Sample records for applications reflectance confocal

  1. Design of reflectance confocal microscopes for clinical applications

    NASA Astrophysics Data System (ADS)

    Zavislan, James M.

    2009-02-01

    Reflectance confocal microscopy provides real time, cellular resolution images of in-vivo and ex-vivo tissues and has been cleared by the FDA and international regulatory agencies for medical applications. Clinical applications of reflectance confocal microscopy are being tested in single- and multi-center clinical trials. In this paper I will review the design challenges of sub-surface imaging with confocal microscopy and techniques to compare the instruments performance between different sites.

  2. Design of reflectance confocal microscopes for clinical applications

    Microsoft Academic Search

    James M. Zavislan

    2009-01-01

    Reflectance confocal microscopy provides real time, cellular resolution images of in-vivo and ex-vivo tissues and has been cleared by the FDA and international regulatory agencies for medical applications. Clinical applications of reflectance confocal microscopy are being tested in single- and multi-center clinical trials. In this paper I will review the design challenges of sub-surface imaging with confocal microscopy and techniques

  3. Clinical applicability of in vivo reflectance confocal microscopy in dermatology.

    PubMed

    Ulrich, M; Lange-Asschenfeldt, S; Gonzalez, S

    2012-04-01

    In vivo reflectance confocal microscopy (RCM) is a non-invasive diagnostic technique that offers the evaluation of the skin at real time with cellular resolution. In the past decade, multiple studies have been performed showing the clinical applicability of RCM for the diagnosis of melanoma and non melanoma skin cancer (NMSC). In this regard, RCM has moved from a research tool to a valuable diagnostic technique being applied in daily clinical practice. In this regard, RCM aids in the diagnosis and differential diagnosis of various skin diseases and may also be used for selection of the biopsy site. Furthermore, RCM allows monitoring of a skin lesion over time without tissue alteration and thus represents a valuable method for treatment monitoring. PMID:22481580

  4. A handheld laser scanning confocal reflectance imagingconfocal Raman

    E-print Network

    Maxwell, Bruce D.

    and spectra from normal skin to demonstrate the instrument's capabilities for clinical diagnostics. © 2012 microscopy; (170.5660) Raman spectroscopy; (170.1610) Clinical applications; (170.1870) Dermatology; (170 reflectance microscopy and confocal Raman spectroscopy have shown potential for non-destructive analysis

  5. Reflectance confocal microscopy of optical phantoms.

    PubMed

    Jacques, Steven L; Wang, Bo; Samatham, Ravikant

    2012-06-01

    A reflectance confocal scanning laser microscope (rCSLM) operating at 488-nm wavelength imaged three types of optical phantoms: (1) 100-nm-dia. polystyrene microspheres in gel at 2% volume fraction, (2) solid polyurethane phantoms (INO Biomimic(TM)), and (3) common reflectance standards (Spectralon(TM)). The noninvasive method measured the exponential decay of reflected signal as the focus (z(f)) moved deeper into the material. The two experimental values, the attenuation coefficient ? and the pre-exponential factor ?, were mapped into the material optical scattering properties, the scattering coefficient ?(s) and the anisotropy of scattering g. Results show that ?(s) varies as 58, 8-24, and 130-200 cm(-1) for phantom types (1), (2) and (3), respectively. The g varies as 0.112, 0.53-0.67, and 0.003-0.26, respectively. PMID:22741065

  6. Single-wavelength reflected confocal and multiphoton microscopy for tissue imaging

    E-print Network

    So, Peter T. C.

    Both reflected confocal and multiphoton microscopy can have clinical diagnostic applications. The successful combination of both modalities in tissue imaging enables unique image contrast to be achieved, especially if a ...

  7. Confocal Blue Reflectance Imaging in Type 2 Idiopathic Macular Telangiectasia

    Microsoft Academic Search

    Peter Charbel Issa; Tos T. J. M. Berendschot; Giovanni Staurenghi; Frank G. Holz; Hendrik P. N. Scholl

    2008-01-01

    METHODS. In a prospective observational cross-sectional study, both eyes of 33 patients with type 2 IMT were examined by means of fundus biomicroscopy, fundus photography, fluores- cein angiography, and optical coherence tomography (OCT). Confocal blue reflectance (CBR) imaging was performed using a confocal scanning laser ophthalmoscope (HRA2; Heidelberg Engineering, Heidelberg, Germany). To compare the results derived from different imaging modalities,

  8. Reflectance confocal microscopy: hallmarks of keratinocyte cancer and its precursors.

    PubMed

    Prow, Tarl W; Tan, Jean-Marie; Pellacani, Giovanni

    2015-01-01

    Actinic keratosis is a common result of severe sun damage and is usually present on sun-exposed skin. Reflectance confocal microscopy is a non-invasive clinical imaging modality that results in quasi-histological, en face skin images. In this chapter, we review the available literature and distill the common features of actinic keratosis, as seen by reflectance confocal microscopy. Finally, several examples are discussed in the context of matching clinical, histopathological and reflectance confocal microscopy images. Of all of the morphological features of actinic keratoses, the epidermal honeycomb pattern is the most telling when viewing the lesions using reflectance confocal microscopy. In the near future, we expect the definition of consensus criteria for diagnosing actinic keratoses and differentiating this precursor lesion. PMID:25561211

  9. Pupil engineering for a confocal reflectance line-scanning microscope

    NASA Astrophysics Data System (ADS)

    Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2011-03-01

    Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current confocal point-scanning systems are large, complex, and expensive. A confocal line-scanning microscope, utilizing a of linear array detector can be simpler, smaller, less expensive, and may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A line scanner may be implemented with a divided-pupil, half used for transmission and half for detection, or with a full-pupil using a beamsplitter. The premise is that a confocal line-scanner with either a divided-pupil or a full-pupil will provide high resolution and optical sectioning that would be competitive to that of the standard confocal point-scanner. We have developed a confocal line-scanner that combines both divided-pupil and full-pupil configurations. This combined-pupil prototype is being evaluated to determine the advantages and limitations of each configuration for imaging skin, and comparison of performance to that of commercially available standard confocal point-scanning microscopes. With the combined configuration, experimental evaluation of line spread functions (LSFs), contrast, signal-to-noise ratio, and imaging performance is in progress under identical optical and skin conditions. Experimental comparisons between divided-pupil and full-pupil LSFs will be used to determine imaging performance. Both results will be compared to theoretical calculations using our previously reported Fourier analysis model and to the confocal point spread function (PSF). These results may lead to a simpler class of confocal reflectance scanning microscopes for clinical and surgical dermatology.

  10. Sources of contrast in confocal reflectance imaging

    Microsoft Academic Search

    Andrew K. Dunn; Colin Smithpeter; A. J. Welch; Rebecca Richards-Kortum

    1996-01-01

    The relationship between optical properties and image contrast in confocal imaging is investigated. A Monte Carlo simulation has been developed to analyze the effects of changes in scattering, index of refraction, and absorption in a three-layer medium. Contrast was calculated from the computed signal-to-background ratios for changes in tissue optical properties. Results show that the largest source of contrast is

  11. FOOD SURFACE TEXTURE MEASUREMENT USING REFLECTIVE CONFOCAL LASER SCANNING MICROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Confocal laser scanning microscopy (CLSM) was used in the reflection mode to characterize the surface texture (roughness) of sliced food surfaces. Sandpapers of grit size between 150 and 600 were used as the height reference to standardize the CLSM hardware settings. Sandpaper particle sizes were v...

  12. Automated identification of epidermal keratinocytes in reflectance confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gareau, Dan

    2011-03-01

    Keratinocytes in skin epidermis, which have bright cytoplasmic contrast and dark nuclear contrast in reflectance confocal microscopy (RCM), were modeled with a simple error function reflectance profile: erf( ). Forty-two example keratinocytes were identified as a training set which characterized the nuclear size a = 8.6+/-2.8 ?m and reflectance gradient b = 3.6+/-2.1 ?m at the nuclear/cytoplasmic boundary. These mean a and b parameters were used to create a rotationally symmetric erf( ) mask that approximated the mean keratinocyte image. A computer vision algorithm used an erf( ) mask to scan RCM images, identifying the coordinates of keratinocytes. Applying the mask to the confocal data identified the positions of keratinocytes in the epidermis. This simple model may be used to noninvasively evaluate keratinocyte populations as a quantitative morphometric diagnostic in skin cancer detection and evaluation of dermatological cosmetics.

  13. A pulse coupled neural network segmentation algorithm for reflectance confocal images of epithelial tissue.

    PubMed

    Harris, Meagan A; Van, Andrew N; Malik, Bilal H; Jabbour, Joey M; Maitland, Kristen C

    2015-01-01

    Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard. PMID:25816131

  14. An Image Model and Segmentation Algorithm for Reflectance Confocal Images of In Vivo Cervical Tissue

    Microsoft Academic Search

    Brette L. Luck; Kristen D. Carlson; Alan Conrad Bovik; Rebecca R. Richards-kortum

    2005-01-01

    The automatic segmentation of nuclei in confocal reflectance images of cervical tissue is an important goal toward developing less expensive cervical precancer detection methods. Since in vivo confocal reflectance microscopy is an emerging technology for cancer detection, no prior work has been reported on the automatic segmentation of in vivo confocal reflectance images. However, prior work has shown that nuclear

  15. Confocal reflectance imaging of excised malignant human bladder biopsies

    NASA Astrophysics Data System (ADS)

    Daniltchenko, Dmitri I.; Kastein, Albrecht; Koenig, Frank; Sachs, Markus; Schnorr, Dietmar; Al-Shukri, Salman; Loening, Stefan A.

    2004-08-01

    To evaluate the potential of reflectance confocal scanning laser microscopy (CM) for rapid imaging of non-processed freshly excised human bladder biopsies and cystectomy specimens. Freshly excised bladder tumors from three cystectomy specimens and random biopsies from twenty patients with a history of superficial bladder tumors were imaged with CM. Additional acetic acid washing prior to CM imaging was performed in some of the samples. Confocal images were compared to corresponding routine histologic sections. CM allows imaging of unprocessed bladder tissue at a subcellular resolution. Urothelial cell layers, collagen, vessels and muscle fibers can be rapidly visualized, in native state. In this regard, umbrella cells, basement membrane elucidated. Besides obvious limitations partly due to non-use of exogenous dyes, CM imaging offers several advantages: rapid imaging of the tissue in its native state like the basement membrane, normally seen only by using immunohistopathology. Reflectance CM opens a new avenue for imaging bladder cancer.

  16. Confocal Endomicroscopy: Instrumentation and Medical Applications

    PubMed Central

    Jabbour, Joey M.; Saldua, Meagan A.; Bixler, Joel N.; Maitland, Kristen C.

    2013-01-01

    Advances in fiber optic technology and miniaturized optics and mechanics have propelled confocal endomicroscopy into the clinical realm. This high resolution, non-invasive imaging technology provides the ability to microscopically evaluate cellular and sub-cellular features in tissue in vivo by optical sectioning. Because many cancers originate in epithelial tissues accessible by endoscopes, confocal endomicroscopy has been explored to detect regions of possible neoplasia at an earlier stage by imaging morphological features in vivo that are significant in histopathologic evaluation. This technique allows real-time assessment of tissue which may improve diagnostic yield by guiding biopsy. Research and development continues to reduce the overall size of the imaging probe, increase the image acquisition speed, and improve resolution and field of view of confocal endomicroscopes. Technical advances will continue to enable application to less accessible organs and more complex systems in the body. Lateral and axial resolutions down to 0.5 ?m and 3 ?m, respectively, field of view as large as 800×450 ?m, and objective lens and total probe outer diameters down to 350 ?m and 1.25 mm, respectively, have been achieved. We provide a review of the historical developments of confocal imaging in vivo, the evolution of endomicroscope instrumentation, and the medical applications of confocal endomicroscopy. PMID:21994069

  17. Reflectance confocal microscopy: an overview of technology and advances in telepathology.

    PubMed

    Batta, Mari M; Kessler, Stephen E; White, Peter F; Zhu, Weijian; Fox, Christi A

    2015-05-01

    The value of in vivo reflectance confocal microscopy (RCM) as a noninvasive adjunctive tool in dermatology has steadily advanced since its inception. With RCM, dermatologists can view horizontal sections of lesions in a resolution comparable to histology, observe dynamic processes in living skin, and monitor lesion evolution longitudinally. This article will compare RCM to dermoscopy and histology, review the general principles of the microscope, describe the findings seen on confocal images, and discuss the clinical applications of this noninvasive tool. Additionally, we describe a telepathology network dedicated to the transfer of confocal images to remote dermatopathologists for interpretation. Finally, we will discuss the adoption of RCM and the telepathology network in clinical practice. PMID:26057520

  18. Differential interference contrast and confocal reflectance imaging of collagen organization in three-dimensional matrices.

    PubMed

    Petroll, W Matthew

    2006-01-01

    The remodeling of extracellular matrices by cells plays a defining role in developmental morphogenesis and wound healing as well as in tissue engineering. Three-dimensional (3-D) type I collagen matrices have been used extensively as an in vitro model for studying cell-induced matrix reorganization at the macroscopic level. However, few studies have directly assessed the process of 3-D extracellular matrix (ECM) remodeling at the cellular and subcellular level. In this study, we directly compare two imaging modalities for both quantitative and qualitative imaging of 3-D collagen organization in vitro: differential interference contrast (DIC) and confocal reflectance imaging. The results demonstrate that two-dimensional (2-D) DIC images allow visualization of the same population of collagen fibrils as observed in 2-D confocal reflectance images. Thus, DIC can be used for qualitative assessment of fibril organization, as well as tracking of fibril movement in sequential time-lapse 2-D images. However, we also found that quantitative techniques that can be applied to confocal reflectance images, such as Fourier transform analysis, give different results when applied to DIC images. Furthermore, common techniques used for 3-D visualization and reconstruction of confocal reflectance datasets are not generally applicable to DIC. Overall, obtaining a complete understanding of cell-matrix mechanical interactions will likely require a combination of both wide-field DIC imaging to study rapid changes in ECM deformation which can occur within minutes, and confocal reflectance imaging to assess more gradual changes in cell-induced compaction and alignment of ECM which occur over a longer time course. PMID:17181131

  19. Dual-axes confocal reflectance microscope for distinguishing colonic neoplasia

    PubMed Central

    Liu, Jonathan T. C.; Mandella, Michael J.; Friedland, Shai; Soetikno, Roy; Crawford, James M.; Contag, Christopher H.; Kino, Gordon S.; Wang, Thomas D.

    2007-01-01

    A dual-axes confocal reflectance microscope has been developed that utilizes a narrowband laser at 1310 nm to achieve high axial resolution, image contrast, field of view, and tissue penetration for distinguishing among normal, hyperplastic, and dysplastic colonic mucosa ex vivo. Light is collected off-axis using a low numerical aperture objective to obtain vertical image sections, with 4- to 5-?m resolution, at tissue depths up to 610 ?m. Post-objective scanning enables a large field of view (610 × 640 ?m), and balanced-heterodyne detection provides sensitivity to collect vertical sections at one frame per second. System optics are optimized to effectively reject out-of-focus scattered light without use of a low-coherence gate. This design is scalable to millimeter dimensions, and the results demonstrate the potential for a miniature instrument to detect precancerous tissues, and hence to perform in vivo histopathology. PMID:17092168

  20. Biological applications of confocal fluorescence polarization microscopy

    NASA Astrophysics Data System (ADS)

    Bigelow, Chad E.

    Fluorescence polarization microscopy is a powerful modality capable of sensing changes in the physical properties and local environment of fluorophores. In this thesis we present new applications for the technique in cancer diagnosis and treatment and explore the limits of the modality in scattering media. We describe modifications to our custom-built confocal fluorescence microscope that enable dual-color imaging, optical fiber-based confocal spectroscopy and fluorescence polarization imaging. Experiments are presented that indicate the performance of the instrument for all three modalities. The limits of confocal fluorescence polarization imaging in scattering media are explored and the microscope parameters necessary for accurate polarization images in this regime are determined. A Monte Carlo routine is developed to model the effect of scattering on images. Included in it are routines to track the polarization state of light using the Mueller-Stokes formalism and a model for fluorescence generation that includes sampling the excitation light polarization ellipse, Brownian motion of excited-state fluorophores in solution, and dipole fluorophore emission. Results from this model are compared to experiments performed on a fluorophore-embedded polymer rod in a turbid medium consisting of polystyrene microspheres in aqueous suspension. We demonstrate the utility of the fluorescence polarization imaging technique for removal of contaminating autofluorescence and for imaging photodynamic therapy drugs in cell monolayers. Images of cells expressing green fluorescent protein are extracted from contaminating fluorescein emission. The distribution of meta-tetrahydroxypheny1chlorin in an EMT6 cell monolayer is also presented. A new technique for imaging enzyme activity is presented that is based on observing changes in the anisotropy of fluorescently-labeled substrates. Proof-of-principle studies are performed in a model system consisting of fluorescently labeled bovine serum albumin attached to sepharose beads. The action of trypsin and proteinase K on the albumin is monitored to demonstrate validity of the technique. Images of the processing of the albumin in J774 murine macrophages are also presented indicating large intercellular differences in enzyme activity. Future directions for the technique are also presented, including the design of enzyme probes specific for prostate specific antigen based on fluorescently-labeled dendrimers. A technique for enzyme imaging based on extracellular autofluorescence is also proposed.

  1. Genital warts: comparing clinical findings to dermatoscopic aspects, in vivo reflectance confocal features and histopathologic exam.

    PubMed

    Veasey, John Verrinder; Framil, Valéria Maria de Souza; Nadal, Sidney Roberto; Marta, Alessandra Cristine; Lellis, Rute Facchini

    2014-01-01

    Genital warts can be diagnosed through physical examination and confirmed by histopathology. Noninvasive methods are useful for ruling out other diagnoses with no harm to the patient. In this study the clinical findings were compared to dermoscopy, reflectance confocal microscopy (RCM), and to histopathology findings, in order to determine possible patterns that can aid diagnosis of the lesion. It was possible to identify structural changes on reflectance confocal microscopy that are already known by dermoscopy, in addition to cellular changes previously seen only by histopathological examination. This study shows the use of reflectance confocal microscopy in cases of genital warts, providing important information that can be used in further studies. PMID:24626658

  2. Two-photon fluorescence and confocal reflected light imaging of thick tissue structures

    NASA Astrophysics Data System (ADS)

    Kim, Ki H.; So, Peter T. C.; Kochevar, Irene E.; Masters, Barry R.; Gratton, Enrico

    1998-04-01

    The technology of two-photon excitation has opened a window of opportunity for developing non-invasive medical diagnostic tools capable of monitoring thick tissue biochemical states. Using cellular endogenous chromophores, (beta) -nicotinamide- adenine dinucleotide phosphate [NAD(P)H], the cellular metabolic rates in living human skin were determined. Although important functional information can be obtained from the fluorescence spectroscopy of endogenous chromophores, these chromophores are rather poor contrast enhancing agent for mapping cellular morphology. First, most endogenous chromophores are confined to the cellular cytoplasm which prevents the visualization of other cellular organelles. Second, there is significant variability in the distribution and the quantum yield of endogenous chromophores which depends on tissue biochemistry but prevents consistent comparison of cellular morphology. On the other hand, the deep tissue cellular morphology has been imaged with excellent resolution using reflected light confocal microscopy. In reflected light microscopy, the image contrast originates from the index of refraction differences of the cellular structures. The organelle boundaries with significant index differences such as the plasma membrane and the nucleus envelope can be consistently visualized. A combination of morphological and functional information is required for a thorough tissue study. This presentation describes the development of a new microscope which is capable of simultaneously collecting both two-photon fluorescence and confocal reflected light signals. Promising biomedical applications include the non-invasive diagnosis of skin cancer and the study of wound healing.

  3. Reflectance confocal endomicroscope with optical axial scanning for in vivo imaging of the oral mucosa

    PubMed Central

    Jabbour, Joey M.; Bentley, Julie L.; Malik, Bilal H.; Nemechek, John; Warda, John; Cuenca, Rodrigo; Cheng, Shuna; Jo, Javier A.; Maitland, Kristen C.

    2014-01-01

    This paper presents the design and evaluation of a reflectance confocal laser endomicroscope using a miniature objective lens within a rigid probe in conjunction with an electrically tunable lens for axial scanning. The miniature lens was characterized alone as well as in the endoscope across a 200 µm axial scan range using the tunable lens. The ability of the confocal endoscope to probe the human oral cavity is demonstrated by imaging of the oral mucosa in vivo. The results indicate that reflectance confocal endomicroscopy has the potential to be used in a clinical setting and guide diagnostic evaluation of biological tissue. PMID:25426310

  4. Reflectance confocal endomicroscope with optical axial scanning for in vivo imaging of the oral mucosa.

    PubMed

    Jabbour, Joey M; Bentley, Julie L; Malik, Bilal H; Nemechek, John; Warda, John; Cuenca, Rodrigo; Cheng, Shuna; Jo, Javier A; Maitland, Kristen C

    2014-11-01

    This paper presents the design and evaluation of a reflectance confocal laser endomicroscope using a miniature objective lens within a rigid probe in conjunction with an electrically tunable lens for axial scanning. The miniature lens was characterized alone as well as in the endoscope across a 200 µm axial scan range using the tunable lens. The ability of the confocal endoscope to probe the human oral cavity is demonstrated by imaging of the oral mucosa in vivo. The results indicate that reflectance confocal endomicroscopy has the potential to be used in a clinical setting and guide diagnostic evaluation of biological tissue. PMID:25426310

  5. In Vivo Imaging of Oral Neoplasia Using a Miniaturized Fiber Optic Confocal Reflectance Microscope

    PubMed Central

    Maitland, Kristen C.; Gillenwater, Ann M.; Williams, Michelle D.; El-Naggar, Adel K.; Descour, Michael R.; Richards-Kortum, Rebecca R.

    2008-01-01

    The purpose of this study was to determine whether in vivo images of oral mucosa obtained with a fiber optic confocal reflectance microscope could be used to differentiate normal and neoplastic tissues. We imaged 20 oral sites in 8 patients undergoing surgery for squamous cell carcinoma. Normal and abnormal areas within the oral cavity were identified clinically, and real-time videos of each site were obtained in vivo using a fiber optic confocal reflectance microscope. Following imaging, each site was biopsied and submitted for histopathologic examination. We identified distinct features, such as nuclear irregularity and spacing, which can be used to qualitatively differentiate between normal and abnormal tissue. Representative confocal images of normal, pre-neoplastic, and neoplastic oral tissue are presented. Previous work using much larger microscopes has demonstrated the ability of confocal reflectance microscopy to image cellular and tissue architecture in situ. New advances in technology have enabled miniaturization of imaging systems for in vivo use. PMID:18396445

  6. Penetration Depth Limits of In Vivo Confocal Reflectance Imaging

    Microsoft Academic Search

    Colin L. Smithpeter; Andrew K. Dunn; A. J. Welch; Rebecca Richards-Kortum

    1998-01-01

    We present experiments to predict the maximum penetration depth at which typical biological structures in amelanotic tissue can be detected with confocal microscopy. The detected signal is examined as the signal source strength ~index of refraction mismatch!, the source depth, and the medium scattering coefficient are varied. The detected background produced by scattering outside the focal volume is examined as

  7. Single-wavelength reflected confocal and multiphoton microscopy for tissue imaging

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Liang; Chou, Chen-Kuan; Lin, Ming-Gu; Chen, Yang-Fang; Jee, Shiou-Hwa; Tan, Hsin-Yuan; Tsai, Tsung-Hua; Kim, Ki-Hean; Kim, Daekeun; So, Peter T. C.; Lin, Sung-Jan; Dong, Chen-Yuan

    2009-09-01

    Both reflected confocal and multiphoton microscopy can have clinical diagnostic applications. The successful combination of both modalities in tissue imaging enables unique image contrast to be achieved, especially if a single laser excitation wavelength is used. We apply this approach for skin and corneal imaging using the 780-nm output of a femtosecond, titanium-sapphire laser. We find that the near-IR, reflected confocal (RC) signal is useful in characterizing refractive index varying boundaries in bovine cornea and porcine skin, while the multiphoton autofluorescence (MAF) and second-harmonic generation (SHG) intensities can be used to image cytoplasm and connective tissues (collagen), respectively. In addition, quantitative analysis shows that we are able to detect MAF from greater imaging depths than with the near-IR RC signal. Furthermore, by performing RC imaging at 488, 543, and 633 nm, we find that a longer wavelength leads to better image contrast for deeper imaging of the bovine cornea and porcine skin tissue. Finally, by varying power of the 780-nm source, we find that comparable RC image quality was achieved in the 2.7 to 10.7-mW range.

  8. Clinical applications of corneal confocal microscopy

    PubMed Central

    Tavakoli, Mitra; Hossain, Parwez; Malik, Rayaz A

    2008-01-01

    Corneal confocal microscopy is a novel clinical technique for the study of corneal cellular structure. It provides images which are comparable to in-vitro histochemical techniques delineating corneal epithelium, Bowman’s layer, stroma, Descemet’s membrane and the corneal endothelium. Because, corneal confocal microscopy is a non invasive technique for in vivo imaging of the living cornea it has huge clinical potential to investigate numerous corneal diseases. Thus far it has been used in the detection and management of pathologic and infectious conditions, corneal dystrophies and ecstasies, monitoring contact lens induced corneal changes and for pre and post surgical evaluation (PRK, LASIK and LASEK, flap evaluations and Radial Keratotomy), and penetrating keratoplasty. Most recently it has been used as a surrogate for peripheral nerve damage in a variety of peripheral neuropathies and may have potential in acting as a surrogate marker for endothelial abnormalities. PMID:19668734

  9. Consistency and distribution of reflectance confocal microscopy features for diagnosis of cutaneous T cell lymphoma

    PubMed Central

    Lange-Asschenfeldt, Susanne; Babilli, Jasmin; Beyer, Marc; Ríus-Diaz, Francisca; González, Salvador; Stockfleth, Eggert; Ulrich, Martina

    2012-01-01

    Abstract. Reflectance confocal microscopy (RCM) represents a noninvasive imaging technique that has previously been used for characterization of mycosis fungoides (MF) in a pilot study. We aimed to test the applicability of RCM for diagnosis and differential diagnosis of MF in a clinical study. A total of 39 test sites of 15 patients with a biopsy-proven diagnosis of either MF, parapsoriasis, Sézary syndrome, or lymphomatoid papulosis were analyzed for presence and absence of RCM features of MF. Cochran and Chi2 analysis were applied to test the concordance between investigators and the distribution of RCM features, respectively. For selected parameters, the Cochran analysis showed good concordance between investigators. Inter-observer reproducibility was highest for junctional atypical lymphocytes, architectural disarray, and spongiosis. Similarly, Chi2 analysis demonstrated that selected features were present at particularly high frequency in individual skin diseases, with values ranging from 73% to 100% of all examined cases. PMID:22352651

  10. Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer

    PubMed Central

    Jabbour, Joey M.; Cheng, Shuna; Malik, Bilal H.; Cuenca, Rodrigo; Jo, Javier A.; Wright, John; Cheng, Yi-Shing Lisa

    2013-01-01

    Abstract. Optical imaging techniques using a variety of contrast mechanisms are under evaluation for early detection of epithelial precancer; however, tradeoffs in field of view (FOV) and resolution may limit their application. Therefore, we present a multiscale multimodal optical imaging system combining macroscopic biochemical imaging of fluorescence lifetime imaging (FLIM) with subcellular morphologic imaging of reflectance confocal microscopy (RCM). The FLIM module images a 16×16??mm2 tissue area with 62.5 ?m lateral and 320 ps temporal resolution to guide cellular imaging of suspicious regions. Subsequently, coregistered RCM images are acquired at 7 Hz with 400 ?m diameter FOV, <1???m lateral and 3.5 ?m axial resolution. FLIM-RCM imaging was performed on a tissue phantom, normal porcine buccal mucosa, and a hamster cheek pouch model of oral carcinogenesis. While FLIM is sensitive to biochemical and macroscopic architectural changes in tissue, RCM provides images of cell nuclear morphology, all key indicators of precancer progression. PMID:23595826

  11. Anti-translational research: from the bedside back to the bench for reflectance confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gareau, Daniel

    2014-03-01

    The reflectance confocal microscope has made translational progress in dermatology. 0.5 micrometer lateral resolution, 0.75mm field-of-view and excellent temporal resolution at ~15 frames/second serve the VivaScope well in the clinic, but it may be overlooked in basic research. This work reviews high spatiotemporal confocal microscopy and presents images acquired of various samples: zebra fish embryo where melanocytes with excellent contrast overly the spinal column, chicken embryo, where myocardium is seen moving at 15 frames/ second, calcium spikes in dendrites (fluorescence mode) just beyond the temporal resolution, and human skin where blood cells race through the artereovenous microvasculature. For an introduction to confocal microscopy, see: http://dangareau.net.s69818.gridserver.com/science/confocal-microscopy

  12. Toward a compact dual-wedge point-scanning confocal reflectance microscope

    Microsoft Academic Search

    William C. Warger II; Stephen A. Guerrera; Charles A. DiMarzio

    2007-01-01

    Confocal reflectance microscopy has been shown to provide optical sectioning and resolution sufficient to provide useful information about cellular structure in vivo. However, existing instruments are large and expensive, because of the need for fast, two-dimensional scanning in the pupil, and the associated relay optics. A more compact scanning system could lead to an affordable handheld instrument for in vivo

  13. Improving image quality in reflection confocal microscopy involving gold nanoparticles and osmotically active immersion liquids

    Microsoft Academic Search

    B. A. Veksler; A. Lemelle; I. S. Kozhevnikov; G. G. Akchurin; I. V. Meglinski

    2011-01-01

    We consider the possibility of using gold nanoparticles to improve the image contrast of biotissue structures in reflection\\u000a confocal laser microscopy. We present the results of experimental studies using gold nanospheres with a diameter of 60 nm\\u000a compared to osmotically active immersion contrast agents based on glycerol.

  14. Attoliter detection volumes by confocal total-internal-reflection fluorescence microscopy.

    PubMed

    Ruckstuhl, Thomas; Seeger, Stefan

    2004-03-15

    We report a confocal total-internal-reflection fluorescence (TIRF) microscope that generates a detection volume for analyte molecules of less than 5 al (5 x 10(-18) l) at a water-glass interface. Compared with conventional confocal microscopy, this represents a reduction of almost 2 orders of magnitude, which is important in isolating individual molecules at high analyte concentrations, where many biologically relevant processes occur. Diffraction-limited supercritical focusing and fluorescence collection is accomplished by a parabolic mirror objective. The system delivers TIRF images with excellent spatial resolution and detects single molecules with a high signal-to-background ratio. PMID:15035473

  15. The application of laser scanning confocal microscopy to tribological research

    Microsoft Academic Search

    D. N Hanlon; I Todd; E Peekstok; W. M Rainforth; S van der Zwaag

    2001-01-01

    Since the introduction of the first commercial systems in the early 1980s laser scanning confocal microscopy (LSCM) has become an established technique in biological and medical fields of research. To date the application of LSCM to metallurgical and tribological fields of research has been extremely limited. However, largely as a result of recent rapid advances in computer processing power, the

  16. Effect of scanning rate on the image contrast in confocal microscopy for biological application

    NASA Astrophysics Data System (ADS)

    Chun, Byung Seon; Kim, Tae Joong; Song, Incheon; Gweon, Dae-Gab; Choo, Jaebum; Oh, Chil Hwan

    2005-08-01

    In this research, the method how to estimate the image quality for different scanning rate is suggested and experimentally shown with the laboratory-built confocal laser scanning microscope. The confocal microscope is designed for in vivo reflectance imaging of a biological tissue, which uses the refractive index mismatch at the boundaries of a tissue to generate an image without any additional staining process. The two-dimensional scanning mechanism is built up with a polygonal mirror and a galvanometric mirror that can be controlled to operate at a specific speed. To examine the effect of scanning rate on the image contrast, confocal scanning images of a biological specimen are acquired with various scanning rate while the other conditions are kept same. The contrast of confocal microscopic image is transformed into the numeric expression to describe the relation between image contrast and scanning rate quantitatively. Results suggest some useful methodology of how to determine the allowable maximum scanning rate for the specific application of confocal microscopy.

  17. Reflected-light, photoluminescence and OBIC imaging of solar cells using a confocal scanning laser MACROscope\\/microscope

    Microsoft Academic Search

    A. C. Ribes; S. Damaskinos; H. F. Tiedje; A. E. Dixon; D. E. Brodie

    1996-01-01

    This paper describes a confocal scanning beam MACROscope\\/Microscope which can image specimens up to 7 × 7 cm in size using reflected light, photoluminescence and optical beam induced current. The MACROscope provides a 10 ?m spot size at various wavelengths and generates 512 × 512 pixel images in less than 5 s. When used in combination with a conventional confocal

  18. Through the looking glass: Basics and principles of reflectance confocal microscopy.

    PubMed

    Que, Syril Keena T; Fraga-Braghiroli, Naiara; Grant-Kels, Jane M; Rabinovitz, Harold S; Oliviero, Margaret; Scope, Alon

    2015-08-01

    Reflectance confocal microscopy (RCM) offers high-resolution, noninvasive skin imaging and can help avoid obtaining unnecessary biopsy specimens. It can also increase efficiency in the surgical setting by helping to delineate tumor margins. Diagnostic criteria and several RCM algorithms have been published for the differentiation of benign and malignant neoplasms. We provide an overview of the basic principles of RCM, characteristic RCM features of normal skin and cutaneous neoplasms, and the limitations and future directions of RCM. PMID:26051696

  19. Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging

    NASA Astrophysics Data System (ADS)

    Kotlarchyk, M. A.; Botvinick, E. L.; Putnam, A. J.

    2010-05-01

    Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused on linking substrate mechanical properties to cell function using standard methodologies to characterize the bulk mechanical properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Here we have utilized a laser tracking system, based on passive optical microrheology instrumentation, to characterize the microstructure of viscoelastic fibrin clots. Trajectories and mean square displacements were observed as bioinert PEGylated (PEG: polyethylene glycol) microspheres (1, 2 or 4.7 µm in diameter) diffused within confined pores created by the protein phase of fibrin hydrogels. Complementary confocal reflection imaging revealed microstructures comprised of a highly heterogeneous fibrin network with a wide range of pore sizes. As the protein concentration of fibrin gels was increased, our quantitative laser tracking measurements showed a corresponding decrease in particle mean square displacements with greater resolution and sensitivity than conventional imaging techniques. This platform-independent method will enable a more complete understanding of how changes in substrate mechanical properties simultaneously influence other microenvironmental parameters in 3D cultures.

  20. Reflective confocal laser scanning microscopy and nonlinear microscopy of cross-linked rabbit cornea

    NASA Astrophysics Data System (ADS)

    Krueger, Alexander; Hovakimyan, Marina; Ramirez, Diego F.; Stachs, Oliver; Guthoff, Rudolf F.; Heisterkamp, Alexander

    2009-07-01

    Cross-linking of the cornea with application of Ribovlavin and UV-A light is an evolving clinical treatment of the eye disease keratoconus. Despite the positive clinical track record of corneal cross-linking, the complex wound healing process after the treatment is still under investigation. In this study an animal model was used to clarify the state of wound healing 5 weeks after treatment. Cross-linked rabbit corneae were imaged with reflective confocal laser scanning and nonlinear microscopy, namely second harmonic imaging microscopy (SHIM) and two-photon excited autofluorescence. First results show that the NAD(P) H-autofluorescence of the corneal keratocytes and their scattering signal still show a signature of the treatment five weeks after the cross-linking procedure. The SHIM signals show the structural morphology of the fibrous collagen sheets in the stroma of the cornea. SHIM detected in the forward direction differs substantially from backward SHIM, but no signature of treatment was found in both detection channels of the SHIM signal.

  1. Combining in vivo reflectance with fluorescence confocal microscopy provides additive information on skin morphology

    PubMed Central

    Skvara, Hans; Plut, Ulrike; Schmid, Johannes A.; Jonak, Constanze

    2012-01-01

    Background: Within the last decade, confocal microscopy has become a valuable non-invasive diagnostic tool in imaging human skin in vivo. Of the two different methods that exist, reflectance confocal microscopy (RCM) displays the backscattering signal of naturally occurring skin components, whereas fluorescence confocal microscopy (FCM) provides contrast by using an exogenously applied fluorescent dye. Methodology: A newly developed multilaser device, in which both techniques are implemented, has been used to combine both methods and allows to highlight different information in one image. In our study, we applied the fluorophore sodium fluorescein (SFL) intradermally on forearm skin of 10 healthy volunteers followed by fluorescence and reflectance imaging. Results: In fluorescence mode the intercellular distribution of SFL clearly outlines every single cell in the epidermis, whereas in reflectance mode keratin and melanin-rich cells and structures provide additional information. The combination of both methods enables a clear delineation between the cell border, the cytoplasm and the nucleus. Imaging immediately, 20, 40 and 60 minutes after SFL injection, represents the dynamic distribution pattern of the dye. Conclusion: The synergism of RCM and FCM in one device delivering accurate information on skin architecture and pigmentation will have a great impact on in vivo diagnosis of human skin in the future. PMID:24765544

  2. In vivo confocal scanning laser microscopy: comparison of the reflectance and fluorescence mode by imaging human skin

    NASA Astrophysics Data System (ADS)

    Meyer, Lars E.; Otberg, Nina; Sterry, Wolfram; Lademann, Jürgen

    2006-07-01

    Optical, noninvasive methods have become efficient in vivo tools in dermatological diagnosis and research. From these promising imaging techniques, only the confocal scanning laser microscopy (CSLM) provides visualization of subsurface skin structures with resolutions similar to those of light microscopy. Skin annexes, as well as cutaneous cells from different epidermal layers, can be distinguished excellently. Currently, two forms of application have been established in dermatological practice: the reflectance mode, predominantly in the clinical field, and the fluorescence mode in dermatological research. Differences in both methods exist in the preparative protocol, in maximum imaging depth and, particularly, in the gain of contrast extraction. The reflectance mode demonstrates naturally occurring tissue components, whereas the fluorescent CSLM achieves contrast by administering fluorescence dye, representing the dynamic distribution pattern of the dye's fluorescent emission. Therefore, the reflectance and fluorescent modes highlight various skin microstructures, providing dissimilar in vivo confocal images of the skin. This permits different predications and information on the state of the tissue. We report the advantages and disadvantages of both optical imaging modes. The comparison was drawn by scanning human skin in vivo. Representative images in varying depths were obtained and analyzed; preparation procedures are shown and discussed.

  3. Confocal total-internal-reflection fluorescence microscopy with a high-aperture parabolic mirror lens.

    PubMed

    Ruckstuhl, Thomas; Seeger, Stefan

    2003-06-01

    We present a theoretical study of a new total-internal-reflection fluorescence microscope for the detection of fluorescence at a water-glass interface. The system is designed for confocal imaging and spectroscopy of nanoparticles and single molecules. Focusing and fluorescence collection through standard glass coverslips is accomplished by a parabolic mirror lens. The large aperture of the element is used to excite fluorescence within the evanescent field of a diffraction-limited focus and to collect focal emission with high efficiency. Tight focusing and supercritical excitation reduce the detection volume for fluorescent analyte molecules well below that of an attoliter (10(-18) L), which can be advantageous for monitoring surface binding of single molecules without interference from fluorescence of the unbound bulk. Calculations of the electric fields in the focus region and simulated confocal imaging demonstrate the performance of the system. PMID:12790480

  4. Near-IR fluorescence and reflectance confocal microscopy for imaging of quantum dots in mammalian skin

    PubMed Central

    Mortensen, Luke J.; Glazowski, Christopher E.; Zavislan, James M.; DeLouise, Lisa A.

    2011-01-01

    Understanding the skin penetration of nanoparticles (NPs) is an important concern due to the increasing presence of NPs in consumer products, including cosmetics. Technical challenges have slowed progress in evaluating skin barrier and NP factors that contribute to skin penetration risk. To limit sampling error and other problems associated with histological processing, many researchers are implementing whole tissue confocal or multiphoton microscopies. This work introduces a fluorescence and reflectance confocal microscopy system that utilizes near-IR excitation and emission to detect near-IR lead sulfide quantum dots (QDs) through ex vivo human epidermis. We provide a detailed prediction and experimental analysis of QD detection sensitivity and demonstrate detection of QD skin penetration in a barrier disrupted model. The unique properties of near-IR lead-based QDs will enable future studies that examine the impact of further barrier-disrupting agents on skin penetration of QDs and elucidate mechanistic insight into QD tissue interactions at the cellular level. PMID:21698023

  5. Living Matter Observations with a Novel Hyperspectral Supercontinuum Confocal Microscope for VIS to Near-IR Reflectance Spectroscopy

    PubMed Central

    Bertani, Francesca R.; Ferrari, Luisa; Mussi, Valentina; Botti, Elisabetta; Costanzo, Antonio; Selci, Stefano

    2013-01-01

    A broad range hyper-spectroscopic microscope fed by a supercontinuum laser source and equipped with an almost achromatic optical layout is illustrated with detailed explanations of the design, implementation and data. The real novelty of this instrument, a confocal spectroscopic microscope capable of recording high resolution reflectance data in the VIS-IR spectral range from about 500 nm to 2.5 ?m wavelengths, is the possibility of acquiring spectral data at every physical point as defined by lateral coordinates, X and Y, as well as at a depth coordinate, Z, as obtained by the confocal optical sectioning advantage. With this apparatus we collect each single scanning point as a whole spectrum by combining two linear spectral detector arrays, one CCD for the visible range, and one InGaAs infrared array, simultaneously available at the sensor output channel of the home made instrument. This microscope has been developed for biomedical analysis of human skin and other similar applications. Results are shown illustrating the technical performances of the instrument and the capability in extracting information about the composition and the structure of different parts or compartments in biological samples as well as in solid statematter. A complete spectroscopic fingerprinting of samples at microscopic level is shown possible by using statistical analysis on raw data or analytical reflectance models based on Abelés matrix transfer methods. PMID:24233077

  6. In vivo fibered confocal reflectance imaging: totally non-invasive morphological cellular imaging brought to the endoscopist

    NASA Astrophysics Data System (ADS)

    Osdoit, Anne; Genet, Magalie; Perchant, Aymeric; Loiseau, Sacha; Abrat, Benjamin; Lacombe, François

    2006-02-01

    This paper presents a novel fibered confocal reflectance microscopy system (FCRM) specifically designed for the medical observation of biological tissues in vivo and in situ, in real time, at the cellular level: the R-600. Reflectance imaging is based on the refraction index difference between biological components while confocal imaging allow to perform the optical sectioning slice in-depth inside the tissues. The R-600 is based on a proximal scanning system, coupled with a 7 mm diameter probe made of tens of thousands of flexible optical fibers allowing in situ imaging, associated with a dedicated software performing real-time control and image processing. The R-600 provides 12 frames per second at an optical imaging depth of 30 microns, with a high lateral resolution, 1 micron, an axial resolution of 2 microns in a field of view 160 microns in diameter. Thanks to the miniaturization of the optical probe, unprecedented accessibility is made possible in organs such as the cervix or the otolaryngological sphere, in a completely non-invasive fashion. The aim of FCRM is to perform optical biopsy. As a first step towards this goal, we present here results obtained in vivo and in real-time on a human mouth , assessing the ability of the R-600 to perform rapid morphologic examination. Subcellular structures such as nuclei and membranes can be clearly distinguished on the images. Further miniaturization opens perspectives for an integrated endoscope-compatible system with broad medical applications.

  7. Toward a compact dual-wedge point-scanning confocal reflectance microscope

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; Guerrera, Stephen A.; DiMarzio, Charles A.

    2007-02-01

    Confocal reflectance microscopy has been shown to provide optical sectioning and resolution sufficient to provide useful information about cellular structure in vivo. However, existing instruments are large and expensive, because of the need for fast, two-dimensional scanning in the pupil, and the associated relay optics. A more compact scanning system could lead to an affordable handheld instrument for in vivo imaging. Several approaches are being considered to minimize instrument size with different advantages and disadvantages. Here we report one approach that incorporates a dualwedge scanner within a point-scanning configuration. The dual-wedge scanner could reduce the cost and complexity of the confocal reflectance microscope while retaining the resolution and optical sectioning abilities of current pointscanning instruments. The scanner is implemented by replacing the scanning mirrors and the relay telescope between them with two optical prisms that are rotated about the optical axis. This scanning configuration produces a spiral scan if the prisms are rotated in the same direction, or a rosette scan if the prisms are rotated in opposite directions. Preliminary experimental results with the microscope show a lateral resolution on the order of 1 - 2 micrometers and onaxis optical sectioning on the order of 3 - 4 micrometers.

  8. Virtual pinhole confocal microscope

    SciTech Connect

    George, J.S.; Rector, D.M.; Ranken, D.M. [Los Alamos National Lab., NM (United States). Biophysics Group; Peterson, B. [SciLearn Inc. (United States); Kesteron, J. [VayTech Inc. (United States)

    1999-06-01

    Scanned confocal microscopes enhance imaging capabilities, providing improved contrast and image resolution in 3-D, but existing systems have significant technical shortcomings and are expensive. Researchers at Los Alamos National Laboratory have developed a novel approach--virtual pinhole confocal microscopy--that uses state of the art illumination, detection, and data processing technologies to produce an imager with a number of advantages: reduced cost, faster imaging, improved efficiency and sensitivity, improved reliability and much greater flexibility. Work at Los Alamos demonstrated proof of principle; prototype hardware and software have been used to demonstrate technical feasibility of several implementation strategies. The system uses high performance illumination, patterned in time and space. The authors have built functional confocal imagers using video display technologies (LCD or DLP) and novel scanner based on a micro-lens array. They have developed a prototype system for high performance data acquisition and processing, designed to support realtime confocal imaging. They have developed algorithms to reconstruct confocal images from a time series of spatially sub-sampled images; software development remains an area of active development. These advances allow the collection of high quality confocal images (in fluorescence, reflectance and transmission modes) with equipment that can inexpensively retrofit to existing microscopes. Planned future extensions to these technologies will significantly enhance capabilities for microscopic imaging in a variety of applications, including confocal endoscopy, and confocal spectral imaging.

  9. Computational characterization of reflectance confocal microscopy features reveals potential for automated photoageing assessment.

    PubMed

    Raphael, Anthony P; Kelf, Timothy A; Wurm, Elizabeth M T; Zvyagin, Andrei V; Soyer, Hans Peter; Prow, Tarl W

    2013-07-01

    Skin photoageing results from a combination of factors including ultraviolet (sun) exposure, leading to significant changes in skin morphology and composition. Conventional methods assessing the degree of photoageing, in particular histopathological assessment involve an invasive multistep process. Advances in microscopy have enabled a shift towards non-invasive in vivo microscopy techniques such as reflectance confocal microscopy (RCM) in this context. Computational image analysis of RCM images has the potential to be of use in the non-invasive assessment of photoageing. In this report, we computationally characterized a clinical RCM data set from younger and older Caucasians with varying levels of photoageing. We identified several mathematical relationships that related to the degree of photoageing as assessed by conventional scoring approaches (clinical photography, SCINEXA and RCM). Furthermore, by combining the mathematical features into a single computational assessment score, we observed significant correlations with conventional RCM (P < 0.0001) and the other clinical assessment techniques. PMID:23800056

  10. Dermoscopy and in vivo reflectance confocal microscopy of a congenital nevus of the nipple.

    PubMed

    Pastar, Zrinjka; Massone, Cesare; Ahlgrimm-Siess, Verena; Koller, Silvia; Mofarrah, Ramin; Hofmann-Wellenhof, Rainer

    2010-01-01

    We report a 26-year-old male with a 4 mm diameter, asymmetric, irregularly pigmented and bordered, brown maculopapular lesion on the right nipple present since childhood with enlargement of the lesion within the last 3 months. Dermoscopy revealed a global globular pattern with the presence of focally light brown globules and irregular black globules in its centre. In vivo reflectance confocal microscopy (RCM) revealed dense junctional and dermal melanocytic nests of different sizes and shapes that appeared as sharply demarcated round to oval reflective structures; cellular outlines of single melanocytes were not always detected. In the centre of the lesion within the upper dermis, irregularly shaped, homogeneously reflecting structures were observed. As a clear differentiation between clusters of melanophages and melanocytic nests could not be made with certainty, an excisional biopsy was performed to establish the diagnosis of compound nevus with features of congenital nevus. Therefore, to prove that dermoscopic globules correlated with melanophages, the correlation between dermoscopic RCM and histopathology was necessary. PMID:20805689

  11. A new wide field-of-view confocal imaging system and its applications in drug discovery and pathology

    NASA Astrophysics Data System (ADS)

    Li, Gang; Damaskinos, Savvas; Dixon, Arthur E.; Lee, Lucy E. J.

    2005-11-01

    Conventional widefield light microscopy and confocal scanning microscopy have been indispensable for pathology and drug discovery research. Clinical specimens from diseased tissues are examined, new drug candidates are tested on drug targets, and the morphological and molecular biological changes of cells and tissues are observed. High throughput screening of drug candidates requires highly efficient screening instruments. A standard biomedical slide is 1 by 3 inches (25.4 by 76.2 mm) in size. A typical tissue specimen is 10 mm in diameter. To form a high resolution image of the entire specimen, a conventional widefield light microscope must acquire a large number of small images of the specimen, and then tile them together, which is tedious, inefficient and error-prone. A patented new wide field-of-view confocal scanning laser imaging system has been developed for tissue imaging, which is capable of imaging an entire microscope slide without tiling. It is capable of operating in brightfield, reflection and epi-fluorescence imaging modes. Three (red, green and blue (RGB)) lasers are used to produce brightfield and reflection images, and to excite various fluorophores. This new confocal system makes examination of large biomedical specimens more efficient, and makes fluorescence examination of large specimens possible for the first time without tiling. Description of the new confocal technology and applications of the imaging system in pathology and drug discovery research, for example, imaging large tissue specimens, tissue microarrays, and zebrafish sections, are reported in this paper.

  12. Confocal device and application strategies for endoluminal optical coherence microscopy

    Microsoft Academic Search

    Markus George; Ludger Schnieder; Gerhard F. Buess

    2003-01-01

    While endoscopic optical coherence tomography has been established successfully in vivo ,implementation of endoluminal optical coherence microscopy remains demanding,s suitable confocal probe is lacking. A miniaturized confocal laser scanning microscope is presented,which fulfills the requirements for endoluminal optical coherence microscopy. First,imaging experience gained for optical coherence microscopy of nimal gastrointestinal tissue samples is described. For this purpose,laboratory scale optical coherence

  13. In vivo assessment of the structure of skin microcirculation by reflectance confocal-laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Sugata, Keiichi; Osanai, Osamu; Kawada, Hiromitsu

    2012-02-01

    One of the major roles of the skin microcirculation is to supply oxygen and nutrition to the surrounding tissue. Regardless of the close relationship between the microcirculation and the surrounding tissue, there are few non-invasive methods that can evaluate both the microcirculation and its surrounding tissue at the same site. We visualized microcapillary plexus structures in human skin using in vivo reflectance confocal-laser-scanning microscopy (CLSM), Vivascope 3000® (Lucid Inc., USA) and Image J software (National Institutes of Health, USA) for video image processing. CLSM is a non-invasive technique that can visualize the internal structure of the skin at the cellular level. In addition to internal morphological information such as the extracellular matrix, our method reveals capillary structures up to the depth of the subpapillary plexus at the same site without the need for additional optical systems. Video images at specific depths of the inner forearm skin were recorded. By creating frame-to-frame difference images from the video images using off-line video image processing, we obtained images that emphasize the brightness depending on changes of intensity coming from the movement of blood cells. Merging images from different depths of the skin elucidates the 3-dimensional fine line-structure of the microcirculation. Overall our results show the feasibility of a non-invasive, high-resolution imaging technique to characterize the skin microcirculation and the surrounding tissue.

  14. Image segmentation for integrated multiphoton microscopy and reflectance confocal microscopy imaging of human skin in vivo

    PubMed Central

    Chen, Guannan; Lui, Harvey

    2015-01-01

    Background Non-invasive cellular imaging of the skin in vivo can be achieved in reflectance confocal microscopy (RCM) and multiphoton microscopy (MPM) modalities to yield complementary images of the skin based on different optical properties. One of the challenges of in vivo microscopy is the delineation (i.e., segmentation) of cellular and subcellular architectural features. Methods In this work we present a method for combining watershed and level-set models for segmentation of multimodality images obtained by an integrated MPM and RCM imaging system from human skin in vivo. Results Firstly, a segmentation model based on watershed is introduced for obtaining the accurate structure of cell borders from the RCM image. Secondly,, a global region based energy level-set model is constructed for extracting the nucleus of each cell from the MPM image. Thirdly, a local region-based Lagrange Continuous level-set approach is used for segmenting cytoplasm from the MPM image. Conclusions Experimental results demonstrated that cell borders from RCM image and boundaries of cytoplasm and nucleus from MPM image can be obtained by our segmentation method with better accuracy and effectiveness. We are planning to use this method to perform quantitative analysis of MPM and RCM images of in vivo human skin to study the variations of cellular parameters such as cell size, nucleus size and other mophormetric features with skin pathologies. PMID:25694949

  15. Combined reflectance confocal microscopy/optical coherence tomography imaging for skin burn assessment

    PubMed Central

    Iftimia, Nicusor; Ferguson, R. Daniel; Mujat, Mircea; Patel, Ankit H.; Zhang, Ellen Ziyi; Fox, William; Rajadhyaksha, Milind

    2013-01-01

    A combined high-resolution reflectance confocal microscopy (RCM)/optical coherence tomography (OCT) instrument for assessing skin burn gravity has been built and tested. This instruments allows for visualizing skin intracellular details with submicron resolution in the RCM mode and morphological and birefringence modifications to depths on the order of 1.2 mm in the OCT mode. Preliminary testing of the dual modality imaging approach has been performed on the skin of volunteers with some burn scars and on normal and thermally-injured Epiderm FTTM skin constructs. The initial results show that these two optical technologies have complementary capabilities that can offer the clinician a set of clinically comprehensive parameters: OCT helps to visualize deeper burn injuries and possibly quantify collagen destruction by measuring skin birefringence, while RCM provides submicron details of the integrity of the epidermal layer and identifies the presence of the superficial blood flow in the upper dermis. Therefore, the combination of these two technologies within the same instrument may provide a more comprehensive set of parameters that may help clinicians to more objectively and nonivasively assess burn injury gravity by determining tissue structural integrity and viability. PMID:23667785

  16. Reflectance confocal microscopy of cutaneous melanoma. Correlation with dermoscopy and histopathology.

    PubMed

    Rstom, Silvia Arroyo; Libório, Lorena Silva; Paschoal, Francisco Macedo

    2015-01-01

    In vivo Confocal Microscopy is a method for non-invasive, real-time visualization of microscopic structures and cellular details of the epidermis and dermis, which has a degree of resolution similar to that obtained with histology. We present a case of cutaneous melanoma in which diagnosis was aided by confocal microscopy examination. We also correlate the observed features with the dermoscopic and histopathological findings. Confocal microscopy proved to be an useful adjunct to dermoscopy, playing an important role as a method 'between clinical evaluation and histopathology'. PMID:26131877

  17. Line-Scanning Reflectance Confocal Microscopy of Human Skin: Comparison of Full-pupil and Divided-pupil Configurations

    PubMed Central

    Gareau, Daniel S.; Abeytunge, Sanjee; Rajadhyaksha, Milind

    2009-01-01

    Line-scanning, with pupil engineering and the use of linear array detectors, may enable simple, small and low-cost confocal microscopes for clinical imaging of human epithelial tissues. However, a fundamental understanding of line-scanning performance within the highly scattering and aberrating conditions of human tissue is necessary, to translate from benchtop instrumentation to clinical implementation. The results of a preliminary investigation for reflectance imaging in skin are reported. PMID:19838284

  18. Clinical usefulness of reflectance confocal microscopy in the management of facial lentigo maligna melanoma.

    PubMed

    Alarcón, I; Carrera, C; Puig, S; Malvehy, J

    2014-04-01

    Facial lentigo maligna melanoma can be a diagnostic challenge in daily clinical practice as it has similar clinical and morphological features to other lesions such as solar lentigines and pigmented actinic keratoses. Confocal microscopy is a noninvasive technique that provides real-time images of the epidermis and superficial dermis with cellular-level resolution. We describe 3 cases of suspected facial lentigo maligna that were assessed using dermoscopy and confocal microscopy before histopathology study. In the first case, diagnosed as lentigo maligna melanoma, presurgical mapping by confocal microscopy was performed to define the margins more accurately. In the second and third cases, with a clinical and dermoscopic suspicion of lentigo maligna melanoma, confocal microscopy was used to identify the optimal site for biopsy. PMID:24657027

  19. A Blind Spot in Confocal Reflection Microscopy: The Dependence of Fiber Brightness on Fiber Orientation in Imaging Biopolymer Networks

    PubMed Central

    Jawerth, Louise M.; Münster, Stefan; Vader, David A.; Fabry, Ben; Weitz, David A.

