Science.gov

Sample records for applications reflectance confocal

  1. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    PubMed Central

    Tilli, Maddalena T; Parrish, Angela R; Cotarla, Ion; Jones, Laundette P; Johnson, Michael D; Furth, Priscilla A

    2008-01-01

    Background Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. Methods We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. Results In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. Conclusion In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary. PMID:18215290

  2. Reflectance confocal microscopy in infectious diseases.

    PubMed

    Cinotti, E; Labeille, B; Cambazard, F; Perrot, J L

    2015-10-01

    In vivo reflectance confocal microscope (RCM) is a high-resolution non-invasive imaging technique that was initially focused on the diagnosis of skin cancers. A rising number of other indications have been later described for the diagnosis and management of inflammatory and infectious dermatological disorders. RCM can identify cutaneous parasites that are not visible to naked eye such as Sarcoptes scabiei and Demodex folliculorum and it allows to better identify the different body parts of bigger parasites such as ticks. Fungal filaments can also be identified as elongated bright structures in the cutaneous upper layers. RCM cannot observe virus directly. However, the cytopathic effect associated with some virus can be recognized. In addition of being helpful for the diagnosis and follow-up after treatment, thanks to its non-invasiveness, RCM allows pathophysiological studies. PMID:26129682

  3. A handheld laser scanning confocal reflectance imaging–confocal Raman microspectroscopy system

    PubMed Central

    Patil, Chetan A.; Arrasmith, Christopher L.; Mackanos, Mark A.; Dickensheets, David L.; Mahadevan-Jansen, Anita

    2012-01-01

    Confocal reflectance microscopy and confocal Raman spectroscopy have shown potential for non-destructive analysis of samples at micron-scale resolutions. Current studies utilizing these techniques often employ large bench-top microscopes, and are not suited for use outside of laboratory settings. We have developed a microscope which combines laser scanning confocal reflectance imaging and confocal Raman spectroscopy into a compact handheld probe that is capable of high-resolution imaging and spectroscopy in a variety of settings. The compact size of the probe is largely due to the use of a MEMS mirror for beam scanning. The probe is capable of axial resolutions of up to 4 μm for the confocal imaging channel and 10 μm for the confocal Raman spectroscopy channel. Here, we report instrument design, characterize optical performance, and provide images and spectra from normal skin to demonstrate the instrument’s capabilities for clinical diagnostics. PMID:22435097

  4. Evaluation of reflectance confocal microscopy in dermatophytosis.

    PubMed

    Hui, Dai; Xue-cheng, Sun; Ai-e, Xu

    2013-03-01

    Traditional diagnostic testing for dermatophyte infection currently requires skin scraping for light microscopy and/or fungal culture or skin biopsy. Immunofluorescent microscopy can also be used with calcofluor stain. All of these tests can be time-consuming to perform, require a waiting period for results and are invasive. This study aimed to define the in vivo reflectance confocal microscopy (RCM) features of superficial cutaneous fungal infections and to analyse concordance with microscopic examination. Totally, 45 patients, who were diagnosed with superficial cutaneous fungal infections according to the positive result of microscopic examination, were enrolled in this study. We selected three typical lesions examined by RCM, and then recorded the results. In the patients with the tinea manus and pedis, mycelium in stratum corneum was found by the RCM in 14 of 22 patients (14/22; 63.64%). In the patients with the tinea cruris, mycelium in stratum corneum was found by the RCM in 19 of 23 patients (19/23; 82.61%). RCM seems to be useful for microscopic evaluation of mycelium features and may have a scientific value in study of superficial cutaneous fungal infections. PMID:22963376

  5. Reflectance confocal microscopy for mucosal diseases.

    PubMed

    Cinotti, E; Labeille, B; Cambazard, F; Thuret, G; Gain, P; Perrot, J L

    2015-10-01

    Non-invasive, real-time microscopic imaging using in vivo reflectance confocal microscopy (RCM) has been demonstrated to be a useful tool for the evaluation of skin diseases and in particular for skin neoplasms. Recently, the RCM devices dedicated to the skin have also been applied to perform "virtual biopsies" of the oral, genital and ocular mucosa. In fact, mucosa is a sensitive area where non invasive imaging techniques are of high interest in order to spare biopsies and excisions. Mucosa is particularly suitable for RCM because of its thin or absent cornified layer and its thin epithelium that allows a deeper penetration of the laser with the consequent possibility of exploring deeper tissue levels. Besides, being useful for the diagnosis, RCM may be helpful to identify the area to be biopsied in case of large or multifocal lesions and may be regarded as a complementary technique for non invasive assessment of treatment efficacy. The RCM features of healthy mucosa are described and a revision of the literature of the mucosal diseases that can be diagnosed by RCM has been performed. PMID:26099354

  6. The use of reflectance confocal microscopy in selected inflammatory skin diseases.

    PubMed

    Białek-Galas, Kamila; Wielowieyska-Szybińska, Dorota; Dyduch, Grzegorz; Wojas-Pelc, Anna

    2015-06-01

    Reflectance confocal microscopy is a modern, non-invasive diagnostic method that enables real-time imaging of the epidermis and upper layers of the dermis with nearly histological precision and high contrast. The application of this technology to skin imaging during the last years has resulted in progress of dermatological diagnosis, providing virtual access to living skin, without the need for conventional histopathology. The presented method potentially has broad application in the diagnosis of skin diseases. This article provides a summary of the latest reports and previous achievements in the field of reflectance confocal microscopy. General characteristics of confocal images in selected inflammatory skin diseases are presented. PMID:26247522

  7. Pupil engineering for a confocal reflectance line-scanning microscope

    NASA Astrophysics Data System (ADS)

    Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2011-03-01

    Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current confocal point-scanning systems are large, complex, and expensive. A confocal line-scanning microscope, utilizing a of linear array detector can be simpler, smaller, less expensive, and may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A line scanner may be implemented with a divided-pupil, half used for transmission and half for detection, or with a full-pupil using a beamsplitter. The premise is that a confocal line-scanner with either a divided-pupil or a full-pupil will provide high resolution and optical sectioning that would be competitive to that of the standard confocal point-scanner. We have developed a confocal line-scanner that combines both divided-pupil and full-pupil configurations. This combined-pupil prototype is being evaluated to determine the advantages and limitations of each configuration for imaging skin, and comparison of performance to that of commercially available standard confocal point-scanning microscopes. With the combined configuration, experimental evaluation of line spread functions (LSFs), contrast, signal-to-noise ratio, and imaging performance is in progress under identical optical and skin conditions. Experimental comparisons between divided-pupil and full-pupil LSFs will be used to determine imaging performance. Both results will be compared to theoretical calculations using our previously reported Fourier analysis model and to the confocal point spread function (PSF). These results may lead to a simpler class of confocal reflectance scanning microscopes for clinical and surgical dermatology.

  8. Reflectance confocal microscopy for cutaneous infections and infestations.

    PubMed

    Cinotti, E; Perrot, J L; Labeille, B; Cambazard, F

    2016-05-01

    Reflectance confocal microscopy (RCM) is a high-resolution emerging imaging technique that allows non-invasive diagnosis of several cutaneous disorders. A systematic review of the literature on the use of RCM for the study of infections and infestations has been performed to evaluate the current use of this technique and its possible future applications in this field. RCM is particularly suitable for the identification of Sarcoptes scabies, Demodex folliculorum, Ixodes, Dermatophytes and Candida species in the clinical practice and for the follow-up after treatment. The cytopathic effect of herpes simplex virus, varicella zoster virus and molluscipoxvirus is also detectable by this imaging technique even in a pre-vesicular stage. In addition, thanks to its non-invasiveness, RCM allows pathophysiological studies. PMID:26387660

  9. Spectral confocal reflection microscopy using a white light source

    NASA Astrophysics Data System (ADS)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  10. Reflectance confocal microscopy of red blood cells: simulation and experiment

    PubMed Central

    Zeidan, Adel; Yelin, Dvir

    2015-01-01

    Measuring the morphology of red blood cells is important for clinical diagnosis, providing valuable indications on a patient’s health. In this work, we have simulated the appearance of normal red blood cells under a reflectance confocal microscope and discovered unique relations between the morphological parameters and the resulting characteristic interference patterns of the cell. The simulation results showed good agreement with in vitro reflectance confocal images of red blood cells, acquired using spectrally encoded flow cytometry that imaged the cells in a linear flow without artificial staining. By matching the simulated patterns to confocal images of the cells, this method could be used for measuring cell morphology in three dimensions and for studying their physiology. PMID:26600999

  11. FOOD SURFACE TEXTURE MEASUREMENT USING REFLECTIVE CONFOCAL LASER SCANNING MICROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Confocal laser scanning microscopy (CLSM) was used in the reflection mode to characterize the surface texture (roughness) of sliced food surfaces. Sandpapers of grit size between 150 and 600 were used as the height reference to standardize the CLSM hardware settings. Sandpaper particle sizes were v...

  12. Automated identification of epidermal keratinocytes in reflectance confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gareau, Dan

    2011-03-01

    Keratinocytes in skin epidermis, which have bright cytoplasmic contrast and dark nuclear contrast in reflectance confocal microscopy (RCM), were modeled with a simple error function reflectance profile: erf( ). Forty-two example keratinocytes were identified as a training set which characterized the nuclear size a = 8.6+/-2.8 μm and reflectance gradient b = 3.6+/-2.1 μm at the nuclear/cytoplasmic boundary. These mean a and b parameters were used to create a rotationally symmetric erf( ) mask that approximated the mean keratinocyte image. A computer vision algorithm used an erf( ) mask to scan RCM images, identifying the coordinates of keratinocytes. Applying the mask to the confocal data identified the positions of keratinocytes in the epidermis. This simple model may be used to noninvasively evaluate keratinocyte populations as a quantitative morphometric diagnostic in skin cancer detection and evaluation of dermatological cosmetics.

