)

    Nahon, L.; Renault, E.; Couprie, M. E.; Mérola, F.; Dumas, P.; Marsi, M.; Taleb-Ibrahimi, A.; Nutarelli, D.; Roux, R.; Billardon, M.

    1999-06-01

    The potential of UV-storage ring free electron lasers (SRFELs) for the performance of original application experiments is shown with a special emphasis concerning their combination with the naturally synchronized synchrotron radiation (SR). The first two-color FEL+SR experiment, performed in surface science at Super-ACO is reported. The experimental parameters found to be the most important as gathered from the acquired experience, are underlined and discussed. Finally, future prospects for the scientific program of the Super-ACO FEL are presented with two-color experiments combining the FEL with SR undulator-based XUV and VUV beamlines as well as with a SR white light bending magnet beamline emiting in the IR-UV ( 20 μm- 0.25 μm) .

  19. Control of a lithium-ion battery storage system for microgrid applications

    NASA Astrophysics Data System (ADS)

    Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol

    2014-12-01

    The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.

  20. On Permeability Dynamics in Carbonaceous Aquifers used in Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Brady, Ds; Tilley, Bs; Ueckert, M.; Baumann, T.

    2015-11-01

    Geothermal energy harvesting applications use deep groundwater aquifers to store harvested energy. The impact of this additional energy to the aquifer chemistry is crucial for long-term operation. Gaseous CO2 is added to the injected water to compensate potential precipitates of carbonates and to prevent structural changes to the aquifer. Both of these effects affect the local chemical equilibrium of the aquifer, and we consider an effective model through homogenization which captures the hydrochemistry, heat transfer, fluid flow and permeability dynamics of the aquifer as heated fluid is added to the aquifer (injection), and as it is later removed (production). The impact of these different physical mechanisms of the heat storage performance of the aquifer is discussed. Support from the Bavarian State Ministry for the Economy is gratefully acknowledged.

  1. Green preparation of reduced graphene oxide for sensing and energy storage applications

    PubMed Central

    Bo, Zheng; Shuai, Xiaorui; Mao, Shun; Yang, Huachao; Qian, Jiajing; Chen, Junhong; Yan, Jianhua; Cen, Kefa

    2014-01-01

    Preparation of graphene from chemical reduction of graphene oxide (GO) is recognized as one of the most promising methods for large-scale and low-cost production of graphene-based materials. This study reports a new, green, and efficient reducing agent (caffeic acid/CA) for GO reduction. The CA-reduced GO (CA-rGO) shows a high C/O ratio (7.15) that is among the best rGOs prepared with green reducing reagents. Electronic gas sensors and supercapacitors have been fabricated with the CA-rGO and show good performance, which demonstrates the potential of CA-rGO for sensing and energy storage applications. PMID:24732631

  2. The GRID Adventures: SDSC'S Storage Resource Broker and Web Services in Digital Library Applications

    NASA Astrophysics Data System (ADS)

    Rajasekar, Arcot; Moore, Reagan; Ludascher, Bertram; Zaslavsky, Ilya

    The data handling infrastructure being developed at the San Diego Supercomputer Center, includes a range of approaches and technologies for managing data, information and knowledge, specifically: (1) self-instantiating and self-validating persistent archives; (2) data handling system providing ubiquitous access to data resources stored in a variety of systems, epitomized in the development of SDSC Storage Resource Broker (SRB); (3) data collection management services, with Extensible Metadata Catalog working in conjunction with SRB; (4) digital library services for information navigation and discovery; (5) information integration across multiple heterogeneous sources and web services, based on SDSC XML-based mediation technologies, and (6) model-based knowledge management, providing conceptual-level mediation and ontology services. This paper reviews the key components of the SDSC data handling infrastructure for scientific data, highlighting our experience with the SRB in a variety of application domains; XML-based information integration (mediation) technologies employing grid Web services, and knowledge management techniques.

  3. Extraction chromatographic separation of promethium from high active waste solutions of Purex origin

    SciTech Connect

    Ramanujam, A.; Achuthan, P.V.; Dhami, P.S.; Gopalakrishnan, V.; Kannan, R.; Mathur, J.N.

    1995-03-01

    An extraction chromatographic procedure for the separation of {sup 147}Pm from High Active Waste solutions of Purex process has been developed. Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide(CMPO) and 2-ethylhexyl-2-ethylhexylphosphonic acid (KSM-17), both sorbed separately on an inert support(chromosorb-102) have been sequentially employed for this purpose. In the CMPO column, the rare earths and the trivalent actinides are sorbed together with uranium, plutonium and traces of few other fission products. The elution of this column with 0.04 M HNO{sub 3} gives an eluate containing trivalent actinides and lanthanides. This solution, after adjusting the pH to 2.0, is used as feed for the second extraction chromatographic column based on KSM-17. All the trivalent metal ions are sorbed on the column leaving the trace impurities in the effluent. Fractional elution of the metal ions from this column is carried out with nitric acid of varying concentrations. At 0.09 M HNO{sub 3}, the pure beta emitting fraction of {sup 147}Pm has been obtained. 16 refs., 3 figs., 2 tabs.

  4. High-temperature molten salt thermal energy storage systems for solar applications

    NASA Technical Reports Server (NTRS)

    Petri, R. J.; Claar, T. D.; Ong, E.

    1983-01-01

    Experimental results of compatibility screening studies of 100 salt/containment/thermal conductivity enhancement (TCE) combinations for the high temperature solar thermal application range of 704 deg to 871 C (1300 to 1600 F) are presented. Nine candidate containment/HX alloy materials and two TCE materials were tested with six candidate solar thermal alkali and alkaline earth carbonate storage salts (both reagent and technical grade of each). Compatibility tests were conducted with salt encapsulated in approx. 6.0 inch x 1 inch welded containers of test material from 300 to 3000 hours. Compatibility evaluations were end application oriented, considering the potential 30 year lifetime requirement of solar thermal power plant components. Analyses were based on depth and nature of salt side corrosion of materials, containment alloy thermal aging effects, weld integrity in salt environment, air side containment oxidation, and chemical and physical analyses of the salt. A need for more reliable, and in some cases first time determined thermophysical and transport property data was also identified for molten carbonates in the 704 to 871 C temperature range. In particular, accurate melting point (mp) measurements were performed for Li2CO3 and Na2CO3 while melting point, heat of fusion, and specific heat determinations were conducted on 81.3 weight percent Na2CO3-18.7 weight percent K2CO3 and 52.2 weight percent BaCO3-47.8 weight percent Na2CO3 to support future TES system design and ultimate scale up of solar thermal energy storage (TES) subsystems.

  5. Low-temperature aluminum reduction of graphene oxide, electrical properties, surface wettability, and energy storage applications.

    PubMed

    Wan, Dongyun; Yang, Chongyin; Lin, Tianquan; Tang, Yufeng; Zhou, Mi; Zhong, Yajuan; Huang, Fuqiang; Lin, Jianhua

    2012-10-23

    Low-temperature aluminum (Al) reduction is first introduced to reduce graphene oxide (GO) at 100-200 °C in a two-zone furnace. The melted Al metal exhibits an excellent deoxygen ability to produce well-crystallized reduced graphene oxide (RGO) papers with a low O/C ratio of 0.058 (Al-RGO), compared with 0.201 in the thermally reduced one (T-RGO). The Al-RGO papers possess outstanding mechanical flexibility and extremely high electrical conductivities (sheet resistance R(s) ~ 1.75 Ω/sq), compared with 20.12 Ω/sq of T-RGO. More interestingly, very nice hydrophobic nature (90.5°) was observed, significantly superior to the reported chemically or thermally reduced papers. These enhanced properties are attributed to the low oxygen content in the RGO papers. During the aluminum reduction, highly active H atoms from H(2)O reacted with melted Al promise an efficient oxygen removal. This method was also applicable to reduce graphene oxide foams, which were used in the GO/SA (stearic acid) composite as a highly thermally conductive reservoir to hold the phase change material for thermal energy storage. The Al-reduced RGO/SnS(2) composites were further used in an anode material of lithium ion batteries possessing a higher specific capacity. Overall, low-temperature Al reduction is an effective method to prepare highly conductive RGO papers and related composites for flexible energy conversion and storage device applications. PMID:22984901

  6. Conceptual design of thermal energy storage systems for near term electric utility applications. Volume 1: Screening of concepts

    NASA Technical Reports Server (NTRS)

    Hausz, W.; Berkowitz, B. J.; Hare, R. C.

    1978-01-01

    Over forty thermal energy storage (TES) concepts gathered from the literature and personal contacts were studied for their suitability for the electric utility application of storing energy off-peak discharge during peak hours. Twelve selections were derived from the concepts for screening; they used as storage media high temperature water (HTW), hot oil, molten salts, and packed beds of solids such as rock. HTW required pressure containment by prestressed cast-iron or concrete vessels, or lined underground cavities. Both steam generation from storage and feedwater heating from storage were studied. Four choices were made for further study during the project. Economic comparison by electric utility standard cost practices, and near-term availability (low technical risk) were principal criteria but suitability for utility use, conservation potential, and environmental hazards were considered.

  7. Potential industrial applications for composite phase-change materials as thermal energy storage media

    SciTech Connect

    Spanner, G.E.; Wilfert, G.L.

    1989-07-01

    Considerable effort has been spent by the US Department of Energy and its contractors over the last few years to develop composite phase-change materials (CPCMs) for thermal energy storage (TES). This patented TES medium consists of a phase-change material (typically a salt or metal alloy) that is retained within the porous structure of a supporting material (typically a ceramic). The objectives of this study were to (1) introduce CPCMs to industries that may not otherwise be aware of them, (2) identify potentially attractive applications for CPCM in industry, (3) determine technical requirements that will affect the design of CPCM's for specific applications, and (4) generate interest among industrial firms for employing CPCM TES in their processes. The approach in this study was to examine a wide variety of industries using a series of screens to select those industries that would be most likely to adopt CPCM TES in their processes. The screens used in this study were process temperature, presence of time-varying energy flows, energy intensity of the industry, and economic growth prospects over the next 5 years. After identifying industries that passed all of the screens, representatives of each industry were interviewed by telephone to introduce them to CPCM TES, assess technical requirements for CPCM TES in their industry, and determine their interest in pursuing applications for CPCM TES. 11 refs., 4 tabs.

  8. Evaluation of Hydrogen Storage System Characteristics for Light-Duty Vehicle Applications (Poster)

    SciTech Connect

    Thornton, M.; Day, K.; Brooker, A.

    2010-05-01

    This poster presentation demonstrates an approach to evaluate trade-offs among hydrogen storage system characteristic across several vehicle configurations and estimates the sensitivity of hydrogen storage system improvements on vehicle viability.

  9. 40 CFR 429.100 - Applicability; description of the wet storage subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... publicly owned treatment works from the storage of unprocessed wood, i.e., the storage of logs or roundwood before or after removal of bark in self-contained bodies of water (mill ponds or log ponds) or...

  10. FreedomCAR :electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications.

    SciTech Connect

    Doughty, Daniel Harvey; Crafts, Chris C.

    2006-08-01

    This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehicle applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.

  11. 76 FR 80926 - Cortez Pumped Storage Project; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... Federal Energy Regulatory Commission Cortez Pumped Storage Project; Notice of Preliminary Permit... Pumped Storage Project to be located on Plateau Creek, near the town of Dolores, Montezuma County... a total storage capacity of 8,000 acre-feet and a water surface area of 275 acres at full...

  12. Integrated Power/Attitude Control System (IPACS) study. Volume 1: Feasibility studies. [application of flywheels for power storage and generation

    NASA Technical Reports Server (NTRS)

    Notti, J. E.; Cormack, A., III; Schmill, W. C.

    1974-01-01

    An Integrated Power/Attitude Control System (IPACS) concept consisting of an array of spinning flywheels, with or without gimbals, capable of performing the dual function of power storage and generation, as well as attitude control has been investigated. This system provides attitude control through momentum storage, and replaces the storage batteries onboard the spacecraft. The results of the investigation are presented in two volumes. The trade-off studies performed to establish the feasibility, cost effectiveness, required level of development, and boundaries of application of IPACS to a wide variety of spacecraft are discussed. The conceptual designs for a free-flying research application module (RAM), and for a tracking and data relay satellite (TDRS) are presented. Results from dynamic analyses and simulations of the IPACS conceptual designs are included.

  13. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 1

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)

    1992-01-01

    Papers and viewgraphs from the conference are presented. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disks and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  14. SHI induced defects in chemically synthesized graphene oxide for hydrogen storage applications

    NASA Astrophysics Data System (ADS)

    Sharma, Preetam K.; Sharma, Vinay; Rajaura, Rajveer Singh; Srivastava, Subodh; Sharma, S. S.; Singh, M.; Vijay, Y. K.

    2016-05-01

    Graphene, due to its unique properties arising from the single carbon layer, is a potential candidate for applications in a variety of fields including sensors, photovoltaics and energy storage. The atomic structure and morphology of the carbon nanomaterials especially graphene can be tailored by energetic ionic irradiation. As graphene sheet is very stable, the surface have less reactivity as compared to the edges of the sheets. By surface modification with energetic ion-beams additional dangling bonds can be formed to enhance the surface activity of the graphene film which could be exploited in a variety of applications. In the present work, graphene oxide was synthesized by improved Hummers' Method. The irradiation was done with Ag+ ions carrying energy 100 MeV with the fluence of 3×1013. Raman spectrum of graphene irradiated by Ag+ beam shows additional disordered peaks of D' and D+G bands. There is also a decrease in the intensity of D band. AFM images depict the increase in the surface roughness of the films. This can be attributed to the increase in the defects in the flakes and intermixing of adjacent layers by irradiation.

  15. Modeling and experimental validation of a Hybridized Energy Storage System for automotive applications

    NASA Astrophysics Data System (ADS)

    Fiorenti, Simone; Guanetti, Jacopo; Guezennec, Yann; Onori, Simona

    2013-11-01

    This paper presents the development and experimental validation of a dynamic model of a Hybridized Energy Storage System (HESS) consisting of a parallel connection of a lead acid (PbA) battery and double layer capacitors (DLCs), for automotive applications. The dynamic modeling of both the PbA battery and the DLC has been tackled via the equivalent electric circuit based approach. Experimental tests are designed for identification purposes. Parameters of the PbA battery model are identified as a function of state of charge and current direction, whereas parameters of the DLC model are identified for different temperatures. A physical HESS has been assembled at the Center for Automotive Research The Ohio State University and used as a test-bench to validate the model against a typical current profile generated for Start&Stop applications. The HESS model is then integrated into a vehicle simulator to assess the effects of the battery hybridization on the vehicle fuel economy and mitigation of the battery stress.

  16. Functional porous carbon-ZnO nanocomposites for high-performance biosensors and energy storage applications.

    PubMed

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming; Veerakumar, Pitchaimani; Liu, Shang-Bin; Miyamoto, Nobuyoshi

    2016-06-28

    A one-pot synthesis method for the fabrication of biomass-derived activated carbon-zinc oxide (ZAC) nanocomposites using sugarcane bagasse as a carbon precursor and ZnCl2 as an activating agent is reported. For the first time, we used ZnCl2 as not only an activating agent and also for the synthesis of ZnO nanoparticles on the AC surface. ZAC materials with varying ZnO loading were prepared and characterized by a variety of analytical and spectroscopic techniques such as FE-SEM, FE-TEM, XRD, EA, XPS, and Raman spectroscopy. ZAC-modified glassy carbon electrodes (GCEs) were found to exhibit remarkable electrochemical properties for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) as well as hazardous pollutants such as hydrogen peroxide (H2O2) and hydrazine (N2H4) with desirable sensitivity, selectivity, and detection limits. Moreover, ZAC-modified stainless steel electrodes also showed superior performances for supercapacitor applications. The ZAC nanocomposites, which may be mass produced by the reported facile direct route from sugarcane bagasse, are not only eco-friendly but also cost-effective, and thus, are suitable as a practical platform for bio-sensing and energy storage applications. PMID:27265120

  17. Facile Synthesis of Nitrogen-Containing Mesoporous Carbon for High-Performance Energy Storage Applications.

    PubMed

    Xu, Yunling; Wang, Jie; Chang, Zhi; Ding, Bing; Wang, Ya; Shen, Laifa; Mi, Changhuan; Dou, Hui; Zhang, Xiaogang

    2016-03-14

    Porous carbon with high specific surface area (SSA), a reasonable pore size distribution, and modified surface chemistry is highly desirable for application in energy storage devices. Herein, we report the synthesis of nitrogen-containing mesoporous carbon with high SSA (1390 m(2)  g(-1) ), a suitable pore size distribution (1.5-8.1 nm), and a nitrogen content of 4.7 wt % through a facile one-step self-assembly process. Owing to its unique physical characteristics and nitrogen doping, this material demonstrates great promise for application in both supercapacitors and encapsulating sulfur as a superior cathode material for lithium-sulfur batteries. When deployed as a supercapacitor electrode, it exhibited a high specific capacitance of 238.4 F g(-1) at 1 A g(-1) and an excellent rate capability (180 F g(-1) , 10 A g(-1) ). Furthermore, when an NMC/S electrode was evaluated as the cathode material for lithium-sulfur batteries, it showed a high initial discharge capacity of 1143.6 mA h g(-1) at 837.5 mA g(-1) and an extraordinary cycling stability with 70.3 % capacity retention after 100 cycles. PMID:26849174

  18. Diffusion and elastoplastic analyses of polycrystalline magnesium for solid state hydrogen storage application

    NASA Astrophysics Data System (ADS)

    Mathakari, Amey

    Solid state hydrogen storage can be an effective way of storing hydrogen as an energy source for mobile applications. The advantage includes high energy density, low setup cost, safe operation, abundance of metal hydrides, low maintenance, etc. Magnesium is one of the potential metals for the application. However, sluggish desorption kinetics of magnesium requiring relatively high operation temperature has hindered its practical realization. In the present study, an attempt is made to analyze effects of grain boundary on diffusion and diffusion induced stresses in polycrystalline magnesium. Grain boundaries in nanostructured magnesium can undergo severe plastic deformations during the hydrogen insertion and desertion processes. Such boundaries are characterized by excess grain boundary energy, presence of long range elastic stresses and enhanced pathways for hydrogen transport. Finite element models have been developed for the analyses by realizing the different physical and chemical parameters of magnesium grains and grain boundaries. The study provides convincing evidence of the importance of the presence of grain boundaries. The results may help find ways to improve hydrogen charging/discharging efficiency by means of plastic deformations in grain boundaries while maintaining the overall structural integrity of host magnesium.

  19. Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application

    SciTech Connect

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Viswanathan, Vilayanur V.; Meinhardt, Kerry D.; Engelhard, Mark H.; Sprenkle, Vincent L.

    2015-06-17

    Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can be assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.

  20. 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion.

    PubMed

    Shi, Qiurong; Cha, Younghwan; Song, Yang; Lee, Jung-In; Zhu, Chengzhou; Li, Xiaoyu; Song, Min-Kyu; Du, Dan; Lin, Yuehe

    2016-08-25

    Porous 3D graphene-based hybrid materials (3D GBHMs) are currently attractive nanomaterials employed in the field of energy. Heteroatom-doped 3D graphene and metal, metal oxide, and polymer-decorated 3D graphene with modified electronic and atomic structures provide promising performance as electrode materials in energy storage and conversion. Numerous synthesis methods such as self-assembly, templating, electrochemical deposition, and supercritical CO2, pave the way to mass production of 3D GBHMs in the commercialization of energy devices. This review summarizes recent advances in the fabrication of 3D GBHMs with well-defined architectures such as finely controlled pore sizes, heteroatom doping types and levels. Moreover, current progress toward applications in fuel cells, supercapacitors and batteries employing 3D GBHMs is also highlighted, along with the detailed mechanisms of the enhanced electrochemical performance. Furthermore, current critical issues, challenges and future prospects with respect to applications of 3D GBHMs in practical devices are discussed at the end of this review. PMID:27531643

  1. 40 CFR Table 1 to Subpart Bbbbbb... - Applicability Criteria, Emission Limits, and Management Practices for Storage Tanks

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Applicability Criteria, Emission Limits, and Management Practices for Storage Tanks 1 Table 1 to Subpart BBBBBB of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  2. CONTROLLED GROWTH OF CARBON NANOTUBES ON CONDUCTIVE METAL SUBSTRATES FOR ENERGY STORAGE APPLICATIONS

    SciTech Connect

    Brown, P.; Engtrakul, C.

    2009-01-01

    a characteristic CNT sample was measured to be 232 m2/g with a cryogenic (77K) hydrogen storage of 0.85 wt%. This level of hydrogen adsorption is slightly higher than that predicted by the Chahine rule, indicating that these CNTs may bind hydrogen more strongly than other carbonaceous materials. More work is needed to confi rm and determine the reason for increased hydrogen adsorption in these CNTs, and to test them for use as catalyst support networks. This study demonstrates the feasibility of producing CNTs for energy storage applications using water-assisted CVD.

  3. Two-dimensional Clay and Graphene Nanosheets for Polymer Nanocomposites and Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Qian, Yuqiang

    Clay and graphene nanosheets are attractive to materials scientists due to their unique structural and physical properties and potentially low cost. This thesis focuses on the surface modification and structure design of clay and graphene nanosheets, targeting special requirements in polymer nanocomposites and energy storage applications. The high aspect ratio and stiffness of clay and graphene nanosheets make them promising candidates to reinforce polymers. However, it is challenging to achieve a good dispersion of the nanosheets in a polymer matrix. It is demonstrated in this study that organic modifications of clay and graphene nanosheets lead to better filler dispersion in polymer matrices. A prepolymer route was developed to achieve clay exfoliation in a polyurethane-vermiculite system. However, the phase-separated structure of the polyurethane matrix was disrupted. Intragallery catalysis was adopted to promote the clay exfoliation during polymerization. With both catalytic and reactive groups on the clay modifier, the polyurethane-vermiculite nanocomposites showed a significant increase in modulus and improved barrier performance, compared to neat polyurethane. The toughening effect of graphene on thermosetting epoxies and unsaturated polyesters (UPs) was also investigated. Various types of graphene with different structures and surface functionalities were incorporated into the thermosetting resin by in situ polymerization. The toughening effect was observed for epoxy nanocomposites at loading levels of less than 0.1 wt%, and a peak of fracture toughness was observed at 0.02 or 0.04 wt% of graphene loadings for all epoxy-graphene systems. A microcrack-crazing mechanism was proposed to explain the fracture behavior of epoxy-graphene systems based on fractography observations. Similar peak behavior of fracture toughness was not observed in UP system. UP nanocomposites with modified graphene oxide showed better mechanical performance than those with unmodified

  4. Blister pouches for effective reagent storage and release for low cost point-of-care diagnostic applications

    NASA Astrophysics Data System (ADS)

    Smith, Suzanne; Sewart, Rene; Land, Kevin; Roux, Pieter; Gärtner, Claudia; Becker, Holger

    2016-03-01

    Lab-on-a-chip devices are often applied to point-of-care diagnostic solutions as they are low-cost, compact, disposable, and require only small sample volumes. For such devices, various reagents are required for sample preparation and analysis and, for an integrated solution to be realized, on-chip reagent storage and automated introduction are required. This work describes the implementation and characterization of effective liquid reagent storage and release mechanisms utilizing blister pouches applied to various point-of-care diagnostic device applications. The manufacturing aspects as well as performance parameters are evaluated.

  5. Source challenges resulting from the first applications of a UV storage ring FEL on Super-ACO

    NASA Astrophysics Data System (ADS)

    Couprie, M. E.; Bakker, R.; Garzella, D.; Nahn, L.; Marsi, M.; Mérola, F.; Hara, T.; Billardon, M.

    1996-02-01

    On the Super-ACO free electron laser were developed the first applications of a storage ring based FEL and of a UV FEL. The feasibility of use was demonstrated in 1993 with a time resolved polarised fluorescence experiment in biology. After these experiments, the stability of the laser source was significantly improved, with the installation of a longitudinal feedback. A particular advantage of a storage ring FEL source is to provide as well naturally synchronized synchrotron radiation. A first pump-probe time-resolved experiment coupling such two tunable, synchronized light sources was then performed in surface physics.

  6. Storage, transportation, and atomization of CWF for residential applications. Final report, September 27, 1989--November 15, 1991

    SciTech Connect

    Grimanis, M.P.; Breault, R.W.; Smit, F.J.; Jha, M.C.

    1991-11-01

    This project investigated the properties and behavior with regard to handling, storage, and atomization in small-scale applications of different CWFs (coal water fuels) prepared from different parent coals and various beneficiation techniques as well as consideration for bulk storage and distribution. The CWFs that were prepared included Upper Elkhorn No. 3, Illinois No. 6, and Upper Wyodak coal cleaned by heavy media separation. Also, several CWFs were prepared with Upper Elkhorn No. 3 coal cleaned by heavy media separation with filtration, chemical cleaning, oil agglomeration, and froth flotation.

  7. Thermal energy storage

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The planning and implementation of activities associated with lead center management role and the technical accomplishments pertaining to high temperature thermal energy storage subsystems are described. Major elements reported are: (1) program definition and assessment; (2) research and technology development; (3) industrial storage applications; (4) solar thermal power storage applications; and (5) building heating and cooling applications.

  8. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    SciTech Connect

    Ronnebro, Ewa

    2012-06-16

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

  9. Interim-Status RCRA Groundwater Monitoring Plan for the 216-A-10, 216-A-36B, and 216-A-37-1 PUREX Cribs

    SciTech Connect

    Lindberg, Jon W.; Elmore, Rebecca P.

    2005-07-21

    This document presents a groundwater monitoring program for three Resource Conservation and Recovery Act of 1976 (RCRA) waste management units at the Hanford Site combined under one groundwater quality assessment program. The units are the 216 A 10, 216 A 36B, and 216 A-37-1 cribs (the RCRA PUREX cribs). The three cribs have been grouped together based on their proximity to one another, similar construction and waste history, and similar hydrogeologic regime. The RCRA PUREX cribs are located in the 200 East Area of the Hanford Site. This document replaces the previous RCRA monitoring plan (Lindberg 1997-PNNL-11523, Rev.0) for these cribs.

  10. Globally gridded terrestrial water storage variations from GRACE satellite gravimetry for hydrometeorological applications

    NASA Astrophysics Data System (ADS)

    Zhang, Liangjing; Dobslaw, Henryk; Thomas, Maik

    2016-07-01

    Globally gridded estimates of monthly-mean anomalies of terrestrial water storage (TWS) are estimated from the most recent GRACE release 05a of GFZ Potsdam in order to provide non-geodetic users a convenient access to state-of-the-art GRACE monitoring data. We use an ensemble of five global land model simulations with different physics and different atmospheric forcing to obtain reliable gridded scaling factors required to correct for spatial leakage introduced during data processing. To allow for the application of this data-set for large-scale monitoring tasks, model validation efforts, and subsequently also data assimilation experiments, globally gridded estimates of TWS uncertainties that include (i) measurement, (ii) leakage and (iii) re-scaling errors are provided as well. The results are generally consistent with the gridded data provided by Tellus, but deviate in some basins which are largely affected by the uncertainties of the model information required for re-scaling, where the approach based on the median of a small ensemble of global land models introduced in this paper leads to more robust results.