    2010-01-01

    Abstract We investigate the dependence of fiber brightness on three-dimensional fiber orientation when imaging biopolymer networks with confocal reflection microscopy (CRM) and confocal fluorescence microscopy (CFM). We compare image data of fluorescently labeled type I collagen networks concurrently acquired using each imaging modality. For CRM, fiber brightness decreases for more vertically oriented fibers, leaving fibers above ?50° from the imaging plane entirely undetected. As a result, the three-dimensional network structure appears aligned with the imaging plane. In contrast, CFM data exhibit little variation of fiber brightness with fiber angle, thus revealing an isotropic collagen network. Consequently, we find that CFM detects almost twice as many fibers as are visible with CRM, thereby yielding more complete structural information for three-dimensional fiber networks. We offer a simple explanation that predicts the detected fiber brightness as a function of fiber orientation in CRM. PMID:20141747

  20. Validation study of automated dermal/epidermal junction localization algorithm in reflectance confocal microscopy images of skin

    NASA Astrophysics Data System (ADS)

    Kurugol, Sila; Rajadhyaksha, Milind; Dy, Jennifer G.; Brooks, Dana H.

    2012-02-01

    Reflectance confocal microscopy (RCM) has seen increasing clinical application for noninvasive diagnosis of skin cancer. Identifying the location of the dermal-epidermal junction (DEJ) in the image stacks is key for effective clinical imaging. For example, one clinical imaging procedure acquires a dense stack of 0.5x0.5mm FOV images and then, after manual determination of DEJ depth, collects a 5x5mm mosaic at that depth for diagnosis. However, especially in lightly pigmented skin, RCM images have low contrast at the DEJ which makes repeatable, objective visual identification challenging. We have previously published proof of concept for an automated algorithm for DEJ detection in both highly- and lightly-pigmented skin types based on sequential feature segmentation and classification. In lightly-pigmented skin the change of skin texture with depth was detected by the algorithm and used to locate the DEJ. Here we report on further validation of our algorithm on a more extensive collection of 24 image stacks (15 fair skin, 9 dark skin). We compare algorithm performance against classification by three clinical experts. We also evaluate inter-expert consistency among the experts. The average correlation across experts was 0.81 for lightly pigmented skin, indicating the difficulty of the problem. The algorithm achieved epidermis/dermis misclassification rates smaller than 10% (based on 25x25 mm tiles) and average distance from the expert labeled boundaries of ~6.4 ?m for fair skin and ~5.3 ?m for dark skin, well within average cell size and less than 2x the instrument resolution in the optical axis.

  1. Label-free in vivo imaging of myelinated axons in health and disease with spectral confocal reflectance microscopy

    PubMed Central

    Schain, Aaron J.; Hill, Robert A.; Grutzendler, Jaime

    2013-01-01

    We report a new technique for high-resolution in vivo imaging of myelinated axons in the brain, spinal cord and peripheral nerve that requires no fluorescent labeling. This method, based on spectral confocal reflectance microscopy (SCoRe), uses a conventional laser scanning confocal system to generate images by merging the simultaneously reflected signals from multiple lasers of different wavelengths. Striking color patterns unique to individual myelinated fibers are generated that facilitate their tracing in dense axonal areas. These patterns highlight nodes of Ranvier and Schmidt-Lanterman incisures and can be used to detect various myelin pathologies. Using SCoRe we performed chronic brain imaging up to 400 ?m deep, capturing for the first time de novo myelination of mouse cortical axons in vivo. We also established the feasibility of imaging myelinated axons in the human cerebral cortex. SCoRe adds a powerful component to the evolving toolbox for imaging myelination in living animals and potentially in humans. PMID:24681598

  2. Synchrotron infrared confocal microscope: Application to infrared 3D spectral imaging

    E-print Network

    Paris-Sud XI, Université de

    Synchrotron infrared confocal microscope: Application to infrared 3D spectral imaging F Jamme1, 2 coupled to an infrared microscope allows imaging at the so-called diffraction limit. Thus, numerous infrared beamlines around the world have been developed for infrared chemical imaging. Infrared microscopes

  3. Application of the laser scanning confocal microscope in fluorescent film sensor research

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyan; Liu, Wei-Min; Zhao, Wen-Wen; Dai, Qing; Wang, Peng-Fei

    2010-10-01

    Confocal microscopy offers several advantages over conventional optical microscopy; we show an experimental investigation laser scanning confocal microscope as a tool to be used in cubic boron nitride (cBN) film-based fluorescent sensor research. Cubic boron nitride cBN film sensors are modified with dansyl chloride and rhodamine B isothiocyanate respectively. Fluorescent modification quality on the cubic boron nitride film is clearly express and the sensor ability to Hg2+ cations and pH are investigated in detail. We evidence the rhodamine B isothiocyanate modified quality on cBN surface is much better than that of dansyl chloride. And laser scanning confocal microscope has potential application lighttight fundus film fluorescent sensor research.

  4. In vivo confocal microscopy in dermatology: from research to clinical application

    NASA Astrophysics Data System (ADS)

    Ulrich, Martina; Lange-Asschenfeldt, Susanne

    2013-06-01

    Confocal laser scanning microscopy (CLSM) represents an emerging technique for the noninvasive histomorphological analysis of skin in vivo and has shown its applicability for dermatological research as well as its value as an adjunct tool in the clinical management of skin cancer patients. Herein, we aim to give an overview on the current clinical indications for CLSM in dermatology and also highlight the diverse applications of CLSM in dermatological research.

  5. Application of confocal laser scanning microscopy to the deep pineal gland and other neural tissues.

    PubMed

    Welsh, M G; Ding, J M; Buggy, J; Terracio, L

    1991-12-01

    The study of the deep pineal gland of the Mongolian gerbil and other neuronal tissue from the rat by means of confocal laser scanning microscopy (CLSM) is described. Opical serial sectioning was performed on thick (100-200 microns) sections of the deep pineal gland of the Mongolian gerbil stained immunohistochemically using antisera to S-antigen and tyrosine hydroxylase (TH). Both dual-stained and single-stained material was examined using the fluorochromes fluorescein isothiocyanate (FITC) and Texas Red. High resolution images were obtained showing that pinealocytes have 1-3 processes that extend primarily to other pinealocytes or presumptive pinealocytes. Pinealocytes are located within the deep pineal gland as well as adjacent to the posterior aspect of the medial habenular nuclei. Pinealocyte processes were not seen extending into the habenular nuclei, but rather ended within the deep pineal gland a significant distance from their perikarya. The TH-immunopositive fibers were distributed throughout the deep pineal gland, often forming "baskets" of fibers around pinealocytes rather than being associated primarily with blood vessels. Other uses of the confocal microscope are demonstrated on rat neural tissue reacted with peroxidase/diaminobenzidine (DAB) immunohistochemistry and FITC fluorescence immunohistochemistry (paraventricular nucleus) as well as Golgi-stained neuronal tissue (cerebral cortex). The HRP/DAB and Golgi-stained images were visualized using the reflected image mode of the confocal system.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1686536

  6. Confocal reflectance mosaicing of basal cell carcinomas in Mohs surgical skin excisions

    E-print Network

    Sridhar, Srinivas

    and enhances BCC-to-dermis contrast. Clinically useful concentra- tions of acetic acid from 10 to 1% require 30 expedite Mohs surgery. © 2007 Society of Photo-Optical Instrumentation Engineers. DOI: 10 reflectance microscopy,4­8 optical coherence tomography,9 multispectral fluorescence polarization using

  7. Optimal pupil design for confocal microscopy

    Microsoft Academic Search

    Yogesh G. Patel; Milind Rajadhyaksha; Charles A. Dimarzio

    2010-01-01

    Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current instruments are large, complex, and expensive. A simpler, confocal line-scanning microscope may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A confocal reflectance microscope may use a beamsplitter, transmitting and detecting through the pupil,

  8. [The application of confocal laser scanning microscopy (CLSM) in cell biology].

    PubMed

    Sugita, M; Tenjin, Y

    1993-04-01

    Confocal laser scanning microscopy (CLSM) is expected to provide new optical information different from conventional microscopy in cell biology. CLSM provides high contrast images, individual continuous cellular tomograms without slicing cells, and stereographs which are observed by three dimensional reconstruction. We study the localization of nuclear DNA stained with PI, tumor marker antigen CA-125 stained with FITC, and signals in fluorescence in situ hybridization (FISH) with alpha satellite pericentrometric DNA probe of chromosome 17 to discuss the possibility of its application to cell biology or clinical use. Some of the applications of CLSM including its structure and principle are reviewed. PMID:8483262

  9. Confocal microendoscopy with chromatic sectioning

    NASA Astrophysics Data System (ADS)

    Lane, Pierre M.; Elliott, Robert P.; MacAulay, Calum E.

    2003-07-01

    Placing a spatial light modulator, such as the Texas Instruments Digital Micromirror Device (DMD), in the light path of a microscope enables a variety of novel applications. One application enables reflectance in vivo confocal imaging of cells and tissue structure through a fiber-optic image guide. While multi-wavelength reflectance confocal microendoscopy with optical sectioning is a requirement for a clinically useful device, some form of axial scanning is also necessary. This is readily achieved using a multi-element lens system with some form of mechanical translation, however, this generally results in large probes and high cost. These limitations can be overcome using a two-element GRIN lens system in which the traditionally undesirable chromatic aberration of such a system can be exploited to allow for color-encoded optical sectioning. In our system a wavelength encoding range of 200 nm permits a sectioning range of 40 ?m from the tip of the probe into the tissue.

  10. Confocal microscopy of biological tissues

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1996-02-01

    A new, real-time, flying slit confocal microscope, that has unique features and imaging characteristics for in vivo human ocular imaging is described. The use of scanning slit confocal microscopes has unique advantages over other instrumental systems based on pinhole-containing Nipkow disks (tandem-scanning confocal microscopes) for clinical in vivo confocal microscopy. The use of laser based confocal microscopy to investigate the metabolic state of biological tissues is described as a complementary technique to the reflected light imaging methods based on the flying slit confocal microscope.

  11. High-contrast images of semiconductor sites via one-photon optical beam-induced current imaging and confocal reflectance microscopy

    NASA Astrophysics Data System (ADS)

    Daria, Vincent R.; Miranda, Jelda J.; Saloma, Caesar

    2002-07-01

    We demonstrate a computationally efficient procedure for determining only the semiconductor sites in a confocal reflectance image of an integrated circuit. It utilizes a one-photon optical beam-induced current (1P-OBIC) and confocal reflectance images that are generated from the same focused excitation beam. A 1P-OBIC image is a two-dimensional map of the currents induced by the beam as it is scanned across the circuit surface. A 1P-OBIC is produced by an illuminated semiconductor material if the excitation photon energy exceeds the bandgap. The 1P-OBIC image has no vertical resolution because the 1P-OBIC is linear with the excitation beam intensity. The exclusive high-contrast image of semiconductor sites is generated by the product of the 1P-OBIC image and the confocal image. High-contrast images of the metal sites are also obtained by the product of the complementary OBIC image and the same confocal image.

  12. Reflective confocal laser scanning microscopy and nonlinear microscopy of cross-linked rabbit cornea

    Microsoft Academic Search

    Alexander Krueger; Marina Hovakimyan; Diego F. Ramirez; Oliver Stachs; Rudolf F. Guthoff; Alexander Heisterkamp

    2009-01-01

    Cross-linking of the cornea with application of Ribovlavin and UV-A light is an evolving clinical treatment of the eye disease keratoconus. Despite the positive clinical track record of corneal cross-linking, the complex wound healing process after the treatment is still under investigation. In this study an animal model was used to clarify the state of wound healing 5 weeks after

  13. Neurosurgical confocal endomicroscopy: A review of contrast agents, confocal systems, and future imaging modalities

    PubMed Central

    Zehri, Aqib H.; Ramey, Wyatt; Georges, Joseph F.; Mooney, Michael A.; Martirosyan, Nikolay L.; Preul, Mark C.; Nakaji, Peter

    2014-01-01

    Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid) with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS) microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM), two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery. PMID:24872922

  14. Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing

    NASA Astrophysics Data System (ADS)

    Lange-Asschenfeldt, Susanne; Bob, Adrienne; Terhorst, Dorothea; Ulrich, Martina; Fluhr, Joachim; Mendez, Gil; Roewert-Huber, Hans-Joachim; Stockfleth, Eggert; Lange-Asschenfeldt, Bernhard

    2012-07-01

    There is a high demand for noninvasive imaging techniques for wound assessment. In vivo reflectance confocal laser scanning microscopy (CLSM) represents an innovative optical technique for noninvasive evaluation of normal and diseased skin in vivo at near cellular resolution. This study was designed to test the feasibility of CLSM for noninvasive analysis of cutaneous wound healing in 15 patients (7 male/8 female), including acute and chronic, superficial and deep dermal skin wounds. A commercially available CLSM system was used for the assessment of wound bed and wound margins in order to obtain descriptive cellular and morphological parameters of cutaneous wound repair noninvasively and over time. CLSM was able to visualize features of cutaneous wound repair in epidermal and superficial dermal wounds, including aspects of inflammation, neovascularisation, and tissue remodelling in vivo. Limitations include the lack of mechanic fixation of the optical system on moist surfaces restricting the analysis of chronic skin wounds to the wound margins, as well as a limited optical resolution in areas of significant slough formation. By describing CLSM features of cutaneous inflammation, vascularisation, and epithelialisation, the findings of this study support the role of CLSM in modern wound research and management.

  15. Research and application on imaging technology of line structure light based on confocal microscopy

    NASA Astrophysics Data System (ADS)

    Han, Wenfeng; Xiao, Zexin; Wang, Xiaofen

    2009-11-01

    In 2005, the theory of line structure light confocal microscopy was put forward firstly in China by Xingyu Gao and Zexin Xiao in the Institute of Opt-mechatronics of Guilin University of Electronic Technology. Though the lateral resolution of line confocal microscopy can only reach or approach the level of the traditional dot confocal microscopy. But compared with traditional dot confocal microscopy, it has two advantages: first, by substituting line scanning for dot scanning, plane imaging only performs one-dimensional scanning, with imaging velocity greatly improved and scanning mechanism simplified, second, transfer quantity of light is greatly improved by substituting detection hairline for detection pinhole, and low illumination CCD is used directly to collect images instead of photoelectric intensifier. In order to apply the line confocal microscopy to practical system, based on the further research on the theory of the line confocal microscopy, imaging technology of line structure light is put forward on condition of implementation of confocal microscopy. Its validity and reliability are also verified by experiments.

  16. Optimised reflection imaging for surface roughness analysis using confocal laser scanning microscopy and height encoded image processing

    NASA Astrophysics Data System (ADS)

    Tomovich, S. J.; Peng, Z.

    2005-01-01

    Quantitative surface measurement is an important field in engineering. Due to the complexity of surface topography, accurate surface characterisation requires three-dimensional (3D) surface measurements not provided by many current measurement systems. A nondestructive and versatile technique for quantifying 3D surface features is Confocal Laser Scanning Microscopy (CLSM). However, there is little documentation on standard CLSM hardware settings required to capture images of suitable quality for 3D surface measurements. Understanding the complex relationship between CLSM settings, specimen properties and image quality is crucial to optimising the acquisition process for quantitative 3D surface measurements. The response of image quality to variations in CLSM hardware settings and specimen properties has been investigated in the study. Through the investigations, criteria have been developed to select optimal CLSM hardware settings to minimise image noise, eliminate image distortion, maximise contrast and resolution for reliable and accurate 3D numerical surface measurements. A reliable 3D image analysis system has been developed for image processing and surface measurement of engineering surfaces and small particles. The image analysis system developed in Matlab for the confocal system provides a new means to quantitatively characterise a wide range of engineering surfaces with accuracy and efficiency.

  17. Implementing Application Specific RTOS Policies using Reflection

    Microsoft Academic Search

    Ameet Patil; Neil C. Audsley

    2005-01-01

    Conventionally, a real-time operating system (RTOS) is built without knowing which specific applications is executed upon it. The RTOS is built for the general case, rather than to meet the specific requirements of an application. This paper proposes a generic module-based reflective framework to implement an RTOS that allows applications to dynamically adapt the policies within the RTOS to better

  18. A study on spatial coherence using quadratic radially distributed apertures (application to confocal imaging)

    Microsoft Academic Search

    A. M. Named

    1997-01-01

    We study the spatial coherence problem using an amplitude modulation applied to confocal imaging systems. This type of modulation assumes a quadratic radial distribution. The mutual coherence intensity or the coherence factor is calculated and compared with the results obtained for clear circular apertures.

  19. Principles: Confocal Laser Scanning Microscopy

    NSDL National Science Digital Library

    Stefan Wilhelm (Zeiss)

    2011-01-01

    Following a description of the fundamental differences between a conventional and a confocal microscope, this monograph will set out the special features of the confocal Laser Scanning Microscope (LSM) and the capabilities resulting from them. The conditions in fluorescence applications will be given priority treatment throughout.

  20. The value of in vivo reflectance confocal microscopy in the diagnosis and monitoring of inflammatory and infectious skin diseases: a systematic review.

    PubMed

    Hoogedoorn, L; Peppelman, M; van de Kerkhof, P C M; van Erp, P E J; Gerritsen, M J P

    2015-05-01

    In vivo examination of the skin by reflectance confocal microscopy (RCM) has been performed for about 20 years, leading to a broad spectrum of imaged infectious and inflammatory skin diseases (ISD) with many described RCM features. We systematically reviewed all available literature concerning ISD evaluated by RCM. Furthermore, we assessed the accuracy of the features and defined recommendations for future studies after indicating the limitations in the current published literature. PubMed, Embase, Cochrane Library and Web of Science databases were searched for literature. All studies on RCM and ISD were reviewed and quality assessment was determined by using the STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) checklist. The literature search revealed 77 eligible studies for inclusion. Different RCM features in a broad spectrum of ISD have been described. Further, RCM has been used for monitoring treatment and evolution of ISD, as well as for diagnostic purposes. This systematic review provides an overview of the broad spectrum of ISD imaged by RCM. Although RCM seems to be a promising monitoring and diagnostic tool for ISD, studies with appropriate methodological quality are necessary to create adequate guidelines and protocols for further implementation of RCM in clinical practice. PMID:25355622

  1. Total internal reflection ellipsometry: principles and applications.

    PubMed

    Arwin, Hans; Poksinski, Michal; Johansen, Knut

    2004-05-20

    A concept for a measurement technique based on ellipsometry in conditions of total internal reflection is presented. When combined with surface plasmon resonance (SPR) effects, this technique becomes powerful for monitoring and analyzing adsorption and desorption on thin semitransparent metal films as well as for analyzing the semitransparent films themselves. We call this technique total internal reflection ellipsometry (TIRE). The theory of ellipsometry under total internal reflection combined with SPR is discussed for some simple cases. For more advanced cases and to prove the concept, simulations are performed with the Fresnel formalism. The use of TIRE is exemplified by applications in protein adsorption, corrosion monitoring, and adsorption from opaque liquids on metal surfaces. Simulations and experiments show greatly enhanced thin-film sensitivity compared with ordinary ellipsometry. PMID:15176189

  2. Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis

    E-print Network

    Kang, Jeon Woong

    We have developed a novel multimodal microscopy system that incorporates confocal Raman, confocal reflectance, and quantitative phase microscopy (QPM) into a single imaging entity. Confocal Raman microscopy provides detailed ...

  3. The Application of Confocal Microscopy and Particle Size Analysis to Cartridge Case Examinations

    NASA Astrophysics Data System (ADS)

    McClorry, Shannon

    Although cross-correlation analysis is a convenient tool for image comparison, research shows that cross-correlation analysis of surface topographies is incapable of distinguishing between the large numbers of cartridge cases that would be necessary to create a national database. In this study, we manually overlay confocal images of primer face impressions and show that the size distribution of the regions of correspondence between two impressions has the potential to significantly improve the number of discernible topographies. Our results indicate that the average area of the individual regions of correspondence in an overlay provides a more abrupt distinction between matching and non-matching cartridge cases than does the overall extent of correspondence. In the 1950s, Biasotti discovered a similar trend in bullets, noting that the number of consecutive matching striae never exceed a particular number for non-matching bullets.

  4. Towards real-time image deconvolution: application to confocal and STED microscopy

    PubMed Central

    Zanella, R.; Zanghirati, G.; Cavicchioli, R.; Zanni, L.; Boccacci, P.; Bertero, M.; Vicidomini, G.

    2013-01-01

    Although deconvolution can improve the quality of any type of microscope, the high computational time required has so far limited its massive spreading. Here we demonstrate the ability of the scaled-gradient-projection (SGP) method to provide accelerated versions of the most used algorithms in microscopy. To achieve further increases in efficiency, we also consider implementations on graphic processing units (GPUs). We test the proposed algorithms both on synthetic and real data of confocal and STED microscopy. Combining the SGP method with the GPU implementation we achieve a speed-up factor from about a factor 25 to 690 (with respect the conventional algorithm). The excellent results obtained on STED microscopy images demonstrate the synergy between super-resolution techniques and image-deconvolution. Further, the real-time processing allows conserving one of the most important property of STED microscopy, i.e the ability to provide fast sub-diffraction resolution recordings. PMID:23982127

  5. Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy

    SciTech Connect

    Shur, V. Ya., E-mail: vladimir.shur@urfu.ru; Zelenovskiy, P. S. [Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2014-08-14

    The application of the most effective methods of the domain visualization in model uniaxial ferroelectrics of lithium niobate (LN) and lithium tantalate (LT) family, and relaxor strontium-barium niobate (SBN) have been reviewed in this paper. We have demonstrated the synergetic effect of joint usage of optical, confocal Raman, and piezoelectric force microscopies which provide extracting of the unique information about formation of the micro- and nanodomain structures. The methods have been applied for investigation of various types of domain structures with increasing complexity: (1) periodical domain structure in LN and LT, (2) nanodomain structures in LN, LT, and SBN, (3) nanodomain structures in LN with modified surface layer, (4) dendrite domain structure in LN. The self-assembled appearance of quasi-regular nanodomain structures in highly non-equilibrium switching conditions has been considered.

  6. Video-rate scanning confocal microscopy and microendoscopy.

    PubMed

    Nichols, Alexander J; Evans, Conor L

    2011-01-01

    Confocal microscopy has become an invaluable tool in biology and the biomedical sciences, enabling rapid, high-sensitivity, and high-resolution optical sectioning of complex systems. Confocal microscopy is routinely used, for example, to study specific cellular targets, monitor dynamics in living cells, and visualize the three dimensional evolution of entire organisms. Extensions of confocal imaging systems, such as confocal microendoscopes, allow for high-resolution imaging in vivo and are currently being applied to disease imaging and diagnosis in clinical settings. Confocal microscopy provides three-dimensional resolution by creating so-called "optical sections" using straightforward geometrical optics. In a standard wide-field microscope, fluorescence generated from a sample is collected by an objective lens and relayed directly to a detector. While acceptable for imaging thin samples, thick samples become blurred by fluorescence generated above and below the objective focal plane. In contrast, confocal microscopy enables virtual, optical sectioning of samples, rejecting out-of-focus light to build high resolution three-dimensional representations of samples. Confocal microscopes achieve this feat by using a confocal aperture in the detection beam path. The fluorescence collected from a sample by the objective is relayed back through the scanning mirrors and through the primary dichroic mirror, a mirror carefully selected to reflect shorter wavelengths such as the laser excitation beam while passing the longer, Stokes-shifted fluorescence emission. This long-wavelength fluorescence signal is then passed to a pair of lenses on either side of a pinhole that is positioned at a plane exactly conjugate with the focal plane of the objective lens. Photons collected from the focal volume of the object are collimated by the objective lens and are focused by the confocal lenses through the pinhole. Fluorescence generated above or below the focal plane will therefore not be collimated properly, and will not pass through the confocal pinhole, creating an optical section in which only light from the microscope focus is visible. (Fig 1). Thus the pinhole effectively acts as a virtual aperture in the focal plane, confining the detected emission to only one limited spatial location. Modern commercial confocal microscopes offer users fully automated operation, making formerly complex imaging procedures relatively straightforward and accessible. Despite the flexibility and power of these systems, commercial confocal microscopes are not well suited for all confocal imaging tasks, such as many in vivo imaging applications. Without the ability to create customized imaging systems to meet their needs, important experiments can remain out of reach to many scientists. In this article, we provide a step-by-step method for the complete construction of a custom, video-rate confocal imaging system from basic components. The upright microscope will be constructed using a resonant galvanometric mirror to provide the fast scanning axis, while a standard speed resonant galvanometric mirror will scan the slow axis. To create a precise scanned beam in the objective lens focus, these mirrors will be positioned at the so-called telecentric planes using four relay lenses. Confocal detection will be accomplished using a standard, off-the-shelf photomultiplier tube (PMT), and the images will be captured and displayed using a Matrox framegrabber card and the included software. PMID:22042305

  7. Video-rate Scanning Confocal Microscopy and Microendoscopy

    PubMed Central

    Nichols, Alexander J.; Evans, Conor L.

    2011-01-01

    Confocal microscopy has become an invaluable tool in biology and the biomedical sciences, enabling rapid, high-sensitivity, and high-resolution optical sectioning of complex systems. Confocal microscopy is routinely used, for example, to study specific cellular targets1, monitor dynamics in living cells2-4, and visualize the three dimensional evolution of entire organisms5,6. Extensions of confocal imaging systems, such as confocal microendoscopes, allow for high-resolution imaging in vivo7 and are currently being applied to disease imaging and diagnosis in clinical settings8,9. Confocal microscopy provides three-dimensional resolution by creating so-called "optical sections" using straightforward geometrical optics. In a standard wide-field microscope, fluorescence generated from a sample is collected by an objective lens and relayed directly to a detector. While acceptable for imaging thin samples, thick samples become blurred by fluorescence generated above and below the objective focal plane. In contrast, confocal microscopy enables virtual, optical sectioning of samples, rejecting out-of-focus light to build high resolution three-dimensional representations of samples. Confocal microscopes achieve this feat by using a confocal aperture in the detection beam path. The fluorescence collected from a sample by the objective is relayed back through the scanning mirrors and through the primary dichroic mirror, a mirror carefully selected to reflect shorter wavelengths such as the laser excitation beam while passing the longer, Stokes-shifted fluorescence emission. This long-wavelength fluorescence signal is then passed to a pair of lenses on either side of a pinhole that is positioned at a plane exactly conjugate with the focal plane of the objective lens. Photons collected from the focal volume of the object are collimated by the objective lens and are focused by the confocal lenses through the pinhole. Fluorescence generated above or below the focal plane will therefore not be collimated properly, and will not pass through the confocal pinhole1, creating an optical section in which only light from the microscope focus is visible. (Fig 1). Thus the pinhole effectively acts as a virtual aperture in the focal plane, confining the detected emission to only one limited spatial location. Modern commercial confocal microscopes offer users fully automated operation, making formerly complex imaging procedures relatively straightforward and accessible. Despite the flexibility and power of these systems, commercial confocal microscopes are not well suited for all confocal imaging tasks, such as many in vivo imaging applications. Without the ability to create customized imaging systems to meet their needs, important experiments can remain out of reach to many scientists. In this article, we provide a step-by-step method for the complete construction of a custom, video-rate confocal imaging system from basic components. The upright microscope will be constructed using a resonant galvanometric mirror to provide the fast scanning axis, while a standard speed resonant galvanometric mirror will scan the slow axis. To create a precise scanned beam in the objective lens focus, these mirrors will be positioned at the so-called telecentric planes using four relay lenses. Confocal detection will be accomplished using a standard, off-the-shelf photomultiplier tube (PMT), and the images will be captured and displayed using a Matrox framegrabber card and the included software. PMID:22042305

  8. Identifying brain neoplasms using dye-enhanced multimodal confocal imaging

    NASA Astrophysics Data System (ADS)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Kwon, Churl-Su; Frosch, Matthew P.; Curry, William; Yaroslavsky, Anna N.

    2012-02-01

    Brain tumors cause significant morbidity and mortality even when benign. Completeness of resection of brain tumors improves quality of life and survival; however, that is often difficult to accomplish. The goal of this study was to evaluate the feasibility of using multimodal confocal imaging for intraoperative detection of brain neoplasms. We have imaged different types of benign and malignant, primary and metastatic brain tumors. We correlated optical images with histopathology and evaluated the possibility of interpreting confocal images in a manner similar to pathology. Surgical specimens were briefly stained in 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged using a multimodal confocal microscope. Reflectance and fluorescence signals of MB were excited at 642 nm. Fluorescence emission of MB was registered between 670 and 710 nm. After imaging, tissues were processed for hematoxylin and eosin (H&E) histopathology. The results of comparison demonstrate good correlation between fluorescence images and histopathology. Reflectance images provide information about morphology and vascularity of the specimens, complementary to that provided by fluorescence images. Multimodal confocal imaging has the potential to aid in the intraoperative detection of microscopic deposits of brain neoplasms. The application of this technique may improve completeness of resection and increase patient survival.

  9. Real time confocal laser scanning microscopy: Potential applications in space medicine and cell biology

    Microsoft Academic Search

    Ana Rollan; Thelma Ward; Anthony P. McHale

    1998-01-01

    Photodynamic therapy (PDT), in which tissues may be rendered fatally light-sensitive represents a relatively novel treatment for cancer and other disorders such as cardiovascular disease. It offers significant application to disease control in an isolated environment such as space flight. In studying PDT in the laboratory, low energy lasers such as HeNe lasers are used to activate the photosensitized cellular

  10. Diffuse Reflectance Imaging with Astronomical Applications Samuel W. Hasinoff

    E-print Network

    Freeman, William T.

    Diffuse Reflectance Imaging with Astronomical Applications Samuel W. Hasinoff TTIC Anat Levin (and potentially the lighting) vary over time. Diffuse reflectance imaging is particularly relevant, diffuse reflectance imaging expands our notion of what can qualify as a camera. 1. Introduction Diffuse

  11. Total Internal Reflection Ellipsometry: Principles and Applications

    Microsoft Academic Search

    Hans Arwin; Michal Poksinski; Knut Johansen

    2004-01-01

    A concept for a measurement technique based on ellipsometry in conditions of total internal reflection is presented. When combined with surface plasmon resonance (SPR) effects, this technique becomes powerful for monitoring and analyzing adsorption and desorption on thin semitransparent metal films as well as for analyzing the semitransparent films themselves. We call this technique total internal reflection ellipsometry (TIRE). The

  12. Diffuse reflectance imaging with astronomical applications

    E-print Network

    Hasinoff, Samuel W.

    Diffuse objects generally tell us little about the surrounding lighting, since the radiance they reflect blurs together incident lighting from many directions. In this paper we discuss how occlusion geometry can help invert ...

  13. EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: APPLICATIONS FOR IMAGING MORPHOLOGY AND DEATH IN EMBRYOS AND REPRODUCTIVE TISSUE/ORGANS

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. It is remarkable that procedures to test the performance of these machines are not done routinely by most investigators and thus many of the machines in the field are working at level...

  14. Micro confocal line scanning system for high density microfluidics

    Microsoft Academic Search

    Sunghoon Kwon; Gang L. Liu; Ki-Hun Joeng; Luke P. Lee

    2003-01-01

    This paper describes development of a micro confocal line scanning system for multiplexed biochip applications. The hybrid integration of ID MEMS microlens scanner and confocal pinhole, laser diodes, and photodiode allows to create handheld sized autonomous confocal excitation and detection microsystem. Without use of bulky external microscopes, we have successfully demonstrated laser induced fluorescent excitation and detection from multiple of

  15. Materials for reflective coatings of window glass applications

    Microsoft Academic Search

    Jitka Mohelnikova

    2009-01-01

    Special glass with reflective coatings has found wide applications in architecture. Thin coatings deposited on glass panes modulate the glass optical properties. Some of the coatings operate as a mirror for long-wave infrared radiation of building interiors. The thin films have high transmittance in visible range and very high reflectance in long-wave infrared range. These coatings limit absorption of infrared

  16. Optical reflectance and transmittance of tissues: principles and applications

    Microsoft Academic Search

    BRIAN C. WILSON; STEVEN L. JACQUES

    1990-01-01

    A discussion is presented of diagnostic and dosimetric optical measurements in medicine and biology. Topics covered include: tissue optical properties, tissue boundary conditions, and invasive versus noninvasive measurements. Clinical applications of therapeutic dosimetry and diagnostic spectroscopy are discussed. The principles of diffuse reflectance and transmittance measurements are presented. Experimental studies illustrate reflectance spectroscopy and steady-state versus time-resolved measurements

  17. Confocal microscopy of hair

    Microsoft Academic Search

    J. M. Lagarde; P. Peyre; D. Redoules; D. Black; M. Briot; Y. Gall

    1994-01-01

    Confocal microscopy is an excellent method for studying the localization of fluorescent stains. Used in this way, superior 3D images can be obtained from multiple optical sections with very shallow depth of field. The main advantage of this technique is that the sample is not damaged. We have taken serial confocal sections of hair and via specific image enhancement routines

  18. 33 CFR 148.708 - Must the applicant's proposal reflect potential regulations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...false Must the applicant's proposal reflect potential regulations? 148.708 ...708 Must the applicant's proposal reflect potential regulations? Although...licensee, an applicant can and should reflect reasonably foreseeable environmental...

  19. 33 CFR 148.708 - Must the applicant's proposal reflect potential regulations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...false Must the applicant's proposal reflect potential regulations? 148.708 ...708 Must the applicant's proposal reflect potential regulations? Although...licensee, an applicant can and should reflect reasonably foreseeable environmental...

  20. 33 CFR 148.708 - Must the applicant's proposal reflect potential regulations?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...false Must the applicant's proposal reflect potential regulations? 148.708 ...708 Must the applicant's proposal reflect potential regulations? Although...licensee, an applicant can and should reflect reasonably foreseeable environmental...

  1. 33 CFR 148.708 - Must the applicant's proposal reflect potential regulations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...false Must the applicant's proposal reflect potential regulations? 148.708 ...708 Must the applicant's proposal reflect potential regulations? Although...licensee, an applicant can and should reflect reasonably foreseeable environmental...

  2. Fiber optic confocal microscope: In vivo precancer detection

    NASA Astrophysics Data System (ADS)

    Carlson, Kristen Dawn

    Cancer is a significant public health problem worldwide. Many cancers originate as precancerous lesions in the epithelium which, when removed in sufficient time, can prevent progression to cancer. However, current detection techniques are typically time-consuming and expensive, limiting their acceptance and accessibility. Optical techniques, such as confocal microscopy, have significant potential to provide clinicians with real-time, high-resolution images of cells and tissue without tissue removal. These images of cell morphology and tissue architecture can be used to characterize tissue and determine the presence or extent of precancer and cancer. This dissertation explores the instrumentation and application of fiber optic reflectance confocal microscopy for in vivo precancer detection. The first part of the dissertation presents in vivo imaging of suspicious lesions in the human uterine cervix and oral mucosa using a fiber bundle based confocal microscope with a complex glass miniature objective lens. Images are analyzed quantitatively and qualitatively to determine the potential of this technology in vivo. An analysis of nuclear density from images of 30 cervical epithelium sites shows differentiation between normal and precancerous sites. Similarly, images from 20 oral mucosa sites demonstrate changes in nuclear density and tissue architecture indicative of progression of precancer and cancer. In addition to this multi-fiber confocal microscope used with a glass objective lens for the clinical studies, imaging of tissue samples has been accomplished with the same confocal system using an injection molded plastic miniature objective lens demonstrating comparable optical quality for a significantly less expensive optical component. Finally, a benchtop prototype of a single fiber confocal microscope using a gimbaled two-axis MEMS scanner has been designed and constructed. Imaging of a resolution target and cellular samples demonstrates sufficient resolution and field of view for cellular imaging. The results from the imaging studies presented here indicate that in vivo confocal microscopy has the potential to improve early precancer detection in epithelial tissue. Advances in imaging technology will continue to reduce the cost of imaging systems and improve the imaging capability, leading to an inexpensive, real-time, minimally-invasive tool for in vivo imaging.

  3. Confocal Beam Formation for an Oblique Scanning Acoustic Microscope

    Microsoft Academic Search

    C. Cutler

    1985-01-01

    Confocal converging non-apertured acoustic beams are desirable in oblique offspecular reflection microscopy and for observing signal intermodulation in microscopy. Our experience has shown that optimal coincidence of focus and axial intersection of the beams requires rather specific choices of dimensional parameters. We have studied acoustic beam formation by analysis and by computation using the Huygens-Fresnel principle and show that confocal

  4. Unanticipated partial behavioral reflection: Adapting applications at runtime

    Microsoft Academic Search

    David Röthlisberger; Marcus Denker; Éric Tanter

    2008-01-01

    Dynamic, unanticipated adaptation of running systems is of interest in a variety of situations, ranging from functional upgrades to on-the-fly debugging or monitoring of critical applications. In this paper we study a particular form of computational reflection, calledunanticipated partial behavioral reflection(UPBR), which is particularly well suited for unanticipated adaptation of real- world systems. Our proposal combines the dynamicity of unanticipated

  5. Expanding imaging capabilities for microfluidics: applicability of darkfield internal reflection illumination (DIRI) to observations in microfluidics.

    PubMed

    Kawano, Yoshihiro; Otsuka, Chino; Sanzo, James; Higgins, Christopher; Nirei, Tatsuo; Schilling, Tobias; Ishikawa, Takuji

    2015-01-01

    Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (?PIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics. PMID:25748425

  6. High-speed multispectral confocal biomedical imaging.

    PubMed

    Carver, Gary E; Locknar, Sarah A; Morrison, William A; Ramanujan, V Krishnan; Farkas, Daniel L

    2014-03-01

    A new approach for generating high-speed multispectral confocal images has been developed. The central concept is that spectra can be acquired for each pixel in a confocal spatial scan by using a fast spectrometer based on optical fiber delay lines. This approach merges fast spectroscopy with standard spatial scanning to create datacubes in real time. The spectrometer is based on a serial array of reflecting spectral elements, delay lines between these elements, and a single element detector. The spatial, spectral, and temporal resolution of the instrument is described and illustrated by multispectral images of laser-induced autofluorescence in biological tissues. PMID:24658777

  7. Reflections

    NSDL National Science Digital Library

    Carlyn Little

    1997-01-01

    In this quick activity, Dracula has a hole in his house and learners help solve the problem by using a mirror and protractor to reflect incoming light out of his house. This activity introduces learners to vocabulary associated with light and optics including reflected ray, angle of incident, and angle of reflection. This Dracula-themed activity also works well during Halloween.

  8. Eye reflection analysis and application to display-camera calibration

    Microsoft Academic Search

    Christian Nitschke; Atsushi Nakazawa; Haruo Takemura

    2009-01-01

    We present a novel technique for calibrating display-camera systems from reflections in the user's eyes. Display-camera systems enable a range of vision applications that need controlled illumination, including 3D object reconstruction, facial modeling and human computer interaction. One important issue, though, is the geometric calibration of the display, which requires additional hardware and tedious user interaction. The proposed approach eliminates

  9. Advanced confocal fiber-optic imaging and sensing approaches

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hyun; Kang, Jin U.; Ilev, Ilko K.

    2009-02-01

    Fiber-optic-based confocal microscopy has been extensively used as an effective imaging and sensor technology due to its submicron spatial resolution, flexible beam delivery, and scanning potential. Recent research efforts in confocal microscopy have been focused on improving the resolution, increasing the imaging speed, and adapting multi-photon modalities. Here, we present our recent research studies on various advanced confocal fiber-optic imaging and sensing approaches using the following novel confocal methods. First, we investigated an all-fiber-optic confocal interference microscope approach using a low-coherence near-infrared (1310 nm) light source. A signal-to-noise ratio (SNR) enhancement of 3.38 dB compared to a reflection-mode confocal microscope was observed. The use of a low-coherence light source reduced the interference effects between various optical components, and an all-fiber-optic, robust and compact confocal setup could be designed. Second, we experimentally investigated a single-fiber confocal microscope approach using a hollow-core photonic bandgap fiber. The single-fiber hollow-core structure reduced the back-reflection by 85% which enhanced the SNR. The measured lateral resolution was as high as or better than 0.78 ?m when a 532-nm laser source was used. Third, we explored a novel upconversion confocal microscope approach utilizing a continuous-wave near-infrared (1550 nm) pump light source. An Erbium-doped glass powder was used as an upconversion phosphor medium that emits an upconverted signal at 660 nm. Using this upconversion fiber-optic confocal microscope method, high resolution images with a lateral resolution close to theoretical limits were obtained.

  10. Optimal pupil design for confocal microscopy

    NASA Astrophysics Data System (ADS)

    Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2010-02-01

    Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current instruments are large, complex, and expensive. A simpler, confocal line-scanning microscope may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A confocal reflectance microscope may use a beamsplitter, transmitting and detecting through the pupil, or a divided pupil, or theta configuration, with half used for transmission and half for detection. The divided pupil may offer better sectioning and contrast. We present a Fourier optics model and compare the on-axis irradiance of a confocal point-scanning microscope in both pupil configurations, optimizing the profile of a Gaussian beam in a circular or semicircular aperture. We repeat both calculations with a cylindrical lens which focuses the source to a line. The variable parameter is the fillfactor, h, the ratio of the 1/e2 diameter of the Gaussian beam to the diameter of the full aperture. The optimal values of h, for point scanning are 0.90 (full) and 0.66 for the half-aperture. For line-scanning, the fill-factors are 1.02 (full) and 0.52 (half). Additional parameters to consider are the optimal location of the point-source beam in the divided-pupil configuration, the optimal line width for the line-source, and the width of the aperture in the divided-pupil configuration. Additional figures of merit are field-of-view and sectioning. Use of optimal designs is critical in comparing the experimental performance of the different configurations.

  11. Rapid observation of unfixed, unstained human skin biopsy specimens with confocal microscopy and visualization

    Microsoft Academic Search

    Barry R. Masters; David J. Aziz; Arthur F. Gmitro; James H. Kerr; Terence C. O'Grady; Leon Goldman

    1997-01-01

    The use of reflected light confocal microscopy is proposed to rapidly observe unfixed, unstained biopsy specimens of human skin. Reflected light laser scanning confocal microscopy was used to compare a freshly excised, unfixed, unstained biopsy specimen, and in vivo human skin. Optical sections from the ex vivo biopsy specimen of human skin and in vivo human skin were converted to

  12. Reflections.

    PubMed

    Mauksch, Larry B; Fogarty, Colleen T

    2015-03-01

    Times that prompt reflection include anniversaries, deaths, and birthday celebrations. September 2014, Donald A. Bloch, MD died. He started this Journal (formerly Family Systems Medicine) and the Collaborative Family Health Care Association (formerly Coalition). Don’s death occurred just one month before CFHA celebrated its 20th year. In this issue and our June issue, Families, Systems and Health devotes space for reflection. We begin with a remembrance of Don, written by his friend, mentee, and colleague, David Seaburn, PhD, LMFT. We also reflect on the 20th annual CFHA meeting, where we could see Don’s vision at work in the plenaries. In our June issue we will publish a second article written by CJ Peek, PhD, about Don’s vision of the field, the organization (CFHA), and this Journal. The article will ask readers to reflect. PMID:25751178

  13. Polarized confocal theta microscopy

    NASA Astrophysics Data System (ADS)

    Haeberlé, Olivier; Furukawa, Hiromitsu; Tenjimbayashi, Koji

    2002-12-01

    We propose a comprehensive treatment of theta microscopy based on dipole emission, which better describes fluorescence emission than the isotropic emission model, as fluorescence emission is often polarized. Formulas describing the point spread function for polarized confocal fluorescence theta microscopy are given. Examples are given and some advantages of polarized theta fluorescence microscopy are presented. To cite this article: O. Haeberlé et al., C. R. Physique 3 (2002) 1445-1450.

  14. Confocal microscopy for healthy and pathological nail.

    PubMed

    Cinotti, E; Fouilloux, B; Perrot, J L; Labeille, B; Douchet, C; Cambazard, F

    2014-07-01

    Nail diseases are often annoying for the patient and diagnostically challenging for dermatologists. New imaging techniques are of high interest in the diagnosis of nail disorders to reduce the number of nail biopsies. Confocal microscopy is a high-resolution emerging imaging technique that can be used to explore the entire body surface, including skin, mucosa, hair and nails. A systematic review of the literature concerning the use of confocal microscopy for the study of either healthy or pathological nail has been performed to evaluate the current use of this technique and possible future applications. Confocal microscopy is particularly suitable for nails because it allows a non-invasive in vivo examination of this sensitive body area, and nail plate transparency permits to image up to the nail bed with an easy identification of corneocytes. Confocal microscopy can play a role in the diagnosis of onychomycosis and melanonichia, and in the study of drug penetration through the nail plate. It could be used in the future as a non-invasive procedure for the investigation of different nail diseases, such as psoriasis and lichen planus. Further application could be the intra-operative ex vivo examination of nail specimens to outline tumour margins to assist surgery. PMID:24320009

  15. Confocal Microscopy of Corneal Dystrophies

    PubMed Central

    Shukla, Anita N.; Cruzat, Andrea; Hamrah, Pedram

    2014-01-01

    In vivo confocal microscopy (IVCM) of the cornea is becoming an indispensable tool in the cellular study of corneal physiology and disease. This technique offers non-invasive imaging of the living cornea with images comparable to that of ex vivo histology. The ability to provide high-resolution images of all layers in the living cornea has resulted in new discoveries of corneal pathology at the cellular level. The IVCM analysis of corneal dystrophies is of importance to clinicians, as current methods of diagnosis involve slit-lamp characteristics, genetic analysis, and invasive biopsy. IVCM is helpful in evaluating the morphological characteristics of corneal dystrophies at the histological level and may be helpful in diagnosis, determination of progression, and understanding the pathophysiology of disease. The purpose of this review is to describe the principles, applications, and clinical correlation of IVCM in the study of corneal dystrophies. PMID:23163262

  16. Toward Reflective Application Testing in Open Environments Eyvind W. Axelsen, Einar Broch Johnsen, and Olaf Owe

    E-print Network

    Johnsen, Einar Broch

    reflective specifications at the Maude meta­ level. The use of reflection is essential to our approach a nondeterministic execution strategy is proposed in [16]. Reflective specifications support a layered architectureToward Reflective Application Testing in Open Environments Eyvind W. Axelsen, Einar Broch Johnsen

  17. Toward Reflective Application Testing in Open Environments Eyvind W. Axelsen, Einar Broch Johnsen, and Olaf Owe

    E-print Network

    Johnsen, Einar Broch

    reflective specifications at the Maude meta- level. The use of reflection is essential to our approach a nondeterministic execution strategy is proposed in [16]. Reflective specifications support a layered architectureToward Reflective Application Testing in Open Environments Eyvind W. Axelsen, Einar Broch Johnsen

  18. Reflection

    NSDL National Science Digital Library

    In this activity, students learn that infrared light is reflected in the same manner as visible light. Students align a series of mirrors so that they can turn on a TV with a remote control when the remote is not in a direct line with the TV. As a result of their experiment with reflection, students deduce that infrared light is another form of light and is a part of the electromagnetic spectrum. Section 1 of the activity guide includes teacher notes, information on materials and preparation, student misconceptions and a student pre-test. Each activity section also includes teacher notes, student activity sheets, and answer keys. This activity requires a TV and remote control. It is the third of four activities in Active Astronomy, which are designed to complement instruction on the electromagnetic spectrum, focusing on infrared light.

  19. Bidirectional Reflectance Functions for Application to Earth Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Manalo-Smith, N.; Tiwari, S. N.; Smith, G. L.

    1997-01-01

    Reflected solar radiative fluxes emerging for the Earth's top of the atmosphere are inferred from satellite broadband radiance measurements by applying bidirectional reflectance functions (BDRFs) to account for the anisotropy of the radiation field. BDRF's are dependent upon the viewing geometry (i.e. solar zenith angle, view zenith angle, and relative azimuth angle), the amount and type of cloud cover, the condition of the intervening atmosphere, and the reflectance characteristics of the underlying surface. A set of operational Earth Radiation Budget Experiment (ERBE) BDRFs is available which was developed from the Nimbus 7 ERB (Earth Radiation Budget) scanner data for a three-angle grid system, An improved set of bidirectional reflectance is required for mission planning and data analysis of future earth radiation budget instruments, such as the Clouds and Earth's Radiant Energy System (CERES), and for the enhancement of existing radiation budget data products. This study presents an analytic expression for BDRFs formulated by applying a fit to the ERBE operational model tabulations. A set of model coefficients applicable to any viewing condition is computed for an overcast and a clear sky scene over four geographical surface types: ocean, land, snow, and desert, and partly cloudy scenes over ocean and land. The models are smooth in terms of the directional angles and adhere to the principle of reciprocity, i.e., they are invariant with respect to the interchange of the incoming and outgoing directional angles. The analytic BDRFs and the radiance standard deviations are compared with the operational ERBE models and validated with ERBE data. The clear ocean model is validated with Dlhopolsky's clear ocean model. Dlhopolsky developed a BDRF of higher angular resolution for clear sky ocean from ERBE radiances. Additionally, the effectiveness of the models accounting for anisotropy for various viewing directions is tested with the ERBE along tract data. An area viewed from nadir and from the side give two different radiance measurements but should yield the same flux when converted by the BDRF. The analytic BDRFs are in very good qualitative agreement with the ERBE models. The overcast scenes exhibit constant retrieved albedo over viewing zenith angles for solar zenith angles less than 60 degrees. The clear ocean model does not produce constant retrieved albedo over viewing zenith angles but gives an improvement over the ERBE operational clear sky ocean BDRF.

  20. Confocal microscopy of the cornea

    Microsoft Academic Search

    Matthias Böhnke; Barry R Masters

    1999-01-01

    This paper provides the clinician and the researcher with an in-depth manual on the use of a scanning-slit confocal light microscope for the clinical examination and investigation of the living human cornea in vivo. The scope of the paper includes a thorough explanation of the principles of various types of confocal microscopes as well as their limitations, a comprehensive review

  1. Any Way You Slice It-A Comparison of Confocal Microscopy Techniques.

    PubMed

    Jonkman, James; Brown, Claire M

    2015-07-01

    The confocal fluorescence microscope has become a popular tool for life sciences researchers, primarily because of its ability to remove blur from outside of the focal plane of the image. Several different kinds of confocal microscopes have been developed, each with advantages and disadvantages. This article will cover the grid confocal, classic confocal laser-scanning microscope (CLSM), the resonant scanning-CLSM, and the spinning-disk confocal microscope. The way each microscope technique works, the best applications the technique is suited for, the limitations of the technique, and new developments for each technology will be presented. Researchers who have access to a range of different confocal microscopes (e.g., through a local core facility) should find this paper helpful for choosing the best confocal technology for specific imaging applications. Others with funding to purchase an instrument should find the article helpful in deciding which technology is ideal for their area of research. PMID:25802490

  2. Any Way You Slice It—A Comparison of Confocal Microscopy Techniques

    PubMed Central

    Jonkman, James

    2015-01-01

    The confocal fluorescence microscope has become a popular tool for life sciences researchers, primarily because of its ability to remove blur from outside of the focal plane of the image. Several different kinds of confocal microscopes have been developed, each with advantages and disadvantages. This article will cover the grid confocal, classic confocal laser-scanning microscope (CLSM), the resonant scanning-CLSM, and the spinning-disk confocal microscope. The way each microscope technique works, the best applications the technique is suited for, the limitations of the technique, and new developments for each technology will be presented. Researchers who have access to a range of different confocal microscopes (e.g., through a local core facility) should find this paper helpful for choosing the best confocal technology for specific imaging applications. Others with funding to purchase an instrument should find the article helpful in deciding which technology is ideal for their area of research. PMID:25802490

  3. A New Multichannel Spectral Imaging Laser Scanning Confocal Microscope

    PubMed Central

    Zhang, Yunhai; Hu, Bian; Dai, Yakang; Yang, Haomin; Huang, Wei; Xue, Xiaojun; Li, Fazhi; Zhang, Xin; Jiang, Chenyu; Gao, Fei; Chang, Jian

    2013-01-01

    We have developed a new multichannel spectral imaging laser scanning confocal microscope for effective detection of multiple fluorescent labeling in the research of biological tissues. In this paper, the design and key technologies of the system are introduced. Representative results on confocal imaging, 3-dimensional sectioning imaging, and spectral imaging are demonstrated. The results indicated that the system is applicable to multiple fluorescent labeling in biological experiments. PMID:23585775

  4. Confocal Microscopy and Molecular-Specific Optical Contrast Agents for the Detection of Oral Neoplasia

    PubMed Central

    Carlson, Alicia L.; Gillenwater, Ann M.; Williams, Michelle D.; El-Naggar, Adel K.; Richards-Kortum, R. R.

    2009-01-01

    Using current clinical diagnostic techniques, it is difficult to visualize tumor morphology and architecture at the cellular level, which is necessary for diagnostic localization of pathologic lesions. Optical imaging techniques have the potential to address this clinical need by providing real-time, sub-cellular resolution images. This paper describes the use of dual mode confocal microscopy and optical molecular-specific contrast agents to image tissue architecture, cellular morphology, and sub-cellular molecular features of normal and neoplastic oral tissues. Fresh tissue slices were prepared from 33 biopsies of clinically normal and abnormal oral mucosa obtained from 14 patients. Reflectance confocal images were acquired after the application of 6% acetic acid, and fluorescence confocal images were acquired after the application of a fluorescence contrast agent targeting the epidermal growth factor receptor (EGFR). The dual imaging modes provided images similar to light microscopy of hematoxylin and eosin and immunohistochemistry staining, but from thick fresh tissue slices. Reflectance images provided information on the architecture of the tissue and the cellular morphology. The nuclear-to-cytoplasmic (N/C) ratio from the reflectance images was at least 7.5 times greater for the carcinoma than the corresponding normal samples, except for one case of highly keratinized carcinoma. Separation of carcinoma from normal and mild dysplasia was achieved using this ratio (p<0.01). Fluorescence images of EGFR expression yielded a mean fluorescence labeling intensity (FLI) that was at least 2.7 times higher for severe dysplasia and carcinoma samples than for the corresponding normal sample, and could be used to distinguish carcinoma from normal and mild dysplasia (p<0.01). Analyzed together, the N/C ratio and the mean FLI may improve the ability to distinguish carcinoma from normal squamous epithelium. PMID:17877424

  5. Development of grating light reflection spectroscopy for chemical sensing applications

    Microsoft Academic Search

    Sean Acie Smith

    2000-01-01

    Grating Light Reflection Spectroscopy (GLRS) exploits the interaction of light with a transmission diffraction grating in contact with a sample. With this technique, light reflected from the grating exhibits a redistribution of spectral intensity and phase dependent upon the bulk dielectric properties (refractive index and absorbance) of the sample. The use of a transmission diffraction grating makes GLRS unique within

  6. Differential reflectivity and differential phase shift: Applications in radar meteorology

    Microsoft Academic Search

    T. A. Seliga; V. N. Bringi

    1978-01-01

    The differential scattering properties of classes of hydrometeors at linear orthogonal polarizations provide potentially important differences which may be exploited for radar measurements of precipitation. The ratio of the reflectivity at horizontal (ZH) and vertical (Zv) polarizations may be combined with other radar measurements such as absolute reflectivity and differential phase shift to determine drop size distributions. Previous model calculations

  7. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications.