  13. Confocal reflectance imaging of excised malignant human bladder biopsies

    NASA Astrophysics Data System (ADS)

    Daniltchenko, Dmitri I.; Kastein, Albrecht; Koenig, Frank; Sachs, Markus; Schnorr, Dietmar; Al-Shukri, Salman; Loening, Stefan A.

    2004-08-01

    To evaluate the potential of reflectance confocal scanning laser microscopy (CM) for rapid imaging of non-processed freshly excised human bladder biopsies and cystectomy specimens. Freshly excised bladder tumors from three cystectomy specimens and random biopsies from twenty patients with a history of superficial bladder tumors were imaged with CM. Additional acetic acid washing prior to CM imaging was performed in some of the samples. Confocal images were compared to corresponding routine histologic sections. CM allows imaging of unprocessed bladder tissue at a subcellular resolution. Urothelial cell layers, collagen, vessels and muscle fibers can be rapidly visualized, in native state. In this regard, umbrella cells, basement membrane elucidated. Besides obvious limitations partly due to non-use of exogenous dyes, CM imaging offers several advantages: rapid imaging of the tissue in its native state like the basement membrane, normally seen only by using immunohistopathology. Reflectance CM opens a new avenue for imaging bladder cancer.

  14. Confocal Endomicroscopy: Instrumentation and Medical Applications

    PubMed Central

    Jabbour, Joey M.; Saldua, Meagan A.; Bixler, Joel N.; Maitland, Kristen C.

    2013-01-01

    Advances in fiber optic technology and miniaturized optics and mechanics have propelled confocal endomicroscopy into the clinical realm. This high resolution, non-invasive imaging technology provides the ability to microscopically evaluate cellular and sub-cellular features in tissue in vivo by optical sectioning. Because many cancers originate in epithelial tissues accessible by endoscopes, confocal endomicroscopy has been explored to detect regions of possible neoplasia at an earlier stage by imaging morphological features in vivo that are significant in histopathologic evaluation. This technique allows real-time assessment of tissue which may improve diagnostic yield by guiding biopsy. Research and development continues to reduce the overall size of the imaging probe, increase the image acquisition speed, and improve resolution and field of view of confocal endomicroscopes. Technical advances will continue to enable application to less accessible organs and more complex systems in the body. Lateral and axial resolutions down to 0.5 μm and 3 μm, respectively, field of view as large as 800×450 μm, and objective lens and total probe outer diameters down to 350 μm and 1.25 mm, respectively, have been achieved. We provide a review of the historical developments of confocal imaging in vivo, the evolution of endomicroscope instrumentation, and the medical applications of confocal endomicroscopy. PMID:21994069

  15. A Pulse Coupled Neural Network Segmentation Algorithm for Reflectance Confocal Images of Epithelial Tissue

    PubMed Central

    Malik, Bilal H.; Jabbour, Joey M.; Maitland, Kristen C.

    2015-01-01

    Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard. PMID:25816131

  16. Laser multi-reflection confocal long focal-length measurement

    NASA Astrophysics Data System (ADS)

    Li, Zhigang; Qiu, Lirong; Zhao, Weiqian; Xiao, Yang

    2016-06-01

    We propose a new laser multi-reflection confocal focal-length measurement (MCFM) method to meet the requirements of a high-precision measurement for a long focal-length more than 2 m. It places an optical flat and a reflector behind the test lens for reflecting the measuring beam repeatedly, and then, uses the property that the peak points of confocal response curves precisely corresponds to the convergence points of a multi-reflected measuring beam to exactly identify the positions of the convergence points. Subsequently, it obtains the position variation of the reflector with a different number of reflections by a distance measuring instrument, and thereby achieving the high precise long focal-length measurement. The theoretical analyses and preliminary experimental results indicate that MCFM has a relative standard uncertainty of 0.066% for a test lens with the focal-length of 9.76 m. MCFM can provide a novel approach for the high-precision focal-length measurement.

  17. Emulation and design of terahertz reflection-mode confocal scanning microscopy based on virtual pinhole

    NASA Astrophysics Data System (ADS)

    Yang, Yong-fa; Li, Qi

    2014-12-01

    In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.

  18. Confocal scanning beam laser microscope/macroscope: applications in fluorescence

    NASA Astrophysics Data System (ADS)

    Dixon, Arthur E.; Damaskinos, Savvas; Ribes, Alfonso

    1996-03-01

    A new confocal scanning beam laser microscope/macroscope is described that combines the rapid scan of a scanning beam laser microscope with the large specimen capability of a scanning stage microscope. This instrument combines an infinity-corrected confocal scanning laser microscope with a scanning laser macroscope that uses a telecentric f*(Theta) laser scan lens to produce a confocal imaging system with a resolution of 0.25 microns at a field of view of 25 microns and 5 microns at a field of view of 75,000 microns. The frame rate is 5 seconds per frame for a 512 by 512 pixel image, and 25 seconds for a 2048 by 2048 pixel image. Applications in fluorescence are discussed that focus on two important advantages of the instrument over a confocal scanning laser microscope: an extremely wide range of magnification, and the ability to image very large specimens. Examples are presented of fluorescence and reflected-light images of high quality printing, fluorescence images of latent fingerprints, packaging foam, and confocal autofluorescence images of a cricket.

  19. Segmentation of skin strata in reflectance confocal microscopy depth stacks

    NASA Astrophysics Data System (ADS)

    Hames, Samuel C.; Ardigò, Marco; Soyer, H. Peter; Bradley, Andrew P.; Prow, Tarl W.

    2015-03-01

    Reflectance confocal microscopy is an emerging tool for imaging human skin, but currently requires expert human assessment. To overcome the need for human experts it is necessary to develop automated tools for automatically assessing reflectance confocal microscopy imagery. This work presents a novel approach to this task, using a bag of visual words approach to represent and classify en-face optical sections from four distinct strata of the skin. A dictionary of representative features is learned from whitened and normalised patches using hierarchical spherical k-means. Each image is then represented by extracting a dense array of patches and encoding each with the most similar element in the dictionary. Linear discriminant analysis is used as a simple linear classifier. The proposed framework was tested on 308 depth stacks from 54 volunteers. Parameters are tuned using 10 fold cross validation on a training sub-set of the data, and final evaluation was performed on a held out test set. The proposed method generated physically plausible profiles of the distinct strata of human skin, and correctly classified 81.4% of sections in the test set.

  20. Combined FLIM and reflectance confocal microscopy for epithelial imaging

    NASA Astrophysics Data System (ADS)

    Jabbour, Joey M.; Cheng, Shuna; Shrestha, Sebina; Malik, Bilal; Jo, Javier A.; Applegate, Brian; Maitland, Kristen C.

    2012-03-01

    Current methods for detection of oral cancer lack the ability to delineate between normal and precancerous tissue with adequate sensitivity and specificity. The usual diagnostic mechanism involves visual inspection and palpation followed by tissue biopsy and histopathology, a process both invasive and time-intensive. A more sensitive and objective screening method can greatly facilitate the overall process of detection of early cancer. To this end, we present a multimodal imaging system with fluorescence lifetime imaging (FLIM) for wide field of view guidance and reflectance confocal microscopy for sub-cellular resolution imaging of epithelial tissue. Moving from a 12 x 12 mm2 field of view with 157 ìm lateral resolution using FLIM to 275 x 200 μm2 with lateral resolution of 2.2 μm using confocal microscopy, hamster cheek pouch model is imaged both in vivo and ex vivo. The results indicate that our dual modality imaging system can identify and distinguish between different tissue features, and, therefore, can potentially serve as a guide in early oral cancer detection..

  1. Confocal microscopy patterns in nonmelanoma skin cancer and clinical applications.

    PubMed

    González, S; Sánchez, V; González-Rodríguez, A; Parrado, C; Ullrich, M

    2014-06-01

    Reflectance confocal microscopy is currently the most promising noninvasive diagnostic tool for studying cutaneous structures between the stratum corneum and the superficial reticular dermis. This tool gives real-time images parallel to the skin surface; the microscopic resolution is similar to that of conventional histology. Numerous studies have identified the main confocal features of various inflammatory skin diseases and tumors, demonstrating the good correlation of these features with certain dermatoscopic patterns and histologic findings. Confocal patterns and diagnostic algorithms have been shown to have high sensitivity and specificity in melanoma and nonmelanoma skin cancer. Possible present and future applications of this noninvasive technology are wide ranging and reach beyond its use in noninvasive diagnosis. This tool can also be used, for example, to evaluate dynamic skin processes that occur after UV exposure or to assess tumor response to noninvasive treatments such as photodynamic therapy. We explain the characteristic confocal features found in the main nonmelanoma skin tumors and discuss possible applications for this novel diagnostic technique in routine dermatology practice. PMID:24002008

  2. Dual-axes confocal reflectance microscope for distinguishing colonic neoplasia

    PubMed Central

    Liu, Jonathan T. C.; Mandella, Michael J.; Friedland, Shai; Soetikno, Roy; Crawford, James M.; Contag, Christopher H.; Kino, Gordon S.; Wang, Thomas D.

    2007-01-01

    A dual-axes confocal reflectance microscope has been developed that utilizes a narrowband laser at 1310 nm to achieve high axial resolution, image contrast, field of view, and tissue penetration for distinguishing among normal, hyperplastic, and dysplastic colonic mucosa ex vivo. Light is collected off-axis using a low numerical aperture objective to obtain vertical image sections, with 4- to 5-μm resolution, at tissue depths up to 610 μm. Post-objective scanning enables a large field of view (610 × 640 μm), and balanced-heterodyne detection provides sensitivity to collect vertical sections at one frame per second. System optics are optimized to effectively reject out-of-focus scattered light without use of a low-coherence gate. This design is scalable to millimeter dimensions, and the results demonstrate the potential for a miniature instrument to detect precancerous tissues, and hence to perform in vivo histopathology. PMID:17092168

  3. Corneal In Vivo Confocal Microscopy: Clinical Applications.

    PubMed

    You, Jae Young; Botelho, Paul J

    2016-01-01

    In vivo confocal microscopy (IVCM) has become a widely accepted imaging technique to study the human living cornea. It provides a unique opportunity to visualize the corneal tissue at the cellular level without damage and longitudinally observe its pathologic and normative changes. With rapidly evolving technology, there has been an abundance of interest in maximizing its potential to better understand the human cornea in health and disease. This is evidenced by a growing literature analyzing acquired and inherited corneal and also systemic diseases using corneal IVCM. This article provides a narrative review of IVCM and its applications. [Full article available at http://rimed.org/rimedicaljournal-2016-06.asp, free with no login]. PMID:27247970

  4. Biological applications of confocal fluorescence polarization microscopy

    NASA Astrophysics Data System (ADS)

    Bigelow, Chad E.