  11. Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage.

    PubMed

    Ryu, Jungki; Kim, Sung-Wook; Kang, Kisuk; Park, Chan Beum

    2010-01-26

    We report the synthesis of novel diphenylalanine/cobalt(II,III) oxide (Co(3)O(4)) composite nanowires by peptide self-assembly. Peptide nanowires were prepared by treating amorphous diphenylalanine film with aniline vapor at an elevated temperature. They were hybridized with Co(3)O(4) nanocrystals through the reduction of cobalt ions in an aqueous solution using sodium borohydride (NaBH(4)) without any complex processes such as heat treatment. The formation of peptide/Co(3)O(4) composite nanowires was characterized using multiple tools, such as electron microscopies and elemental analysis, and their potential application as a negative electrode for Li-ion batteries was explored by constructing Swagelok-type cells with hybrid nanowires as a working electrode and examining their charge/discharge behavior. The present study provides a useful approach for the synthesis of functional metal oxide nanomaterials by demonstrating the feasibility of peptide/Co(3)O(4) hybrid nanowires as an energy storage material. PMID:20000841

  12. Globally gridded terrestrial water storage variations from GRACE satellite gravimetry for hydrometeorological applications

    NASA Astrophysics Data System (ADS)

    Zhang, Liangjing; Dobslaw, Henryk; Thomas, Maik

    2016-04-01

    Globally gridded estimates of monthly-mean anomalies of terrestrial water storage (TWS) are estimated from the most recent GRACE release 05a of GFZ Potsdam in order to provide non-geodetic users a convenient access to state-of-the-art GRACE monitoring data. We use an ensemble of five global land model simulations with different physics and different atmospheric forcing to obtain reliable gridded scaling factors required to correct for spatial leakage introduced during data processing. To allow for the application of this data-set for large-scale monitoring tasks, model validation efforts, and subsequently also data assimilation experiments, globally gridded estimates of TWS uncertainties that include (i) measurement, (ii) leakage, and (iii) re-scaling errors are provided as well. The results are generally consistent with the gridded data provided by Tellus, but deviate in some basins which are largely affected by the uncertainties of the model information required for re-scaling, where the approach based on the median of a small ensemble of global land models introduced in this paper leads to more robust results.

  13. Ferroelectric polymer-ceramic composite thick films for energy storage applications

    SciTech Connect

    Singh, Paritosh; Borkar, Hitesh; Singh, B. P.; Singh, V. N.; Kumar, Ashok

    2014-08-15

    We have successfully fabricated large area free standing polyvinylidene fluoride -Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PVDF-PZT) ferroelectric polymer-ceramic composite (wt% 80–20, respectively) thick films with an average diameter (d) ∼0.1 meter and thickness (t) ∼50 μm. Inclusion of PZT in PVDF matrix significantly enhanced dielectric constant (from 10 to 25 at 5 kHz) and energy storage capacity (from 11 to 14 J/cm{sup 3}, using polarization loops), respectively, and almost similar leakage current and mechanical strength. Microstructural analysis revealed the presence of α and β crystalline phases and homogeneous distribution of PZT crystals in PVDF matrix. It was also found that apart from the microcrystals, well defined naturally developed PZT nanocrystals were embedded in PVDF matrix. The observed energy density indicates immense potential in PVDF-PZT composites for possible applications as green energy and power density electronic elements.

  14. New capabilities in the HENP grand challenge storage access systemand its application at RHIC

    SciTech Connect

    Bernardo, L.; Gibbard, B.; Malon, D.; Nordberg, H.; Olson, D.; Porter, R.; Shoshani, A.; Sim, A.; Vaniachine, A.; Wenaus, T.; Wu, K.; Zimmerman, D.

    2000-04-25

    The High Energy and Nuclear Physics Data Access GrandChallenge project has developed an optimizing storage access softwaresystem that was prototyped at RHIC. It is currently undergoingintegration with the STAR experiment in preparation for data taking thatstarts in mid-2000. The behavior and lessons learned in the RHIC MockData Challenge exercises are described as well as the observedperformance under conditions designed to characterize scalability. Up to250 simultaneous queries were tested and up to 10 million events across 7event components were involved in these queries. The system coordinatesthe staging of "bundles" of files from the HPSS tape system, so that allthe needed components of each event are in disk cache when accessed bythe application software. The caching policy algorithm for thecoordinated bundle staging is described in the paper. The initialprototype implementation interfaced to the Objectivity/DB. In this latestversion, it evolved to work with arbitrary files and use CORBA interfacesto the tag database and file catalog services. The interface to the tagdatabase and the MySQL-based file catalog services used by STAR aredescribed along with the planned usage scenarios.

  15. Development of a Framework for High-Throughput Calculations and its Application to Energy Storage Challenges

    NASA Astrophysics Data System (ADS)

    Kirklin, Scott

    From a historical perspective, the progress of humanity has been measured by the materials that mankind has been able to use. Looking forward, future technological developments will continue to hinge on the development of materials with precisely tailored properties and performance. In pursuit of this goal, this thesis presents a framework for the high-throughput handling of first principles materials modeling. This framework takes the form of the Open Quantum Materials Database (OQMD - www.oqmd.org), a repository of crystal structures, computed materials properties, and a host of tools for data storage, retrieval, and analysis. At present, the OQMD contains over 300,000 materials, and over 1.3 million completed density functional theory calculations. We set forth to demonstrate the usefulness of the OQMD for materials discovery by using it to search for materials for three applications: 1) conversion reaction anode materials for Li-ion batteries, 2) electrode materials for a novel hybrid Li-ion/Li-O2 battery chemistry, and 3) precipitation strengtheners for a suite of structural metals. In each of these materials discovery projects, we first determine the scope of relevant materials to consider, then develop a set of screens based on DFT calculable bulk materials properties, implement the specified filters, and finally consider the apparent advantages and disadvantages of the predicted materials.

  16. Characterization of iron-doped lithium niobate for holographic storage applications

    NASA Technical Reports Server (NTRS)

    Shah, R. R.; Kim, D. M.; Rabson, T. A.; Tittel, F. K.

    1976-01-01

    A comprehensive characterization of chemical and holographic properties of eight systematically chosen Fe:LiNbO3 crystals is performed in order to determine optimum performance of the crystals in holographic storage and display applications. The discussion covers determination of Fe(2+) and Fe(3+) ion concentrations in Fe:LiNbO3 system from optical absorption and EPR measurements; establishment of the relation between the photorefractive sensitivity of Fe(2+) and Fe(3+) concentrations; study of the spectral dependence, the effect of oxygen annealing, and of other impurities on the photorefractive sensitivity; analysis of the diffraction efficiency curves for different crystals and corresponding sensitivities with the dynamic theory of hologram formation; and determination of the bulk photovoltaic fields as a function of Fe(2+) concentrations. In addition to the absolute Fe(2+) concentration, the relative concentrations of Fe(2+) and Fe(3+) ions are also important in determining the photorefractive sensitivity. There exists an optimal set of crystal characteristics for which the photorefractive sensitivity is most favorable.

  17. Study on storage components and application performance for mask haze prevention

    NASA Astrophysics Data System (ADS)

    Chen, Shu Li; Fang, T. Y.; Lai, Ryan; Lee, Chun Der; Yeh, Shang Hao; Chen, Timmy

    2012-06-01

    The amount of sulfate ion on mask surface will increase haze defect growing once exposed by an ArF laser. And then the storage conditions influence amount of sulfate ion was investigated. Therefore, our evaluations used extraction method and IC (Ion Chromatography) test to examine the amount of ions for current mask pods and storage cabinet. The pods included the different material of ABS (Amber and Violet Acrylonitrile Butadiene Styrene), PMMA (Polymethyl meth acrylate), PEEK (Polyether ether ketone), Metal case, LCP (Liquid Crystal Plastic), PC+CF (Polycarbonate with carbon fiber) and PC+CNT (Polycarbonate with Carbon nano-tubes). Moreover, PSM (Phase shift Mask) haze life time and dosage was strongly interrelated with the amount of chemical contaminant aggregation for storage pods. The other factor to impact haze generation of ArF PSM masks is the condition of storage environment; therefore, we're comparing the different structure of cabinet from different vendors to extend mask life time. They included 3 types of storage system: cabinet with XCDA, purge cabinet and purge stocker. According to this point of view, we used the impinger and Cr Blank IC test to verify the best storage system and remove some of the polluted parts for cabinet to ensure haze free. Resulting from our investigations, we setup storage BKM (Best Known Method) and monitor haze performance to record their results. Consequently, the optimization components of storages will contribute the enormously economical benefit.

  18. The techniques and challenges of immutable storage with applications in multimedia

    NASA Astrophysics Data System (ADS)

    Hasan, Ragib; Tucek, Joseph; Stanton, Paul; Yurcik, William; Brumbaugh, Larry; Rosendale, Jeff; Boonstra, Roelof

    2005-01-01

    Security of storage and archival systems has become increasingly important in recent years. Due to the increased vulnerability of the existing systems and the need to comply with government regulations, different methods have been explored to create a secure storage system. One of the primary problems to ensuring the integrity of storage systems is to make sure a file cannot be changed without proper authorization. Immutable storage is storage whose content cannot be changed once it has been written. For example, it is apparent that critical system files and other important documents should never be changed and thus stored as immutable. In multimedia systems, immutability provides proper archival of indices as well as content. In this paper, a survey of existing techniques for immutability in file systems is presented.

  19. The techniques and challenges of immutable storage with applications in multimedia

    NASA Astrophysics Data System (ADS)

    Hasan, Ragib; Tucek, Joseph; Stanton, Paul; Yurcik, William; Brumbaugh, Larry; Rosendale, Jeff; Boonstra, Roelof

    2004-12-01

    Security of storage and archival systems has become increasingly important in recent years. Due to the increased vulnerability of the existing systems and the need to comply with government regulations, different methods have been explored to create a secure storage system. One of the primary problems to ensuring the integrity of storage systems is to make sure a file cannot be changed without proper authorization. Immutable storage is storage whose content cannot be changed once it has been written. For example, it is apparent that critical system files and other important documents should never be changed and thus stored as immutable. In multimedia systems, immutability provides proper archival of indices as well as content. In this paper, a survey of existing techniques for immutability in file systems is presented.

  20. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications.

    PubMed

    Liu, Yongfeng; Yang, Yaxiong; Gao, Mingxia; Pan, Hongge

    2016-02-01

    Solid-state hydrogen storage using various materials is expected to provide the ultimate solution for safe and efficient on-board storage. Complex hydrides have attracted increasing attention over the past two decades due to their high gravimetric and volumetric hydrogen densities. In this account, we review studies from our lab on tailoring the thermodynamics and kinetics for hydrogen storage in complex hydrides, including metal alanates, borohydrides and amides. By changing the material composition and structure, developing feasible preparation methods, doping high-performance catalysts, optimizing multifunctional additives, creating nanostructures and understanding the interaction mechanisms with hydrogen, the operating temperatures for hydrogen storage in metal amides, alanates and borohydrides are remarkably reduced. This temperature reduction is associated with enhanced reaction kinetics and improved reversibility. The examples discussed in this review are expected to provide new inspiration for the development of complex hydrides with high hydrogen capacity and appropriate thermodynamics and kinetics for hydrogen storage. PMID:26638824

  1. Correlation of the structure and applications of dealloyed nanoporous metals in catalysis and energy conversion/storage

    NASA Astrophysics Data System (ADS)

    Qiu, H.-J.; Xu, Hai-Tao; Liu, Li; Wang, Yu

    2014-12-01

    Nanoporous metals produced by dealloying have shown great promise in many areas such as catalysis/electrocatalysis, energy conversion/storage, sensing/biosensing, actuation, and surface-enhanced Raman scattering. Particularly, nanoscale metal ligaments with high electronic conductivity, tunable size and rich surface chemistry make nanoporous metals very promising as catalysts/electrocatalysts for energy conversion applications such as fuel cells and also as versatile three-dimensional substrates for energy-storage in supercapacitors and lithium ion batteries. In this review, we focus on the recent developments of dealloyed nanoporous metals in both catalysis/electrocatalysis and energy storage. In particular, based on the state-of-the-art electron microscopy characterization, we explain the atomic origin of the high catalytic activity of nanoporous gold. We also highlight the recent advances in rationally designing nanoporous metal-based composites and hierarchical structures for enhanced energy storage. Finally, we conclude with some outlook and perspectives with respect to future research on dealloyed nanoporous metals in catalysis- and energy-related applications.

  2. Synthesis of novel ZnV₂O₄ hierarchical nanospheres and their applications as electrochemical supercapacitor and hydrogen storage material.

    PubMed

    Butt, Faheem K; Tahir, Muhammad; Cao, Chuanbao; Idrees, Faryal; Ahmed, R; Khan, Waheed S; Ali, Zulfiqar; Mahmood, Nasir; Tanveer, M; Mahmood, Asif; Aslam, Imran

    2014-08-27

    Hierarchical nanostructures (Hs) have recently garnered enormous attention due to their remarkable performances in catalysis, electronic devices, energy storage and conversion. Considering the advantage of hierarchical nanostructures, we have formulated a facile and template free method to synthesize novel hierarchical nanospheres (NHNs) of ZnV2O4. Both zinc and vanadium are earth abundant, relatively economical and can offer several oxidation states, which can render a broad range of redox reactions favorable for electrochemical energy storage applications. Keeping these points in mind, we investigated for the first time the electrochemical supercapacitor performance of NHNs. The electrochemical measurements were performed in 2 M KOH solution. The measured specific capacitance of ZnV2O4 electrode is 360 F/g at 1 A/g with good stability and retention capacity of 89% after 1000 cycles. Moreover, the hydrogen storage properties of NHNs were measured at 473, 573, and 623 K with an absorption of 1.76, 2.03, and 2.49 wt %. respectively. These studies pave the way to consider ZnV2O4 as prospective material for energy storage applications. PMID:25076046

  3. Structural Inhomogeneity and Anisotropy in Optical Filters and Thin Films; Applications to Optical Storage Media.

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Kunjithapatham

    Optical filters and thin film optical devices play an important role in Science and Industry. Several significant applications have emerged in optics, microelectronics and computer technology. In this work, we study some aspects of their design and applications. One class of optical fibers, known as Christiansen filters, are based on scattering phenomena in suspensions of solid particles in a liquid medium. Some new scattering filters in the visible and the near UV regions and their performance characteristics are reported here. Feasibility to fabricate such optical filters in solid matrix form is established. Some applications of these scattering filters are discussed. After an introduction to the optics of homogeneous and isotropic thin films, I discuss the general design of anisotropic thin film media and a scheme implemented to calculate their performance. Optical anisotropy, produced by the growth-induced columnar microstructure in thin films and its effects on the performance of optical filters are studied. Large shifts in the peak wavelength of a typical narrow band filter are predicted. Magneto-optical (MO) thin film media of great importance to erasable optical data storage technology are studied. An approximate technique based on a 2 x 2 matrix formalism is developed to calculate the normal incidence performance of these media. To investigate anisotropic effects, to incorporate more than one magnetic film with arbitrary orientations of magnetization, and to study oblique incidence performance, a completely general 4 x 4 matrix technique is implemented in a computer program. Effects of substrate/superstrate birefringence in the read-out signal of MO media are investigated. Several optimizing design criteria, particularly, the effectiveness in employing appropriate metal or dielectric reflector layers are studied. The influence of the plasma edge of metals in enhancing the polar Kerr rotation of MO media is discussed with illustrations. A contour plot of

  4. New Class of Flow Batteries for Terrestrial and Aerospace Energy Storage Applications

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; West, William C.; Kindler, Andrew; Smart, Marshall C.

    2013-01-01

    Future sustainable energy generation technologies such as photovoltaic and wind farms require advanced energy storage systems on a massive scale to make the alternate (green) energy options practical. The daunting requirements of such large-scale energy systems such as long operating and cycle life, safety, and low cost are not adequately met by state-of-the-art energy storage technologies such as vanadium flow cells, lead-acid, and zinc-bromine batteries. Much attention is being paid to redox batteries specifically to the vanadium redox battery (VRB) due to their simplicity, low cost, and good life characteristics compared to other related battery technologies. NASA is currently seeking high-specific- energy and long-cycle-life rechargeable batteries in the 10-to-100-kW range to support future human exploration missions, such as planetary habitats, human rovers, etc. The flow batteries described above are excellent candidates for these applications, as well as other applications that propose to use regenerative fuel cells. A new flow cell technology is proposed based on coupling two novel electrodes in the form of solvated electron systems (SES) between an alkali (or alkaline earth) metal and poly aromatic hydrocarbons (PAH), separated by an ionically conducting separator. The cell reaction involves the formation of such SES with a PAH of high voltage in the cathode, while the alkali (or alkaline earth metal) is reduced from such an MPAH complex in the anode half-cell. During recharge, the reactions are reversed in both electrodes. In other words, the alkali (alkaline earth) metal ion simply shuttles from one M-PAH complex (SES) to another, which are separated by a metal-ion conducting solid or polymer electrolyte separator. As an example, the concept was demonstrated with Li-naphthalene//Li DDQ (DDQ is 2,3-Dichloro-5,6-dicyano- 1,4-benzoquinone) separated by lithium super ion conductor, either ceramic or polymer (solid polymer or gel polymer) electrolytes. The

  5. Influence of casein phosphopeptide-amorphous calcium phosphate application, smear layer removal, and storage time on resin-dentin bonding.

    PubMed

    Lin, Jun; Zheng, Wei-ying; Liu, Peng-ruo-feng; Zhang, Ning; Lin, Hui-ping; Fan, Yi-jing; Gu, Xin-hua; Vollrath, Oliver; Mehl, Christian

    2014-07-01

    The aim of this study is to evaluate the influence of Tooth Mousse (TM) application, smear layer removal, and storage time on resin-dentin microtensile bond strength (µTBS). Dentin specimens were divided into two groups: (1) smear layer covered; (2) smear layer removed using 15% EDTA for 90 s. In each group, half the specimens were treated once with TM for 60 min. After bonding procedures using a two-step self-etching adhesive (Clearfil SE Bond (CSE); Kuraray Medical, Tokyo, Japan), an all-in-one adhesive (G-Bond (GB); GC Corp, Tokyo, Japan), and a total-etch adhesive (Adper Single Bond 2 (SB); 3M ESPE, St. Paul, MN, USA), the specimens were stored for 3 d or 6 months in deionized water at 37 °C, and µTBS was tested and analyzed. With the exception of SB (no TM application) and GB, the μTBS was significantly increased for CSE and SB using EDTA pre-conditioning and 3 d of storage (P≤0.001). Bond strength of GB decreased significantly when using EDTA (3 d storage, P<0.05). TM application only increased the μTBS of GB (no EDTA) and SB (with EDTA) after 3 d (P≤0.02). Comparing the adhesives after 3 d of storage, CSE exhibited the greatest μTBS values followed by GB and SB (P≤0.02). The factors of adhesive, EDTA, and TM did not show any significant impact on μTBS when specimens were stored for 6 months (P>0.05). The additional application of TM and EDTA for cavity preparation seems only to have a short-term effect, and no influence on µTBS of dentin bonds after a period of 6 months. PMID:25001224

  6. Influence of casein phosphopeptide-amorphous calcium phosphate application, smear layer removal, and storage time on resin-dentin bonding*

    PubMed Central

    Lin, Jun; Zheng, Wei-ying; Liu, Peng-ruo-feng; Zhang, Ning; Lin, Hui-ping; Fan, Yi-jing; Gu, Xin-hua; Vollrath, Oliver; Mehl, Christian

    2014-01-01

    The aim of this study is to evaluate the influence of Tooth Mousse (TM) application, smear layer removal, and storage time on resin-dentin microtensile bond strength (μTBS). Dentin specimens were divided into two groups: (1) smear layer covered; (2) smear layer removed using 15% EDTA for 90 s. In each group, half the specimens were treated once with TM for 60 min. After bonding procedures using a two-step self-etching adhesive (Clearfil SE Bond (CSE); Kuraray Medical, Tokyo, Japan), an all-in-one adhesive (G-Bond (GB); GC Corp, Tokyo, Japan), and a total-etch adhesive (Adper Single Bond 2 (SB); 3M ESPE, St. Paul, MN, USA), the specimens were stored for 3 d or 6 months in deionized water at 37 °C, and μTBS was tested and analyzed. With the exception of SB (no TM application) and GB, the μTBS was significantly increased for CSE and SB using EDTA pre-conditioning and 3 d of storage (P≤0.001). Bond strength of GB decreased significantly when using EDTA (3 d storage, P<0.05). TM application only increased the μTBS of GB (no EDTA) and SB (with EDTA) after 3 d (P≤0.02). Comparing the adhesives after 3 d of storage, CSE exhibited the greatest μTBS values followed by GB and SB (P≤0.02). The factors of adhesive, EDTA, and TM did not show any significant impact on μTBS when specimens were stored for 6 months (P>0.05). The additional application of TM and EDTA for cavity preparation seems only to have a short-term effect, and no influence on μTBS of dentin bonds after a period of 6 months. PMID:25001224

  7. Slurry-Based Chemical Hydrogen Storage Systems for Automotive Fuel Cell Applications

    SciTech Connect

    Brooks, Kriston P.; Semelsberger, Troy; Simmons, Kevin L.; Van Hassel, Bart A.

    2014-05-30

    In this paper, the system designs for hydrogen storage using chemical hydrogen materials in an 80 kWe fuel cell, light-duty vehicle are described. Ammonia borane and alane are used for these designs to represent the general classes of exothermic and endothermic materials. The designs are then compared to the USDRIVE/DOE developed set of system level targets for on-board storage. While most of the DOE targets are predicted to be achieved based on the modeling, the system gravimetric and volumetric densities were more challenging and became the focus of this work. The resulting system evaluation determined that the slurry is majority of the system mass. Only modest reductions in the system mass can be expected with improvements in the balance of plant components. Most of the gravimetric improvements will require developing materials with higher inherent storage capacity or by increasing the solids loading of the chemical hydrogen storage material in the slurry.

  8. Flexible Graphene-based Energy Storage Devices for Space Application Project

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2014-01-01

    Develop prototype graphene-based reversible energy storage devices that are flexible, thin, lightweight, durable, and that can be easily attached to spacesuits, rovers, landers, and equipment used in space.

  9. Application of thermal energy storage to process heat recovery in the aluminum industry

    NASA Technical Reports Server (NTRS)

    Mccabe, J.

    1980-01-01

    The economic viability and the institutional compatibility of a district heating system in the city of Bellingham, Washington are assessed and the technical and economic advantages of using thermal energy storage methods are determined.

  10. Applicability of thermal-storage systems to air force facilities. Master's thesis

    SciTech Connect

    McCormick, D.B.

    1990-09-01

    Thermal storage is a technology that shifts the electrical demand for air conditioning from on-peak to off-peak periods. This is accomplished by chilling a storage medium during off-peak periods, storing this medium in an insulated container, and using it during on-peak periods to provide cooling. The result of this action is a lowered electric bill. This study approaches this issue from both a qualitative and a quantitive stand point. The qualitative portion addresses the general validity and effectiveness of thermal storage. The quantitative portion determines the specific market potential of packaged ice thermal storage systems for the 51 CONUS bases studied based on three initial cost scenarios.

  11. Slurry-based chemical hydrogen storage systems for automotive fuel cell applications

    NASA Astrophysics Data System (ADS)

    Brooks, Kriston P.; Semelsberger, Troy A.; Simmons, Kevin L.; van Hassel, Bart

    2014-12-01

    In this paper, the system designs for hydrogen storage using chemical hydrogen materials in an 80-kWe fuel cell, light-duty vehicle are described. Ammonia borane and alane are used for these designs to represent the general classes of exothermic and endothermic materials. The designs are then compared to the USDRIVE/DOE-developed set of system-level targets for onboard storage. While most DOE targets are predicted to be achieved based on the modeling, the system gravimetric and volumetric densities were more challenging and became the focus of this work. The resulting system evaluation determined that the slurry accounts for the majority of the system mass. Only modest reductions in the system mass can be expected with improvements in the balance-of-plant components. Most of the gravimetric improvements will require developing materials with higher inherent storage capacity or by increasing the solids loading of the chemical hydrogen storage material in the slurry.

  12. Advanced high-speed flywheel energy storage systems for pulsed power application

    NASA Astrophysics Data System (ADS)

    Talebi Rafsanjan, Salman

    Power systems on modern commercial transportation systems are moving to more electric based equipment, thus improving the reliability of the overall system. Electrical equipment on such systems will include some loads that require very high power for short periods of time, on the order of a few seconds, especially during acceleration and deceleration. The current approach to solving this problem is sizing the electrical grid for peak power, rather than the average. A method to efficiently store and discharge the pulsed power is necessary to eliminate the cost and weight of oversized generation equipment to support the pulsed power needs of these applications. Highspeed Flywheel Energy Storage Systems (FESS) are effectively capable of filling the niche of short duration, high cycle life applications where batteries and ultra capacitors are not usable. In order to have an efficient high-speed FESS, performing three important steps towards the design of the overall system are extremely vital. These steps are modeling, analysis and control of the FESS that are thoroughly investigated in this dissertation. This dissertation establishes a comprehensive analysis of a high-speed FESS in steady state and transient operations. To do so, an accurate model for the complete FESS is derived. State space averaging approach is used to develop DC and small-signal AC models of the system. These models effectively simplify analysis of the FESS and give a strong physical intuition to the complete system. In addition, they result in saving time and money by avoiding time consuming simulations performed by expensive packages, such as Simulink, PSIM, etc. In the next step, two important factors affecting operation of the Permanent Magnet Synchronous Machine (PMSM) implemented in the high-speed FESS are investigated in detail and outline a proper control strategy to achieve the required performance by the system. Next, a novel design algorithm developed by S.P. Bhattacharyya is used to

  13. A distributed parallel storage architecture and its potential application within EOSDIS

    SciTech Connect

    Johnston, W.E.; Tierney, B.; Feuquay, J.; Butzer, T.

    1995-01-01

    We describe the architecture, implementation, use, and potential use of a scale, high-performance, distributed-parallel data storage system developed in the ARPA funded MAGIC gigabit testbed. A collection of wide area distributed disk servers operate in parallel to provide logical block level access to large data sets. Operated primarily as a network-based cache, the architecture supports cooperation among independently owned resources to provide fast, large-scale, on-demand storage to support data handling, simulation, and computation.

  14. A distributed parallel storage architecture and its potential application within EOSDIS

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Tierney, Brian; Feuquay, Jay; Butzer, Tony

    1994-01-01

    We describe the architecture, implementation, use of a scalable, high performance, distributed-parallel data storage system developed in the ARPA funded MAGIC gigabit testbed. A collection of wide area distributed disk servers operate in parallel to provide logical block level access to large data sets. Operated primarily as a network-based cache, the architecture supports cooperation among independently owned resources to provide fast, large-scale, on-demand storage to support data handling, simulation, and computation.

  15. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Technical Reports Server (NTRS)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  16. NASA preprototype redox storage system for a photovoltaic stand-alone application

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.