    USGS Publications Warehouse

    Clark, R.N.; Roush, T.L.

    1984-01-01

    Several methods for the analysis of remotely sensed reflectance data are compared, including empirical methods and scattering theories, both of which are important for solving remote sensing problems. The concept of the photon mean path length and the implications for use in modeling reflectance spectra are presented.-from Authors

  8. Reflectance Spectroscopy: Quantitative Analysis Techniques for Remote Sensing Applications

    Microsoft Academic Search

    Roger N. Clark; Ted L. Roush

    1984-01-01

    Several methods for the analysis of remotely sensed reflectance data are compared, including empirical methods and scattering theories, both of which are important for solving remote sensing problems. The concept of the photon mean optical path length and the implications for use in modeling reflectance spectra are presented. It is shown that the mean optical path length in a particulate

  9. Optimization of porous silicon reflectance for solar cell applications

    SciTech Connect

    Coles, A.X.; Gerhardt, R.A.; Rohatgi, A. [Georgia Inst. of Tech., Atlanta, GA (United States)

    1996-12-31

    The potential use of porous silicon as an antireflective coating on solar cells has recently been recognized. This study investigates the effect of current density, anodization time, and surface conditions on the reflectance of porous silicon which was fabricated by anodizing (100) float zone single crystal Si wafers. The wafers were coated on one side with Al prior to anodization, and a HF-based solution was used as the electrolyte. Current densities of 5--100 mA/cm{sup 2} were used to anodize both polished and unpolished wafers over time intervals ranging from 2sec--30 minutes. Reflectance properties were tested over the 400--1100 nm range, and minimum reflectances of 3--5% were achieved. The reflectance of the best porous Si sample normalized with respect to the sun`s spectrum compares favorably with the reflectance of a double layer ZnS/MgF{sub 2} with prior texturing.

  10. The Oberon2 Reflection Model and Its Applications

    Microsoft Academic Search

    Hanspeter Mössenböck; Christoph Steindl

    1999-01-01

    We describe the reflection model of Oberon-2, a language in the tradition of Pascal and Modula-2. It provides run-time information about the structure of variables, types and procedures and allows the programmer t o manipulate the values of variables. The special aspect of the Oberon-2 reflection model is that metainformation is not obtained via metaclasses. It is rather organized as

  11. Fast scanning confocal sensor provides high-fidelity surface profiles on a microscopic scale

    NASA Astrophysics Data System (ADS)

    Schick, Anton; Breitmeier, Ulrich

    2004-09-01

    For a long time the confocal imaging technique was known to be a high precision imaging method in the field of microscopy providing unique depth discrimination properties, but suffering from slow response in connection with pointwise height detecting sensors. At the same time, it is obvious for triangulation systems to be unable to cope with the huge variety of shapes and specular surfaces in the continuous trend towards miniaturisation in electronics and micro machining. It is commonly understood that confocal height profiling usually requires a time consuming readjustment of the distance between the object and the sensor whilst scanning across a surface. Moreover, height steps on surfaces give rise to artefacts at the edges in many cases. In order to overcome these drawbacks we developed a high speed confocal sensor head, featuring a pixel data rate of 8000 Hz independent of surface steps and surface reflectivity. An essential feature is a fast focus scan in Z direction perpendicular to the object at a preset height measuring range. The focus adjustment is realised by scanning an image with a punctiform light source in conjunction with a punctiform detector utilizing a mirror which is attached to a high frequency mechanic oscillator. Both, the light source and the detector coincide at the end of a fibre. By moving the small sensor head relative to a surface a profile scan is taken. The time needed to determine the height value of one pixel and to measure its brightness is less than 125 microseconds. This high speed true confocal height detection technology opens up a new range of applications, e.g. in-line roughness, profile, displacement and coating thickness measurement as well as the profiling of holes where shading effects inhibit the use of triangulation based sensors.

  12. Comprehensive confocal endomicroscopy of the esophagus in vivo

    PubMed Central

    Kang, Dongkyun; Schlachter, Simon C.; Carruth, Robert W.; Kim, Minkyu; Wu, Tao; Tabatabaei, Nima; Vacas-Jacques, Paulino; Shishkov, Milen; Woods, Kevin; Sauk, Jenny S.; Leung, John; Nishioka, Norman S.; Tearney, Guillermo J.

    2014-01-01

    Background and study aims: Biopsy sampling error can be a problem for the diagnosis of certain gastrointestinal tract diseases. Spectrally-encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that has the potential to overcome sampling error by imaging large regions of gastrointestinal tract tissues. The aim of this study was to test a recently developed SECM endoscopic probe for comprehensively imaging large segments of the esophagus at the microscopic level in vivo. Methods: Topical acetic acid was endoscopically applied to the esophagus of a normal living swine. The 7?mm diameter SECM endoscopic probe was transorally introduced into the esophagus over a wire. Optics within the SECM probe were helically scanned over a 5?cm length of the esophagus. Confocal microscopy data was displayed and stored in real time. Results: Very large confocal microscopy images (length?=?5 cm; circumference?=?2.2?cm) of swine esophagus from three imaging depths, spanning a total area of 33?cm2, were obtained in about 2 minutes. SECM images enabled the visualization of cellular morphology of the swine esophagus, including stratified squamous cell nuclei, basal cells, and collagen within the lamina propria. Conclusions: The results from this study suggest that the SECM technology can rapidly provide large, contiguous confocal microscopy images of the esophagus in vivo. When applied to human subjects, the unique comprehensive, microscopic imaging capabilities of this technology may be utilized for improving the screening and surveillance of various esophageal diseases.

  13. Silicon anti-resonant reflecting optical waveguides for sensor applications

    Microsoft Academic Search

    K. Benaissa; A. Nathan

    1998-01-01

    We review the design and fabrication considerations of silicon integrated optical (IO) waveguides and present a variety of device structures, for detection of mechanical signals, along with structures for coupling light to integrated photodetectors. These devices are based on the antiresonant reflecting optical waveguide (ARROW). The ARROW utilizes dielectric materials that are fully compatible with the standard integrated circuit (IC)

  14. APPLICATIONS OF SEISMIC REFLECTION IN THE COAL ENVIRONMENT

    Microsoft Academic Search

    Troy Peters; Natasha Hendrick

    Seismic reflection has grown to become a valuable geophysical tool for the accurate and cost- effective imaging of coal seams, and is now of significant importance to the economics and safety of coal mining in Australia. This paper provides an essential, up-to-date overview of the advantages and potential pitfalls of using the seismic method in the coal environment based on

  15. Instrumentation for Reflectance Spectroscopy and Microspectroscopy with Application to Astrobiology

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Blaney, Diana L.; Green, Robert O.

    2008-01-01

    We present instrument concepts for in-situ reflectance spectroscopy over a spatial resolution range from several meters to tens of micrometers. These have been adapted to the low mass and power requirements of rover or similar platforms. Described are a miniaturized imaging spectrometer for rover mast, a combined mast and arm point spectrometer, and an imaging microspectrometer for the rover arm.

  16. Hybrid hyperchromats for chromatic confocal sensor systems

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Matthias; Mitschunas, Beate; Wenzel, Christian; Grewe, Adrian; Ma, Xuan; Feßer, Patrick; Bichra, Mohamed; Sinzinger, Stefan

    2012-07-01

    The combination of diffractive and refractive elements in hybrid optical systems allows for precise control of the longitudinal chromatic aberration. We provide comprehensive design strategies for hybrid hyperchromatic lenses that maximise the longitudinal chromatic aberrations. These lenses are mainly used in chromatic confocal sensor systems for efficient non-contact profilometry as well as for measurements of distances and wall thicknesses of transparent materials. Our design approach enables the tailoring of the sensor properties to the specific measurement problem and assists designers in finding optimised solutions for industrial applications. We, for example, demonstrate a hybrid system that significantly exceeds the longitudinal chromatic aberration of purely diffractive elements.

  17. Methods of Creating Solar-Reflective Nonwhite Surfaces and theirApplication to Residential Roofing Materials

    Microsoft Academic Search

    Ronnen Levinson; Paul Berdahl; Hashem Akbari; William Miller; Ingo Joedicke; Joseph Reilly; Yoshi Suzuki; Michelle Vondran

    2005-01-01

    We describe methods for creating solar-reflective nonwhitesurfaces and their application to a wide variety of residential roofingmaterials, including metal, clay tile, concrete tile, wood, and asphaltshingle. Reflectance in the near-infrared (NIR) spectrum (0.7 2.5mu m) ismaximized by coloring a topcoatwith pigments that weakly absorb and(optionally) strongly backscatter NIR radiation, and adding anNIR-reflective basecoat (e.g., titanium dioxide white) if both thetopcoat

  18. Twin-Photon Confocal Microscopy

    E-print Network

    Simon, D S

    2010-01-01

    A recently introduced two-channel confocal microscope with correlated detection promises up to 50% improvement in transverse spatial resolution [Simon, Sergienko, Optics Express {\\bf 18}, 9765 (2010)]. Here we move further by introducing a triple-confocal correlated microscope, exploiting the correlations present in optical parametric amplifiers. It is based on tight focusing of pump radiation onto a thin sample positioned in front of a nonlinear crystal, followed by coincidence detection of signal and idler photons, each focused onto a pinhole. This approach offers further resolution enhancement in microscopy.

  19. Simulation of a theta line-scanning confocal microscope.

    PubMed

    Simon, Blair; Dimarzio, Charles A

    2007-01-01

    We describe a 2-D computational model of the optical propagation of coherent light from a laser diode within human skin to better understand the performance of a confocal reflectance theta microscope. The simulation uses finite-difference time domain (FDTD) computations to solve Maxwell's equations in a synthetic skin model that includes melanin, mitochondria, and nuclei. The theta line-scanning confocal microscope configuration experiences more localized decreases in the signal than the confocal common-path point-scanning microscope. We hypothesize that these decreases result from the bistatic imaging configuration, the imaging geometry, and the inhomogeneity of the index of refraction of the skin. All these factors result in the source path having aberrations different than those of the receiver path. The model predicts signal decreases that are somewhat greater than those seen in experiments. New details on the reflection from a spherical object show that imaging with the theta line scanner leads to somewhat different results than would be seen with a common-path point scanner. The model is used to optimize the design of the theta line-scanning confocal microscope. PMID:18163836

  20. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of emitted signals. The accuracy of these measurements demands that...

  1. Establishment and application of the 0/45 reflectance factor scale over the shortwave infrared.

    PubMed

    Cooksey, Catherine C; Allen, David W; Tsai, Benjamin K; Yoon, Howard W

    2015-04-01

    This paper describes the establishment and application of the 0/45 reflectance factor scale in the shortwave infrared (SWIR) from 1100 to 2500 nm. Design, characterization, and the demonstration of a four-stage, extended indium-gallium-arsenide radiometer to perform reflectance measurements in the SWIR have been previously discussed. Here, we focus on the incorporation of the radiometer into the national reference reflectometer, its validation through comparison measurements, and the uncertainty budget. Next, this capability is applied to the measurement of three different diffuser materials. The 0/45 spectral reflectance factors for these materials are reported and compared to their respective 6/di spectral reflectance factors. PMID:25967222

  2. Corneal Confocal Microscopy Anomalies Associated with Cowden Syndrome: A Case Report

    PubMed Central

    Sbordone, Sandro; Savastano, Alfonso; Savastano, Maria Cristina; Romano, Vito; Bifani, Mario; Savastano, Silvio

    2013-01-01

    Purpose To describe bilateral corneal alterations through confocal microscopy in a patient affected by Cowden syndrome (CS). Methods Evaluation of Schirmer's, fluorescein, and lissamine green dye tests. Confocal microscopy was performed in both eyes to investigate corneal abnormalities. Results Slit lamp observation showed the focal involvement of anterior stromal and epithelial layers. Schirmer's, fluorescein, and lissamine green dye test results were regular, while corneal confocal examination confirmed the disorganization of anterior stromal and epithelial layers in both eyes. Conclusion CS is a rare autosomal-dominant systemic disorder. In our case, confocal analysis revealed predominance of alterations in the anterior stromal corneal layer, showing an increase of reflectivity, and a totally unstructured architecture in the epithelium layer. Even though the main purpose remains the prevention and the early diagnosis of different systemic tumors that could occur in affected patients, corneal confocal evaluation could play an important role in the early diagnosis of this rare disease. PMID:24019790

  3. Automated cellular pathology in noninvasive confocal microscopy

    NASA Astrophysics Data System (ADS)

    Ting, Monica; Krueger, James; Gareau, Daniel

    2014-03-01

    A computer algorithm was developed to automatically identify and count melanocytes and keratinocytes in 3D reflectance confocal microscopy (RCM) images of the skin. Computerized pathology increases our understanding and enables prevention of superficial spreading melanoma (SSM). Machine learning involved looking at the images to measure the size of cells through a 2-D Fourier transform and developing an appropriate mask with the erf() function to model the cells. Implementation involved processing the images to identify cells whose image segments provided the least difference when subtracted from the mask. With further simplification of the algorithm, the program may be directly implemented on the RCM images to indicate the presence of keratinocytes in seconds and to quantify the keratinocytes size in the en face plane as a function of depth. Using this system, the algorithm can identify any irregularities in maturation and differentiation of keratinocytes, thereby signaling the possible presence of cancer.

  4. Design and demonstration of a miniature catheter for a confocal microendoscope

    E-print Network

    Gmitro, Arthur F.

    . The confocal microendoscope employs a flexible fiber-optic catheter coupled to a custom-built slit-scan confocal microscope. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective. The design and performance of the miniature objective and focus assembly are discussed. Primary applications

  5. anti-reflective films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Ali, Khuram; Khan, Sohail A.; Jafri, Mohd Zubir Mat

    2014-04-01

    Indium tin oxide (ITO) and titanium dioxide (TiO2) anti-reflective coatings (ARCs) were deposited on a (100) P-type monocrystalline Si substrate by a radio-frequency (RF) magnetron sputtering. Polycrystalline ITO and anatase TiO2 films were obtained at room temperature (RT). The thickness of ITO (60 to 64 nm) and TiO2 (55 to 60 nm) films was optimized, considering the optical response in the 400- to 1,000-nm wavelength range. The deposited films were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM). The XRD analysis showed preferential orientation along (211) and (222) for ITO and (200) and (211) for TiO2 films. The XRD analysis showed that crystalline ITO/TiO2 films could be formed at RT. The crystallite strain measurements showed compressive strain for ITO and TiO2 films. The measured average optical reflectance was about 12% and 10% for the ITO and TiO2 ARCs, respectively.

  6. A MEMS based handheld confocal microscope with Raman spectroscopy for in-vivo skin cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Arrasmith, Christopher L.; Patil, Chetan A.; Dickensheets, David L.; Mahadevan-Jansen, Anita

    2009-02-01

    Both Confocal Microscopy and Raman Spectroscopy have shown potential for diagnosis and differentiation of cancerous and normal skin. Many current studies utilizing these techniques use large bench-top microscopes, and are not suited for in-vivo diagnosis in a clinical setting. We have developed a microscope which combines confocal reflectance imaging with Raman spectroscopy into a compact handheld probe, allowing images and Raman spectra to be taken in-vivo. The compact design of this handheld unit is largely due to the use of a MEMS mirror which scans the illumination laser light in two dimensions to produce the confocal reflectance image of the skin. An integrated CCD camera provides a large area view of the skin surface which helps to guide the location of the confocal reflectance image area. Using this probe, in-vivo confocal reflectance images and Raman spectra of normal skin have been obtained with axial resolutions of 4 ?m for the confocal channel and 10 ?m for the Raman channel. This paper presents the instrument design and optical characteristics, including representative in-vivo images and Raman data from normal skin tissue.

  7. Dye-Enhanced Multimodal Confocal Imaging of Brain Cancers

    NASA Astrophysics Data System (ADS)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Curry, William; Yaroslavsky, Anna

    2011-04-01

    Background and Significance: Accurate high resolution intraoperative detection of brain tumors may result in improved patient survival and better quality of life. The goal of this study was to evaluate dye enhanced multimodal confocal imaging for discriminating normal and cancerous brain tissue. Materials and Methods: Fresh thick brain specimens were obtained from the surgeries. Normal and cancer tissues were investigated. Samples were stained in methylene blue and imaged. Reflectance and fluorescence signals were excited at 658nm. Fluorescence emission and polarization were registered from 670 nm to 710 nm. The system provided lateral resolution of 0.6 ?m and axial resolution of 7 ?m. Normal and cancer specimens exhibited distinctively different characteristics. H&E histopathology was processed from each imaged sample. Results and Conclusions: The analysis of normal and cancerous tissues indicated clear differences in appearance in both the reflectance and fluorescence responses. These results confirm the feasibility of multimodal confocal imaging for intraoperative detection of small cancer nests and cells.

  8. Use of probe-based confocal laser endomicroscopy (pCLE) in gastrointestinal applications. A consensus report based on clinical evidence

    PubMed Central

    Wang, Kenneth K; Carr-Locke, David L; Singh, Satish K; Neumann, Helmut; Bertani, Helga; Arsenescu, Razvan I; Caillol, Fabrice; Chang, Kenneth J; Chaussade, Stanislas; Coron, Emmanuel; Costamagna, Guido; Dlugosz, Aldona; Ian Gan, S; Giovannini, Marc; Gress, Frank G; Haluszka, Oleh; Ho, Khek Y; Kahaleh, Michel; Konda, Vani J; Prat, Frederic; Shah, Raj J; Sharma, Prateek; Slivka, Adam; Wolfsen, Herbert C; Zfass, Alvin

    2015-01-01

    Background Probe-based confocal laser endomicroscopy (pCLE) provides microscopic imaging during an endoscopic procedure. Its introduction as a standard modality in gastroenterology has brought significant progress in management strategies, affecting many aspects of clinical care and requiring standardisation of practice and training. Objective This study aimed to provide guidance on the standardisation of its practice and training in Barrett’s oesophagus, biliary strictures, colorectal lesions and inflammatory bowel diseases. Methods Initial statements were developed by five group leaders, based on the available clinical evidence. These statements were then voted and edited by the 26 participants, using a modified Delphi approach. After two rounds of votes, statements were validated if the threshold of agreement was higher than 75%. Results Twenty-six experts participated and, among a total of 77 statements, 61 were adopted (79%) and 16 were rejected (21%). The adoption of each statement was justified by the grade of evidence. Conclusion pCLE should be used to enhance the diagnostic arsenal in the evaluation of these indications, by providing microscopic information which improves the diagnostic performance of the physician. In order actually to implement this technology in the clinical routine, and to ensure good practice, standardised initial and continuing institutional training programmes should be established.

  9. Image formation of confocal microscopes using Lorentz's reciprocity theorem

    Microsoft Academic Search

    Wieland Weise

    2002-01-01

    A general expression for the image formation of confocal scanning microscopes is derived within the framework of vector optics. The derivation is based on a reciprocity principle in the form of a closed surface integral over electromagnetic fields, the so-called Lorentz reciprocity theorem. The approach comprises the reflection- and the transmission-type setup. It is assumed that single-mode optical fibers serve

  10. Reflective Middleware Solutions for Context-Aware Applications

    Microsoft Academic Search

    Licia Capra; Wolfgang Emmerich; Cecilia Mascolo

    2001-01-01

    In this paper, we argue that middleware for wired distributedsystems cannot be used in a mobile setting, as the principle of transparencythat has driven their design runs counter to the new degrees ofawareness imposed by mobility. We propose the marriage of reflectionand metadata as a means for middleware to give applications dynamicaccess to information about their execution context. Finally, we

  11. Wideband energy reflectance measurements: Effects of negative middle ear pressure and application of a pressure compensation

    E-print Network

    Allen, Jont

    Wideband energy reflectance measurements: Effects of negative middle ear pressure and application become popular as a tool for evaluating mid- dle ear function. Negative middle ear pressure (MEP) is a prevalent form of middle ear dysfunction, which may impact application of ER measurements in differential

  12. Sensor applications of attenuated total reflection infrared spectroscopy.

    PubMed

    Vigano, C; Ruysschaert, Jean-Marie; Goormaghtigh, Erik

    2005-03-15

    Attenuated total reflection Fourier transform infrared spectroscopy is one of the most powerful methods for recording infrared spectra of biological materials in general, and of biological membranes in particular. It is fast, yields a strong signal with only a few micrograms of sample and recent ATR devices allow the recording of nanogram quantities. Importantly, it allows information about the orientation of various parts of the molecules under study to be evaluated in an oriented system. While mid-infrared radiation has been most used for fundamental research on molecular structure, it is becoming an interesting alternative for sensor research. In addition to the usual sensor response, one of its advantages is its sensitivity to molecular conformation. In turn, the binding of a drug onto a receptor may be monitored as for other detection methods but in addition the evaluation of the structural response of the receptor to this binding is likely to bring invaluable information on the mechanism of action of the drug. The present review focuses only on the ATR-mid IR spectroscopy with a special interest for proteins and biological membranes. PMID:18969923

  13. Confocal Raman Imaging of Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Schmidt, Ute; Müller, Jörg; Koenen, Joachim

    Polymers play an essential role in modern materials science. Due to the wide variety of mechanical and chemical properties of polymers, they are used in almost every field of application and are still a dynamic area in the development of new materials with demanding requirements. Raman spectroscopy is one of the standard characterization techniques used to uniquely determine the chemical composition of a polymer. Modern materials, however, are generally heterogeneous, in which various chemical components or polymorphs of the same chemical species can be present in a very small sample volume. For the analysis of such heterogeneous materials, the combination of Raman spectroscopy with confocal microscopy delivers information about the spatial distribution of the various chemical species with a resolution down to 200 nm. The aim of this contribution is to demonstrate the power of confocal Raman imaging for the characterization of heterogeneous polymeric materials. The first section will deal with polymorphs of polypropylene in polymer films, followed by the nondestructive analysis of polymer blends. A later section will deal with multi-layer polymer coatings and paints and finally various additives to polymer matrices will be discussed.

  14. Confocal Raman microspectroscopy of the skin.

    PubMed

    Förster, Matthias; Bolzinger, Marie-Alexandrine; Montagnac, Gilles; Briançon, Stéphanie

    2011-01-01

    Confocal Raman spectroscopy is a technique with considerable potential for the non-invasive study of biological tissues and skin samples in vitro or in vivo. It can be used to study skin physiology and possible pathological conditions and to obtain data about molecular composition and the structure of skin, for example, water content, moisturization and changes in the skin barrier function can all be observed. In-depth measurements also allow biopharmaceutical studies, such as analyzing the rate of penetration of a drug and the biochemical changes that may be induced by an applied formulation. Confocal Raman microspectroscopy is now at such a stage of refinement that it opens up new vistas. The big leap forward in its ease of use enables this technology to be used as an analytical method by more and more non-specialist laboratories. This review gives an overview of the state of the art of this technology by presenting an update on the principles of Raman spectroscopy and then by looking at examples of new developments in in vivo and in vitro applications. PMID:21914580

  15. Simple method for modeling radar reflections in a homogeneous halfspace, with applications

    NASA Astrophysics Data System (ADS)

    Greenfield, Roy J.; Moran, Mark L.; Davis, J. L.

    2000-04-01

    We have developed a method to rapidly compute synthetic radar records from complex reflecting surfaces. The approach is a 3- D time domain Hemholtz-Kirchhoff (HK) representation, similar to Hilterman (1981), that includes the radiation characteristics of GPR dipoles on the surface of a uniform dielectric halfspace. Validity is established by making comparisons with published model results and by comparisons with field data. Comparison to the ray theory results of Zeng et al. (1997) show excellent agreement in reflection arrival times for pipes of various diameters. We also reproduce the non-specular reflection results of Schleicher et al. (1991), which show that large amplitude reflections can originate from the inflection points of curved surfaces. Our comparisons with field data use reflection records taken at a test site in Borden, Ontario, over horizontally oriented buried metal drums. The H-plane reflection data were collected using shielded 700-MHz dipoles. Our raw synthetic amplitude trends show reasonable agreement to the field data, but are not perfect. Using a small diameter synthetic dipole array, we show that the mismatch is most likely caused by antenna shielding effects. The versatility of the HK method is demonstrated by giving results for a number of interesting applications. These include synthetic records for crisscrossing pipes buried at various depths, reflection synthetics from a truncated cone representing the slag heaps in Daniels and Brower (1998), and reflections from a rough surface. The slag heap models demonstrate the effect of antenna polarization on reflections from sloping surfaces. Analysis of synthetic reflections from rough surfaces shows that the coda following the first impulsive arrival can be used to estimate the surface roughness. This is of interest for interpreting reflections from glacier data. Our results demonstrate that the HK method is useful in interpreting data, as well as for developing field survey strategies.

  16. Immunofluorescence and Confocal Microscopy of Neutrophils

    PubMed Central

    Allen, Lee-Ann H.

    2015-01-01

    Rapid recruitment of neutrophils to sites of infection and their ability to phagocytose and kill microbes is an important aspect of the innate immune response. Challenges associated with imaging of these cells include their short lifespan and small size and the fact that unstimulated cells are nonadherent. In addition, although cytoplasmic granules are plentiful, the abundance of many other organelles is diminished. Here we reprise methods for analysis of resting and activated cells using immunofluorescence and confocal microscopy, including kinetic analysis of phagosome maturation and degranulation, and detection of intraphagosomal superoxide accumulation. We describe approaches for rapid cell fixation and permeabilization that maximize antigen detection and discuss other variables that also affect data interpretation and image quality (such as cell spreading, degranulation, and phagocytosis). Finally, we show that these methods are also applicable to studies of neutrophil interactions with the extracellular matrix. PMID:24504957

  17. Visible and near-infrared reflectivity of solid and liquid methane: application to spectroscopy of Titan's hydrocarbon lakes

    NASA Astrophysics Data System (ADS)

    Adams, K.; Jacobsen, S. D.; Liu, Z.; Somayazulu, M.; Thomas, S.; Jurdy, D. M.

    2011-12-01

    Reflectance spectroscopy provides one of the few direct observations of outer solar system bodies for interpreting their surface compositions. At Titan, the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini spacecraft revealed dark patches on the surface through the narrow 2 and 5 ?m windows of Titan's atmosphere, which have been interpreted as hydrocarbon lakes forming seasonally through a methane cycle. Whereas the composition of planetary materials in the solar system has been inferred from characteristic absorption bands, the need to identify phase states (liquid versus solid) on dynamic planetary surfaces requires laboratory reflectance ratio measurements at relevant temperatures. Using visible and near-infrared radiation from the National Synchrotron Light Source (NSLS), we will present confocal reflectance ratio measurements of solid (single crystal) and liquid CH4 at temperatures from 50-100 K. Although the position and shape of the six characteristic methane absorption bands at around 1.7 and 2.3 ?m are insensitive to temperature or phase state from 50-100 K, the broad-spectrum reflectance between 0.5-2 ?m decreases upon melting by about 25% at 87-94 K. Transition from solid CH4-I to liquid states at ~90 K displays a reflectance ratio (sold/liquid) of about 1.3 at 2 ?m. Darkening of CH4 upon melting is similar at visible wavelengths, and consistent with VIMS observations of hydrocarbon lakes in the far northern and southern latitudes of Titan.

  18. Confocal mosaicing microscopy in Mohs skin excisions: feasibility of rapid surgical pathology

    PubMed Central

    Gareau, Daniel S.; Li, Yongbiao; Huang, Billy; Eastman, Zach; Nehal, Kishwer S.; Rajadhyaksha, Milind

    2009-01-01

    Mosaicing of confocal images enables observation of nuclear morphology in large areas of tissue. An application of interest is rapid detection of basal cell carcinomas (BCCs) in skin excisions during Mohs surgery. A mosaic is currently created in less than 9 min, whereas preparing frozen histology requires 20 to 45 min for an excision. In reflectance mosaics, using acetic acid as a contrast agent to brighten nuclei, large and densely nucleated BCC tumors were detectable in fields of view of 12 × 12 mm (which is equivalent to a 2×-magnified view as required by Mohs surgeons). However, small and sparsely nucleated tumors remained undetectable. Their diminutive size within the large field of view resulted in weak light backscatter and contrast relative to the bright surrounding normal dermis. In fluorescence, a nuclear-specific contrast agent may be used and light emission collected specifically from nuclei but almost none from the dermis. Acridine orange of concentration 1 mM stains nuclei in 20 s with high specificity and strongly enhances nuclear-to-dermis contrast of BCCs. Comparison of fluorescence mosaics to histology shows that both large and small tumors are detectable. The results demonstrate the feasibility of confocal mosaicing microscopy toward rapid surgical pathology to potentially expedite and guide surgery. PMID:19021381

  19. EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: PRETTY PICTURES OR CONFOCAL QA

    EPA Science Inventory

    Evaluation of confocal microscopy system performance: Pretty pictures or confocal QA? Robert M. Zucker Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, N...

  20. Forensic application of total reflection X-ray fluorescence spectrometry for elemental characterization of ink samples

    NASA Astrophysics Data System (ADS)

    Dhara, Sangita; Misra, N. L.; Maind, S. D.; Kumar, Sanjukta A.; Chattopadhyay, N.; Aggarwal, S. K.

    2010-02-01

    The possibility of applying Total Reflection X-ray Fluorescence for qualitative and quantitative differentiation of documents printed with rare earth tagged and untagged inks has been explored in this paper. For qualitative differentiation, a very small amount of ink was loosened from the printed documents by smoothly rubbing with a new clean blade without destroying the manuscript. 50 ?L of Milli-Q water was put on this loose powder, on the manuscript, and was agitated by sucking and releasing the suspension two to three times with the help of a micropipette. The resultant dispersion was deposited on quartz sample support for Total Reflection X-ray Fluorescence measurements. The Total Reflection X-ray Fluorescence spectrum of tagged and untagged inks could be clearly differentiated. In order to see the applicability of Total Reflection X-ray Fluorescence for quantitative determinations of rare earths and also to countercheck such determinations in ink samples, the amounts of rare earth in painted papers with single rare earth tagged inks were determined by digesting the painted paper in HNO 3/HClO 4, mixing this solution with the internal standard and recording their Total Reflection X-ray Fluorescence spectra after calibration of the instrument. The results thus obtained were compared with those obtained by Inductively Coupled Plasma Mass Spectrometry and were found in good agreement. The average precision of the Total Reflection X-ray Fluorescence determinations was 5.5% (1 ?) and the average deviation of Total Reflection X-ray Fluorescence determined values with that of Inductively Coupled Plasma Mass Spectrometry was 7.3%. These studies have shown that Total Reflection X-ray Fluorescence offers a promising and potential application in forensic work of this nature.

  1. Clinical feasibility of rapid confocal melanoma feature detection

    NASA Astrophysics Data System (ADS)

    Hennessy, Ricky; Jacques, Steve; Pellacani, Giovanni; Gareau, Daniel

    2010-02-01

    In vivo reflectance confocal microscopy shows promise for the early detection of malignant melanoma. One diagnostic trait of malignancy is the presence of pagetoid melanocytes in the epidermis. For automated detection of MM, this feature must be identified quantitatively through software. Beginning with in vivo, noninvasive confocal images from 10 unequivocal MMs and benign nevi, we developed a pattern recognition algorithm that automatically identified pagetoid melanocytes in all four MMs and identified none in five benign nevi. One data set was discarded due to artifacts caused by patient movement. With future work to bring the performance of this pattern recognition technique to the level of the clinicians on difficult lesions, melanoma diagnosis could be brought to primary care facilities and save many lives by improving early diagnosis.

  2. Applications of high power lasers. [using reflection holograms for machining and surface treatment

    NASA Technical Reports Server (NTRS)

    Angus, J. C.

    1979-01-01

    The use of computer generated, reflection holograms in conjunction with high power lasers for precision machining of metals and ceramics was investigated. The Reflection holograms which were developed and made to work at both optical wavelength (He-Ne, 6328 A) and infrared (CO2, 10.6) meet the primary practical requirement of ruggedness and are relatively economical and simple to fabricate. The technology is sufficiently advanced now so that reflection holography could indeed be used as a practical manufacturing device in certain applications requiring low power densities. However, the present holograms are energy inefficient and much of the laser power is lost in the zero order spot and higher diffraction orders. Improvements of laser machining over conventional methods are discussed and addition applications are listed. Possible uses in the electronics industry include drilling holes in printed circuit boards making soldered connections, and resistor trimming.

  3. An adaptive phase space method with application to reflection traveltime tomography

    E-print Network

    Uhlmann, Gunther

    tomography also arises in medical imaging, in particular, in ultrasound computed tomography (UTT). In UTTAn adaptive phase space method with application to reflection traveltime tomography Eric Chung for the phase space method [5] for traveltime tomography is developed. The method first uses those geodesics

  4. A Recommended Engineering Application of the Method for Evaluating the Visual Significance of Reflected Glare.

    ERIC Educational Resources Information Center

    Blackwell, H. Richard

    1963-01-01

    An application method for evaluating the visual significance of reflected glare is described, based upon a number of decisions with respect to the relative importance of various aspects of visual performance. A standardized procedure for evaluating the overall effectiveness of lighting from photometric data on materials or installations is needed…

  5. Confocal fluctuation spectroscopy and imaging.

    PubMed

    Földes-Papp, Zeno; Liao, Shih-Chu Jeff; You, Tiefeng; Terpetschnig, Ewald; Barbieri, Beniamino

    2010-09-01

    Currently, work with subnanomolar concentrations is routine while femtomolar and even single-molecule studies are possible with some efforts getting high on single-molecule biophysics and biochemistry. Methodological breakthroughs, such as reducing the background light contribution in single-molecule studies, which has plagued many studies of molecular fluorescence in dilute solution, and particularly in live cells, have recently described by us. We first demonstrated how optimized time-gating of the fluorescence signal, together with time-correlated, single-photon counting, can be used to substantially boost the experimental signal-to-noise ratio about 140-fold, making it possible to measure analyte concentrations that are as low as 15 pM. By detection of femtomolar bulk concentrations, confocal microsopy has the potential to address the observation of one and the same molecule in dilute solution without immobilization or hydrodynamic/electrokinetic focusing at longer observation times than currently available. We present relevant physics. The equations are derived using Einstein's approach showing how it fits with Fick's law and the autocorrelation function. An improved technology is being developed at ISS for femtomolar microscopy. The general concepts and provided experimental examples should help to compare our approach to those used in conventional confocal microscopy. PMID:20497113

  6. A Review of Airborne Reflected GPS Signal Processing Results for Ocean, Land and Ice Remote Sensing Applications

    Microsoft Academic Search

    A. Komjathy; M. Armatys; D. Masters; P. Axelrad; V. U. Zavorotny; S. J. Katzberg

    2001-01-01

    Global Positioning System (GPS) signals reflected from ocean, land or ice surfaces have the potential to be used for various remote sensing applications. Possibilities for ocean reflections include measurements of surface roughness characteristics from which wind speed and wind direction could be determined. Land reflected GPS measurements could provide us with the unique opportunity to determine soil moisture content. Furthermore,

  7. A diagrammatic expansion of the Casimir energy in multiple reflections: theory and applications

    E-print Network

    Maghrebi, Mohammad F

    2010-01-01

    We develop a diagrammatic representation of the Casimir energy of a multibody configuration. The diagrams represent multiple reflections between the objects and can be organized by a few simple rules. The lowest-order diagrams (or reflections) give the main contribution to the Casimir interaction which proves the usefulness of this expansion. Among some applications of this, we find analytical formulae describing the interaction between "edges", i.e. semi-infinite plates, where we also give a first example of blocking in the context of the Casimir energy. We also find the interaction of edges with a needle and describe analytically a recent model of the repulsion due to the Casimir interaction.

  8. Confocal microscopy of water under static pressure

    Microsoft Academic Search

    Matthew McCluskey; Bobbie Riley; Michael Knoblauch

    2007-01-01

    Developments in confocal microscopy have revolutionized the imaging of samples. Unlike conventional microscopes, which illuminate a wide area, confocal microscopes focus light onto a single spot on the sample. The sample is scanned, data are collected point by point, and an image is reconstructed from the data. Samples can be scanned in three dimensions, allowing one to obtain 3D image

  9. CONFOCAL MICROSCOPY OF WATER UNDER STATIC PRESSURE

    Microsoft Academic Search

    M. D. McCluskey; B. D. Riley; A. M. Perenchio; M. Knoblauch

    2007-01-01

    Developments in confocal microscopy have revolutionized the imaging of samples. Unlike conventional microscopes, which illuminate a wide area, confocal microscopes focus laser light onto a single spot on the sample. The laser spot is scanned, data are collected point by point, and an image is reconstructed from the collected data. The sample can be translated vertically, allowing one to obtain

  10. Confocal Microscopy of Water Under Static Pressure

    Microsoft Academic Search

    M. D. McCluskey; B. D. Riley; A. M. Perenchio; M. Knoblauch

    2007-01-01

    Developments in confocal microscopy have revolutionized the imaging of samples. Unlike conventional microscopes, which illuminate a wide area, confocal microscopes focus laser light onto a single spot on the sample. The laser spot is scanned, data are collected point by point, and an image is reconstructed from the collected data. The sample can be translated vertically, allowing one to obtain

  11. EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE

    EPA Science Inventory

    BACKGROUND. The confocal laser scanning microscope (CLSM) has enormous potential in many biological fields. Currently there is a subjective nature in the assessment of a confocal microscope's performance by primarily evaluating the system with a specific test slide provided by ea...

  12. Integrated photoacoustic, confocal, and two-photon microscope

    PubMed Central

    Rao, Bin; Soto, Florentina; Kerschensteiner, Daniel; Wang, Lihong V.

    2014-01-01

    Abstract. The invention of green fluorescent protein and other molecular fluorescent probes has promoted applications of confocal and two-photon fluorescence microscopy in biology and medicine. However, exogenous fluorescence contrast agents may affect cellular structure and function, and fluorescence microscopy cannot image nonfluorescent chromophores. We overcome this limitation by integrating optical-resolution photoacoustic microscopy into a modern Olympus IX81 confocal, two-photon, fluorescence microscope setup to provide complementary, label-free, optical absorption contrast. Automatically coregistered images can be generated from the same sample. Imaging applications in ophthalmology, developmental biology, and plant science are demonstrated. For the first time, in a familiar microscopic fluorescence imaging setting, this trimodality microscope provides a platform for future biological and medical discoveries. PMID:24589986

  13. Confocal endomicroscopy of the larynx

    NASA Astrophysics Data System (ADS)

    Just, T.; Wiechmann, T.; Stachs, O.; Stave, J.; Guthoff, R.; Hüttmann, G.; Pau, H. W.

    2012-02-01

    Beside the good image quality with the confocal laser scanning microscope (HRTII) and the Rostock Cornea Module (RCM), this technology can not be used to investigate the human larynx in vivo. To accomplish this, a rigid custom-made endoscope (KARL STORZ GmbH & Co. KG; Tuttlingen Germany) was developed. A connector was developed to connect the scanner head of the HRTII to the rigid endoscope. With the connector, the starting plane can be set manually. To achieve optical sectioning of the laryngeal tissue (80 ?m per volume scan), the scanning mechanism of the HRTII needs to be activated using a foot switch. The devices consisting of the endoscope, HRTII, and the connector supply images of 400 x 400 ?m and reach average penetration depths of 100-300 ?m (?/4 plate of the scanner head of the HRTII was removed). The lateral and axial resolutions are about 1-2 ?m and 2 ?m, respectively. In vivo rigid confocal endoscopy is demonstrated with an acquisition time for a volume scan of 6 s. The aim of this study was to differentiate pre-malignant laryngeal lesions from micro-invasive carcinoma of the larynx. 22 patients with suspicious lesions of the true vocal cords were included. This pilot study clearly demonstrates the possibility to detect dysplastic cells close to the basal cell layer and within the subepithelial space in lesions with small leukoplakia (thin keratin layer). These findings may have an impact on microlaryngoscopy to improve the precision for biopsy and on microlaryngoscopic laser surgery of the larynx to identify the margins of the pre-malignant lesion.

  14. Confocal UV and resonance Raman microscopic imaging of pharmaceutical products.

    PubMed

    Vogt, Frederick G; Strohmeier, Mark

    2013-11-01

    Chemical imaging using confocal Raman microscopy is a useful analytical tool in drug development because of its ability to spatially image active ingredients and excipients in dosage forms and relate their distribution to product performance. While Raman spectra are highly specific for individual components of a formulation, most Raman microscopic mapping experiments require extensive experimental time. Laser wavelengths in the near-infrared range are used to suppress fluorescence but reduce sensitivity because of the inverse quadratic dependence of Raman scattering on laser wavelength. Compact, simple ultraviolet (UV) laser designs now allow for confocal UV Raman microscopy to be performed using a versatile instrument also capable of conventional Raman microscopy and epifluorescence imaging analyses. This study presents the results of UV Raman microscopy analyses using 266 nm laser irradiation of four pharmaceutical compositions of interest, including two types of tablets containing low doses of active ingredients (in the 0.2% w/w range), an amorphous dispersion containing 1% w/w of a small molecule drug, and an enteric coated layered peptide formulation. Resonance Raman enhancements are observed for four of the active ingredients studied in these formulations. The spectroscopic properties of the materials used in this study are also assessed by diffuse reflectance UV-visible spectroscopy, fluorescence spectroscopy, and conventional bulk Fourier transform Raman spectroscopy using 1064 nm laser irradiation. Confocal UV Raman microscopy was found to offer good sensitivity and allowed for rapid microscopic mapping of drugs and excipients at low concentrations in pharmaceutical formulations. PMID:24050305

  15. Reflectance calibration of focal plane array hyperspectral imaging system for agricultural and food safety applications

    NASA Astrophysics Data System (ADS)

    Lawrence, Kurt C.; Park, Bosoon; Windham, William R.; Mao, Chengye; Poole, Gavin H.

    2003-03-01

    A method to calibrate a pushbroom hyperspectral imaging system for "near-field" applications in agricultural and food safety has been demonstrated. The method consists of a modified geometric control point correction applied to a focal plane array to remove smile and keystone distortion from the system. Once a FPA correction was applied, single wavelength and distance calibrations were used to describe all points on the FPA. Finally, a percent reflectance calibration, applied on a pixel-by-pixel basis, was used for accurate measurements for the hyperspectral imaging system. The method was demonstrated with a stationary prism-grating-prism, pushbroom hyperspectral imaging system. For the system described, wavelength and distance calibrations were used to reduce the wavelength errors to <0.5 nm and distance errors to <0.01mm (across the entrance slit width). The pixel-by-pixel percent reflectance calibration, which was performed at all wavelengths with dark current and 99% reflectance calibration-panel measurements, was verified with measurements on a certified gradient Spectralon panel with values ranging from about 14% reflectance to 99% reflectance with errors generally less than 5% at the mid-wavelength measurements. Results from the calibration method, indicate the hyperspectral imaging system has a usable range between 420 nm and 840 nm. Outside this range, errors increase significantly.

  16. Confocal scanning electroluminescence spectromicroscope for multidimensional light-emitting property analysis

    Microsoft Academic Search

    S. Hong; G. Onushkin; J. S. Park; B. K. Kim; D.-Y. Lee; A. Fomin; K. Ko; J. W. Kim

    2007-01-01

    We report new type of micro-EL instrument and its applications for light emitting devices. Our new micro-EL, so-called confocal scanning electroluminescence sprctro-microscope (CSESM) has not only fast image acquisition time but also high image resolution. The newly developed CSESM is combined with confocal laser scanning photoluminescence micsoscope, i.e. micro-PL. Therefore, micro-EL distribution can be directly matched with micro-PL and mechanical

  17. Application of Neutron Reflectivity for Studies of Biomolecular Structures and Functions at Interfaces

    Microsoft Academic Search

    Alexander Johs; Liyuan Liang; Baohua Gu; John Francis Ankner; Wei Wang

    2009-01-01

    Structures and functions of cell membranes are of central importance in understanding processes such as cell signaling, chemotaxis,\\u000a redox transformation, biofilm formation, and mineralization occurring at interfaces. This chapter provides an overview of\\u000a the application of neutron reflectivity (NR) as a unique tool for probing biomolecular structures and mechanisms as a first\\u000a step toward understanding protein–protein, protein–lipid, and protein–mineral interactions

  18. Confocal microscopy of water under static pressure

    NASA Astrophysics Data System (ADS)

    McCluskey, Matthew; Riley, Bobbie; Knoblauch, Michael

    2007-06-01

    Developments in confocal microscopy have revolutionized the imaging of samples. Unlike conventional microscopes, which illuminate a wide area, confocal microscopes focus light onto a single spot on the sample. The sample is scanned, data are collected point by point, and an image is reconstructed from the data. Samples can be scanned in three dimensions, allowing one to obtain 3D image reconstructions. We have used confocal microscopy to obtain high-quality images of water freezing in a moissanite anvil cell. This technique could prove useful for a variety of equation-of-state investigations.

  19. Confocal Microscopy of Water Under Static Pressure

    NASA Astrophysics Data System (ADS)

    McCluskey, M. D.; Riley, B. D.; Perenchio, A. M.; Knoblauch, M.

    2007-12-01

    Developments in confocal microscopy have revolutionized the imaging of samples. Unlike conventional microscopes, which illuminate a wide area, confocal microscopes focus laser light onto a single spot on the sample. The laser spot is scanned, data are collected point by point, and an image is reconstructed from the collected data. The sample can be translated vertically, allowing one to obtain three dimensional (3D) image reconstructions. We have used confocal microscopy to obtain high-quality images of water freezing in a moissanite anvil cell. This technique could prove useful for a variety of equation-of-state investigations.

  20. Measured Energy Savings from the Application of Reflective Roofs in 3 AT and T Regeneration Buildings

    SciTech Connect

    Akbari, Hashen; Rainer, Leo

    2000-11-01

    Energy use and environmental parameters were monitored in three AT and T regeneration buildings during the summer of 2000. These buildings are constructed with concrete and are about 14.9 m2 (160 f2; 10x16 ft)in size. The buildings were initially monitored for about 1 1/2 months to establish a base condition. Then, the roofs of the buildings were painted with a white coating and the monitoring was continued. The original roof reflectances were about 26 percent; after the application of roof coatings the reflectivities increased to about 72 percent. In two of these buildings, we monitored savings of about 0.5kWh per day (8.6 kWh/m2 [0.8 kWh/ft2]). The third building showed a reduction in air-conditioning energy use of about 13kWh per day. These savings probably resulted from the differences in the performance (EER) of the two dissimilar AC units in this building. The estimated annual savings for two of the buildings are about 125kWh per year; at a cost of dollar 0.1/kWh, savings are about dollar 12.5 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote location of the buildings. However, since the prefabricated roofs are already painted green at the factory, painting them with white (reflective) color would bring no additional cost. Hence the payback time for having reflective roofs is nil, and the reflective roofs save an accumulated 370kWh over 30 years of the life of the roof.

  1. Design and construction of a new temperature-controlled chamber for light and confocal microscopy under monitored conditions: biological application for plant samples.

    PubMed

    Buchner, O; Lütz, C; Holzinger, A

    2007-02-01

    A new light microscope-temperature-controlled chamber (LM-TCC) has been constructed. The special feature of the light microscope-temperature-controlled chamber is the Peltier-element temperature control of a specimen holder for biological samples, with a volume capacity of 1 mL. This system has marked advantages when compared to other approaches for temperature-controlled microscopy. It works in a temperature range of -10 degrees C to +95 degrees C with an accuracy of +/-0.1 degrees C in the stationary phase. The light microscope-temperature-controlled chamber allows rapid temperature shift rates. A maximum heating rate of 12.9 degrees C min(-1) and a maximum cooling rate of 6.0 degrees C min(-1) are achieved with minimized overshoots (applications where a rapid change of temperature during microscopic observations is necessary or has to be avoided allowing a simulation of ecologically relevant temperature scenarios. PMID:17359253

  2. Clinical Reflectance Confocal Microscope for Imaging of Oral Cancer 

    E-print Network

    Jabbour, Joey

    2014-08-05

    Biopsy and histopathology remain the standard method for diagnosis of oral cancer in the clinic today. Early detection of oral cancer is fundamental to a higher survival rate, and a non-invasive method is preferred. This ...

  3. Clinical Reflectance Confocal Microscope for Imaging of Oral Cancer

    E-print Network

    Jabbour, Joey

    2014-08-05

    Three Dimensional NA Numerical Aperture GRIN Gradient Index CCD Charged-Coupled Devices MEMS Micro-Electromechanical Systems GI Gastrointestinal OC Oral Cavity ETL Electrically Tunable Focus Lens PMT Photomutiplier Tube MCP...-PMT Micro-channel plate photomultilpier tube BS Beam Splitter APD Avalanche Photodiode HWP Half Wave Plate QWP Quarter Wave Plate vi NADH Nicotinamide Adenine Dinucleotide FAD Flavin Adenine Dinucleotide DM...

  4. Allergic contact dermatitis: Correlation of in vivo confocal imaging to routine histology

    Microsoft Academic Search

    Salvador González; Ernesto González; W. Matthew White; Milind Rajadhyaksha; R. Rox Anderson

    1999-01-01

    Background: Allergic contact dermatitis (ACD) is a common and often challenging clinical problem. In vivo near-infrared confocal reflectance microscopy (CM) is a new vital microscopy technique. Objective: CM was used to evaluate acute ACD. Methods: Patch testing by means of Finn Chambers technique was performed in 5 subjects to induce an acute allergic skin reaction. Noninvasive CM images from normal

  5. Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy

    Microsoft Academic Search

    Stefan W. Hell; Ernst H. K. Stelzer; Steffen Lindek; Christoph Cremer

    1994-01-01

    We show the point-spread function of a confocal microscope with an increased detection aperture. The increase in aperture is accomplished by coherent collection of the light from the specimen with two opposing objective lenses, i.e., type-B 4Pi confocal microscopy. We demonstrate experimentally its feasibility for detecting scattered or fluorescently emitted light. The 4Pi confocal point-spread functions are shown for constructive

  6. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: AXIAL RESOLUTION

    EPA Science Inventory

    Abstract Confocal Microscopy System Performance: Axial resolution. Robert M. Zucker, PhD Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Re...

  7. Confocal probing of skin during it clearing

    Microsoft Academic Search

    I. V. Meglinski; S. J. Matcher; A. N. Bashkatov; E. A. Genina; V. V. Tuchin

    2001-01-01

    The effect of temporal skin tissues clearing produced by diffusion of the osmotically active chemical agents into the skin are studied with confocal probing. Skin tissue optical properties and their changes are presented

  8. In vivo 783-channel diffuse reflectance imaging system and its application

    NASA Astrophysics Data System (ADS)

    Yang, Joon-Mo; Han, Yong-Hui; Yoon, Gilwon; Ahn, Byung Soo; Lee, Byung-Cheon; Soh, Kwang-Sup

    2007-08-01

    A fiber-based reflectance imaging system was constructed to produce in vivo absorption spectroscopic images of biological tissues with diffuse light in the cw domain. The principal part of this system is the 783-channel fiber probe, composed of 253 illumination fibers and 530 detection fibers distributed in a 20×20 mm square region. During illumination with the 253 illumination fibers, diffuse reflected lights are collected by the 530 detection fibers and recorded simultaneously as an image with an electron multiplying CCD camera for fast data acquisition. After signal acquisition, a diffuse reflectance image was reconstructed by applying the spectral normalization method we devised. To test the applicability of the spectral normalization, we conducted two phantom experiments with chicken breast tissue and white Delrin resin by using animal blood as an optical inhomogeneity. In the Delrin phantom experiment, we present images produced by two methods, spectral normalization and reference signal normalization, along with a comparison of the two. To show the feasibility of our system for biomedical applications, we took images of a human vein in vivo with the spectral normalization method.

  9. Evaluation of general non-reflecting boundary conditions for industrial CFD applications

    NASA Astrophysics Data System (ADS)

    Basara, Branislav; Frolov, Sergei; Lidskii, Boris; Posvyanskii, Vladimir

    2007-11-01

    The importance of having proper boundary conditions for the calculation domain is a known issue in Computational Fluid Dynamics (CFD). In many situations, it is very difficult to define a correct boundary condition. The flow may enter and leave the computational domain at the same time and at the same boundary. In such circumstances, it is important that numerical implementation of boundary conditions enforces certain physical constraints leading to correct results which then ensures a better convergence rate. The aim of this paper is to evaluate recently proposed non-reflecting boundary conditions (Frolov et al., 2001, Advances in Chemical Propulsion) on industrial CFD applications. Derivation of the local non-reflecting boundary conditions at the open boundary is based on finding the solution of linearized Euler equations vanishing at infinity for both incompressible and compressible formulations. This is implemented into the in-house CFD package AVL FIRE and some numerical details will be presented as well. The key applications in this paper are from automotive industry, e.g. an external car aerodynamics, an intake port, etc. The results will show benefits of using effective non-reflecting boundary conditions.

  10. Confocal microlaparoscope for imaging the fallopian tube

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Yu; Schafer, Rachel; Rouse, Andrew R.; Gmitro, Arthur F.

    2012-02-01

    Recent evidence suggests that epithelial ovarian cancer may originate in the fimbriated end of the fallopian tube1. Unlike many other cancers, poor access to the ovary and fallopian tubes has limited the ability to study the progression of this deadly disease and to diagnosis it during the early stage when it is most amenable to therapy. We have previously reported on a rigid confocal microlaparoscope system that is currently undergoing a clinical trial to image the epithelial surface of the ovary2. In order to gain in vivo access to the fallopian tubes we have developed a new confocal microlaparoscope with an articulating distal tip. The new instrument builds upon the technology developed for the existing confocal microlaparoscope. It has an ergonomic handle fabricated by a rapid prototyping printer. While maintaining compatibility with a 5 mm trocar, the articulating distal tip of the instrument consists of a 2.2 mm diameter bare fiber bundle catheter with automated dye delivery for fluorescence imaging. This small and flexible catheter design should enable the confocal microlaparoscope to image early stage ovarian cancer arising inside the fallopian tube. Early ex vivo mages of human fallopian tube and in vivo imaging results from recent open surgeries using the rigid confocal microlaparoscope system are presented. Ex vivo images from animal models using the new articulating bare fiber system are also presented. These high quality images collected by the new flexible system are similar in quality to those obtained from the epithelial surface of ovaries with the rigid clinical confocal microlaparoscope.

  11. Confocal Raman spectroscopy of whole hairs.

    PubMed

    Pudney, Paul D A; Bonnist, Eleanor Y M; Mutch, Kevin J; Nicholls, Rachel; Rieley, Hugh; Stanfield, Samuel

    2013-12-01

    This paper describes the application of Raman spectroscopy to whole hair fibers. Previously this has proved difficult because the hairs are relatively opaque, and spatial resolution diminishes with depth because of the change in refractive index. A solution is to couple confocal Raman with multivariate curve resolution (MCR) data analysis, which separates spectral differences with depth despite this reduction in resolution. Initially, it is shown that the cuticle can be separated from the cortex, showing the differences in the proteins, which can then be plotted as a function of depth, with the cuticle factor being seen only at the surface as expected. Hairs that had been treated in different ways, e.g., by bleaching, treatment with the active molecule resorcinol followed by rinsing and treatment with a full hair care product, were also examined. In all cases, changes to the hair are identified and are associated with specific parts of the fiber. Since the hair fiber is kept intact, it can be repeatedly treated and measured, hence multistep treatment processes can be followed. This method expands the potential use of Raman spectroscopy in hair research. PMID:24359655

  12. Normally black reflective twisted-nematic cell for microdisplay application Xinyu Zhu and Shin-Tson Wua)

    E-print Network

    Wu, Shin-Tson

    Normally black reflective twisted-nematic cell for microdisplay application Xinyu Zhu and Shin; accepted 25 March 2004 A normally black reflective twisted-nematic mode is proposed for microdisplay Institute of Physics. DOI: 10.1063/1.1751234 I. INTRODUCTION Liquid crystal on silicon LCoS 1

  13. Application of genetic algorithms to processing of reflectance spectra of semiconductor compounds

    NASA Astrophysics Data System (ADS)

    Zaharov, Ivan S.; Kochura, Alexey V.; Kurkin, Alexandr Y.; Belogorohov, Alexandr I.