    Fluorescence polarization microscopy is a powerful modality capable of sensing changes in the physical properties and local environment of fluorophores. In this thesis we present new applications for the technique in cancer diagnosis and treatment and explore the limits of the modality in scattering media. We describe modifications to our custom-built confocal fluorescence microscope that enable dual-color imaging, optical fiber-based confocal spectroscopy and fluorescence polarization imaging. Experiments are presented that indicate the performance of the instrument for all three modalities. The limits of confocal fluorescence polarization imaging in scattering media are explored and the microscope parameters necessary for accurate polarization images in this regime are determined. A Monte Carlo routine is developed to model the effect of scattering on images. Included in it are routines to track the polarization state of light using the Mueller-Stokes formalism and a model for fluorescence generation that includes sampling the excitation light polarization ellipse, Brownian motion of excited-state fluorophores in solution, and dipole fluorophore emission. Results from this model are compared to experiments performed on a fluorophore-embedded polymer rod in a turbid medium consisting of polystyrene microspheres in aqueous suspension. We demonstrate the utility of the fluorescence polarization imaging technique for removal of contaminating autofluorescence and for imaging photodynamic therapy drugs in cell monolayers. Images of cells expressing green fluorescent protein are extracted from contaminating fluorescein emission. The distribution of meta-tetrahydroxypheny1chlorin in an EMT6 cell monolayer is also presented. A new technique for imaging enzyme activity is presented that is based on observing changes in the anisotropy of fluorescently-labeled substrates. Proof-of-principle studies are performed in a model system consisting of fluorescently labeled bovine

  5. Two-photon fluorescence and confocal reflected light imaging of thick tissue structures

    NASA Astrophysics Data System (ADS)

    Kim, Ki H.; So, Peter T. C.; Kochevar, Irene E.; Masters, Barry R.; Gratton, Enrico

    1998-04-01

    The technology of two-photon excitation has opened a window of opportunity for developing non-invasive medical diagnostic tools capable of monitoring thick tissue biochemical states. Using cellular endogenous chromophores, (beta) -nicotinamide- adenine dinucleotide phosphate [NAD(P)H], the cellular metabolic rates in living human skin were determined. Although important functional information can be obtained from the fluorescence spectroscopy of endogenous chromophores, these chromophores are rather poor contrast enhancing agent for mapping cellular morphology. First, most endogenous chromophores are confined to the cellular cytoplasm which prevents the visualization of other cellular organelles. Second, there is significant variability in the distribution and the quantum yield of endogenous chromophores which depends on tissue biochemistry but prevents consistent comparison of cellular morphology. On the other hand, the deep tissue cellular morphology has been imaged with excellent resolution using reflected light confocal microscopy. In reflected light microscopy, the image contrast originates from the index of refraction differences of the cellular structures. The organelle boundaries with significant index differences such as the plasma membrane and the nucleus envelope can be consistently visualized. A combination of morphological and functional information is required for a thorough tissue study. This presentation describes the development of a new microscope which is capable of simultaneously collecting both two-photon fluorescence and confocal reflected light signals. Promising biomedical applications include the non-invasive diagnosis of skin cancer and the study of wound healing.

  6. Reflectance confocal endomicroscope with optical axial scanning for in vivo imaging of the oral mucosa

    PubMed Central

    Jabbour, Joey M.; Bentley, Julie L.; Malik, Bilal H.; Nemechek, John; Warda, John; Cuenca, Rodrigo; Cheng, Shuna; Jo, Javier A.; Maitland, Kristen C.

    2014-01-01

    This paper presents the design and evaluation of a reflectance confocal laser endomicroscope using a miniature objective lens within a rigid probe in conjunction with an electrically tunable lens for axial scanning. The miniature lens was characterized alone as well as in the endoscope across a 200 µm axial scan range using the tunable lens. The ability of the confocal endoscope to probe the human oral cavity is demonstrated by imaging of the oral mucosa in vivo. The results indicate that reflectance confocal endomicroscopy has the potential to be used in a clinical setting and guide diagnostic evaluation of biological tissue. PMID:25426310

  7. Reflectance confocal endomicroscope with optical axial scanning for in vivo imaging of the oral mucosa.

    PubMed

    Jabbour, Joey M; Bentley, Julie L; Malik, Bilal H; Nemechek, John; Warda, John; Cuenca, Rodrigo; Cheng, Shuna; Jo, Javier A; Maitland, Kristen C

    2014-11-01

    This paper presents the design and evaluation of a reflectance confocal laser endomicroscope using a miniature objective lens within a rigid probe in conjunction with an electrically tunable lens for axial scanning. The miniature lens was characterized alone as well as in the endoscope across a 200 µm axial scan range using the tunable lens. The ability of the confocal endoscope to probe the human oral cavity is demonstrated by imaging of the oral mucosa in vivo. The results indicate that reflectance confocal endomicroscopy has the potential to be used in a clinical setting and guide diagnostic evaluation of biological tissue. PMID:25426310

  8. Reflectance confocal microscopy of red blood cells: simulation and experiment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zeidan, Adel; Yeheskely-Hayon, Daniella; Minai, Limor; Yelin, Dvir

    2016-03-01

    The properties of red blood cells are a remarkable indicator of the body's physiological condition; their density could indicate anemia or polycythemia, their absorption spectrum correlates with blood oxygenation, and their morphology is highly sensitive to various pathologic states including iron deficiency, ovalocytosis, and sickle cell disease. Therefore, measuring the morphology of red blood cells is important for clinical diagnosis, providing valuable indications on a patient's health. In this work, we simulated the appearance of normal red blood cells under a reflectance confocal microscope and discovered unique relations between the cells' morphological parameters and the resulting characteristic interference patterns. The simulation results showed good agreement with in vitro reflectance confocal images of red blood cells, acquired using spectrally encoded flow cytometry (SEFC) that imaged the cells during linear flow and without artificial staining. By matching the simulated patterns to the SEFC images of the cells, the cells' three-dimensional shapes were evaluated and their volumes were calculated. Potential applications include measurement of the mean corpuscular volume, cell morphological abnormalities, cell stiffness under mechanical stimuli, and the detection of various hematological diseases.

  9. Anti-translational research: from the bedside back to the bench for reflectance confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gareau, Daniel

    2014-03-01

    The reflectance confocal microscope has made translational progress in dermatology. 0.5 micrometer lateral resolution, 0.75mm field-of-view and excellent temporal resolution at ~15 frames/second serve the VivaScope well in the clinic, but it may be overlooked in basic research. This work reviews high spatiotemporal confocal microscopy and presents images acquired of various samples: zebra fish embryo where melanocytes with excellent contrast overly the spinal column, chicken embryo, where myocardium is seen moving at 15 frames/ second, calcium spikes in dendrites (fluorescence mode) just beyond the temporal resolution, and human skin where blood cells race through the artereovenous microvasculature. For an introduction to confocal microscopy, see: http://dangareau.net.s69818.gridserver.com/science/confocal-microscopy

  10. Reflectance confocal microscopy for scarring and non-scarring alopecia real-time assessment.

    PubMed

    Ardigò, Marco; Agozzino, Marina; Franceschini, Chiara; Donadio, Carlo; Abraham, Leonardo Spagnol; Barbieri, Luca; Sperduti, Isabella; Berardesca, Enzo; González, Salvador

    2016-07-01

    Clinical management of alopecia represents one of the major issues in dermatology. Scalp biopsies are not easily accepted because of the high bleeding and sensitive anatomical area. Trichoscopy is routinely used for diagnosis of alopecia, but in several cases lack to provide sufficient information on the status of the disease. Recently, reflectance confocal microscopy demonstrated its usefulness for the evaluation of several inflammatory skin condition and preliminary reports about alopecia have been proposed in the literature. The aim was to identify the confocal features characterizing scarring and non-scarring alopecia. Reflectance confocal microscopy from 86 patients affected by scarring (28 lichen planopilaris and 9 lupus erythematosus) and non-scarring alopecia (30 androgenic alopecia and 19 alopecia areata), were retrospectively, blinded evaluated. Good concordance between different readers on the confocal criteria has been assessed. Statistical significant features, specific for scarring alopecia and non-scarring alopecia have been identified. In this study, data on reflectance confocal microscopy features useful for the differential diagnosis between scarring and non-scarring alopecia have been identified. Further studies focusing on the use of this non-invasive technique in the therapeutic follow-up and distinction of sub-entities of alopecia are still required. PMID:27225248

  11. Reflectance confocal microscopy of oral epithelial tissue using an electrically tunable lens

    NASA Astrophysics Data System (ADS)

    Jabbour, Joey M.; Malik, Bilal H.; Cuenca, Rodrigo; Cheng, Shuna; Jo, Javier A.; Cheng, Yi-Shing L.; Wright, John M.; Maitland, Kristen C.

    2014-02-01

    We present the use of a commercially available electrically tunable lens to achieve axial scanning in a reflectance confocal microscope. Over a 255 μm axial scan range, the lateral and axial resolutions varied from 1-2 μm and 4-14 μm, respectively, dependent on the variable focal length of the tunable lens. Confocal imaging was performed on normal human biopsies from the oral cavity ex vivo. Sub-cellular morphologic features were seen throughout the depth of the epithelium while axially scanning using the focus tunable lens.