    1981-01-01

    A 1 kW preprototype redox storage system underwent characterization tests and was operated as the storage device for a 5 kW (peak) photovoltaic array. The system is described and performance data are presented. Loss mechanisms are discussed and simple design changes leading to significant increases in efficiency are suggested. The effects on system performance of nonequilibrium between the predominant species of complexed chromic ion in the negative electrode reactant solution are indicated.

  17. Porous media experience applicable to field evaluation for compressed air energy storage

    SciTech Connect

    Allen, R.D.; Gutknecht, P.J.

    1980-06-01

    A survey is presented of porous media field experience that may aid in the development of a compressed air energy storage field demonstration. Work done at PNL and experience of other groups and related industries is reviewed. An overall view of porous media experience in the underground storage of fluids is presented. CAES experience consists of site evaluation and selection processes used by groups in California, Kansas, and Indiana. Reservoir design and field evaluation of example sites are reported. The studies raised questions about compatibility with depleted oil and gas reservoirs, storage space rights, and compressed air regulations. Related experience embraces technologies of natural gas, thermal energy, and geothermal and hydrogen storage. Natural gas storage technology lends the most toward compressed air storage development, keeping in mind the respective differences between stored fluids, physical conditions, and cycling frequencies. Both fluids are injected under pressure into an aquifer to form a storage bubble confined between a suitable caprock structure and partially displaced ground water. State-of-the-art information is summarized as the necessary foundation material for field planning. Preliminary design criteria are given as recommendations for basic reservoir characteristics. These include geometric dimensions and storage matrix properties such as permeability. Suggested ranges are given for injection air temperature and reservoir pressure. The second step in developmental research is numerical modeling. Results have aided preliminary design by analyzing injection effects upon reservoir pressure, temperature and humidity profiles. Results are reported from laboratory experiments on candidate sandstones and caprocks. Conclusions are drawn, but further verification must be done in the field.

  18. Passive generation and storage of winter ice for summer cooling applications

    SciTech Connect

    McGarity, A.E.; Gorski, A.I.

    1984-05-01

    The results of analytical and experimental work on a cooling system which uses phase-change seasonal energy storage are presented. The system uses a heat pipe to chill passively the storage medium during the winter season. During the summer, the storage medium is used as an energy sink for the cooling system of a building. The storage medium is a material that freezes at a temperature in the range 0 to 15/sup 0/C. Experiments have been performed with a prototype system using water as the storage medium at Argonne National Laboratory and large quantities of ice have been grown in an insulated tank with no use of auxiliary energy. Alternative storage materials are clathrate hydrates which freeze at temperatures above 0/sup 0/C. The use of such materials can extend the freezing season and enable the operation of the system in climates with somewhat mild winters. Here, estimates of system performance and system costs are combined to examine the economic feasibility of water-ice and clathrate hydrate systems in different climates. It is found that water-ice systems may be economically feasible in certain climates. It is also found that using a clathrate hydrate can reduce the size and cost of the heat pipe, but this cost reduction is offset by the high cost of most of the currently known clathrate forming chemicals.

  19. Phenolic resin-based porous carbons for adsorption and energy storage applications

    NASA Astrophysics Data System (ADS)

    Wickramaratne, Nilantha P.

    The main objective of this dissertation research is to develop phenolic resin based carbon materials for range of applications by soft-templating and Stober-like synthesis strategies. Applications Studied in this dissertation are adsorption of CO2, bio-molecular and heavy metal ions, and energy storage devices. Based on that, our goal is to design carbon materials with desired pore structure, high surface area, graphitic domains, incorporated metal nanoparticles, and specific organic groups and heteroatoms. In this dissertation the organic-organic self-assembly of phenolic resins and triblock copolymers under acidic conditions will be used to obtain mesoporous carbons/carbon composites and Stober-like synthesis involving phenolic resins under basic condition will be used to prepare polymer/carbon particles and their composites. The structure of this dissertation consists of an introductory chapter (Chapter 1) discussing the general synthesis of carbon materials, particularly the soft-templating strategy and Stober-like carbon synthesis. Also, Chapter 1 includes a brief outline of applications namely adsorption of CO2, biomolecule and heavy metal ions, and supercapacitors. Chapter 2 discusses the techniques used for characterization of the carbon materials studied. This chapter starts with nitrogen adsorption analysis, which is used to measure the specific surface area, pore volume, distribution of pore sizes, and pore width. In addition to nitrogen adsorption, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution thermogravimetric analysis (HR-TGA), cyclic voltammetry (CV) and CHNS elemental analysis (EA) are mentioned too. Chapter 3 is focused on carbon materials for CO2 adsorption. There are different types of porous solid materials such as silicate, MOFs, carbons, and zeolites studied for CO2 adsorption. However, the carbon based materials are considered to be the best candidates for CO 2 adsorption to the industrial point of

  20. Thermal Assessment of a Latent-Heat Energy Storage Module During Melting and Freezing for Solar Energy Applications

    NASA Astrophysics Data System (ADS)

    Ramos Archibold, Antonio

    Capital investment reduction, exergetic efficiency improvement and material compatibility issues have been identified as the primary techno-economic challenges associated, with the near-term development and deployment of thermal energy storage (TES) in commercial-scale concentrating solar power plants. Three TES techniques have gained attention in the solar energy research community as possible candidates to reduce the cost of solar-generated electricity, namely (1) sensible heat storage, (2) latent heat (tank filled with phase change materials (PCMs) or encapsulated PCMs packed in a vessel) and (3) thermochemical storage. Among these the PCM macro-encapsulation approach seems to be one of the most-promising methods because of its potential to develop more effective energy exchange, reduce the cost associated with the tank and increase the exergetic efficiency. However, the technological barriers to this approach arise from the encapsulation techniques used to create a durable capsule, as well as an assessment of the fundamental thermal energy transport mechanisms during the phase change. A comprehensive study of the energy exchange interactions and induced fluid flow during melting and solidification of a confined storage medium is reported in this investigation from a theoretical perspective. Emphasis has been placed on the thermal characterization of a single constituent storage module rather than an entire storage system, in order to, precisely capture the energy exchange contributions of all the fundamental heat transfer mechanisms during the phase change processes. Two-dimensional, axisymmetric, transient equations for mass, momentum and energy conservation have been solved numerically by the finite volume scheme. Initially, the interaction between conduction and natural convection energy transport modes, in the absence of thermal radiation, is investigated for solar power applications at temperatures (300--400°C). Later, participating thermal radiation

  1. Energy Storage and Generation for Extreme Temperature and Pressure and Directional Measurement While Drilling Applications

    SciTech Connect

    Signorelli, Riccardo; Cooley, John

    2015-10-14

    FastCAP Systems Corporation has successfully completed all milestones defined by the award DE-EE0005503. Under this program, FastCAP developed three critical subassemblies to TRL3 demonstrating proof of concept of a geothermal MWD power source. This power source includes an energy harvester, electronics and a novel high temperature ultracapacitor (“ultracap”) rechargeable energy storage device suitable for geothermal exploration applications. FastCAP’s ruggedized ultracapacitor (ultracap) technology has been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. Characteristics of this technology are that it is rechargeable and relatively high power. This technology was the basis for the advancements in rechargeable energy storage under this project. The ultracap performs reliably at 250°C and beyond and operates over a wide operating temperature range: -5°C to 250°C. The ultracap has significantly higher power density than lithium thionyl chloride batteries, a non-rechargeable incumbent used in oil and gas drilling today. Several hermetically sealed, prototype devices were tested in our laboratories at constant temperatures of 250°C showing no significant degradation over 2000 hours of operation. Other prototypes were tested at Sandia National Lab in the month of April, 2015 for a third party performance validation. These devices showed outstanding performance over 1000 hours of operation at three rated temperatures, 200°C, 225°C and 250°C, with negligible capacitance degradation and minimal equivalent series resistance (ESR) increase. Similarly, FastCAP’s ruggedized electronics have been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. This technology was the basis for the advancements in downhole electronics under this project. Principal contributions here focused on design for manufacture innovations that have reduced the prototype build cycle time by a factor

  2. Synthesis and characterization of Lanthanide Aluminotungstates and Rhenium Polyoxometalates: Potential Application in Molecular Information Storage Devices

    NASA Astrophysics Data System (ADS)

    Bian, Fang

    2011-12-01

    Polyoxometalates (abbreviated as POMs) are metal-oxide clusters with frameworks built from group 5 or 6 transition metals linked by shared oxide ions. The Keggin structure is one of the most famous structural forms of POMs. Keggin anions have a general formula of [XM12O40 ]n-, where X is a p-block atom and M is a transition metal atom such as W or Mo. Upon removal of one MO4+ unit from the Keggin anion, the monovacant structure [XM11O39] n- is formed. Those POMs that have lost one or more metal center are called lacunary POMs, which are very nice building blocks for the fabrication of coordination polymers. My research focuses on two facets of POM chemistry: 1) Lanthanide chemistry of aluminum tungstate monovacant Keggin and 2) Rhenium chemistry of aluminum tungstate Keggin and Wells-Dawson POM alpha1 -P2W17O61. In lanthanide POM research area, we obtained the following results: 1) The starting material aluminum tungstate monovacant Keggin α-K 9AlW12O39 was synthesized. Its single crystal was firstly identified by multinuclear NMR and X-ray crystallography. Its redox properties on the nano-scale solid state were determined by Conducting Electrostatic Force Mode (EFM) probes. It is well known that for POMs, a number of varies redox states are normally stable and reversible. Thus we estimated that POMs can potentially be used in molecular information storage applications, which we refer to as "redox disk drives". 2) Eight lanthanide aluminum tungstate Keggin complexes were synthesized. In their molecular structures (identified by multinuclear NMR and X-ray crystallography), each α-AlW11O39 is connected by lanthanide (III) cations to form 1D and 2D networks. All AlW11O39 Keggin POMs are regularly aligning on a flat plane. Microscopic data also verified that there is layer-by-layer morphology in this series of compounds. Overall, we postulate that aluminum tungstate Keggin POMs are a very promising materials for making future information storage device because they

  3. Artificial Permafrost and the Application to the Low Temperature Storage for Foodstuffs

    NASA Astrophysics Data System (ADS)

    Ryokai, Kimitoshi; Fukuda, Masami

    In the cold regions like Hokkaido and Tohoku Districts, they have been advocating snow-overcoming, advantages of snow and effective utilization of cold climate. In fact, they have been positively trying to make use of snow and coldness as water resources, energy sources, structural materials and so on. One of energy utilization is for low temperature storage of foods. Since the potatoes have properties of adapting themselves to cold temperature when they are stored under cold environment, they have the tendency of growing in their sugar contents. As the results, all those foods which are stored under these cold environments will be the products of higher additional value. Here we will introduce the present situation of low temperature storage of foods by artificial permafrost, not only as the construction materials for cold storage house itself but also utilizing its own cold temperature.

  4. High Temperature Phase Change Materials for Thermal Energy Storage Applications: Preprint

    SciTech Connect

    Gomez, J.; Glatzmaier, G. C.; Starace, A.; Turchi, C.; Ortega, J.

    2011-08-01

    To store thermal energy, sensible and latent heat storage materials are widely used. Latent heat thermal energy storage (TES) systems using phase change materials (PCM) are useful because of their ability to charge and discharge a large amount of heat from a small mass at constant temperature during a phase transformation. Molten salt PCM candidates for cascaded PCMs were evaluated for the temperatures near 320 degrees C, 350 degrees C, and 380 degrees C. These temperatures were selected to fill the 300 degrees C to 400 degrees C operating range typical for parabolic trough systems, that is, as one might employ in three-PCM cascaded thermal storage. Based on the results, the best candidate for temperatures near 320 degrees C was the molten salt KNO3-4.5wt%KCl. For the 350 degrees C and 380 degrees C temperatures, the evaluated molten salts are not good candidates because of the corrosiveness and the high vapor pressure of the chlorides.

  5. Filtration and Leach Testing for PUREX Cladding Sludge and REDOX Cladding Sludge Actual Waste Sample Composites

    SciTech Connect

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hallen, Richard T.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

    2009-03-02

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan (Barnes and Voke 2006). The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Hanford Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP RPP WTP 467 (Fiskum et al. 2007), eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan. • Characterizing the homogenized sample groups. • Performing parametric leaching testing on each group for compounds of interest. • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on a filtration/leaching test performed using two of the eight waste composite samples. The sample groups examined in this report were the plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR). Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, thus requiring caustic leaching. WTP RPT 167 (Snow et al. 2008) describes the homogenization, characterization, and parametric leaching activities before benchtop filtration/leaching testing of these two waste groups. Characterization and initial parametric data in that report were used to plan a single filtration/leaching test using a blend of both wastes. The test focused on filtration testing of the waste and caustic leaching for aluminum, in the form

  6. Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage.

    PubMed

    Zhu, Yuyan; Yu, Jie; Brecht, Jeffrey K; Jiang, Tianjia; Zheng, Xiaolin

    2016-01-01

    Kiwifruit (Actinidia deliciosa cv. Bruno) fruits were sprayed with 5mM oxalic acid (OA) at 130, 137, and 144 days after full blossom, and then harvested at commercial maturity [soluble solid content (SSC) around 10.0%] and stored at room temperature (20 ± 1 °C). Pre-harvest application of OA led to fruit with higher ascorbic acid content at harvest, slowed the decreases in fruit firmness and ascorbic acid content and increase in SSC during storage, and also decreased the natural disease incidence, lesion diameter, and patulin accumulation in fruit inoculated with Penicillium expansum, indicating that the OA treatment increased quality and induced disease resistance in kiwifruit. It was suggested that the increase in activities of defense-related enzymes and in levels of substances related to disease resistance might collectively contribute to resistance in kiwifruit against fungi such as P. expansum in storage. PMID:26213007

  7. Evaluation of lead/carbon devices for utility applications : a study for the DOE Energy Storage Program.

    SciTech Connect

    Walmet, Paula S.

    2009-06-01

    This report describes the results of a three-phase project that evaluated lead-based energy storage technologies for utility-scale applications and developed carbon materials to improve the performance of lead-based energy storage technologies. In Phase I, lead/carbon asymmetric capacitors were compared to other technologies that used the same or similar materials. At the end of Phase I (in 2005) it was found that lead/carbon asymmetric capacitors were not yet fully developed and optimized (cost/performance) to be a viable option for utility-scale applications. It was, however, determined that adding carbon to the negative electrode of a standard lead-acid battery showed promise for performance improvements that could be beneficial for use in utility-scale applications. In Phase II various carbon types were developed and evaluated in lead-acid batteries. Overall it was found that mesoporous activated carbon at low loadings and graphite at high loadings gave the best cycle performance in shallow PSoC cycling. Phase III studied cost/performance benefits for a specific utility application (frequency regulation) and the full details of this analysis are included as an appendix to this report.

  8. High-temperature molten salt thermal energy storage systems for solar applications

    NASA Technical Reports Server (NTRS)

    Petri, R. J.; Claar, T. D.

    1980-01-01

    Alkali and alkaline earth carbonate latent-heat storage salts, metallic containment materials, and thermal conductivity enhancement materials were investigated to satisfy the high temperature (704 to 871 C) thermal energy storage requirements of advanced solar-thermal power generation concepts are described. Properties of the following six salts selected for compatibility studies are given: three pure carbonates, K2CO3, Li2CO3 and Na2CO3; two eutectic mixtures, BaCO3/Na2CO3 and K2CO3/NaCO3, and one off-eutectic mixture of Na2CO3/K2CO3.

  9. The storage of hydrogen in the form of metal hydrides: An application to thermal engines

    NASA Technical Reports Server (NTRS)

    Gales, C.; Perroud, P.

    1981-01-01

    The possibility of using LaNi56, FeTiH2, or MgH2 as metal hydride storage sytems for hydrogen fueled automobile engines is discussed. Magnesium copper and magnesium nickel hydrides studies indicate that they provide more stable storage systems than pure magnesium hydrides. Several test engines employing hydrogen fuel have been developed: a single cylinder motor originally designed for use with air gasoline mixture; a four-cylinder engine modified to run on an air hydrogen mixture; and a gas turbine.

  10. Latent energy storage with salt and metal mixtures for solar dynamic applications

    NASA Technical Reports Server (NTRS)

    Crane, R. A.; Konstantinou, K. S.

    1988-01-01

    This paper examines three design alternatives for the development of a solar dynamic heat receiver as applied to power systems operating in low earth orbit. These include a base line design used for comparison in ongoing NASA studies, a system incorporating a salt energy storage system with the salt dispersed within a metal mesh and a hybrid system incorporating both a molten salt and molten metal for energy storage. Based on a typical low earth orbit condition, designs are developed and compared to determine the effect of resultant conductivity, heat capacity and heat of fusion on system size, weight, temperature gradients, cycle turbine inlet temperature and material utilization.

  11. Large-Scale Demonstration of Liquid Hydrogen Storage with Zero Boiloff for In-Space Applications

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Bryant, C. B.; Flachbart, R. H.; Holt, K. A.; Johnson, E.; Hedayat, A.; Hipp, B.; Plachta, D. W.

    2010-01-01

    Cryocooler and passive insulation technology advances have substantially improved prospects for zero-boiloff cryogenic storage. Therefore, a cooperative effort by NASA s Ames Research Center, Glenn Research Center, and Marshall Space Flight Center (MSFC) was implemented to develop zero-boiloff concepts for in-space cryogenic storage. Described herein is one program element - a large-scale, zero-boiloff demonstration using the MSFC multipurpose hydrogen test bed (MHTB). A commercial cryocooler was interfaced with an existing MHTB spray bar mixer and insulation system in a manner that enabled a balance between incoming and extracted thermal energy.

  12. QoS support for end users of I/O-intensive applications using shared storage systems

    SciTech Connect

    Davis, Marion Kei; Zhang, Xuechen; Jiang, Song

    2011-01-19

    I/O-intensive applications are becoming increasingly common on today's high-performance computing systems. While performance of compute-bound applications can be effectively guaranteed with techniques such as space sharing or QoS-aware process scheduling, it remains a challenge to meet QoS requirements for end users of I/O-intensive applications using shared storage systems because it is difficult to differentiate I/O services for different applications with individual quality requirements. Furthermore, it is difficult for end users to accurately specify performance goals to the storage system using I/O-related metrics such as request latency or throughput. As access patterns, request rates, and the system workload change in time, a fixed I/O performance goal, such as bounds on throughput or latency, can be expensive to achieve and may not lead to a meaningful performance guarantees such as bounded program execution time. We propose a scheme supporting end-users QoS goals, specified in terms of program execution time, in shared storage environments. We automatically translate the users performance goals into instantaneous I/O throughput bounds using a machine learning technique, and use dynamically determined service time windows to efficiently meet the throughput bounds. We have implemented this scheme in the PVFS2 parallel file system and have conducted an extensive evaluation. Our results show that this scheme can satisfy realistic end-user QoS requirements by making highly efficient use of the I/O resources. The scheme seeks to balance programs attainment of QoS requirements, and saves as much of the remaining I/O capacity as possible for best-effort programs.

  13. Application of low concentrations of ozone during the cold storage of table grapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The control of postharvest decay of table grapes, caused by Botrytis cinerea and other pathogens, by ozone was evaluated in chambers and commercial storage facilities. Ozone at 0.100 µL/L or higher inhibited the spread of gray mold among stored grapes. Ozone diffusion into many types of commercial p...

  14. The fate of sulfate in acidified pig slurry during storage and following application to cropped soil.

    PubMed

    Eriksen, Jørgen; Sørensen, Peter; Elsgaard, Lars

    2008-01-01

    Acidification of slurry with sulfuric acid is a recent agricultural practice that may serve a double purpose: reducing ammonia emission and ensuring crop sulfur sufficiency. We investigated S transformations in untreated and acidified pig slurry stored for up to 11 mo at 2, 10, or 20 degrees C. Furthermore, the fertilizer efficiency of sulfuric acid in acidified slurry was investigated in a pot experiment with spring barley. The sulfate content from acidification with sulfuric acid was relatively stable and even after 11 mo of storage the majority was in the plant-available sulfate form. Microbial sulfate reduction during storage of acidified pig slurry was limited, presumably due to initial pH effects and a limitation in the availability of easily degradable organic matter. Sulfide accumulation was observed during storage but the sulfide levels in acidified slurry did not exceed those of the untreated slurry for several months after addition. The S fertilizer value of the acidified slurry was considerable as a result of the stable sulfate pool during storage. The high content of inorganic S in the acidified slurry may potentially lead to development of odorous volatile sulfur-containing compounds and investigations are needed into the relationship between odor development and the C and S composition of the slurry. PMID:18178902

  15. Multi-pulse extraction from Los Alamos Proton Storage Ring for radiographic applications

    SciTech Connect

    Thiessen, H.A.; Neri, F.; Rust, K.; Redd, D.B.

    1997-08-01

    In Proton Radiography, one of the goals is a motion picture of a rapidly moving object. The Los Alamos Proton Storage Ring (PSR) in its normal operating mode, delivers a single pulse approximately 120 ns wide (fwhm). In development runs at the PSR, the authors successfully demonstrated operation of a technique to deliver two pulses, each 40 nsec wide, with adjustable spacing.

  16. The application of liquid air energy storage for large scale long duration solutions to grid balancing

    NASA Astrophysics Data System (ADS)

    Brett, Gareth; Barnett, Matthew

    2014-12-01

    Liquid Air Energy Storage (LAES) provides large scale, long duration energy storage at the point of demand in the 5 MW/20 MWh to 100 MW/1,000 MWh range. LAES combines mature components from the industrial gas and electricity industries assembled in a novel process and is one of the few storage technologies that can be delivered at large scale, with no geographical constraints. The system uses no exotic materials or scarce resources and all major components have a proven lifetime of 25+ years. The system can also integrate low grade waste heat to increase power output. Founded in 2005, Highview Power Storage, is a UK based developer of LAES. The company has taken the concept from academic analysis, through laboratory testing, and in 2011 commissioned the world's first fully integrated system at pilot plant scale (300 kW/2.5 MWh) hosted at SSE's (Scottish & Southern Energy) 80 MW Biomass Plant in Greater London which was partly funded by a Department of Energy and Climate Change (DECC) grant. Highview is now working with commercial customers to deploy multi MW commercial reference plants in the UK and abroad.

  17. Evaluation of alternative phase change materials for energy storage in solar dynamic applications

    NASA Technical Reports Server (NTRS)

    Crane, R. A.; Dustin, M. O.

    1988-01-01

    The performance of fluoride salt and metallic thermal energy storage materials are compared in terms of basic performance as applied to solar dynamic power generation. Specific performance considerations include uniformity of cycle inlet temperature, peak cavity temperature, TES utilization, and system weights. Also investigated were means of enhancing the thermal conductivity of the salts and its effect on the system performance.

  18. SYSTEMS MODELING OF AMMONIA BORANE BEAD REACTOR FOR OFF-BOARD REGENERABLE HYDROGEN STORAGE IN PEM FUEL CELL APPLICATIONS

    SciTech Connect

    Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; King, Dale A.; Herling, Darrell R.

    2010-06-01

    Out of the materials available for chemical hydrogen storage in PEM fuel cell applications, ammonia borane (AB, NH3BH3) has a high hydrogen storage capacity (upto 19.6% by weight for the release of three hydrogen molecules). Therefore, AB was chosen in our chemical hydride simulation studies. A model for the AB bead reactor system was developed to study the system performance and determine the energy, mass and volume requirements for off-board regenerable hydrogen storage. The system includes hot and cold augers, ballast tank and reactor, product tank, H2 burner and a radiator. One dimensional models based on conservation of mass, species and energy were used to predict important state variables such as reactant and product concentrations, temperatures of various components, flow rates, along with pressure in the reactor system. Control signals to various components are governed by a control system which is modeled as an independent subsystem. Various subsystem components in the models were coded as C language S-functions and implemented in Matlab/Simulink environment. Preliminary system simulation results for a start-up case and for a transient drive cycle indicate accurate trends in the reactor system dynamics.

  19. Atomistic simulation of sub-nanosecond non-equilibrium field cooling processes for magnetic data storage applications

    SciTech Connect

    Evans, R. F. L.; Fan, W. J.

    2014-11-10

    Thermally assisted magnetic writing is an important technology utilizing temperature dependent magnetic properties to enable orientation of a magnetic data storage medium. Using an atomistic spin model, we study non-equilibrium field cooled magnetization processes on sub-nanosecond timescales required for device applications. We encapsulate the essential physics of the process in a thermoremanent magnetization curve and show that for fast timescales, heating to the Curie temperature is necessary where the magnetic relaxation time is shortest. Furthermore, we demonstrate the requirement for large magnetic fields to achieve a high thermoremanent magnetization necessary for fast recording or data rates.

  20. Effects of sterilization and storage on the properties of ALP-grafted biomaterials for prosthetic and bone tissue engineering applications.

    PubMed

    Ferraris, S; Pan, G; Cassinelli, C; Mazzucco, L; Vernè, E; Spriano, S

    2012-10-01

    Grafting of the biomaterial surfaces with biomolecules is nowadays a challenging research field for prosthetic and bone tissue engineering applications. On the other hand, very few research works investigate the effect of the sterilization processes on the properties of functionalized biomaterials. In this study, the effects of different sterilization techniques (e.g. gamma and electron beam irradiation, ethylene oxide) on the enzymatic activity of bioactive glasses and Ti6Al4V grafted with alkaline phosphatase (ALP) have been analyzed. Sterility maintenance and in vitro bioactivity of the sterilized surfaces have also been investigated. Finally the effect of packaging and storage conditions has been considered. PMID:22971978

  1. Skew harmonics suppression in electromagnets with application to the Advanced Light Source (ALS) storage ring corrector magnet design

    SciTech Connect

    Schlueter, R.D.; Halbach, K.

    1994-07-01

    An analytical expression for prediction of skew harmonics in an iron core combined function regular/skew dipole magnet due to arbitrarily positioned electromagnet coils is developed. A structured approach is presented for the suppression of an arbitrary number of harmonic components to arbitrarily low values. Application of the analytical harmonic strength calculations coupled to the structured harmonic suppression approach is presented in the context of the design of the ALS storage ring corrector magnets, where quadrupole, sextupole, and octupole skew harmonics were reduced to less than 1.0% of the skew dipole at the beam aperture radius r = 3.0 cm.

  2. Skew harmonics suppression in electromagnets with application to the Advanced Light Source (ALS) storage ring corrector magnet design

    SciTech Connect

    Schlueter, R.; Halbach, K.

    1993-09-01

    An analytical expression for prediction of skew harmonics in an iron core combined function regular/skew dipole magnet due to arbitrarily positioned electromagnet coils is developed. A structured approach is presented for the suppression of an arbitrary number of harmonic components to arbitrarily low values. Application of the analytical harmonic strength calculations coupled to the structured harmonic suppression approach is presented in the context of the design of the ALS storage ring corrector magnets, where quadrupole, sextupole, and octupole skew harmonics were reduced to less than 1.0% of the skew dipole at the beam aperture radius r = 3.0 cm.

  3. 9975 SHIPPING PACKAGE PERFORMANCE OF ALTERNATE MATERIALS FOR LONG-TERM STORAGE APPLICATION

    SciTech Connect

    Skidmore, E.; Hoffman, E.; Daugherty, W.