    2004-11-01

    The basic task of mathematical processing of reflectance spectra - restoration from them of a view of dependence of inductivity, which is responsible for the response of a crystal to an external electromagnetic field from frequency of incident radia-tion. The most modern and perspective way of the solution of this task is the dis-persion analysis (DA). However DA requires large volume of computing works on selection of optimum parameters of phonons. The rapid development of computer facilities recently promotes overcoming of this difficulty. However without appli-cation of effective methods of optimization practically it is impossible to execute DA for composite reflectance spectra. In this paper the questions of application of Genetic algorithms (GA) to processing reflectance spectra of crystal materials are considered. GA is a rather new class of methods of optimization belonging to family of evolutionary algorithms. The basic features distinguishing GA from algorithms of other classes: - GA is an iterative algorithm of generations, in which the search of an extreme is made not in initial space of search, but in the conjugate set of chromosomes. The set of chromosomes on each step of iterations of algorithm is termed as a popula-tion; - The generation of the new trial solutions in this set is carried out by a set of the special genetic operators. The genetic operators are probabilistic, i.e. the result of their application to the concrete chromosome is not unequivocal; - The creation of a new population from the solutions of the current population and solutions generated by the genetic operators is carried out by special algorithms of selection. The efficiency GA strongly depends on such details, as a method of coding of the solutions, embodying of the genetic operators, mechanisms of selection, adjust-ment of other parameters of algorithm, criterion of success. The theoretical work reflected in the literature devoted to these algorithms does not give the bases to speak about existence of any strict mechanisms for precise predictions of function-ing GA. For the effective solution of a concrete task it is necessary in appropriate way to modify or to develop all components GA. In this paper we offer modification GA for the solution of the reflectance spectra processing problem and results of the obtained algorithm work.

  14. Optical characterization and confocal fluorescence imaging of mechanochromic acrylate polymers

    NASA Astrophysics Data System (ADS)

    van Horn, M.; Smith, P.; Mason, B. P.; Hemmer, J. R.; Read de Alaniz, J.; Hooper, J. P.; Osswald, S.

    2015-01-01

    The development of mechanochromic molecules has opened new pathways for the study of localized stress and failure in polymers. Their application as stress or temperature diagnostics, however, requires suitable measurement techniques capable of detecting the force- and temperature-sensitive chemical species with high spatial resolution. Confocal imaging techniques offer excellent spatial resolution but the energy input during these measurements can itself affect the activation state of the mechanochromic species. Here, we present a systematic study of the effects of laser-based imaging on the activation and fluorescence behavior of mechanochromic spiropyran (SP) integrated into poly(methyl acrylate) (PMA) and poly(methyl methacrylate) matrices using a confocal Raman microspectrometer. Localized stress and temperature activation were studied by means of high-rate compressive loading and dynamic fracture. Laser illumination of SP in PMA revealed a strong excitation wavelength- and power-dependence. Suitable correction functions were established and used to account for the observed laser effects. The presented study demonstrates that confocal imaging using conventional Raman spectrometers is a powerful characterization tool for localized stress analysis in mechanochromic polymers, offering quantifiable information on the activation state with high spatial resolution. However, laser-mechanophore interactions must be well understood and effects of laser excitation and exposure times must be taken into consideration when interpreting the obtained results.

  15. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics

    PubMed Central

    Hayashi, Shinichi; Okada, Yasushi

    2015-01-01

    Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro­tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30–100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. PMID:25717185

  16. A novel photodiode for reflectance pulse oximetry in low-power applications.

    PubMed

    Haahr, Rasmus G; Duun, Sune; Birkelund, Karen; Raahauge, Palle; Petersen, Peter; Dam, Henrik; Nørgaard, Lars; Thomsen, Erik V

    2007-01-01

    The amount of light collected is crucial for low-power applications of pulse oximetry. In this work a novel ring-shaped backside photodiode has been developed for a wearable reflectance pulse oximeter. The photodiode is proven to work with a dual LED with wavelengths of 660 nm and 940 nm. For the purpose of continuously monitoring vital signs of a human, a temperature sensor is integrated onto the chip containing the photodiode. This biomedical multisensor chip is made for integration into "the Electronic Patch", an autonomous monitoring system for humans. PMID:18002464

  17. Multidepth imaging by chromatic dispersion confocal microscopy

    NASA Astrophysics Data System (ADS)

    Olsovsky, Cory A.; Shelton, Ryan L.; Saldua, Meagan A.; Carrasco-Zevallos, Oscar; Applegate, Brian E.; Maitland, Kristen C.

    2012-03-01

    Confocal microscopy has shown potential as an imaging technique to detect precancer. Imaging cellular features throughout the depth of epithelial tissue may provide useful information for diagnosis. However, the current in vivo axial scanning techniques for confocal microscopy are cumbersome, time-consuming, and restrictive when attempting to reconstruct volumetric images acquired in breathing patients. Chromatic dispersion confocal microscopy (CDCM) exploits severe longitudinal chromatic aberration in the system to axially disperse light from a broadband source and, ultimately, spectrally encode high resolution images along the depth of the object. Hyperchromat lenses are designed to have severe and linear longitudinal chromatic aberration, but have not yet been used in confocal microscopy. We use a hyperchromat lens in a stage scanning confocal microscope to demonstrate the capability to simultaneously capture information at multiple depths without mechanical scanning. A photonic crystal fiber pumped with a 830nm wavelength Ti:Sapphire laser was used as a supercontinuum source, and a spectrometer was used as the detector. The chromatic aberration and magnification in the system give a focal shift of 140?m after the objective lens and an axial resolution of 5.2-7.6?m over the wavelength range from 585nm to 830nm. A 400x400x140?m3 volume of pig cheek epithelium was imaged in a single X-Y scan. Nuclei can be seen at several depths within the epithelium. The capability of this technique to achieve simultaneous high resolution confocal imaging at multiple depths may reduce imaging time and motion artifacts and enable volumetric reconstruction of in vivo confocal images of the epithelium.

  18. Combined In Vivo Confocal Raman Spectroscopy and Confocal Microscopy of Human Skin

    Microsoft Academic Search

    P. J. Caspers; G. W. Lucassen; G. J. Puppels

    2003-01-01

    In vivo confocal Raman spectroscopy is a noninvasive optical method to obtain detailed information about the molecular composition of the skin with high spatial resolution. In vivo confocal scanning laser microscopy is an imaging modality that provides optical sections of the skin without physically dissecting the tissue. A combination of both techniques in a single instrument is described. This combination

  19. Application of the Empirical Mode Decomposition to Seismic Reflection and Ground Penetrating Radar Data

    NASA Astrophysics Data System (ADS)

    Battista, B. M.; Addison, A.; Knapp, C.; McGee, T.

    2006-12-01

    Advancements in signal processing may allow for improved imaging and analysis of complex geologic targets found in seismic reflection and ground penetrating radar data (GPR). A recent contribution to signal processing is the Empirical Mode Decomposition (EMD). The EMD empirically reduces a time series to several sub- signals whose sum yield the original time series. The benefit of such a process is to empirically develop signal-dependent, time-variant filters in the time domain. The objective of this work is to determine whether the EMD allows for empirically derived characteristics to be used in filter design and application, resulting in better filter performance and enhanced signal-to-noise ratio. Two data sets are used to show successful application of the EMD to geophysical data. Nonlinear cable strum is removed from one data set while the other is used to remove WOW noise from GPR data. Comparison to traditional techniques demonstrates the effectiveness of the technique.

  20. Confocal microlaparoscope for imaging the fallopian tube

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Yu; Rouse, Andrew R.; Chambers, Setsuko K.; Hatch, Kenneth D.; Gmitro, Arthur F.

    2014-11-01

    Recent evidence suggests that ovarian cancer can originate in the fallopian tube. Unlike many other cancers, poor access to the ovary and fallopian tubes has limited the ability to study the progression of this deadly disease and to diagnosis it during the early stage when it is most amenable to therapy. A rigid confocal microlaparoscope system designed to image the epithelial surface of the ovary in vivo was previously reported. A new confocal microlaparoscope with an articulating distal tip has been developed to enable in vivo access to human fallopian tubes. The new microlaparoscope is compatible with 5-mm trocars and includes a 2.2-mm-diameter articulating distal tip consisting of a bare fiber bundle and an automated dye delivery system for fluorescence confocal imaging. This small articulating device should enable the confocal microlaparoscope to image early stage ovarian cancer arising inside the fallopian tube. Ex vivo images of animal tissue and human fallopian tube using the new articulating device are presented along with in vivo imaging results using the rigid confocal microlaparoscope system.

  1. Computer assisted design reflection : a web application to improve early stage product in startup companies

    E-print Network

    Gimenez, Clayton C. (Clayton Christopher)

    2014-01-01

    This thesis investigates the concept of computer-assisted design reflection. The work details the development of a prototype framework and reflection engine. Reflection is a critical process in design. It allows a designer ...

  2. Confocal laser endomicroscopy of the colon.

    PubMed

    Gheonea, Dan Ionut; Saftoiu, Adrian; Ciurea, Tudorel; Popescu, Carmen; Georgescu, Claudia Valentina; Malos, Anca

    2010-06-01

    Confocal laser endomicroscopy (CLE) has been recently proposed as a new technique that allows in vivo histologic assessment of mucosa during endoscopy. The most commonly used contrast agents are acriflavine hydrochloride and fluorescein sodium. For colon pathology assessment, the administration of fluorescein intravenously produces a strong staining of both surface epithelium and deeper layers of lamina propria. Confocal laser endomicroscopy is a feasible method to diagnose colon cancer in vivo. Furthermore, confirmation of neoplastic changes using CLE during colonoscopy may lead to major improvements in the clinical management of the patients with inflammatory bowel disease. Biopsies can be limited to targeted sampling of relevant lesions. Confocal laser endomicroscopy will certainly play an important diagnostic role during gastrointestinal endoscopy in the future, enabling the elimination of the diagnostic delay associated with conventional biopsy preparation and processing. PMID:20593059

  3. Morphing: a new graphics tool for animating confocal images.

    PubMed

    Paddock, S; DeVries, P; Buth, E; Carroll, S

    1994-03-01

    The application of morphing to the display of developmental processes is described. This new graphics tool imparts the dynamic aspects of time-lapse microscopy to a series of fixed and stained images of a developing system. The technique is illustrated using confocal images of wing imaginal discs of Drosophila. It is anticipated that morphing can be applied not only to the display and analysis of developing systems but also to the elucidation of evolutionary relationships between species and to comparative anatomy. PMID:8185918

  4. Fiber-coupled multiplexed confocal microscope

    SciTech Connect

    Lin, Charles P.; Webb, Robert H.

    2000-07-01

    We describe a new parallel scanning mechanism for confocal microscopy that is inherently fiber-optic compatible and that retains the simplicity of the line scanning confocal microscope. The method works by employing an incoherent fiber-optic bundle that maps a line illumination pattern back on itself on double passing, while separating the fibers that carry photons from out-of-focus sample planes. The transformation permits efficient rejection of out-of-focus photons by a slit aperture. (c) 2000 Optical Society of America.

  5. Varifocal MOEMS fiber scanner for confocal endomicroscopy.

    PubMed

    Meinert, Tobias; Weber, Niklas; Zappe, Hans; Seifert, Andreas

    2014-12-15

    Based on an advanced silicon optical bench technology with integrated MOEMS (Micro-Opto-Electro-Mechanical-System) components, a piezo-driven fiber scanner for confocal microscopy has been developed. This highly-miniaturized technology allows integration into an endoscope with a total outer probe diameter of 2.5 mm. The system features a hydraulically-driven varifocal lens providing axial confocal scanning without any translational movement of components. The demonstrated resolutions are 1.7 ?m laterally and 19 ?m axially. PMID:25607103

  6. Imaging intracellular protein dynamics by spinning disk confocal microscopy

    PubMed Central

    Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten

    2012-01-01

    The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541

  7. Miniature objective lens with variable focus for confocal endomicroscopy

    PubMed Central

    Kim, Minkyu; Kang, DongKyun; Wu, Tao; Tabatabaei, Nima; Carruth, Robert W.; Martinez, Ramses V; Whitesides, George M.; Nakajima, Yoshikazu; Tearney, Guillermo J.

    2014-01-01

    Spectrally encoded confocal microscopy (SECM) is a reflectance confocal microscopy technology that can rapidly image large areas of luminal organs at microscopic resolution. One of the main challenges for large-area SECM imaging in vivo is maintaining the same imaging depth within the tissue when patient motion and tissue surface irregularity are present. In this paper, we report the development of a miniature vari-focal objective lens that can be used in an SECM endoscopic probe to conduct adaptive focusing and to maintain the same imaging depth during in vivo imaging. The vari-focal objective lens is composed of an aspheric singlet with an NA of 0.5, a miniature water chamber, and a thin elastic membrane. The water volume within the chamber was changed to control curvature of the elastic membrane, which subsequently altered the position of the SECM focus. The vari-focal objective lens has a diameter of 5 mm and thickness of 4 mm. A vari-focal range of 240 ?m was achieved while maintaining lateral resolution better than 2.6 ?m and axial resolution better than 26 ?m. Volumetric SECM images of swine esophageal tissues were obtained over the vari-focal range of 260 ?m. SECM images clearly visualized cellular features of the swine esophagus at all focal depths, including basal cell nuclei, papillae, and lamina propria. PMID:25574443

  8. Large, durable and low?cost reflectance standard for field remote sensing applications

    Microsoft Academic Search

    I. D. Sanches; M. P. Tuohy; M. J. Hedley; M. R. Bretherton

    2009-01-01

    The development of the Canopy Pasture Probe (CAPP), for acquisition of in situ pasture canopy reflectance factor, required a suitable large reflectance standard. Spectralon has been successfully used worldwide as a reflectance standard, but large panels (greater than 20 cm diameter) suitable for use with the CAPP are very expensive. In this context, a large, durable and low cost reflectance standard

  9. [Quantitative measurement of induced skin reddening using optical reflection spectroscopy--methodology and clinical application].

    PubMed

    Smesny, S; Riemann, S; Riehemann, S; Bellemann, M E; Sauer, H

    2001-10-01

    Optical reflection spectroscopy is a simple and quick method for the quantification of colour intensity, and is thus suitable for the determination of changes in skin reddening (erythema) due to local vasodilatation. To quantify the time course of this erythema, the oxyhaemoglobin absorption double peak with maxima at 542 and 577 nm is an appropriate parameter. A compact handheld optical spectrometer makes the technique applicable to clinical use, an example being the niacin patch test described herein. This noninvasive test provides information about the cell membrane metabolism via the skin flush induced by niacin (vitamin B3) and mediated by prostaglandin. The aim of this study was to adapt optical reflection spectroscopy to the requirements of the clinical niacin patch test. To that end, we investigated 60 healthy volunteers. Analysis of the spectroscopic data with regard to physiological covariables of niacin sensitivity revealed faster and more intense erythema in females--a gender effect that to our knowledge has not previously been reported. In the light of these results, the findings of other researchers based on semi-quantitative test methods should be reassessed, with consideration given to the gender effect. PMID:11721583

  10. Multiband detectors and application of nanostructured anti-reflection coatings for improved efficiency

    NASA Astrophysics Data System (ADS)

    Jayasinghe, J. A. Ranga Chaminda

    This work describes multiband photon detection techniques based on novel semiconductor device concepts and detector designs with simultaneous detection of different wavelength radiation such as UV and IR. One aim of this investigation is to examine UV and IR detection concepts with a view to resolve some of the issues of existing IR detectors such as high dark current, non uniformity, and low operating temperature and to avoid having additional optical components such as filters in multiband detection. Structures were fabricated to demonstrate the UV and IR detection concepts and determine detector parameters: (i) UV/IR detection based on GaN/AlGaN heterostructures, (ii) Optical characterization of p-type InP thin films were carried out with the idea of developing InP based detectors, (iii) Intervalence band transitions in InGaAsP/InP heterojunction interfacial workfunction internal photoemission (HEIWIP) detectors. Device concepts, detector structures, and experimental results are discussed. In order to reduce reflection, TiO2 and SiO2 nanostructured thin film characterization and application of these as anti-reflection coatings on above mentioned detectors is also discussed.

  11. [Application of reflection infrared sensor to intelligent water-saving system].

    PubMed

    Fu, He-ping

    2007-03-01

    Utilizing reflection type infrared sensor and small electronic devices (monostable multivibrator), the authors have developed the intelligent water-saving control system. This system can discern whether someone enters the lavatory, produce the signal of washing according to the cirumstances, drives the electromagnetic valve to open, and pour water into the floater type cistern. After filling two cisterns of water enough for cleaning, it'll cut off the power in the electromagnetic valve automatically. This system has achieved the sanitary and economical purpose, using this system can economize water by about 70%. This system features few components, low costs, rational structure, reliable work, easy installation, and convenient maintenance, so it has a wide application prospect. PMID:17554909

  12. [Applications of near infrared reflectance spectroscopy technique (NIRS) to soil attributes research].

    PubMed

    Liu, Yan-De; Xiong, Song-Sheng; Liu, De-Li

    2014-10-01

    Soil is a much complicated substance, because animals, plants and microbes live together, organic and inorganic exist together. So soil contains a large amount of information. The traditional method in laboratory is a time-consuming effort. But the technology of near infrared reflectance spectroscopy (NIRS) has been widely used in many areas, owing to its rapidness, high efficiency, no pollution and low cost, NIRS has become the most important method to detect the composition of soil. This paper mainly introduce some traditional methods in laboratory, the basic processes of soil detection by NIRS, some algorithms for data preprocessing and modeling. Besides, the present paper illustrates the latest research progress and the development of portable near infrared instruments of the soil. According to this paper, the authors also hope to promote the application conditions of NIRS in the grassland ecology research in China, and accelerate the modernization of research measures in this area. PMID:25739200

  13. Application of Neutron Reflectivity for Studies of Biomolecular Structures and Functions at Interfaces

    SciTech Connect

    Johs, Alexander [ORNL; Liang, Liyuan [ORNL; Gu, Baohua [ORNL; Ankner, John Francis [ORNL; Wang, Wei [ORNL

    2009-01-01

    Structures and functions of cell membranes are of central importance in understanding processes such as cell signaling, chemotaxis, redox transformation, biofilm formation, and mineralization occurring at interfaces. This chapter provides an overview of the application of neutron reflectivity (NR) as a unique tool for probing biomolecular structures and mechanisms as a first step toward understanding protein protein, protein lipid, and protein mineral interactions at the membrane substrate interfaces. Emphasis is given to the review of existing literature on the assembly of biomimetic membrane systems, such as supported membranes for NR studies, and demonstration of model calculations showing the potential of NR to elucidate molecular fundamentals of microbial cell mineral interactions and structure functional relationships of electron transport pathways. The increased neutron flux afforded by current and upcoming neutron sources holds promise for elucidating detailed processes such as phase separation, formation of microdomains, and membrane interactions with proteins and peptides in biological systems.

  14. Active frequency selective surfaces for antenna applications electronically to control phase distribution and reflective\\/transmissive amplification

    Microsoft Academic Search

    P. Edenhofer; A. Alpaslan

    2005-01-01

    A planar dipole grid antenna is described deposited on an active frequency selective (FSS) or polarization sensitive surface (PSS) electronically tuneable to control the spatial phase distribution and reflective\\/transmissive amplification. Such dipole grids can be used, for example, in reflector antenna systems composed of multiple reflective and\\/or transmissive subsystems to achieve and serve highly cost-effective multi-purpose applications. It is discussed

  15. A Ring-Shaped Photodiode Designed for Use in a Reflectance Pulse Oximetry Sensor in Wireless Health Monitoring Applications

    Microsoft Academic Search

    Sune Bro Duun; Rasmus G. Haahr; Karen Birkelund; Erik V. Thomsen

    2010-01-01

    We report a photodiode for use in a reflectance pulse oximeter for use in autonomous and low-power homecare applications. The novelty of the reflectance pulse oximeter is a large ring shaped backside silicon pn photodiode. The ring-shaped photodiode gives optimal gathering of light and thereby enable very low light-emitting diode (LED) driving currents for the pulse oximeter. The photodiode also

  16. Computational confocal tomography for simultaneous reconstruction of objects, occlusions,

    E-print Network

    Fainman, Yeshaiahu

    Computational confocal tomography for simultaneous reconstruction of objects, occlusions computationally intense and novel reconstruction methods that we called "compu- tational confocal tomography." The key to computed tomography is the collection of projections of the data over a range of angles

  17. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: LASER POWER MEASUREMENTS

    EPA Science Inventory

    Laser power abstract The reliability of the confocal laser-scanning microscope (CLSM) to obtain intensity measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. The laser power test appears to be one ...

  18. Active confocal imaging for visual prostheses.

    PubMed

    Jung, Jae-Hyun; Aloni, Doron; Yitzhaky, Yitzhak; Peli, Eli

    2015-06-01

    There are encouraging advances in prosthetic vision for the blind, including retinal and cortical implants, and other "sensory substitution devices" that use tactile or electrical stimulation. However, they all have low resolution, limited visual field, and can display only few gray levels (limited dynamic range), severely restricting their utility. To overcome these limitations, image processing or the imaging system could emphasize objects of interest and suppress the background clutter. We propose an active confocal imaging system based on light-field technology that will enable a blind user of any visual prosthesis to efficiently scan, focus on, and "see" only an object of interest while suppressing interference from background clutter. The system captures three-dimensional scene information using a light-field sensor and displays only an in-focused plane with objects in it. After capturing a confocal image, a de-cluttering process removes the clutter based on blur difference. In preliminary experiments we verified the positive impact of confocal-based background clutter removal on recognition of objects in low resolution and limited dynamic range simulated phosphene images. Using a custom-made multiple-camera system based on light-field imaging, we confirmed that the concept of a confocal de-cluttered image can be realized effectively. PMID:25448710

  19. Characteristics of laser scanning confocal microscopes for surface texture measurements

    NASA Astrophysics Data System (ADS)

    Buajarern, Jariya; Kang, Chu-Shik; Kim, Jae Wan

    2014-01-01

    Due to the complexity of the surface topography, accurate surface characterization requires three-dimensional (3D) surface measurements. Confocal laser scanning microscopy (CLSM) is a non-destructive and versatile technique for quantifying 3D surfaces. The response of measurement quality to variations in CLSM hardware settings and specimen properties has been investigated. Through these investigations, certain criteria have been developed to select the optimal CLSM settings to minimize image noise, maximize contrast and resolution for reliable and accurate 3D surface measurements. The surface measurement results were then compared with those obtained from the stylus instrument, phase shifting interferometer (PSI) and the coherence scanning interferometer (CSI). With the optimal hardware settings, CLSMs proved to be an appropriate instrument for measuring moderately rough to rough surfaces regardless of surface reflectivity or surface finish. It exhibits versatility for measuring surfaces of complex geometry, which is needed in the engineering field. Moreover, preparation of the sample is not necessary.

  20. Confocal microscopy through a fiber-optic imaging bundle

    Microsoft Academic Search

    Arthur F. Gmitro; David Aziz

    1993-01-01

    The concept for a new type of confocal microscope with a fiber-optic imaging bundle is presented, and experimental results are shown to demonstrate the principle. The primary advantage of the system is the flexibility of imaging samples that would otherwise be inaccessible to confocal microscopy. Optical scanning confocal microscopy is a well- established technique offering significant advan- tages over conventional

  1. Confocal imaging of the fundus using a scanning laser ophthalmoscope

    Microsoft Academic Search

    W H Woon; F W Fitzke; A C Bird; J Marshall

    1992-01-01

    A confocal scanning laser ophthalmoscope (cSLO) was used to examine the effects of confocal optics on the image of the human fundus in vivo. Patients from a retinal clinic and a glaucoma clinic were examined using the cSLO in the confocal mode. A degree of optical sectioning could be achieved, and the results agree with a best axial resolution of

  2. Mosaicing of Confocal Microscopic In Vivo Soft Tissue Video Sequences

    E-print Network

    Ayache, Nicholas

    Mosaicing of Confocal Microscopic In Vivo Soft Tissue Video Sequences Tom Vercauteren1,2 , Aymeric for in vivo and in situ optical biopsy [1]. FCM is based on the principle of confocal microscopy which within the sample. This optical sectioning property is what makes the confocal microscope ideal

  3. Confocal Endomicroscopic Examination of Malignant Biliary Strictures and Histologic Correlation With Lymphatics

    PubMed Central

    Loeser, Caroline S.; Robert, Marie E.; Mennone, Albert; Nathanson, Michael H.; Jamidar, Priya

    2013-01-01

    Background and Aims Current methods to diagnose malignant biliary strictures are of low sensitivity. Confocal endomicroscopy is a new approach that may improve the diagnosis of indeterminate biliary strictures. The purpose of this study was to evaluate indeterminate biliary strictures using probe-based confocal laser endomicroscopy and to understand the histologic basis for the confocal images. Methods Fourteen patients with indeterminate biliary strictures underwent endoscopic retrograde cholangiopancreatography with examination of their common bile duct with fluorescein-aided probe-based confocal laser endomicroscopy. Standard brushings and biopsies were performed. In parallel, rat bile ducts were examined either with conventional staining and light microscopy or with multiphoton microscopy. Results Earlier published criteria were used to evaluate possible malignancy in the confocal images obtained in the 14 patients. None of the individual criteria were found to be specific enough for malignancy, but a normal-appearing reticular pattern without other putative markers of malignancy was observed in all normal patients. Multiphoton reconstructions of intact rat bile ducts revealed that the reticular pattern seen in normal tissue was in the same focal plane but was smaller than blood vessels. Special stains identified the smaller structures in this network as lymphatics. Conclusions Our limited series suggests that a negative confocal imaging study of the biliary tree can be used to rule out carcinoma, but there are frequent false positives using individual earlier published criteria. An abnormal reticular network, which may reflect changes in lymphatics, was never seen in benign strictures. Better correlation with known histologic structures may lead to improved accuracy of diagnoses. PMID:21063210

  4. A New Diffuse Reflecting Material with Applications Including Integrating Cavity Ring-Down Spectroscopy 

    E-print Network

    Cone, Michael Thomas

    2014-04-16

    We report the development of a new diffuse reflecting material with measured diffuse reflectivity values as high as 0.9992 at 532 nm, and 0.9969 at 266 nm. These values are, to the author’s best knowledge, the highest diffuse reflectivity values...

  5. Reflectance Pulse Oximetry – Principles and Obstetric Application in the Zurich System

    Microsoft Academic Search

    Volker König; Renate Huch; Albert Huch

    1998-01-01

    Transmission and reflectance are the two main modes of pulse oximetry. In obstetrics, due to the absence of a transilluminable fetal part for transmission oximetry, the only feasible option is the reflectance mode, in which sensor and detector are located on the same surface of the body part. However, none of the reflectance pulse oximeters developed for intrapartum use are

  6. Optical clearing assisted confocal microscopy of ex vivo transgenic mouse skin

    NASA Astrophysics Data System (ADS)

    Song, Eunjoo; Ahn, YoonJoon; Ahn, Jinhyo; Ahn, Soyeon; Kim, Changhwan; Choi, Sanghoon; Boutilier, Richard Martin; Lee, Yongjoong; Kim, Pilhan; Lee, Ho

    2015-10-01

    We examined the optical clearing assisted confocal microscopy of the transgenic mouse skin. The pinna and dorsal skin were imaged with a confocal microscope after the application of glycerol and FocusClear. In case of the glycerol-treated pinna, the clearing was minimal due to the inefficient permeability. However, the imaging depth was improved when the pinna was treated with FocusClear. In case of dorsal skin, we were able to image deeply to the subcutaneous connective tissue with both agents. Various skin structures such as the vessel, epithelium cells, cartilage, dermal cells, and hair follicles were clearly imaged.

  7. In vivo Confocal Laser Scanning Microscopy and Micropuncture in Intact Rat

    Microsoft Academic Search

    Yoshio Ohno; Henrik Birn; Erik I. Christensen

    2005-01-01

    Background: Intravital microscopy theoretically provides the optimal conditions for studying specific organ functions. However, the application of microscopy in intact organs in vivo has been limited so far due to technical difficulties. The purpose of this study was to establish a method of in vivo confocal laser scanning microscopy (CLSM) for the study of endocytosis in proximal tubules of intact

  8. Design and demonstration of a miniature catheter for a confocal microendoscope.

    PubMed

    Rouse, Andrew R; Kano, Angelique; Udovich, Joshua A; Kroto, Shona M; Gmitro, Arthur F

    2004-11-01

    The fluorescence confocal microendoscope provides high-resolution, in vivo imaging of cellular pathology during optical biopsy. The confocal microendoscope employs a flexible fiber-optic catheter coupled to a custom-built slit-scan confocal microscope. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The 3-mm-diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope, adding microscopic imaging capability to conventional endoscopy. The design and performance of the miniature objective and focus assembly are discussed. Primary applications of the system include diagnosis of disease in the gastrointestinal tract and female reproductive system. PMID:15540433

  9. A confocal micro-imaging system incorporating a thermally actuated two axis MEMS scanner

    NASA Astrophysics Data System (ADS)

    Poland, Simon P.; Li, Lijie; Uttamchandani, Deepak; Girkin, John M.

    2009-02-01

    For in-vivo imaging applications the use of conventional confocal microscope systems are simply not practical due to their relatively large size and weight. There is, however, great interest from both the life science research community and the clinical profession for the development of compact and portable micro-optical instrumentation capable of achieving minimally invasive, in-vivo imaging of tissue with sub-cellular resolution. In this paper we describe a novel confocal micro-imaging system incorporating, at its core, a thermally driven, non-resonant two-axis MEMS scanner which serves as a substitute for the two single-axis galvanometer scanners commonly used in standard confocal imaging systems. In this paper we describe the non-linearity of such devices and a number of techniques to compensate for this.

  10. Effects of Fluorescein Staining on Laser In Vivo Confocal Microscopy Images of the Cornea

    PubMed Central

    Sindt, Christine W.; Critser, D. Brice; Grout, Trudy K.; Kern, Jami R.

    2012-01-01

    This study was designed to identify whether topical fluorescein, a common ophthalmic tool, affects laser in vivo confocal microscopy of the cornea, a tool with growing applications. Twenty-five eye care specialists were asked to identify presence or absence of fluorescein in 99 confocal micrographs of healthy corneas. Responses were statistically similar to guessing for the epithelium (48%?±?14% of respondents correct per image) and the subbasal nerve plexus (49%?±?11% correct), but results were less clear for the stroma. Dendritic immune cells were quantified in bilateral images from subjects who had been unilaterally stained with fluorescein. Density of dendritic immune cells was statistically similar between the unstained and contralateral stained eyes of 24 contact lens wearers (P = .72) and of 10 nonwearers (P = .53). Overall, the results indicated that fluorescein staining did not interfere with laser confocal microscopy of corneal epithelium, subbasal nerves, or dendritic immune cells. PMID:22363837

  11. Automated cylindrical mapper using chromatic confocal measurement

    NASA Astrophysics Data System (ADS)

    Heidari, Esmaeil; Harding, Kevin G.; Tait, Robert W.

    2013-09-01

    Characterization of a surface shape and finish has been vital for the manufacture of precision parts. Overall profile, surface finish and waviness of a part can be measured in two ways, contact and non-contact. In the contact method a stylus is dragged on the surface of a part to measure the profile and texture of the part for quantifying the surface characteristics. Non-contact methods applied z precision metrology include: microscopy, interferometry, chromatic confocal microscopy and laser profiling such as structured light methods. The chromatic confocal method offers flexibility because of its fiber optics probes that can be manipulated to accommodate many sample geometries. This flexibility provides a wide range of possible analysis dimensions such as cylindrical shapes of holes and the potential to provide both surface roughness and shape. This paper will discuss the setup and testing of a system specifically for measuring cylindrical shaped parts and present the performance of the technology as a precision metrology tool.

  12. MEMS-Based Dual Axes Confocal Microendoscopy

    PubMed Central

    Piyawattanametha, Wibool; Wang, Thomas D.

    2011-01-01

    We demonstrate a miniature, near-infrared microscope (? = 785 nm) that uses a novel dual axes confocal architecture. Scalability is achieved with post-objective scanning, and a MEMS mirror provides real time (>4 Hz) in vivo imaging. This instrument can achieve sub-cellular resolution with deep tissue penetration and large field of view. An endoscope-compatible version can image digestive tract epithelium to guide tissue biopsy and monitor therapy. PMID:22190845

  13. Confocal microscopy of fluid argon under pressure

    Microsoft Academic Search

    Gabriel Joseph Hanna

    2009-01-01

    Confocal microscopy is a technique used in mainly in the life sciences for producing three-dimensional images of cellular structures. We have adapted the technique to measure volumes and refractive indices of fluids in a diamond anvil cell. While high-precision techniques, such as X-ray diffraction and neutron scattering, exist for measuring lattice volumes of solids, the measurement of fluid volumes is

  14. Technology and New Directions in Professional Development: Applications of Digital Video, Peer Review, and Self-Reflection

    ERIC Educational Resources Information Center

    Collins, James L.; Cook-Cottone, Catherine P.; Robinson, Judith Schick; Sullivan, Roberta R.

    2004-01-01

    Pedagogical applications of technology--including digital video, course management systems, online discussion forums, and CD-ROM com-pilations--for development of professional skills were tested in three distinct professional graduate programs. Role-playing, peer review, and self-reflection instructional methods were technologically enhanced by…

  15. Variational attenuation correction in two-view confocal microscopy

    PubMed Central

    2013-01-01

    Background Absorption and refraction induced signal attenuation can seriously hinder the extraction of quantitative information from confocal microscopic data. This signal attenuation can be estimated and corrected by algorithms that use physical image formation models. Especially in thick heterogeneous samples, current single view based models are unable to solve the underdetermined problem of estimating the attenuation-free intensities. Results We present a variational approach to estimate both, the real intensities and the spatially variant attenuation from two views of the same sample from opposite sides. Assuming noise-free measurements throughout the whole volume and pure absorption, this would in theory allow a perfect reconstruction without further assumptions. To cope with real world data, our approach respects photon noise, estimates apparent bleaching between the two recordings, and constrains the attenuation field to be smooth and sparse to avoid spurious attenuation estimates in regions lacking valid measurements. Conclusions We quantify the reconstruction quality on simulated data and compare it to the state-of-the art two-view approach and commonly used one-factor-per-slice approaches like the exponential decay model. Additionally we show its real-world applicability on model organisms from zoology (zebrafish) and botany (Arabidopsis). The results from these experiments show that the proposed approach improves the quantification of confocal microscopic data of thick specimen. PMID:24350574

  16. Confocal detection of planar homogeneous and heterogeneous immunosorbent assays

    NASA Astrophysics Data System (ADS)

    Ghafari, Homanaz; Zhou, Yanzhou; Ali, Selman; Hanley, Quentin S.

    2009-11-01

    Optically sectioned detection of fluorescence immunoassays using a confocal microscope enables the creation of both homo- and heterogeneous planar format assays. We report a set assays requiring optically sectioned detection using a model system and analysis procedures for separating signals of a surface layer from an overlying solution. A model sandwich assay with human immunoglobulin G as the target antigen is created on a glass substrate. The prepared surfaces are exposed to antigen and a FITC-labeled secondary antibody. The resulting preparations are either read directly to provide a homogeneous assay or after wash steps, giving a heterogeneous assay. The simplicity of the object shapes arising from the planar format makes the decomposition of analyte signals from the thin film bound to the surface and overlayer straightforward. Measured response functions of the thin film and overlayer fit well to the Cauchy-Lorentz and cumulative Cauchy-Lorentz functions, respectively, enabling the film and overlayer to be separated. Under the conditions used, the detection limits for the homogeneous and heterogeneous forms of the assay are 2.2 and 5.5 ng/ml, respectively. Planar format, confocally read fluorescence assays enable wash-free detection of antigens and should be applicable to a wide range of assays involving surface-bound species.

  17. Spectrally encoded confocal scanning laser ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Tao, Yuankai K.; Izatt, Joseph A.

    2010-02-01

    Fundus imaging has become an essential clinical diagnostic tool in ophthalmology. Current generation scanning laser ophthalmoscopes (SLO) offer advantages over conventional fundus photography and indirect ophthalmoscopy in terms of light efficiency and contrast. As a result of the ability of SLO to provide rapid, continuous imaging of retinal structures and its versatility in accommodating a variety of illumination wavelengths, allowing for imaging of both endogenous and exogenous fluorescent contrast agents, SLO has become a powerful tool for the characterization of retinal pathologies. However, common implementations of SLO, such as the confocal scanning laser ophthalmoscope (CSLO) and line-scanning laser ophthalmoscope (LSLO), require imaging or multidimensional scanning elements which are typically implemented in bulk optics placed close to the subject eye. Here, we apply a spectral encoding technique in one dimension combined with single-axis lateral scanning to create a spectrally encoded confocal scanning laser ophthalmoscope (SECSLO) which is fully confocal. This novel implementation of the SLO allows for high contrast, high resolution in vivo human retinal imaging with image transmission through a single-mode optical fiber. Furthermore, the scanning optics are similar and the detection engine is identical to that of current-generation spectral domain optical coherence tomography (SDOCT) systems, potentially allowing for a simplistic implementation of a joint SECSLO-SDOCT imaging system.

  18. A near-infrared confocal scanner

    NASA Astrophysics Data System (ADS)

    Lee, Seungwoo; Yoo, Hongki

    2014-06-01

    In the semiconductor industry, manufacturing of three-dimensional (3D) packages or 3D integrated circuits is a high-performance technique that requires combining several functions in a small volume. Through-silicon vias, which are vertical electrical connections extending through a wafer, can be used to direct signals between stacked chips, thus increasing areal density by stacking and connecting multiple patterned chips. While defect detection is essential in the semiconductor manufacturing process, it is difficult to identify defects within a wafer or to monitor the bonding results between bonded surfaces because silicon and many other semiconductor materials are opaque to visible wavelengths. In this context, near-infrared (NIR) imaging is a promising non-destructive method to detect defects within silicon chips, to inspect bonding between chips and to monitor the chip alignment since NIR transmits through silicon. In addition, a confocal scanner provides high-contrast, optically-sectioned images of the specimen due to its ability to reject out-of-focus noise. In this study, we report an NIR confocal scanner that rapidly acquires high-resolution images with a large field of view through silicon. Two orthogonal line-scanning images can be acquired without rotating the system or the specimen by utilizing two orthogonally configured resonant scanning mirrors. This NIR confocal scanner can be efficiently used as an in-line inspection system when manufacturing semiconductor devices by rapidly detecting defects on and beneath the surface.

  19. The application of visible wavelength reflectance hyperspectral imaging for the detection and identification of blood stains.

    PubMed

    Li, Bo; Beveridge, Peter; O'Hare, William T; Islam, Meez

    2014-12-01

    Current methods of detection and identification of blood stains rely largely on visual examination followed by presumptive tests such as Kastle-Meyer, Leuco-malachite green or luminol. Although these tests are useful, they can produce false positives and can also have a negative impact on subsequent DNA tests. A novel application of visible wavelength reflectance hyperspectral imaging has been used for the detection and positive identification of blood stains in a non contact and non destructive manner on a range of coloured substrates. The identification of blood staining was based on the unique visible absorption spectrum of haemoglobin between 400 and 500 nm. Images illustrating successful discrimination of blood stains from nine red substances are included. It has also been possible to distinguish between blood and approximately 40 other reddish stains. The technique was also successfully used to detect latent blood stains deposited on white filter paper at dilutions of up to 1 in 512 folds and on red tissue at dilutions of up to 1 in 32 folds. Finally, in a blind trial, the method successfully detected and identified a total of 9 blood stains on a red T-shirt. PMID:25498930

  20. VIIRS reflective solar bands calibration changes and potential impacts on ocean color applications

    NASA Astrophysics Data System (ADS)

    Blonski, Slawomir; Cao, Changyong; Shao, Xi; Uprety, Sirish

    2014-05-01

    The VIIRS (Visible-Infrared Imaging Radiometer Suite) instrument onboard the Suomi NPP (National Polar-orbiting Partnership) spacecraft started acquiring Earth observations in November 2011. Since then, radiometric calibration applied to the VIIRS RSB (Reflective Solar Band) measurements for the SDR (Sensor Data Record) production has been improved several times. In this paper, timeline of the main upgrades to the calibration software and parameters is compared with the changes of the radiometric coefficients applied in the operational production of the VIIRS SDR. Initially, radiometric calibration coefficients were updated once per week to correct for the responsivity degradation that occurs for some of the sensor's spectral bands due to contamination of the VIIRS telescope's mirrors. Despite the frequent updates, discontinuities in the radiometric calibration could still affect ocean color time series. In August 2012, magnitude of the radiometric coefficient changes was greatly reduced by implementing a procedure that predicts (about a week ahead) values of the calibration coefficients for each Earth scan until a subsequent update. The updates have been continued with the weekly frequency, and the coefficient prediction errors were monitored by comparisons with the initial invariant coefficients from the following week. The predicted coefficients were also compared with the coefficients derived once per orbit from the onboard solar diffuser measurements by an automated procedure implemented in the VIIRS data operational processing software. The paper evaluates the changes in the VIIRS RSB coefficient updates for bands M1 to M7 and potential impacts of these changes on ocean color applications.

  1. A novel class of Lambertian reflectance materials for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Springsteen, A. W.

    1989-09-01

    The present class of highly Lambertian reflectance materials, designated 'Spectralon', can vary in reflectance from 2 to 99 percent, and possess such advantages over alternative materials as chemical inertness and hydrophobicity, ease of maintenance, and spectral flatness over the UV-visible-NIR portion of the spectrum. Attention is given to the characteristics of the SRS-99 Spectralon material, whose excellent Lambertian properties appear to be due to a porous structure which results in fewer 'first strike' reflections and commensurately more second- or higher-order reflectances.

  2. Confocal imaging of benign and malignant proliferative skin lesions in vivo

    NASA Astrophysics Data System (ADS)

    Gonzalez, Salvador; Rajadhyaksha, Milind M.; Anderson, R. Rox

    1999-06-01

    Near-infrared confocal reflectance microscopy (CM) provides non- invasive real-time images of thin en-face tissue sections with high resolution and contrast. Imaging of cells, nuclei, other organelles, microvessels, and hair follicles has been possible at resolution comparable to standard histology, to a maximum depth of 250-300 ?m in human skin in vivo. We have characterized psoriasis as a prototype of benign proliferative skin conditions, and non-pigmented skin malignancies in vivo based on their unstained, native histologic features using CM. Our data shows that reflectance CM may potentially diagnose and morphometrically evaluate proliferative skin lesions in vivo.

  3. Delay-Doppler analysis of bistatically reflected signals from the ocean surface: theory and application

    Microsoft Academic Search

    Tanos Elfouhaily; Donald R. Thompson; L. Linstrom

    2002-01-01

    We present a new stochastic theory for delay-Doppler mapping of the ocean surface for bistatic scattering. This stochastic theory should complement nicely the previous theories for the Global Positioning System (GPS) reflected signals from ocean surfaces, especially that of Zavorotny and Voronovich (2000). We quantify the Doppler spread of the reflected signal before interpreting the delay. Our theoretical results compare

  4. Reflection and Evidence-Based Practice in Action: A Case Based Application

    Microsoft Academic Search

    Ronald De Vera Barredo

    Reflective practice and evidence-based practice are essential to clinical practice. The former provides a retrospective look at current practice and questions the reason for doing so. The latter provides the means by which best evidence can be used to make foundationally sound and clinically relevant decisions. This article demonstrates the utility of and the dynamics between reflective practice and evidence-based

  5. Wet-Developable Organic Anti-Reflective Coatings For Implant Layer Applications

    Microsoft Academic Search

    Xie Shao; Alice Guerrero; Yiming Gu

    Bottom anti-reflective coatings (BARCs) have been widely used in conjunction with photoresists in the manufacture of semiconductors during the photolithography step of the process. The primary benefits of BARCs in photolithography are focus\\/exposure latitude improvement, enhanced critical dimension (CD) control, elimination of reflective notching, and protection of DUV resist from substrate poisoning. In the past, BARCs have mainly been used

  6. A novel class of Lambertian reflectance materials for remote sensing applications

    Microsoft Academic Search

    A. W. Springsteen

    1989-01-01

    The present class of highly Lambertian reflectance materials, designated 'Spectralon', can vary in reflectance from 2 to 99 percent, and possess such advantages over alternative materials as chemical inertness and hydrophobicity, ease of maintenance, and spectral flatness over the UV-visible-NIR portion of the spectrum. Attention is given to the characteristics of the SRS-99 Spectralon material, whose excellent Lambertian properties appear

  7. Middleware enabling computational self-reflection: exploring the need for and some costs of selfreflecting networks with application to homeland defense

    NASA Astrophysics Data System (ADS)

    Kramer, Michael J.; Bellman, Kirstie L.; Landauer, Christopher

    2002-07-01

    This paper will review and examine the definitions of Self-Reflection and Active Middleware. Then it will illustrate a conceptual framework for understanding and enumerating the costs of Self-Reflection and Active Middleware at increasing levels of Application. Then it will review some application of Self-Reflection and Active Middleware to simulations. Finally it will consider the application and additional kinds of costs applying Self-Reflection and Active Middleware to sharing information among the organizations expected to participate in Homeland Defense.

  8. Characterization and Application of a Grazing Angle Objective for Quantitative Infrared Reflection Microspectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.

    1995-01-01

    A grazing angle objective on an infrared microspectrometer is studied for quantitative spectroscopy by considering the angular dependence of the incident intensity within the objective's angular aperture. The assumption that there is no angular dependence is tested by comparing the experimental reflectance of Si and KBr surfaces with the reflectance calculated by integrating the Fresnel reflection coefficient over the angular aperture under this assumption. Good agreement was found, indicating that the specular reflectance of surfaces can straight-forwardly be quantitatively integrated over the angular aperture without considering non-uniform incident intensity. This quantitative approach is applied to the thickness determination of dipcoated Krytox on gold. The infrared optical constants of both materials are known, allowing the integration to be carried out. The thickness obtained is in fair agreement with the value determined by ellipsometry in the visible. Therefore, this paper illustrates a method for more quantitative use of a grazing angle objective for infrared reflectance microspectroscopy.

  9. Study of neutron noise from reflected, metal assemblies with criticality safety applications in mind

    SciTech Connect

    Barnett, C.S.

    1985-08-20

    The author studied the statistics of detected neutrons that leaked from four subcritical reflected, enriched-uranium assemblies, to explore the feasibility of developing a criticality warning system based on neutron noise analysis. The calculated multiplication factors of the assemblies are 0.59, 0.74, 0.82, and 0.92. The author studied three possible discriminators, i.e., three signatures that might be used to discriminate among assemblies of various multiplications. They are: (1) variance-to-mean ratio of the counts in a time bin (V/M); (2) covariance-to-mean ratio of the counts in a common time bin from two different detectors (C/M); and (3) covariance-to-mean ratio of the counts from a single detector in two adjacent time bins of equal length, which the author calls the serial-covariance-to-mean ratio (SC/M). The performances of the three discriminators were not greatly different, but a hierarchy did emerge: SC/M greater than or equal to V/M greater than or equal to C/M. An example of some results: in the neighborhood of k = 0.6 the ..delta..k required for satisfactory discrimination varies from about 3% to 7% as detector solid angle varies from 19% to 5%. In the neighborhood of k = 0.8 the corresponding ..delta..ks are 1% and 2%. The noise analysis techniques studied performed well enough in deeply subcritical situations to deserve testing in an applications environment. They have a good chance of detecting changes in reactivity that are potentially dangerous. One can expect sharpest results when doing comparisons, i.e., when comparing two records, one taken in the past under circumstances known to be normal and one taken now to search for change.

  10. Metrological characterization of optical confocal sensors measurements (20 and 350 travel ranges)

    NASA Astrophysics Data System (ADS)

    Nouira, H.; El-Hayek, N.; Yuan, X.; Anwer, N.; Salgado, J.

    2014-03-01

    Confocal sensors are usually used in dimensional metrology applications, like roughness, form, thickness and surface profile measurements. With the progress of technologies, metrological applications require measurements with nanometer-level of accuracy by using ultra-high precision machines, which should present a minimum and stable metrology loop. The loop is equipped with sensors with nanometer-level of resolution and linear residual. The study presented here, is mainly focused on the characterization of Confocal sensors in order to identify their performance practically. Such information is useful to establish a correction model in the digital signal processing (DSP) software. In this context, LNE developed an ultra-high-precision machine, dedicated to the roughness measurement with an uncertainty of a few nanometres (< 30 nm) by using a tactile sensor. In order to match this machine to Confocal sensors, an experiment has been recently developed to characterize the behaviour of two commercial Confocal sensors with the measuring range of 20 ?m and 350 ? m. The experiment permits the evaluation of the major error sources: axial and radial motion errors as-well-as the deviation/tilt of the sensors.

  11. Experimental design for reflection measurements of highly reactive liquid or solid substances with application to liquid sodium. [LMFBR

    SciTech Connect

    Chan, S.H.; Gossler, A.A.

    1980-06-30

    This technical report describes the experimental part of a program on thermal radiation properties of reactor materials. A versatile goniometer system with associated electronic components and mechanical instruments has been assembled. It is designed to measure spectral, specular reflectances of highly reactive liquid or solid substances over a spectral range of 0.3 ..mu.. to 9 ..mu.. and incidence angles of 12/sup 0/ to 30/sup 0/ off the normal direction. The capability of measuring reflectances of liquid substances clearly distinguishes this experimental design from conventional systems which are applicable only to solid substances. This design has been used to measure the spectral, specular reflectance of liquid sodium and preliminary results obtained are compared with those of solid sodium measured by other investigators.

  12. Quantitative single-molecule imaging by confocal laser scanning microscopy.

    PubMed

    Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf

    2008-11-25

    A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed. PMID:19011092

  13. Fluorescence performance standards for confocal microscopy

    NASA Astrophysics Data System (ADS)

    Rüttinger, Steffen; Kapusta, Peter; Völlkopf, Volker; Koberling, Felix; Erdmann, Rainer; Macdonald, Rainer

    2010-02-01

    State of the art confocal microscopes offer diffraction limited (or even better) spatial resolution, highest (single molecule) sensitivity and ps-fluorescence lifetime measurement accuracy. For developers, manufacturers, as well as users of confocal microscopes it is mandatory to assign values to these qualities. In particular for users, it is often not easy to ascertain that the instrument is properly aligned as a large number of factors influence resolution or sensitivity. Therefore, we aspire to design a set of performance standards to be deployed on a day-to-day fashion in order to check the instruments characteristics. The main quantities such performance standard must address are: • Spatial resolution • Sensitivity • Fluorescence lifetime To facilitate the deployment and thus promote wide range adoption in day-to-day performance testing the corresponding standards have to be ready made, easy to handle and to store. The measurement procedures necessary should be available on as many different setups as possible and the procedures involved in their deployment should be as easy as possible. To this end, we developed two performance standards to accomplish the mentioned goals: • Resolution reference • Combined molecular brightness and fluorescence lifetime reference The first one is based on sub-resolution sized Tetra-SpeckTM fluorescent beads or alternatively on single molecules on a glass surface to image and to determine quantitatively the confocal volume, while the latter is a liquid sample containing fluorescent dyes of different concentrations and spectral properties. Both samples are sealed in order to ease their use and prolong their storage life. Currently long-term tests are performed to ascertain durability and road capabilities.

  14. Crystals and collimators for X-ray spectrometry. [Bragg reflection properties and design for astronomical applications

    NASA Technical Reports Server (NTRS)

    Mckenzie, D. L.; Landecker, P. B.; Underwood, J. H.

    1976-01-01

    Results of the measurement of Bragg reflection properties of crystals suitable for use in X-ray astronomy are presented. Measurements with a double crystal spectrometer were performed on rubidium acid phthalate and thallium acid phthalate to yield values of the integrated reflectivity and diffraction width in the range 8-18 A, and measurements of integrated reflectivity were also performed on ammonium dihydrogen phosphate. The theory and design of an arc-minute range multigrid collimator to be flown on a rocket for solar X-ray studies are also described, along with a method for determining the collimator's X-ray axis.

  15. Integrated photoacoustic and fluorescence confocal microscopy.

    PubMed

    Wang, Yu; Maslov, Konstantin; Kim, Chulhong; Hu, Song; Wang, Lihong V

    2010-10-01

    We have developed a dual-modality imaging system by integrating optical-resolution photoacoustic microscopy and fluorescence confocal microscopy to provide optical absorption and fluorescence contrasts simultaneously. By sharing the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence images are acquired in a single scan. The micrometer resolution allows imaging of both blood and lymphatic vessels down to the capillary level. Simultaneous photoacoustic angiography and fluorescence lymphangiography were demonstrated, presenting more information to study tumor angiogenesis, vasculature, and microenvironments in vivo. PMID:20639165

  16. Quality Control Protocol for Confocal Systems

    PubMed Central

    Cornea, Anda

    2014-01-01

    Quantitative analysis of confocal imaging experiments require more stringent quality control of instrument function than qualitative imaging. Unfortunately, there are no standard procedures for quality control that are uniformly implemented, and, in multi user facilities experimenters rarely have access to the QC information. This paper proposes an easy and very efficient protocol that could be performed at the beginning of each day, experiment or even slide. It takes only a few minutes to assess laser stability, stage stability, channel registration in 3 dimensions and flatness of field. The information may be used either to calibrate data or, in more severe cases to request servicing the instrument. PMID:23317897

  17. Integrated Photoacoustic and Fluorescence Confocal Microscopy

    PubMed Central

    Wang, Yu; Maslov, Konstantin; Kim, Chulhong; Hu, Song

    2010-01-01

    We have developed a dual-modality imaging system by integrating optical-resolution photoacoustic microscopy and fluorescence confocal microscopy to provide optical absorption and fluorescence contrasts simultaneously. By sharing the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence images are acquired in a single scan. The micrometer resolution allows imaging of both blood and lymphatic vessels down to the capillary level. Simultaneous photoacoustic angiography and fluorescence lymphangiography were demonstrated, presenting more information about tumor angiogenesis, vasculature, and microenvironments in vivo. PMID:20639165

  18. Multispectral confocal microendoscope for in-vivo imaging

    Microsoft Academic Search

    Andrew Robert Rouse

    2004-01-01

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The

  19. Inter-Comparison of ASTER and MODIS Surface Reflectance and Vegetation Index Products for Synergistic Applications to Natural Resource Monitoring

    PubMed Central

    Miura, Tomoaki; Yoshioka, Hiroki; Fujiwara, Kayo; Yamamoto, Hirokazu

    2008-01-01

    Synergistic applications of multi-resolution satellite data have been of a great interest among user communities for the development of an improved and more effective operational monitoring system of natural resources, including vegetation and soil. In this study, we conducted an inter-comparison of two remote sensing products, namely, visible/near-infrared surface reflectances and spectral vegetation indices (VIs), from the high resolution Advanced Thermal Emission and Reflection Radiometer (ASTER) (15 m) and lower resolution Moderate Resolution Imaging Spectroradiometer (MODIS) (250 m – 500 m) sensors onboard the Terra platform. Our analysis was aimed at understanding the degree of radiometric compatibility between the two sensors' products due to sensor spectral bandpasses and product generation algorithms. Multiple pairs of ASTER and MODIS standard surface reflectance products were obtained at randomly-selected, globally-distributed locations, from which two types of VIs were computed: the normalized difference vegetation index and the enhanced vegetation indices with and without a blue band. Our results showed that these surface reflectance products and the derived VIs compared well between the two sensors at a global scale, but subject to systematic differences, of which magnitudes varied among scene pairs. An independent assessment of the accuracy of ASTER and MODIS standard products, in which “in-house” surface reflectances were obtained using in situ Aeronet atmospheric data for comparison, suggested that the performance of the ASTER atmospheric correction algorithm may be variable, reducing overall quality of its standard reflectance product. Atmospheric aerosols, which were not corrected for in the ASTER algorithm, were found not to impact the quality of the derived reflectances. Further investigation is needed to identify the sources of inconsistent atmospheric correction results associated with the ASTER algorithm, including additional quality assessments of the ASTER and MODIS products with other atmospheric radiative transfer codes.