  12. Use of a white light supercontinuum laser for confocal interference-reflection microscopy

    PubMed Central

    Chiu, L-D; Su, L; Reichelt, S; Amos, WB

    2012-01-01

    Shortly after its development, the white light supercontinuum laser was applied to confocal scanning microscopy as a more versatile substitute for the multiple monochromatic lasers normally used for the excitation of fluorescence. This light source is now available coupled to commercial confocal fluorescence microscopes. We have evaluated a supercontinuum laser as a source for a different purpose: confocal interferometric imaging of living cells and artificial models by interference reflection. We used light in the range 460–700 nm where this source provides a reasonably flat spectrum, and obtained images free from fringe artefacts caused by the longer coherence length of conventional lasers. We have also obtained images of cytoskeletal detail that is difficult to see with a monochromatic laser. PMID:22432542

  13. Dye-enhanced reflectance and fluorescence confocal microscopy as an optical pathology tool

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Anna N.; Salomatina, Elena; Novak, John; Amat-Roldan, Ivan; Castano, Ana; Hamblin, Michael

    2006-02-01

    Early detection and precise excision of neoplasms are imperative requirements for successful cancer treatment. In this study we evaluated the use of dye-enhanced confocal microscopy as an optical pathology tool in the ex vivo trial with fresh thick non-melanoma skin cancer excisions and in vivo trial with B16F10 melanoma cancer in mice. For the experiments the tumors were rapidly stained using aqueous solutions of either toluidine blue or methylene blue and imaged using multimodal confocal microscope. Reflectance images were acquired at the wavelengths of 630nm and 650 nm. Fluorescence was excited at 630 nm and 650 nm. Fluorescence emission was registered in the range between 680 nm and 710 nm. The images were compared to the corresponding en face frozen H&E sections. The results of the study indicate confocal images of stained cancerous tissue closely resemble corresponding H&E sections both in vivo and in vitro. This remarkable similarity enables interpretation of confocal images in a manner similar to that of histopathology. The developed technique may provide an efficient real-time optical tool for detecting skin pathology.

  14. Combining total internal reflection sum frequency spectroscopy spectral imaging and confocal fluorescence microscopy.

    PubMed

    Allgeyer, Edward S; Sterling, Sarah M; Gunewardene, Mudalige S; Hess, Samuel T; Neivandt, David J; Mason, Michael D

    2015-01-27

    Understanding surface and interfacial lateral organization in material and biological systems is critical in nearly every field of science. The continued development of tools and techniques viable for elucidation of interfacial and surface information is therefore necessary to address new questions and further current investigations. Sum frequency spectroscopy (SFS) is a label-free, nonlinear optical technique with inherent surface specificity that can yield critical organizational information on interfacial species. Unfortunately, SFS provides no spatial information on a surface; small scale heterogeneities that may exist are averaged over the large areas typically probed. Over the past decade, this has begun to be addressed with the advent of SFS microscopy. Here we detail the construction and function of a total internal reflection (TIR) SFS spectral and confocal fluorescence imaging microscope directly amenable to surface investigations. This instrument combines, for the first time, sample scanning TIR-SFS imaging with confocal fluorescence microscopy. PMID:25506739

  15. Near-IR fluorescence and reflectance confocal microscopy for imaging of quantum dots in mammalian skin

    PubMed Central

    Mortensen, Luke J.; Glazowski, Christopher E.; Zavislan, James M.; DeLouise, Lisa A.

    2011-01-01

    Understanding the skin penetration of nanoparticles (NPs) is an important concern due to the increasing presence of NPs in consumer products, including cosmetics. Technical challenges have slowed progress in evaluating skin barrier and NP factors that contribute to skin penetration risk. To limit sampling error and other problems associated with histological processing, many researchers are implementing whole tissue confocal or multiphoton microscopies. This work introduces a fluorescence and reflectance confocal microscopy system that utilizes near-IR excitation and emission to detect near-IR lead sulfide quantum dots (QDs) through ex vivo human epidermis. We provide a detailed prediction and experimental analysis of QD detection sensitivity and demonstrate detection of QD skin penetration in a barrier disrupted model. The unique properties of near-IR lead-based QDs will enable future studies that examine the impact of further barrier-disrupting agents on skin penetration of QDs and elucidate mechanistic insight into QD tissue interactions at the cellular level. PMID:21698023

  16. Laser multi-reflection differential confocal long focal-length measurement.

    PubMed

    Li, Zhigang; Qiu, Lirong; Zhao, Weiqian; Zhao, Qi

    2016-06-20

    We propose a new laser multi-reflection differential confocal focal-length measurement (LDCFM) method to meet the requirements of high-precision measurements of long focal lengths. An optical flat and a reflector are placed behind a test lens for reflecting the measuring beam repeatedly. Then, LDCFM uses the property that the null points of differential confocal response curves precisely correspond to the convergence points of the multi-reflected measuring beam to exactly determine the positions of the convergence points accurately. Subsequently, the position variation of the reflector is measured with different reflection times by using a distance-measuring instrument, and thereby the long focal length is measured precisely. Theoretical analyses and preliminary experimental results indicate that the LDCFM method has a relative expanded standard uncertainty (k=2) of 0.04% for the test lens with a focal length of 9.76 m. The LDCFM method can provide a novel approach for high-precision focal-length measurements. PMID:27409117

  17. Evaluation of dermal extracellular matrix and epidermal-dermal junction modifications using matrix-assisted laser desorption/ionization mass spectrometric imaging, in vivo reflectance confocal microscopy, echography, and histology: effect of age and peptide applications.

    PubMed

    Mondon, Philippe; Hillion, Mélanie; Peschard, Olivier; Andre, Nada; Marchand, Thibault; Doridot, Emmanuel; Feuilloley, Marc Gj; Pionneau, Cédric; Chardonnet, Solenne

    2015-06-01

    This study was conducted to establish a new methodology for evaluating elements of dermal extracellular matrix (ECM), of epidermal-dermal junction (EDJ), and effects of molecules which can modulate their synthesis. This methodology is based on matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI). In vivo reflectance confocal microscopy (in vivo RCM) and echography were also used. Using immunohistochemistry methods on explants, age-related modification data were obtained for selected dermal ECM and EDJ proteins (collagen I, collagen IV, collagen VII, collagen XVII, nidogen I, decorin/decorunt) and used as reference for MALDI-MSI studies. A methodology was developed with MALDI-MSI to map epidermis and dermis proteins. Then MALDI-MSI was used to study age modifications. In vivo RCM and high-frequency ultrasounds were used to evaluate ECM and EDJ undulation modifications caused by aging. Anti-aging molecule evaluations were performed with a blend of palmitoyl oligopeptide and palmitoyl tetrapeptide-7. Immunohistochemistry studies demonstrated that the selected proteins were found to be less abundant in aged group explants vs. young group except for decorin. MALDI-MSI studies correlated the results obtained for decorin. In vivo RCM measurements indicated a decrease of EDJ undulation depth with age and ECM modifications in the upper part of dermis. Echography demonstrated that the peptide blend reduced subepidermal low-echogenic band thickness and improved its density. In vivo RCM studies indicated that the peptides improved the ECM structure vs. placebo. This preliminary MALDI-MSI study raised some technical difficulties that were overcome. Further studies will be conducted to identify more proteins and to demonstrate the interest of this method for cosmetic evaluations. PMID:25817264

  18. Confocal reflectance quantitative phase microscopy system for cell biology studies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Vijay Raj; So, Peter T. C.

    2016-03-01

    Quantitative phase microscopy (QPM), used to measure the refractive index, provides the optical path delay measurement at each point of the specimen under study and becomes an active field in biological science. In this work we present development of confocal reflection phase microscopy system to provide depth resolved quantitative phase information for investigation of intracellular structures and other biological specimen. The system hardware development is mainly divided into two major parts. First, creates a pinhole array for parallel confocal imaging of specimen at multiple locations simultaneously. Here a digital micro mirror device (DMD) is used to generate pinhole array by turning on a subset micro-mirrors arranged on a grid. Second is the detection of phase information of confocal imaging foci by using a common path interferometer. With this novel approach, it is possible to measure the nuclei membrane fluctuations and distinguish them from the plasma membrane fluctuations. Further, depth resolved quantitative phase can be correlated to the intracellular contents and 3D map of refractive index measurements.

  19. High numerical aperture injection-molded miniature objective for fiber-optic confocal reflectance microscopy

    NASA Astrophysics Data System (ADS)

    Chidley, Matthew Douglas

    This dissertation presents the design of a miniature injection-molded objective lens for a fiber-optic confocal reflectance microscope. This is part of an effort to demonstrate the ability to fabricate low cost, high performance biomedical optics for high resolution in vivo imaging. Disposable endoscopic microscope objectives could help in vivo confocal microscopy technology mature to enable large-scale clinical screening and detection of early cancers and pre-cancerous lesions. This five lens plastic objective has been tested as a stand-alone optical system and has been coupled to a confocal microscope for in vivo imaging of cells and tissue. Changing the spacing and rotation of the individual optical elements can compensate for fabrication inaccuracies and improve performance. An optical-bench testing system was constructed to allow interactive alignment during testing. The modulation transfer function (MTF) of the miniature objective lens is determined using the slanted-edge method. A custom MATLAB program, edgeMTF, was written to collect, analyze, and record test data. An estimated Strehl ratio of 0.64 and an MTF value of 0.70, at the fiber-optic bundle Nyquist frequency, have been obtained. The main performance limitations of the miniature objective are mechanical alignment and flow-induced birefringence. Annealing and experimental injection molding runs were conducted in effort to reduce birefringence.