    2010-02-24

    The Model 9975 shipping package specifies the materials of construction for its various components. With the loss of availability of material for two components (cane fiberboard overpack and Viton{reg_sign} GLT O-rings), alternate materials of construction were identified and approved for use for transport (softwood fiberboard and Viton{reg_sign} GLT-S O-rings). As these shipping packages are part of a long-term storage configuration at the Savannah River Site, additional testing is in progress to verify satisfactory long-term performance of the alternate materials under storage conditions. The test results to date can be compared to comparable results on the original materials of construction to draw preliminary conclusions on the performance of the replacement materials.

  4. Application of probabilistic risk assessment techniques during design phase for dry storage casks

    SciTech Connect

    Hallbert, B.P.; Satterwhite, D.G.; Meale, B.M.

    1990-01-01

    Canisters containing the Three Mile Island (TMI) spent fuel and debris are being stored in a storage pool at the Idaho National Engineering Laboratory (INEL). In order to store these canisters in dry storage casks, a system is being designed to remove entrained water from the canisters. The conceptual design for this drying process was evaluated in respect to the occurrence of a nuclear criticality. The system design was evaluated to address the mechanical failure of the components. Also, human interfaces with the equipment were assessed. The integration of these two facets resulted in a model that was quantified to calculate the occurrence frequency of a nuclear criticality. Changes to design, administrative guidelines, and procedures were recommended so that an acceptable level of risk based on nuclear criticality occurrence frequency could be achieved. 1 ref., 2 figs.

  5. Estimated heats of fusion of fluoride salt mixtures suitable for thermal energy storage applications

    NASA Technical Reports Server (NTRS)

    Misra, A. K.; Whittenberger, J. D.

    1986-01-01

    The heats of fusion of several fluoride salt mixtures with melting points greater than 973 K were estimated from a coupled analysis of the available thermodynamic data and phase diagrams. Simple binary eutectic systems with and without terminal solid solutions, binary eutectics with congruent melting intermediate phases, and ternary eutectic systems were considered. Several combinations of salts were identified, most notable the eutectics LiF-22CaF2 and NaF-60MgF2 which melt at 1039 and 1273 K respectively which posses relatively high heats of fusion/gm (greater than 0.7 kJ/g). Such systems would seemingly be ideal candidates for the light weight, high energy storage media required by the thermal energy storage unit in advanced solar dynamic power systems envisioned for the future space missions.

  6. Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications.

    PubMed

    Shao, Mingfei; Zhang, Ruikang; Li, Zhenhua; Wei, Min; Evans, David G; Duan, Xue

    2015-11-14

    Two-dimensional (2D) materials have attracted increasing interest in electrochemical energy storage and conversion. As typical 2D materials, layered double hydroxides (LDHs) display large potential in this area due to the facile tunability of their composition, structure and morphology. Various preparation strategies, including in situ growth, electrodeposition and layer-by-layer (LBL) assembly, have been developed to directly modify electrodes by using LDH materials. Moreover, several composite materials based on LDHs and conductive matrices have also been rationally designed and employed in supercapacitors, batteries and electrocatalysis with largely enhanced performances. This feature article summarizes the latest developments in the design, preparation and evaluation of LDH materials toward electrochemical energy storage and conversion. PMID:26459951

  7. Feasibility of flywheel energy storage systems for applications in future space missions

    NASA Technical Reports Server (NTRS)

    Santo, G. Espiritu; Gill, S. P.; Kotas, J. F.; Paschall, R.

    1995-01-01

    The objective of this study was to examine the overall feasibility of deploying electromechanical flywheel systems in space used for excess energy storage. Results of previous Rocketdyne studies have shown that the flywheel concept has a number of advantages over the NiH2 battery, including higher specific energy, longer life and high roundtrip efficiency. Based on this prior work, this current study was broken into four subtasks. The first subtask investigated the feasibility of replacing the NiH2 battery orbital replacement unit (ORU) on the international space station (ISSA) with a flywheel ORU. In addition, a conceptual design of a generic flywheel demonstrator experiment implemented on the ISSA was completed. An assessment of the life cycle cost benefits of replacing the station battery energy storage ORU's with flywheel ORU's was performed. A fourth task generated a top-level development plan for critical flywheel technologies, the flywheel demonstrator experiments and its evolution into the production unit flywheel replacement ORU.

  8. Shelf Life and Storage Life Studies of Blue Sensitive Photopolymer for Holographic Applications

    NASA Astrophysics Data System (ADS)

    Sreebha, A. B.; Rajesh, C. S.; Katha, Sudha; Kumar, P. T. Ajith

    2011-10-01

    Holographic recording materials based on photopolymerising systems have contributed significantly to the recent growth of holography. Of the available materials for holography, photopolymer is proved to be highly versatile due to its rapid dry processing, low cost, high optical quality and resolution, low diffusivity, easy preparation techniques, high diffraction efficiency, transparency in the visible spectral region etc. However, availability of commercial grade photopolymer material is very limited due to its strategic importance. On the other side, there are a set of research grade materials widely available. But, a major obstacle for the wider use of such materials is the short shelf life and storage life. The paper presents the shelf life and storage life studies of a laboratory made polymeric mixture which is sensitive to blue wave length. The material yielded stable quality and efficiency for over three months.

  9. NASA preprototype redox storage system for a photovoltaic stand-alone application

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.

    1981-01-01

    A 1-kW preprototype redox storage system that has undergone characterization tests and been operated as the storage device for a 5-kW (peak) photovoltaic array is described and performance data are presented. Loss mechanisms are discussed, and simple design changes leading to appreciable increases in efficiency are suggested. The effects on system performance of nonequilibrium between the predominant species of complexed chromic ion in the negative electrode reactant solution are summarized. It is noted that with the aid of the prototype system, control concepts have been shown to be valid and trouble free and some insight has been gained into interactions at the mutual interfaces of the redox system, the photovoltaic array, the load, and the control devices.

  10. Stabilization of Underground Solvent Storage Tanks

    SciTech Connect

    Smail, T.R.

    2003-08-15

    The Old Solvent Tanks (OST), located at the Savannah River Site (SRS) are comprised of 22 underground storage tanks that were used to store spent radioactive solvent and aqueous wastes generated from the plutonium-uranium extraction (PUREX) process. The OSTs were installed at various dates between 1955 and 1968 and used to store the spent solvents until 1974. The spent solvents stored in the OSTs were transferred out from 1976 through 1981 leaving only residual liquids and sludges that could not be pumped out.Final remediation goals include an overlying infiltration control system. If the tanks were to structurally fail, they would collapse causing potential for onsite worker exposure and release of tank contents to the environment. Therefore, as an interim action, methods for stabilizing the tanks were evaluated. This paper will discuss the systems designed to perform and monitor the grouting operation, the grouting process, and the radiological controls and wastes associated with grouting the Old Solvent Tanks.

  11. Economic analysis of large-scale hydrogen storage for renewable utility applications.

    SciTech Connect

    Schoenung, Susan M.

    2011-08-01

    The work reported here supports the efforts of the Market Transformation element of the DOE Fuel Cell Technology Program. The portfolio includes hydrogen technologies, as well as fuel cell technologies. The objective of this work is to model the use of bulk hydrogen storage, integrated with intermittent renewable energy production of hydrogen via electrolysis, used to generate grid-quality electricity. In addition the work determines cost-effective scale and design characteristics and explores potential attractive business models.

  12. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications

    SciTech Connect

    Ahluwalia, Rajesh; Hua, T. Q.; Peng, J. -K.; Lasher, S.; McKenney, Kurtis; Sinha, J.

    2009-12-01

    Technical report describing DOE's second assessment report on a third generation (Gen3) system capable of storing hydrogen at cryogenic temperatures within a pressure vessel on-board a vehicle. The report includes an overview of technical progress to date, including the potential to meet DOE onboard storage targets, as well as independent reviews of system cost and energy analyses of the technology paired with delivery costs.

  13. Performance Evaluation of Virtualization Techniques for Control and Access of Storage Systems in Data Center Applications

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mohammad Reza

    2013-09-01

    Virtualization is a new technology that creates virtual environments based on the existing physical resources. This article evaluates effect of virtualization techniques on control servers and access method in storage systems [1, 2]. In control server virtualization, we have presented a tile based evaluation based on heterogeneous workloads to compare several key parameters and demonstrate effectiveness of virtualization techniques. Moreover, we have evaluated the virtualized model using VMotion techniques and maximum consolidation. In access method, we have prepared three different scenarios using direct, semi-virtual, and virtual attachment models. We have evaluated the proposed models with several workloads including OLTP database, data streaming, file server, web server, etc. Results of evaluation for different criteria confirm that server virtualization technique has high throughput and CPU usage as well as good performance with noticeable agility. Also virtual technique is a successful alternative for accessing to the storage systems especially in large capacity systems. This technique can therefore be an effective solution for expansion of storage area and reduction of access time. Results of different evaluation and measurements demonstrate that the virtualization in control server and full virtual access provide better performance and more agility as well as more utilization in the systems and improve business continuity plan.

  14. Hydrogen Storage in Diamond Powder Utilizing Plasma NaF Surface Treatment for Fuel Cell Applications

    SciTech Connect

    Leal, David A.; Leal-Quiros, E.; Velez, Angel; Prelas, Mark A.; Gosh, Tushar

    2006-12-04

    Hydrogen Fuel Cells offer the vital solution to the world's socio-political dependence on oil. Due to existing difficulty in safe and efficient hydrogen storage for fuel cells, storing the hydrogen in hydrocarbon compounds such as artificial diamond is a realistic solution. By treating the surface of the diamond powder with a Sodium Fluoride plasma exposure, the surface of the diamond is cleaned of unwanted molecules. Due to fluorine's electro negativity, the diamond powder is activated and ready for hydrogen absorption. These diamond powder pellets are then placed on a graphite platform that is heated by conduction in a high voltage circuit made of tungsten wire. Then, the injection of hydrogen gas into chamber allows the storage of the Hydrogen on the surface of the diamond powder. By neutron bombardment in the nuclear reactor, or Prompt Gamma Neutron Activation Analysis, the samples are examined for parts per million amounts of hydrogen in the sample. Sodium Fluoride surface treatment allows for higher mass percentage of stored hydrogen in a reliable, resistant structure, such as diamond for fuel cells and permanently alters the diamonds terminal bonds for re-use in the effective storage of hydrogen. The highest stored amount utilizing the NaF plasma surface treatment was 22229 parts per million of hydrogen in the diamond powder which amounts to 2.2229% mass increase.

  15. TIG welding of aluminum alloys for the APS storage ring - a UHV application

    SciTech Connect

    Goeppner, G.A.

    1996-05-29

    The Advanced Photon Source (APS) incorporates a 7-GeV positron storage ring 1104 meters in circumference. The storage ring vacuum system is designed to maintain a pressure of 1 nTorr or less with a circulating current of 300 mA to enable beam lifetimes of greater than 10 hours. The vacuum chamber is an aluminum extrusion of 6063T5 alloy. There are 235 separate aluminum vacuum chambers in the storage ring connected by stainless steel bellows assemblies. Aluminum was chosen for the vacuum chamber because it can be economically extruded and machined, has good thermal conductivity, low thermal emissivity, a low outgassing rate, low residual radioactivity, and is non-magnetic. The 6063 aluminum-silicon-magnesium alloy provides high strength combined with good machining and weldability characteristics. The extrusion process provides the interior surface finish needed for the ultrahigh vacuum (UHV) environments There are six different vacuum chambers with the same extrusion cross section. The average vacuum chamber length is 171.6 inches. The extruded vacuum chambers are welded to flange assemblies made up of machined 2219 aluminum alloy pieces and 2219 aluminum vacuum flanges from a commercial source.

  16. Thermo-mechanical modelling of cyclic gas storage applications in salt caverns

    NASA Astrophysics Data System (ADS)

    Böttcher, Norbert; Watanabe, Norihiro; Görke, Uwe-Jens; Kolditz, Olaf; Nagel, Thomas

    2016-04-01

    Due to the growing importance of renewable energy sources it becomes more and more necessary to investigate energy storage potentials. One major way to store energy is the power-to-gas concept. Excessive electrical energy can be used either to produce hydrogen or methane by electrolysis or methanation or to compress air, respectively. Those produced gases can then be stored in artificial salt caverns, which are constructed in large salt formations by solution mining. In combination with renewable energy sources, the power-to-gas concept is subjected to fluctuations. Compression and expansion of the storage gases lead to temperature differences within the salt rock. The variations can advance several metres into the host rock, influencing its material behaviour, inducing thermal stresses and altering the creep response. To investigate the temperature influence on the cavern capacity, we have developed a numerical model to simulate the thermo-mechanical behaviour of salt caverns during cyclic gas storage. The model considers the thermodynamic behaviour of the stored gases as well as the heat transport and the temperature dependent material properties of the host rock. Therefore, we utilized well-known constitutive thermo-visco-plastic material models, implemented into the open source-scientific software OpenGeoSys. Both thermal and mechanical processes are solved using a finite element approach, connected via a staggered coupling scheme. The model allows the assessment of the structural safety as well as the convergence of the salt caverns.

  17. Performance and cost of energy transport and storage systems for dish applications using reversible chemical reactions

    NASA Technical Reports Server (NTRS)

    Schredder, J. M.; Fujita, T.

    1984-01-01

    The use of reversible chemical reactions for energy transport and storage for parabolic dish networks is considered. Performance and cost characteristics are estimated for systems using three reactions (sulfur-trioxide decomposition, steam reforming of methane, and carbon-dioxide reforming of methane). Systems are considered with and without storage, and in several energy-delivery configurations that give different profiles of energy delivered versus temperature. Cost estimates are derived assuming the use of metal components and of advanced ceramics. (The latter reduces the costs by three- to five-fold). The process that led to the selection of the three reactions is described, and the effects of varying temperatures, pressures, and heat exchanger sizes are addressed. A state-of-the-art survey was performed as part of this study. As a result of this survey, it appears that formidable technical risks exist for any attempt to implement the systems analyzed in this study, especially in the area of reactor design and performance. The behavior of all components and complete systems under thermal energy transients is very poorly understood. This study indicates that thermochemical storage systems that store reactants as liquids have efficiencies below 60%, which is in agreement with the findings of earlier investigators.

  18. Molecular interactions in metal organic frameworks for optimized gas separation, storage and sensing applications

    NASA Astrophysics Data System (ADS)

    Nijem, Nour

    Hydrogen storage and CO2 capture are two of the most challenging problems for the development of renewable energy sources and the reduction of CO2 emission. Hydrogen storage aims at storing a high volumetric density of hydrogen at room temperature. Fundamental studies exploring molecular hydrogen interactions in storage materials are therefore important to foster further development of materials. Metal-organic Frameworks (MOFs) are promising candidates for hydrogen storage and gas separation because their high surface area, porosity and structural tailorability all contribute to selective high hydrogen and CO2 physisorption at specific sites in the structures. This work explores the incorporation of hydrogen, CO2 and hydrocarbons into various MOFs using infrared (IR) and Raman spectroscopy to characterize their interaction. IR spectroscopy can distinguish possible H2 binding sites based on the perturbation of the initially IR inactive internal H2 stretch mode. Comparative IR measurements are performed on MOFs with both saturated metal centers (e.g., M(bdc)(ted)0.5) and unsaturated metal centers (e.g., MOF-74-M with M=Zn, Mg and Ni) by varying the ligand and/or the metal center. We combine room-temperature and high-pressure with low-temperature (20--100K) measurements and use theoretical van der Waals density functional (vdW-DF) calculations to derive quantitative information from the vibrational band shifts and dipole moment strengths. In addition to H2, CO2 and hydrocarbon adsorption and selectivity in a flexible MOF system using Raman and IR spectroscopy are explored. The CO2 specific interaction with the framework and the specific connectivity of the metal to the ligands is found to be the main reason for this MOFs flexibility leading to its large CO2 selectivity, and a novel "gate opening" phenomenon. The unexpected gate opening behavior in this flexible framework upon different hydrocarbon adsorption is studied to uncover effects of specific hydrogen bonding

  19. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    SciTech Connect

    Not Available

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analyses and forms, inspection logs, equipment identification, etc.

  20. Dielectric Bilayer Films Comprising Polar Cyanolated Silica Sol-Gel and Nanoscale Blocking Layer for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Kathaperumal, Mohanalingam; Kim, Yunsang; Smith, O'neil; Dindar, Amir; Fuentes-Hernandez, Canek; Hwang, Do-Kyung; Pan, Ming-Jen; Kippelen, Bernard; Perry, Joseph

    2013-03-01

    Organic-inorganic hybrid sol-gel containing polar groups, which can undergo orientational polarization under the influence of an electric field, provide a potential route to processable and rational design of materials for energy storage applications. However, the porous nature of sol-gel films, which significantly lowers breakdown strength, limits the potential of this material for energy storage particularly in high-field applications. In this work, we fabricate and characterize dielectric bilayer films comprising cyanolated silica sol-gel film prepared from 2-cyanoethyltrimethoxysilane (CNETMS) precursor and nanoscale blocking layers, which include amorphous fluoropolymer, SiO2, Al2O3 and ZrO2 deposited by spin casting, electron beam evaporation or atomic layer deposition (ALD). CNETMS films with 50 nm ZrO2 blocking layer exhibit an extractable energy density of 13 J/cm3, which is about a twofold enhancement compared to CNETMS films without blocking layer. The effect of the blocking layer will be discussed in terms of surface morphology, dielectric contrast, i.e. the ratio of relative permittivity between oxide layer and sol-gel film, electric field distribution, breakdown strength and statistics, bias polarity, and loss of the bilayer films.

  1. Correlation of ion-ion interaction with electrical conductivity in solid state polymeric separator for energy storage applications

    NASA Astrophysics Data System (ADS)

    Sharma, Parul Kumar; Sadiq, M.; Bhatt, Chandni; Sharma, A. L.

    2016-05-01

    In the present study, we report innovative study on the prepared high quality solid state free standing thin polymeric separator. In prepared free standing polymeric separator, polymer (PEO) has been used as host matrix; appropriate bulky anion salt (LiPF6) as conducting species and Nano ceramic filler (BaTiO3) is used to enrich the mechanical and thermal stability of separator used for the device applications. The Fourier Transform Infra-Red (FTIR) result has been analysed properly of the prepared materials to look the microscopic interaction among polymer-ion, ion-ion and polymer-ion-clay interaction. Electrical conductivity results has been recorded using the impedance spectroscopy results which gives the estimated value of the order of ˜10-3 Scm-1 of the nano ceramic doped polymeric separator which is desirable for energy storage application. A fine correlation has been established between the obtained results by this two analysis.

  2. Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage

    PubMed Central

    Xia, Wei; Qiu, Bin; Xia, Dingguo; Zou, Ruqiang

    2013-01-01

    Porous carbon materials have numerous applications due to their thermal and chemical stability, high surface area and low densities. However, conventional preparing porous carbon through zeolite or silica templates casting has been criticized by the costly and/or toxic procedure. Creating three-dimensional (3D) carbon products is another challenge. Here, we report a facile way to prepare porous carbons from metal-organic gel (MOG) template, an extended metal-organic framework (MOF) structure. We surprisingly found that the carbon products inherit the highly porous nature of MOF and combine with gel's integrated character, which results in hierarchical porous architectures with ultrahigh surface areas and quite large pore volumes. They exhibit considerable hydrogen uptake and excellent electrochemical performance as cathode material for lithium-sulfur battery. This work provides a general method to fast and clean synthesis of porous carbon materials and opens new avenues for the application of metal-organic gel in energy storage. PMID:23728472

  3. Autumn Application of Foliar Urea Alters Winter Storage and Nitrogen Uptake and Growth of Container-Grown Rhododendron and Azalea the Following Spring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One-year-old liners of rhododendron (Rhododendron 'H-1 P.J.M.') and azalea (Rhododendron 'Cannon's Double') grown at different N fertilization rates were used to assess the influence of foliar urea application in the autumn and soil nitrogen (N) applications during the growing season on N storage, N...

  4. Energy Storage.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  5. Durability design of heated concrete structures. Methodology and application to long-term interim storage

    NASA Astrophysics Data System (ADS)

    Lagrave, H.; Ranc, G.; Gallé, C.; Durand, S.

    2006-11-01

    The operation of civil engineering structures subjected to thermal and mechanical loading has led the CEA to examine temperature-dependent variations in the concrete properties and the processes affecting the durability of these structures. A new approach has been undertaken to specify the thermal, hydric and mechanical history of these structures. This technical approach is based on three areas of research: material characterization, modelling to identify weaknesses in the structure and validation by experimental tests on heavily instrumented structures subjected to representative loads. The procedure adopted for long-term interim storage facilities [1, 2] can also be applied to other domains.

  6. DEVELOPMENT OF A HYDROGEN AND DEUTERIUM POLARIZED GAS TARGET FOR APPLICATION IN STORAGE RINGS

    SciTech Connect

    Willy Haeberli

    2009-06-18

    The exploration of spin degrees of freedom in nuclear and high-energy interactions requires the use of spin-polarized projectiles and/or spin-polarized targets. During the last two decades, the use of external beams from cyclotrons has to a large extent been supplanted by use of circulating beams stored in storage rings. In these experiments, the circulating particles pass millions of times through targets internal to the ring. Thus the targets need to be very thin to avoid beam loss by scattering out of the acceptance aperture of the ring.

  7. Thermophysical behavior of St. Peter sandstone: application to compressed air energy storage in an aquifer

    SciTech Connect

    Erikson, R.L.

    1983-12-01

    The long-term stability of a sandstone reservoir is of primary importance to the success of compressed air energy storage (CAES) in aquifers. The purpose of this study was to: develop experimental techniques for the operation of the CAES Porous Media Flow Loop (PMFL), an apparatus designed to study the stability of porous media in subsurface geologic environments, conduct experiments in the PMFL designed to determine the effects of temperature, stress, and humidity on the stability of candidate CAES reservoir materials, provide support for the CAES field demonstration project in Pittsfield, Illinois, by characterizing the thermophysical stability of Pittsfield reservoir sandstone under simulated field conditions.

  8. Applications of Schottky Spectroscopy at the Storage Ring ESR of GSI

    SciTech Connect

    Nolden, F.; Beckert, K.; Beller, P.; Franzke, B.; Gostishchev, V.; Kozhuharov, C.; Litvinov, Y. A.; Schwinn, A.; Steck, M.

    2006-03-20

    Schottky spectroscopy is widely used at the ESR storage ring for the diagnosis of longitudinal and transverse beam parameters. Furthermore, it plays a decisive role for the precision mass measurements of rare isotope nuclei as well as for lifetime measurements of these nuclei. These measurements are performed at low-intensity beams with longitudinal ordering. The paper discusses theoretical preliminaries of Schottky spectra, hardware considerations and aspects of digital data analysis, especially with respect to time-resolved measurements of very low-intensity rare isotope beams.

  9. Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Tammela, Petter; Zhang, Peng; Huo, Jinxing; Ericson, Fredric; Strømme, Maria; Nyholm, Leif

    2014-10-01

    It is demonstrated that 3D nanostructured polypyrrole (3D PPy) nanocomposites can be reinforced with PPy covered nanocellulose (PPy@nanocellulose) fibres to yield freestanding, mechanically strong and porosity optimised electrodes with large surface areas. Such PPy@nanocellulose reinforced 3D PPy materials can be employed as free-standing paper-like electrodes in symmetric energy storage devices exhibiting cell capacitances of 46 F g-1, corresponding to specific electrode capacitances of up to ~185 F g-1 based on the weight of the electrode, and 5.5 F cm-2 at a current density of 2 mA cm-2. After 3000 charge/discharge cycles at 30 mA cm-2, the reinforced 3D PPy electrode material also showed a cell capacitance corresponding to 92% of that initially obtained. The present findings open up new possibilities for the fabrication of high performance, low-cost and environmentally friendly energy-storage devices based on nanostructured paper-like materials.It is demonstrated that 3D nanostructured polypyrrole (3D PPy) nanocomposites can be reinforced with PPy covered nanocellulose (PPy@nanocellulose) fibres to yield freestanding, mechanically strong and porosity optimised electrodes with large surface areas. Such PPy@nanocellulose reinforced 3D PPy materials can be employed as free-standing paper-like electrodes in symmetric energy storage devices exhibiting cell capacitances of 46 F g-1, corresponding to specific electrode capacitances of up to ~185 F g-1 based on the weight of the electrode, and 5.5 F cm-2 at a current density of 2 mA cm-2. After 3000 charge/discharge cycles at 30 mA cm-2, the reinforced 3D PPy electrode material also showed a cell capacitance corresponding to 92% of that initially obtained. The present findings open up new possibilities for the fabrication of high performance, low-cost and environmentally friendly energy-storage devices based on nanostructured paper-like materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c

  10. Application of rock melting to construction of storage holes for nuclear waste

    SciTech Connect

    Neudecker, J.W. Jr.

    1988-12-31

    Rock melting technology can provide in-situ glass liners in nuclear waste package emplacement holes to reduce permeability and increase borehole stability. Reduction of permeability would reduce the time and probability of groundwater contacting the waste packages. Increasing the stability of the storage boreholes would enhance the retrievability of the nuclear waste packages. The rock melting hole forming technology has already been tested in volcanic tuff similar to the geology at the proposed nuclear waste repository at Yucca Mountain, Nevada. 6 refs., 5 figs., 2 tabs.

  11. Combination RCRA groundwater monitoring plan for the 216-A-10, 216-A-36B, and 216-A-37-1 PUREX cribs

    SciTech Connect

    Lindberg, J.W.

    1997-06-01

    This document presents a groundwater quality assessment monitoring plan, under Resource Conservation and Recovery Act of 1976 (RCRA) regulatory requirements for three RCRA sites in the Hanford Site`s 200 East Area: 216-A-10, 216-A-36B, and 216-A-37-1 cribs (PUREX cribs). The objectives of this monitoring plan are to combine the three facilities into one groundwater quality assessment program and to assess the nature, extent, and rate of contaminant migration from these facilities. A groundwater quality assessment plan is proposed because at least one downgradient well in the existing monitoring well networks has concentrations of groundwater constituents indicating that the facilities have contributed to groundwater contamination. The proposed combined groundwater monitoring well network includes 11 existing near-field wells to monitor contamination in the aquifer in the immediate vicinity of the PUREX cribs. Because groundwater contamination from these cribs is known to have migrated as far away as the 300 Area (more than 25 km from the PUREX cribs), the plan proposes to use results of groundwater analyses from 57 additional wells monitored to meet environmental monitoring requirements of US Department of Energy Order 5400.1 to supplement the near-field data. Assessments of data collected from these wells will help with a future decision of whether additional wells are needed.

  12. One-Dimensional Phase-Change Nanomaterials for Information Storage Applications

    NASA Astrophysics Data System (ADS)

    Sun, Xuhui; Yu, Bin; Ng, Garrick; Meyyappan, M.