  20. Develop statewide recommendations for application of PCC joint reflective cracking rehabilitation strategies 

    E-print Network

    Jain, Rahul Padamkumar

    2004-11-15

    for rehabilitating jointed concrete pavements so as to minimize reflective cracking. Data was collected from relevant project case studies to assess and improve the framework for decision process. Further research will be required to enhance the selection process....

  1. Applications of shallow high-resolution seismic reflection to various environmental problems

    USGS Publications Warehouse

    Miller, R.D.; Steeples, D.W.

    1994-01-01

    Shallow seismic reflection has been successfully applied to environmental problems in a variety of geologic settings. Increased dynamic range of recording equipment and decreased cost of processing hardware and software have made seismic reflection a cost-effective means of imaging shallow geologic targets. Seismic data possess sufficient resolution in many areas to detect faulting with displacement of less than 3 m and beds as thin as 1 m. We have detected reflections from depths as shallow as 2 m. Subsurface voids associated with abandoned coal mines at depths of less than 20 m can be detected and mapped. Seismic reflection has been successful in mapping disturbed subsurface associated with dissolution mining of salt. A graben detected and traced by seismic reflection was shown to be a preferential pathway for leachate leaking from a chemical storage pond. As shown by these case histories, shallow high-resolution seismic reflection has the potential to significantly enhance the economics and efficiency of preventing and/or solving many environmental problems. ?? 1994.

  2. Reflections on current and future applications of multiangle imaging to aerosol and cloud remote sensing

    NASA Astrophysics Data System (ADS)

    Diner, David

    2010-05-01

    The Multi-angle Imaging SpectroRadiometer (MISR) instrument has been collecting global Earth data from NASA's Terra satellite since February 2000. With its 9 along-track view angles, 4 spectral bands, intrinsic spatial resolution of 275 m, and stable radiometric and geometric calibration, no instrument that combines MISR's attributes has previously flown in space, nor is there is a similar capability currently available on any other satellite platform. Multiangle imaging offers several tools for remote sensing of aerosol and cloud properties, including bidirectional reflectance and scattering measurements, stereoscopic pattern matching, time lapse sequencing, and potentially, optical tomography. Current data products from MISR employ several of these techniques. Observations of the intensity of scattered light as a function of view angle and wavelength provide accurate measures of aerosol optical depths (AOD) over land, including bright desert and urban source regions. Partitioning of AOD according to retrieved particle classification and incorporation of height information improves the relationship between AOD and surface PM2.5 (fine particulate matter, a regulated air pollutant), constituting an important step toward a satellite-based particulate pollution monitoring system. Stereoscopic cloud-top heights provide a unique metric for detecting interannual variability of clouds and exceptionally high quality and sensitivity for detection and height retrieval for low-level clouds. Using the several-minute time interval between camera views, MISR has enabled a pole-to-pole, height-resolved atmospheric wind measurement system. Stereo imagery also makes possible global measurement of the injection heights and advection speeds of smoke plumes, volcanic plumes, and dust clouds, for which a large database is now available. To build upon what has been learned during the first decade of MISR observations, we are evaluating algorithm updates that not only refine retrieval accuracies but also include enhancements (e.g., finer spatial resolution) that would have been computationally prohibitive just ten years ago. In addition, we are developing technological building blocks for future sensors that enable broader spectral coverage, wider swath, and incorporation of high-accuracy polarimetric imaging. Prototype cameras incorporating photoelastic modulators have been constructed. To fully capitalize on the rich information content of the current and next-generation of multiangle imagers, several algorithmic paradigms currently employed need to be re-examined, e.g., the use of aerosol look-up tables, neglect of 3-D effects, and binary partitioning of the atmosphere into "cloudy" or "clear" designations. Examples of progress in algorithm and technology developments geared toward advanced application of multiangle imaging to remote sensing of aerosols and clouds will be presented.

  3. A microfabricated scanning confocal optical microscope for in situ imaging

    NASA Astrophysics Data System (ADS)

    Dickensheets, David Lee

    Scanning confocal optical microscopes are well suited for imaging living tissue because of their ability to 'cross section' intact tissue. They are not, however, well suited for imaging tissues in situ. This dissertation describes a new, miniature, mirror scanned, high resolution confocal optical microscope that operates in real time. It is small enough to fit into an endoscope, and may eventually be incorporated into a hypodermic needle. Such a device would provide immediate in-situ tissue assessment at the cellular level and may enable, for example, biopsy without tissue removal. Non-medical applications may include process monitoring and endoscopic inspection. The microfabricated confocal optical scanning microscope, or ?COSM, incorporates single mode optical fiber illumination, silicon torsional scan mirrors, and an off- axis micro diffractive lens. The prototype device is monochromatic, at 633 nm, with a 1.1 mm working distance and 0.25 NA. It achieves a line response of 0.98 ?m FWHM, and an axial response of 11.1 ?m FWHM. The first part of the dissertation describes the opto- mechanical design of the microscope, which was chosen to be compatible with the microfabrication technologies used for its construction. Then the imaging properties of the off-axis diffractive objective lens are developed, including the aberrations of second and third order which constrain its use. The lens is a surface relief phase grating, and a rigorous electromagnetic analysis is employed to specify the pupil function of the microscope. Then the image forming properties of the ?COSM are derived and compared to experimental results. The second part of the dissertation describes the fabrication of the individual elements of the ?COSM, and their assembly into an imaging instrument. The lens is constructed using electron beam lithography and reactive ion etching of a fused silica substrate. The scanning mirrors for the microscope, which comprise a single crystal silicon plate suspended by silicon nitride hinges, are constructed using wafer bonding and surface micromachining techniques. A spacer element is fabricated using bulk silicon micromachining. A package is described which places the ?COSM imaging head, complete with focus control, inside a 3.4 mm OD hypodermic tube. Sample images acquired with the microscope are presented.

  4. Reflecting Reflective Practice

    ERIC Educational Resources Information Center

    Galea, Simone

    2012-01-01

    This paper demystifies reflective practice on teaching by focusing on the idea of reflection itself and how it has been conceived by two philosophers, Plato and Irigaray. It argues that reflective practice has become a standardized method of defining the teacher in teacher education and teacher accreditation systems. It explores how practices of…

  5. Numerical studies on a modified negative-branch confocal unstable resonator (MNBUR)

    NASA Astrophysics Data System (ADS)

    Hall, Thomas; Grünewald, Karin M.; Handke, Jürgen

    2007-05-01

    A modified unstable resonator, suitable for a laser with large gain medium cross section and a small or median output coupling, is presented. The spherical mirrors of this resonator form an off-axis negative-branch confocal unstable resonator. The special shaping of the scraper together with the negative-branch confocal unstable resonator configuration yields a laser output beam in the shape of a half-ring. In contrast to the conventional resonator with a ring-shaped output beam, the cross section of the half-ring is more compact and generates a lower structured far-field distribution, but the rotational symmetry disappears. For a rectangular medium cross section, the modified resonator is applicable, too. Some properties of such a rectangular modified negative-branch confocal unstable resonator (MNBUR) are investigated numerically. The theory is based on the integral equation of the Fresnel-Kirchhoff formulation of Huygens' Principle. The theoretical study pays attention to inaccuracies that may occur in mirror manufacturing. With respect to deviations from the specified mirror radius of curvature, the MNBUR does not show important differences to the performance of a conventional unstable resonator. The tilt of a resonator mirror affects the total coupling loss. The sensitivity of the MNBUR to output mirror misalignment is smaller than that of the common negativebranch confocal unstable resonator. A further important improvement achieved by resonator modification is an increased beam quality.

  6. Dye-enhanced multimodal confocal microscopy for noninvasive detection of skin cancers in mouse models

    NASA Astrophysics Data System (ADS)

    Park, Jesung; Mroz, Pawel; Hamblin, Michael R.; Yaroslavsky, Anna N.

    2010-03-01

    Skin cancer is the most common form of human cancer. Its early diagnosis and timely treatment is of paramount importance for dermatology and surgical oncology. In this study, we evaluate the use of reflectance and fluorescence confocal microscopy for detecting skin cancers in an in-vivo trial with B16F10 melanoma and SCCVII squamous cell carcinoma in mice. For the experiments, the mice are anesthetized, then the tumors are infiltrated with aqueous solution of methylene blue and imaged. Reflectance images are acquired at 658 nm. Fluorescence is excited at 658 nm and registered in the range between 690 and 710 nm. After imaging, the mice are sacrificed. The tumors are excised and processed for hematoxylin and eosin histopathology, which is compared to the optical images. The results of the study indicate that in-vivo reflectance images provide valuable information on vascularization of the tumor, whereas the fluorescence images mimic the structural features seen in histopathology. Simultaneous dye-enhanced reflectance and fluorescence confocal microscopy shows promise for the detection, demarcation, and noninvasive monitoring of skin cancer development.

  7. Reflected image of a strongly focused spot.

    PubMed

    Novotny, L; Grober, R D; Karrai, K

    2001-06-01

    We describe the reflection of a strongly focused beam from an interface between two dielectric media. If the beam is incident from the optically denser medium, the image generated by the reflected light is strongly aberrated. This situation is encountered in high-resolution confocal microscopy and data sampling based on solid immersion lenses and oil immersion objectives. The origin of the observed aberrations lies in the nature of total internal reflection, for which there is a phase shift between incident and reflected waves. This phase shift displaces the apparent reflection point beyond the interface, similarly to the Goos-Hänchen shift. PMID:18040451

  8. Particular features of the application of IR reflection spectroscopy methods in studies in archeology and paleontology

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. M.; Khlopachev, G. A.

    2013-06-01

    We have considered an optical model of a porous rough surface with optical properties of objects (bone, flint) that are typical of archeology and paleontology. We have formulated an approach that makes it possible to perform mathematical processing of the IR reflection spectra of objects of this kind using standard algorithms and determine criteria that ensure obtaining reliable information on objects with a rough surface in the course of interpretation of frequencies in their IR reflection spectra. The potential of the approach has been demonstrated using as an example an investigation by the IR Fourier-transform reflection spectroscopy of mineralization processes of mammoth tusks from two paleolithic sites (14000 and 16000 BCE) located by the town of Yudinovo, Bryansk oblast, Russia.

  9. The continuum slope of Mars - Bidirectional reflectance investigations and applications to Olympus Mons

    NASA Astrophysics Data System (ADS)

    Fischer, E. M.; Pieters, C. M.

    1993-04-01

    Two primary causes of near-IR continuum slope variations have been observed in an investigation of the bidirectional reflectance characteristics of ferric coatings on the continuum slope of Mars. First, the presence of a thin ferric coating on a dark substrate produces a negative continuum slope due to the wavelength-dependent transparency of the ferric coating. Second, wavelength-dependent directional reflectance occurs when the surface particles are tightly packed, particle sizes are on the order of or smaller than the wavelength of light, or the surface is otherwise smooth on the order of the wavelength of light. Based on these results, the annuli on the flanks of Olympus Mons which are defined by reflectance and continuum slope are consistent with spatial variations in surface texture and possibly with spatial variations in the thickness of a ferric dust coating or rind.

  10. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].

    PubMed

    Tao, Lin-Li; Yang, Xiu-Juan; Deng, Jun-Ming; Zhang, Xi

    2013-11-01

    In contrast to conventional methods for the determination of meat chemical composition, near infrared reflectance spectroscopy enables rapid, simple, secure and simultaneous assessment of numerous meat properties. The present review focuses on the use of near infrared reflectance spectroscopy to predict meat chemical compositions. The potential of near infrared reflectance spectroscopy to predict crude protein, intramuscular fat, fatty acid, moisture, ash, myoglobin and collagen of beef, pork, chicken and lamb is reviewed. This paper discusses existing questions and reasons in the current research. According to the published results, although published results vary considerably, they suggest that near-infrared reflectance spectroscopy shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. In particular, under commercial conditions where simultaneous measurements of different chemical components are required, near infrared reflectance spectroscopy is expected to be the method of choice. The majority of studies selected feature-related wavelengths using principal components regression, developed the calibration model using partial least squares and modified partial least squares, and estimated the prediction accuracy by means of cross-validation using the same sample set previously used for the calibration. Meat fatty acid composition predicted by near-infrared spectroscopy and non-destructive prediction and visualization of chemical composition in meat using near-infrared hyperspectral imaging and multivariate regression are the hot studying field now. On the other hand, near infrared reflectance spectroscopy shows great difference for predicting different attributes of meat quality which are closely related to the selection of calibration sample set, preprocessing of near-infrared spectroscopy and modeling approach. Sample preparation also has an important effect on the reliability of NIR prediction; in particular, lack of homogeneity of the meat samples influenced the accuracy of estimation of chemical components. In general the predicting results of intramuscular fat, fatty acid and moisture are best, the predicting results of crude protein and myoglobin are better, while the predicting results of ash and collagen are less accurate. PMID:24555369

  11. Critical reflectance derived from MODIS: Application for the retrieval of aerosol absorption over desert regions

    NASA Astrophysics Data System (ADS)

    Wells, Kelley C.; Martins, J. Vanderlei; Remer, Lorraine A.; Kreidenweis, Sonia M.; Stephens, Graeme L.

    2012-02-01

    The determination of aerosol direct radiative forcing over desert regions requires accurate information about the aerosol single-scattering albedo (SSA); however, the brightness of desert surfaces in the visible and near-IR range complicates the retrieval of aerosol optical properties using passive space-based measurements. Here we use the critical reflectance method to retrieve spectral aerosol absorption from space over North Africa, a desert region that is predominantly impacted by absorbing dust and biomass burning aerosol. We examine the sensitivity of the critical reflectance parameter to aerosol physical and optical properties that are representative of the region, and we find that the critical reflectance has low sensitivity to assumptions of aerosol size and refractive index for dust-like particles, except at scattering angles near 180°, which should be avoided with this method. We use our findings to retrieve spectral SSA from critical reflectance derived from Moderate Resolution Imaging Spectroradiometer (MODIS) reflectances in the vicinity of two Aerosol Robotic Network (AERONET) stations: Tamanrasset, in the Algerian Sahara, and Banizoumbou, in the Sahel. We retrieve lower aerosol SSAs at Banizoumbou, which is often impacted by dust-smoke mixtures, and higher SSAs at Tamanrasset, where pure desert dust is the dominant aerosol. Our results generally fall within the AERONET uncertainty envelopes, although at Banizoumbou we retrieve a spectral dependence different from that of AERONET. On the basis of our analysis, we expect to be able to retrieve SSA from critical reflectance for pure dust with an uncertainty of 0.02 and to provide spatial and spectral SSA information that will help reduce current uncertainties in the aerosol radiative forcing over desert regions.

  12. [Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn].

    PubMed

    Rui, Yu-kui; Luo, Yun-bo; Huang, Kun-lun; Wang, Wei-min; Zhang, Lu-da

    2005-10-01

    With the rapid development of the GMO, more and more GMO food has been pouring into the market. Much attention has been paid to GMO labeling under the controversy of GMO safety. Transgenic corns and their parents were scanned by continuous wave of near infrared diffuse reflectance spectroscopy range of 12000-4000 cm(-1); the resolution was 4 cm(-1); scanning was carried out for 64 times; BP algorithm was applied for data processing. The GMO food was easily resolved. Near-infrared diffuse reflectance spectroscopy is unpolluted and inexpensive compared with PCR and ELISA, so it is a very promising detection method for GMO food. PMID:16395887

  13. Application of off-specular x-ray reflectivity for surface characterization

    NASA Astrophysics Data System (ADS)

    Wu, Wen-li

    1996-11-01

    A scheme based on the distorted wave Born approximation has been developed to model the off-specular x-ray reflectivity from flat surfaces with compositional and topographic fluctuations. To verify this theoretical work, silicon wafers coated with evenly spaced aluminum lines were chosen as the test samples. Good agreement is found between the calculationed and the experimental results. In addition, a gross difference in the off-specular spectra was observed from two test samples different only in their surface roughness; this observation demonstrates the potential of using off-specular x-ray reflectivity for quality control measurements.

  14. Bidirectional Reflectance of Flat, Optically Thick Particulate Layers: An Efficient Radiative Transfer Solution and Applications to Snow and Soil Surfaces

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yanovitsku, Edgard G.; Zakharova, Nadia T.

    1999-01-01

    We describe a simple and highly efficient and accurate radiative transfer technique for computing bidirectional reflectance of a macroscopically flat scattering layer composed of nonabsorbing or weakly absorbing, arbitrarily shaped, randomly oriented and randomly distributed particles. The layer is assumed to be homogeneous and optically semi-infinite, and the bidirectional reflection function (BRF) is found by a simple iterative solution of the Ambartsumian's nonlinear integral equation. As an exact Solution of the radiative transfer equation, the reflection function thus obtained fully obeys the fundamental physical laws of energy conservation and reciprocity. Since this technique bypasses the computation of the internal radiation field, it is by far the fastest numerical approach available and can be used as an ideal input for Monte Carlo procedures calculating BRFs of scattering layers with macroscopically rough surfaces. Although the effects of packing density and coherent backscattering are currently neglected, they can also be incorporated. The FORTRAN implementation of the technique is available on the World Wide Web at http://ww,,v.giss.nasa.gov/-crmim/brf.html and can be applied to a wide range of remote sensing, engineering, and biophysical problems. We also examine the potential effect of ice crystal shape on the bidirectional reflectance of flat snow surfaces and the applicability of the Henyey-Greenstein phase function and the 6-Eddington approximation in calculations for soil surfaces.

  15. Imaging the living inner ear using intravital confocal microscopy

    Microsoft Academic Search

    Igor Tomo; Sophie Le Calvez; Hannes Maier; Jacques Boutet de Monvel; Anders Fridberger; Mats Ulfendahl

    2007-01-01

    Confocal laser scanning microscopy permits detailed visualization of structures deep within thick fluorescently labeled specimen. This makes it possible to investigate living cells inside intact tissue without prior chemical sample fixation and sectioning. Isolated guinea pig temporal bones have previously been used for confocal experiments in vitro, but tissue deterioration limits their use to a few hours after the death

  16. Mosaicing of Confocal Microscopic In Vivo Soft Tissue Video Sequences

    E-print Network

    Boyer, Edmond

    to be able to perform in situ imaging. For such purpose, a fiber bundle is used as the link between Kea Technologies, 9 rue d'Enghien Paris, France Abstract. Fibered confocal microscopy allows in vivo by in vivo fibered confocal microscopy. Results on 50 images of a live mouse colon demonstrate

  17. Evaluation and purchase of confocal microscopes: Numerous factors to consider

    EPA Science Inventory

    The purchase of a confocal microscope can be a complex and difficult decision for an individual scientist, group or evaluation committee. This is true even for scientists that have used confocal technology for many years. The task of reaching the optimal decision becomes almost i...

  18. Confocal fluorescence microendoscopy using a digital micro-mirror device

    Microsoft Academic Search

    Zhifeng Feng; Liqiang Wang; Huilong Duan

    2010-01-01

    A design of confocal fluorescence microendoscopy utilizing a digital micro-mirror device (DMD) is described. Laser beams of the microendoscope are coupled into the body through a telescopic optics system, rather than through fibers or fiber bundles which are widely used in existing microendoscopes. Each micro-mirror of the DMD is used as a confocal pinhole. The DMD not only couples the

  19. CONFOCAL LASER SCANNING MICROSCOPY OF RAT FOLLICLE DEVELOPMENT

    EPA Science Inventory

    This study used confocal laser scanning microscopy (CLSM) to study follicular development in millimeter pieces of rat ovary. To use this technology, it is essential to stain the tissue before laser excitation with the confocal microscope. Various fluorescent stains (Yo-Pro, Bo-Pr...

  20. Analysis of metal-clad anti resonant reflecting optical waveguide for polarizer applications

    Microsoft Academic Search

    U. Trutschel; M. Cronin-Golomb; G. Fogarty; F. Lederer; M. Abraham

    1993-01-01

    The dispersion and attenuation characteristics of an ARROW (antiresonant reflecting optical waveguide) with and without thin metal layers deposited on the outside of the interference cladding layer are investigated. These thin metal layers improve the polarization-selective performance of the ARROW considerably. A simple analytical expression to calculate the optimal thickness of the metal layer is derived

  1. Design Considerations of Small Size Reflective Type Pulse Oximeter Heads in Special Applications

    Microsoft Academic Search

    H. Santha; N. Stuban; G. Harsanyi

    2006-01-01

    Many pulse oximeter types are available on the market but development of reflective pulse oximeters is still required by health care players. An approach to determine optimal conditions of such measurements by means of objective methods and a pilot experiment is described in this paper. The optimal distance between the light sources and the detector and the optimal force to

  2. Simple method for modeling radar reflections in a homogeneous halfspace, with applications

    Microsoft Academic Search

    Roy J. Greenfield; Mark L. Moran; J. L. Davis

    2000-01-01

    We have developed a method to rapidly compute synthetic radar records from complex reflecting surfaces. The approach is a 3- D time domain Hemholtz-Kirchhoff (HK) representation, similar to Hilterman (1981), that includes the radiation characteristics of GPR dipoles on the surface of a uniform dielectric halfspace. Validity is established by making comparisons with published model results and by comparisons with

  3. Application of GIS for processing and establishing the correlation between weather radar reflectivity and precipitation data

    Microsoft Academic Search

    Y. Gorokhovich; G. Villarini

    2005-01-01

    Correlation between weather radar reflectivity and precipitation data collected by rain gauges allows empirical formulae to be obtained that can be used to create continuous rainfall surfaces from discrete data. Such surfaces are useful in distributed hydrologic modelling and early warning systems in flood management. Because of the spatial relationship between rain gauge locations and radar coverage area, GIS provides

  4. Foreign Policy Issues: A High School Application of the Engle and Ochoa Reflective Teaching Model.

    ERIC Educational Resources Information Center

    Brandhorst, Allan R.

    1992-01-01

    Addresses the importance of teaching young people about foreign policy issues. Discusses state sovereignty and interpersonal and international conflict. Describes a reflective teaching approach in which a problem is identified, defined, and explored by probing questions. Suggests identifying value assumptions and alternatives, predicting…

  5. Wide field-of-view all-reflective objectives designed for multispectral image acquisition in photogrammetric applications

    NASA Astrophysics Data System (ADS)

    Seidl, Kristof; Richter, Katja; Knobbe, Jens; Maas, Hans-Gerd

    2011-10-01

    In many aerial and close-range photogrammetry applications, the near infrared (NIR) spectral range is required in addition to the visible (VIS) spectral range. Currently, many especially aerial photogrammetric systems use particularly optimized camera systems for each spectral band. Using separate cameras or lenses can introduce parallaxes and timedelays between the acquired images, and thus complicate the data fusion process. Furthermore, it adds additional weight to the entire system. With an image acquisition through a single objective, the complexity of the data fusion and the weight can be significantly reduced. However, to be able to only use one objective for different spectral bands, the optical system has to be free of chromatic aberrations. For photogrammetric applications, a wide field-of-view and a high resolution are frequent additional requirements. Therefore, we will present a design and an adapted photogrammetric calibration method of an all-reflective unobscured optical system optimized for full-frame imaging sensors. All-reflective unobscured optical systems may also be a very efficient imaging tool in combination with unmanned aerial vehicles (UAVs). Due to the limited payload capacity, many currently available UAVs can only be used with one spectrally limited camera system at the same time. With miniaturized all-reflective camera systems, the image data could be acquired in the visible and e.g. the NIR spectral range simultaneously.

  6. Laboratory infrared reflection spectrum of carbon dioxide clathrate hydrates for astrophysical remote sensing applications

    NASA Astrophysics Data System (ADS)

    Oancea, Adriana; Grasset, Olivier; Le Menn, Erwan; Bollengier, Olivier; Bezacier, Lucile; Le Mouélic, Stéphane; Tobie, Gabriel

    2012-11-01

    We present 1-5 ?m IR reflectance spectra of CO2 clathrate hydrates acquired under temperature and pressure conditions representative of the icy moons’ surfaces. The IR reflectance spectrum of the CO2 clathrate hydrates is similar to the water ice IR reflectance spectrum except for two main absorption bands corresponding to the CO2 guest molecule at 2.71 and 4.28 ?m (3693 and 2334 cm-1). The specific configuration of the clathrate hydrate structure is identified through the ?3 absorption band splitting which produces a band at 4.26 ?m (2347 cm-1) for molecules trapped in small cages and a band at 4.28 ?m (2334 cm-1) for molecules trapped in large cages. In general, the reflection spectra are similar to spectra obtained in transmission spectroscopy. But, it appears that the aspect of the ?3 absorption band is strongly influenced by physical (roughness, thickness, mixing properties) and optical (n and k) characteristics of the sample. A qualitative discussion of the effects of these sample properties on near-IR signatures of clathrate hydrates is proposed. Finally, a comparison between the absorption bands of CO2 clathrate hydrates obtained in this work and CO2 absorption bands as detected by VIMS on the icy satellites of Saturn is achieved. The experimental near-IR reflection spectra, made in pressure-temperature (P-T) conditions close to those of the icy surfaces, confirm that VIMS data are not consistent with the presence of structure I CO2 clathrate hydrates on the surface of the icy moons.

  7. Fluorescence confocal endomicroscopy in biological imaging

    NASA Astrophysics Data System (ADS)

    Delaney, Peter; Thomas, Steven; Allen, John; McLaren, Wendy; Murr, Elise; Harris, Martin

    2007-02-01

    In vivo fluorescence microscopic imaging of biological systems in human disease states and animal models is possible with high optical resolution and mega pixel point-scanning performance using optimised off-the-shelf turn-key devices. There are however various trade-offs between tissue access and instrument performance when miniaturising in vivo microscopy systems. A miniature confocal scanning technology that was developed for clinical human endoscopy has been configured into a portable device for direct hand-held interrogation of living tissue in whole animal models (Optiscan FIVE-1 system). Scanning probes of 6.3mm diameter with a distal tip diameter of 5.0mm were constructed either in a 150mm length for accessible tissue, or a 300mm probe for laparoscopic interrogation of internal tissues in larger animal models. Both devices collect fluorescence confocal images (excitation 488 nm; emission >505 or >550 nm) comprised of 1024 x 1204 sampling points/image frame, with lateral resolution 0.7um; axial resolution 7um; FOV 475 x 475um. The operator can dynamically control imaging depth from the tissue surface to approx 250um in 4um steps via an internally integrated zaxis actuator. Further miniaturisation is achieved using an imaging contact probe based on scanning the proximal end of a high-density optical fibre bundle (~30,000 fibres) of <1mm diameter to transfer the confocal imaging plane to tissue in intact small animal organs, albeit at lower resolution (30,000 sampling points/image). In rodent models, imaging was performed using various fluorescent staining protocols including fluorescently labelled receptor ligands, labelled antibodies, FITC-dextrans, vital dyes and labelled cells administered topically or intravenously. Abdominal organs of large animals were accessed laparoscopically and contrasted using i.v. fluorescein-sodium. Articular cartilage of sheep and pigs was fluorescently stained with calcein-AM or fluorescein. Surface and sub-surface cellular and sub-cellular details could be readily visualised in vivo at high resolution. In rodent disease models, in vivo endomicroscopy with appropriate fluorescent agents allowed examination of thrombosis formation, tumour microvasculature and liver metastases, diagnosis and staging of ulcerative colitis, liver necrosis and glomerulonephritis. Miniaturised confocal endomicroscopy allows rapid in vivo molecular and subsurface microscopy of normal and pathologic tissue at high resolution in small and large whole animal models. Fluorescein endomicroscopy has recently been introduced into the medical device market as a clinical imaging tool in GI endoscopy and is undergoing clinical evaluation in laparoscopic surgery. This medical usage is encouraging in-situ endomicroscopy as an important pre-clinical research tool to observe microscopic and molecular system biologic events in vivo in animal models for various human diseases.

  8. Intracellular dynamics of topoisomerase I inhibitor, CPT11, by slit-scanning confocal Raman microscopy

    Microsoft Academic Search

    Yoshinori Harada; Ping Dai; Yoshihisa Yamaoka; Mitsugu Ogawa; Hideo Tanaka; Kazuto Nosaka; Kenichi Akaji; Tetsuro Takamatsu

    2009-01-01

    Most molecular imaging technologies require exogenous probes and may have some influence on the intracellular dynamics of\\u000a target molecules. In contrast, Raman scattering light measurement can identify biomolecules in their innate state without\\u000a application of staining methods. Our aim was to analyze intracellular dynamics of topoisomerase I inhibitor, CPT-11, by using\\u000a slit-scanning confocal Raman microscopy, which can take Raman images

  9. Polymer Cholesteric-Liquid-Crystal (PCLC) Flake/Fluid Host Electro-Optical Suspensions and Their Applications in Color Flexible Reflective Displays

    SciTech Connect

    Marshall, K.L.; Trajkovska-Petkoska, A.; Hasman, K.; Leitch, M.; Cox, G.; Kosc, T.Z.; Jacobs, S.D.

    2008-03-13

    Polymer cholesteric-liquid-crystal (PCLC) flake/fluid-host suspensions are a novel particle display technology for full-color reflective display applications on rigid or flexible substrates. These “polarizing pigments” require no polarizers or color filters, switch rapidly at very low voltages, and produce highly saturated colors with a reflection efficiency approaching 80%.

  10. Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions

    NASA Astrophysics Data System (ADS)

    Gareau, Dan; Bar, Anna; Snaveley, Nicholas; Lee, Ken; Chen, Nathaniel; Swanson, Neil; Simpson, Eric; Jacques, Steve

    2012-06-01

    For rapid, intra-operative pathological margin assessment to guide staged cancer excisions, multimodal confocal mosaic scan image wide surgical margins (approximately 1 cm) with sub-cellular resolution and mimic the appearance of conventional hematoxylin and eosin histopathology (H&E). The goal of this work is to combine three confocal imaging modes: acridine orange fluorescence (AO) for labeling nuclei, eosin fluorescence (Eo) for labeling cytoplasm, and endogenous reflectance (R) for marking collagen and keratin. Absorption contrast is achieved by alternating the excitation wavelength: 488 nm (AO fluorescence) and 532 nm (Eo fluorescence). Superposition and false-coloring of these modes mimics H&E, enabling detection of cutaneous squamous cell carcinomas (SCC). The sum of mosaic Eo+R is false-colored pink to mimic the appearance of eosin, while the AO mosaic is false-colored purple to mimic the appearance of hematoxylin in H&E. In this study, mosaics of 10 Mohs surgical excisions containing invasive SCC, and five containing only normal tissue were subdivided for digital presentation equivalent to 4× histology. Of the total 50 SCC and 25 normal sub-mosaics presented, two reviewers made two and three type-2 errors (false positives), respectively. Limitations to precisely mimic H&E included occasional elastin staining by AO. These results suggest that confocal mosaics may effectively guide staged SCC excisions in skin and other tissues.

  11. Application of the Total Reflection X-ray Fluorescence technique to trace elements determination in tobacco

    NASA Astrophysics Data System (ADS)

    Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.

    2008-12-01

    Many studies have identified an important number of toxic elements along with organic carcinogen molecules and radioactive isotopes in tobacco. In this work we have analyzed by Total Reflection X-Ray Fluorescence 9 brands of cigarettes being manufactured and distributed in the Mexican market. Two National Institute of Standards and Technology standards and a blank were equally treated at the same time. Results show the presence of some toxic elements such as Pb and Ni. These results are compared with available data for some foreign brands, while their implications for health are discussed. It can be confirmed that the Total Reflection X-Ray Fluorescence method provides precise (reproducible) and accuracy (trueness) data for 15 elements concentration in tobacco samples.

  12. Optimization and Application of Reflective LSPR Optical Fiber Biosensors Based on Silver Nanoparticles.

    PubMed

    Chen, Jiangping; Shi, Se; Su, Rongxin; Qi, Wei; Huang, Renliang; Wang, Mengfan; Wang, Libing; He, Zhimin

    2015-01-01

    In this study, we developed a reflective localized surface plasmon resonance (LSPR) optical fiber sensor, based on silver nanoparticles (Ag NPs). To enhance the sensitivity of the LSPR optical sensor, two key parameters were optimized, the length of the sensing area and the coating time of the Ag NPs. A sensing length of 1.5 cm and a 1-h coating time proved to be suitable conditions to produce highly sensitive sensors for biosensing. The optimized sensor has a high refractive index sensitivity of 387 nm/RIU, which is much higher than that of other reported individual silver nanoparticles in solutions. Moreover, the sensor was further modified with antigen to act as a biosensor. Distinctive wavelength shifts were found after each surface modification step. In addition, the reflective LSPR optical fiber sensor has high reproducibility and stability. PMID:26016910

  13. Application of Extended Inverse Scatter Correction to Mid-Infrared Reflectance Spectra of Soil

    SciTech Connect

    Gallagher, Neal B.; Blake, Thomas A.; Gassman, Paul L.

    2005-05-01

    Scattering artifacts adversely affect infrared reflectance measurements of powders and soils, and extended inverse scatter correction (EISC) is a flexible method useful for correcting for these artifacts. EISC was used to correct mid-infrared reflectance spectra of two different soils coated with dibutyl phosphate and the results were examined using regression analysis. To determine the correction, EISC fits a measured spectrum to a reference spectrum. However, if measured spectra contain features not included in the reference spectrum the fit can be biased resulting in poor correction. Weighted and robust least squares were used to account for these potential biases. Additionally, the present work demonstrates how analyte-free samples can be used to determine basis functions for an extended mixture model used in the correction. Corrected spectra resulted in partial least squares models that performed at least as well as 2nd derivative spectra and were more interpretable.

  14. Near-infrared reflectance spectra-applications to problems in asteroid-meteorite relationships

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy A.; Chamberlin, Alan; Vilas, Faith

    1991-01-01

    Near-infrared spectral reflectance data were collected at the Infrared Telescope Facility (IRTF) at Mauna Kea Observatories in 1985 and 1986 for the purpose of searching the region near the 3:1 Kirkwood gap for asteroids with the spectral signatures of ordinary chondrite parent bodies. Twelve reflectance spectra are observed. The presence of ordinary chondrite parent bodies among this specific set of observed asteroids is not obvious, though the sample is biased towards the larger asteroids in the region due to limitations imposed by detector sensitivity. The data set, which was acquired with the same instrumentation used for the 52-color asteroid survey (Bell et al., 1987), also presents some additional findings. The range of spectral characteristics that exist among asteroids of the same taxonomic type is noted. Conclusions based on the findings are discussed.

  15. Polarization Effects in Reflecting Coronagraphs for White Light Applications in Astronomy

    E-print Network

    James B. Breckinridge; Ben R. Oppenheimer

    2003-09-15

    The properties of metal thin films have been largely overlooked in discussions of the technical limitations and problems that arise in the field of direct detection of exoplanets. Here, polarization properties and anisotropy properties of highly reflecting thin metal films are examined within the context of the requirements for the ultra-low scattered-light system performance of coronagraphs applied to space and ground-based high-contrast, white-light astronomy. Wavelength-dependent optical constants for highly reflecting thin metal films, taken from the literature are used to calculate the polarization-dependent transmissivity of a typical coronagraph. The effects of degraded performance on the astronomical science are examined. Suggestions are made for future work.

  16. Application of total internal reflection microscopy for laser damage studies on fused silica

    SciTech Connect

    Sheehan, L. M., LLNL

    1997-12-01

    Damage studies show that the majority of damage on ultraviolet grade fused silica initiates at the front or rear surface. The grinding and polishing processes used to produce the optical surfaces of transparent optics play a key role in the development of defects which can ultimately initiate damage. These defects can be on or breaking through the surface or can be sub-surface damage. Total Internal Reflection Microscopy has been documented as a tool for revealing both sub-surface and surface defects in transparent materials. Images taken which compare both Total Internal Reflection Microscopy and Atomic Force Microscopy show that the observed defects can be less than one micron in size. Total Internal Reflection Microscopy has the added benefit of being able to observe large areas (1 square millimeter) with sub-micron detection. Both off-line and in-situ systems have been applied in the Lawrence Livermore National Laboratory`s damage laboratory in order to understand defects in the surface and subsurface of polished fused silica. There is a preliminary indication that TIRM quality can be related to the damage resistance. The in-situ microscope is coupled into a 355 run, 7.5 ns, 10 Hz Nd:YAG laser system in order to study damage occurring at localized scatter sites revealed with the Total Internal Reflection Microscopy method. The tests indicate damage initiating at observed artifacts which have many different morphologies and damage behaviors. Some of the scatter sites and damage morphologies revealed have been related back to the finishing process.

  17. Applications of total reflection X-ray fluorescence to analysis of VLSI micro contamination

    Microsoft Academic Search

    Bor Wen Liou; Chung Len Lee

    1999-01-01

    This paper demonstrates the microcontamination analysis on wafers after they have been through the conventional ULSI processing steps, by using the vapor phase decomposition\\/total reflection X-ray fluorescence (VPD\\/TXRF) technique. It was found that the wafer location in the holding cassette during the chemical cleaning step affected the cleanness of the wafer, and the class 1 environment was not enough to

  18. Applications 1. Which capital letters have reflection symmetry? For each one that

    E-print Network

    Lee, Carl

    . 12. 13. 14. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 16 Kaleidoscopes, Hubcaps design. d. Describe the rotation symmetries in your design. 1 2 3 4 5 6 7 8 9 0COOKIE 18 Kaleidoscopes that has reflection symmetry when written vertically. #12;20 Kaleidoscopes, Hubcaps, and Mirrors 33. Write

  19. Separating a Color Signal into Illumination and Surface Reflectance Components: Theory and Applications

    Microsoft Academic Search

    Jian Ho; Brian V. Funt; Mark S. Drew

    1990-01-01

    A separation algorithm for achieving color constancy and theorems concerning its accuracy are presented. The algorithm requires extra information, over and above the usual three values mapping human cone responses, from the optical system. However, with this additional information-specifically, a sampling across the visible range of the reflected, color-signal spectrum impinging on the optical sensor-the authors are able to separate

  20. ARES: a new reflective\\/emissive imaging spectrometer for terrestrial applications

    Microsoft Academic Search

    Andreas Mueller; Rolf Richter; Martin Habermeyer; Harald Mehl; Stefan Dech; Hermann J. Kaufmann; Karl Segl; Peter Strobl; Peter Haschberger; Richard Bamler

    2004-01-01

    Airborne imaging spectrometers have a history of about 20 years starting with the operation of AIS in 1982. During the following years, many other instruments were built and successfully operated, e.g., AVIRIS, CASI, DAIS-7915, and HyMap. Since imaging spectrometers cover a spectral region with a large number of narrow contiguous bands they are able to retrieve the spectral reflectance signature

  1. Forensic application of total reflection X-ray fluorescence spectrometry for elemental characterization of ink samples

    Microsoft Academic Search

    Sangita Dhara; N. L. Misra; S. D. Maind; Sanjukta A. Kumar; N. Chattopadhyay; S. K. Aggarwal

    2010-01-01

    The possibility of applying Total Reflection X-ray Fluorescence for qualitative and quantitative differentiation of documents printed with rare earth tagged and untagged inks has been explored in this paper. For qualitative differentiation, a very small amount of ink was loosened from the printed documents by smoothly rubbing with a new clean blade without destroying the manuscript. 50?L of Milli-Q water

  2. Introduction of new database reflected tritone algorithm for application in mask production

    Microsoft Academic Search

    Thomas Schulmeyer; Heiko Schmalfuss; Jan Heumann; Michael Lang

    2008-01-01

    At Photomask Japan 2007 the new algorithm of Fast Integrated die-to-die T+R (DDTR) for the views of P90 and P72 for the KLA Tencor TeraScanHR mask inspection system was presented. At the same time a new algorithm for P72 in database tritone mode for reflected light (DBRt) was introduced. Both modes can be used together as one combined inspection to

  3. Fabrication of highly transparent diamond-like carbon anti-reflecting coating for Si solar cell application

    NASA Astrophysics Data System (ADS)

    Banerjee, Amit; Das, Debajyoti

    2014-04-01

    ARC grade highly transparent unhydrogenated diamond-like carbon (DLC) films were produced, directly from a-C target, using RF magnetron sputtering deposition technique, for optoelectronic applications. Optical band gap, transmittance, reflectance, sp3 fraction, ID/IG, density, and refractive index of the films have been estimated with the help of optical tools like Uv-vis spectrophotometer, ellipsometer and micro-Raman. Optimum ARC-qualities have been identified in low-temperature grown DLC films at an Ar pressure of 4 mTorr in the reactor, accomplishing its key requirements for use in silicon solar cells.

  4. Fabrication of highly transparent diamond-like carbon anti-reflecting coating for Si solar cell application

    SciTech Connect

    Banerjee, Amit, E-mail: erdd@iacs.res.in; Das, Debajyoti, E-mail: erdd@iacs.res.in [Nano-Science Group, Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India)

    2014-04-24

    ARC grade highly transparent unhydrogenated diamond-like carbon (DLC) films were produced, directly from a-C target, using RF magnetron sputtering deposition technique, for optoelectronic applications. Optical band gap, transmittance, reflectance, sp{sup 3} fraction, I{sub D}/I{sub G}, density, and refractive index of the films have been estimated with the help of optical tools like Uv-vis spectrophotometer, ellipsometer and micro-Raman. Optimum ARC-qualities have been identified in low-temperature grown DLC films at an Ar pressure of 4 mTorr in the reactor, accomplishing its key requirements for use in silicon solar cells.

  5. In-situ lateral confocal microscopic surface profilometry with vibration-resistance capability

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Li, Chih-Kai; Chang, Yi-Wei

    2010-08-01

    In the article, an in-situ 3-D microscopic surface profilometer employing novel lateral confocal scanning principle, also called V-scan lateral confocal microscopy (VLCM), was developed to achieve in-field measurement with an effective vibration-resistance capability. The developed methodology combines digital structured fringe projection, lateral confocal scanning, shape from focus (SFF) and anti-vibration technique to perform lateral scanning for in-situ 3-D surface measurement. For microstructures having low reflectivity and high-slope surfaces to be measured within in-field process environment, it has been recognized as a great challenge for achieving accurate 3-D surface inspection. To overcome this, the presented method employing a new lateral confocal scanning strategy in combining a Z-axis vertical scanning with a horizontal X-axis scanning simultaneously, in which the scan pattern is similar to a V-shape. Meanwhile, to detect potential environmental vibration, a laser fiber interferometric positioning sensor based on heterodyne interferometry is employed to detect potential vibratory displacement between the optical probe and a tested surface for minimizing environment disturbance encountered in a real factory. A depth response curve is constructed by a series of images detected from successive depths during the V-scan lateral scanning. Potential vibration errors can be effectively detected by a fiber optic interometric positioning sensor and compensated simultaneously. A standard step-height target and several industrial V-groove microstructures have been measured to attest the measurement accuracy and feasibility of the developed approach. From the experimental results, it is confirmed that the depth resolution can reach 0.1 ?m and the maximum measurement error can be controlled within 3% of the overall measuring height.

  6. Surface investigations on HgBr2 single crystals by using confocal scanning laser microscopy

    PubMed

    Stanciu; Polychroniadis

    2000-05-01

    A confocal scanning laser microscope operating at 514 and 488 nm has been used to obtain two-dimensional (2-D) images of the mercuric bromide (HgBr2) crystal surface by photoluminescence, reflection, and transmission phenomena. Our measurements indicate that regions showing a strong photoluminescence may appear on the surface. By processing the 2-D images. we obtained the three-dimensional images, which offer a better possibility for the investigation. The analysis of spectral lines may be correlated with the presence of the Hg impurities. PMID:10888125

  7. The application of leaky anti-resonant reflecting optical waveguides as optical sensors (L-ARROW)

    Microsoft Academic Search

    John P. Hulme; Seong Soo A. An

    2009-01-01

    A multimode leaky ARROW sensor was investigated for sensing applications. The refractive index and wavelength sensitivities of the TM0 (first leaky mode) and TM1 (second leaky mode) were examined. Of the two modes the TM1 mode was found to be the most suitable for sensing applications, exhibiting good signal stability, higher refractive index sensitivity and greater resistance to wavelength fluctuations.

  8. Correlative confocal Raman Imaging for 2D materials

    NASA Astrophysics Data System (ADS)

    Yang, Jianyong; Liu, Wei; Dieing, Thomas; Fischer, Harald; Henrich, Marius; Hollricher, Olaf

    2015-03-01

    Graphene was one of the first two-dimensional materials which soon after its first mono-layer production received much attention by many researchers worldwide. Its properties vastly differ from bulk graphite and its potential for applications ranges from transistors to transparent conducting electrodes and solar cell applications. While Graphene is arguably the most prominent two-dimensional material there are to this date many more that are subject to current research such as MoS2, WS2 or MoSe2. Graphene has been already and still is extensively studied using a variety of characterization techniques. Raman spectroscopy and more importantly still, Raman imaging proved to be of great value due to the clearly different spectra obtained from single, double, triple and multi-layered Graphene. This and more information that can be extracted from Raman spectroscopy and imaging can well be complemented with other techniques such as various forms of atomic force microscopy (AFM), Scanning Nearfield Optical Microscopy (SNOM), and scanning electron microscopy (SEM). In this contribution we illustrate the benefit of correlating said techniques with confocal Raman imaging in order to deepen the understanding of the samples in question.

  9. Axial super resolution topography of focal adhesion by confocal microscopy.

    PubMed

    Chiu, Chi-Li; Gratton, Enrico

    2013-10-01

    The protein organization within focal adhesions has been studied by state-of-the-art super resolution methods because of its thin structure, well below diffraction limit. However, to achieve high axial resolution, most of the current approaches rely on either sophisticated optics or diligent sample preparation, limiting their application. In this report we present a phasor-based method that can be applied to fluorescent samples to determine the precise axial position of proteins using a conventional confocal microscope. We demonstrate that with about 4,000 photon counts collected along a z-scan, axial localization precision close to 10 nm is achievable. We show that, with within 10 nm, the axial location of paxillin, FAK, and talin is similar at focal adhesion sites, while F-actin shows a sharp increase in height towards the cell center. We further demonstrated the live imaging capability of this method. With the advantage of simple data acquisition and no special instrument requirement, this approach could have wide dissemination and application potentials. PMID:23897846

  10. Axial Super Resolution Topography of Focal Adhesion by Confocal Microscopy

    PubMed Central

    Chiu, Chi-Li; Gratton, Enrico

    2013-01-01

    The protein organization within focal adhesions has been studied by state-of-the-art super resolution methods because of its thin structure, well below diffraction limit. However, to achieve high axial resolution, most of the current approaches rely on either sophisticated optics or diligent sample preparation, limiting their application. In this report we present a phasor-based method that can be applied to fluorescent samples to determine the precise axial position of proteins using a conventional confocal microscope. We demonstrate that with about 4,000 photon counts collected along a z-scan, axial localization precision close to 10 nm is achievable. We show that, with within 10 nm, the axial location of paxillin, FAK, and talin is similar at focal adhesion sites, while F-actin shows a sharp increase in height towards the cell center. We further demonstrated the live imaging capability of this method. With the advantage of simple data acquisition and no special instrument requirement, this approach could have wide dissemination and application potentials. PMID:23897846

  11. Transmissive grating-reflective mirror-based fiber optic accelerometer for stable signal acquisition in industrial applications

    NASA Astrophysics Data System (ADS)

    Lee, Yeon-Gwan; Kim, Dae-Hyun; Kim, Chun-Gon

    2012-05-01

    This paper discusses an applicable fiber-optic accelerometer composed of a transmissive grating panel, a reflection mirror, and two optical fibers with a separation of quarter grating pitch as transceivers that monitor the low-frequency accelerations of civil engineering structures. This sensor structure brings together the advantages of both a simple sensor structure, which leads to simplified cable design by 50% in comparison with the conventional transmission-type fiber optic accelerometer, and a stable reflected signals acquisition with repeatability in comparison to the researched grating-reflection type fiber optic accelerometer. The vibrating displacement and sinusoidal acceleration measured from the proposed fiber optic sensor demonstrated good agreement with those of a commercial laser displacement sensor and a MEMS accelerometer without electromagnetic interference. The developed fiber optic accelerometer can be used in frequency ranges below 4.0 Hz with a margin of error that is less than 5% and a high sensitivity of 5.06 rad/(m/s)2.

  12. In-vivo characterization of DALM in ulcerative colitis with high-resolution probe-based confocal laser endomicroscopy

    PubMed Central

    Palma, Giovanni D De; Staibano, Stefania; Siciliano, Saverio; Maione, Francesco; Siano, Maria; Esposito, Dario; Persico, Giovanni

    2011-01-01

    Recently, the use of confocal laser endomicroscopy (CLE) in the diagnosis of chronic ulcerative colitis (CUC) was reported. In this brief report we aimed to assess the application of probe-based CLE to characterize colonic mucosa and dysplasia in CUC. The study involved a patient presenting long-standing CUC. Confocal imaging of both the inflamed mucosa, a circumscribed lesion (dysplasia-associated lesional mass), and adjacent colonic mucosa are demonstrated and the correlation between the CLE and histological images. Inflamed mucosa and dysplasia showed specific alteration of crypt architecture, cellular infiltration, and vessel architecture with an excellent correlation between CLE and standard histological examination. PMID:21350720

  13. Terahertz interferometric synthetic aperture tomography for confocal imaging systems.

    PubMed

    Heimbeck, M S; Marks, D L; Brady, D; Everitt, H O

    2012-04-15

    Terahertz (THz) interferometric synthetic aperture tomography (TISAT) for confocal imaging within extended objects is demonstrated by combining attributes of synthetic aperture radar and optical coherence tomography. Algorithms recently devised for interferometric synthetic aperture microscopy are adapted to account for the diffraction-and defocusing-induced spatially varying THz beam width characteristic of narrow depth of focus, high-resolution confocal imaging. A frequency-swept two-dimensional TISAT confocal imaging instrument rapidly achieves in-focus, diffraction-limited resolution over a depth 12 times larger than the instrument's depth of focus in a manner that may be easily extended to three dimensions and greater depths. PMID:22513671

  14. Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner

    Microsoft Academic Search

    Jonathan T. C. Liu; Michael J. Mandella; Hyejun Ra; Larry K. Wong; Olav Solgaard; Gordon S. Kino; Wibool Piyawattanametha; Christopher H. Contag; Thomas D. Wang

    2007-01-01

    The first, to our knowledge, miniature dual-axes confocal microscope has been developed, with an outer diameter of 10 mm, for subsurface imaging of biological tissues with 5-7 mum resolution. Depth-resolved en face images are obtained at 30 frames per second, with a field of view of 800×100 mum, by employing a two-dimensional scanning microelectromechanical systems mirror. Reflectance and fluorescence images

  15. Reflecting on Cherenkov reflections

    E-print Network

    D. Fargion; M. Gaug; P. Oliva

    2007-11-15

    Magic Telescope may observe and reveal at horizons lights from air-shower Cherenkov reflections. The ground, the sea, the cloudy sky (below the mountain) may reflect PeVs-EeV UHECR Cherenkov lights observable by MAGIC telescopes. Even rarest UHE neutrino skimming the atmosphere or skimming the Earth may induce upward-horizontal airshowers: a new Neutrino Astronomy. These fluorescence signals or the Cherenkov reflections in upper cloudy sky may flash in correlated BL-Lac or GRB shining at opposite edges. Geomagnetic splitting of Horizontal Air-showers may offer a new spectroscopy of UHECR from the knee up to GZK energy edges.

  16. Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data

    E-print Network

    Knapp, Camelia Cristina

    - mine whether the HHT allows for empirically-derived char- acteristics to be used in filter design of data has yet to be recog- nized as a standard application by the exploration seismology com- munity

  17. Cascaded holographic polymer reflection grating filters for optical-code-division multiple-access applications

    NASA Astrophysics Data System (ADS)

    Kostuk, Raymond K.; Maeda, Wendi; Chen, Chia-Hung; Djordjevic, Ivan; Vasic, Bane

    2005-12-01

    We evaluate the use of edge-illuminated holographic Bragg filters formed in phenanthrenequinone-doped poly(methyl methacrylate) for optical-code-division multiple-access (OCDMA) coding and decoding applications. Experimental cascaded Bragg filters are formed to select two different wavelengths with a fixed distance between the gratings and are directly coupled to a fiber-measurement system. The configuration and tolerances of the cascaded gratings are shown to be practical for time-wavelength OCDMA applications.

  18. Dental pulp stem cells (DPSCs) differentiation study by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Collart-Dutilleul, P.-Y.; Gergely, C.; Cuisinier, F. J. G.

    2014-03-01

    Regenerative medicine brings a huge application for Mesenchymal stem cells such as Dental Pulp Stem Cells (DPSCs). Confocal Raman microscopy, a non-invasive, label free , real time and high spatial resolution imaging technique is used to study osteogenic differentiation of DPSCs. Integrated Raman intensities in the 2800-3000 cm-1 region (C-H stretching) and 960 cm-1 peak (phosphate PO4 3-) were collected. In Dental Pulp Stem Cells 21st day differentiated in buffer solution, phosphate peaks ?1 PO4 3- (first vibrational mode) at 960cm-1 and ?2 PO4 3- at 430cm-1 and ?4 PO4 3- at 585cm-1 are obviously present. Confocal Raman microscopy enables the detection of cell differentiation and it can be used to investigate clinical stem cell research.

  19. Evaluation of human sclera after femtosecond laser ablation using two photon and confocal microscopy

    PubMed Central

    Sun, Hui; Kurtz, Ronald

    2012-01-01

    Abstract. Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial thickness intrascleral channels can be created with a femtosecond laser operating at a wavelength of 1700 nm. Such channels have the potential to increase outflow facility and reduce elevated IOP. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in human cadaver eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such channels. This demonstrates that concept of integrating femtosecond laser surgery, and two-photon and confocal imaging has the future potential for image-guided high-precision surgery in transparent and translucent tissue. PMID:23224172

  20. Confocal laser endomicroscopy and immunoendoscopy for real-time assessment of vascularization in gastrointestinal malignancies

    PubMed Central

    Gheonea, Dan Ionu?; Câr?ân?, Tatiana; Ciurea, Tudorel; Popescu, Carmen; B?d?r?u, Anca; S?ftoiu, Adrian

    2011-01-01

    Gastrointestinal cancers represent a major cause of morbidity and mortality, with incomplete response to chemotherapy in the advanced stages and poor prognosis. Angiogenesis plays a crucial part in tumor growth and metastasis, with most gastrointestinal cancers depending strictly on the development of a new and devoted capillary network. Confocal laser endomicroscopy is a new technology which allows in vivo microscopic analysis of the gastrointestinal mucosa and its microvascularization during ongoing endoscopy by using topically or systemically administered contrast agents. Targeting markers of angiogenesis in association with confocal laser endomicroscopic examination (immunoendoscopy), as a future challenge, will add functional analysis to the morphological aspect of the neoplastic process. This review describes previous experience in endomicroscopic examination of the upper and lower digestive tract with emphasis on vascularization, resulting in a broad spectrum of potential clinical applications, and also preclinical research that could be translated to human studies. PMID:21218080

  1. Confocal laser endomicroscopy and immunoendoscopy for real-time assessment of vascularization in gastrointestinal malignancies.