  20. Confocal reflectance theta line-scanner for imaging tissues in vivo

    NASA Astrophysics Data System (ADS)

    Dwyer, Peter J.; DiMarzio, Charles A.; Fox, William J.; Zavislan, James M.; Rajadhyaksha, Milind

    2005-03-01

    A confocal reflectance theta line-scanner is being developed for imaging human tissues in vivo. The theta line scanner design potentially offers a newer alternative to current point scanners that may simplify the optics, electronics and mechanics and lead to smaller, inexpensive confocal microscopes. An oscillating galvanometric mirror directly scans in the pupil of a cylindrical lens and one-half of an objective lens, to produce a focused, scanned line in the object plane within tissue. Backscattered light is collected by the other half of the objective lens and focused onto a linear CMOS detector. The illumination is with a diode laser at 830 nm and imaging with a 10X, 0.8 NA water immersion lens. The illumination and detection paths are thus oriented at an angle (theta) to each other, and are separate everywhere except in the confocal plane. This configuration eliminates back-scattered light from optical components and enhances contrast. Optical design analysis has been verified with experimental results, demonstrating lateral resolution on the order of 1 um and optical sectioning (axial resolution) better than 5 um within living human skin. A Fourier optics-based analytical model is in progress to evaluate line spread functions versus illumination and detection pupil conditions. Nuclear and cellular detail is imaged in the epidermis of human skin in vivo and ex vivo (freshly excised specimens). Such a scanner may prove useful for imaging human tissues in clinical and intra-operative settings.

  1. Living Matter Observations with a Novel Hyperspectral Supercontinuum Confocal Microscope for VIS to Near-IR Reflectance Spectroscopy

    PubMed Central

    Bertani, Francesca R.; Ferrari, Luisa; Mussi, Valentina; Botti, Elisabetta; Costanzo, Antonio; Selci, Stefano

    2013-01-01

    A broad range hyper-spectroscopic microscope fed by a supercontinuum laser source and equipped with an almost achromatic optical layout is illustrated with detailed explanations of the design, implementation and data. The real novelty of this instrument, a confocal spectroscopic microscope capable of recording high resolution reflectance data in the VIS-IR spectral range from about 500 nm to 2.5 μm wavelengths, is the possibility of acquiring spectral data at every physical point as defined by lateral coordinates, X and Y, as well as at a depth coordinate, Z, as obtained by the confocal optical sectioning advantage. With this apparatus we collect each single scanning point as a whole spectrum by combining two linear spectral detector arrays, one CCD for the visible range, and one InGaAs infrared array, simultaneously available at the sensor output channel of the home made instrument. This microscope has been developed for biomedical analysis of human skin and other similar applications. Results are shown illustrating the technical performances of the instrument and the capability in extracting information about the composition and the structure of different parts or compartments in biological samples as well as in solid statematter. A complete spectroscopic fingerprinting of samples at microscopic level is shown possible by using statistical analysis on raw data or analytical reflectance models based on Abelés matrix transfer methods. PMID:24233077

  2. The application of dermal papillary rings in dermatology by in vivo confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Xiang, W. Z.; Xu, A. E.; Xu, J.; Bi, Z. G.; Shang, Y. B.; Ren, Q. S.

    2010-08-01

    Confocal laser scanning microscopy (CLSM) allows noninvasive visualization of human skin in vivo, without needing to fix or section the tissue. Melanocytes and pigmented keratinocytes at the level of the basal layer form bright dermal papillary rings which are readily amenable to identify in confocal images. Our purpose was to explore the role of dermal papillary rings in assessment of lesion location, the diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. Seventy-one patients were imaged with the VivaScope 1500 reflectance confocal microscope provided by Lucid, Inc. The results indicate that dermal papillary rings can assess the location of lesion; the application of dermal papillary rings can provide diagnostic support and differential diagnosis for vitiligo, nevus depigmentosus, tinea versicolor, halo nevus, common nevi, and assess the therapeutic efficacy of NBUVB phototherapy plus topical 0.1 percent tacrolimus ointment for vitiligo. In conclusion, our findings indicate that the dermal papillary rings play an important role in the assessment the location of lesion, diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. CLSM may be a promising tool for noninvasive examination in dermatology. However, larger studies are needed to expand the application of dermal papillary rings in dermatology.

  3. Application of a novel confocal imaging technique for early the detection of dental decay

    NASA Astrophysics Data System (ADS)

    Rousseau, Christel; Girkin, John M.; Vaidya, Shilpa; Hall, Andrew F.; Whitters, C. J.; Creanor, Steve L.

    2002-06-01

    In order to stop or prevent the progression of dental disease, early detection and quantification of decay are crucially important. Dental decay (caries) detection methods have traditionally involved clinical examination by eye, using probes and dental radiography, but up to 60% of lesions are missed. What the dentist requires is a cheap, reliable method of detection of early disease, ideally with information on the depth and rate of growth or healing. Conventional commercial scanning confocal microscopes are unsuitable for use on dental patients. We report on a fibre optic based confocal microscope designed for in vivo examination of caries lesions. The system utilizes a common fibre both as the source and to detect the reflected confocal signal. The initial system has been optimized using dielectric mirrors and the thickness of the stack has been measured with high precision. Dental samples have been examined and the system has been demonstrated to provide information on the depth and mineral loss of a lesion. Fibre optic microscopy (FOCM) demonstrates a practical route to developing an in vivo caries profiler. In this paper, the FOCM and its applications in caries detection are described and the potential of this scheme as a practical dental probe is discussed.

  4. Determine scattering coefficient and anisotropy of scattering of murine tissues using reflectance-mode confocal microscopy

    NASA Astrophysics Data System (ADS)

    Samatham, Ravikant; Jacques, Steven L.

    2013-02-01

    Different techniques have been developed to determine the optical properties of turbid media, which include collimated transmission, diffuse reflectance, adding-doubling and goniometry. While goniometry can be used to determine the anisotropy of scattering (g), other techniques are used to measure the absorption coefficient and reduced scattering coefficient (μs(1-g)). But separating scattering coefficient (μs) and anisotropy of scattering from reduced scattering coefficient has been tricky. We developed an algorithm to determine anisotropy of scattering from the depth dependent decay of reflectance-mode confocal scanning laser microscopy (rCSLM) data. This report presents the testing of the algorithm on tissue phantoms with different anisotropies (g = 0.127 to 0.868, at 488 nm wavelength). Tissue phantoms were made from polystyrene microspheres (6 sizes 0.1-0.5 μm dia.) dispersed in both aqueous solutions and agarose gels. Three dimensional images were captured. The rCSLM-signal followed an exponential decay as a function of depth of the focal volume, R(z)ρexp(-μz) where ρ (dimensionless, ρ = 1 for a mirror) is the local reflectivity and μ [cm-1] is the exponential decay constant. The theory was developed to uniquely map the experimentally determined μ and ρ into the optical scattering properties μs and g. The values of μs and g depend on the composition and microstructure of tissues, and allow characterization of a tissue.

  5. Virtual pinhole confocal microscope

    SciTech Connect

    George, J.S.; Rector, D.M.; Ranken, D.M.; Peterson, B.; Kesteron, J.

    1999-06-01

    Scanned confocal microscopes enhance imaging capabilities, providing improved contrast and image resolution in 3-D, but existing systems have significant technical shortcomings and are expensive. Researchers at Los Alamos National Laboratory have developed a novel approach--virtual pinhole confocal microscopy--that uses state of the art illumination, detection, and data processing technologies to produce an imager with a number of advantages: reduced cost, faster imaging, improved efficiency and sensitivity, improved reliability and much greater flexibility. Work at Los Alamos demonstrated proof of principle; prototype hardware and software have been used to demonstrate technical feasibility of several implementation strategies. The system uses high performance illumination, patterned in time and space. The authors have built functional confocal imagers using video display technologies (LCD or DLP) and novel scanner based on a micro-lens array. They have developed a prototype system for high performance data acquisition and processing, designed to support realtime confocal imaging. They have developed algorithms to reconstruct confocal images from a time series of spatially sub-sampled images; software development remains an area of active development. These advances allow the collection of high quality confocal images (in fluorescence, reflectance and transmission modes) with equipment that can inexpensively retrofit to existing microscopes. Planned future extensions to these technologies will significantly enhance capabilities for microscopic imaging in a variety of applications, including confocal endoscopy, and confocal spectral imaging.

  6. Reflectance confocal microscopy for the diagnosis of eosinophilic esophagitis: a pilot study conducted on biopsy specimens

    PubMed Central

    Yoo, Hongki; Kang, DongKyun; Katz, Aubrey J.; Lauwers, Gregory Y.; Nishioka, Norman S.; Yagi, Yukako; Tanpowpong, Pornthep; Namati, Jacqueline; Bouma, Brett E.; Tearney, Guillermo J.