    The electrically operated phase-change random access memory (PRAM) features faster write/read, improved endurance, and much simpler fabrication as compared with the traditional transistor-based nonvolatile semiconductor memories. Low-dimensional phase-change materials in nanoscale dimensions offer advantages over their bulk or thin-film counterparts in several aspects such as reduced programmable volume and reduced thermal energies in phase transition. These features contribute to low-power operation, excellent scalability, and fast write/erase time. In this chapter, we present a general bottom-up synthesis approach and systematic material analysis study of one-dimensional chalcogenide-based phase-change materials including germanium telluride (GeTe), and indium selenide (In2Se3) nanowires that are targeted for nonvolatile resistive switching data storage. The phase-change nanowires have been synthesized via thermal evaporation method under vaporliquid—solid (VLS) mechanism. The morphology, composition, and crystal structure of the synthesized nanowires were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, and high-resolution transmission electron microscopy. The as-synthesized nanowires are structurally uniform with single crystalline structures. The one-dimensional phase-change chalcogenide nanowires exhibit significantly reduced melting points, low activation energy, and excellent morphology, making them promising nanomaterials for data storage devices with very low energy consumption and excellent scalability.

  13. Magnetic Properties of Iron Chalcogenide Superconducting Materials for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Knock, Destenie; Pough, Korey; Kebede, Abebe; Seifu, Dereje

    2013-03-01

    A superconductor is characterized by its ability to conduct electricity without loss and expel magnetic flux when exposed to an external magnetic field. Additionally, the smaller the relaxation rate (S = dM/dt), the better the material for energy storage. This research focuses on the recently discovered high-quality, single-crystalline Iron-based superconductors of FeTe1-xSex (x =0.5), with a transition temperature at Tc = 14.5K. Standard creep models are used to analyze the data and determine the effective pinning potential. The magnetization relaxation were measured the Superconducting Quantum Interference Device (SQUID). The relaxation rate appears to be independent of field and temperature for fields below 3T and temperatures below 7K. This result shows that the thermally activated flux motion is not as significant as in other high temperature superconductors, hence FeTe1-xSex, can be a candidate for wire development to be used in Superconducting Magnetic Energy Storage systems.

  14. Turbulent impinging flow simulation for high-level waste storage and processing applications

    SciTech Connect

    Rhea, Simon; Fairweather, Michael

    2007-07-01

    The efficient storage and processing of high-level nuclear waste could be improved by a better understanding of the behaviour of the particle-laden fluid flows involved. This work reports a mathematical modeling study of impinging single and two-phase turbulent jets that is of relevance to the flows used industrially to prevent the settling of solid particles in storage tanks, and to re-suspend particles that form a bed. A computational fluid dynamic model, that embodies a Lagrangian particle tracking technique, is applied to the prediction of these flows. Predictions in the free flow and wall regions, and along the stagnation line, of the single phase flow are in reasonable accord with data, although the addition of particles results in less satisfactory agreement between predictions and measurements. The influence of particles is, however, reproduced qualitatively by the mathematical model, with quantitative differences attributable to a lack of particle drag in the simulations. Uncertainties in experimental parameters may be responsible for some of the differences between predictions and data, and examination of the data used casts doubts on its reliability. Further work is required in terms of the use of more advanced turbulence modeling techniques, and the provision of detailed and reliable data sets. (authors)

  15. Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage.

    PubMed

    Peng, Qing; De, Suvranu

    2013-11-28

    The structural and mechanical properties of graphene-like honeycomb monolayer structures of MoS2 (g-MoS2) under various large strains are investigated using density functional theory (DFT). g-MoS2 is mechanically stable and can sustain extra large strains: the ultimate strains are 0.24, 0.37, and 0.26 for armchair, zigzag, and biaxial deformation, respectively. The in-plane stiffness is as high as 120 N m(-1) (184 GPa equivalently). The third, fourth, and fifth order elastic constants are indispensable for accurate modeling of the mechanical properties under strains larger than 0.04, 0.07, and 0.13 respectively. The second order elastic constants, including in-plane stiffness, are predicted to monotonically increase with pressure while the Poisson ratio monotonically decreases with increasing pressure. With the prominent mechanical properties including large ultimate strains and in-plane stiffness, g-MoS2 is a promising candidate of elastic energy storage for clean energy. It possesses a theoretical energy storage capacity as high as 8.8 MJ L(-1) and 1.7 MJ kg(-1), or 476 W h kg(-1), larger than a Li-ion battery and is environmentally friendly. PMID:24126736

  16. Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage

    NASA Astrophysics Data System (ADS)

    Peng, Qing; de, Suvranu

    2014-03-01

    The structural and mechanical properties of graphene-like honeycomb monolayer structures of MoS2(g-MoS2) under various large strains are investigated using density functional theory (DFT). g-MoS2 is mechanically stable and can sustain extra large strains: the ultimate strains are 0.24, 0.37, and 0.26 for armchair, zigzag, and biaxial deformation, respectively. The in-plane stiffness is as high as 120 N/m (184 GPa equivalently). The third, fourth, and fifth order elastic constants are indispensable for accurate modeling of the mechanical properties under strains larger than 0.04, 0.07, and 0.13 respectively. The second order elastic constants, including in-plane stiffness, are predicted to monotonically increase with pressure while the Poisson ratio monotonically decreases with increasing pressure. With the prominent mechanical properties including large ultimate strains and in-plane stiffness, g-MoS2 is a promising candidate of elastic energy storage for clean energy. It possesses a theoretical energy storage capacity as high as 8.8 MJ/L and 1.7 MJ/kg, or 476 Wh/kg, larger than a Li-ion battery and is environmentally friendly. Financial support from the Defence Threat Reduction Agency (DTRA) Grant # BRBAA08-C-2-0130 and.

  17. On-board hydrogen storage and production: An application of ammonia electrolysis

    NASA Astrophysics Data System (ADS)

    Boggs, Bryan K.; Botte, Gerardine G.

    On-board hydrogen storage and production via ammonia electrolysis was evaluated to determine whether the process was feasible using galvanostatic studies between an ammonia electrolytic cell (AEC) and a breathable proton exchange membrane fuel cell (PEMFC). Hydrogen-dense liquid ammonia stored at ambient temperature and pressure is an excellent source for hydrogen storage. This hydrogen is released from ammonia through electrolysis, which theoretically consumes 95% less energy than water electrolysis; 1.55 Wh g -1 H 2 is required for ammonia electrolysis and 33 Wh g -1 H 2 for water electrolysis. An ammonia electrolytic cell (AEC), comprised of carbon fiber paper (CFP) electrodes supported by Ti foil and deposited with Pt-Ir, was designed and constructed for electrolyzing an alkaline ammonia solution. Hydrogen from the cathode compartment of the AEC was fed to a polymer exchange membrane fuel cell (PEMFC). In terms of electric energy, input to the AEC was less than the output from the PEMFC yielding net electrical energies as high as 9.7 ± 1.1 Wh g -1 H 2 while maintaining H 2 production equivalent to consumption.

  18. Inherent Tracers for Carbon Capture and Storage in Sedimentary Formations: Composition and Applications.

    PubMed

    Flude, Stephanie; Johnson, Gareth; Gilfillan, Stuart M V; Haszeldine, R Stuart

    2016-08-01

    Inherent tracers-the "natural" isotopic and trace gas composition of captured CO2 streams-are potentially powerful tracers for use in CCS technology. This review outlines for the first time the expected carbon isotope and noble gas compositions of captured CO2 streams from a range of feedstocks, CO2-generating processes, and carbon capture techniques. The C-isotope composition of captured CO2 will be most strongly controlled by the feedstock, but significant isotope fractionation is possible during capture; noble gas concentrations will be controlled by the capture technique employed. Comparison with likely baseline data suggests that CO2 generated from fossil fuel feedstocks will often have δ(13)C distinguishable from storage reservoir CO2. Noble gases in amine-captured CO2 streams are likely to be low concentration, with isotopic ratios dependent on the feedstock, but CO2 captured from oxyfuel plants may be strongly enriched in Kr and Xe which are potentially valuable subsurface tracers. CO2 streams derived from fossil fuels will have noble gas isotope ratios reflecting a radiogenic component that will be difficult to distinguish in the storage reservoir, but inheritance of radiogenic components will provide an easily recognizable signature in the case of any unplanned migration into shallow aquifers or to the surface. PMID:27379462

  19. Investigations into the use of energy storage in power system applications

    NASA Astrophysics Data System (ADS)

    Leung, Ka Kit

    This thesis embodies research work on the design and implementation of novel fast responding battery energy storage systems, which, with sufficient capacity and rating, could remove the uncertainty in forecasting the annual peak demand. They would also benefit the day to day operation by curtailing the fastest demand variations, particularly at the daily peak periods. Energy storage that could curtail peak demands, when the most difficult operational problems occur offers a promising approach. Although AC energy cannot be stored, power electronic developments offer a fast responding interface between the AC network and DC energy stored in batteries. The attractive feature of the use of this energy storage could most effectively be located near the source of load variations, i.e. near consumers in the distribution networks. The proposed, three phase multi-purpose, Battery Energy Storage System will provide active and reactive power independent of the supply voltage with excellent power quality in terms of its waveform. Besides the above important functions applied at the distribution side of the utility, several new topologies have been developed to provide both Dynamic Voltage Regulator (DVR) and Unified Power Flow Controller (UPFC) functions for line compensation. These new topologies can provide fast and accurate control of power flow along a distribution corridor. The topologies also provide for fast damping of system oscillation due to transient or dynamic disturbances. Having demonstrated the various functions that the proposed Battery Energy Storage System can provide, the final part of the thesis investigates means of improving the performance of the proposed BESS. First, there is a need to reduce the switching losses by using soft switching instead of hard switching. A soft switching inverter using a parallel resonant dc-link (PRDCL) is proposed for use with the proposed BESS. The proposed PRDCL suppresses the dc-link voltage to zero for a very short time

  20. From detailed analysis of IO pattern of the HEP applications to benchmark of new storage solutions

    NASA Astrophysics Data System (ADS)

    Horký, Jiří; Santinelli, Roberto

    2011-12-01

    The problem of file access on the site level has been one of the main issues since the start of the WLCG project. A lot of studies have already been performed using both industry standard benchmarks and actual physicist jobs. However, such studies are typically bound to one particular LHC experiment supported on a given site and/or one type of job. In this paper, we present an application suitable for detailed study of applications' file access behavior. We have also developed an application for exact replaying of IO requests of the previously run applications. This enables to benchmark performance of solutions without a need of installing the whole working environment.

  1. Energy Storage

    SciTech Connect

    Mukundan, Rangachary

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10

  2. A general model of electrochemical impedance spectroscopy and its application to hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Tokash, Justin Charles

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a "spent fuel" in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen and their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms

  3. Large surface area ordered porous carbons via nanocasting zeolite 10X and high performance for hydrogen storage application.

    PubMed

    Cai, Jinjun; Li, Liangjun; Lv, Xiaoxia; Yang, Chunpeng; Zhao, Xuebo

    2014-01-01

    We report the preparation of ordered porous carbons for the first time via nanocasting zeolite 10X with an aim to evaluate their potential application for hydrogen storage. The synthesized carbons exhibit large Brunauer-Emmett-Teller surface areas in the 1300-3331 m(2)/g range and pore volumes up to 1.94 cm(3)/g with a pore size centered at 1.2 nm. The effects of different synthesis processes with pyrolysis temperature varied in the 600-800 °C range on the surface areas, and pore structures of carbons were explored. During the carbonization process, carbons derived from the liquid-gas two-step routes at around 700 °C are nongraphitic and retain the particle morphology of 10X zeolite, whereas the higher pyrolysis temperature results in some graphitic domains and hollow-shell morphologies. In contrast, carbons derived from the direct acetylene infiltration process have some incident nanoribbon or nanofiber morphologies. A considerable hydrogen storage capacity of 6.1 wt % at 77 K and 20 bar was attained for the carbon with the surface area up to 3331 m(2)/g, one of the top-ranked capacities ever observed for large surface area adsorbents, demonstrating their potential uses for compacting gaseous fuels of hydrogen. The hydrogen capacity is comparable to those of previously reported values on other kinds of carbon-based materials and highly dependent on the surface area and micropore volume of carbons related to the optimum pore size, therefore providing guidance for the further search of nanoporous materials for hydrogen storage. PMID:24344972

  4. Toroidal cell and battery. [storage battery for high amp-hour load applications

    NASA Technical Reports Server (NTRS)

    Nagle, W. J. (Inventor)

    1981-01-01

    A toroidal storage battery designed to handle relatively high amp-hour loads is described. The cell includes a wound core disposed within a pair of toroidal channel shaped electrodes spaced apart by nylon insulator. The shape of the case electrodes of this toroidal cell allows a first planar doughnut shaped surface and the inner cylindrical case wall to be used as a first electrode and a second planar doughnut shaped surface and the outer cylindrical case wall to be used as a second electrode. Connectors may be used to stack two or more toroidal cells together by connecting substantially the entire surface area of the first electrode of a first cell to substantially the entire surface area of the second electrode of a second cell. The central cavity of each toroidal cell may be used as a conduit for pumping a fluid through the toroidal cell to thereby cool the cell.

  5. Application of multivariate storage model to quantify trends in seasonally frozen soil

    NASA Astrophysics Data System (ADS)

    Woody, Jonathan; Wang, Yan; Dyer, Jamie

    2016-06-01

    This article presents a study of the ground thermal regime recorded at 11 stations in the North Dakota Agricultural Network. Particular focus is placed on detecting trends in the annual ground freeze process portion of the ground thermal regime's daily temperature signature. A multivariate storage model from queuing theory is fit to a quantity of estimated daily depths of frozen soil. Statistical inference on a trend parameter is obtained by minimizing a weighted sum of squares of a sequence of daily one-step-ahead predictions. Standard errors for the trend estimates are presented. It is shown that the daily quantity of frozen ground experienced at these 11 sites exhibited a negative trend over the observation period.

  6. Application of nonlinear ultrasonics to inspection of stainless steel for dry storage

    SciTech Connect

    Ulrich, Timothy James II; Anderson, Brain E.; Remillieux, Marcel C.; Le Bas, Pierre -Yves; Pieczonka, Lukasz

    2015-09-22

    This report summarized technical work conducted by LANL staff an international collaborators in support of the UFD Storage Experimentation effort. The focus of the current technical work is on the detection and imaging of a failure mechanism known as stress corrosion cracking (SCC) in stainless steel using the nonlinear ultrasonic technique known as TREND. One of the difficulties faced in previous work is in finding samples that contain realistically sized SCC. This year such samples were obtained from EPRI. Reported here are measurements made on these samples. One of the key findings is the ability to detect subsurface changes to the direction in which a crack is penetrating into the sample. This result follows from last year's report that demonstrated the ability of TREND techniques to image features below the sample surface. A new collaboration was established with AGH University of Science and Technology, Krakow, Poland.

  7. Reactive force field development for magnesium chloride hydrates and its application for seasonal heat storage.

    PubMed

    Pathak, Amar Deep; Nedea, Silvia; van Duin, Adri C T; Zondag, Herbert; Rindt, Camilo; Smeulders, David

    2016-06-21

    MgCl2 hydrates are considered as high-potential candidates for seasonal heat storage materials. These materials have high storage capacity and fast dehydration kinetics. However, as a side reaction to dehydration, hydrolysis may occur. Hydrolysis is an irreversible reaction, which produces HCl gas thus affecting the durability of heat storage systems. In this study, we present the parameterization of a reactive force field (ReaxFF) for MgCl2 hydrates to study the dehydration and hydrolysis kinetics of MgCl2·H2O and MgCl2·2H2O. The ReaxFF parameters have been derived by training against quantum mechanics data obtained from Density Functional Theory (DFT) calculations consisting of bond dissociation curves, angle bending curves, reaction enthalpies, and equation of state. A single-parameter search algorithm in combination with a Metropolis Monte Carlo algorithm is successfully used for this ReaxFF parameterization. The newly developed force field is validated by examining the elastic properties of MgCl2 hydrates and the proton transfer reaction barrier, which is important for the hydrolysis reaction. The bulk moduli of MgCl2·H2O and MgCl2·2H2O obtained from ReaxFF are in close agreement with the bulk moduli obtained from DFT. A barrier of 20.24 kcal mol(-1) for the proton transfer in MgCl2·2H2O is obtained, which is in good agreement with the barrier (19.55 kcal mol(-1)) obtained from DFT. Molecular dynamics simulations using the newly developed ReaxFF on 2D-periodic slabs of MgCl2·H2O and MgCl2·2H2O show that the dehydration rate increases more rapidly with temperature in MgCl2·H2O than in MgCl2·2H2O, in the temperature range 300-500 K. The onset temperature of HCl formation, a crucial design parameter in seasonal heat storage systems, is observed at 340 K for MgCl2·H2O, which is in agreement with experiments. The HCl formation is not observed for MgCl2·2H2O. The diffusion coefficient of H2O through MgCl2·H2O is lower than through MgCl2·2H2O, and can

  8. Nano-sized Lithium Manganese Oxide Dispersed on Carbon Nanotubes for Energy Storage Applications

    SciTech Connect

    Bak, S.B.

    2009-08-01

    Nano-sized lithium manganese oxide (LMO) dispersed on carbon nanotubes (CNT) has been synthesized successfully via a microwave-assisted hydrothermal reaction at 200 C for 30 min using MnO{sub 2}-coated CNT and an aqueous LiOH solution. The initial specific capacity is 99.4 mAh/g at a 1.6 C-rate, and is maintained at 99.1 mAh/g even at a 16 C-rate. The initial specific capacity is also maintained up to the 50th cycle to give 97% capacity retention. The LMO/CNT nanocomposite shows excellent power performance and good structural reversibility as an electrode material in energy storage systems, such as lithium-ion batteries and electrochemical capacitors. This synthetic strategy opens a new avenue for the effective and facile synthesis of lithium transition metal oxide/CNT nanocomposite.

  9. Self-referential holography and its applications to data storage and phase-to-intensity conversion.

    PubMed

    Takabayashi, Masanori; Okamoto, Atsushi

    2013-02-11

    Holographic recording methods require the use of a reference beam that is coherent with the signal beam carrying the information to be recorded. In this paper, we propose self-referential holography (SRH) for holographic recording without the use of a reference beam. SRH can realize purely one-beam holographic recording by considering the signal beam itself as the reference beam. The readout process in SRH is based on energy transfer by inter-pixel interference in holographic diffraction, which depends on the spatial phase difference between the recorded phase and the readout phase. The phase-modulated recorded signal is converted into an intensity-modulated beam that can be easily detected using a conventional image sensor. SRH can be used effectively for holographic data storage and phase-to-intensity conversion. PMID:23481823

  10. Real-time monitoring of CO2 storage sites: Application to Illinois Basin-Decatur Project

    USGS Publications Warehouse

    Picard, G.; Berard, T.; Chabora, E.; Marsteller, S.; Greenberg, S.; Finley, R.J.; Rinck, U.; Greenaway, R.; Champagnon, C.; Davard, J.

    2011-01-01

    Optimization of carbon dioxide (CO2) storage operations for efficiency and safety requires use of monitoring techniques and implementation of control protocols. The monitoring techniques consist of permanent sensors and tools deployed for measurement campaigns. Large amounts of data are thus generated. These data must be managed and integrated for interpretation at different time scales. A fast interpretation loop involves combining continuous measurements from permanent sensors as they are collected to enable a rapid response to detected events; a slower loop requires combining large datasets gathered over longer operational periods from all techniques. The purpose of this paper is twofold. First, it presents an analysis of the monitoring objectives to be performed in the slow and fast interpretation loops. Second, it describes the implementation of the fast interpretation loop with a real-time monitoring system at the Illinois Basin-Decatur Project (IBDP) in Illinois, USA. ?? 2011 Published by Elsevier Ltd.

  11. DNA translocation through α-hemolysin nanopores with potential application to macromolecular data storage

    NASA Astrophysics Data System (ADS)

    Khulbe, Pramod K.; Mansuripur, Masud; Gruener, Raphael

    2005-05-01

    Digital information can be encoded in the building-block sequence of macromolecules, such as RNA and single-stranded DNA. Methods of "writing" and "reading" macromolecular strands are currently available, but they are slow and expensive. In an ideal molecular data storage system, routine operations such as write, read, erase, store, and transfer must be done reliably and at high speed within an integrated chip. As a first step toward demonstrating the feasibility of this concept, we report preliminary results of DNA readout experiments conducted in miniaturized chambers that are scalable to even smaller dimensions. We show that translocation of a single-stranded DNA molecule (consisting of 50 adenosine bases followed by 100 cytosine bases) through an ion channel yields a characteristic signal that is attributable to the two-segment structure of the molecule. We also examine the dependence of the translocation rate and speed on the adjustable parameters of the experiment.

  12. Development of a modular room-temperature hydride storage system for vehicular applications

    NASA Astrophysics Data System (ADS)

    Capurso, Giovanni; Schiavo, Benedetto; Jepsen, Julian; Lozano, Gustavo; Metz, Oliver; Saccone, Adriana; De Negri, Serena; Bellosta von Colbe, José M.; Klassen, Thomas; Dornheim, Martin

    2016-03-01

    The subject of this paper concerns the development of a vehicular hydrogen tank system, using a commercial interstitial metal hydride as storage material. The design of the tank was intended to feed a fuel cell in a light prototype vehicle, and the chosen hydride material, Hydralloy C5 by GfE, was expected to be able to absorb and desorb hydrogen in a range of pressure suitable for this purpose. A systematic analysis of the material in laboratory scale allows an extrapolation of the thermodynamic and reaction kinetics data. The following development of the modular tank was done according to the requirements of the prototype vehicle propulsion system and led to promising intermediate results. The modular approach granted flexibility in the design, allowing both to reach carefully the design goals and to learn the limiting factors in the sorption process. Proper heat management and suitable equipment remain key factors in order to achieve the best performances.

  13. An application of the Fourier Series in the analysis of waterhammer in pumped storage plant

    SciTech Connect

    Serpas, D.

    1995-12-31

    In a pumped storage scheme, water flows from the upper reservoir to the lower reservoir, and the turbo/machine acts as turbine. In the pumping mode, the water is pumped from the lower reservoir to the upper reservoir, and the turbo/machine acts as a pump. A method using Fourier Series for the approximation of the characteristics curves of the pump in four quadrants is applied for the analysis of waterhammer due the power failure. Others conditions may also be analyzed. A program adjusts the data of the four characteristic curves in CHAUDRHY, 1987 by Fourier Series. This adjustment should permit a closer representation of the pump actually used in the system that will result in a more economical design.

  14. A Note on Interfacing Object Warehouses and Mass Storage Systems for Data Mining Applications

    NASA Technical Reports Server (NTRS)

    Grossman, Robert L.; Northcutt, Dave

    1996-01-01

    Data mining is the automatic discovery of patterns, associations, and anomalies in data sets. Data mining requires numerically and statistically intensive queries. Our assumption is that data mining requires a specialized data management infrastructure to support the aforementioned intensive queries, but because of the sizes of data involved, this infrastructure is layered over a hierarchical storage system. In this paper, we discuss the architecture of a system which is layered for modularity, but exploits specialized lightweight services to maintain efficiency. Rather than use a full functioned database for example, we use light weight object services specialized for data mining. We propose using information repositories between layers so that components on either side of the layer can access information in the repositories to assist in making decisions about data layout, the caching and migration of data, the scheduling of queries, and related matters.

  15. Crystallization and Properties of Strontium Barium Niobate-Based Glass-Ceramics for Energy-Storage Applications

    NASA Astrophysics Data System (ADS)

    Tang, Linjiang; Wang, Wei; Shen, Bo; Zhai, Jiwei; Kong, Ling Bing

    2014-09-01

    The crystallization kinetics, phase development, and electric properties of Al2O3-SiO2-SrO-BaO-Nb2O5-ZnO glass-ceramics were investigated for potential application of the materials for energy storage. Strontium barium niobate (Ba x Sr1-x Nb2O6) with the tetragonal tungsten-bronze structure was the major crystalline phase formed by both surface and bulk crystallization. The presence of ZnO made the glasses less stable, and thus promoted their crystallization, but had no significant effect on the microstructure of the resulting glass-ceramics. All glass-ceramic samples had a uniform microstructure, with a crystal size of approximately 50 nm. Optimized energy storage density of approximately 6.0 J/cm3 was achieved for the sample containing 0.5% ZnO; the average dielectric constant was 150-180 and the breakdown strength was 950-870 kV/cm over the temperature range 850-950°C.

  16. Crystallization and Properties of Strontium Barium Niobate-Based Glass-Ceramics for Energy-Storage Applications

    NASA Astrophysics Data System (ADS)

    Tang, Linjiang; Wang, Wei; Shen, Bo; Zhai, Jiwei; Kong, Ling Bing

    2015-01-01

    The crystallization kinetics, phase development, and electric properties of Al2O3-SiO2-SrO-BaO-Nb2O5-ZnO glass-ceramics were investigated for potential application of the materials for energy storage. Strontium barium niobate (Ba x Sr1- x Nb2O6) with the tetragonal tungsten-bronze structure was the major crystalline phase formed by both surface and bulk crystallization. The presence of ZnO made the glasses less stable, and thus promoted their crystallization, but had no significant effect on the microstructure of the resulting glass-ceramics. All glass-ceramic samples had a uniform microstructure, with a crystal size of approximately 50 nm. Optimized energy storage density of approximately 6.0 J/cm3 was achieved for the sample containing 0.5% ZnO; the average dielectric constant was 150-180 and the breakdown strength was 950-870 kV/cm over the temperature range 850-950°C.

  17. Assessing the Potential of Sepiolite-Palygorskite Group Minerals as Materials for CO2 Capture and Storage Applications

    NASA Astrophysics Data System (ADS)

    Wallace, A. F.

    2015-12-01

    The carbonation of magnesium silicate minerals within ultramafic rocks is one of the most promising routes to CO2 sequestration involving chemical reaction with natural materials. However, in practice the rate of magnesium silicate carbonation is very slow at ambient temperature. Although using smaller magnesium silicate grains with greater reactive surface area can enhance reaction rates, the coherency of ultramafic rock makes crushing the material an energy-consuming task in its own right. Instead of relying on a mineral forming reaction to capture carbon, it has been hypothesized that naturally occuring nanoporous materials may be used to capture and store carbon dioxide. Sepiolite-palygorskite clays are of interest because in addition to being common minerals in marine and lacustrine sediments, they are natural weathering products of ultramafic rocks, and are already used extensively in industrial scale applications. Due to the presence of nanoscopic channel structures in sepiolite-palygorskite clays these materials exhibit extremely high surface areas. However, in the native structure the channels are filled with water. In order for these minerals to act as efficient CO2 storage materials channel water must be displaced and replaced with CO2. Herein we present preliminary findings using molecular dynamics simulations to quantify the thermodynamic driving force for displacing channel bound water with CO2 and assess the feasibility of sepiolite-palygorskite clays to act as CO2 storage materials.

  18. Integrated hydrological modelling of small- and medium-sized water storages with application to the upper Fengman Reservoir Basin of China

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Peng, Y.; Chu, J.; Shoemaker, C. A.