    PubMed

    Gheonea, Dan Ionu?; Câr?ân?, Tatiana; Ciurea, Tudorel; Popescu, Carmen; B?d?r?u, Anca; S?ftoiu, Adrian

    2011-01-01

    Gastrointestinal cancers represent a major cause of morbidity and mortality, with incomplete response to chemotherapy in the advanced stages and poor prognosis. Angiogenesis plays a crucial part in tumor growth and metastasis, with most gastrointestinal cancers depending strictly on the development of a new and devoted capillary network. Confocal laser endomicroscopy is a new technology which allows in vivo microscopic analysis of the gastrointestinal mucosa and its microvascularization during ongoing endoscopy by using topically or systemically administered contrast agents. Targeting markers of angiogenesis in association with confocal laser endomicroscopic examination (immunoendoscopy), as a future challenge, will add functional analysis to the morphological aspect of the neoplastic process. This review describes previous experience in endomicroscopic examination of the upper and lower digestive tract with emphasis on vascularization, resulting in a broad spectrum of potential clinical applications, and also preclinical research that could be translated to human studies. PMID:21218080

  2. Design of a confocal microfluidic particle sorter using fluorescent photon burst detection

    NASA Astrophysics Data System (ADS)

    Kunst, Beno H.; Schots, Arjen; Visser, Antonie J. W. G.

    2004-09-01

    An instrumental system is described for detecting and sorting single fluorescent particles such as microspheres, bacteria, viruses, or even smaller macromolecules in a flowing liquid. The system consists of microfluidic chips (biochips), computer controlled high voltage power supplies, and a fluorescence microscope with confocal optics. The confocal observation volume and detection electro-optics allow measurements of single flowing fluorescent particles. The output of the avalanche photodiode (single photon detector) is coupled to a real-time photon-burst detection device, which output can address the control of high voltage power supplies for sorting purposes. Liquid propulsion systems like electro-osmotic flow and plain electric fields to direct the particles through the observation volume have been tested and evaluated. The detection and real-time sorting of fluorescent microspheres are demonstrated. Applications of these biochips for screening of bacteriophages-type biolibraries are briefly discussed.

  3. Confocal Laser Endomicroscopy in the Study of Colonic Mucosa in IBD Patients: A Review

    PubMed Central

    Salvatori, Francesca; Siciliano, Saverio; Maione, Francesco; Esposito, Dario; Masone, Stefania; Persico, Marcello; De Palma, Giovanni D.

    2012-01-01

    Confocal laser endomicroscopy (CLE) is one of several novel methods that provide real-time, high-resolution imaging at a micronscale via endoscopes. CLE and related technologies are often termed “virtual biopsy” as they simulate the images seen in traditional histology. Recently, the use of CLE was reported in the study of colonic mucosa in patients with inflammatory bowel diseases and in particular in patients affected by ulcerative colitis. CLE has the potential to have an important role in management of IBD patients as it can be used to assess the grading of colitis and in detection of microscopic colitis in endoscopically silent segments. Moreover, CLE can be used in surveillance programs especially in high-risk patients. This report aims to evaluate the current data on the application of confocal endomicroscopy in clinical gastroenterology and particularly in the study of colonic mucosa in UC patients. PMID:22474440

  4. Reflection! What reflection?

    NASA Astrophysics Data System (ADS)

    Gevaux, David

    2007-03-01

    Unwanted reflections can severely limit the performance of optical components. David Gevaux spoke to Fred Schubert from Rensselaer Polytechnic Institute about how his nanomaterials with a refractive index almost equal to that of air can help.

  5. Optimization of confocal scanning laser ophthalmoscope design.

    PubMed

    LaRocca, Francesco; Dhalla, Al-Hafeez; Kelly, Michael P; Farsiu, Sina; Izatt, Joseph A

    2013-07-01

    Confocal scanning laser ophthalmoscopy (cSLO) enables high-resolution and high-contrast imaging of the retina by employing spatial filtering for scattered light rejection. However, to obtain optimized image quality, one must design the cSLO around scanner technology limitations and minimize the effects of ocular aberrations and imaging artifacts. We describe a cSLO design methodology resulting in a simple, relatively inexpensive, and compact lens-based cSLO design optimized to balance resolution and throughput for a 20-deg field of view (FOV) with minimal imaging artifacts. We tested the imaging capabilities of our cSLO design with an experimental setup from which we obtained fast and high signal-to-noise ratio (SNR) retinal images. At lower FOVs, we were able to visualize parafoveal cone photoreceptors and nerve fiber bundles even without the use of adaptive optics. Through an experiment comparing our optimized cSLO design to a commercial cSLO system, we show that our design demonstrates a significant improvement in both image quality and resolution. PMID:23864013

  6. Deep stroma investigation by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Tatini, Francesca; Pini, Roberto; Valente, Paola; Ardia, Roberta; Buzzonetti, Luca; Canovetti, Annalisa; Malandrini, Alex; Lenzetti, Ivo; Menabuoni, Luca

    2015-03-01

    Laser assisted keratoplasty is nowadays largely used to perform minimally invasive surgery and partial thickness keratoplasty [1-3]. The use of the femtosecond laser enables to perform a customized surgery, solving the specific problem of the single patient, designing new graft profiles and partial thickness keratoplasty (PTK). The common characteristics of the PTKs and that make them eligible respect to the standard penetrating keratoplasty, are: the preservation of eyeball integrity, a reduced risk of graft rejection, a controlled postoperative astigmatism. On the other hand, the optimal surgical results after these PTKs are related to a correct comprehension of the deep stroma layers morphology, which can help in the identification of the correct cleavage plane during surgeries. In the last years some studies were published, giving new insights about the posterior stroma morphology in adult subjects [4,5]. In this work we present a study performed on two groups of tissues: one group is from 20 adult subjects aged 59 +/- 18 y.o., and the other group is from 15 young subjects, aged 12+/-5 y.o.. The samples were from tissues not suitable for transplant in patients. Confocal microscopy and Environmental Scanning Electron Microscopy (ESEM) were used for the analysis of the deep stroma. The preliminary results of this analysis show the main differences in between young and adult tissues, enabling to improve the knowledge of the morphology and of the biomechanical properties of human cornea, in order to improve the surgical results in partial thickness keratoplasty.

  7. Critical Reflectance Derived from MODIS: Application for the Retrieval of Aerosol Absorption over Desert Regions

    NASA Technical Reports Server (NTRS)

    Wells, Kelley C.; Martins, J. Vanderlei; Remer, Lorraine A.; Kreidenweis, Sonia M.; Stephens, Graeme L.

    2012-01-01

    Aerosols are tiny suspended particles in the atmosphere that scatter and absorb sunlight. Smoke particles are aerosols, as are sea salt, particulate pollution and airborne dust. When you look down at the earth from space sometimes you can see vast palls of whitish smoke or brownish dust being transported by winds. The reason that you can see these aerosols is because they are reflecting incoming sunlight back to the view in space. The reason for the difference in color between the different types of aerosol is that the particles arc also absorbing sunlight at different wavelengths. Dust appears brownish or reddish because it absorbs light in the blue wavelengths and scatters more reddish light to space, Knowing how much light is scattered versus how much is absorbed, and knowin that as a function of wavelength is essential to being able to quantify the role aerosols play in the energy balance of the earth and in climate change. It is not easy measuring the absorption properties of aerosols when they are suspended in the atmosphere. People have been doing this one substance at a time in the laboratory, but substances mix when they are in the atmosphere and the net absorption effect of all the particles in a column of air is a goal of remote sensing that has not yet been completely successful. In this paper we use a technique based on observing the point at which aerosols change from brightening the surface beneath to darkening it. If aerosols brighten a surface. they must scatter more light to space. If they darken the surface. they must be absorbing more. That cross over point is called the critical reflectance and in this paper we show that critical reflectance is a monotonic function of the intrinsic absorption properties of the particles. This parameter we call the single scattering albedo. We apply the technique to MODIS imagery over the Sahara and Sahel regions to retrieve the single scattering albedo in seven wavelengths, compare these retrievals to ground-based retrievals from AERONET instruments and compute error bars on each retrieval. The results show that we can retrieve single scattering albedo for pure dust to within +/-0.02 and mixtures of dust and smoke to within +/-0.03. No other space based instrument has achieved a retrieval of single scattering albedo that spans the spectrum from 0.47 microns to 2.13 microns and produces regional maps of aerosol absorption showing gradients and changes. Applied in a more operational fashion, such information will narrow uncertainties in estimating aerosol forcing on climate.

  8. Reflections on the development and application of FISH whole chromosome painting.

    PubMed

    Tucker, James D

    2015-01-01

    This review describes my personal reflections on the development of whole chromosome painting using fluorescence in situ hybridization and how my laboratory applied the technology in humans and in animal models. The trials and triumphs of the early years are emphasized, along with some of the scientific surprises that were encountered along the way. Scientific issues that my laboratory addressed using chromosome painting technologies are summarized and related to questions in radiation dosimetry, chemical clastogenesis, translocation persistence, and translocation frequencies in unexposed people. A description is provided of scientific controversies that were encountered and how they were resolved. I hope this paper will encourage young scientists to follow their passions and pursue their scientific dreams even if the task seems daunting and the circumstances appear exceedingly difficult. In my case the journey has been challenging, exciting, and richly rewarding on many levels. PMID:25795112

  9. Beamforming with a volumetric array of massless laser spark sources-Application in reflection tracking.

    PubMed

    Eskelinen, Joona; Hæggström, Edward; Delikaris-Manias, Symeon; Bolaños, Javier Gómez; Pulkki, Ville

    2015-06-01

    A volumetric array of laser-induced air breakdown sparks is used to produce a directional and steerable acoustic source. The laser breakdown array element is broadband, point-like, and massless. It produces an impulse-like waveform in midair, thus generating accurate spatio-temporal information for acoustic beamforming. A laser-spark scanning setup and the concept of a massless steerable source are presented and evaluated with a cubic array by using an off-line far field delay-and-sum beamforming method. This virtual acoustic array with minimal source influence can, for instance, produce narrow transmission beams to obtain localized and directional impulse response information by reflection tracking. PMID:26093445

  10. Observing the Coral Symbiome Using Laser Scanning Confocal Microscopy

    NSDL National Science Digital Library

    Christine E. Farrar (Hawai'i Institute of Marine Biology at the University of Hawai'i, Manoa; )

    2013-02-01

    Christine E. Farrar and colleaguesâ?? honorable mention video from the 2012 International Science and Engineering Visualization Challenge, hosted by Science Magazine and the U.S. National Science Foundation, uses confocal microscopy to demonstrate the dynamic lives of corals.

  11. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: QA TESTS, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    Confocal Microscopy System Performance: QA tests, Quantitation and Spectroscopy. Robert M. Zucker 1 and Jeremy M. Lerner 2, 1Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research Development, U.S. Environmen...

  12. Automated Biofilm Region Recognition And Morphology Quantification From Confocal Laser

    E-print Network

    Bouaynaya, Nidhal

    1 Automated Biofilm Region Recognition And Morphology Quantification From Confocal Laser Scanning of nosocomial infections. Its biofilm forming capability is an adaptation strategy utilized by many species, fully automated method of biofilm structure description with standardized pa- rameters

  13. Multispectral confocal microendoscope for in vivo and in situ imaging

    E-print Network

    Gmitro, Arthur F.

    -scan confocal microscope coupled to an imaging catheter that is designed to be minimally invasive and allow pathologists to make a diagnosis in situ without having to use traditional tissue extraction biopsy methods

  14. CONFOCAL LASER SCANNING MICROSCOPY OF APOPTOSIS IN WHOLE MOUSE OVARIES

    EPA Science Inventory

    Confocal Laser Scanning Microscopy of Apoptosis in Whole Mouse Ovaries. Robert M. Zucker Susan C. Jeffay and Sally D. Perreault Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle...

  15. Tethered confocal endomicroscopy capsule for diagnosis and monitoring of eosinophilic esophagitis

    PubMed Central

    Tabatabaei, Nima; Kang, DongKyun; Wu, Tao; Kim, Minkyu; Carruth, Robert W.; Leung, John; Sauk, Jenny S; Shreffler, Wayne; Yuan, Qian; Katz, Aubrey; Nishioka, Norman S; Tearney, Guillermo J.

    2013-01-01

    Eosinophilic esophagitis (EoE) is an allergic condition that is characterized by eosinophils infiltrating the esophageal wall. The treatment of the disease may require multiple follow up sedated endoscopies and biopsies to confirm elimination of eosinophils. These procedures are expensive, time consuming, and may be difficult for patients to tolerate. Here we report on the development of a confocal microscopy capsule for diagnosis and monitoring of EoE. The swallowable capsule implements a high-speed fiber-based reflectance confocal microscopy technique termed Spectrally Encoded Confocal Microscopy (SECM). SECM scans the sample in one dimension without moving parts by using wavelength swept source illumination and a diffraction grating at the back plane of the objective lens. As the wavelength of the source is tuned, the SECM optics within the 7 x 30 mm capsule are rotated using a driveshaft enclosed in a 0.8 mm flexible tether. A single rotation of the optics covered a field of view of 22 mm x 223 µm. The lateral and axial resolutions of the device were measured to be 2.1 and 14 µm, respectively. Images of Acetic Acid stained swine esophagus obtained with the capsule ex vivo and in vivo clearly showed squamous epithelial nuclei, which are smaller and less reflective than eosinophils. Imaging of esophageal biopsies from EoE patients ex vivo demonstrated the capability of this technology to visualize individual eosinophils. Based on the results of this study, we believe that this capsule will be a simpler and more effective device for diagnosing EoE and monitoring the therapeutic response of this disease. PMID:24466487

  16. Total Internal Reflection Fluorescence (TIRF) Microscopy of Chlamydomonas Flagella

    PubMed Central

    Engel, Benjamin D.; Lechtreck, Karl-Ferdinand; Sakai, Tsuyoshi; Ikebe, Mitsuo; Witman, George B.; Marshall, Wallace F.

    2013-01-01

    The eukaryotic flagellum is host to a variety of dynamic behaviors, including flagellar beating, the motility of glycoproteins in the flagellar membrane, and intraflagellar transport (IFT), the bidirectional traffic of protein particles between the flagellar base and tip. IFT is of particular interest, as it plays integral roles in flagellar length control, cell signaling, development, and human disease. However, our ability to understand dynamic flagellar processes such as IFT is limited in large part by the fidelity with which we can image these behaviors in living cells. This chapter introduces the application of total internal reflection fluorescence (TIRF) microscopy to visualizing the flagella of Chlamydomonas reinhardtii. The advantages and challenges of TIRF are discussed in comparison to confocal and differential interference contrast (DIC) techniques. This chapter also reviews current IFT insights gleaned from TIRF microscopy of Chlamydomonas and provides an outlook on the future of the technique, with particular emphasis on combining TIRF with other emerging imaging technologies. PMID:20409817

  17. Osmotic water permeability measurements using confocal laser scanning microscopy

    Microsoft Academic Search

    Marina Zelenina; Hjalmar Brismar

    2000-01-01

    We have developed a method for measurement of plasma membrane water permeability (P\\u000a f) in intact cells using laser scanning confocal microscopy. The method is based on confocal recording of the fluorescence\\u000a intensity emitted by calcein-loaded adherent cells during osmotic shock. P\\u000a f is calculated as a function of the time constant in the fluorescence intensity change, the cell surface-to-volume

  18. REFLECTANCE CALIBRATION OF FOCAL PLANE ARRAY HYPERSPECTRAL IMAGING SYSTEM FOR AGRICULTURAL AND FOOD SAFETY APPLICATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method to calibrate a pushbroom hyperspectral imaging system for "near-field" applications in agricultural and food safety has been demonstrated. The method consists of a modified geometric control point correction applied to a focal plane array to remove smile and keystone distortion from the sy...

  19. Confocal fluorescence microscopy for detection of cervical preneoplastic lesions

    NASA Astrophysics Data System (ADS)

    Sheikhzadeh, Fahime; Ward, Rabab K.; Carraro, Anita; Chen, Zhaoyang; van Niekerk, Dirk; MacAulay, Calum; Follen, Michele; Lane, Pierre; Guillaud, Martial

    2015-03-01

    We examined and established the potential of ex-vivo confocal fluorescence microscopy for differentiating between normal cervical tissue, low grade Cervical Intraepithelial Neoplasia (CIN1), and high grade CIN (CIN2 and CIN3). Our objectives were to i) use Quantitative Tissue Phenotype (QTP) analysis to quantify nuclear and cellular morphology and tissue architecture in confocal microscopic images of fresh cervical biopsies and ii) determine the accuracy of high grade CIN detection via confocal microscopy. Cervical biopsy specimens of colposcopically normal and abnormal tissues obtained from 15 patients were evaluated by confocal fluorescence microscopy. Confocal images were analyzed and about 200 morphological and architectural features were calculated at the nuclear, cellular, and tissue level. For the purpose of this study, we used four features to delineate disease grade including nuclear size, cell density, estimated nuclear-cytoplasmic (ENC) ratio, and the average of three nearest Delaunay neighbors distance (3NDND). Our preliminary results showed ENC ratio and 3NDND correlated well with histopathological diagnosis. The Spearman correlation coefficient between each of these two features and the histopathological diagnosis was higher than the correlation coefficient between colposcopic appearance and histopathological diagnosis. Sensitivity and specificity of ENC ratio for detecting high grade CIN were both equal to 100%. QTP analysis of fluorescence confocal images shows the potential to discriminate high grade CIN from low grade CIN and normal tissues. This approach could be used to help clinicians identify HGSILs in clinical settings.

  20. Confocal Brillouin microscopy for three-dimensional mechanical imaging

    PubMed Central

    Scarcelli, Giuliano; Yun, Seok Hyun

    2009-01-01

    Acoustically induced inelastic light scattering, first reported in 1922 by Brillouin1, allows non-contact, direct readout of the viscoelastic properties of a material and has widely been investigated for material characterization2, structural monitoring3 and environmental sensing4. Extending the Brillouin technique from point sampling spectroscopy to imaging modality5 would open up new possibilities for mechanical imaging, but has been challenging because rapid spectrum acquisition is required. Here, we demonstrate a confocal Brillouin microscope based on a fully parallel spectrometer—a virtually imaged phased array—that improves the detection efficiency by nearly 100-fold over previous approaches. Using the system, we show the first cross-sectional Brillouin imaging based on elastic properties as the contrast mechanism and monitor fast dynamic changes in elastic modulus during polymer crosslinking. Furthermore, we report the first in situ biomechanical measurement of the crystalline lens in a mouse eye. These results suggest multiple applications of Brillouin microscopy in biomedical and biomaterial science. PMID:19812712

  1. Bidirectional Reflectance of a Macroscopically Flat, High-Albedo Particulate Surface: An Efficient Radiative Transfer Solution and Applications to Regoliths

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Zakharova, Nadia T.

    1999-01-01

    Many remote sensing applications rely on accurate knowledge of the bidirectional reflection function (BRF) of surfaces composed of discrete, randomly positioned scattering particles. Theoretical computations of BRFs for plane-parallel particulate layers are usually reduced to solving the radiative transfer equation (RTE) using one of existing exact or approximate techniques. Since semi-empirical approximate approaches are notorious for their low accuracy, violation of the energy conservation law, and ability to produce unphysical results, the use of numerically exact solutions of RTE has gained justified popularity. For example, the computation of BRFs for macroscopically flat particulate surfaces in many geophysical publications is based on the adding-doubling (AD) and discrete ordinate (DO) methods. A further saving of computer resources can be achieved by using a more efficient technique to solve the plane-parallel RTE than the AD and DO methods. Since many natural particulate surfaces can be well represented by the model of an optically semi-infinite, homogeneous scattering layer, one can find the BRF directly by solving the Ambartsumian's nonlinear integral equation using a simple iterative technique. In this way, the computation of the internal radiation field is avoided and the computer code becomes highly efficient and very accurate and compact. Furthermore, the BRF thus obtained fully obeys the fundamental physical laws of energy conservation and reciprocity. In this paper, we discuss numerical aspects and the computer implementation of this technique, examine the applicability of the Henyey-Greenstein phase function and the sigma-Eddington approximation in BRF and flux calculations, and describe sample applications demonstrating the potential effect of particle shape on the bidirectional reflectance of flat regolith surfaces. Although the effects of packing density and coherent backscattering are currently neglected, they can also be incorporated. The FORTRAN implementation of the technique is available on the World Wide Web, and can be applied to a wide range of remote sensing problems. BRF computations for undulated (macroscopically rough) surfaces are more complicated and often rely on time consuming Monte Carlo procedures. This approach is especially inefficient for optically thick, weakly absorbing media (e.g., snow and desert surfaces at visible wavelengths since a photon may undergo many internal scattering events before it exists the medium or is absorbed. However, undulated surfaces can often be represented as collections of locally flat tilted facets characterized by the BRF found from the traditional plane parallel RTE. In this way the MOnte Carlo procedure could be used only to evaluate the effects of surface shadowing and multiple surface reflections, thereby bypassing the time-consuming ray tracing inside the medium and providing a great savings of CPU time.

  2. Optical oblique-incidence reflectivity difference microscopy: Application to label-free detection of reactions in biomolecular microarrays

    NASA Astrophysics Data System (ADS)

    Landry, James Paul

    2008-04-01

    Biomolecular microarrays have emerged as a leading technology for high-throughput in vitro assays in genomics and proteomics. Microarrays contain 100 to 100,000 distinct biomolecular features immobilized on a substrate at high density, enabling parallel assays of entire biomolecular systems or screens of large biomolecular libraries on a single glass slide. Microarrays are typically detected by reacting immobilized targets with fluorescently-labeled probes. For many biomolecules, particularly structurally and functionally diverse proteins, modification with labeling-agents can alter their function. For this reason, it is important to develop label-free microarray detection technology to complement standard fluorescence-based detection. In this dissertation, I report my research into the development of optical oblique-incidence reflectivity difference (OI-RD) microscopy for application to high-throughput and label-free detection of biomolecular microarrays in end-point and real-time modalities. OI-RD is a versatile and sensitive form of nulling polarization-modulated ellipsometry. By reflecting light at oblique incidence from a surface, OI-RD measures changes in thickness and dielectric response of ultrathin molecular layers through disproportionate responses of s- and p-polarization reflectivities. In this dissertation I given an account of the engineering and operation of the first OI-RD microscopes and mathematical theory underpinning them. I then report experiments showing label-free OI-RD detection of DNA hybridization and antibody-antigen binding reactions in microarrays fabricated on standard chemically functionalized glass slides. The experiments demonstrate that: (1) The OI-RD signal quantifies biomolecular film properties, in particular, surface mass density, coverage, and orientation of biomolecules in the films. (2) The properties of targets, probes, and other biomolecular entities within the microarray can be measured throughout the microarray usage cycle. (3) A wide variety of biochemical reactions can be detected with a sensitivity and limit of detection comparable to or better than other label-free optical surface biosensors. (4) Microarrays of thousands of features can be end-point detected for screening applications or microarrays of hundreds of features can be detected in real-time for high-throughput biochemical kinetic analysis, with the potential to increase both of these capacities by at least an order of magnitude. (5) OI-RD is compatible with existing microarray fabrication materials and protocols because it is applicable to any optically flat surface.

  3. Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems

    Microsoft Academic Search

    E. WANG; C. M. BABBEY; K. W. DUNN

    2005-01-01

    Summary Fluorescence microscopy of the dynamics of living cells presents a special challenge to a microscope imaging system, simulta- neously requiring both high spatial resolution and high temporal resolution, but with illumination levels low enough to prevent fluorophore damage and cytotoxicity. We have compared the high-speed Yokogawa CSU10 spinning disc confocal system with several conventional single-point scanning confocal (SPSC) microscopes,

  4. Tri-modal confocal margin screening for the presence of residual squamous cell carcinoma in Mohs surgical excisions

    NASA Astrophysics Data System (ADS)

    Bar, Anna; Snavely, Nicholas; Chen, Nathaniel; Jacques, Steven; Gareau, Daniel S.

    2012-03-01

    Screening cancer in excision margins may be done with confocal microscopy to save time and cost over the gold standard histopathology (H&E). However, diagnostic accuracy requires sufficient contrast. Reflectance mode enables detection of large (>500um) nodular tumors. Enhanced nuclear contrast with acridine orange fluorescence mode additionally enables detection of tiny (<50um) basal cell carcinomas. Here, we present a novel combination of three modes to detect squamous cell carcinoma (SCC). Accurate screening of SCC requires eosin fluorescence, reflectance and acridine orange fluorescence to enable contrast for cytoplasm, collagen and nuclei respectively. Combining these signals replicates H&E for rapid clinical translation.

  5. In vivo Confocal Microscopy Report after Lasik with Sequential Accelerated Corneal Collagen Cross-Linking Treatment

    PubMed Central

    Mazzotta, Cosimo; Balestrazzi, Angelo; Traversi, Claudio; Caragiuli, Stefano; Caporossi, Aldo

    2014-01-01

    We report the first pilot qualitative confocal microscopic analysis of a laser in situ keratomileusis (Lasik) treatment combined with sequential high-fluence accelerated corneal collagen cross-linking, denominated Lasik XTra, by means of HRT II laser scanning in vivo confocal microscopy after a 6-month follow-up. After obtaining approval from the Siena University Hospital Institutional Review Board, a 33-year-old female patient underwent a Lasik XTra procedure in her left eye. Confocal analysis demonstrated induced slight corneal microstructural changes by the interaction between UV-A, riboflavin and corneal stromal collagen, beyond the interface to a depth of 160 µm, without adverse events at the interface and endothelial levels. This application may be considered a prophylactic biomechanical treatment, stiffening the intermediate corneal stroma to prevent corneal ectasia and stabilizing the clinical results of refractive surgery. According to our preliminary experiences, this combined approach may be useful in higher-risk Lasik patients for hyperopic treatments, high myopia and lower corneal thicknesses. PMID:24847258

  6. Iron in Plagioclase: Synthesis Experiments with Applications to Lunar Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheek, L.; Parman, S. W.; Pieters, C. M.

    2010-12-01

    Plagioclase is the most abundant mineral on the Moon’s surface, comprising >90% of the anorthositic rocks that dominate the crust as primary crystallization products of the lunar magma ocean. Understanding the compositional variability of plagioclase across the lunar surface may inform various aspects of the Moon’s evolution, such as the extent of homogeneity of magma ocean crystallization, or the effect of low-grade metamorphism on mineral chemistry during prolonged cooling. Information about plagioclase compositions can be obtained remotely from near-infrared reflectance (NIR) data, which is sensitive to the particular coordination environment of Fe2+ cations in the mineral structure. As high spatial and spectral resolution NIR data have only recently begun to come available for the Moon, robust laboratory characterizations of the compositional controls on the optical properties of plagioclase are now necessary. Here we present preliminary results of experiments to synthesize various plagioclase compositions under lunar conditions. Powdered synthetic anorthite and albite glasses were used as endmember starting materials, and mixed in varying proportions with controlled amounts of Fe2O3. The mixtures were homogenized by melting at 1550C in a platinum capsule, and quenched in air after 2 hours. Samples were then sintered at 1400C for at least 24 hours in a gas-mixing furnace (CO/CO2) at a pO2~2^-10. Electron microprobe analyses confirm that the anorthite and albite starting endmembers can be combined and homogenized with sufficient accuracy to generate well-controlled plagioclase compositions, and that the sintering process allows the Fe2+ to be incorporated into the plagioclase homogenously. No contaminating phases have been observed. While previous laboratory and remotely-sensed NIR reflectance data typically show only one prominent Fe2+ absorption band (near 1250 nm) [e.g. Adams and Goullaud, 1978], the spectra of samples presented here display an additional major absorption centered at ~2000 nm. Both absorptions are present in spectra of samples with varying Na content (anorthite and bytownite compositions), diffusion time (one day and one week), and cooling rate (1 and 8 degrees C per minute). These results are consistent with Fe2+ cations being distributed between two coordination environments in plagioclase [e.g., Appleman et al., 1971; Hofmeister and Rossman, 1984]. Future spectral analyses of these samples will provide more quantitative constraints on the relative distribution of Fe2+ within the mineral structure. Additionally, we have begun a set of experiments to more closely examine the role of plagioclase bulk FeO content in directly controlling the relative strengths of the two prominent absorption bands. To do this, we are synthesizing a series of plagioclases with constant An# that have varying FeO contents. The results of this systematic investigation are intended to provide a basis for extracting compositional information from remote measurements of plagioclase on the lunar surface.

  7. Reflective Packaging

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The aluminized polymer film used in spacecraft as a radiation barrier to protect both astronauts and delicate instruments has led to a number of spinoff applications. Among them are aluminized shipping bags, food cart covers and medical bags. Radiant Technologies purchases component materials and assembles a barrier made of layers of aluminized foil. The packaging reflects outside heat away from the product inside the container. The company is developing new aluminized lines, express mailers, large shipping bags, gel packs and insulated panels for the building industry.

  8. Variable-rate nitrogen application algorithm based on canopy reflected spectrum and its influence on wheat

    NASA Astrophysics Data System (ADS)

    Liang, Hongxia; Zhao, Chunjiang; Huang, Wenjiang; Liu, Liangyun; Wang, Jihua; Ma, Youhua

    2005-01-01

    This study was to develop the time-specific and time-critical method to overcome the limitations of traditional field sampling methods for variable rate fertilization. Farmers, agricultural managers and grain processing enterprises are interested in measuring and assessing soil and crop status in order to apply adequate fertilizer quantities to crop growth. This paper focused on studying the relationship between vegetation index (OSAVI) and nitrogen content to determine the amount of nitrogen fertilizer recommended for variable rate management in precision agriculture. The traditional even rate fertilizer management was chosen as the CK. The grain yield, ear numbers, 1000-grain weight and grain protein content were measured among the CK, uniform treatments and variable rate fertilizer treatments. It indicated that variable rate fertilization reduced the variability of wheat yield, ear numbers and dry biomass, but it didn't increased crop yield and grain protein content significantly and did not decrease the variety of 1000-grain weight, compared to traditional rate application. The nitrogen fertilizer use efficiency was improved, for this purpose, the variable rate technology based on vegetation index could be used to prevent under ground water pollution and environmental deterioration.

  9. Digital adaptive optics line-scanning confocal imaging system.

    PubMed

    Liu, Changgeng; Kim, Myung K

    2015-11-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea. PMID:26140334

  10. A confocal microscope position sensor for micron-scale target alignment in ultra-intense laser-matter experiments

    NASA Astrophysics Data System (ADS)

    Willis, Christopher; Poole, Patrick L.; Akli, Kramer U.; Schumacher, Douglass W.; Freeman, Richard R.

    2015-05-01

    A diagnostic tool for precise alignment of targets in laser-matter interactions based on confocal microscopy is presented. This device permits precision alignment of targets within the Rayleigh range of tight focusing geometries for a wide variety of target surface morphologies. This confocal high-intensity positioner achieves micron-scale target alignment by selectively accepting light reflected from a narrow range of target focal planes. Additionally, the design of the device is such that its footprint and sensitivity can be tuned for the desired chamber and experiment. The device has been demonstrated to position targets repeatably within the Rayleigh range of the Scarlet laser system at The Ohio State University, where use of the device has provided a marked increase in ion yield and maximum energy.

  11. Automatic morphing using image registration: Application to continuous tracking of radar reflectivity and rain fields

    NASA Astrophysics Data System (ADS)

    Vongsaard, Jearanai

    Rainfall is one of the most important natural phenomenon that influences human life. Accurate rainfall estimation and prediction are crucial for flood forecasting, flood control, climate diagnostics, and water resource management. Rain data may be collected from numerous sources. Conventional rain gauge networks or meteorological radars provide continuous coverage in time. Satellite observations provide snap-shots of precipitation fields at poor temporal resolution. While a number of spaceborne platforms have been deployed for rain observation, the development of continuous space/time rainfall remains a major challenge. This dissertation seeks alternative techniques to automatically generate continuous data streams of rainfall data from sparse or intermittent observations. In order to avoid human intervention in the process, an automatic procedure is needed for real-time operations. For this purpose, Automatic Morphing Using Image Registration (AMIR) model is developed by integrating automatic image registration and image morphing algorithm. The new AMIR technique uses automatic image registration as the basis for finding control points for the morphing process. In the study of data assimilation for weather forecasting, there is a need to generate continuous streams of rainfall data to alleviate the so-called "spin up" problem, or the inability to provide short-term forecasts [Road90]. The proposed algorithm has been tested using remote sensing images from Next Generation Weather Radars (NEXRAD) and Tropical Rainfall Measuring Mission (TRMM). Three cases of rainfall data have been used. These include the passage of a storm in Florida, hurricane Floyd, and scattered rain in the southwestern of the United States for the same period using NEXRAD radar data as surrogate for spaceborne observations. These cases have drastically different spatial and temporal characteristics and hence provide tests on the applicability of the AMIR method. Comparative experimental results have shown that AMIR advance the current state of the art as it is comparable to manual morphing and outperforms automatic morphing without control points proposed in literature.

  12. Confocal photoacoustic microscopy using a single multifunctional lens.

    PubMed

    Xi, Lei; Song, Chaolong; Jiang, Huabei

    2014-06-01

    Photoacoustic microscopy (PAM) has remained one of the fastest developing biomedical imaging modalities in the past decade. The confocal strategy of optical illumination and acoustic detection is a way to boost the sensitivity of PAM. To achieve confocal PAM, current PAM systems utilize separate acoustic and optical converging devices, making the systems bulky and complicated. In this Letter, we demonstrate the use of a single-liquid lens to successfully achieve acoustic and optical confocal configuration for optical-resolution PAM (ORPAM). Using the lens with a numerical aperture of 0.43, we show that the resolution of the ORPAM system is 4.8 ?m with a significantly improved sensitivity of acoustic detection. We also apply this compact ORPAM system to in vivo imaging of the vasculature of a rat ear. PMID:24876045

  13. Spinning-disk confocal microscopy: present technology and future trends.

    PubMed

    Oreopoulos, John; Berman, Richard; Browne, Mark

    2014-01-01

    Live-cell imaging requires not only high temporal resolution but also illumination powers low enough to minimize photodamage. Traditional single-point laser scanning confocal microscopy (LSCM) is generally limited by both the relatively slow speed at which it can acquire optical sections by serial raster scanning (a few Hz) and the higher potential for phototoxicity. These limitations have driven the development of rapid, parallel forms of confocal microscopy, the most popular of which is the spinning-disk confocal microscope (SDCM). Here, we briefly introduce the SDCM technique, discuss its strengths and weaknesses against LSCM, and update the reader on some recent developments in SDCM technology that improve its performance and expand its utility for life science research now and in the future. PMID:24974027

  14. Spinning Disk Confocal Imaging of Neutrophil Migration in Zebrafish

    PubMed Central

    Lam, Pui-ying; Fischer, Robert S; Shin, William D.; Waterman, Clare M; Huttenlocher, Anna

    2014-01-01

    Live-cell imaging techniques have been substantially improved due to advances in confocal microscopy instrumentation coupled with ultrasensitive detectors. The spinning disk confocal system is capable of generating images of fluorescent live samples with broad dynamic range and high temporal and spatial resolution. The ability to acquire fluorescent images of living cells in vivo on a millisecond timescale allows the dissection of biological processes that have not previously been visualized in a physiologically relevant context. In vivo imaging of rapidly moving cells such as neutrophils can be technically challenging. In this chapter, we describe the practical aspects of imaging neutrophils in zebrafish embryos using spinning disk confocal microscopy. Similar setups can also be applied to image other motile cell types and signaling processes in translucent animals or tissues. PMID:24504955

  15. A line-scanning semi-confocal multi-photon fluorescence microscope with a simultaneous broadband spectral acquisition and its application to the study of the thylakoid membrane of a cyanobacterium Anabaena PCC7120.

    PubMed

    Kumazaki, Shigeichi; Hasegawa, Makoto; Ghoneim, Mohammad; Shimizu, Yugo; Okamoto, Kenji; Nishiyama, Masayoshi; Oh-Oka, Hirozo; Terazima, Masahide

    2007-11-01

    We describe the construction and characterization of a laser-line-scanning microscope capable of detection of broad fluorescence spectra with a resolution of 1 nm. A near-infrared femtosecond pulse train at 800 nm was illuminated on a line (one lateral axis, denoted as X axis) in a specimen by a resonant scanning mirror oscillating at 7.9 kHz, and total multi-photon-induced fluorescence from the linear region was focused on the slit of an imaging polychromator. An electron-multiplying CCD camera was used to resolve fluorescence of different colours at different horizontal pixels and fluorescence of different spatial positions in a specimen at different vertical pixels. Scanning on the other two axes (Y and Z) was achieved by a closed-loop controlled sample scanning stage and a piezo-driven objective actuator. The full widths at half maximum of the point-spread function of the system were estimated to be 0.39-0.40, 0.33 and 0.56-0.59 mum for the X (lateral axis along the line-scan), Y (the other lateral axis) and Z axes (the axial direction), respectively, at fluorescence wavelengths between 644 and 690 nm. A biological application of this microscope was demonstrated in a study of the sub-cellular fluorescence spectra of thylakoid membranes in a cyanobacterium, Anabaena PCC7120. It was found that the fluorescence intensity ratio between chlorophyll molecules mainly of photosystem II and phycobilin molecules of phycobilisome (chlorophyll/phycobilin), in the thylakoid membranes, became lower as one probed deeper inside the cells. This was attributable not to position dependence of re-absorption or scattering effects, but to an intrinsic change in the local physiological state of the thylakoid membrane, with the help of a transmission spectral measurement of sub-cellular domains. The efficiency of the new line-scanning spectromicroscope was estimated in comparison with our own point-by-point scanning spectromicroscope. Under typical conditions of observing cyanobacterial cells, the total exposure time became shorter by about 50 times for a constant excitation density. The improvement factor was proportional to the length of the line-scanned region, as expected. PMID:17970923

  16. 8.G Reflecting reflections

    NSDL National Science Digital Library

    This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Below is a picture of a triangle on a coordinate grid: Draw the reflection of $\\triangle ABC$ over the line $x = -2$. Label the image of $A$ as $A^\\pri...

  17. Frequency division multiplexed multichannel high-speed fluorescence confocal microscope.

    PubMed

    Wu, Fei; Zhang, Xueqian; Cheung, Joseph Y; Shi, Kebin; Liu, Zhiwen; Luo, Claire; Yin, Stuart; Ruffin, Paul

    2006-09-15

    In this article, we report a new type of fluorescence confocal microscope: frequency division multiplexed multichannel fluorescence confocal microscope, in which we encode the spatial location information into the frequency domain. In this microscope, the exciting laser beam is first split into multiple beams and each beam is modulated at a different frequency. These multiple beams are focused at different locations of the target to form multiple focal points, which further generate multiple fluorescent emission spots. The fluorescent emissions from different focal points are also modulated at different frequencies, because the exciting beams are modulated at different frequencies (or difference carrier frequency). Then, all the fluorescent emissions (modulated at different frequencies) are collected together and detected by a highly sensitive, large-dynamic-range photomultiplier tube. By demodulating the detected signal (i.e., via the Fourier transform), we can distinguish the fluorescent light emitted from the different locations by the corresponding carrier frequencies. The major advantage of this unique fluorescence confocal microscope is that it not only has a high sensitivity because of the use of photomultiplier tube but also can get multiple-point data simultaneously, which is crucial to study the dynamic behavior of many biological process. As an initial step, to verify the feasibility of the proposed multichannel confocal microscope, we have developed a two-channel confocal fluorescence microscope and applied it to study the dynamic behavior of the changes of the calcium ion concentration during the single cardiac myocyte contraction. Our preliminary experimental results demonstrated that we could indeed realize multichannel confocal fluorescence microscopy by utilizing the frequency division multiplexed microscope, which could become an effective tool to study the dynamic behavior of many biological processes. PMID:16815894

  18. Frequency Division Multiplexed Multichannel High-Speed Fluorescence Confocal Microscope

    PubMed Central

    Wu, Fei; Zhang, Xueqian; Cheung, Joseph Y.; Shi, Kebin; Liu, Zhiwen; Luo, Claire; Yin, Stuart; Ruffin, Paul

    2006-01-01

    In this article, we report a new type of fluorescence confocal microscope: frequency division multiplexed multichannel fluorescence confocal microscope, in which we encode the spatial location information into the frequency domain. In this microscope, the exciting laser beam is first split into multiple beams and each beam is modulated at a different frequency. These multiple beams are focused at different locations of the target to form multiple focal points, which further generate multiple fluorescent emission spots. The fluorescent emissions from different focal points are also modulated at different frequencies, because the exciting beams are modulated at different frequencies (or difference carrier frequency). Then, all the fluorescent emissions (modulated at different frequencies) are collected together and detected by a highly sensitive, large-dynamic-range photomultiplier tube. By demodulating the detected signal (i.e., via the Fourier transform), we can distinguish the fluorescent light emitted from the different locations by the corresponding carrier frequencies. The major advantage of this unique fluorescence confocal microscope is that it not only has a high sensitivity because of the use of photomultiplier tube but also can get multiple-point data simultaneously, which is crucial to study the dynamic behavior of many biological process. As an initial step, to verify the feasibility of the proposed multichannel confocal microscope, we have developed a two-channel confocal fluorescence microscope and applied it to study the dynamic behavior of the changes of the calcium ion concentration during the single cardiac myocyte contraction. Our preliminary experimental results demonstrated that we could indeed realize multichannel confocal fluorescence microscopy by utilizing the frequency division multiplexed microscope, which could become an effective tool to study the dynamic behavior of many biological processes. PMID:16815894

  19. Structural and elemental X-ray microanalysis with synchrotron radiation in confocal geometry

    NASA Astrophysics Data System (ADS)

    Sosa, Carlos M.; Sánchez, H. Jorge; Pérez, Carlos A.; Perez, Roberto D.

    2014-01-01

    A spectrometer for 3D structural and multielemental X-ray microanalysis with synchrotron radiation is presented in this work. It is based on the combination of the energy dispersive X-ray fluorescence and diffraction with polycapillary optics. The 3D spatial resolution was achieved by the superposition of the foci of two lenses arranged in confocal geometry. The parameters that affect the performance of the spectrometer were study in detail giving rise to a simplified calibration method for depth profile analysis. Two specific examples were included to illustrate the use of the spectrometer in order to identify their possible application fields.

  20. Retina imaging in vivo with the adaptive optics confocal scanning laser ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Lu, Jing; Li, Hao; Wei, Ling; Shi, Guohua; Zhang, Yudong

    2009-08-01

    An adaptive optics confocal scanning laser ophthalmoscope (AOSLO) for retina imaging is devoloped in this paper. By using a wavefront sensor (Shack-Hartmann wavefront sensor with 11×11 lenslet array) to measure aberrations of human eye and a wavefront compensator (37-channel PZT deformable mirror) to correct for the aberrations, the AOSLO system can acquire near diffraction-limited image of human retina over the whole field of view (1×1 degree ~ 3×3 degree). The imaging frequency is 30Hz, which provides a real-time observation of human cone mosaic in vivo. The system has potential application in early disease diagnose and vision research.

  1. Two-photon fluorescence properties of curcumin as a biocompatible marker for confocal imaging

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Li, Lian; Chaturvedi, Akanksha; Brzostowski, Joseph; Chittigori, Joshna; Pierce, Susan; Samuelson, Lynne A.; Sandman, Daniel; Kumar, Jayant

    2012-05-01

    Two-photon (TP) fluorescence properties of an antioxidant and anti-tumor molecule, curcumin, were investigated. The two-photon absorption (TPA) action cross-section was measured in organic solvents and found to be 6 GM in tetrahydrofuran and 2 GM in dimethyl sulfoxide. The measured TPA cross-section is comparable to that of rhodamine 6G. One-photon and TP confocal microscopy has demonstrated that curcumin is internalized in cells and can be used for imaging applications. Our investigation indicates that curcumin is a viable biocompatible TP fluorescent marker.

  2. Confocal shift interferometry of coherent emission from trapped dipolar excitons

    NASA Astrophysics Data System (ADS)

    Repp, J.; Schinner, G. J.; Schubert, E.; Rai, A. K.; Reuter, D.; Wieck, A. D.; Wurstbauer, U.; Kotthaus, J. P.; Holleitner, A. W.

    2014-12-01

    We introduce a confocal shift-interferometer based on optical fibers. The presented spectroscopy allows measuring coherence maps of luminescent samples with a high spatial resolution even at cryogenic temperatures. We apply the spectroscopy onto electrostatically trapped, dipolar excitons in a semiconductor double quantum well. We find that the measured spatial coherence length of the excitonic emission coincides with the point spread function of the confocal setup. The results are consistent with a temporal coherence of the excitonic emission down to temperatures of 250 mK.

  3. Nonlinear Confocal Microscopy for High-Resolution Measurement

    NASA Astrophysics Data System (ADS)

    Egami, Chikara; Ito, Atsuo; Liu, Yingzhi

    2008-08-01

    We demonstrate cell imaging with a new confocal nonlinear optical microscope using a low-power cw laser. The confocal nonlinear optical microscope, employing degenerate four-wave mixing geometry, can detect the fine structure of submicron objects with nanoscale contents such as biological cells. The optical signal, which is given by the third-order susceptibility tensor, is confined to the focal region of the focusing incident beam, because the absorption of the object is dependent on the third power of the excitation laser intensity. We have observed a thylakoid membrane in a chloroplast by scanning the tensor element inside.

  4. Technique of laser confocal and Raman spectroscopy for living cell analysis

    NASA Astrophysics Data System (ADS)

    Meng, Xiaochen; Zhu, Lianqing

    2013-10-01

    Because of the shortcomings of the main methods used to analysis single cell, the need of single living cell analysis with no damage, unmarked and in situ dynamic multi-parameter measurement is urgent in the life sciences and biomedical advanced research field. And the method of for living cells analysis is proposed. The spectral pretreatment technology of living cell is the key work of laser confocal Raman spectroscopy. To study the spectrum processing methods for Raman spectrum on single living cell and develop the pre-process techniques to enhance the signal-to-noise ratio, sensitivity, and decrease the influence of fluorescence, elimination the cosmic rays was used to improve the spectrum. The classification, average and filtration of spectrum were applied to enhance signal-to-noise ratio. The fluorescence was depressed for quantity analysis or utilized for analysis by comparing the background and the spectrum. The results show that the proposed technique for laser confocal Raman spectrum of single cell can perform the sensitive and weak intensity peaks and reflect the information of molecules structures very well.

  5. In vivo fluorescence confocal microscopy: indocyanine green enhances the contrast of epidermal and dermal structures

    NASA Astrophysics Data System (ADS)

    Skvara, Hans; Kittler, Harald; Schmid, Johannes A.; Plut, Ulrike; Jonak, Constanze

    2011-09-01

    In recent years, in vivo skin imaging devices have been successfully implemented in skin research as well as in clinical routine. Of particular importance is the use of reflectance confocal microscopy (RCM) and fluorescence confocal microscopy (FCM) that enable visualization of the tissue with a resolution comparable to histology. A newly developed commercially available multi-laser device in which both technologies are integrated now offers the possibility to directly compare RCM with FCM. The fluorophore indocyanine green (ICG) was intradermally injected into healthy forearm skin of 10 volunteers followed by in vivo imaging at various time points. In the epidermis, accurate assessment of cell morphology with FCM was supplemented by identification of pigmented cells and structures with RCM. In dermal layers, only with FCM connective tissue fibers were clearly contoured down to a depth of more than 100 ?m. The fluorescent signal still provided a favorable image contrast 24 and 48 hours after injection. Subsequently, ICG was applied to different types of skin diseases (basal cell carcinoma, actinic keratosis, seborrhoeic keratosis, and psoriasis) in order to demonstrate the diagnostic benefit of FCM when directly compared with RCM. Our data suggest a great impact of FCM in combination with ICG on clinical and experimental dermatology in the future.

  6. A UV laser-scanning confocal microscope for the measurement of intracellular Ca2+.

    PubMed

    Kuba, K; Hua, S Y; Hayashi, T

    1994-09-01

    Modifications to the optics of a conventional confocal laser-scanning microscope were made to allow imaging intracellular Ca(2+)-dependent fluorescence with a UV laser (351 or 364 nm). Modifications included: (1) a chromatic compensation lens in the laser path; (2) the design of a practically achromatic relay lens; (3) a longer tube length for the objective; and (4) highly reflective mirrors maximizing fluorescence measurement. This UV laser-scanning confocal microscope (UV-CLSM) yielded a lateral resolution of < 0.3 micron and an axial resolution of < 1.5 microns and a relevant field size of 100 microns in diameter for a 40X objective). The effects of varying the focal length of a compensation lens, the degree of the correction for the coverglass thickness of objective and the detector aperture size on the quality of image formation were examined. Finally, UV-CLSM revealed optical sections of fine and complex structures of bullfrog sympathetic neurones loaded with a Ca(2+)-sensitive fluorescent probe. Changes in intracellular free Ca2+ distribution in response to high [K+] or caffeine were demonstrated. In addition, an increase in the intracellular concentration of caffeine applied externally was clearly imaged in space and time and distinguished from a resultant rise in [Ca2+]i. Thus, the UV-CLSM developed is suitable for ratiometric intracellular Ca2+ measurements and other biological studies. PMID:7828174

  7. Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy

    SciTech Connect

    Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

    2007-11-01

    We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity.

  8. Polymer Cholesteric Liquid Crystal (PCLC) Flake/Fluid Host Suspensions: A Novel Electro-Optical Medium for Reflective Color Display Applications

    SciTech Connect

    Marshall, K.L.; Trajkovska-Petkoska, A.; Kosc, T.Z.; Jacobs, S.D.

    2006-04-17

    Polymer cholesteric liquid crystal (PCLC) flake/fluid host suspensions are a new and promising particle display technology for both full-color flexible display applications and electronic paper. Devices containing these "polarizing pigments" switch rapidly at very low voltages and produce highly saturated, circularly polarized reflectance colors without requiring polarizers or color filters.

  9. Application of the specular and diffuse reflection analysis for in vitro diagnostics of dental erosion: correlation with enamel softening, roughness, and calcium release

    Microsoft Academic Search

    Ekaterina Rakhmatullina; Anke Bossen; Christoph Höschele; Xiaojie Wang; Barbara Beyeler; Christoph Meier; Adrian Lussi

    2011-01-01

    We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested

  10. In-vivo diagnosis and non-inasive monitoring of Imiquimod 5% cream for non-melanoma skin cancer using confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Dietterle, S.; Lademann, J.; Röwert-Huber, H.-J.; Stockfleth, E.; Antoniou, C.; Sterry, W.; Astner, S.

    2008-10-01

    Basal cell carcinoma (BCC) is the most common cutaneous malignancy with increasing incidence rates worldwide. A number of established treatments are available, including surgical excision. The emergence of new non-invasive treatment modalities has prompted the development of non-invasive optical devices for therapeutic monitoring and evaluating treatment efficacy. This study was aimed to evaluate the clinical applicability of a fluorescence confocal laser scanning microscope (CFLSM) for non-invasive therapeutic monitoring of basal cell carcinoma treated with Imiquimod (Aldara®) as topical immune-response modifier. Eight participants with a diagnosis of basal cell carcinoma (BCC) were enrolled in this investigation. Sequential evaluation during treatment with Imiquimod showed progressive normalization of the confocal histomorphologic parameters in correlation with normal skin. Confocal laser scanning microscopy was able to identify characteristic features of BCC and allowed the visualization of therapeutic effects over time. Thus our results indicate the clinical applicability of CFLSM imaging to evaluate treatment efficacy in vivo and non-invasively.

  11. Total internal reflection (TIRF)-based quantification of procalcitonin for sepsis diagnosis--a point-of-care testing application.

    PubMed

    Rascher, Daniela; Geerlof, Arie; Kremmer, Elisabeth; Krämer, Petra; Michael, Schmid; Hartmann, Anton; Rieger, Martin

    2014-09-15

    A new, highly sensitive fluorescence immunoassay for a TIRF (total internal reflection)-based point-of-care testing (POCT) device was developed for the detection of procalcitonin (PCT), a specific and early marker for sepsis and microbial infections. The immunoassay was performed on a bench-top system that fulfilled all the necessary characteristics of a POCT application, including a short measurement time (<9 min), no sample pre-treatment requirements and application directly near patients. New rat monoclonal antibodies targeting PCT were screened and characterized. The best combinations of antibodies were then integrated into single-use cartridges, and the reduction of nonspecific binding was achieved by supplying suitable additives. Moreover, human recombinant PCT (hrPCT) for use as a standard was developed in the native form of hPCT in plasma (PCT1-116, PCT3-116). The assay achieves the required sensitivity range in human plasma to allow reliable differentiation between healthy persons and varying stages of infection severity (LOD=0.04 ng/mL; LOQ=0.12 ng/mL). Furthermore, the developed PCT assay can be applied in whole human blood with an adequate sensitivity (LOD=0.02 ng/mL; LOQ=0.09 ng/mL). To the best of our knowledge, this is the first diagnostic test for sepsis to use whole blood, which is a crucial requirement for POCT. We were able to detect native PCT in patient samples and showed a good correlation (R(2)=0.988) with the results of the Kryptor(®) device from BRAHMS, a state of the art device for the detection of PCT. PMID:24732603

  12. Applicability of near-infrared reflectance spectroscopy (NIRS) for determination of crude protein content in cowpea (Vigna unguiculata) leaves

    PubMed Central

    Towett, Erick K; Alex, Merle; Shepherd, Keith D; Polreich, Severin; Aynekulu, Ermias; Maass, Brigitte L

    2013-01-01

    There is uncertainty on how generally applicable near-infrared reflectance spectroscopy (NIRS) calibrations are across genotypes and environments, and this study tests how well a single calibration performs across a wide range of conditions. We also address the optimization of NIRS to perform the analysis of crude protein (CP) content in a variety of cowpea accessions (n?=?561) representing genotypic variation as well as grown in a wide range of environmental conditions in Tanzania and Uganda. The samples were submitted to NIRS analysis and a predictive calibration model developed. A modified partial least-squares regression with cross-validation was used to evaluate the models and identify possible spectral outliers. Calibration statistics for CP suggests that NIRS can predict this parameter in a wide range of cowpea leaves from different agro-ecological zones of eastern Africa with high accuracy (R2cal?=?0.93; standard error of cross-validation?=?0.74). NIRS analysis improved when a calibration set was developed from samples selected to represent the range of spectral variability. We conclude from the present results that this technique is a good alternative to chemical analysis for the determination of CP contents in leaf samples from cowpea in the African context, as one of the main advantages of NIRS is the large number of compounds that can be measured at once in the same sample, thus substantially reducing the cost per analysis. The current model is applicable in predicting the CP content of young cowpea leaves for human nutrition from different agro-ecological zones and genetic materials, as cowpea leaves are one of the popular vegetables in the region. PMID:24804013

  13. Intelligent information extraction from reflectance spectra Absorption band positions. [application to laboratory and earth-based telescope spectra

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.; Jones, J. L.

    1986-01-01

    A multiple high-order derivative analysis algorithm has been developed which can automatically extract absorption band positions from low-quality reflectance spectra with little degredation of accuracy. Overlapping bands with comparable widths and intensities can be resolved whose centers are as close as 0.3-0.5 W, with safer resolution limits of 0.6-1.0 W band center separations suggested for overlapping bands that are dissimilar. The segment length for smoothing is continually adjusted to about 0.5 W to minimize signal distortion, and a spectral pattern recognition algorithm predicts the signal spectrum and calculates approximate W across the spectrum using its second derivative. A single-pass cubic spline is applied to the smoothed data, and a sliding segment sixth-order polynomial is fit to the spectrum, with the length of the segment being continuously locally adjusted to 1.0 W across the spectrum. Good reliability and consistency of the algorithm is demonstrated with application to laboratory and earth-based telescope spectra.