    2012-01-01

    Background Diagnosis of eosinophilic esophagitis (EoE) currently requires endoscopic biopsy and histopathologic analysis of the biopsy specimens to count intraepithelial eosinophils. Reflectance confocal microscopy (RCM) is an endomicroscopy technology that is capable of obtaining high-resolution, optically sectioned images of esophageal mucosa without the administration of exogenous contrast. Objective In this study, we investigated the capability of a high-speed form of RCM, termed spectrally encoded confocal microscopy (SECM), to count intraepithelial esophageal eosinophils and characterize other microscopic findings of EoE. Design A total of 43 biopsy samples from 35 pediatric patients and 8 biopsy samples from 8 adult patients undergoing EGD for EoE were imaged by SECM immediately after their removal and then processed for routine histopathology. Two SECM readers, trained on adult cases, prospectively counted intraepithelial eosinophils and detected the presence of abscess, degranulation, and basal cell hyperplasia on SECM images from the pediatric patients. A pathologist blinded to the SECM data analyzed the same from corresponding slides. Setting The Gastrointestinal Unit, Massachusetts General Hospital. Results Eosinophils by SECM demonstrated a higher reflectance than the surrounding cells and other inflammatory cells. There was good correlation between SECM and histology maximum eosinophil counts/high-power field (R = 0.76, P < .0001). Intra- and interobserver correlations for SECM counts were very good (R = 0.93 and R = 0.92, respectively; P < .0001). For the commonly used eosinophil count cutoff of 15 per high-power field, the sensitivity and specificity of SECM for EoE were 100%. The sensitivity and specificity for abscess, degranulation, and basal cell hyperplasia were 100% and 82%, 91% and 60%, and 94% and 80%, respectively. Intra- and interobserver agreements for these microscopic features of EoE were very good (κ = 0.9/0.9, 0.84/1.0, 0

  7. Melanocytic nevi with special features: clinical-dermoscopic and reflectance confocal microscopic-findings.

    PubMed

    Larre Borges, A; Zalaudek, I; Longo, C; Dufrechou, L; Argenziano, G; Lallas, A; Piana, S; Moscarella, E

    2014-07-01

    Histopathology is considered the 'gold' standard for the diagnosis and classification of melanocytic nevi, but the widespread use of in vivo diagnostic technologies such as dermoscopy and reflectance confocal microscopy (RCM), has enriched profoundly the knowledge regarding the morphological variability in nevi. This is because most morphological observations made via these in vivo tools are closely correlated with features seen in histopathology. Dermoscopy has allowed for a more detailed classification of nevi. As such, dermoscopy identifies four main morphologic groups (i.e. globular, reticular, starburst and structureless blue nevi), one group of nevi located at special body sites (i.e. face, acral, nail) and one group of nevi with special features. This latter category consists of nevi of the former categories, which are typified by peculiar clinical-histopathological findings. They can be subdivided into 'melanoma simulators' including combined nevi, recurrent nevi and sclerosing nevus with pseudomelanomatous features, 'targetoid' nevi (i.e. halo, cockade, irritated targetoid haemosiderotic and eczematous nevus) and uncommon histopathological variants such as desmoplastic, white dysplastic or ballon cell nevus. While the dermoscopic and RCM patterns of the former categories have been studied in detail, little is currently known about the clinical morphology of the heterogeneous group of 'special' nevi. In this article, we describe the clinical, dermoscopic and RCM features of 'special' nevi and review the current literature on this group of melanocytic proliferations. PMID:24171788

  8. Intraoperative imaging during Mohs surgery with reflectance confocal microscopy: initial clinical experience

    NASA Astrophysics Data System (ADS)

    Flores, Eileen S.; Cordova, Miguel; Kose, Kivanc; Phillips, William; Rossi, Anthony; Nehal, Kishwer; Rajadhyaksha, Milind

    2015-06-01

    Mohs surgery for the removal of nonmelanoma skin cancers (NMSCs) is performed in stages, while being guided by the examination for residual tumor with frozen pathology. However, preparation of frozen pathology at each stage is time consuming and labor intensive. Real-time intraoperative reflectance confocal microscopy (RCM), combined with video mosaicking, may enable rapid detection of residual tumor directly in the surgical wounds on patients. We report our initial experience on 25 patients, using aluminum chloride for nuclear contrast. Imaging was performed in quadrants in the wound to simulate the Mohs surgeon's examination of pathology. Images and videos of the epidermal and dermal margins were found to be of clinically acceptable quality. Bright nuclear morphology was identified at the epidermal margin and detectable in residual NMSC tumors. The presence of residual tumor and normal skin features could be detected in the peripheral and deep dermal margins. Intraoperative RCM imaging may enable detection of residual tumor directly on patients during Mohs surgery, and may serve as an adjunct for frozen pathology. Ultimately, for routine clinical utility, a stronger tumor-to-dermis contrast may be necessary, and also a smaller microscope with an automated approach for imaging in the entire wound in a rapid and controlled manner.

  9. Intraoperative imaging during Mohs surgery with reflectance confocal microscopy: initial clinical experience

    PubMed Central

    Flores, Eileen S.; Cordova, Miguel; Kose, Kivanc; Phillips, William; Rossi, Anthony; Nehal, Kishwer; Rajadhyaksha, Milind

    2015-01-01

    Abstract. Mohs surgery for the removal of nonmelanoma skin cancers (NMSCs) is performed in stages, while being guided by the examination for residual tumor with frozen pathology. However, preparation of frozen pathology at each stage is time consuming and labor intensive. Real-time intraoperative reflectance confocal microscopy (RCM), combined with video mosaicking, may enable rapid detection of residual tumor directly in the surgical wounds on patients. We report our initial experience on 25 patients, using aluminum chloride for nuclear contrast. Imaging was performed in quadrants in the wound to simulate the Mohs surgeon’s examination of pathology. Images and videos of the epidermal and dermal margins were found to be of clinically acceptable quality. Bright nuclear morphology was identified at the epidermal margin and detectable in residual NMSC tumors. The presence of residual tumor and normal skin features could be detected in the peripheral and deep dermal margins. Intraoperative RCM imaging may enable detection of residual tumor directly on patients during Mohs surgery, and may serve as an adjunct for frozen pathology. Ultimately, for routine clinical utility, a stronger tumor-to-dermis contrast may be necessary, and also a smaller microscope with an automated approach for imaging in the entire wound in a rapid and controlled manner. PMID:25706821

  10. In vivo reflectance confocal microscopy evaluation of cheilitis glandularis: a report of 5 cases.

    PubMed

    Lourenço, Silvia V; Kos, Eliana; Borguezan Nunes, Thais; Bologna, Sheyla B; Sangueza, Martin; Nico, Marcello M S

    2015-03-01

    Cheilitis glandularis (CG) is an uncommon condition of unknown origin; it is clinically characterized by variable degrees of macrocheilia associated with red dilated ostia of minor salivary glands on the vermilion area, which secrete viscous saliva. Histopathological characteristics of CG are comprised of chronic sialadenitis with engorged acinar lobules and dilated ducts; CG also features chronic sun damage (actinic cheilitis and squamous cell carcinoma). These changes may be localized, and a punch biopsy specimen might fail to reveal enough criteria to support the diagnosis of CG. Reflectance confocal microscopy (RCM) is a noninvasive imaging technique that enables an in vivo en face visualization of tissues with a resolution close to conventional histopathology. Its use allows analysis of the entire lip, without excision. We reported the evaluation of 5 cases of CG based on clinical RCM and histopathological correlation. RCM examination of the lip vermilion mainly revealed a bright aspect of the superficial epithelial layers, which corresponded to labial keratosis. Alteration of the classical epithelial honeycomb pattern was observed in RCM, which corresponded to epithelial changes in actinic cheilitis at histopathology. Round, dark empty spaces intermingling the epithelium, corresponded to the ectopic excretory salivary gland ducts that open their ostia within the lip vermilion. In the lamina propria, the most striking feature was superficial salivary gland lobules, seen as dark gray lobular structures. Our study, demonstrated the use of RCM in the evaluation of CG, showing that a correlation between the clinical, digital RCM images and histopathology improved the diagnostic skills in CG evaluation. PMID:25238451

  11. Automated Segmentation of Skin Strata in Reflectance Confocal Microscopy Depth Stacks.

    PubMed

    Hames, Samuel C; Ardigò, Marco; Soyer, H Peter; Bradley, Andrew P; Prow, Tarl W

    2016-01-01

    Reflectance confocal microscopy (RCM) is a powerful tool for in-vivo examination of a variety of skin diseases. However, current use of RCM depends on qualitative examination by a human expert to look for specific features in the different strata of the skin. Developing approaches to quantify features in RCM imagery requires an automated understanding of what anatomical strata is present in a given en-face section. This work presents an automated approach using a bag of features approach to represent en-face sections and a logistic regression classifier to classify sections into one of four classes (stratum corneum, viable epidermis, dermal-epidermal junction and papillary dermis). This approach was developed and tested using a dataset of 308 depth stacks from 54 volunteers in two age groups (20-30 and 50-70 years of age). The classification accuracy on the test set was 85.6%. The mean absolute error in determining the interface depth for each of the stratum corneum/viable epidermis, viable epidermis/dermal-epidermal junction and dermal-epidermal junction/papillary dermis interfaces were 3.1 μm, 6.0 μm and 5.5 μm respectively. The probabilities predicted by the classifier in the test set showed that the classifier learned an effective model of the anatomy of human skin. PMID:27088865

  12. In vivo assessment of the structure of skin microcirculation by reflectance confocal-laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Sugata, Keiichi; Osanai, Osamu; Kawada, Hiromitsu

    2012-02-01

    One of the major roles of the skin microcirculation is to supply oxygen and nutrition to the surrounding tissue. Regardless of the close relationship between the microcirculation and the surrounding tissue, there are few non-invasive methods that can evaluate both the microcirculation and its surrounding tissue at the same site. We visualized microcapillary plexus structures in human skin using in vivo reflectance confocal-laser-scanning microscopy (CLSM), Vivascope 3000® (Lucid Inc., USA) and Image J software (National Institutes of Health, USA) for video image processing. CLSM is a non-invasive technique that can visualize the internal structure of the skin at the cellular level. In addition to internal morphological information such as the extracellular matrix, our method reveals capillary structures up to the depth of the subpapillary plexus at the same site without the need for additional optical systems. Video images at specific depths of the inner forearm skin were recorded. By creating frame-to-frame difference images from the video images using off-line video image processing, we obtained images that emphasize the brightness depending on changes of intensity coming from the movement of blood cells. Merging images from different depths of the skin elucidates the 3-dimensional fine line-structure of the microcirculation. Overall our results show the feasibility of a non-invasive, high-resolution imaging technique to characterize the skin microcirculation and the surrounding tissue.