    2012-03-01

    Hydrological simulation in regions with a large number of water storages is difficult due to the inaccurate water storage data, including both topologic parameters and operational rules. To address this issue, this paper presents an improved version of SWAT2005 (Soil and Water Assessment Tool, version 2005) using the satellite-based dataset Landsat, an empirical storage classification method, and some empirical relationships to estimate water storage and release from the various levels of flow regulation facilities. The improved SWAT2005 is characterised by three features: (1) a realistic representation of the relationships between the water surface area and volume of each type of water storage, ranging from small-sized ponds for water flow regulation to large-sized and medium-sized reservoirs for water supply and hydropower generation; (2) water balance and transport through a network combining both sequential and parallel streams and storage links; and (3) calibrations for the physical parameters and the human interference parameters. Both the original and improved SWAT2005 are applied to the upper Fengman Reservoir Basin, and the results of these applications are compared. The improved SWAT2005 accurately models small- and medium-sized storages, indicating a significantly improved performance from that of the original model in reproducing streamflows.

  19. Dual Electrospray Pyrolysis for Mixed Metal Oxide (and Carbon) Composite Nanoparticle Synthesis with Applications in Energy Storage

    NASA Astrophysics Data System (ADS)

    Tang, Justin; Liu, Wen; Wang, Hailiang; Gomez, Alessandro

    We present a novel approach to synthesizing mixed metal oxide nanoparticles with a continuous, scalable aerosol flow process using the electrospray. The electrospray is a liquid atomization technique that generates a monodisperse population of highly charged liquid droplets over a broad size range (nanometric to tens of microns). Each liquid droplet serves as a micro-reactor, containing a payload of suitable precursors (such as metal nitrides), allowing for precise control over particle composition and size. By using two electrosprays of opposite polarities, the two highly charged droplets plumes are electrostatically mixed to produce a charge-neutral aerosol. Electrostatically driven droplet-droplet collisions can also be used to control morphology to some degree. This aerosol is passed through a tubular furnace via carrier gas, pyrolizing the precursors to synthesize nanomaterials. We apply this approach to manganese oxide, cobalt oxide, and carbon composite nanoparticles for use in energy storage applications.

  20. Single Source Precursor-based Solvothermal Synthesis of Heteroatom-doped Graphene and Its Energy Storage and Conversion Applications

    PubMed Central

    Quan, Bo; Yu, Seung-Ho; Chung, Dong Young; Jin, Aihua; Park, Ji Hyun; Sung, Yung-Eun; Piao, Yuanzhe

    2014-01-01

    Solvothermal processes are considered efficient approaches for the gram-scale production of graphene. Further modification of graphene by chemical doping is an important approach to tailor its properties. In this work, we successfully synthesized sulfur-doped graphene by using a solvothermal method with dimethyl sulfoxide as a precursor, which is a common laboratory reagent. Nitrogen-doped graphene was produced to demonstrate the generality of this process. These heteroatom-doped graphene materials exhibited high surface areas and high contents of heteroatoms. Furthermore, the lithium-ion storage properties and oxygen reduction reaction catalytic activity of these materials were also investigated. The success of this approach might facilitate the development of other advanced graphene-based materials with relative simplicity, scalability, and cost effectiveness for use in various potential applications. PMID:25007833

  1. COMMIX-SA-1: a three-dimensional thermohydrodynamic computer program for solar applications. [Heat-storage water tanks

    SciTech Connect

    Sha, W.T.; Lin, E.I.H.; Schmitt, R.C.; Liu, K.V.; Hull, J.R.; Oras, J.J. Jr.; Domanus, H.M.

    1980-11-01

    COMMIX-SA-1 is a three-dimensional, transient, single-phase, compressible-flow, component computer program for thermohydrodynamic analysis. It was developed for solar applications in general, and for analysis of thermocline storage tanks in particular. The conservation equations (in cylindrical coordinates) for mass, momentum, and energy are solved as an initial-boundary-value problem. The detailed numerical-solution procedure based on a modified ICE (Implicit Continuous-Fluid Eulerian) technique is described. A method for treating the singularity problem arising at the origin of a cylindrical-coordinate system is presented. In addition, the thermal interactions between fluid and structures (tank walls, baffles, etc.) are explicitly accounted for. Finally, the COMMIX-SA-1 code structure is delineated, and an input description and sample problems are presented.

  2. Comparison of numerical predictions with CO{sub 2} pipeline release datasets of relevance to carbon capture and storage applications

    SciTech Connect

    Wareing, Christopher J.; Fairweather, Michael; Woolley, Robert M.; Falle, S. A. E. G.

    2015-12-31

    Predicting the correct multi-phase fluid flow behaviour during the discharge process in the near-field of sonic CO{sub 2} jets is of particular importance in assessing the risks associated with transport aspects of carbon capture and storage schemes, given the very different hazard profiles of CO{sub 2} in the gaseous and solid states. In this paper, we apply our state-of-the-art mathematical model implemented in an efficient computational method to available data. Compared to previous applications, an improved equation of state is used. We also compare to all the available data, rather than just subsets as previously, and demonstrate both the improved performance of the fluid flow model and the variation between the available datasets. The condensed phase fraction at the vent, puncture or rupture release point is revealed to be of key importance in understanding the near-field dispersion of sonic CO{sub 2}.

  3. Comparison of numerical predictions with CO2 pipeline release datasets of relevance to carbon capture and storage applications

    NASA Astrophysics Data System (ADS)

    Wareing, Christopher J.; Fairweather, Michael; Woolley, Robert M.; Falle, S. A. E. G.

    2015-12-01

    Predicting the correct multi-phase fluid flow behaviour during the discharge process in the near-field of sonic CO2 jets is of particular importance in assessing the risks associated with transport aspects of carbon capture and storage schemes, given the very different hazard profiles of CO2 in the gaseous and solid states. In this paper, we apply our state-of-the-art mathematical model implemented in an efficient computational method to available data. Compared to previous applications, an improved equation of state is used. We also compare to all the available data, rather than just subsets as previously, and demonstrate both the improved performance of the fluid flow model and the variation between the available datasets. The condensed phase fraction at the vent, puncture or rupture release point is revealed to be of key importance in understanding the near-field dispersion of sonic CO2.

  4. Studies on reaction runaways for Urex/Purex solvent-nitric acid and red-oil synthesis

    SciTech Connect

    Kumar, Shekhar; Kumar, Rajnish; Koganti, S.B.

    2008-07-01

    In PUREX/UREX processes for recycling of spent nuclear fuels, 30% TBP solvent is used, This solvent has a small solubility in the aqueous phase. During concentration of the process solutions by an evaporation route, a runaway reaction between TBP and nitric acid is initiated at above 130 deg. C, leading to rapid pressurization and finally containment failure if proper venting is not provided. Red oil was synthesized for the first time in India, and its physical properties as well as thermodynamic parameters for the reaction were determined. It was experimentally established that the presence of metallic nitrates was not essential for red-oil formation as thought earlier. Various experiments have been completed for single-phase as well as two-phase runs. The most important finding of this work was lowering of the limiting acid concentration from the conventional values. In fact, in these experiments, red oil could be formed even at 2 N aqueous acidity. Thus, safety guidelines based on the classical literature are obsolete. New guidelines for the red-oil-safety are required. (authors)

  5. Novel metallic alloys as phase change materials for heat storage in direct steam generation applications

    NASA Astrophysics Data System (ADS)

    Nieto-Maestre, J.; Iparraguirre-Torres, I.; Velasco, Z. Amondarain; Kaltzakorta, I.; Zubieta, M. Merchan

    2016-05-01

    Concentrating Solar Power (CSP) is one of the key electricity production renewable energy technologies with a clear distinguishing advantage: the possibility to store the heat generated during the sunny periods, turning it into a dispatchable technology. Current CSP Plants use an intermediate Heat Transfer Fluid (HTF), thermal oil or inorganic salt, to transfer heat from the Solar Field (SF) either to the heat exchanger (HX) unit to produce high pressure steam that can be leaded to a turbine for electricity production, or to the Thermal Energy Storage (TES) system. In recent years, a novel CSP technology is attracting great interest: Direct Steam Generation (DSG). The direct use of water/steam as HTF would lead to lower investment costs for CSP Plants by the suppression of the HX unit. Moreover, water is more environmentally friendly than thermal oils or salts, not flammable and compatible with container materials (pipes, tanks). However, this technology also has some important challenges, being one of the major the need for optimized TES systems. In DSG, from the exergy point of view, optimized TES systems based on two sensible heat TES systems (for preheating of water and superheating vapour) and a latent heat TES system for the evaporation of water (around the 70% of energy) is the preferred solution. This concept has been extensively tested [1, 2, 3] using mainly NaNO3 as latent heat storage medium. Its interesting melting temperature (Tm) of 306°C, considering a driving temperature difference of 10°C, means TES charging steam conditions of 107 bar at 316°C and discharging conditions of 81bar at 296°C. The average value for the heat of fusion (ΔHf) of NaNO3 from literature data is 178 J/g [4]. The main disadvantage of inorganic salts is their very low thermal conductivity (0.5 W/m.K) requiring sophisticated heat exchanging designs. The use of high thermal conductivity eutectic metal alloys has been recently proposed [5, 6, 7] as a feasible alternative. Tms

  6. HYDROGEN STORAGE SOLUTIONS IN SUPPORT OF DOD WARFIGHTER PORTABLE POWER APPLICATIONS

    SciTech Connect

    Motyka, T.

    2009-01-06

    From Personal Digital Assistants (PDAs) to cell phones our high-tech world, today, is demanding smaller, lighter weight and higher capacity portable power devices. Nowhere has this personal power surge been more evident than in today's U.S Warfighter. The modern Warfighter is estimated to carry from 65 to 95 pounds of supplies in the field with over 30 pounds of this dedicated to portable power devices. These devices include computer displays, infrared sights, Global Positioning Systems (GPS), night vision and a variety of other sensor technologies. Over 80% of the energy needed to power these devices comes from primary (disposable) batteries. It is estimated that a brigade will consume as much as 7 tons of batteries in a 72 hour mission at a cost of $700,000. A recent comprehensive study on the energy needs of the future warrior published by the National Academy of Science in 2004 made a variety of recommendations for average power systems from 20 to 1,000 watts. For lower power systems recommendations included pursuing science and technology initiatives focused on: (1) 300 watt-hours per kilogram (Wh/kg) secondary battery technologies; (2) smart hybrids; and (3) fuel cells (with greater than 6 wt% hydrogen storage). Improved secondary (rechargeable) batteries may be the ideal solution for military power systems due to their ease of use and public acceptance. However, a 3X improvement in their specific energy density is not likely anytime soon. Today's Lithium Ion batteries, at about 150 Wh/kg, fall well short of the energy density that is required. Future battery technology may not be the answer since many experts do not predict more than a 2X improvement in Lithium battery systems over the next 10 years. That is why most auto companies have abandoned all electric vehicles in favor of fuel cells and hybrid vehicles. Fuel cells have very high specific energy densities but achieving high energy values will depend on the energy density and the storage method of its

  7. Satellite Observations of Groundwater Storage Variations and Their Application for Water Security Monitoring

    NASA Astrophysics Data System (ADS)

    Rodell, M.; Famiglietti, J. S.; Li, B.; Kumar, S.; Reager, J. T., II

    2015-12-01

    Fresh water demand is steadily increasing around the world due to population growth, economic development, and people's desire for a "western" lifestyle and diet. Where surface water availability is not sufficient or consistent, groundwater is often the resource of choice for agriculture, industry, and municipal and domestic uses. However, unlike lake levels, aquifer levels are unseen and are not easily measured. This can create the illusion of an infinite water source and impede efforts to monitor and conserve groundwater. Moreover, even where depth-to-water measurements do exist, they often are not digitized, centralized, and accessible. The GRACE satellites are a partial solution to this problem, enabling space-based estimates of groundwater variability at regional scales that are not limited by political boundaries. Here we discuss emerging trends in groundwater storage around the world based on GRACE observations and how they can be combined with other information in order attribute these apparent trends and support sub-regional scale analyses of changing groundwater availability.

  8. Computational study of pristine and titanium-doped sodium alanates for hydrogen storage applications

    NASA Astrophysics Data System (ADS)

    Dathar, Gopi Krishna Phani

    The emphasis of this research is to study and elucidate the underlying mechanisms of reversible hydrogen storage in pristine and Ti-doped sodium aluminum hydrides using molecular modeling techniques. An early breakthrough in using complex metal hydrides as hydrogen storage materials is from the research on sodium alanates by Bogdanovic et al., in 1997 reporting reversible hydrogen storage is possible at moderate temperatures and pressures in transition metal doped sodium alanates. Anton reported titanium salts as the best catalysts compared to all other transition metal salts from his further research on transition metal doped sodium alanates. However, a few questions remained unanswered regarding the role of Ti in reversible hydrogen storage of sodium alanates with improved thermodynamics and kinetics of hydrogen desorption. The first question is about the position of transition metal dopants in the sodium aluminum hydride lattice. The position is investigated by identifying the possible sites for titanium dopants in NaAlH4 lattice and studying the structure and dynamics of possible compounds resulting from titanium doping in sodium alanates. The second question is the role of titanium dopants in improved thermodynamics of hydrogen desorption in Ti-doped NaAlH4. Though it is accepted in the literature that formation of TiAl alloys (Ti-Al and TiAl3) is favorable, reaction pathways are not clearly established. Furthermore, the source of aluminum for Ti-Al alloy formation is not clearly understood. The third question in this area is the role of titanium dopants in improved kinetics of hydrogen absorption and desorption in Ti-doped sodium alanates. This study is directed towards addressing the three longstanding questions in this area. Thermodynamic and kinetic pathways for hydrogen desorption in pristine NaAlH4 and formation of Ti-Al alloys in Ti-doped NaAlH 4, are elucidated to understand the underlying mechanisms of hydrogen desorption. Density functional theory

  9. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage

    NASA Astrophysics Data System (ADS)

    Eddaoudi, Mohamed; Kim, Jaheon; Rosi, Nathaniel; Vodak, David; Wachter, Joseph; O'Keeffe, Michael; Yaghi, Omar M.

    2002-01-01

    A strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that allowed the design of porous structures in which pore size and functionality could be varied systematically. Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups -Br, -NH2, -OC3H7, -OC5H11, -C2H4, and -C4H4 and that its pore size can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. We synthesized an isoreticular series (one that has the same framework topology) of 16 highly crystalline materials whose open space represented up to 91.1% of the crystal volume, as well as homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. One member of this series exhibited a high capacity for methane storage (240 cubic centimeters at standard temperature and pressure per gram at 36 atmospheres and ambient temperature), and others the lowest densities (0.41 to 0.21 gram per cubic centimeter) for a crystalline material at room temperature.

  10. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage.

    PubMed

    Eddaoudi, Mohamed; Kim, Jaheon; Rosi, Nathaniel; Vodak, David; Wachter, Joseph; O'Keeffe, Michael; Yaghi, Omar M

    2002-01-18

    A strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that allowed the design of porous structures in which pore size and functionality could be varied systematically. Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups -Br, -NH2, -OC3H7, -OC5H11, -C2H4, and -C4H4 and that its pore size can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. We synthesized an isoreticular series (one that has the same framework topology) of 16 highly crystalline materials whose open space represented up to 91.1% of the crystal volume, as well as homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. One member of this series exhibited a high capacity for methane storage (240 cubic centimeters at standard temperature and pressure per gram at 36 atmospheres and ambient temperature), and others the lowest densities (0.41 to 0.21 gram per cubic centimeter) for a crystalline material at room temperature. PMID:11799235

  11. Porous nitrogen-doped carbon nanotubes derived from tubular polypyrrole for energy-storage applications.

    PubMed

    Xu, Guiyin; Ding, Bing; Nie, Ping; Shen, Laifa; Wang, Jie; Zhang, Xiaogang

    2013-09-01

    Porous nitrogen-doped carbon nanotubes (PNCNTs) with a high specific surface area (1765 m(2)  g(-1)) and a large pore volume (1.28 cm(3)  g(-1)) have been synthesized from a tubular polypyrrole (T-PPY). The inner diameter and wall thickness of the PNCNTs are about 55 nm and 22 nm, respectively. This material shows extremely promising properties for both supercapacitors and for encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur (Li-S) batteries. At a current density of 0.5 A g(-1), PNCNT presents a high specific capacitance of 210 F g(-1), as well as excellent cycling stability at a current density of 2 A g(-1). When the S/PNCNT composite was tested as the cathode material for Li-S batteries, the initial discharge capacity was 1341 mA h g(-1) at a current rate of 1 C and, even after 50 cycles at the same rate, the high reversible capacity was retained at 933 mA h g(-1). The promising electrochemical energy-storage performance of the PNCNTs can be attributed to their excellent conductivity, large surface area, nitrogen doping, and unique pore-size distribution. PMID:23881725

  12. Osteochondral allograft transplantation in cartilage repair: Graft storage paradigm, translational models, and clinical applications.

    PubMed

    Bugbee, William D; Pallante-Kichura, Andrea L; Görtz, Simon; Amiel, David; Sah, Robert

    2016-01-01

    The treatment of articular cartilage injury and disease has become an increasingly relevant part of orthopaedic care. Articular cartilage transplantation, in the form of osteochondral allografting, is one of the most established techniques for restoration of articular cartilage. Our research efforts over the last two decades have supported the transformation of this procedure from experimental "niche" status to a cornerstone of orthopaedic practice. In this Kappa Delta paper, we describe our translational and clinical science contributions to this transformation: (1) to enhance the ability of tissue banks to process and deliver viable tissue to surgeons and patients, (2) to improve the biological understanding of in vivo cartilage and bone remodeling following osteochondral allograft (OCA) transplantation in an animal model system, (3) to define effective surgical techniques and pitfalls, and (4) to identify and clarify clinical indications and outcomes. The combination of coordinated basic and clinical studies is part of our continuing comprehensive academic OCA transplant program. Taken together, the results have led to the current standards for OCA processing and storage prior to implantation and also novel observations and mechanisms of the biological and clinical behavior of OCA transplants in vivo. Thus, OCA transplantation is now a successful and increasingly available treatment for patients with disabling osteoarticular cartilage pathology. PMID:26234194

  13. Applications of nano and smart materials in renewable energy production and storage devices

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.

    2015-03-01

    This paper presents development of renewable energy production and storage devices employing nanomaterials and smart materials. The use of carbon nanotubes (CNTs) and graphene nanosheets (GNS) to improve the performance and durability of wind turbine and wave rotor blades will be explained. While GNS are primary used for the performance enhancement of the resin system called Nanoresin, CNT Nanoforests and Nanofilms are used to improve the performance of fiber systems in high-performance Nanocomposites. In addition, the use of CNTs and piezo-nanofibers will be explained as the health monitoring and smart systems within the composites. A self-healing mechanism will also be explained within the composites using these materials. Next the use of CNTs as gas diffusion layers and CNTs combined with in-situ generated platinum nanoparticles as catalyst layers will be explained to improve the performance, efficiency, and durability of proton exchange membrane fuel cells while reducing their costs, weight, and size. In addition, the use of CNTs and GNSs to improve the efficiency and performance of polymer solar cells will be explained. Finally, the use of CNTs and GNSs to enhance the performance, efficiency, and durability of batteries and supercapacitors while reducing their costs, weight, and size will be discussed.

  14. ASSESSMENT OF THE APPLICABILITY OF CHEMICAL OXIDATION TECHNOLOGIES FOR THE TREATMENT OF CONTAMINANTS AT LEAKING UNDERGROUND STORAGE TANK (LUST) SITES

    EPA Science Inventory

    The total number of confirmed releases from underground storage tanks is increasing rapidly. In addition, the treatment of contaminants in soil and groundwater at leaking underground storage tank (LUST) sites presents complex technical challenges. Most of the remedial technologie...

  15. ASSESSMENT OF THE APPLICABILITY OF CHEMICAL OXIDATION TECHNOLOGIES FOR THE TREATMENT OF CONTAMINANTS AT LEAKING UNDERGROUND STORAGE TANK (LUST) SITES

    EPA Science Inventory

    The total number of confirmed releases from underground storage tanks is increasing rapidly. n addition, the treatment of contaminants in soil and groundwater at leaking underground storage tank (LUST) sites presents complex technical challenges. ost of the remedial technologies ...

  16. A database application for pre-processing, storage and comparison of mass spectra derived from patients and controls

    PubMed Central

    Titulaer, Mark K; Siccama, Ivar; Dekker, Lennard J; van Rijswijk, Angelique LCT; Heeren, Ron MA; Sillevis Smitt, Peter A; Luider, Theo M

    2006-01-01

    Background Statistical comparison of peptide profiles in biomarker discovery requires fast, user-friendly software for high throughput data analysis. Important features are flexibility in changing input variables and statistical analysis of peptides that are differentially expressed between patient and control groups. In addition, integration the mass spectrometry data with the results of other experiments, such as microarray analysis, and information from other databases requires a central storage of the profile matrix, where protein id's can be added to peptide masses of interest. Results A new database application is presented, to detect and identify significantly differentially expressed peptides in peptide profiles obtained from body fluids of patient and control groups. The presented modular software is capable of central storage of mass spectra and results in fast analysis. The software architecture consists of 4 pillars, 1) a Graphical User Interface written in Java, 2) a MySQL database, which contains all metadata, such as experiment numbers and sample codes, 3) a FTP (File Transport Protocol) server to store all raw mass spectrometry files and processed data, and 4) the software package R, which is used for modular statistical calculations, such as the Wilcoxon-Mann-Whitney rank sum test. Statistic analysis by the Wilcoxon-Mann-Whitney test in R demonstrates that peptide-profiles of two patient groups 1) breast cancer patients with leptomeningeal metastases and 2) prostate cancer patients in end stage disease can be distinguished from those of control groups. Conclusion The database application is capable to distinguish patient Matrix Assisted Laser Desorption Ionization (MALDI-TOF) peptide profiles from control groups using large size datasets. The modular architecture of the application makes it possible to adapt the application to handle also large sized data from MS/MS- and Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry

  17. Application of Quantitative NDE Techniques to High Level Waste Storage Tanks

    SciTech Connect

    Thompson, R. B.; Rehbein, D. K.; Bastiaans, G.; Terry, M.; Alers, R.

    2002-02-25

    As various issues make the continued usage of high-level waste storage tanks attractive, there is an increasing need to sharpen the assessment of their structural integrity. One aspect of a structural integrity program, nondestructive evaluation, is the focus of this paper. In September 2000, a program to support the sites was initiated jointly by Tanks Focus Area and Characterization, Monitoring, and Sensor Technologies Crosscutting Program of the Office of Environmental Management, Department of Energy (DOE). The vehicle was the Center for Nondestructive Evaluation, one of the National Science Foundation's Industry/University Cooperative Research Centers that is operated in close collaboration with the Ames Laboratory, USDOE. The support activities that have been provided by the center will be reviewed. Included are the organization of a series of annual workshops to allow the sites to share experiences and develop coordinated approaches to common problems, the development of an electronic source of relevant information, and assistance of the sites on particular technical problems. Directions and early results on some of these technical assistance projects are emphasized. Included are the discussion of theoretical analysis of ultrasonic wave propagation in curved plates to support the interpretation of tandem synthetic aperture focusing data to detect flaws in the knuckle region of double shell tanks; the evaluation of guided ultrasonic waves, excited by couplant free, electromagnetic acoustic transducers, to rapidly screen for inner wall corrosion in tanks; the use of spread spectrum techniques to gain information about the structural integrity of concrete domes; and the use of magnetic techniques to identify the alloys used in the construction of tanks.

  18. First-principles studies of complex hydrides for lithium-ion battery and hydrogen storage applications

    NASA Astrophysics Data System (ADS)

    Mason, Timothy Hudson

    We employ density functional theory in a computational study of two energy storage systems. In the first, we explore the thermodynamic viability of light metal hydrides as a high capacity Li-ion battery negative electrode. Given a set of solid-state and gas-phase reactants, we have determined the phase diagram in the Li-Mg-B-N-H system in the grand canonical ensemble as a function of lithium electrochemical potential. We present computational results for several new conversion reactions with predicted capacities between 2400 and 4000 mAhg-1 that are thermodynamically favorable and that do not involve gas evolution. We provide experimental evidence for the reaction pathway on delithiation for the compound Li4BN3H10 and compare with our theoretical prediction. The maximum volume increase for these materials on lithium insertion is significantly smaller than that for Si, whose 400% expansion hinders its cyclability. In the second study, we attempt to gain understanding of recent experimental results of lithium borohydride nanoconfined in highly ordered nanoporous carbon. The carbon environment is modeled as a single sheet of graphene, and adsorption energies are calculated for nanoparticles of the constituent phases of LiBH 4 desorption processes (LiBH4, LiH, lithium and boron). We find good agreement with previous studies of a single lithium atom adsorbed onto graphene. We predict that infiltrated LiBH4 will decompose such that boron is trapped in carbon vacancies, and that the resulting boron doping is required to achieve negative wetting energies for the remaining LiBH4. Desorption enthalpies are found to increase with shrinking cluster sizes, suggesting that the observed lowering of desorption temperatures is a kinetic effect although interactions with the carbon surface itself are predicted to have an overall effect of decreasing the desorption enthalpy .

  19. Database application of digital medical X-rays and labs: computerization, storage, retrieval, interpretation, and distribution.

    PubMed

    Hatcher, Myron; Tabriziani, Hossein; Heetebry, Irene

    2005-08-01

    Stenter lets the health care worker order an X-ray that is produced as a computer image rather than on flat film. The health care provider can be in any location with the correct equipment, and view the digital image. The dimensions of this discussion are extensive. The cost savings because of reduced media and storage cost is substantial. Health care quality can be improved because of the ability to obtain consultation via telemedicine and the enhanced ability to track medical problems over time via trends. The major downside is the limited cost imbursement system to pay for technology. Unfortunately, this may impact on the improved quality of care. In simple terms someone needs to pay for the technology and the quality of health care needs to be maintained or improved. The real cost to the health care systems needs to be correctly calculated and inappropriate charging kept to a minimum. Specific costs need to be kept in mind and the first is the cost for new staff or staff training. The number of health care providers that are able to read the X-ray can be enlarged remembering that only American Board Certified Radiologists are allowed to give the final recommendation. How do we view the cost of missing something? It could be argued that this risk will be reduced because of improved technology for obtaining the digital X-ray and improved enhancement software. One way to view this situation is to include technology, management, and organization. The cost and benefits occur through the interplay of all three dimensions. The development of digital imaging hardware and artificial intelligence software will demand change in the management and organization. The organization will require changes in its design to accommodate the technology as to support and resources. Management will evolve to include methods for control and monitoring this technology. Business processes and standard operating procedures will change to integrate the technology into the organization in

  20. Conceptual design of thermal energy storage systems for near term electric utility applications

    NASA Technical Reports Server (NTRS)

    Hall, E. W.; Hausz, W.; Anand, R.; Lamarche, N.; Oplinger, J.; Katzer, M.

    1979-01-01

    Potential concepts for near term electric utility applications were identified. The most promising ones for conceptual design were evaluated for their economic feasibility and cost benefits. The screening process resulted in selecting two coal-fired and two nuclear plants for detailed conceptual design. The coal plants utilized peaking turbines and the nuclear plants varied the feedwater extraction to change power output. It was shown that the performance and costs of even the best of these systems could not compete in near term utility applications with cycling coal plants and typical gas turbines available for peaking power. Lower electricity costs, greater flexibility of operation, and other benefits can be provided by cycling coal plants for greater than 1500 hours of peaking or by gas turbines for less than 1500 hours if oil is available and its cost does not increase significantly.