  14. Electrostatically driven micromirrors for a miniaturized confocal laser scanning microscope

    Microsoft Academic Search

    Ulrich Hofmann; Sascha Muehlmann; Martin Witt; Klaus Doerschel; Rijk Schuetz; Bernd Wagner

    1999-01-01

    A compact two-mirror microscanner has been fabricated to build the central part of a miniaturized confocal laser scanning microscope. This microscope shall be mounted at the tip of an endoscope to provide high resolution imaging for medical diagnostics. In order to achieve a resolution of 500 X 500 image elements large scan angles and also large mirror dimensions have to

  15. A SURGICAL CONFOCAL MICROLAPAROSCOPE FOR REAL-TIME OPTICAL BIOPSIES

    E-print Network

    Gmitro, Arthur F.

    A SURGICAL CONFOCAL MICROLAPAROSCOPE FOR REAL-TIME OPTICAL BIOPSIES by Anthony Amir Tanbakuchi Copyright c Anthony Amir Tanbakuchi 2009 A Dissertation Submitted to the Faculty of the COLLEGE OF OPTICAL of the Dissertation Committee, we certify that we have read the dissertation prepared by Anthony Amir Tanbakuchi

  16. Confocal microendoscope for use in a clinical setting

    Microsoft Academic Search

    Joshua A. Udovich; Andrew R. Rouse; Anthony Tanbakuchi; Molly A. Brewer; Richard Sampliner; Arthur F. Gmitro

    2007-01-01

    A mobile confocal microendoscope for use in a clinical setting has been developed. This system employs an endoscope consisting of a custom designed objective lens with a fiber optic imaging bundle to collect in-vivo images of patients. Some highlights and features of this mobile system include frame rates of up to 30 frames per second, an automated focus mechanism, automated

  17. Laser excited confocal microscope fluorescence scanner and method

    DOEpatents

    Mathies, Richard A. (Contra Costa, CA); Peck, Konan (Contra Costa, CA)

    1992-01-01

    A fluorescent scanner for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier including a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from said volume to provide a display of the separated sample.

  18. In vivo confocal microscopy of the human cornea

    PubMed Central

    Jalbert, I; Stapleton, F; Papas, E; Sweeney, D F; Coroneo, M

    2003-01-01

    Aims: To describe the optics of in vivo confocal microscopy, its advantages over previous methods, and to summarise the literature that arose from its use for the observation of the human cornea. A critical review of the clinical usefulness of this new technology for the corneal examination is undertaken. Methods: Confocal microscopes obtain increased resolution by limiting the illumination and observation systems to a single point. Rapid scanning is used to reconstruct a full field of view and allows for “real time” viewing. Results: Coronal sections of the in situ epithelium, Bowman’s membrane, stroma, and endothelium can be visualised at a resolution of 1–2 ?m. A backscattered light intensity curve allows objective measurements of sublayer thickness and corneal haze to be taken. In vivo confocal microscopy is therefore particularly useful in the areas of infective keratitis, corneal dystrophies, refractive surgery, and contact lens wear, where it aids in differential diagnosis and detection of subtle short and long term changes. Real time endothelial cell assessment can also be performed. Conclusion: Because of their ability to visualise living tissue at cellular levels, confocal microscopes have proved useful additions to the current clinical tools. PMID:12543757

  19. Confocal microscopy of the human cornea in vivo

    Microsoft Academic Search

    Barry R. Masters; Matthias Böhnke

    2001-01-01

    In vivo, scanning-slit, confocal microscopy offers improved resolution and has resulted in new discoveries of corneal pathology at the cellular level.The ability to provide high resolution, real-time images of the full thickness of theliving human cornea gives the clinician and the researcher an important new tool.

  20. Zeiss LSM 510 Laser Scanning Confocal Microscope User Guide

    E-print Network

    Pace, Norman

    Iron Man Zeiss LSM 510 Laser Scanning Confocal Microscope User Guide v. 1.3 (11 of the microscope 13 APPENDIX C ­ Configuring the Light Path 14 #12;Iron Man User Guide v. 1.3 3 Quick) Leave the microscope on a low power objective for next user. If someone is signed up within

  1. Black Widow Leica DMRXA Spinning Disk Confocal Microscope

    E-print Network

    Pace, Norman

    Black Widow Leica DMRXA Spinning Disk Confocal Microscope User Guide v. 1.3 (11 of the microscope 16 APPENDIX C ­ Factors that Affect Quality of Digital Images 17 Exposure time Bit depth are at all unsure of this process, ask for help! 8) Leave the microscope on a low power objective for next

  2. Confocal scanning laser ophthalmoscope with adaptive optical wavefront correction

    Microsoft Academic Search

    Brian Vohnsen; Ignacio Iglesias; Pablo Artal

    2003-01-01

    We have developed a new prototype of a confocal scanning laser ophthalmoscope that incorporate relatively low-cost adaptive optics to correct for wavefront aberrations induced in the exit path of the eye and the optical setup components. The scanning part of the system consists of two galvanometric scanners, and the adaptive optics part contains a membrane deformable mirror in conjunction with

  3. Confocal microscopy characterization of BRAFV600E mutated melanomas.

    PubMed

    Ruini, Cristel; Manfredini, Marco; Pellacani, Giovanni; Mandel, Victor D; Tomasi, Aldo; Ponti, Giovanni

    2015-08-01

    Thanks to modern techniques, molecular signatures for melanoma are now identifiable and have opened new horizons in the treatment of metastatic disease with molecular-targeted therapies. We distinguish different melanoma subtypes on the basis of genetic mutations such as BRAFV600E and we can therefore hypothesize the existence of corresponding morphological patterns that might be detected in vivo by noninvasive diagnostic tools such as dermoscopy and confocal microscopy. Eight BRAFV600E mutated melanomas (six primary and two metastases) were collected, matched in terms of age, sex, and thickness wild-type controls, and analyzed. In this preliminary study, regression, corresponding to fibrosis and melanophages in the dermis, was the predominant pattern and was also observed confocally when dermoscopy showed no peppering. In particular, confocal microscopy could not only detect regression but also provided a semiquantitative analysis of its grade through the count of melanophages. Confocal microscopy can be proposed as a useful tool in the preliminary screening and characterization of BRAFV600E mutated melanomas, providing new insights for patients' screening and follow-up. PMID:26134486

  4. Description and Classification of Confocal Endomicroscopic Images for the Automatic

    E-print Network

    Barreto, Joao

    of the gastrointestinal (GI) histological architecture, avoiding the traditional biopsy . The anal- ysis of CEM images diagnosis tool is the integration of a mini-confocal microscope with the distal tip of a conventional endoscope. The main advantage of the CEM over the traditional biopsy is the real-time examination

  5. Blind deconvolution for high-resolution confocal scanning laser ophthalmoscopy

    Microsoft Academic Search

    B. Vohnsen; P. Artal

    2005-01-01

    We investigate the potential of image deconvolution techniques, either in combination or as a substitute for adaptive optics, in a high-resolution confocal scanning laser ophthalmoscope (SLO). After reviewing the validity of standard hypotheses and the a priori information, we implement two deconvolution algorithms to be applied to experimental retinal images recorded with our own high-resolution research SLO. Despite the important

  6. Whole-Mount Confocal Microscopy for Vascular Branching Morphogenesis

    PubMed Central

    Mukouyama, Yoh-suke; James, Jennifer; Nam, Joseph; Uchida, Yutaka

    2014-01-01

    We introduce a whole-mount immunohistochemistry method for analyzing intricate vascular network formation in mouse embryonic tissues. Laser scanning confocal microscopy with multiple labeling allows for robust imaging of blood and lymphatic vessel branching morphogenesis with excellent resolution. PMID:22222522

  7. Mind The Gaps Confocal Endomicroscopy Showed Increased Density of Small

    E-print Network

    Alberta, University of

    in Inflammatory Bowel Disease Julia J. Liu, MD,* Karen L. Madsen, PhD,* Pierre Boulanger, PhD,w Levinus A of inflammatory bowel disease. Key Words: epithelial gaps, confocal endomicroscopy, inflamma- tory bowel disease bowel disease--interleukin-10-deficient (IL-10À/À ) mice, versus the background strain using rigid probe

  8. Generalizing the Confocal Microscope via Heterodyne Interferometry and Digital Filtering

    Microsoft Academic Search

    Philip C. D. Hobbsa; Gordon S. Kino

    1990-01-01

    We describe a generalized confocal optical microscope which measures both phase and amplitude, separately and simultaneously. The system is based on heterodyne interferometry, and is extremely fast and accurate. Together with the associated signal processing and data acquisition system, it can take data at the rate of 50,000 points per second, to an accuracy of 12 bits in amplitude and

  9. Optical Reflectance Of Metallic Coatings: Effect Of Aluminum Flake Orientation

    Microsoft Academic Search

    Li-Piin Sung; Maria E. Nadal; Mary E. McKnight; Egon Marx; Brent Laurenti

    2001-01-01

    A set of aluminum-flake pigmented coatings having different flake orientations was pre- pared using various spray conditions. The orientations of individual flakes were determined from images obtained by laser scanning confocal microscopy. Reflectance measurements were carried out to quantify the optical properties of the coatings. A Gaussian orientation distribution or topographic map of the flakes was then used as input

  10. Reflectivity Cheat Sheet Defining Reflection...

    E-print Network

    Nierstrasz, Oscar

    Reflectivity Cheat Sheet Defining Reflection... · Casually connected. If the internal structures. A reflective system is then a system which incorporates causally con- nected structures representing itself-representation of a system can be modified. · Reflection = Introspection + Intercession · Meta-objects describe behavior

  11. High-reflectivity mirrors by Al2O3, LaF3 and AlF3 for 193 nm application

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Li, Xu; Zhang, Weili; Yi, Kui; Shao, Jianda

    2014-03-01

    As important components in deep-ultraviolet (DUV) optics, especially 193 nm lithographic systems, high-reflectivity (HR) mirrors with excellent optical properties and long lifetimes are needed urgently. In this study, we designed and produced three HR coatings for 193 nm on fused quartz substrates: Al2O3/AlF3 coating, LaF3/AlF3 coating and a double stack mirror with combined Al2O3/AlF3 and LaF3/AlF3. The reflectance of the Al2O3/AlF3 coating with 14 layer pairs reached 98.0% at 193 nm. However, the absorption of Al2O3 prevented the reflectance to increase further. The maximum reflectance of the LaF3/AlF3 coating with 15 layer pairs reached 98.1%, with initial micro-cracks formation. The reflectance decreased as the number of layer pairs increased to 16 because of numerous micro-cracks. The mirror with combined Al2O3/AlF3 and LaF3/AlF3 coatings which combined their advantages obtained a reflectance of 98.8% at 193 nm after deposition. This value could still reach 98.5% at 4 months after deposition and remain stable thereafter. Therefore, the combined coating of Al2O3/AlF3 and LaF3/AlF3 is an excellent candidate for practical application.

  12. Analysis of some substantial collimating lens functions in fiber optic confocal microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hyun; Ilev, Ilko K.

    2010-02-01

    Some substantial functions of collimating lens in two-lens confocal microscope configuration were studied using raytracing software and experiments. Also, basic advantages of using a high-numerical-aperture optical fiber for a confocal microscope configuration were investigated. It provides higher confocality without reducing the coupling efficiency between light signal and fiber. We performed comparative experiments using two optical fibers with different numerical apertures and the results from axial confocal response tests agreed with the theoretical prediction.

  13. Solar Confocal interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines. Terence C.

    2007-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. In particular, profile inversion allows improved velocity and magnetic field gradients to be determined independent of multiple line analysis using different energy levels and ions. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. The higher throughput for the interferometer provides significant decrease in the aperture, which is important in spaceflight considerations. We have constructed and tested two confocal interferometers. A slow-response thermal-controlled interferometer provides a stable system for laboratory investigation, while a piezoelectric interferometer provides a rapid response for solar observations. In this paper we provide design parameters, show construction details, and report on the laboratory test for these interferometers. The field of view versus aperture for confocal interferometers is compared with other types of spectral imaging filters. We propose a multiple etalon system for observing with these units using existing planar interferometers as pre-filters. The radiometry for these tests established that high spectral resolution profiles can be obtained with imaging confocal interferometers. These sub-picometer spectral data of the photosphere in both the visible and near-infrared can provide important height variation information. However, at the diffraction-limited spatial resolution of the telescope, the spectral data is photon starved due to the decreased spectral passband.

  14. Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP

    PubMed Central

    Mueller, Lukas N; de Brouwer, Jody FC; Almeida, Jonas S; Stal, Lucas J; Xavier, João B

    2006-01-01

    Background Confocal laser scanning microscopy (CLSM) is the method of choice to study interfacial biofilms and acquires time-resolved three-dimensional data of the biofilm structure. CLSM can be used in a multi-channel modus where the different channels map individual biofilm components. This communication presents a novel image quantification tool, PHLIP, for the quantitative analysis of large amounts of multichannel CLSM data in an automated way. PHLIP can be freely downloaded from Results PHLIP is an open source public license Matlab toolbox that includes functions for CLSM imaging data handling and ten image analysis operations describing various aspects of biofilm morphology. The use of PHLIP is here demonstrated by a study of the development of a natural marine phototrophic biofilm. It is shown how the examination of the individual biofilm components using the multi-channel capability of PHLIP allowed the description of the dynamic spatial and temporal separation of diatoms, bacteria and organic and inorganic matter during the shift from a bacteria-dominated to a diatom-dominated phototrophic biofilm. Reflection images and weight measurements complementing the PHLIP analyses suggest that a large part of the biofilm mass consisted of inorganic mineral material. Conclusion The presented case study reveals new insight into the temporal development of a phototrophic biofilm where multi-channel imaging allowed to parallel monitor the dynamics of the individual biofilm components over time. This application of PHLIP presents the power of biofilm image analysis by multi-channel CLSM software and demonstrates the importance of PHLIP for the scientific community as a flexible and extendable image analysis platform for automated image processing. PMID:16412253

  15. Science Experimenter: Reflectance Spectroscopy.

    ERIC Educational Resources Information Center

    Mims, Forrest M., III

    1991-01-01

    Provides construction details for a simple reflectometer that can be utilized for the observational technique known as reflectance spectroscopy. Includes background discussion, applications, calibrating techniques, and typical results. (JJK)

  16. Development of a fiber-optic confocal microendoscope for clinical endoscopy

    Microsoft Academic Search

    Andrew R. Rouse; Angelique Kano; Arthur F. Gmitro

    2002-01-01

    A confocal micro endoscope has been developed to examine cellular pathology during optical biopsy. The system employs a flexible fiber optic catheter coupled to a slit-scan confocal microscope to image tissue at remote locations in the body. The catheter of the confocal micro endoscope consists of a fiber-optic imaging bundle, a miniature objective, and a miniature focusing mechanism. The system

  17. Nonlinear filtering in improving the image quality of confocal fluorescent images

    Microsoft Academic Search

    Pekka Hänninen; Ernst H. K. Stelzer; Juha Salo

    1991-01-01

    A different way of processing confocally scanned fluorescence images is presented. Linear median hybrid methods and linear filtering methods are compared numerically with a conventionally processed artificial data set and with real confocal data. The use of linear median hybrid techniques reduces the time required for recording three-dimensional data sets with a confocal flu- orescence microscope as well as the

  18. Application FT-NIR in rapid estimation of soluble solids content of intact kiwifruits by reflectance mode

    Microsoft Academic Search

    Yibin Ying; Huishan Lu; Xiaping Fu; Yande Liu; Huirong Xu; Haiyan Yu

    2005-01-01

    Nondestructive method of measuring soluble solids content (SSC) of kiwifruit was developed by Fourier transform near infrared (FT-NIR) reflectance and fiber optics. Also, the models describing the relationship between SSC and the NIR spectra of the fruit were developed and evaluated. To develop the models several different NIR reflectance spectra were acquired for each fruit from a commercial supermarket. Different

  19. Confocal Raman Imaging of Polymeric Materials

    Microsoft Academic Search

    Ute Schmidt; Jörg Müller; Joachim Koenen

    2011-01-01

    \\u000a Polymers play an essential role in modern materials science. Due to the wide variety of mechanical and chemical properties\\u000a of polymers, they are used in almost every field of application and are still a dynamic area in the development of new materials\\u000a with demanding requirements. Raman spectroscopy is one of the standard characterization techniques used to uniquely determine\\u000a the chemical

  20. Principles of neutron reflection

    SciTech Connect

    Felcher, G.P.

    1988-08-01

    Neutron reflection is perhaps the most developed branch of slow neutrons optics, which in itself is a direct consequence of the undulatory nature of the neutron. After reviewing the basic types of interactions (nuclear and magnetic) between neutrons and matter, the formalism is introduced to calculate the reflectivity from a sample composed of stacked flat layers and, inversely, to calculate the stacking from reflectivity measurements. Finally, a brief survey of the applications of neutron reflection is given, both in technology and in fundamental research. 32 refs., 6 figs.

  1. Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner

    NASA Astrophysics Data System (ADS)

    Liu, Jonathan T. C.; Mandella, Michael J.; Ra, Hyejun; Wong, Larry K.; Solgaard, Olav; Kino, Gordon S.; Piyawattanametha, Wibool; Contag, Christopher H.; Wang, Thomas D.

    2007-02-01

    The first, to our knowledge, miniature dual-axes confocal microscope has been developed, with an outer diameter of 10 mm, for subsurface imaging of biological tissues with 5-7 ?m resolution. Depth-resolved en face images are obtained at 30 frames per second, with a field of view of 800×100 ?m, by employing a two-dimensional scanning microelectromechanical systems mirror. Reflectance and fluorescence images are obtained with a laser source at 785 nm, demonstrating the ability to perform real-time optical biopsy.

  2. Reflectance Spectra

    NSDL National Science Digital Library

    Katherine McCarville

    Katherine McCarville, Upper Iowa University Summary Students use the ALTA reflectance spectrometer to understand concepts in active vs. passive remote sensing, reflectance, and the creation and relevance of ...

  3. Three-Dimensional Visualization of Interfacial Phenomena Using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Shieh, Ian C.

    Surfactants play an integral role in numerous functions ranging from stabilizing the emulsion in a favorite salad dressing to organizing the cellular components that make life possible. We are interested in lung surfactant, which is a mixture of lipids and proteins essential for normal respiration because it modulates the surface tension of the air-liquid interface of the thin fluid lining in the lungs. Through this surface tension modulation, lung surfactant ensures effortless lung expansion and prevents lung collapse during exhalation, thereby effecting proper oxygenation of the bloodstream. The function of lung surfactant, as well as numerous interfacial lipid systems, is not solely dictated by the behavior of materials confined to the two-dimensional interface. Rather, the distributions of materials in the liquid subphase also greatly influence the performance of interfacial films of lung surfactant. Therefore, to better understand the behavior of lung surfactant and other interfacial lipid systems, we require a three-dimensional characterization technique. In this dissertation, we have developed a novel confocal microscopy methodology for investigating the interfacial phenomena of surfactants at the air-liquid interface of a Langmuir trough. Confocal microscopy provides the excellent combination of in situ, fast, three-dimensional visualization of multiple components of the lung surfactant system that other characterization techniques lack. We detail the solutions to the numerous challenges encountered when imaging a dynamic air-liquid interface with a high-resolution technique like confocal microscopy. We then use confocal microscopy to elucidate the distinct mechanisms by which a polyelectrolyte (chitosan) and nonadsorbing polymer (polyethylene glycol) restore the function of lung surfactant under inhibitory conditions mimicking the effects of lung trauma. Beyond this physiological model, we also investigate several one- and two-component interfacial films of the various lipid constituents of lung surfactant. Confocal microscopy allows us to use a water-soluble, cationic fluorophore that partitions into the disordered phases of lipid monolayers. By exploiting the properties of this water-soluble fluorophore, we investigate both the phase behavior and electrostatics of the interfacial lipid systems. Overall, we believe the work presented in this dissertation provides the building blocks for establishing confocal microscopy as a ubiquitous characterization technique in the interfacial and surface sciences.

  4. Application of the specular and diffuse reflection analysis for in vitro diagnostics of dental erosion: correlation with enamel softening, roughness, and calcium release.

    PubMed

    Rakhmatullina, Ekaterina; Bossen, Anke; Höschele, Christoph; Wang, Xiaojie; Beyeler, Barbara; Meier, Christoph; Lussi, Adrian

    2011-10-01

    We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r(2) ? -0.86) as well as calcium release (r(2) ? -0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r(2) = 0.42-0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo. PMID:22029364

  5. Application of the specular and diffuse reflection analysis for in vitro diagnostics of dental erosion: correlation with enamel softening, roughness, and calcium release

    NASA Astrophysics Data System (ADS)

    Rakhmatullina, Ekaterina; Bossen, Anke; Höschele, Christoph; Wang, Xiaojie; Beyeler, Barbara; Meier, Christoph; Lussi, Adrian

    2011-10-01

    We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r2 >= -0.86) as well as calcium release (r2 >= -0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r2 = 0.42-0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo.

  6. Confocal Light Absorption and Scattering Spectroscopic (CLASS) imaging: From cancer detection to sub-cellular function

    NASA Astrophysics Data System (ADS)

    Qiu, Le

    Light scattering spectroscopy (LSS), an optical technique that relates the spectroscopic properties of light elastically scattered by small particles to their size, refractive index and shape, has been recently successfully employed for sensing morphological and biochemical properties of epithelial tissues and cells in vivo. LSS does not require exogenous markers, is non-invasive, and, due to its multispectral nature, can sense biological structures well beyond the diffraction limit. All that makes LSS be a very good candidate to be used both in clinical medicine for in vivo detection of disease and in cell biology to monitor cell function on the organelle scale. Recently we developed two LSS-based imaging modalities: clinical Polarized LSS (PLSS) Endoscopic Technique for locating early pre-cancerous changes in GI tract and Confocal Light Absorption and Scattering Spectroscopic (CLASS) Microscopy for studying cells in vivo without exogenous markers. One important application of the clinical PLSS endoscopic instrument, a noncontact scanning imaging device compatible with the standard clinical endoscopes and capable of detecting dysplastic changes, is to serve as a guide for biopsy in Barrett's esophagus (BE). The instrument detects parallel and perpendicular components of the polarized light, backscattered from epithelial tissues, and determines characteristics of epithelial nuclei from the residual spectra. It also can find tissue oxygenation, hemoglobin content and other properties from the diffuse light component. By rapidly scanning esophagus the PLSS endoscopic instrument makes sure the entire BE portion is scanned and examined for the presence of dysplasia. CLASS microscopy, on the other hand, combines principles of light scattering spectroscopy (LSS) with confocal microscopy. Its main purpose is to image cells on organelle scale in vivo without the use of exogenous labels which may affect the cell function. The confocal geometry selects specific region and images are obtained by scanning the confocal volume across the sample. The new beam scanning CLASS microscope is a significant improvement over the previous proof-of-principle device. With this new device we have already performed experiments to monitor morphological changes in cells during apoptosis, differentiated fetal from maternal nucleated red blood cells, and detected plasmon scattering spectra of single gold nanorod.

  7. 3D imaging of cement-based materials at submicron resolution by combining laser scanning confocal microscopy with serial sectioning.

    PubMed

    Yio, M H N; Mac, M J; Wong, H S; Buenfeld, N R

    2015-05-01

    In this paper, we present a new method to reconstruct large volumes of nontransparent porous materials at submicron resolution. The proposed method combines fluorescence laser scanning confocal microscopy with serial sectioning to produce a series of overlapping confocal z-stacks, which are then aligned and stitched based on phase correlation. The method can be extended in the XY plane to further increase the overall image volume. Resolution of the reconstructed image volume does not degrade with increase in sample size. We have used the method to image cementitious materials, hardened cement paste and concrete and the results obtained show that the method is reliable. Possible applications of the method such as three-dimensional characterization of the pores and microcracks in hardened concrete, three-dimensional particle shape characterization of cementitious materials and three-dimensional characterization of other porous materials such as rocks and bioceramics are discussed. PMID:25651933

  8. Advances in the reduction and compensation of film stress in high-reflectance multilayer coatings for extreme ultraviolet lithography applications

    SciTech Connect

    Mirkarimi, P.B., LLNL

    1998-02-20

    Due to the stringent surface figure requirements for the multilayer-coated optics in an extreme ultraviolet (EUV) projection lithography system, it is desirable to minimize deformation due to the multilayer film stress. However, the stress must be reduced or compensated without reducing EUV reflectivity, since the reflectivity has a strong impact on the throughput of a EUV lithography tool. In this work we identify and evaluate several leading techniques for stress reduction and compensation as applied to Mo/Si and Mo/Be multilayer films. The measured film stress for Mo/Si films with EUV reflectances near 67.4% at 13.4 nm is approximately - 420 MPa (compressive), while it is approximately +330 MPa (tensile) for Mo/Be films with EUV reflectances near 69.4% at 11.4 nm. Varying the Mo-to-Si ratio can be used to reduce the stress to near zero levels, but at a large loss in EUV reflectance (> 20%). The technique of varying the base pressure (impurity level) yielded a 10% decrease in stress with a 2% decrease in reflectance for our multilayers. Post-deposition annealing was performed and it was observed that while the cost in reflectance is relatively high (3.5%) to bring the stress to near zero levels (i.e., reduce by 1 00%), the stress can be reduced by 75% with only a 1.3% drop in reflectivity at annealing temperatures near 200{degrees}C. A study of annealing during Mo/Si deposition was also performed; however, no practical advantage was observed by heating during deposition. A new non-thermal (athermal) buffer-layer technique was developed to compensate for the effects of stress. Using this technique with amorphous silicon and Mo/Be buffer-layers it was possible to obtain Mo/Be and Mo/Si multilayer films with a near zero net film stress and less than a 1% loss in reflectivity. For example a Mo/Be film with 68.7% reflectivity at 11.4 nm and a Mo/Si film with 66.5% reflectivity at 13.3 nm were produced with net stress values less than 30 MPa.

  9. SPECIAL ISSUE DEVOTED TO MULTIPLE RADIATION SCATTERING IN RANDOM MEDIA: Application of backward diffuse reflection spectroscopy for monitoring the state of tissues in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Stratonnikov, Aleksandr A.; Meerovich, G. A.; Ryabova, A. V.; Savel'eva, T. A.; Loshchenov, V. B.

    2006-12-01

    The application of backward diffuse reflection (BDR) spectroscopy for in vivo monitoring the degree of haemoglobin oxygenation and concentration of photosensitisers in tissues subjected to photodynamic therapy is demonstrated. A simple experimental technique is proposed for measuring diffuse reflection spectra. The measurements are made under steady-state conditions using a fibreoptic probe with one transmitting and one receiving fibre separated by a fixed distance. Although this approach does not ensure the separation of contributions of scattering and absorption to the spectra being measured, it can be used for estimating the degree of haemoglobin oxygenation and concentration of photosensitisers in the tissues. Simple expressions for estimating the concentration of photosensitisers from the BDR spectra are presented and the accuracy of this approach is analysed. The results of application of BDR spectroscopy for monitoring various photosensitisers are considered.

  10. Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: Upgrading a commercial confocal inverted microscope

    PubMed Central

    Mathew, Manoj; Santos, Susana I. C. O.; Zalvidea, Dobryna; Loza-Alvarez, Pablo

    2009-01-01

    In this work we propose and build a multimodal optical workstation that extends a commercially available confocal microscope (Nikon Confocal C1-Si) to include nonlinear?multiphoton microscopy and optical manipulation?stimulation tools such as nanosurgery. The setup allows both subsystems (confocal and nonlinear) to work independently and simultaneously. The workstation enables, for instance, nanosurgery along with simultaneous confocal and brightfield imaging. The nonlinear microscopy capabilities are added around the commercial confocal microscope by exploiting all the flexibility offered by this microscope and without need for any mechanical or electronic modification of the confocal microscope systems. As an example, the standard differential interference contrast condenser and diascopic detector in the confocal microscope are readily used as a forward detection mount for second harmonic generation imaging. The various capabilities of this workstation, as applied directly to biology, are demonstrated using the model organism Caenorhabditis elegans. PMID:19655950

  11. Anabaena cell ageing monitored with confocal fluorescence spectroscopy.

    PubMed

    Ke, Shan; Bindokas, Vytas; Haselkorn, Robert

    2015-01-01

    Cyanobacteria use a sophisticated system of pigments to collect light energy across the visible spectrum for photosynthesis. The pigments are assembled in structures called phycobilisomes, composed of phycoerythrocyanin, phycocyanin and allophycocyanin, which absorb energy and transfer it to chlorophyll in photosystem II reaction centres. All of the components of this system are fluorescent, allowing sensitive measurements of energy transfer using single cell confocal fluorescence microscopy. The native pigments can be interrogated without the use of reporters. Here, we use confocal fluorescence microscopy to monitor changes in the efficiency of energy transfer as single cells age, between the time they are born at cell division until they are ready to divide again. Alteration of fluorescence was demonstrated to change with the age of the cyanobacterial cell. PMID:25378560

  12. Classification of billiard motions in domains bounded by confocal parabolas

    NASA Astrophysics Data System (ADS)

    Fokicheva, V. V.

    2014-08-01

    We consider the billiard dynamical system in a domain bounded by confocal parabolas. We describe such domains in which the billiard problem can be correctly stated. In each such domain we prove the integrability for the system, analyse the arising Liouville foliation, and calculate the invariant of Liouville equivalence--the so-called marked molecule. It turns out that billiard systems in certain parabolic domains have the same closures of solutions (integral trajectories) as the systems of Goryachev-Chaplygin-Sretenskii and Joukowski at suitable energy levels. We also describe the billiard motion in noncompact domains bounded by confocal parabolas, namely, we describe the topology of the Liouville foliation in terms of rough molecules. Bibliography: 16 titles.

  13. Application of stacking and inversion techniques to three-dimensional wide-angle reflection and refraction seismic data of the Eastern Alps

    Microsoft Academic Search

    Michael Behm; Ewald Brueckl; Werner Chwatal; Hans Thybo

    2007-01-01

    We present new methods for the interpretation of 3-D seismic wide-angle\\u000a reflection and refraction data with application to data acquired during\\u000a the experiments CELEBRATION, 2000 and ALP 2002 in the area of the\\u000a Eastern Alps and their transition to the surrounding tectonic provinces\\u000a (Bohemian Massif, Carpathians, Pannonian domain, Dinarides). Data was\\u000a acquired on a net of arbitrarily oriented seismic lines

  14. A sample-scanning confocal optical microscope for cryogenic operation

    Microsoft Academic Search

    J.-M. Segura; A. Renn; B. Hecht

    2000-01-01

    A sample-scanning confocal optical microscope for single-molecule imaging and spectroscopy working at superfluid helium temperature, liquid nitrogen, and room temperature is described. An optical resolution of 800 nm full width at half maximum as well as a detection efficiency of ~3.5% are achieved. The sample scanner features an exceptionally large scan range of 23 mum at 1.8 K. A position

  15. Foundations of Confocal Scanned Imaging in Light Microscopy

    Microsoft Academic Search

    Shinya Inoué

    \\u000a Seldom has the introduction of a new instrument generated as instant an excitement among biologists as the laser-scanning\\u000a confocal microscope. With the new microscope, one can slice incredibly clean, thin optical sections out of thick fluorescent\\u000a specimens; view specimens in planes tilted to, and even running parallel to, the line of sight; penetrate deep into light-scattering\\u000a tissues; gain impressive three-dimensional

  16. Ex vivo confocal microscopy of human corneal nerves

    Microsoft Academic Search

    Mouhamed A Al-Aqaba; Thaer Alomar; Ammar Miri; Usama Fares; Ahmad Muneer Otri; Harmnider S Dua

    2010-01-01

    AimsTo evaluate the distribution, morphometry and the postmortem changes of the central and peripheral human corneal nerves by exvivo laser-scanning confocal microscopy (EVCM).Methods24 eyes from 14 cadavers were retrieved at different time intervals after death and examined by EVCM. Five regions were examined in each eye: central, superior, inferior, temporal and nasal. In each region, corneal nerve images were categorised

  17. Direct and instantaneous observation of intravenously injected substances using intravital confocal micro-videography.

    PubMed

    Matsumoto, Yu; Nomoto, Takahiro; Cabral, Horacio; Matsumoto, Yoko; Watanabe, Sumiyo; Christie, R James; Miyata, Kanjiro; Oba, Makoto; Ogura, Tadayoshi; Yamasaki, Yuichi; Nishiyama, Nobuhiro; Yamasoba, Tatsuya; Kataoka, Kazunori

    2010-01-01

    We describe the development and application of intravital confocal micro-videography to visualize entrance, distribution, and clearance of drugs within various tissues and organs. We use a Nikon A1R confocal laser scanning microscope system attached to an upright ECLIPSE FN1. The Nikon A1R allows simultaneous four channel acquisition and speed of 30 frames per second while maintaining high resolution of 512 × 512 scanned points. The key techniques of our intravital imaging are (1) to present a flat and perpendicular surface to the objective lens, and (2) to expose the subject with little or no bleeding to facilitate optical access to multiple tissues and organs, and (3) to isolate the subject from the body movement without compressing the blood vessels, and (4) to insert a tail vein catheter for timed injection without moving the subject. Ear lobe dermis tissue was accessible without surgery. Liver, kidney, and subcutaneous tumor were accessed following exteriorization through skin incision. In order to image initial extravasations of compounds into tissue following intravenous injection, movie acquisition was initialized prior to drug administration. Our technique can serve as a powerful tool for investigating biological mechanisms and functions of intravenously injected drugs, with both spatial and temporal resolution. PMID:21258542

  18. In Vivo Confocal Microscopy of Corneal Nerves: Analysis and Clinical Correlation

    PubMed Central

    Cruzat, Andrea; Pavan-Langston, Deborah; Hamrah, Pedram

    2011-01-01

    Corneal confocal microscopy is a growing technique for the study of the cornea at the cellular level, providing images comparable to ex vivo histochemical methods. In vivo confocal microscopy (IVCM) has an enormous potential, being a noninvasive procedure that images the living cornea, to study both its physiological and pathological states. Corneal nerves are of great interest to clinicians and scientists due to their important roles in regulating corneal sensation, epithelial integrity, proliferation, wound healing, and for their protective functions. IVCM enables the noninvasive examination of corneal nerves, allowing the study of nerve alterations in different ocular diseases, after corneal surgery, and in systemic diseases. To date, the correlation of sub-basal corneal nerves and their function has been studied in normal eyes, keratoconus, dry eye, contact lens wearers, and in neurotrophic keratopathy, among others. Further, the effect of corneal surgery on nerves has been studied, demonstrating the regenerative capacity of corneal nerves and the recovery of sensation. Moreover, IVCM has been applied in the diagnosis of peripheral diabetic neuropathy and the assessment of progression in this systemic disease. The purpose of this review is to describe the principles, applications, and clinical correlation of IVCM in the study of corneal nerves in different ocular and systemic diseases. PMID:21090996

  19. Analyzing cell structure and dynamics with confocal light scattering and absorption spectroscopic microscopy

    NASA Astrophysics Data System (ADS)

    Qiu, Le; Vitkin, Edward; Fang, Hui; Zaman, Munir M.; Andersson, Charlotte; Salahuddin, Saira; Modell, Mark D.; Freedman, Steven D.; Hanlon, Eugene B.; Itzkan, Irving; Perelman, Lev T.

    2007-02-01

    We recently developed a new microscopic optical technique capable of noninvasive analysis of cell structure and cell dynamics on the submicron scale [1]. It combines confocal microscopy, a well-established high-resolution microscopic technique, with light scattering spectroscopy (LSS) and is called confocal light absorption and scattering spectroscopic (CLASS) microscopy. CLASS microscopy requires no exogenous labels and is capable of imaging and continuously monitoring individual viable cells, enabling the observation of cell and organelle functioning at scales on the order of 100 nm. To test the ability of CLASS microscopy to monitor cellular dynamics in vivo we performed experiments with human bronchial epithelial cells treated with DHA and undergoing apoptosis. The treated and untreated cells show not only clear differences in organelle spatial distribution but time sequencing experiments on a single cell show disappearance of certain types of organelles and change of the nuclear shape and density with the progression of apoptosis. In summary, CLASS microscopy provides an insight into metabolic processes within the cell and opens doors for the noninvasive real-time assessment of cellular dynamics. Noninvasive monitoring of cellular dynamics with CLASS microscopy can be used for a real-time dosimetry in a wide variety of medical and environmental applications that have no immediate observable outcome, such as photodynamic therapy, drug screening, and monitoring of toxins.

  20. Segmentation of confocal microscopic image of insect brain

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Jin; Lin, Chih-Yang; Ching, Yu-Tai

    2002-05-01

    Accurate analysis of insect brain structures in digital confocal microscopic images is valuable and important to biology research needs. The first step is to segment meaningful structures from images. Active contour model, known as snakes, is widely used for segmentation of medical images. A new class of active contour model called gradient vector flow snake has been introduced in 1998 to overcome some critical problems encountered in the traditional snake. In this paper, we use gradient vector flow snake to segment the mushroom body and the central body from the confocal microscopic insect brain images. First, an edge map is created from images by some edge filters. Second, a gradient vector flow field is calculated from the edge map using a computational diffusion process. Finally, a traditional snake deformation process starts until it reaches a stable configuration. User interface is also provided here, allowing users to edit the snake during deformation process, if desired. Using the gradient vector flow snake as the main segmentation method and assist with user interface, we can properly segment the confocal microscopic insect brain image for most of the cases. The identified mushroom and central body can then be used as the preliminary results toward a 3-D reconstruction process for further biology researches.

  1. Simultaneous multiplane confocal microscopy using acoustic tunable lenses.

    PubMed

    Duocastella, Martí; Vicidomini, Giuseppe; Diaspro, Alberto

    2014-08-11

    Maximizing the amount of spatiotemporal information retrieved in confocal laser scanning microscopy is crucial to understand fundamental three-dimensional (3D) dynamic processes in life sciences. However, current 3D confocal microscopy is based on an inherently slow stepwise process that consists of acquiring multiple 2D sections at different focal planes by mechanical or optical z-focus translation. Here, we show that by using an acoustically-driven optofluidic lens integrated in a commercial confocal system we can capture an entire 3D image in a single step. Our method is based on continuous axial scanning at speeds as high as 140 kHz combined with fast readout. In this way, one or more focus sweeps are produced on a pixel by pixel basis and the detected photons can be assigned to their corresponding focal plane enabling simultaneous multiplane imaging. We exemplify this method by imaging calibration and biological fluorescence samples. These results open the door to exploring new fundamental processes in science with an unprecedented time resolution. PMID:25321014

  2. Confocal imaging of the embryonic heart: how deep?

    PubMed

    Miller, Christine E; Thompson, Robert P; Bigelow, Michael R; Gittinger, George; Trusk, Thomas C; Sedmera, David

    2005-06-01

    Confocal microscopy allows for optical sectioning of tissues, thus obviating the need for physical sectioning and subsequent registration to obtain a three-dimensional representation of tissue architecture. However, practicalities such as tissue opacity, light penetration, and detector sensitivity have usually limited the available depth of imaging to 200 microm. With the emergence of newer, more powerful systems, we attempted to push these limits to those dictated by the working distance of the objective. We used whole-mount immunohistochemical staining followed by clearing with benzyl alcohol-benzyl benzoate (BABB) to visualize three-dimensional myocardial architecture. Confocal imaging of entire chick embryonic hearts up to a depth of 1.5 mm with voxel dimensions of 3 microm was achieved with a 10x dry objective. For the purpose of screening for congenital heart defects, we used endocardial painting with fluorescently labeled poly-L-lysine and imaged BABB-cleared hearts with a 5x objective up to a depth of 2 mm. Two-photon imaging of whole-mount specimens stained with Hoechst nuclear dye produced clear images all the way through stage 29 hearts without significant signal attenuation. Thus, currently available systems allow confocal imaging of fixed samples to previously unattainable depths, the current limiting factors being objective working distance, antibody penetration, specimen autofluorescence, and incomplete clearing. PMID:16060974

  3. Architectural Reflection: Realising Software Architectures via Reflective Activities

    Microsoft Academic Search

    Francesco Tisato; Andrea Savigni; Walter Cazzola; Andrea Sosio

    2000-01-01

    Architectural reflection is the computation performed by a software system about its own software architecture. Building on previ- ous research and on practical experience in industrial projects, in this pa- per we expand the approach and show a practical (albeit very simple) ex- ample of application of architectural reflection. The example shows how one can express, thanks to reflection, both

  4. Reflectance and Fluorescence Confocal Microscope for Imaging of the Mouse Colon

    E-print Network

    Saldua, Meagan Alyssa

    2012-02-14

    of Biomedical Optics Express. 1. INTRODUCTION 1.1 Motivation Those experiencing ulcerative colitis or Crohn?s disease have an increased risk for developing colorectal cancer; therefore, there is an assumption that chronic inflammation causes cancer [1...]. Ulcerative colitis is reported as inflammation in the colon that is restricted to the mucosa or innermost layer [2]. Crohn?s disease includes the small intestine, colon, and other surrounding organs [3]. Currently, it is recommended that patients...

  5. Reflectance and Fluorescence Confocal Microscope for Imaging of the Mouse Colon 

    E-print Network

    Saldua, Meagan Alyssa

    2012-02-14

    of Biomedical Optics Express. 1. INTRODUCTION 1.1 Motivation Those experiencing ulcerative colitis or Crohn?s disease have an increased risk for developing colorectal cancer; therefore, there is an assumption that chronic inflammation causes cancer [1...]. Ulcerative colitis is reported as inflammation in the colon that is restricted to the mucosa or innermost layer [2]. Crohn?s disease includes the small intestine, colon, and other surrounding organs [3]. Currently, it is recommended that patients...

  6. Numerical calculation of the reflectance of sub-wavelength structures on silicon nitride for solar cell application

    NASA Astrophysics Data System (ADS)

    Sahoo, Kartika Chandra; Li, Yiming; Chang, Edward Yi

    2009-10-01

    In this study, we calculate the spectral reflectivity of pyramid-shaped silicon nitride (Si 3N 4) sub-wavelength structures (SWS). A multilayer rigorous coupled-wave approach is advanced to investigate the reflection properties of Si 3N 4 SWS. We examine the simulation results for single layer antireflection (SLAR) and double layer antireflection (DLAR) coatings with SWS on Si 3N 4 surface, taking into account effective reflectivity over a range of wavelengths and solar efficiency. The results of our study show that a lowest effective reflectivity of 1.77% can be obtained for the examined Si 3N 4 SWS with the height of etched part of Si 3N 4 and the thickness of non-etched layer of 150 and 70 nm, respectively, which is less than the results of an optimized 80 nm Si 3N 4 SLAR (˜5.41%) and of an optimized DLAR with 80 nm Si 3N 4 and 100 nm magnesium fluoride (˜5.39%). 1% cell efficiency increase is observed for the optimized Si solar cell with Si 3N 4 SWS, compared with the cell with single layer Si 3N 4 antireflection coatings (ARCs); furthermore, compared with DLAR coated solar cell, the increase is about 0.71%. The improvement on the cell efficiency is mainly due to lower reflectance of Si 3N 4 SWS over a wavelength region from 400 to 600 nm that leads to lower short circuit current.

  7. Depth profiling of element concentrations in stratified materials by confocal microbeam X-ray fluorescence spectrometry with polychromatic excitation.

    PubMed

    Wrobel, Pawel; Wegrzynek, Dariusz; Czyzycki, Mateusz; Lankosz, Marek

    2014-11-18

    The confocal microbeam X-ray fluorescence technique is a well-established analytical tool that is widely used for qualitative and quantitative analysis of stratified materials. There are several different reconstruction methods dedicated to this type of samples. However, these methods are applicable with monochromatic excitation only. The full description of matrix effects and geometrical effects for polychromatic X-ray photons in confocal geometry is a demanding task. In the present paper, this problem was overcome by the use of effective energy approximation. The reduction of the whole energy dimension into one effective value eliminates the necessity of integration over the primary beam energy range for a number of basic parameters. This simplification is attainable without loss of the accuracy of analysis. The proposed approach was validated by applying it to the reconstruction of element concentration depth profiles of stratified standard samples measured with tabletop confocal microbeam X-ray fluorescence setup and by comparing the obtained results of two independent algorithms. PMID:25307861

  8. Visualization and quantitation of abundant macroautophagy in virus-infected cells by confocal three-dimensional fluorescence imaging.

    PubMed

    Jackson, Wallen; Yamada, Masaki; Moninger, Thomas; Grose, Charles

    2013-10-01

    Varicella-zoster virus (VZV) is a human herpesvirus. Primary infection causes varicella (chickenpox), a viremic illness typified by an exanthem consisting of several hundred vesicles. When VZV reactivates from latency in the spinal ganglia during late adulthood, the emerging virus causes a vesicular dermatomal rash (herpes zoster or shingles). To expand investigations of autophagy during varicella and zoster, newer 3D imaging technology was combined with laser scanning confocal microscopy to provide animations of autophagosomes in the vesicular rash. First, the cells were immunolabeled with antibodies against VZV proteins and the LC3 protein, an integral autophagosomal protein. Antibody reagents lacking activity against the human blood group A1 antigen were selected. After laser excitation of the samples, optimized emission detection bandwidths were configured by Zeiss Zen control software. Confocal Z-stacks comprising up to 40 optical slices were reconstructed into 3D animations with the aid of Imaris software. With this imaging technology, individual autophagosomes were clearly detectable as spheres within each vesicular cell. To enumerate the number of autophagosomes, data sets from 50 cells were reconstructed as 3D fluorescence images and analyzed with MeasurementPro software. The mean number of autophagosomes per infected vesicular cell was >100, although over 200 autophagosomes were seen in a few cells. In summary, macroautophagy was easily quantitated within VZV-infected cells after immunolabeling and imaging by 3D confocal animation technology. These same 3D imaging techniques will be applicable for investigations of autophagy in other virus-infected cells. PMID:23792686

  9. Let's Reflect

    NSDL National Science Digital Library

    This activity allows students to investigate line symmetry and reflections. Using a mirror, students locate the lines of symmetry. in a square and then proceed to find other shapes by reflecting parts of the square. Ideas for implementation, extension and support are included along with a printable worksheet of squares (.doc)

  10. APPLICATION OF PARTIAL LEAST SQUARES REGRESSION TO NEAR-INFRARED REFLECTANCE SPECTROSCOPIC DETERMINATION OF SHIVE CONTENT IN FLAX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shive, the non-fiberous core portion of the stem, in flax fiber after retting is related with fiber quality. The objective of this study is to develop a standard calibration model for determining shive content in retted flax by using near infrared reflectance spectroscopy. Calibration samples were p...

  11. On a multiple reflection time domain method in dielectric spectroscopy: Application to the study of some normal primary alcohols

    Microsoft Academic Search

    André Marie Bottreau; Yves Dutuit; Jacques Moreau

    1977-01-01

    The authors propose a time domain method of total reflected signals on a dielectric sample in a coaxial line. This method enables the determination of the complex constant of propagation of the medium to be studied and, consequently, its complex permittivity. Contrary to other similar methods employed up to now, this method needs neither iterative calculation nor nomograms. The validity

  12. Application of micro-attenuated total reflectance FTIR spectroscopy in the forensic study of questioned documents involving red seal inks

    Microsoft Academic Search

    Warnadi Dirwono; Jin Sook Park; M. R. Agustin-Camacho; Jiyeon Kim; Hyun-Mee Park; Yeonhee Lee; Kang-Bong Lee

    2010-01-01

    Red seal inks from Korea (6), Japan (1) and China (6) were studied to investigate the feasibility of micro-attenuated total reflectance (ATR) FTIR spectroscopy as a tool in the forensic study of questioned documents involving seal inks. The technique was able to differentiate red seal inks of similar colors and different manufacturers. Blind testing has shown that micro-ATR FTIR can

  13. New hybrid reflectance optical pulse oximetry sensor for lower oxygen saturation measurement and for broader clinical application

    Microsoft Academic Search

    Masamichi Nogawa; Chong Thong Ching; Takeyuki Ida; Keiko Itakura; Setsuo Takatani

    1997-01-01

    A new reflectance pulse oximeter sensor for lower arterial oxygen saturation (Sa)2) measurement has been designed and evaluated in animals prior to clinical trials. The new sensor incorporates ten light emitting diode chips for each wavelength of 730 and 880 nm mounted symmetrically and at the radial separation distance of 7 mm around a photodiode chip. The separation distance of

  14. Electron Standing Waves at a Surface During Reflection High Energy Electron Diffraction and Application to Structure Analysis

    Microsoft Academic Search

    Toshiro Yamanaka; Shozo Ino

    2000-01-01

    During observation of reflection high energy electron diffraction (RHEED), the interference between the incident and diffracted beams leads to the formation of surface electron standing waves. Characteristic X-ray emission is strongly excited if the atom exists in a strong wave field. Therefore, X-ray yields depends on the position of the atom and incident glancing angle (thetag) of the electron beam,

  15. Fluorescence Correlation Spectroscopy: A Review of Biochemical and Microfluidic Applications

    PubMed Central

    Tian, Yu; Martinez, Michelle M.

    2011-01-01

    Over the years fluorescence correlation spectroscopy (FCS) has proven to be a useful technique that has been utilized in several fields of study. Although FCS initially suffered from poor signal to noise ratios, the incorporation of confocal microscopy has overcome this drawback and transformed FCS into a sensitive technique with high figures of merit. In addition, tandem methods have evolved to include dual-color cross-correlation, total internal reflection fluorescence correlation, and fluorescence lifetime correlation spectroscopy combined with time-correlated single photon counting. In this review, we discuss several applications of FSC for biochemical, microfluidic, and cellular investigations. PMID:21396180

  16. Probe-based Confocal Laser Endomicroscopy of the Urinary Tract: The Technique

    PubMed Central

    Chang, Timothy C.; Liu, Jen-Jane; Liao, Joseph C.

    2013-01-01

    Probe-based confocal laser endomicroscopy (CLE) is an emerging optical imaging technology that enables real-time in vivo microscopy of mucosal surfaces during standard endoscopy. With applications currently in the respiratory1 and gastrointestinal tracts,2-6 CLE has also been explored in the urinary tract for bladder cancer diagnosis.7-10 Cellular morphology and tissue microarchitecture can be resolved with micron scale resolution in real time, in addition to dynamic imaging of the normal and pathological vasculature.7 The probe-based CLE system (Cellvizio, Mauna Kea Technologies, France) consists of a reusable fiberoptic imaging probe coupled to a 488 nm laser scanning unit. The imaging probe is inserted in the working channels of standard flexible and rigid endoscopes. An endoscope-based CLE system (Optiscan, Australia), in which the confocal endomicroscopy functionality is integrated onto the endoscope, is also used in the gastrointestinal tract. Given the larger scope diameter, however, application in the urinary tract is currently limited to ex vivo use.11 Confocal image acquisition is done through direct contact of the imaging probe with the target tissue and recorded as video sequences. As in the gastrointestinal tract, endomicroscopy of the urinary tract requires an exogenenous contrast agent—most commonly fluorescein, which can be administered intravenously or intravesically. Intravesical administration is a well-established method to introduce pharmacological agents locally with minimal systemic toxicity that is unique to the urinary tract. Fluorescein rapidly stains the extracellular matrix and has an established safety profile.12 Imaging probes of various diameters enable compatibility with different caliber endoscopes. To date, 1.4 and 2.6 mm probes have been evaluated with flexible and rigid cystoscopy.10 Recent availability of a < 1 mm imaging probe13 opens up the possibility of CLE in the upper urinary tract during ureteroscopy. Fluorescence cystoscopy (i.e. photodynamic diagnosis) and narrow band imaging are additional endoscope-based optical imaging modalities14 that can be combined with CLE to achieve multimodal imaging of the urinary tract. In the future, CLE may be coupled with molecular contrast agents such as fluorescently labeled peptides15 and antibodies for endoscopic imaging of disease processes with molecular specificity. PMID:23354133

  17. Probe-based confocal laser endomicroscopy of the urinary tract: the technique.

    PubMed

    Chang, Timothy C; Liu, Jen-Jane; Liao, Joseph C

    2013-01-01

    Probe-based confocal laser endomicroscopy (CLE) is an emerging optical imaging technology that enables real-time in vivo microscopy of mucosal surfaces during standard endoscopy. With applications currently in the respiratory and gastrointestinal tracts, CLE has also been explored in the urinary tract for bladder cancer diagnosis. Cellular morphology and tissue microarchitecture can be resolved with micron scale resolution in real time, in addition to dynamic imaging of the normal and pathological vasculature. The probe-based CLE system (Cellvizio, Mauna Kea Technologies, France) consists of a reusable fiberoptic imaging probe coupled to a 488 nm laser scanning unit. The imaging probe is inserted in the working channels of standard flexible and rigid endoscopes. An endoscope-based CLE system (Optiscan, Australia), in which the confocal endomicroscopy functionality is integrated onto the endoscope, is also used in the gastrointestinal tract. Given the larger scope diameter, however, application in the urinary tract is currently limited to ex vivo use. Confocal image acquisition is done through direct contact of the imaging probe with the target tissue and recorded as video sequences. As in the gastrointestinal tract, endomicroscopy of the urinary tract requires an exogenenous contrast agent-most commonly fluorescein, which can be administered intravenously or intravesically. Intravesical administration is a well-established method to introduce pharmacological agents locally with minimal systemic toxicity that is unique to the urinary tract. Fluorescein rapidly stains the extracellular matrix and has an established safety profile. Imaging probes of various diameters enable compatibility with different caliber endoscopes. To date, 1.4 and 2.6 mm probes have been evaluated with flexible and rigid cystoscopy. Recent availability of a < 1 mm imaging probe opens up the possibility of CLE in the upper urinary tract during ureteroscopy. Fluorescence cystoscopy (i.e. photodynamic diagnosis) and narrow band imaging are additional endoscope-based optical imaging modalities that can be combined with CLE to achieve multimodal imaging of the urinary tract. In the future, CLE may be coupled with molecular contrast agents such as fluorescently labeled peptides and antibodies for endoscopic imaging of disease processes with molecular specificity. PMID:23354133

  18. Expanding the realm of fiber optic confocal sensing for probing position, displacement, and velocity

    SciTech Connect

    Shafir, E.; Berkovic, G

    2006-10-20

    We describe a fiber optic confocal sensor (FOCOS) system that uses an optical fiber and a lens to accurately detect the position of an object at, or close to, the image plane of the fiber tip. The fiber characteristics (diameter and numerical aperture) and optics (lens F and magnification) define the span and precision of the sensor and may be chosen to fit a desired application of position and displacement sensing. Multiple measurement points (i.e., fiber-tip images) may be achieved by use of multiple wavelengths in the fiber, so that each wavelength images the fiber at a different plane due to the chromatic dispersion of the optics. Further multiplexing may be achieved by adding fibers on the optical axis. A FOCOS with multiplexed fibers and wavelengths may also be used for velocity measurements.

  19. Aerogel Track Morphology: Measurement, Three Dimensional Reconstruction and Particle Location using Confocal Laser Scanning Microscopy

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Ball, A. D.; Wozniakiewicz, P. A.; Graham, G. A.; Burchell, M. J.; Cole, M. J.; Horz, F.; See, T. H.

    2007-01-01

    The Stardust spacecraft returned the first undoubted samples of cometary dust, with many grains embedded in the silica aerogel collector . Although many tracks contain one or more large terminal particles of a wide range of mineral compositions , there is also abundant material along the track walls. To help interpret the full particle size, structure and mass, both experimental simulation of impact by shots and numerical modeling of the impact process have been attempted. However, all approaches require accurate and precise measurement of impact track size parameters such as length, width and volume of specific portions. To make such measurements is not easy, especially if extensive aerogel fracturing and discoloration has occurred. In this paper we describe the application and limitations of laser confocal imagery for determination of aerogel track parameters, and for the location of particle remains.