  13. Progress in reflectance confocal microscopy for imaging oral tissues in vivo

    NASA Astrophysics Data System (ADS)

    Peterson, Gary; Zanoni, Daniella K.; Migliacci, Jocelyn; Cordova, Miguel; Rajadhyaksha, Milind; Patel, Snehal

    2016-02-01

    We report progress in development and feasibility testing of reflectance confocal microscopy (RCM) for imaging in the oral cavity of humans. We adapted a small rigid relay telescope (120mm long x 14mm diameter) and a small water immersion objective lens (12mm diameter, NA 0.7) to a commercial handheld RCM scanner (Vivascope 3000, Caliber ID, Rochester NY). This scanner is designed for imaging skin but we adapted the front end (the objective lens and the stepper motor that axially translates) for intra-oral use. This adaption required a new approach to address the loss of the automated stepper motor for acquisition of images in depth. A helical spring-like cap (with a coverslip to contact tissue) was designed for approximately 150 um of travel. Additionally other methods for focusing optics were designed and evaluated. The relay telescope optics is being tested in a clinical setting. With the capture of video and "video-mosaicing", extended areas can be imaged. The feasibility of imaging oral tissues was initially investigated in volunteers. RCM imaging in buccal mucosa in vivo shows nuclear and cellular detail in the epithelium and epithelial junction, and connective tissue and blood flow in the underlying lamina propria. Similar detail, including filiform and fungiform papillae, can be seen on the tongue in vivo. Clinical testing during head and neck surgery is now in progress and patients are being imaged for both normal tissue and cancerous margins in lip and tongue mucosa.

  14. Automated Segmentation of Skin Strata in Reflectance Confocal Microscopy Depth Stacks

    PubMed Central

    Hames, Samuel C.; Ardigò, Marco; Soyer, H. Peter; Bradley, Andrew P.; Prow, Tarl W.

    2016-01-01

    Reflectance confocal microscopy (RCM) is a powerful tool for in-vivo examination of a variety of skin diseases. However, current use of RCM depends on qualitative examination by a human expert to look for specific features in the different strata of the skin. Developing approaches to quantify features in RCM imagery requires an automated understanding of what anatomical strata is present in a given en-face section. This work presents an automated approach using a bag of features approach to represent en-face sections and a logistic regression classifier to classify sections into one of four classes (stratum corneum, viable epidermis, dermal-epidermal junction and papillary dermis). This approach was developed and tested using a dataset of 308 depth stacks from 54 volunteers in two age groups (20–30 and 50–70 years of age). The classification accuracy on the test set was 85.6%. The mean absolute error in determining the interface depth for each of the stratum corneum/viable epidermis, viable epidermis/dermal-epidermal junction and dermal-epidermal junction/papillary dermis interfaces were 3.1 μm, 6.0 μm and 5.5 μm respectively. The probabilities predicted by the classifier in the test set showed that the classifier learned an effective model of the anatomy of human skin. PMID:27088865

  15. Laser scanning confocal microscopy: history, applications, and related optical sectioning techniques.

    PubMed

    Paddock, Stephen W; Eliceiri, Kevin W

    2014-01-01

    Confocal microscopy is an established light microscopical technique for imaging fluorescently labeled specimens with significant three-dimensional structure. Applications of confocal microscopy in the biomedical sciences include the imaging of the spatial distribution of macromolecules in either fixed or living cells, the automated collection of 3D data, the imaging of multiple labeled specimens and the measurement of physiological events in living cells. The laser scanning confocal microscope continues to be chosen for most routine work although a number of instruments have been developed for more specific applications. Significant improvements have been made to all areas of the confocal approach, not only to the instruments themselves, but also to the protocols of specimen preparation, to the analysis, the display, the reproduction, sharing and management of confocal images using bioinformatics techniques. PMID:24052346

  16. A meta-analysis of reflectance confocal microscopy for the diagnosis of malignant skin tumours.

    PubMed

    Xiong, Y D; Ma, S; Li, X; Zhong, X; Duan, C; Chen, Q

    2016-08-01

    Early diagnosis is extremely important for treatment and prognosis of skin cancer. Reflectance confocal microscopy (RCM) is a recently developed technique used to diagnose skin cancer. This meta-analysis was carried out to assess the accuracy of RCM for the diagnosis of malignant skin tumours. We conducted a systematic literature search of EMBASE, PubMed, the Cochrane Library and Web of Science database for relevant articles in English published up to 24 December 2015. The quality of the included studies was assessed using the QUADAS-2 tool. Statistical analyses were conducted using the software Meta-Disc version 1.4 and STATA version 12.0. A total of 21 studies involving 3108 patients with a total of 3602 lesions were included in the per-lesion analysis. The corresponding pooled results for sensitivity and specificity were 93.6% (95% CI: 0.92-0.95) and 82.7% (95% CI: 0.81-0.84) respectively. Positive likelihood ratio and negative likelihood ratio were 5.84 (95% CI: 4.27-7.98) and 0.08 (95% CI: 0.07-0.10) respectively. Subgroup analysis showed that RCM had a sensitivity of 92.7% (95% CI: 0.90-0.95) and a specificity of 78.3% (95% CI: 0.76-0.81) for detecting melanoma. The pooled sensitivity and specificity of RCM for detecting basal cell carcinoma were 91.7% (95% CI: 0.87-0.95) and 91.3% (95% CI: 0.94-0.96) respectively. RCM is a valid method of identifying malignant skin tumours accurately. PMID:27230832

  17. Compressive sensing in reflectance confocal microscopy of skin images: a preliminary comparative study

    NASA Astrophysics Data System (ADS)

    Arias, Fernando X.; Sierra, Heidy; Rajadhyaksha, Milind; Arzuaga, Emmanuel

    2016-03-01

    Compressive Sensing (CS)-based technologies have shown potential to improve the efficiency of acquisition, manipulation, analysis and storage processes on signals and imagery with slight discernible loss in data performance. The CS framework relies on the reconstruction of signals that are presumed sparse in some domain, from a significantly small data collection of linear projections of the signal of interest. As a result, a solution to the underdetermined linear system resulting from this paradigm makes it possible to estimate the original signal with high accuracy. One common approach to solve the linear system is based on methods that minimize the L1-norm. Several fast algorithms have been developed for this purpose. This paper presents a study on the use of CS in high-resolution reflectance confocal microscopy (RCM) images of the skin. RCM offers a cell resolution level similar to that used in histology to identify cellular patterns for diagnosis of skin diseases. However, imaging of large areas (required for effective clinical evaluation) at such high-resolution can turn image capturing, processing and storage processes into a time consuming procedure, which may pose a limitation for use in clinical settings. We present an analysis on the compression ratio that may allow for a simpler capturing approach while reconstructing the required cellular resolution for clinical use. We provide a comparative study in compressive sensing and estimate its effectiveness in terms of compression ratio vs. image reconstruction accuracy. Preliminary results show that by using as little as 25% of the original number of samples, cellular resolution may be reconstructed with high accuracy.

  18. Clinical applications of in vivo fluorescence confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Oh, Chilhwan; Park, Sangyong; Kim, Junhyung; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Chun, Byungseon; Gweon, Daegab

    2008-02-01

    Living skin for basic and clinical research can be evaluated by Confocal Laser Scanning Microscope (CLSM) non-invasively. CLSM imaging system can achieve skin image its native state either "in vivo" or "fresh biopsy (ex vivo)" without fixation, sectioning and staining that is necessary for routine histology. This study examines the potential fluorescent CLSM with a various exogenous fluorescent contrast agent, to provide with more resolution images in skin. In addition, in vivo fluorescent CLSM researchers will be extended a range of potential clinical application. The prototype of our CLSM system has been developed by Prof. Gweon's group. The operating parameters are composed of some units, such as illuminated wavelength 488 nm, argon illumination power up to 20mW on the skin, objective lens, 0.9NA oil immersion, axial resolution 1.0μm, field of view 200μm x 100μm (lateral resolution , 0.3μm). In human volunteer, fluorescein sodium was administrated topically and intradermally. Animal studies were done in GFP transgenic mouse, IRC mouse and pig skin. For imaging of animal skin, fluorescein sodium, acridine orange, and curcumine were used for fluorescein contrast agent. We also used the GFP transgenic mouse for fluorescein CLSM imaging. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. Curcumin is a yellow food dye that has similar fluorescent properties to fluorescein sodium. Acridin Orange can be highlight nuclei in viable keratinocyte. In vivo CLSM of transgenic GFP mouse enable on in vivo, high resolution view of GFP expressing skin tissue. GFP signals are brightest in corneocyte, kertinocyte, hair and eccrine gland. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. In

  19. In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intra-operative mapping of cancer margins

    PubMed Central

    Scope, A; Mahmood, U; Gareau, DS; Kenkre, M; Lieb, JA; Nehal, KS; Rajadhyaksha, M

    2010-01-01

    Background Reflectance confocal microscopy (RCM) images skin at cellular resolution and has shown utility for the diagnosis of nonmelanoma skin cancer in-vivo. Topical application of Aluminum Chloride (AlCl3) enhances contrast in RCM images by brightening nuclei. Objective To investigate feasibility of RCM imaging of shave biopsy wounds using AlCl3 as a contrast agent. Methods AlCl3 staining was optimized, in terms of concentration versus immersion time, on excised tissue ex-vivo. RCM imaging protocol was tested in patients undergoing shave biopsies. The RCM images were retrospectively analyzed and compared to the corresponding histopathology. Results For 35% AlCl3, routinely used for hemostasis in clinic, minimum immersion time was determined to be 1 minute. We identified 3 consistent patterns of margins on RCM mosaic images by varying depths: epidermal margins, peripheral dermal margins, and deep dermal margins. Tumour islands of basal cell carcinoma were identified at peripheral or deep dermal margins, correlating on histopathology with aggregates of neoplastic basaloid cells. Atypical cobblestone or honeycomb pattern were identified at the epidermal margins, correlating with a proliferation of atypical keratinocytes extending to biopsy margins. Conclusions RCM imaging of shave biopsy wounds is feasible and demonstrates the future possibility of intra-operative mapping in surgical wounds. PMID:20874785

  20. Intense pulsed light therapy for superficial pigmented lesions evaluated by reflectance-mode confocal microscopy and optical coherence tomography.