  1. Nanotechnologies for efficient solar and wind energy harvesting and storage in smart-grid and transportation applications

    NASA Astrophysics Data System (ADS)

    Eldada, Louay

    2011-01-01

    A wide array of nanotechnologies can be used to improve the efficiency of energy harvest from the Sun and the wind, and the efficiency of energy storage in secondary batteries, for use in smart grid and transportation applications. High-quality nanostructured copper indium gallium selenide thin films help produce high-efficiency photovoltaic modules. Various nanotechnologies are utilized to improve the efficiency of power-generating wind turbines, including nanoparticle-containing lubricants that reduce the friction generated from the rotation of the turbines, nanocoatings for de-icing and self-cleaning technologies, and advanced nanocomposites that provide lighter and stronger wind blades. A number of nanotechnologies can be beneficial in advanced high-capacity secondary batteries for smart grid and transportation applications. These technologies include nanostructured carbon-nanotube-based and silicon-nanowire-based electrodes with ultrahigh surface areas, as well as nanoengineered β-alumina ceramic electrolytes with well-controlled grains, grain boundaries, and crystal orientation, which are used to boost the energy and power densities in secondary batteries such as lithium-ion, sodium-sulfur, flow, and dry cell batteries.

  2. Resource Conservation and Recovery Act (RCRA) Part B permit application for container storage units at the Oak Ridge Y-12 Plant

    SciTech Connect

    Not Available

    1994-08-01

    This document contains Part B of the Permit Application for Container Storage Units at the Oak Ridge Y-12 Plant. Sections cover the following areas: Facility description; Waste characteristics; Process information; Ground water monitoring; Procedures to prevent hazards; Contingency plan; Personnel training; Closure plan, post closure plan, and financial requirements; Recordkeeping; Other federal laws; Organic air emissions; Solid waste management units; and Certification.

  3. NMR Investigations of Structure and Dynamics in Polymers for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Greenbaum, Steven

    Materials innovation is needed to realize major progress in energy storage capacity for lithium batteries and capacitors. Polymers hold considerable promise as ion conducting media in batteries and electrochemical capacitors and as dielectrics in thin film capacitors. Structural studies of materials utilized in lithium battery technology are hampered by the lack of long-range order found in well-defined crystalline phases. Powder x-ray diffraction yields structural parameters that have been averaged over hundreds of lattice sites, and is unable to provide structural information about amorphous phases. Our laboratory uses solid state nuclear magnetic resonance (NMR) methods to investigate structural and chemical aspects of lithium ion cathodes, anodes, electrolytes, interfaces and interphases. NMR is element- (nuclear-) specific and sensitive to small variations in the immediate environment of the ions being probed, for example Li+, and in most cases is a reliably quantitative spectroscopy in that the integrated intensity of a particular spectral component is directly proportional to the number of nuclei in the corresponding material phase. NMR is also a powerful tool for probing ionic and molecular motion in lithium battery electrolytes with a dynamic range spanning some ten orders of magnitude through spin-lattice relaxation and self-diffusion measurements. Broadband relaxometry based on Fast Field Cycling NMR (FFCNMR) methods can span three to four of these orders of magnitude in a single set of measurements. Results of several recent NMR investigations performed on our lab will be presented. We explore the ion transport mechanism in polyether-based and lithium polymer electrolytes and those based on other base polymers, in particular, the extent to which ionic motion is coupled to polymer segmental motion. Polycarbonates are being considered as a possible replacement for polypropylene in high power thin film capacitors due to their favorable dielectric

  4. Evaluation and Optimization of Porous and Hierarchically Porous Materials for Applications in Energy Storage and Conversion

    NASA Astrophysics Data System (ADS)

    Petkovich, Nicholas Daniel

    Materials with nm- and mum-scale pores are important in the design of efficient, safe, and versatile energy conversion and storage systems. In the research detailed in this thesis, the synthesis and testing of porous materials for lithium-ion battery anodes and for thermochemical fuel production are explored. The preparation, modification, and performance of various carbon and transition metal oxide composite materials for lithium-ion battery electrodes are discussed in the first part of this work. Of particular interest are TiO 2/carbon composites that possess a three-dimensionally ordered macroporous (3DOM) structure, and, in some instances, additional mesoporosity. By changing the chelating agent used to stabilize the precursor for TiO2, crystallites of TiO2 can either be localized on the surface of the 3DOM structure or buried within the carbon matrix. This positioning has important ramifications for the electrochemical properties of the materials. In addition, the content of carbon in the composite materials can be altered. For carbon-rich composites, improved Li+ insertion/extraction capacities are attained by changing the voltage window used for cycling. Carbon can also be removed altogether, allowing for the formation 3DOM TiO¬2 with good electrochemical properties Conversion of the 3DOM TiO2 to sodium titanate is demonstrated via the ambient pressure treatment of the 3DOM material in sodium hydroxide. Subsequent ion-exchange with H+ results in the formation of hydrogen titanate materials with extremely high surface areas. A remnant of the 3DOM structure remains in these materials. Cerium oxide, praseodymium oxide and perovskite oxide-based catalysts for the thermochemical conversion of solar energy and abundant feedstocks (H2O and CO2) into useable fuels (H2 and CO) are investigated in the second part of this work. All of these materials possess a 3DOM structure and have moderate surface areas intended to improve reaction kinetics. Mixed oxides containing

  5. Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation

    SciTech Connect

    Qui, Songgang; Galbraith, Ross

    2013-01-23

    This final report summarizes the final results of the Phase II Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation project being performed by Infinia Corporation for the U.S. Department of Energy under contract DE-FC36-08GO18157 during the project period of September 1, 2009 - August 30, 2012. The primary objective of this project is to demonstrate the practicality of integrating thermal energy storage (TES) modules, using a suitable thermal salt phase-change material (PCM) as its medium, with a dish/Stirling engine; enabling the system to operate during cloud transients and to provide dispatchable power for 4 to 6 hours after sunset. A laboratory prototype designed to provide 3 kW-h of net electrical output was constructed and tested at Infinia's Ogden Headquarters. In the course of the testing, it was determined that the system's heat pipe network - used to transfer incoming heat from the solar receiver to both the Stirling generator heater head and to the phase change salt - did not perform to expectations. The heat pipes had limited capacity to deliver sufficient heat energy to the generator and salt mass while in a charging mode, which was highly dependent on the orientation of the device (vertical versus horizontal). In addition, the TES system was only able to extract about 30 to 40% of the expected amount of energy from the phase change salt once it was fully molten. However, the use of heat pipes to transfer heat energy to and from a thermal energy storage medium is a key technical innovation, and the project team feels that the limitations of the current device could be greatly improved with further development. A detailed study of manufacturing costs using the prototype TES module as a basis indicates that meeting DOE LCOE goals with this hardware requires significant efforts. Improvement can be made by implementing aggressive cost-down initiatives in design and materials, improving system

  6. Storage Rings

    SciTech Connect

    Fischer, W.

    2011-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10{sup -6} eV to 3.5 x 10{sup 12} eV (LHC, 7 x 10{sup 12} eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or

  7. Two-photon polarization data storage in bacteriorhodopsin films and its potential use in security applications

    NASA Astrophysics Data System (ADS)

    Imhof, Martin; Rhinow, Daniel; Hampp, Norbert

    2014-02-01

    Bacteriorhodopsin (BR) films allow write-once-read-many recording of polarization data by a two-photon-absorption (TPA) process. The optical changes in BR films induced by the TPA recording were measured and the Müller matrix of a BR film was determined. A potential application of BR films in security technology is shown. Polarization data can be angle-selective retrieved with high signal-to-noise ratio. The BR film does not only carry optical information but serves also as a linear polarizer. This enables that polarization features recorded in BR films may be retrieved by merely using polarized light from a mobile phone display.

  8. Two-photon polarization data storage in bacteriorhodopsin films and its potential use in security applications

    SciTech Connect

    Imhof, Martin; Hampp, Norbert; Rhinow, Daniel

    2014-02-24

    Bacteriorhodopsin (BR) films allow write-once-read-many recording of polarization data by a two-photon-absorption (TPA) process. The optical changes in BR films induced by the TPA recording were measured and the Müller matrix of a BR film was determined. A potential application of BR films in security technology is shown. Polarization data can be angle-selective retrieved with high signal-to-noise ratio. The BR film does not only carry optical information but serves also as a linear polarizer. This enables that polarization features recorded in BR films may be retrieved by merely using polarized light from a mobile phone display.

  9. Metal-organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications.

    PubMed

    Ramaraju, Bendi; Li, Cheng-Hung; Prakash, Sengodu; Chen, Chia-Chun

    2016-01-18

    A composite made from hollow polyhedron copper oxide and graphene oxide was synthesized by sintering a Cu-based metal-organic framework (Cu-MOF) embedded with exfoliated graphene oxide. As a proof-of-concept application, the obtained Cu(ox)-rGO materials were used in a lithium-ion battery and a sodium-ion battery as anode materials. Overall, the Cu(ox)-rGO composite delivers excellent electrochemical properties with stable cycling when compared to pure CuO-rGO and Cu-MOF. PMID:26587567

  10. Facile Synthesis of Chevrel Phase Nanocubes and their Applications for Multivalent Energy Storage

    SciTech Connect

    Cheng, Yingwen; Parent, Lucas R.; Shao, Yuyan; Wang, Chong M.; Sprenkle, Vincent L.; Li, Guosheng; Liu, Jun

    2014-08-14

    The Chevrel phases (CPs, MxMo6T8, M=metal, T=S or Se) are capable of rapid and reversible intercalation of multivalent ions and are the most practical cathode materials for rechargeable magnesium batteries. For the first time, we report a facile method for synthesizing Mo6S8 nanoparticles and demonstrate that these nanoparticles have significantly better Mg2+ intercalation kinetics compared with microparticles. The results described in this work could inspire the synthesis of nanoscale CPs, which could substantially impact their application.

  11. Comparative life cycle assessment of battery storage systems for stationary applications.

    PubMed

    Hiremath, Mitavachan; Derendorf, Karen; Vogt, Thomas

    2015-04-21

    This paper presents a comparative life cycle assessment of cumulative energy demand (CED) and global warming potential (GWP) of four stationary battery technologies: lithium-ion, lead-acid, sodium-sulfur, and vanadium-redox-flow. The analyses were carried out for a complete utilization of their cycle life and for six different stationary applications. Due to its lower CED and GWP impacts, a qualitative analysis of lithium-ion was carried out to assess the impacts of its process chains on 17 midpoint impact categories using ReCiPe-2008 methodology. It was found that in general the use stage of batteries dominates their life cycle impacts significantly. It is therefore misleading to compare the environmental performance of batteries only on a mass or capacity basis at the manufacturing outlet ("cradle-to-gate analyses") while neglecting their use stage impacts, especially when they have different characteristic parameters. Furthermore, the relative ranking of batteries does not show a significant dependency on the investigated stationary application scenarios in most cases. Based on the results obtained, the authors go on to recommend the deployment of batteries with higher round-trip efficiency, such as lithium-ion, for stationary grid operation in the first instance. PMID:25798660

  12. Characterization of decoherence in electromagnetically induced transparency for applications in storage of light

    NASA Astrophysics Data System (ADS)

    Figueroa, Eden; Appel, Juergen; Vewinger, Frank; Lvovsky, Alexander

    2007-06-01

    Electromagnetically-induced transparency (EIT) has many applications in quantum information, particularly in quantum memory for light [1]. These applications require understanding of the phenomena responsible for decoherence in such processes. Insight into this question can be gained by measuring the width of the EIT resonance as a function of the pump field intensity. We report characterization of EIT resonances in the D1 line of Rb 87 under various experimental conditions. The dependence of the EIT linewidth on the power of the control field was investigated, at various temperatures, for lambda level configurations associated with different hyperfine levels of the atomic ground state as well as magnetic sublevels of the same hyperfine level. Strictly linear behavior was observed in all cases. Our results were inconsistent with a widely accepted theory where population exchange between the ground levels is assumed to be the main decoherence mechanism [2]. We therefore formulated a new theory assuming pure dephasing (decay of off-diagonal matrix elements) as the new mechanism. Our data shows this theory to be in good agreement with our experiments. 1. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001). 2. H. Lee, Y. Rostovtsev, C. J. Bednar, and A. Javan, Appl. Phys. B 76, 33 (2003).

  13. Phosphonium chloride for thermal storage

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    Development of systems for storage of thermal energy is discussed. Application of phosphonium chloride for heat storage through reversible dissociation is described. Chemical, physical, and thermodynamic properties of phosphonium chloride are analyzed and dangers in using phosphonium chloride are explained.

  14. Polymer alloys with balanced heat storage capacity and engineering attributes and applications thereof

    DOEpatents

    Soroushian, Parviz

    2002-01-01

    A thermoplastic polymer of relatively low melt temperature is blended with at least one of thermosets, elastomers, and thermoplastics of relatively high melt temperature in order to produce a polymer blend which absorbs relatively high quantities of latent heat without melting or major loss of physical and mechanical characteristics as temperature is raised above the melting temperature of the low-melt-temperature thermoplastic. The polymer blend can be modified by the addition of at least one of fillers, fibers, fire retardants, compatibilisers, colorants, and processing aids. The polymer blend may be used in applications where advantage can be taken of the absorption of excess heat by a component which remains solid and retains major fractions of its physical and mechanical characteristics while absorbing relatively high quantities of latent heat.

  15. A study pertaining to inertial energy storage machine designs for space applications

    NASA Technical Reports Server (NTRS)

    Zowarka, R. C.

    1981-01-01

    The preliminary design of a counterrotating fast discharge homopolar generator (HPG) and a counterrotating active rotary flux compressor (CARFC) for space application is reported. The HPG is a counterrotating spool-type homopolar with superconducting field coil excitation. It delivers a 20-ms, 145-kJ pulse to a magnetoplasmahydrodynamic thruster. The peak output current is 42.7 kA at 240 V. After 20 ms the current is 29.7 kA at 167 V. The CARFC delivers ten 50-kJ, 250 microsecond pulses at 50-ms interval to six Xenon flash lamps pumping an Nd glass laser. The flux compressor is counterrotating for torque compensation. Current is started in the machine with a 5-kV, 5-kJ pulse-charged capacitor. Both designs were based upon demonstrated technology. The sensitivity of the designs to technology that may be available in five to ten years was determined.

  16. Polythiophene-carbon nanotubes composites as energy storage materials for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Thakur, A. K.; Choudhary, R. B.; Sartale, S. D.; Desai, Mangesh

    2016-05-01

    Polythiophene incorporated carbon materials have sought huge attention due to various improved electrochemical properties including enhanced electrical conductivity. Our work includes the synthesis of polythiophene (PTP)-multi-wallcarbon nanotubes (MWCNTs) via in-situ polymerization method. The homogeneous distribution of MWCNT in PTP was confirmed by Field Emission Scanning Electron Microscope (FESEM). Examination of the specimen using X-Ray diffraction (XRD), Fourier Transform-Infrared (FTIR) and Raman spectroscopy confirmed the composite formation. Other electrochemical characterizations like electrochemical impendence spectroscopy (EIS) and cyclic voltammetry (CV)of the PTP-MWCNT composite affirmed that incorporation of MWCNT improves the electrochemical properties of neat PTP including a significant increase in the capacitance. Hence making PTP-MWCNT isa better material for supercapacitor application than neat PTP.

  17. Long term storage of virus templated fluorescent materials for sensing applications

    NASA Astrophysics Data System (ADS)

    Seetharam, Raviraja N.; Szuchmacher Blum, Amy; Soto, Carissa M.; Whitley, Jessica L.; Sapsford, Kim E.; Chatterji, Anju; Lin, Tianwei; Johnson, John E.; Guerra, Charles; Satir, Peter; Ratna, Banahalli R.

    2008-03-01

    Wild type, mutant, and chemically modified Cowpea mosaic viruses (CPMV) were studied for long term preservation in the presence and absence of cryoprotectants. Viral complexes were reconstituted and tested via fluorescence spectroscopy and a UV/vis-based RNase assay for structural integrity. When viruses lyophilized in the absence of cryoprotectant were rehydrated and RNase treated, UV absorption increased, indicating that the capsids were damaged. The addition of trehalose during lyophilization protected capsid integrity for at least 7 weeks. Measurements of the fluorescence peak maximum of CPMV lyophilized with trehalose and reconstituted also indicate that the virus remained intact. Microarray binding assays indicated that CPMV particles chemically modified for use as a fluorescent tracer were intact and retained binding specificity after lyophilization in the presence of trehalose. Thus, we demonstrate that functionalized CPMV nanostructures can be stored for the long term, enabling their use in practical sensing applications.

  18. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  19. Optical Storage Developments--Write-Once Media.

    ERIC Educational Resources Information Center

    Edwards, Ian C.

    1987-01-01

    Discusses the user benefits of write-once optical storage devices; describes typical applications in archival storage, one-off complex instruction sets, and information storage and retrieval systems; and identifies current trends toward standardization of equipment. (CLB)

  20. Systems analysis of thermal storage

    NASA Astrophysics Data System (ADS)

    Copeland, R. J.

    1981-08-01

    Analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. Thermal storage concepts were evaluated for a liquid metal receiver. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts studied, include ground-mounted thermal storage for parabolic dishes with Stirling engines.

  1. Estimating CO2 storage capacity in saline aquifers: Revisited concept and application to the Bécancour area (Québec, Canada)

    NASA Astrophysics Data System (ADS)

    Dung Tran Ngoc, Tien; Lefebvre, René; Malo, Michel; Doughty, Christine

    2013-04-01

    Knowledge of effective storage capacity is needed to assess CO2 geological storage projects. Although many efforts have been made to define and estimate storage capacity in deep saline aquifers, it is a complex issue due to the multiphase-multicomponent displacement processes involved. There are difficulties and differing views about the use of existing dynamic/static capacity estimation approaches, especially regarding the application of these approaches to various types of reservoirs. In this research, a revised methodology to assess the amount of CO2 that can be injected into a saline aquifer is presented in terms of reservoir boundaries, capacity definitions and efficiency storage factors. For the dynamic approach, the TOUGH2 numerical simulator was used to calculate the CO2 storage capacity for a bounded reservoir volume, using a definition of "capacity" based on the mass of all forms of CO2 present in the reservoir after injection (mobile, immobile and dissolved). It is necessary to distinguish the efficiency storage factors, and thus the storage capacity, that are estimated on mass or volume basis because the factors based on mass are greater than the ones based on volume. Local and global efficiency storage factors are respectively averaged over domains containing CO2 and the whole reservoir and they change with space and time. For the static approach (i.e. USDOE volumetric and compressibility methods), in order to compute the storage capacity the only difficulty resides in the estimation of the efficiency storage factors, which are related to the areal, vertical, gravity and microscopic displacements in the volumetric static method. These factors were quantitatively estimated from correlations used in petroleum engineering to relate multiphase displacement processes with dimensionless numbers. The methodology proposed herein was applied to the estimation of the CO2 effective storage capacity of the deep saline aquifers of the Potsdam sandstones in the B

  2. Smart nickel oxide materials for the applications of energy efficiency and storage

    NASA Astrophysics Data System (ADS)

    Lin, Feng

    The present dissertation studies nickel oxide-based materials for the application of electrochromic windows and lithium-air batteries. The materials were fabricated via radio frequency magnetron sputtering and subsequently post-treated with thermal evaporation and ozone exposure. The strategies to improve electrochromic performance of nickel oxide materials were investigated including compositional control, morphology tuning, modification of electronic structure and interface engineering (i.e., Li2O 2, graphene). The electrochemical properties of the resulting materials were characterized in lithium ion electrolytes. Extremely high performing nickel oxide-based electrochromic materials were obtained in terms of optical modulation, switching kinetics, bleached-state transparency and durability, which promise the implementation of these materials for practical smart windows. With the aid of advanced synchrotron X-ray absorption spectroscopy, it is reported for the first time that the electrochromic effect in multicomponent nickel oxide-based materials arises from the reversible formation of hole states in the NiO6 cluster accompanying with the reversible formation of Li2O2. The reversible formation of Li2O 2 was successfully leveraged with the study of electro-catalysts and cathode materials for lithium-air batteries. The reversibility of Li 2O2 was thoroughly investigated using soft X-ray absorption spectroscopy and theoretical simulation, which substantiates the promise of using electrochromic films as electro-catalysts and/or cathode materials in lithium-air batteries.

  3. On Pore Dynamics and Calcite Solubility in Carbonaceous Aquifers used in Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Tilley, Bs; Brady, Ds; Ueckert, M.; Baumann, T.

    2015-11-01

    Geothermal energy harvesting applications use deep groundwater aquifers to store harvested energy. The impact of this additional energy to the aquifer chemistry is crucial for long-term operation. Gaseous CO2 is added to the injected water to compensate potential precipitates of carbonates and to prevent structural changes to the aquifer. Both of these effects affect the local chemical equilibrium of the aquifer, and we consider a long-wave model of this process for a single axisymmetric pore where gaseous CO2 concentration, temperature, fluid flow and hydrochemistry modify the pore radius in space and time. Substrates are composed of calcite and dolomite, whose composition evolution is part of the full pore problem. During oscillatory flow conditions, concentration levels of the dissolved species can be sufficient to overcome elevated temperature levels and promote pore closure for sufficiently thin pores. We identify the conditions under which this pore closure takes place. Support from the Bavarian State Ministry for the Economy is gratefully acknowledged.

  4. 25th anniversary article: polymer-particle composites: phase stability and applications in electrochemical energy storage.

    PubMed

    Srivastava, Samanvaya; Schaefer, Jennifer L; Yang, Zichao; Tu, Zhengyuan; Archer, Lynden A

    2014-01-15

    Polymer-particle composites are used in virtually every field of technology. When the particles approach nanometer dimensions, large interfacial regions are created. In favorable situations, the spatial distribution of these interfaces can be controlled to create new hybrid materials with physical and transport properties inaccessible in their constituents or poorly prepared mixtures. This review surveys progress in the last decade in understanding phase behavior, structure, and properties of nanoparticle-polymer composites. The review takes a decidedly polymers perspective and explores how physical and chemical approaches may be employed to create hybrids with controlled distribution of particles. Applications are studied in two contexts of contemporary interest: battery electrolytes and electrodes. In the former, the role of dispersed and aggregated particles on ion-transport is considered. In the latter, the polymer is employed in such small quantities that it has been historically given titles such as binder and carbon precursor that underscore its perceived secondary role. Considering the myriad functions the binder plays in an electrode, it is surprising that highly filled composites have not received more attention. Opportunities in this and related areas are highlighted where recent advances in synthesis and polymer science are inspiring new approaches, and where newcomers to the field could make important contributions. PMID:24323839

  5. Phosphonate-Derived Nanoporous Metal Phosphates and Their Superior Energy Storage Application.

    PubMed

    Pramanik, Malay; Salunkhe, Rahul R; Imura, Masataka; Yamauchi, Yusuke

    2016-04-20

    Nanoporous nickel, aluminum, and zirconium phosphates (hereafter, abbreviated as NiP, AlP, and ZrP, respectively) with high surface areas and controlled morphology and crystallinity have been synthesized through simple calcination of the corresponding phosphonates. For the preparation of phosphonate materials, nitrilotris(methylene)triphosphonic acid (NMPA) is used as phosphorus source. The organic component in the phosphonate materials is thermally removed to form nanoporous structures in the final phosphate materials. The formation mechanism of nanoporous structures, as well as the effect of applied calcination temperatures on the morphology and crystallinity of the final phosphate materials, is carefully discussed. Especially, nanoporous NiP materials have a spherical morphology with a high surface area and can have great applicability as an electrode material for supercapacitors. It has been found that there is a critical effect of particle sizes, surface areas, and the crystallinities of NiP materials toward electrochemical behavior. Our nanoporous NiP material has superior specific capacitance, as compared to various phosphate nanomaterials reported previously. Excellent retention capacity of 97% is realized even after 1000 cycles, which can be ascribed to its high structural stability. PMID:27028363

  6. Open systems storage platforms

    NASA Technical Reports Server (NTRS)

    Collins, Kirby

    1992-01-01

    The building blocks for an open storage system includes a system platform, a selection of storage devices and interfaces, system software, and storage applications CONVEX storage systems are based on the DS Series Data Server systems. These systems are a variant of the C3200 supercomputer with expanded I/O capabilities. These systems support a variety of medium and high speed interfaces to networks and peripherals. System software is provided in the form of ConvexOS, a POSIX compliant derivative of 4.3BSD UNIX. Storage applications include products such as UNITREE and EMASS. With the DS Series of storage systems, Convex has developed a set of products which provide open system solutions for storage management applications. The systems are highly modular, assembled from off the shelf components with industry standard interfaces. The C Series system architecture provides a stable base, with the performance and reliability of a general purpose platform. This combination of a proven system architecture with a variety of choices in peripherals and application software allows wide flexibility in configurations, and delivers the benefits of open systems to the mass storage world.

  7. Wind-energy storage

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1980-01-01

    Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.

  8. Nanoarchitectures based on layered titanosilicates supported on glass fibers: application to hydrogen storage.

    PubMed

    Pérez-Carvajal, Javier; Aranda, Pilar; Berenguer-Murcia, Angel; Cazorla-Amorós, Diego; Coronas, Joaquín; Ruiz-Hitzky, Eduardo

    2013-06-18

    This work reports on the synthesis of nanosheets of layered titanosilicate JDF-L1 supported on commercial E-type glass fibers with the aim of developing novel nanoarchitectures useful as robust and easy to handle hydrogen adsorbents. The preparation of those materials is carried out by hydrothermal reaction from the corresponding gel precursor in the presence of the glass support. Because of the basic character of the synthesis media, silica from the silicate-based glass fibers can be involved in the reaction, cementing its associated titanosilicate and giving rise to strong linkages on the support with the result of very stable heterostructures. The nanoarchitectures built up by this approach promote the growth and disposition of the titanosilicate nanosheets as a house-of-cards radially distributed around the fiber axis. Such an open arrangement represents suitable geometry for potential uses in adsorption and catalytic applications where the active surface has to be available. The content of the titanosilicate crystalline phase in the system represents about 12 wt %, and this percentage of the adsorbent fraction can achieve, at 298 K and 20 MPa, 0.14 wt % hydrogen adsorption with respect to the total mass of the system. Following postsynthesis treatments, small amounts of Pd (<0.1 wt %) have been incorporated into the resulting nanoarchitectures in order to improve their hydrogen adsorption capacity. In this way, Pd-layered titanosilicate supported on glass fibers has been tested as a hydrogen adsorbent at diverse pressures and temperatures, giving rise to values around 0.46 wt % at 298 K and 20 MPa. A mechanism of hydrogen spillover involving the titanosilicate framework and the Pd nanoparticules has been proposed to explain the high increase in the hydrogen uptake capacity after the incorporation of Pd into the nanoarchitecture. PMID:23270562

  9. A 72% error reduction scheme based on temperature acceleration for long-term data storage applications: Cold flash and millennium memories

    NASA Astrophysics Data System (ADS)

    Yamazaki, Senju; Iwasaki, Tomoko Ogura; Hachiya, Shogo; Takahashi, Tomonori; Takeuchi, Ken

    2016-07-01

    A solid-state drive (SSD) with 1Xnm triple-level cell (TLC) NAND flash is proposed for low cost data storage applications with long-term data-retention requirements. Specifically, cold data storage requires 20 years data-retention with 100 write/erase (W/E) cycles, whereas digital archive storage requires 1000 years retention time with 1 W/E cycle. To achieve these requirements, a flexible-nLC scheme is proposed to improve the reliability of 1Xnm TLC NAND flash (Yamazaki et al., 2015). The proposed scheme combines two schemes, n-out-of-8 level cell (nLC) (Tanakamaru et al., 2014) and asymmetric coding (AC) (Tanakamaru et al., 2012) with the addition of a vertical flag. By measuring 1Xnm TLC NAND flash memory, the proposed scheme reduces errors by 72% and 69% for digital archive and cold flash respectively, compared to the conventional nLC scheme.