  20. MEMS-based handheld confocal microscope for in-vivo skin imaging

    PubMed Central

    Arrasmith, Christopher L.; Dickensheets, David L.; Mahadevan-Jansen, Anita

    2010-01-01

    This paper describes a handheld laser scanning confocal microscope for skin microscopy. Beam scanning is accomplished with an electromagnetic MEMS bi-axial micromirror developed for pico projector applications, providing 800x600 (SVGA) resolution at 56 frames per second. The design uses commercial objective lenses with an optional hemisphere front lens, operating with a range of numerical aperture from NA=0.35 to NA=1.1 and corresponding diagonal field of view ranging from 653 ?m to 216 ?m. Using NA=1.1 and a laser wavelength of 830 nm we measured the axial response to be 1.14 ?m full width at half maximum, with a corresponding 10%-90% lateral edge response of 0.39 ?m. Image examples showing both epidermal and dermal features including capillary blood flow are provided. These images represent the highest resolution and frame rate yet achieved for tissue imaging with a MEMS bi-axial scan mirror. PMID:20389391

  1. Design and development of multi functional confocal laser scanning microscope with UV / VIS laser source

    NASA Astrophysics Data System (ADS)

    Kanai, Yoshikazu; Kanzaki, Yousuke; Wakaki, Moriaki; Takeyama, Norihide

    2005-08-01

    A high resolution Confocal Laser Scanning Microscope (CLSM) with UV / VIS light sources was developed as the first step of multi-functional microscope. The optical system is designed to optimize for both UV and VIS wavelengths. An UV laser is used to achieve higher resolution, and a VIS is for multi functions. A new objective lens specialized for this application was designed and fabricated. Specification of the lens and the optical system is NA:0.95, EFL:2.5mm, WD:1.5mm, Resolution:160nm and achromatic for two wavelengths of UV 325.0nm / VIS 632.8nm. Several specimens were characterized to check the performance of the system. Some optical materials under study were measured for evaluation, and interesting results could be obtained. Multi-functional measurements are being planed as a next step. This system will help the research of nano-structures, photonic-crystals and biology.

  2. High-Definition Confocal Endomicroscopy of the Common Bile Duct

    PubMed Central

    Shieh, Frederick K.; Drumm, Hillary; Nathanson, Michael H.; Jamidar, Priya A.

    2011-01-01

    Background Probe-based confocal laser endomicroscopy (pCLE) of the common bile duct (CBD) is a new procedure that can be used for assessing indeterminate billiary strictures. The CBD has been examined using the CholangioFlex miniprobe (Mauna Kea Technologies, Paris, France) which has a lateral resolution of 3.5?m and diameter of <1.0 mm. However, larger-diameter higher-resolution confocal probes are available. We aimed to determine if pCLE of the CBD with the high-definition GastroFlexUHD miniprobe (UHDp) was feasible. This probe has a lateral resolution of 1?m and an outer diameter of 2.6mm. Methods Eleven consecutive patients undergoing ERCP for various indications at a single, large, academic center were included in the study. Examination of the CBD was attempted with the UHDp after injection of 2.5mL of 10% fluorescein. A 0.035 inch guidewire was first placed into the CBD and the confocal probe was subsequently inserted adjacent to the guidewire. Position of the miniprobe was identified fluoroscopically. Results The GastroFlexUHD miniprobe was successfully introduced into the CBD in 10 of 11 patients. Cellular structures and individual cell morphology seemed to be more clearly visualized with the UHDp as compared to the CholangioFlex probe. No significant side effects except one case of mild pancreatitis. Conclusions We demonstrate that high-definition pCLE of the CBD via the GastroFlexUHD miniprobe is feasible and may offer improved image quality over the standard CholangioFlex probe. Further studies are needed to see if this improves the diagnostic accuracy of bile duct lesions. PMID:22011583

  3. A confocal three-dimensional micro X-ray scattering technology based on Rayleigh to Compton ratio for identifying materials with similar density and different weight percentages of low-Z elements

    NASA Astrophysics Data System (ADS)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Yang, Chaolin; Sun, Xuepeng; Sun, Weiyuan; He, Jialin; Ding, Xunliang

    2015-07-01

    A point-by-point Rayleigh to Compton scattering ratio (R/C) imaging for two polymer materials with similar density and different weight percentages of low-Z elements was carried out by using the confocal three-dimensional (3D) micro X-ray scatter tomographic technology based on polycapillary X-ray optics. This confocal 3D micro X-ray scatter tomographic technique was based on the confocal configuration of a polycapillary focusing X-ray lens (PFXRL) in the excitation channel and a polycapillary parallel X-ray lens (PPXRL) in the detection channel, which let only the X-rays scattered from the confocal micro-volume overlapped by the input focal spot of the PPXRL and the output focal spot of the PFXRL be detected by the detector. The main scope of this study was using the confocal 3D micro X-ray scattering tomography based on the R/C ratio to characterize and identify materials with nearly equal low density and different weight percentages of low-Z elements, as other radiological techniques are difficult to discriminate them for their very close attenuation coefficients ? . A mapping of R/C ratios for two thermoplastic polymer materials was obtained, which provided the spatially resolved distribution of their effective atom numbers, and their differences were accordingly presented. This confocal 3D micro X-ray scatter tomographic technique has potential applications in fields such as material identification, dosimetry, medical imaging, carbonation cancer, and so on.

  4. The size control of silver nanocrystals with different polyols and its application to low-reflection coating materials

    NASA Astrophysics Data System (ADS)

    Park, Keum Hwan; Im, Sang Hyuk; Park, O. Ok

    2011-01-01

    The size of silver nanocrystals in polyol synthesis can be simply controlled by tuning the viscosity of the reaction medium such as ethylene glycol, 1,2-propanediol, 1,4-butanediol and 1,5-pentanediol. We found that a higher viscose medium (1,5-pentanediol) led to monodispersed smaller particles thanks to the slow addition of silver atoms into the nuclei. Size-controlled silver nanocrystals of 30 nm were obtained in a viscosity controlled medium of 1,5-pentanediol to synthesize a low refractive index filler by coating with silica and subsequent etching of the silver core. The coated low-reflection layer from the hollow silica nanoparticles on polyethylene terephthalate (PET) film can greatly reduce the reflection of the PET film from 10% to 2% over the entire visible region.

  5. The NIST Robotic Optical Scatter Instrument (ROSI) and its application to BRDF measurements of diffuse reflectance standards for remote sensing

    NASA Astrophysics Data System (ADS)

    Patrick, Heather J.; Zarobila, Clarence J.; Germer, Thomas A.

    2013-09-01

    We describe the robotic optical scatter instrument (ROSI), a new robotic arm-based goniometer for in-plane and outof- plane reflectance and bidirectional reflectance distribution function (BRDF) measurements of surfaces. The goniometer enables BRDF measurements to be made at nearly any combination of incident and scattering angles, without obstruction from frames or cradles that occur in traditional goniometers made of nested rotation stages. We present exploratory measurements of in-plane and hemispherically-scanned out-of-plane BRDF on a sintered white polytetrafluoroethylene (PTFE) sample using a supercontinuum fiber laser-based tunable light source operated at a wavelength of 550 nm, in order to demonstrate the capabilities of the system. An initial assessment of uncertainties is presented.

  6. Confocal imaging of biological tissues using second harmonic generation

    NASA Astrophysics Data System (ADS)

    Kim, Beop-Min; Stoller, Patrick C.; Reiser, Karen M.; Eichler, Juergen P.; Yan, Ming; Rubenchik, Alexander M.; Da Silva, Luiz B.

    2000-04-01

    A confocal microscopy imaging system was devised to selectively detect second harmonic signals generated by biological tissues. Several types of biological tissues were examined using this imaging system, including human teeth, bovine blood vessels, and chicken skin. All these tissues generated strong second harmonic signals. There is considerable evidence that the source of these signals in tissue is collagen. Collagen, the predominant component of most tissues, is known to have second order nonlinear susceptibility. This technique may have diagnostic usefulness in pathophysiological conditions characterized by changes in collagen structure including malignant transformation of nevi, progression of diabetic complications, and abnormalities in wound healing.

  7. Confocal imaging of biological tissues using second harmonic generation

    NASA Astrophysics Data System (ADS)

    Kim, Beop-Min; Stoller, Patrick C.; Reiser, Karen M.; Eichler, Juergen P.; Yan, Ming; Rubenchik, Alexander M.; Da Silva, Luiz B.

    2000-06-01

    A confocal microscopy imaging system was devised to selectively detect second harmonic signals generated by biological tissues. Several types of biological tissues were examined using this imaging system, including human teeth, bovine blood vessels, and chicken skin. All these tissues generated strong second harmonic signals. There is considerable evidence that the source of these signals in tissue is collagen. Collagen, the predominant component of most tissues, is known to have second order nonlinear susceptibility. This technique may have diagnostic usefulness in pathophysiological conditions characterized by changes in collagen structure including malignant transformation of nevi, progression of diabetic complications, and abnormalities in wound healing.

  8. Fast image restoration algorithm of differential confocal microscopy imaging

    NASA Astrophysics Data System (ADS)

    Wang, Guanyi; Liu, Dali; Qiu, Lirong

    2013-12-01

    Super resolution image restoration algorithm proposed in this paper uses the method of maximum likelihood estimation (MLE) to take image restoration processing of 2D steps image scanned by differential confocal imaging system, assuming that the image is based on Poisson distribution. For optical imaging system, this paper puts forward the more accurate point spread function (PSF) and the concept of image interval matching, and introduces automatic acceleration method and the iteration terminating standard. Experiments on the 2-D image of standard steps indicated that a lateral resolution of 0.1?m has achieved and the recovery time has been obviously shorten.

  9. A miniature confocal Raman probe for endoscopic use

    NASA Astrophysics Data System (ADS)

    Day, J. C. C.; Bennett, R.; Smith, B.; Kendall, C.; Hutchings, J.; Meaden, G. M.; Born, C.; Yu, S.; Stone, N.

    2009-12-01

    Raman spectroscopy is a powerful tool for studying biochemical changes in the human body. We describe a miniature, confocal fibre optic probe intended to fit within the instrument channel of a standard medical endoscope. This probe has been optimized for the study of the carcinogenesis process of oesophageal malignancy. The optical design and fabrication of this probe is described including the anisotropic wet etching technique used to make silicon motherboards and jigs. Example spectra of PTFE reference samples are shown. Spectra with acquisition times as low as 2 s from resected oesophageal tissue are presented showing identifiable biochemical changes from various pathologies.

  10. Confocal Imaging of Biological Tissues Using Second Harmonic Generation

    SciTech Connect

    Kim, B-M.; Stoller, P.; Reiser, K.; Eichler, J.; Yan, M.; Rubenchik, A.; Da Silva, L.

    2000-03-06

    A confocal microscopy imaging system was devised to selectively detect Second harmonic signals generated by biological tissues. Several types of biological tissues were examined using this imaging system, including human teeth, bovine blood vessels, and chicken skin. All these tissues generated strong second harmonic signals. There is considerable evidence that the source of these signals in tissue is collagen. Collagen, the predominant component of most tissues, is known to have second order nonlinear susceptibility. This technique may have diagnostic usefulness in pathophysiological conditions characterized by changes in collagen structure including malignant transformation of nevi, progression of diabetic complications, and abnormalities in wound healing.

  11. Advances in X-ray Reflectivity (XRR) and X-ray Fluorescence (XRF) Measurements Provide Unique Advantages for Semiconductor Applications

    Microsoft Academic Search

    Jennifer Spear; Hiroyuki Murakami; Shinichi Terada

    2003-01-01

    We have developed a thin-film metrology tool that fulfills the metrology requirements for the production of 65nm node technology and beyond. This tool combines X-ray Reflectivity (XRR) and X-ray Fluorescence (XRF) measurements to provide accurate, high throughput, measurements. Improvements in both the XRR and XRF configurations were made to allow high throughput measurements on films as thin as 0.5 nm.

  12. Design and Demonstration of a Miniature Catheter for a Confocal Microendoscope

    Microsoft Academic Search

    Andrew R. Rouse; Angelique Kano; Joshua A. Udovich; Shona M. Kroto; Arthur F. Gmitro

    2004-01-01

    The fluorescence confocal microendoscope provides high-resolution, in vivo imaging of cellular pathology during optical biopsy. The confocal microendoscope employs a flexible fiber-optic catheter coupled to a custom-built slit-scan confocal microscope. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The 3-mm-diameter catheter may be used on its own or routed though the instrument

  13. Optical axial scanning in confocal microscopy using an electrically tunable lens

    PubMed Central

    Jabbour, Joey M.; Malik, Bilal H.; Olsovsky, Cory; Cuenca, Rodrigo; Cheng, Shuna; Jo, Javier A.; Cheng, Yi-Shing Lisa; Wright, John M.; Maitland, Kristen C.

    2014-01-01

    This paper presents the use and characterization of an electrically focus tunable lens to perform axial scanning in a confocal microscope. Lateral and axial resolution are characterized over a >250 µm axial scan range. Confocal microscopy using optical axial scanning is demonstrated in epithelial tissue and compared to traditional stage scanning. By enabling rapid axial scanning, minimizing motion artifacts, and reducing mechanical complexity, this technique has potential to enhance in vivo three-dimensional imaging in confocal endomicroscopy. PMID:24575357

  14. Optimization of High Reflectivity Measurement by Cavity Ring-Down Technique

    Microsoft Academic Search

    Rong Liu; Xin Li; Honglu Hou; Zhi Yang; Jintao Bai

    2011-01-01

    The reflectivity of cavity mirror has a great influence on output power and conversion efficiency of laser. Based on pulsed cavity ring-down (CRD) technology, a single wavelength reflectivity measuring system is set up. Comparing the testing curves, the system, whose ring-down cavity is confocal cavity, could accurately determine the reflectivity of a mirror at the wavelength of 946nm. The average

  15. Confocal/TEM overlay microscopy: a simple method for correlating confocal and electron microscopy of cells expressing GFP/YFP fusion proteins.

    PubMed

    Keene, Douglas R; Tufa, Sara F; Lunstrum, Gregory P; Holden, Paul; Horton, William A

    2008-08-01

    Genetic manipulation allows simultaneous expression of green fluorescent protein (GFP) and its derivatives with a wide variety of cellular proteins in a variety of living systems. Epifluorescent and confocal laser scanning microscopy (confocal) localization of GFP constructs within living tissue and cell cultures has become routine, but correlation of light microscopy and high resolution transmission electron microscopy (TEM) on components within identical cells has been problematic. In this study, we describe an approach that specifically localizes the position of GFP/yellow fluorescent protein (YFP) constructs within the same cultured cell imaged in the confocal and transmission electron microscopes. We present a simplified method for delivering cell cultures expressing fluorescent fusion proteins into LR White embedding media, which allows excellent GFP/YFP detection and also high-resolution imaging in the TEM. Confocal images from 0.5-microm-thick sections are overlaid atop TEM images of the same cells collected from the next serial ultrathin section. The overlay is achieved in Adobe Photoshop by making the confocal image somewhat transparent, then carefully aligning features within the confocal image over the same features visible in the TEM image. The method requires no specialized specimen preparation equipment; specimens are taken from live cultures to embedding within 8 h, and confocal transmission overlay microscopy can be completed within a few hours. PMID:18598569

  16. Confocal microphotoluminescence of InGaN-based light-emitting diodes Koichi Okamoto,a

    E-print Network

    Okamoto, Koichi

    , Yoichi Kawakami, and Shigeo Fujita Department of Electronic Science and Engineering, Kyoto University by using confocal microscopy. Submicron-scale spatial inhomogeneities of both PL intensities and spectra

  17. Feasibility of Intratumoral Confocal Microscopy under Endoscopic Ultrasound Guidance

    PubMed Central

    Giovannini, Marc; Caillol, Fabrice; Poizat, Flora; Bories, Erwan; Pesenti, Christian; Monges, Genevieve; Raoul, Jean Luc

    2012-01-01

    The primary goal of this study was to develop descriptive image interpretation criteria and a classification of endoscopic ultrasound-confocal microscopy (EUS-CM) findings in pancreatic masses and lymph nodes through a review of prospectively obtained EUS-CM videos from proven malignant and benign cases, and to propose diagnostic criteria for predicting malignancy. The material used was a 19-G EUS-needle in which the stylet was replaced by the confocal mini-probe. The mini-probe pre-loaded in the EUS-needle was guided endosonographically in the target then the mini-probe was pushed under EUS guidance into the lesion. Eleven patients mean age 62.3 years underwent EUS for the staging of a pancreatic mass (3 cystic and 4 solid) or for the diagnosis of celiac and/or mediastinal LN (n = 4). Benign intraductal papillary mucinous neoplasm (IPMN) was characterized by the aspect of finger-like projections which correspond to the villous changes of intestinal IPMN type. In pancreatic adenocarcinomas, EUS-CM found vascular leakage with irregular vessels with leakage of fluorescein into the tumor, large dark clumps which correspond to humps of malignant cells. Inflammatory lymph nodes were characterized by the presence of diffuse small cells into a homogeneous stroma with a normal vascularization. At the opposite, EUS-CM showed in malignant lymph node glandular structures with dark cells, large dark clumps and an important neo-vascularization with huge leakage of fluorescein. PMID:24949342

  18. Interphase evolution in polymer films by confocal Raman microspectroscopy.

    PubMed

    Tomba, J Pablo; Carella, José M; Pastor, José M

    2006-02-01

    Liquid-glassy polymer diffusion is an important topic in polymer physics, with several mechanistic aspects that still remain unclear. Here we describe the use of confocal Raman microspectroscopy (CRM) to study directly several features of interphase evolution in a system of this type. The interphase studied was generated by contact between liquid polystyrene (PS) and glassy polyphenylene oxide (PPO). Interphase evolution on thin films made from these polymers was followed by depth profiling in combination with immersion optics. We also applied regularized deconvolution to improve the spatial resolution of the measurements. With the help of these techniques, we examined interphase PPO concentration profiles and kinetics of interphase evolution in the range 120-180 degrees C, well below the glass transition temperature of the PPO-based films (185 degrees C). Overall, the experiment captures the most important features needed to discern the mechanistic factors that control this process. In this sense, confocal Raman microspectroscopy emerges as one of the best experimental techniques for the study of diffusion kinetics in this type of system. PMID:16542562

  19. 3D behaviour of Frieden filters in confocal imaging.

    PubMed

    Boyer, G

    2003-01-01

    The three-dimensional (3D) focal behaviour of the super-resolving Frieden filters is investigated numerically. It is shown that, as the central bright spot is sharpened, super-giant secondary maximums are formed on the optic axis. These lobes are much higher that the well-known side-lobes inherent to spatial filtering that surround the restricted, utilisable field, whose characteristics in the meridional plane are depicted for various values of the space-bandwidth parameter and for various numbers of terms that compose the window function. The two-terms filter is found to present, for the first time to my knowledge, some axial apodizing properties. To be compatible with practical realisation, the use of this class of filters in a single- and two-photon confocally scanned system is discussed in terms of 3D super-resolution with an intentionally limited light-power loss. It is shown that these filters match particularly well with recently designed axial apodizers for the transmission-mode confocal scanning microscope and provide a 3D intensity point-spread volume reduction of variable amount as high as 37 percent. The filtering process is shown to vary significantly with the mode of operation. PMID:12932770

  20. Application of frustrated total internal reflection of millimeter waves for detection and evaluation of disbonds in dielectric joints

    NASA Astrophysics Data System (ADS)

    Kharkovsky, Sergey; Nanni, Emilio; Zoughi, Reza

    2008-03-01

    Millimeter waves penetrate inside of low loss dielectric materials and they are sensitive to the presence of internal interfaces and nonuniformities. This allows millimeter wave nondestructive inspection techniques to be utilized for inspecting dielectric composite structures. A disbond (a thin and extended airgap) in structures possessing adhesively bonded joints with complex geometries is commonly difficult to inspect. In this letter, we demonstrate the operational principle and the useful features of a millimeter wave technique, employing a frustrated total internal reflection of signals transmitted and received by dielectric waveguide probes for detecting and evaluating disbonds in such joints.

  1. Optical properties of silicon carbide for astrophysical applications. I. New laboratory infrared reflectance spectra and optical constants

    NASA Astrophysics Data System (ADS)

    Pitman, K. M.; Hofmeister, A. M.; Corman, A. B.; Speck, A. K.

    2008-05-01

    Aims: The SiC optical constants are fundamental inputs for radiative transfer (RT) models of astrophysical dust environments. However, previously published values contain errors and do not adequately represent the bulk physical properties of the cubic (?) SiC polytype usually found around carbon stars. We provide new, uncompromised optical constants for ?- and ?-SiC derived from single-crystal reflectance spectra and investigate quantitatively (i) whether there is any difference between ?- and ?-SiC that can be seen in infrared (IR) spectra and optical functions and (ii) whether weak features from ? 12.5-13.0 ?m need to be fitted. Methods: We measured mid- and far-IR reflectance spectra for two samples of 3C (?-)SiC and four samples of 6H (?-)SiC. For the latter group, we acquired polarized data (E bot c, E | c orientations). We calculated the real and imaginary parts of the complex refractive index (n(?) + ik(?)) and the ideal absorption coefficients via classical dispersion fits to our reflectance spectra. Results: We find that ?-SiC and E bot c ?-SiC have almost identical optical functions but that n(?) and k(?) for E | c ?-SiC are shifted to lower frequency. Peak positions determined for both 3C (?-) and 6H (?-)SiC polytypes agree with Raman measurements and show that a systematic error of 4 cm-1 exists in previously published IR analyses, attributable to inadequate resolution of older instruments for the steep, sharp modes of SiC. Weak modes are present for samples with impurities. Our calculated absorption coefficients are much higher than laboratory measurements. Whereas astrophysical dust grain sizes remain fairly unconstrained, SiC grains larger than about 1 ?m in diameter will be opaque at frequencies near the peak center. Conclusions: Previous optical constants for SiC do not reflect the true bulk properties, and they are only valid for a narrow grain size range. The new optical constants presented here will allow narrow constraints to be placed on the grain size and shape distribution that dominate in astrophysical environments. Tables 3-7 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/483/661

  2. Resolving radial composition gradients in polarized confocal raman spectra of individual 3C-SiC nanowires.

    PubMed

    Fréchette, Joëlle; Carraro, Carlo

    2006-11-22

    Silicon carbide nanowires are being actively pursued as components for nanoelectromechanical sensors, nanocatalytic elements, and nano-optical circuits able to operate in harsh environment, high temperature, and high power applications. The effect of geometric confinement and polarization anisotropy in confocal Raman spectroscopy has been employed to detect axial and radial composition information in individual nanowires. Polarization anisotropy causes a significant increase in signal from the surface layer (relative to bulk), and combined with the increased surface-to-volume ratio at the nanoscale, it allows for the direct characterization of bulk and surface defects. PMID:17105265

  3. Application FT-NIR in rapid estimation of soluble solids content of intact kiwifruits by reflectance mode

    NASA Astrophysics Data System (ADS)

    Ying, Yibin; Lu, Huishan; Fu, Xiaping; Liu, Yande; Xu, Huirong; Yu, Haiyan

    2005-11-01

    Nondestructive method of measuring soluble solids content (SSC) of kiwifruit was developed by Fourier transform near infrared (FT-NIR) reflectance and fiber optics. Also, the models describing the relationship between SSC and the NIR spectra of the fruit were developed and evaluated. To develop the models several different NIR reflectance spectra were acquired for each fruit from a commercial supermarket. Different spectra correction algorithms (standard normal variate (SNV), multiplicative signal correction (MSC)) were used in this work. The relationship between laboratory SSC and FT-NIR spectra of kiwifruits were analyzed via principle component regression (PCR) and partial least squares (PLS) regression method using TQ 6.2.1 quantitative software (Thermo Nicolet Co., USA). Models based on the different spectral ranges were compared in this research. The first derivative and second derivative were applied to all measured spectra to reduce the effects of sample size, light scattering, noise of instrument, etc. Different baseline correction methods were applied to improve the spectral data quality. Among them the second derivative method after baseline correction produced best noise removing capability and to obtain optimal calibration models. Total 480 NIR spectra were acquired from 120 kiwifruits and 90 samples were used to develop the calibration model, the rest samples were used to validate the model. Developed PLS model, which describes the relationship between SSC and NIR spectra, could predict SSC of 84 unknown samples with correlation coefficient of 0.9828 and SEP of 0.679 Brix.

  4. Structural and optical properties of ITO/TiO2 anti-reflective films for solar cell applications

    PubMed Central

    2014-01-01

    Indium tin oxide (ITO) and titanium dioxide (TiO2) anti-reflective coatings (ARCs) were deposited on a (100) P-type monocrystalline Si substrate by a radio-frequency (RF) magnetron sputtering. Polycrystalline ITO and anatase TiO2 films were obtained at room temperature (RT). The thickness of ITO (60 to 64 nm) and TiO2 (55 to 60 nm) films was optimized, considering the optical response in the 400- to 1,000-nm wavelength range. The deposited films were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM). The XRD analysis showed preferential orientation along (211) and (222) for ITO and (200) and (211) for TiO2 films. The XRD analysis showed that crystalline ITO/TiO2 films could be formed at RT. The crystallite strain measurements showed compressive strain for ITO and TiO2 films. The measured average optical reflectance was about 12% and 10% for the ITO and TiO2 ARCs, respectively. PMID:24721986

  5. The area of applicability of apparatus for analyzing the spectral characteristics of reflection, albedo and color parameters of flat objects

    NASA Astrophysics Data System (ADS)

    Gorbunova, Elena V.; Chertov, Aleksandr N.; Peretyagin, Vladimir S.; Lastovskaia, Elena A.; Korotaev, Valery V.

    2015-03-01

    Quality control of different coatings (colorful, paint, marker, safety, etc.) that are applied to the surface of various objects (both metallic and non-metallic) is an important problem. Also, there is a problem of dealing with counterfeit products. So it's necessary to distinguish the fake replicas of marking from the authentic marking of producer. To solve these problems, we propose an automated apparatus for analysis and control of spectral reflection characteristics, albedo and color parameters of extended (up to 150 mm × 150 mm) flat objects. It allows constructing the color image of the object surface as well as its multispectral images in different regions of the spectrum. Herewith the color of the object surface can be calculated for various standard light sources (A, B, C, D65, E, F2, F7, F11, GE), or to any light source with a predetermined emission spectrum. The paper presents the description of working principles of the proposed apparatus as well as the results of reflection and multispectral analysis of different flat objects.

  6. Lateral diffusion measurement at high spatial resolution by scanning microphotolysis in a confocal microscope.

    PubMed Central

    Kubitscheck, U; Wedekind, P; Peters, R

    1994-01-01

    Fluorescence photobleaching methods have been widely used to study diffusion processes in the plasma membrane of single living cells and other membrane systems. Here we describe the application of a new photobleaching technique, scanning microphotolysis. Employing a recently developed extension module to a commercial confocal microscope, an intensive laser beam was switched on and off during scanning according to a user definable image mask. Thereby the location, geometry, and number of photolysed spots could be chosen arbitrarily, their size ranging from tens of micrometers down to the diffraction limit. Therewith we bleached circular areas on the surface of single living 3T3 cells labeled with the fluorescent lipid analog NBD-HPC. Subsequently, the fluorescence recovery process was observed using the attenuated laser beam for excitation. This yielded image stacks representing snapshots of the spatial distribution of fluorescent molecules. From these we computed the radial distribution functions of the photobleached dye molecules. The variance of these distributions is linearly related to the diffusion constant, time, and the mobile fraction of the diffusing species. Furthermore, we compared directly the theoretically expected and measured distribution functions, and could thus determine the diffusion coefficient from each single image. The results of these two new evaluation methods (D = 0.3 +/- 0.1 micron 2/s) agreed well with the outcome of conventional fluorescence recovery measurements. We show that by scanning microphotolysis information on dynamical processes such as diffusion of lipids or proteins can be acquired at the superior spatial resolution of a confocal laser scanning microscope. Images FIGURE 2 Fig.2b PMID:7811951

  7. Synchrotron Infrared Confocal Microspectroscopical Detection of Heterogeneity Within Chemically Modified Single Starch Granules

    SciTech Connect

    Wetzel, D.; Shi, Y; Reffner, J

    2010-01-01

    This reports the first detection of chemical heterogeneity in octenyl succinic anhydride modified single starch granules using a Fourier transform infrared (FT-IR) microspectroscopical technique that combines diffraction-limited infrared microspectroscopy with a step size that is less than the mask projected spot size focused on the plane of the sample. The high spatial resolution was achieved with the combination of the application of a synchrotron infrared source and the confocal image plane masking system of the double-pass single-mask Continuum{reg_sign} infrared microscope. Starch from grains such as corn and wheat exists in granules. The size of the granules depends on the plant producing the starch. Granules used in this study typically had a median size of 15 {micro}m. In the production of modified starch, an acid anhydride typically is reacted with OH groups of the starch polymer. The resulting esterification adds the ester carbonyl (1723 cm{sup -1}) organic functional group to the polymer and the hydrocarbon chain of the ester contributes to the CH{sub 2} stretching vibration to enhance the intensity of the 2927 cm{sup -1} band. Detection of the relative modifying population on a single granule was accomplished by ratioing the baseline adjusted peak area of the carbonyl functional group to that of a carbohydrate band. By stepping a confocally defined infrared beam as small as 5 {micro}m x 5 {micro}m across a starch granule 1 {micro}m at a time in both the x and y directions, the heterogeneity is detected with the highest possible spatial resolution.

  8. Seismic Reflection and Refraction

    NSDL National Science Digital Library

    This web site provides a brief introduction to the process of seismic exploration. Included are a definition of seismic exploration, a listing of possible applications of seismic methods, definitions of seismic reflection and refraction, and an explanation of data processing with seismic methods. The text descriptions are accompanied by visualizations helping to aid the reader in their understanding of the concepts discussed.

  9. Dimensional metrology of lab-on-a-chip internal structures: a comparison of optical coherence tomography with confocal fluorescence microscopy.

    PubMed

    Reyes, D R; Halter, M; Hwang, J

    2015-07-01

    The characterization of internal structures in a polymeric microfluidic device, especially of a final product, will require a different set of optical metrology tools than those traditionally used for microelectronic devices. We demonstrate that optical coherence tomography (OCT) imaging is a promising technique to characterize the internal structures of poly(methyl methacrylate) devices where the subsurface structures often cannot be imaged by conventional wide field optical microscopy. The structural details of channels in the devices were imaged with OCT and analyzed with an in-house written ImageJ macro in an effort to identify the structural details of the channel. The dimensional values obtained with OCT were compared with laser-scanning confocal microscopy images of channels filled with a fluorophore solution. Attempts were also made using confocal reflectance and interferometry microscopy to measure the channel dimensions, but artefacts present in the images precluded quantitative analysis. OCT provided the most accurate estimates for the channel height based on an analysis of optical micrographs obtained after destructively slicing the channel with a microtome. OCT may be a promising technique for the future of three-dimensional metrology of critical internal structures in lab-on-a-chip devices because scans can be performed rapidly and noninvasively prior to their use. PMID:25854812

  10. Advances in X-ray Reflectivity (XRR) and X-ray Fluorescence (XRF) Measurements Provide Unique Advantages for Semiconductor Applications

    NASA Astrophysics Data System (ADS)

    Spear, Jennifer; Murakami, Hiroyuki; Terada, Shinichi

    2003-09-01

    We have developed a thin-film metrology tool that fulfills the metrology requirements for the production of 65nm node technology and beyond. This tool combines X-ray Reflectivity (XRR) and X-ray Fluorescence (XRF) measurements to provide accurate, high throughput, measurements. Improvements in both the XRR and XRF configurations were made to allow high throughput measurements on films as thin as 0.5 nm. The source intensity for the XRR measurements was increased using focusing X-ray optics. Wafer alignment, which is critical for XRR measurements to be accurate, is done using both X-rays and lasers to reduce the time required. A monochromatic X-ray source is used for XRF measurements since peak-to-background ratio is extremely important when detecting the XRF signal from ultra-thin films.

  11. Using Photoshop with images created by a confocal system.

    PubMed

    Sedgewick, Jerry

    2014-01-01

    Many pure colors and grayscales tones that result from confocal imaging are not reproducible to output devices, such as printing presses, laptop projectors, and laser jet printers. Part of the difficulty in predicting the colors and tones that will reproduce lies in both the computer display, and in the display of unreproducible colors chosen for fluorophores. The use of a grayscale display for confocal channels and a LUT display to show saturated (clipped) tonal values aids visualization in the former instance and image integrity in the latter. Computer monitors used for post-processing in order to conform the image to the output device can be placed in darkened rooms, and the gamma for the display can be set to create darker shadow regions, and to control the display of color. These conditions aid in visualization of images so that blacks are set to grayer values that are more amenable to faithful reproduction. Preferences can be set in Photoshop for consistent display of colors, along with other settings to optimize use of memory. The Info window is opened so that tonal information can be shown via readouts. Images that are saved as indexed color are converted to grayscale or RGB Color, 16-bit is converted to 8-bit when desired, and colorized images from confocal software is returned to grayscale and re-colorized according to presented methods so that reproducible colors are made. Images may also be sharpened and noise may be reduced, or more than one image layered to show colocalization according to specific methods. Images are then converted to CMYK (Cyan, Magenta, Yellow and Black) for consequent assignment of pigment percentages for printing presses. Changes to single images and multiple images from image stacks are automated for efficient and consistent image processing changes. Some additional changes are done to those images destined for 3D visualization to better separate regions of interest from background. Files are returned to image stacks, saved and then printed to best reveal colors, contrast, details and features. PMID:24052348

  12. Darkfield adapter for whole slide imaging: adapting a darkfield internal reflection illumination system to extend WSI applications.

    PubMed

    Kawano, Yoshihiro; Higgins, Christopher; Yamamoto, Yasuhito; Nyhus, Julie; Bernard, Amy; Dong, Hong-Wei; Karten, Harvey J; Schilling, Tobias

    2013-01-01

    We present a new method for whole slide darkfield imaging. Whole Slide Imaging (WSI), also sometimes called virtual slide or virtual microscopy technology, produces images that simultaneously provide high resolution and a wide field of observation that can encompass the entire section, extending far beyond any single field of view. For example, a brain slice can be imaged so that both overall morphology and individual neuronal detail can be seen. We extended the capabilities of traditional whole slide systems and developed a prototype system for darkfield internal reflection illumination (DIRI). Our darkfield system uses an ultra-thin light-emitting diode (LED) light source to illuminate slide specimens from the edge of the slide. We used a new type of side illumination, a variation on the internal reflection method, to illuminate the specimen and create a darkfield image. This system has four main advantages over traditional darkfield: (1) no oil condenser is required for high resolution imaging (2) there is less scatter from dust and dirt on the slide specimen (3) there is less halo, providing a more natural darkfield contrast image, and (4) the motorized system produces darkfield, brightfield and fluorescence images. The WSI method sometimes allows us to image using fewer stains. For instance, diaminobenzidine (DAB) and fluorescent staining are helpful tools for observing protein localization and volume in tissues. However, these methods usually require counter-staining in order to visualize tissue structure, limiting the accuracy of localization of labeled cells within the complex multiple regions of typical neurohistological preparations. Darkfield imaging works on the basis of light scattering from refractive index mismatches in the sample. It is a label-free method of producing contrast in a sample. We propose that adapting darkfield imaging to WSI is very useful, particularly when researchers require additional structural information without the use of further staining. PMID:23520500

  13. Darkfield Adapter for Whole Slide Imaging: Adapting a Darkfield Internal Reflection Illumination System to Extend WSI Applications

    PubMed Central

    Kawano, Yoshihiro; Higgins, Christopher; Yamamoto, Yasuhito; Nyhus, Julie; Bernard, Amy; Dong, Hong-Wei; Karten, Harvey J.; Schilling, Tobias

    2013-01-01

    We present a new method for whole slide darkfield imaging. Whole Slide Imaging (WSI), also sometimes called virtual slide or virtual microscopy technology, produces images that simultaneously provide high resolution and a wide field of observation that can encompass the entire section, extending far beyond any single field of view. For example, a brain slice can be imaged so that both overall morphology and individual neuronal detail can be seen. We extended the capabilities of traditional whole slide systems and developed a prototype system for darkfield internal reflection illumination (DIRI). Our darkfield system uses an ultra-thin light-emitting diode (LED) light source to illuminate slide specimens from the edge of the slide. We used a new type of side illumination, a variation on the internal reflection method, to illuminate the specimen and create a darkfield image. This system has four main advantages over traditional darkfield: (1) no oil condenser is required for high resolution imaging (2) there is less scatter from dust and dirt on the slide specimen (3) there is less halo, providing a more natural darkfield contrast image, and (4) the motorized system produces darkfield, brightfield and fluorescence images. The WSI method sometimes allows us to image using fewer stains. For instance, diaminobenzidine (DAB) and fluorescent staining are helpful tools for observing protein localization and volume in tissues. However, these methods usually require counter-staining in order to visualize tissue structure, limiting the accuracy of localization of labeled cells within the complex multiple regions of typical neurohistological preparations. Darkfield imaging works on the basis of light scattering from refractive index mismatches in the sample. It is a label-free method of producing contrast in a sample. We propose that adapting darkfield imaging to WSI is very useful, particularly when researchers require additional structural information without the use of further staining. PMID:23520500

  14. Application of P-wave reflection imaging to unknown bridge foundations and comparison with other non-destructive test methods

    NASA Astrophysics Data System (ADS)

    Kermani, Behnoud

    Proper design of bridge structures requires an appreciation for the possible failure mechanisms that can develop over the lifetime of the bridge, many of which are related to natural hazards. For example, scour is one of the most common causes of bridge failures. Scour occurs due to the erosion of soil and sediment within a channel with flowing water. During a flood event, the extent of scour can be so great that it can destabilize an existing bridge structure. In order to evaluate the scour potential of a bridge, it is necessary to have information regarding the substructure, particularly the bridge foundations. However, as of 2011 there are more than 40,000 bridges across United States with unknown foundations. Generally for these bridges there are no design or as-built plans available to show the type, depth, geometry, or materials incorporated into the foundations. Several non-destructive testing (NDT) methods have been developed to evaluate these unknown foundations. The primary objective of this research is to identify the most current and widely used NDT methods for determining the embedment depth of unknown bridge foundations and to compare these methods to an ultrasonic P-wave reflection imaging system. The ultrasonic P-wave reflection system has tremendous potential to provide more information and address several short-comings of other NDT methods. A laboratory study was initiated to explore various aspects related to the P-wave system performance, in order to characterize the limitations of the system in evaluation of unknown foundations prior to deployment in field studies. Moreover, field testing was performed using the P-wave system and a number of the current NDT methods at two selected bridge foundations to allow comparison between the results.

  15. Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using a

    E-print Network

    Wang, Lihong

    Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using to si- mulate the optical fluence distribution in tissue in dark-field confocal photoacoustic microscopy shown great potential in ima- ging subcutaneous structure and functions [3­7]. PAM employs a dark-field

  16. An Interactive Visualization Tool for Multi-channel Confocal Microscopy Data in Neurobiology Research

    E-print Network

    Utah, University of

    An Interactive Visualization Tool for Multi-channel Confocal Microscopy Data in Neurobiology--Confocal microscopy is widely used in neurobiology for studying the three-dimensional structure of the nervous system years, the techniques standardly used in neurobiological research are somewhat rudimentary

  17. Characterization of Polymer Blends: Optical Microscopy (*Polarized, Interference and Phase Contrast Microscopy*) and Confocal Microscopy

    SciTech Connect

    Ramanathan, Nathan Muruganathan [ORNL; Darling, Seth B. [Argonne National Laboratory (ANL)

    2015-01-01

    Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.

  18. A CONFOCAL LONGITUDINAL MODE SELECTOR FOR SINGLE-FREQUENCY OPERATION OF GAS LASERS

    Microsoft Academic Search

    Douglas C. Sinclair

    1968-01-01

    A new type of mode selector is described which uses a short confocal cavity illuminated off-axis. The mode selector is generally similar to a Fox-Smith interferometer, but is easier to use, because it does not need to be mode-matched to the laser. Experimental results obtained using the confocal interferometer with an argon-ion laser are described.

  19. In Vivo Three-Dimensional Reconstruction of the Cornea from Confocal Microscopy Images

    Microsoft Academic Search

    Fabio Scarpa; Diego Fiorin; Alfredo Ruggeri

    2007-01-01

    Confocal microscopy can provide sequences of Images from all cornea layers in a rapid, in vivo and non invasive way. These images are useful to extract important clinical information on cornea state of health. We address the problem of obtaining a 3-dimensional (3D) reconstruction of the cornea starting from a confocal microscope sequence, from endothelium to epithelium. A registration procedure,

  20. Description and performance of a highly versatile, low-cost fiber-optic confocal Raman microscope

    E-print Network

    Myrick, Michael Lenn

    Description and performance of a highly versatile, low-cost fiber-optic confocal Raman microscope C for publication 29 September 1995 A versatile fiber-optic confocal Raman microscope has been developed. Fiber optics provide remote capabilities for the microscope and the ability to use multiple excitation sources

  1. Fiber-based confocal microscope for cryogenic spectroscopy Alexander Hgele,1,a

    E-print Network

    Ludwig-Maximilians-Universität, München

    Fiber-based confocal microscope for cryogenic spectroscopy Alexander Högele,1,a Stefan Seidl,1 and performance of a fiber-based confocal microscope for cryogenic operation. The microscope combines positioning sweeps, as well as magnetic field variation between -9 and 9 T. As a demonstration of the microscope

  2. Reproducibility of fundus autofluorescence measurements obtained using a confocal scanning laser ophthalmoscope

    Microsoft Academic Search

    Noemi Lois; Anthony S Halfyard; Catey Bunce; Alan C Bird; Fredrick W Fitzke

    1999-01-01

    AIMTo evaluate the reproducibility of the background fundus autofluorescence measurements obtained using a confocal scanning laser ophthalmoscope.METHODS10 normal volunteers and 10 patients with retinal disease were included in the study. One eye per subject was chosen randomly. Five images of the same eye of each individual were obtained, after pupillary dilatation, by two investigators using a confocal scanning laser ophthalmoscope.

  3. Confocal Microscopy of the Light Organ Crypts in Juvenile Euprymna scolopes Reveals Their

    E-print Network

    McFall-Ngai, Margaret

    Confocal Microscopy of the Light Organ Crypts in Juvenile Euprymna scolopes Reveals crypts of a specialized light organ. Three- dimensional analyses using confocal microscopy revealed that each of the three crypts on either side of the juvenile light organ is composed of four morphological

  4. Comparison of measurements of neuroretinal rim area between confocal laser scanning tomography and planimetry of photographs

    Microsoft Academic Search

    Jost B Jonas; Christian Y Mardin; Anselm E Gründler

    1998-01-01

    BACKGROUNDTo compare neuroretinal rim area measurements by confocal scanning laser tomography and planimetric evaluation of optic disc photographs.METHODSFor 221 patients with primary and secondary open angle glaucoma, 72 subjects with ocular hypertension, and 139 normal subjects, the optic disc was morphometrically analysed by the confocal scanning laser tomograph HRT (Heidelberg retina tomograph) and by planimetric evaluation of stereo colour optic

  5. Affine correction without correspondence applied to 4D cellular motion in confocal microscopy

    E-print Network

    van Vliet, Lucas J.

    of proteins in the cell during the cell cycle is presumably a process that plays a role in RNA transcription Delft University of Technology Department of Molecular Cell Biology Delft, The Netherlands Laboratory.Molenaar,R.W.Dirks}@lmuc.nl Keywords: motion parameters, confocal microscopy, living cells, interia tensor Abstract Nowadays, confocal

  6. LASER CONFOCAL MICROSCOPY AND GEOGRAPHIC INFORMATION SYSTEMS IN THE STUDY OF DENTAL MORPHOLOGY

    E-print Network

    Jernvall, Jukka

    LASER CONFOCAL MICROSCOPY AND GEOGRAPHIC INFORMATION SYSTEMS IN THE STUDY OF DENTAL MORPHOLOGY with eosin dye are optically sectioned with 25-100 µm intervals using a laser confocal microscope Systems in the Study of Dental Morphology. Palaeontologia Electronica, 2(1): 18., 905KB http

  7. Optical reflectance of metallic coatings: Effect of aluminum flake orientation

    Microsoft Academic Search

    Li-Piin Sung; Maria E. Nadal; Mary E. McKnight; Egon Marx; Brent Laurenti

    2002-01-01

    A set of aluminum-flake pigmented coatings having different flake orientations was prepared using various spraying conditions.\\u000a The flake surface topography and the orientations of individual flakes were determined from images obtained by laser scanning\\u000a confocal microscopy. Reflectance measurements were carried out to quantify the optical properties of the coatings. Both a\\u000a Gaussian distribution (used to represent the measured flake orientation

  8. Applicability of direct total reflection X-ray fluorescence spectrometry for multielement analysis of geological and environmental objects

    NASA Astrophysics Data System (ADS)

    Cherkashina, T. Yu.; Panteeva, S. V.; Pashkova, G. V.

    2014-09-01

    The research aim is to demonstrate our experience in the applicability of TXRF analysis of various geological and environmental objects using minimal sample treatment. The study was focused on the evaluation of different factors affecting the TXRF results obtained for solid and liquid samples such as rock, mineral, ore, and natural water. Powdered geological samples were prepared as suspensions. Natural water samples were analyzed directly or after dilution. Testing various experimental parameters, e.g. sample amount, type of dispersant, and others was performed. For chosen conditions of the sample preparation procedure analytical figures of merit were estimated. Presented analytical results display the possibilities of TXRF applications in geological and environmental fields.

  9. Spherical Reflections

    NSDL National Science Digital Library

    The Exploratorium

    2011-12-07

    In this art meets science activity, learners pack silver, ball-shaped ornaments in a single layer in a box to create an array of spherical reflectors. Learners can use this as a tool to study the properties of spherical mirrors while creating colorful mosaic reflections. This is a great optics activity to use during the holiday season or any time of year.

  10. Reflectivity Fingerprints

    NSDL National Science Digital Library

    2012-08-03

    In this problem set, learners will analyze a table on the reflectivity of various substances to three kinds of wavelengths in order to answer a series of questions. Answer key is provided. This is part of Earth Math: A Brief Mathematical Guide to Earth Science and Climate Change.

  11. Evaluation of hydrogen ion concentrations in prostates from rats and dogs using fluorescent confocal microscopy.

    PubMed

    Lyubimov, Alexander V; Carr, Seraya N; Brown, Alan P; Art, Jonathan J; Crowell, James A; Levine, Barry S

    2005-09-01

    The knowledge of intracellular spatial distribution of pH in prostates in animal models reflective of human prostate may have implications for drug development upon pH dependent drug delivery and activity. Freshly dissected prostate tissues (in vitro) or the entire prostate gland (in vivo) were loaded with fluorescent dyes and viewed using confocal microscopy. Images were initially taken in tissues perfused with RPMI-1640 medium. Calibration in situ was performed with high potassium buffers of known pH containing nigericin. Acetoxymethyl ester carboxy-SNARF-1 was visible in epithelial cells (but not stroma) in rat and dog prostates. The pH of lysosomes in prostate epithelial cells was 5.2 as determined by fluorescence of Lyso Sensor Green DND-189. A method of in situ confirmation of tissue viability was developed by a secondary loading and visualization of the BCECF fluorescent dye. Besides the direct measurement of the pH in rat and dog tissues (pH approximately 7.0), a method of pH measurement in prostate tissue (rather than in cell culture) was developed. PMID:15982897

  12. A study of hydrogenated carbon fibers by scanning electron microscopy and confocal laser scanning microscopy.

    PubMed

    de la Cal, Antonio Madroñero; Aguado-Serrano, Juan; Rojas-Cervantes, Maria Luisa; Adame, Elena V Rosa; Marron, Belen Sarmiento; Rosende, Africa Castro; Nevshupa, Roman

    2009-06-01

    The hydrogen absorption process is studied in carbonaceous fibers produced from a mixture of methane and hydrogen. The absorption of the hydrogen was examined in two types of fibers, in "as-grown" state and after a process of desorption during an annealing to 1.473 K under vacuum. Later to its production process, the fibers withstand an oxidation in air to 973 K. The fibers were examined by means of scanning electron microscopy (SEM) and confocal microscopy by reflection. Differences in the behavior during the oxidation were observed between the fibers in as-grown state and those subjected to a further annealing. It could be verified that the fibers were really constituted by two different phases. In one of the phases, the storage of the hydrogen absorbed took place, whereas in the other phase there was no alteration. The process of annealing prior to the absorption of the hydrogen has an appreciable effect on the desorption rate of the hydrogen. PMID:19208389

  13. Confocal laser endomicroscopy in inflammatory bowel diseases: Dream or reality?

    PubMed Central

    De Palma, Giovanni Domenico; Rispo, Antonio

    2013-01-01

    Confocal laser endomicroscopy (CLE) is a newly introduced procedure that provide real-time, high-resolution imaging of the gastrointestinal mucosa during endoscopy, allowing the visualization of the pathology of the mucosal epithelium with its cellular and subcellular structures. Recently, the use of CLE was reported in the study of colonic mucosa in patients with inflammatory bowel diseases and in particular in patients affected by ulcerative colitis. CLE has the potential to have an important role in management of inflammatory bowel diseases (IBD) patients as it can be used to assess the grading of colitis and in detection of microscopic colitis in endoscopically silent segments. Moreover, CLE can be used in surveillance programs especially in high-risk patients. Finally, CLE has been effectively used in diagnosing a biliary dysplasia/neoplasia in patients with primary sclerosing cholangitis, a pathological condition frequently associated with IBD, with a coexisting bile duct stricture. PMID:24039350

  14. Confocal Microendoscopy of Neuromuscular Synapses in Living Mice.

    PubMed

    Blanco, Gonzalo; Ribchester, Richard R

    2012-01-01

    Here we describe a step-by-step method for vital imaging of neuromuscular junctions (NMJ) and axons using fiber-optic confocal microendoscopy (CME). A commercially available system, the Cellvizio Lab, can be applied to transgenic mouse lines expressing yellow fluorescent protein in all or pseudorandom sub-subsets of motor neurons. Microscopic imaging in vivo is achieved by means of a flexible optical fiber probe that excites and collects the emitted light from fluorescently labeled structures. The hand-held probe is introduced through small skin incisions to visualize nerves and neuromuscular junctions from superficial muscles. Interpolation software then reconstructs the images in real time. The images are of sufficient quality to permit screening of axonal and neuromuscular synaptic integrity and other aspects of their phenotype in live animals. Curr. Protoc. Mouse Biol. 2:1-8 © 2012 by John Wiley & Sons, Inc. PMID:26069002

  15. Confocal Laser Endomicroscopy for Diagnosis of Barrett’s Esophagus

    PubMed Central

    Neumann, Helmut; Langner, Cord; Neurath, Markus F.; Vieth, Michael

    2012-01-01

    Barrett’s esophagus (BE) is established as a premalignant condition in the distal esophagus. Current surveillance guidelines recommend random biopsies every 1–2?cm at intervals of 3–5?years. Advanced endoscopic imaging of BE underwent several technical revolutions within the last decade including broad-field (red-flag) techniques (e.g., chromoendoscopy) and small-field techniques with confocal laser endomicroscopy (CLE) at the forefront. In this review we will focus on advanced endoscopic imaging using CLE for the diagnosis and characterization of BE and associated neoplasia. In addition, we will critically discuss the technique of CLE and provide some tricks and hints for the daily routine practice of CLE for diagnosis of BE. PMID:22645719

  16. Endocrine and metabolic disease: Confocal microscopy as a diagnostic aid

    PubMed Central

    Bhutani, Jaikrit; Chakinala, Raja Chandra; Bhutani, Sukriti; Sachdeva, Shruti

    2015-01-01

    Diabetes is a systemic disease associated with many complications. These can be prevented and managed effectively if detected promptly. Confocal microscopy (CFM) is a diagnostic tool which has the potential to help in early detection of disease and timely management. CFM has the potential to serve as an excellent noninvasive modality for in vivo imaging and morphological analysis, which can aid us in assessing and monitoring various infectious and pathological diseases at the cellular level. Besides ophthalmological indications, CFM has shown good sensitivity and specificity for identifying those at risk of neuropathy and foot ulceration, monitoring evolution and therapeutic response in a wide range of neuropathies apart from diabetic neuropathy. Through this communication, we aim to sensitize the endocrinologists towards cerebral cavernous malformation as a biomarker to evaluate potential outcomes and therapies in human diabetic neuropathy. PMID:25593848

  17. Error analysis for a laser differential confocal radius measurement system.

    PubMed

    Wang, Xu; Qiu, Lirong; Zhao, Weiqian; Xiao, Yang; Wang, Zhongyu

    2015-02-10

    In order to further improve the measurement accuracy of the laser differential confocal radius measurement system (DCRMS) developed previously, a DCRMS error compensation model is established for the error sources, including laser source offset, test sphere position adjustment offset, test sphere figure, and motion error, based on analyzing the influences of these errors on the measurement accuracy of radius of curvature. Theoretical analyses and experiments indicate that the expanded uncertainty of the DCRMS is reduced to U=0.13???m+0.9??ppm·R (k=2) through the error compensation model. The error analysis and compensation model established in this study can provide the theoretical foundation for improving the measurement accuracy of the DCRMS. PMID:25968024

  18. The free-electron laser in a symmetrical confocal resonator

    NASA Technical Reports Server (NTRS)

    Ozcan, Meric; Pantell, Richard H.

    1993-01-01

    A tapered wiggler is used in a FEL oscillator to improve the saturation efficiency. During signal buildup the tapered wiggler does not provide optimum phase synchronism between the electron beam and the electromagnetic wave, resulting in an appreciable loss in small-signal gain. This problem can be ameliorated by using a multicomponent wiggler, which is a combination of a uniform wiggler and a tapered section. During buildup, gain is primarily contributed by the linear element, and at high power levels the gain and efficiency are enhanced by the taper. Ideally, one would like to have the optical waist location near the linear section at small-signal levels and at near the tapered section at high power levels. Placing the FEL in a symmetrical confocal resonator approaches this desired effect automatically since it has the unique characteristic that a stable mode exists for all locations of the waist of a Gaussian beam along the axis of the interferometer.

  19. Confocal laser scanning microscopy-guided surgery for neurofibroma.

    PubMed

    Koller, S; Horn, M; Weger, W; Massone, C; Smolle, J; Gerger, A

    2009-12-01

    The neurofibromatoses comprise at least two separate genetic disorders with variable clinical features and an unpredictable course. The most common type, neurofibromatosis 1, is characterized by > or = 6 café-au-lait spots and the occurrence of neurofibromas, which may present as cutaneous, subcutaneous or plexiform lesions. Normally, excision of neurofibromas is only indicated in the presence of neurological symptoms, suspicion of malignancy or for exceptional cosmetic reasons. For a good functional and aesthetic result with the least danger of recurrence, the surgeon's goal is to excise as much tissue as necessary and as little tissue as possible. One of the main issues during the surgical procedure is to distinguish between neurofibroma and surrounding tissue. We report for the first time the use of confocal laser scanning microscopy to differentiate between neurofibroma and healthy skin. PMID:19548937

  20. Three-dimensional reconstruction by confocal laser scanning microscopy in routine pathologic specimens of benign and malignant lesions of the human breast

    Microsoft Academic Search

    S. Liu; Donald L. Weaver; D. J. Taatjes

    1997-01-01

    Confocal laser scanning microscopy (CLSM) has become an exciting new instrument because of its increased resolution over\\u000a conventional wide-field microscopy and its high performance three-dimensional (3D) optical sectioning. Although CLSM has been\\u000a used extensively in cell biology, few applications have been reported in routine clinical pathology. In this study, 3D reconstruction\\u000a was performed on routine formalin-fixed, paraffin-embedded tissues of normal