  10. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications

    NASA Astrophysics Data System (ADS)

    Huang, Chun; Zhang, Jin; Young, Neil P.; Snaith, Henry J.; Grant, Patrick S.

    2016-05-01

    Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices.

  11. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications.

    PubMed

    Huang, Chun; Zhang, Jin; Young, Neil P; Snaith, Henry J; Grant, Patrick S

    2016-01-01

    Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices. PMID:27161379

  12. High resolution sequence stratigraphy of Scythian-early Anisian continental deposits of east of Paris basin: Applications to gas storage

    SciTech Connect

    Roselyne, F.; Guillocheau, F.; Wicquart, E.

    1995-08-01

    Continental facies of Scythian-early Anisian age (Buntsandstein) of East of the Paris Basin form the underground gas storage reservoir exploited by Gaz de France in the area of Nancy (east of France). An accurate sedimentological study and the application of Genetic Stratigraphy principles lead to the understanding of the deposition of fluvial, which form the reservoirs, and to the reconstruction of their geometries. The subsurface data are calibrated on outcrops. Three types of fluvial systems (braided, sinuous to straight and anastomosed) are defined. A special focus on anastomosed channels permits to differentiate a proximal and a distal facies. Study of laterally continuous outcrops induces recurrent cycles of thickness, velocity and time variations (few tens to hundred ka). These correspond to the highest frequence stratigraphic units, i.e. parasequences or genetic units. Maximum of channel and levee presentation occurs during base-level rise: base-level fall is characterised by amalgamation of sets, by-pass and erosion. This method is applied to subsurface data by an accurate calibration of well logs on cores. Thus the electric expression of genetic units corresponding to different environments is determined as well as the expression of base-level variations. The correlation of these units using stacking pattern method leads to a very fine subdivision of reservoir between timelines. Different orders of depositional sequences are pointed out, resulting in reservoir geometry characterization and permeability barrier distribution.

  13. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications

    PubMed Central

    Huang, Chun; Zhang, Jin; Young, Neil P.; Snaith, Henry J.; Grant, Patrick S.

    2016-01-01

    Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices. PMID:27161379

  14. 40 CFR Table 1 to Subpart Bbbbbb... - Applicability Criteria, Emission Limits, and Management Practices for Storage Tanks

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Limits, and Management Practices for Storage Tanks 1 Table 1 to Subpart BBBBBB of Part 63 Protection of... Criteria, Emission Limits, and Management Practices for Storage Tanks If you own or operate . . . Then you... the following:(a) Reduce emissions of total organic HAP or TOC by 95 weight-percent with a closed...

  15. 40 CFR Table 1 to Subpart Bbbbbb... - Applicability Criteria, Emission Limits, and Management Practices for Storage Tanks

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Limits, and Management Practices for Storage Tanks 1 Table 1 to Subpart BBBBBB of Part 63 Protection of... Criteria, Emission Limits, and Management Practices for Storage Tanks If you own or operate . . . Then you... the following:(a) Reduce emissions of total organic HAP or TOC by 95 weight-percent with a closed...

  16. 40 CFR Table 1 to Subpart Bbbbbb... - Applicability Criteria, Emission Limits, and Management Practices for Storage Tanks

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Limits, and Management Practices for Storage Tanks 1 Table 1 to Subpart BBBBBB of Part 63 Protection of... Criteria, Emission Limits, and Management Practices for Storage Tanks If you own or operate . . . Then you... the following:(a) Reduce emissions of total organic HAP or TOC by 95 weight-percent with a closed...

  17. 40 CFR Table 1 to Subpart Bbbbbb... - Applicability Criteria, Emission Limits, and Management Practices for Storage Tanks

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Limits, and Management Practices for Storage Tanks 1 Table 1 to Subpart BBBBBB of Part 63 Protection of... Criteria, Emission Limits, and Management Practices for Storage Tanks If you own or operate . . . Then you... the following:(a) Reduce emissions of total organic HAP or TOC by 95 weight-percent with a closed...

  18. 78 FR 18329 - Gulf South Pipeline Company, LP; Petal Gas Storage, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Gulf South Pipeline Company, LP; Petal Gas Storage, L.L.C.; Notice of..., Suite 2800, Houston, Texas 77046, and Petal Gas Storage, L.L.C. (Petal), 9 Greenway Plaza, Suite...

  19. Storage Proteins

    PubMed Central

    Fujiwara, Toru; Nambara, Eiji; Yamagishi, Kazutoshi; Goto, Derek B.; Naito, Satoshi

    2002-01-01

    Plants accumulate storage substances such as starch, lipids and proteins in certain phases of development. Storage proteins accumulate in both vegetative and reproductive tissues and serve as a reservoir to be used in later stages of plant development. The accumulation of storage protein is thus beneficial for the survival of plants. Storage proteins are also an important source of dietary plant proteins. Here, we summarize the genome organization and regulation of gene expression of storage protein genes in Arabidopsis. PMID:22303197

  20. Application of PET2OGS to CO2 storage in a saline aquifer of the CO2CRC Otway project

    NASA Astrophysics Data System (ADS)

    Park, Chan-Hee; Shinn, Young Jae

    2014-05-01

    PET2OGS, a set of algorithms that integrate the static model (Petrel) with the dynamic model (OpenGeoSys), is applied to model CO2 storage in a saline aquifer. The Otway Basin is the first demonstration site of the deep geological storage of carbon dioxide as part of carbon capture and storage (CCS) technology in Australia. During Stage 2 of the CO2CRC Otway project, CO2 was injected into a saline aquifer along the injection interval of 1435 - 1450 m in a well. Upon conversion and adaption of the geological model into the dynamic model, the simulation of CO2 injection at 159 tone/day for 5 months is carried out for a hypothetical scenario. CO2 storage in each facies are analyzed for storage capacities. The discrete nature of CO2 plume behaviors known in multiphase flow in heterogeneous media is observed in the numerical simulation of CO2 storage. Sensitivity analysis of the storage capacity with respect to facies, porosity, and permeability is provided.

  1. Thermal energy storage

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Picklesimer, E. A.

    1978-01-01

    The general scope of study on thermal energy storage development includes: (1) survey and review possible concepts for storing thermal energy; (2) evaluate the potentials of the surveyed concepts for practical applications in the low and high temperature ranges for thermal control and storage, with particular emphasis on the low temperature range, and designate the most promising concepts; and (3) determine the nature of further studies required to expeditiously convert the most promising concept(s) to practical applications. Cryogenic temperature control by means of energy storage materials was also included.

  2. Tm{sup 3+}:Y{sub 2}O{sub 3} investigated for a quantum light storage application

    SciTech Connect

    Chaneliere, T.; Ruggiero, J.; Le Goueet, J.-L.; Tittel, W.; Mun, J.-H.; Jouini, A.; Yoshikawa, A.; Boulon, G.; Le Du, Y.; Goldner, Ph.; Beaudoux, F.; Vincent, J.; Antic-Fidancev, E.; Guillot-Noeel, O.

    2008-06-15

    In this paper, we investigate a new medium for quantum light storage in crystals. Indeed, Tm{sup 3+}:Y{sub 2}O{sub 3} exhibits all the features that are currently considered crucial for a storage protocol. First, optical measurements confirm our crystal-field analysis. Then, we explain how to tailor a three-level {lambda} system and ultimately measure the Stark coefficient in this material. To our knowledge, these properties have not been investigated at the same time in a thulium based crystal, for which both the operating wavelength and an adjustable storage bandwidth are significant assets that other rare-earth ions lack.

  3. Experimental and Numerical Investigation of Combined Sensible/Latent Thermal Energy Storage for High-Temperature Applications.

    PubMed

    Geissbühler, Lukas; Zavattoni, Simone; Barbato, Maurizio; Zanganeh, Giw; Haselbacher, Andreas; Steinfeld, Aldo

    2015-01-01

    Combined sensible/latent heat storage allows the heat-transfer fluid outflow temperature during discharging to be stabilized. A lab-scale combined storage consisting of a packed bed of rocks and steel-encapsulated AlSi(12) was investigated experimentally and numerically. Due to the small tank-to-particle diameter ratio of the lab-scale storage, void-fraction variations were not negligible, leading to channeling effects that cannot be resolved in 1D heat-transfer models. The void-fraction variations and channeling effects can be resolved in 2D models of the flow and heat transfer in the storage. The resulting so-called bypass fraction extracted from the 2D model was used in the 1D model and led to good agreement with experimental measurements. PMID:26842333

  4. Studies of Aqueous and Non-Aqueous Electrochemical Interface for Applications in Microelectronic and Energy Storage Systems

    NASA Astrophysics Data System (ADS)

    Zheng, Jianping

    Various electrochemical techniques were utilized to study a wide range of electrochemical systems in this dissertation. Mainly they are grouped in three sections: 1) the conventional metal-aqueous systems for new applications in modern microelectronic devices, 2) unconventional ceramic-organic systems for applications in Li-ion batteries and 3) novel systems composed of ionic liquids and carbon series electrodes. The objects are to probe the electrochemical/chemical reactions and interfacial structures, which are the common features of the aforementioned systems. This dissertation mainly focuses on experimental aspects, however, some theories and new models used to elucidate the experiment data have also been developed and presented. Some new experimental techniques have been explored and their limitations and validity have also been discussed. Oxalic acid (OA)-based nonalkaline solutions with H2O 2 are found to support chemically mediated removal of Ta-oxide surface films on Ta. The associated surface reactions are critical for chemical mechanical planarization (CMP) of Ta barrier. In chapter 4, a Ta coupon electrode is used as a model system in abrasive-free solutions of OA and H2O 2, where the chemical component of CMP is selectively examined. In chapter 5, electrochemical impedance spectroscopy (EIS) is employed to study the competitive reactions of surface corrosion and passivating film formation on a Cu-rotating disc electrode (RDE) in pH-adjusted solutions of H2O2, acetic acid (HAc) and ammonium dodecyl sulfate (ADS). Micrometric LiMn2O4 particles are mechano-chemically modified by ball-milling to obtain a mixture of nano- and micro-scale particles. In chapter 6, this mixture is tested as a potential active cathode material for rapid-charge Li ion batteries, and also as a model system for studying the detailed kinetics of Li intercalation/de-intercalation in such electrodes. In chapter 7, cyclic voltammetry (CV) and EIS are compared as techniques for

  5. GeoSearch: a new virtual globe application for the submission, storage, and sharing of point-based ecological data

    NASA Astrophysics Data System (ADS)

    Cardille, J. A.; Gonzales, R.; Parrott, L.; Bai, J.

    2009-12-01

    How should researchers store and share data? For most of history, scientists with results and data to share have been mostly limited to books and journal articles. In recent decades, the advent of personal computers and shared data formats has made it feasible, though often cumbersome, to transfer data between individuals or among small groups. Meanwhile, the use of automatic samplers, simulation models, and other data-production techniques has increased greatly. The result is that there is more and more data to store, and a greater expectation that they will be available at the click of a button. In 10 or 20 years, will we still send emails to each other to learn about what data exist? The development and widespread familiarity with virtual globes like Google Earth and NASA WorldWind has created the potential, in just the last few years, to revolutionize the way we share data, search for and search through data, and understand the relationship between individual projects in research networks, where sharing and dissemination of knowledge is encouraged. For the last two years, we have been building the GeoSearch application, a cutting-edge online resource for the storage, sharing, search, and retrieval of data produced by research networks. Linking NASA’s WorldWind globe platform, the data browsing toolkit prefuse, and SQL databases, GeoSearch’s version 1.0 enables flexible searches and novel geovisualizations of large amounts of related scientific data. These data may be submitted to the database by individual researchers and processed by GeoSearch’s data parser. Ultimately, data from research groups gathered in a research network would be shared among users via the platform. Access is not limited to the scientists themselves; administrators can determine which data can be presented publicly and which require group membership. Under the auspices of the Canada’s Sustainable Forestry Management Network of Excellence, we have created a moderate-sized database

  6. Thermal storage for electric utilities

    NASA Technical Reports Server (NTRS)

    Swet, C. J.; Masica, W. J.

    1977-01-01

    Applications of the thermal energy storage (TES) principle (storage of sensible heat or latent heat, or heat storage in reversible chemical reactions) in power systems are evaluated. Load leveling behind the meter, load following at conventional thermal power plants, solar thermal power generation, and waste heat utilization are the principal TES applications considered. Specific TES examples discussed include: storage heaters for electric-resistance space heating, air conditioning TES in the form of chilled water or eutectic salt baths, hot water TES, and trans-seasonal storage in heated water in confined aquifers.

  7. Development and application of a battery energy storage system simulation program for rail transit systems. Volume 3. Final report

    SciTech Connect

    Ball, C.E.; Uher, R.A.

    1995-03-01

    Under the Rail Transit Energy Management Program, a computer model was developed to assess the economic feasibility of applying battery energy storage to rail transit systems. This model was applied to the Port Authority of Allegheny County (PAT) (Pittsburgh) light rail system and the Washington Metropolitan Area Transit Authority`s (WMATA) MetroRail. The results indicate that the payback periods for investment into battery energy storage and relatively long; 14 years for WMATA and 10 years for PAT. These payback periods are marginal and with the risk associated with implementing battery storage, it is doubtful whether transit management would be inclined to make such an investment. The capital cost of battery storage can be reduced by eliminating the power conditioning equipment and allowing the battery to be connected directly to the third rail catenary or trolley system. The model can easily be modified to assess the economic feasibility of other alternative energy sources such as cogeneration and other storage media, such as superconducting magnetic energy storage.

  8. The Purex thermodynamics of plutonium(IV) and uranium(VI) macroconcentrations coextraction into tri-n butylphosphate: new data and new models

    NASA Astrophysics Data System (ADS)

    Renard, Ed. V.; Chizhov, A. A.; Vlasov, V. S.

    1995-05-01

    The modern worldwide Purex technology (spent nuclear fuel reprocessing) is based on solvent extraction of actinides (U, Pu) in a system with aqueous nitric acid solutions and organic (n-paraffins) solutions of tri-n-butylphosphate (TBP). To the creation of a universal mathematical process model contributes - first of all - the knowledge of uranium(VI), plutonium(IV) and nitric acid equilibrated distribution data. Further should be included the field of all the technological ("know-how") operations, in particular, so-called strong-and-weak-acid and high-and-ambient-temperature scrubs of the actinide bearing organic phase. To enrich the Purex data base with additional information the new original values of equilibrium distribution coefficients of Pu(IV) (0.06-28 g/ l), U(VI) (0.18-150 g/ l) and nitric acid (0.01-10.5 mol/ l) (in all the cases - equilibrated aqueous phase concentrations) - at reliable organic solution homogeneity (i.e. without "third" phase formation phenomena) were obtained. Those results include data at 25 and 60°C, of 20 and 30 vol% TBP (in n-dodecane). All the analyses of the metal content were performed using original gamma-spectrometric procedure of simultaneous U and Pu determination. Using both obtained data and known results (no less than 700 "systems" type of "U(VI)-Pu(IV)-water-nitric acid-TBP-n-dodecane") the simple regressive equations (two third-power polynominal series) were developed, which with an accuracy better than ± 8% permit to calculate the distribution of the three mentioned components. The developed equations of the concentration dependence of the distribution coefficients ( D) for all the components have the general form: In D n = limit∑i=03limit∑k=03limit∑m=03 ∏( ln[U]) i( ln[Pu]) k( ln[HNO 3] ) m, where i+ K+ m⩽3; n = Pu, U, HNO 3. The high performance models are recommended for development of operating programs - as a modifier of today's Purex performance.

  9. Purex diluent degradation

    SciTech Connect

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-02-01

    The chemical degradation of normal paraffin hydrocarbon (NPH) diluents both in the pure state and mixed with 30% tributyl phosphate (TBP) was investigated in a series of experiments. The results show that degradation of NPH in the TBP-NPH-HNO/sub 3/ system is consistent with the active chemical agent being a radical-like nitrogen dioxide (NO/sub 2/) molecule, not HNO/sub 3/ as such. Spectrophotometric, gas chromatographic, mass spectrographic, and titrimetric methods were used to identify the degradation products, which included alkane nitro and nitrate compounds, alcohols, unsaturated alcohols, nitro alcohols, nitro alkenes, ketones, and carboxylic acids. The degradation rate was found to increase with increases in the HNO/sub 3/ concentration and the temperature. The rate was decreased by argon sparging to remove NO/sub 2/ and by the addition of butanol, which probably acts as a NO/sub 2/ scavenger. 13 references, 11 figures.

  10. Application of FEL technique for constructing high-intensity, monochromatic, polarized gamma-sources at storage rings

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    A possibility to construct high-intensity tunable monochromatic{gamma}-source at high energy storage rings is discussed. It is proposed to produce {gamma}-quanta by means of Compton backscattering of laser photons on electrons circulating in the storage. The laser light wavelength is chosen in such a way that after the scattering, the electron does not leave the separatrix. So as the probability of the scattering is rather small, energy oscillations are damped prior the next scattering. As a result, the proposed source can operate in {open_quotes}parasitic{close_quote} mode not interfering with the main mode of the storage ring operation. Analysis of parameters of existent storage rings (PETRA, ESRF, Spring-8, etc) shows that the laser light wavelength should be in infrared, {lambda}{approximately} 10 - 400 {mu}m, wavelength band. Installation at storage rings of tunable free-electron lasers with the peak and average output power {approximately} 10 MW and {approximately} 1 kW, respectively, will result in the intensity of the {gamma}-source up to {approximately} 10{sup 14}s{sup -1} with tunable {gamma}-quanta energy from several MeV up to several hundreds MeV. Such a {gamma}-source will reveal unique possibilities for precision investigations in nuclear physics.

  11. Application of Polymers for the Long-Term Storage and Disposal of Low- and Intermediate-Level Radioactive Waste

    SciTech Connect

    Bonin, Hugues W.; Walker, Michael W.; Bui, Van Tam

    2004-01-15

    Research carried out at the Royal Military College of Canada on the effects of mixed fields of radiation on high polymer adhesives and composite materials has shown that some polymers are quite resistant to radiation and could well serve in the fabrication of radioactive-waste disposal containers. A research program was launched to investigate the possibilities of using advanced polymers and polymer-based composites for high-level radioactive waste management on one hand and for intermediate- and low-level radioactive waste disposal on the other hand. Research was thus conducted in parallel on both fronts, and the findings for the later phase are presented. Thermoplastic polymers were studied for this application because they are superior materials, having the advantage over metals of not corroding and of displaying high resistance to chemical aggression. The experimental methods used in this research focused on determining the effects of radiation on the properties of the materials considered: polypropylene, nylon 66, polycarbonate, and polyurethane, with and without glass fiber reinforcement. The method involved submitting injection-molded tensile test bars to the mixed radiation field generated by the SLOWPOKE-2 nuclear reactor at the Royal Military College of Canada to accumulate doses ranging from 0.5 to 3.0 MGy. The physical, mechanical, and chemical effects of the various radiation doses on the materials were measured from density, tensile, differential scanning calorimetry, and scanning electron microscopy tests.For each polymer, the test results evidenced predominant cross-linking of the polymeric chains severed by radiation. This was evident from observed changes in the mechanical and chemical properties of the polymers, typical of cross-linking. The mechanical changes observed included an overall increase in density, an increase in Young's modulus, a decrease in strain at break, and only minor changes in strength. The chemical changes included

  12. Template copolymerization to control site structure around metal ions: Applications towards sensing and gas storage and release

    NASA Astrophysics Data System (ADS)

    Mitchell-Koch, Jeremy T.

    The development of functional materials for sensing and gas storage and release is useful in a number of chemical and biological applications. Investigating function of molecularly imprinted polymers (MIP), often used for these purposes, has relied on circumstantial evidence because direct examination of immobilized sites is not possible. Described in this dissertation is the design, synthesis, characterization and function studies of materials synthesized by template copolymerization methods. Metal ions exhibit unique spectroscopic properties and their utilization makes site examination more feasible. Ligand binding modulates these properties such that the event can be measured by spectroscopy. The metal ion's secondary coordination environment can also be tuned to increase or decrease function of the material. In Chapter Two the utilization of template copolymerization to immobilize a europium-containing compound for the detection of volatile organic compounds is described. Luminescence of the immobilized complex is quenched in the presence of volatile organic compounds (VOC). The quenching effect is dependent on concentration of VOC and the nature of polymeric host. Chapters Three and Four describe the development of materials for the photolytic release of nitric oxide (NO). In Chapter Three, a novel manipulation of the immobilized complex is employed to produce binding sites that contain ligands covalently embedded into the host in a position to bind the metal ion upon NO release in order to block rebinding. Incompatible binding affinities of the iron-containing templates made it impossible to study NO photo-release from this material. Second-row transition metals are more compatible with NO binding, and Chapter Four describes a ruthenium salen-containing polymer that releases NO in response to light. Additionally, transfer of NO to a metalloporphyrin and myoglobin has been achieved. This is the first report of photolytic heterogeneous NO transfer by a material

  13. Sodium-Beta Batteries for Grid-Scale Storage: Planar Sodium-Beta Batteries for Renewable Integration and Grid Applications

    SciTech Connect

    2010-02-01

    Broad Funding Opportunity Announcement Project: EaglePicher is developing a sodium-beta alumina (Na-Beta) battery for grid-scale energy storage. High-temperature Na-Beta batteries are a promising grid-scale energy storage technology, but existing approaches are expensive and unreliable. EaglePicher has modified the shape of the traditional, tubular-shaped Na-Beta battery. It is using an inexpensive stacked design to improve performance at lower temperatures, leading to a less expensive overall storage technology. The new design greatly simplifies the manufacturing process for beta alumina membranes (a key enabling technology), providing a subsequent pathway to the production of scalable, modular batteries at half the cost of the existing tubular designs.

  14. Review of Current State of the Art and Key Design Issues With Potential Solutions for Liquid Hydrogen Cryogenic Storage Tank Structures for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Gyekenyesi, John Z.; Arnold, Steven M.; Sullivan, Roy M.; Manderscheid, Jane M.; Murthy, Pappu L. N.

    2006-01-01

    Due to its high specific energy content, liquid hydrogen (LH2) is emerging as an alternative fuel for future aircraft. As a result, there is a need for hydrogen tank storage systems, for these aircraft applications, that are expected to provide sufficient capacity for flight durations ranging from a few minutes to several days. It is understood that the development of a large, lightweight, reusable cryogenic liquid storage tank is crucial to meet the goals of and supply power to hydrogen-fueled aircraft, especially for long flight durations. This report provides an annotated review (including the results of an extensive literature review) of the current state of the art of cryogenic tank materials, structural designs, and insulation systems along with the identification of key challenges with the intent of developing a lightweight and long-term storage system for LH2. The broad classes of insulation systems reviewed include foams (including advanced aerogels) and multilayer insulation (MLI) systems with vacuum. The MLI systems show promise for long-term applications. Structural configurations evaluated include single- and double-wall constructions, including sandwich construction. Potential wall material candidates are monolithic metals as well as polymer matrix composites and discontinuously reinforced metal matrix composites. For short-duration flight applications, simple tank designs may suffice. Alternatively, for longer duration flight applications, a double-wall construction with a vacuum-based insulation system appears to be the most optimum design. The current trends in liner material development are reviewed in the case that a liner is required to minimize or eliminate the loss of hydrogen fuel through permeation.

  15. Preparation, characterization, and thermal properties of starch microencapsulated fatty acids as phase change materials thermal energy storage applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable starch-oil composites can be prepared from renewable resources by excess steam jet-cooking aqueous slurries of starch and vegetable oils or other hydrophobic materials. Fatty acids such as stearic acid are promising phase change materials (PCMs) for latent heat thermal energy storage applica...

  16. Impact of maturity and peel characteristics on the response of mandarin varieties to wax application and storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mandarins are prone to the development of off-flavors during storage that can make them less desirable to consumers. Prior research by our group has demonstrated the existence of varietal differences in the propensity for postharvest off-flavor formation in mandarins, although the factors that deter...

  17. Optical clock transition in a rare-earth-ion-doped crystal: coherence lifetime extension for quantum storage applications

    NASA Astrophysics Data System (ADS)

    Tongning, Robert-Christopher; Chanelière, Thierry; Le Gouët, Jean-Louis; Florencia Pascual-Winter, María

    2015-04-01

    Atomic clock transitions are desirable for quantum information storage and processing thanks to the protection from decoherence they provide. In the context of rare- earth-ion-doped crystals for quantum information storage, clock Zeeman or hyperfine transitions have been identified and exploited for long-lived storage in spin degrees of freedom. We present a theoretical and experimental analysis on the existence of an optical clock transition in Tm3+:YAG, in view of storage in optical coherences. The combination of a Zeeman-like term and a quadratic electronic Zeeman term in the Hamiltonian, lead to the existence of a magnetic field amplitude (12 mT) for which the derivative of the optical transition energy with respect to the field amplitude vanishes, regardless of the magnetic field orientation. We have verified this prediction through hole-burning spectroscopy experiments. In addition to that, a study of the behavior of the Hamiltonian as a function of the magnetic field orientation yields the direction for which both derivatives with respect to the magnetic field angular coordinates also vanish. The condition for an optical clock transition with three vanishing partial derivatives is met.

  18. 76 FR 28025 - East Maui Pumped Storage Water Supply LCC; Notice of Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and...; phone: (202) 502-8943. Deadline for filing comments, motions to intervene, competing applications....36. Comments, motions to intervene, notices of intent, and competing applications may be...

  19. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    SciTech Connect

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  20. The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications

    NASA Astrophysics Data System (ADS)

    Neubauer, Jeremy; Pesaran, Ahmad

    The high cost of lithium ion batteries is a major impediment to the increased market share of plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (EVs). The reuse of PHEV/EV propulsion batteries in second use applications following the end of their automotive service life may have the potential to offset the high initial cost of these batteries today. Accurately assessing the value of such a strategy is exceedingly complex and entails many uncertainties. This paper takes a first step toward such an assessment by estimating the impact of battery second use on the initial cost of PHEV/EV batteries to automotive consumers and exploring the potential for grid-based energy storage applications to serve as a market for used PHEV/EV batteries. It is found that although battery second use is not expected to significantly affect today's PHEV/EV prices, it has the potential to become a common component of future automotive battery life cycles and potentially to transform markets in need of cost-effective energy storage. Based on these findings, the authors advise further investigation focused on forecasting long-term battery degradation and analyzing second-use applications in more detail.