    PubMed

    Yamashita, Toyonobu; Negishi, Kei; Hariya, Takeshi; Kunizawa, Naomi; Ikuta, Kaori; Yanai, Motohiro; Wakamatsu, Shingo

    2006-10-01

    Intense pulsed light (IPL) therapy is reported to be effective for pigment removal from pigmented lesions. However, the dynamic mechanism of pigment removal by IPL therapy is not completely understood. We investigated the mechanism of IPL therapy for the removal of pigmented skin lesions through non-invasive observation of the epidermis. Subjects with solar lentigines on the face were treated with three sessions of IPL therapy. The solar lentigines were observed on consecutive days after the treatments using reflectance-mode confocal microscopy (RCM) and optical coherence tomography (OCT). In addition, desquamated microcrusts that formed after the treatment were investigated by transmission electron microscopy (TEM). The images of RCM and OCT showed that the melanosomes in the epidermal basal layer rapidly migrated to the skin surface. The TEM images of the extruded microcrusts revealed numerous melanosomes together with cell debris. It was also found that the IPL irradiated melanocytes in the lesions seemed to be left intact and resumed their high activity after treatment. We conclude that IPL therapy effectively removed the dense melanosomes in the epidermal-basal layer. However, additional application of suppressive drugs such as hydroquinone or Q-switched laser irradiation is necessary to suppress the remaining active melanocytes. PMID:16741506

  1. Concurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry to Improve Skin Cancer Imaging: A Monte Carlo Model and Experimental Validation.

    PubMed

    Mowla, Alireza; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Wilson, Stephen J; Prow, Tarl W; Soyer, H Peter; Rakić, Aleksandar D

    2016-01-01

    Optical interrogation of suspicious skin lesions is standard care in the management of skin cancer worldwide. Morphological and functional markers of malignancy are often combined to improve expert human diagnostic power. We propose the evaluation of the combination of two independent optical biomarkers of skin tumours concurrently. The morphological modality of reflectance confocal microscopy (RCM) is combined with the functional modality of laser Doppler flowmetry, which is capable of quantifying tissue perfusion. To realize the idea, we propose laser feedback interferometry as an implementation of RCM, which is able to detect the Doppler signal in addition to the confocal reflectance signal. Based on the proposed technique, we study numerical models of skin tissue incorporating two optical biomarkers of malignancy: (i) abnormal red blood cell velocities and concentrations and (ii) anomalous optical properties manifested through tissue confocal reflectance, using Monte Carlo simulation. We also conduct a laboratory experiment on a microfluidic channel containing a dynamic turbid medium, to validate the efficacy of the technique. We quantify the performance of the technique by examining a signal to background ratio (SBR) in both the numerical and experimental models, and it is shown that both simulated and experimental SBRs improve consistently using this technique. This work indicates the feasibility of an optical instrument, which may have a role in enhanced imaging of skin malignancies. PMID:27598157

  2. Confocal device and application strategies for endoluminal optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    George, Markus; Schnieder, Ludger; Buess, Gerhard F.

    2003-10-01

    While endoscopic optical coherence tomography has been established successfully in vivo ,implementation of endoluminal optical coherence microscopy remains demanding,s suitable confocal probe is lacking. A miniaturized confocal laser scanning microscope is presented,which fulfills the requirements for endoluminal optical coherence microscopy. First,imaging experience gained for optical coherence microscopy of nimal gastrointestinal tissue samples is described. For this purpose,laboratory scale optical coherence microscope with an image acquisition time of 1min 30 s was employed. Cellular membranes can be identified throughout the gastrointestinal organs. Frequency domain image analysis can be used to distinguish columnar from squamous epithelium. Profilometric information on sample surfaces can be obtained directly as isophase lines. Second, the miniaturized confocal laser scanning microscope is characterized. Having an effective diameter of 25 mm, it houses single-mode optical fiber,scanning mirror and an objective lens. The micro-electro-mechanical mirror with gimballed suspension allows two dimensional scanning without introducing an optical path difference. The sinusoidal movement of both axes has to be considered to approximate cartesian image coordinates. Field geometry is illustrated s function of excitation amplitude and frequency. Acceptable image quality is chieved for frame rate of 0.5 Hz. A strategy to position the focal plane axially within the sample volume is discussed.

  3. [Application of Three Dimensional Confocal Micro X-Ray Fluorescence Technology Based on Polycapillary X-Ray Lens in Analysis of Rock and Mineral Samples].

    PubMed

    Li, Fang-zuo; Liu, Zhi-guo; Sun, Tian-xi; Yi, Long-tao; Zhao, Wei-gang; He, Jia-lin; Peng, Song; Wang, Li-li; Zhao, Guang-cui; Ding, Xun-liang

    2015-09-01

    Confocal three dimensional (3D) micro X-ray fluorescence (XRF) spectrometer based on a polycapillary focusing X-ray lens (PFXRL) in the excitation channel and a polycapillary parallel X-ray lens (PPXRL) in the detection channel was developed. The PFXRL and PPXRL were placed in a confocal configuration. This was helpful in improving the signal-to-noise ratio of the XRF spectra, and accordingly lowered the detection limitation of the XRF technology. The confocal configuration ensured that only the XRF signal from the confocal micro-volume overlapped by the output focal spot of the PFXRL and the input focal spot of the PPXRL could be detected by the detector. Therefore, the point-to-point information of XRF for samples could be obtained non-destructively by moving the sample located at the confocal position. The magnitude of the gain in power density of the PFXRL was 10(3). This let the low power conventional X-ray source be used in this confocal XRF, and, accordingly, decreased the requirement of high power X-ray source for the confocal XRF based on polycapillary X-ray optics. In this paper, we used the confocal 3D micro X-ray fluorescence spectrometer to non-destructively analyzed mineral samples and to carry out a 3D point-to-point elemental mapping scanning, which demonstrated the capabilities of confocal 3D micro XRF technology for non-destructive analysis elements composition and distribution for mineral samples. For one mineral sample, the experimental results showed that the area with high density of element of iron had high density of copper. To some extent, this reflected the growth mechanisms of the mineral sample. The confocal 3D micro XRF technology has potential applications in such fields like the analysis identification of ore, jade, lithoid utensils, "gamble stone" and lithoid flooring. PMID:26669153

  4. Confocal Optical Imaging Systems and Their Applications in Microscopy and Range Sensing

    NASA Astrophysics Data System (ADS)

    Xiao, Guoqing

    1990-11-01

    Confocal optical imaging systems have been the subject of much recent studies. They have found their applications in biomedical imaging and integrated circuit metrology. Confocal systems differ from the standard optical imaging systems in their use of point illumination and point detection, gaining an improved transverse resolution and superior depth resolution. The depth discrimination capability allows confocal imaging systems to optically cross section translucent objects or to image three-dimensional structures. The improvement in transverse resolution permits them to image structures with more detail and better contrast. This thesis has focused on the design and implementation of the confocal optical imaging systems and their applications. A nonparaxial confocal optical imaging theory is developed based on the scalar Rayleigh-Sommerfeld diffraction theory and Sine Condition without the normally-used thin-lens approximation. Two confocal optical range sensors and a Real-time Confocal Scanning Optical Microscope (RSOM) are demonstrated. It is shown that our RSOM has tremendous advantages over other confocal microscopes both in scanning speed and in the ease of use and alignment. The dependence of the imaging characteristics on the pinhole size and the lens is fully discussed. Experimental measurements are compared with the theoretical calculations. Good agreement is obtained. Also demonstrated in this thesis are numerous applications of the RSOM in integrated circuit metrology and biomedical imaging. Deep trenches as narrow as 1 μm and deep as 6 mu m are observed with the RSOM. The RSOM is not only able to measure the trench depth but, is also able to inspect individual defects inside the trench. Linewidth measurement is also investigated. The RSOM is shown to have an excellent optical cross-sectioning capability. Sectioned images of bones, teeth, and the unprepared cornea of a rabbit eye have been observed. Well-defined sectioned images have been obtained

  5. A machine learning method for identifying morphological patterns in reflectance confocal microscopy mosaics of melanocytic skin lesions in-vivo

    NASA Astrophysics Data System (ADS)

    Kose, Kivanc; Alessi-Fox, Christi; Gill, Melissa; Dy, Jennifer G.; Brooks, Dana H.; Rajadhyaksha, Milind

    2016-02-01

    We present a machine learning algorithm that can imitate the clinicians qualitative and visual process of analyzing reflectance confocal microscopy (RCM) mosaics at the dermal epidermal junction (DEJ) of skin. We divide the mosaics into localized areas of processing, and capture the textural appearance of each area using dense Speeded Up Robust Feature (SURF). Using these features, we train a support vector machine (SVM) classifier that can distinguish between meshwork, ring, clod, aspecific and background patterns in benign conditions and melanomas. Preliminary results on 20 RCM mosaics labeled by expert readers show classification with 55 - 81% sensitivity and 81 - 89% specificity in distinguishing these patterns.

  6. Combined reflectance confocal microscopy-optical coherence tomography for delineation of basal cell carcinoma margins: an ex vivo study

    NASA Astrophysics Data System (ADS)

    Iftimia, Nicusor; Peterson, Gary; Chang, Ernest W.; Maguluri, Gopi; Fox, William; Rajadhyaksha, Milind

    2016-01-01

    We present a combined reflectance confocal microscopy (RCM) and optical coherence tomography (OCT) approach, integrated within a single optical layout, for diagnosis of basal cell carcinomas (BCCs) and delineation of margins. While RCM imaging detects BCC presence (diagnoses) and its lateral spreading (margins) with measured resolution of ˜1 μm, OCT imaging delineates BCC depth spreading (margins) with resolution of ˜7 μm. When delineating margins in 20 specimens of superficial and nodular BCCs, depth could be reliably determined down to ˜600 μm, and agreement with histology was within about ±50 μm.

  7. Detection of living Sarcoptes scabiei larvae by reflectance mode confocal microscopy in the skin of a patient with crusted scabies

    NASA Astrophysics Data System (ADS)

    Levi, Assi; Mumcuoglu, Kosta Y.; Ingber, Arieh; Enk, Claes D.

    2012-06-01

    Scabies is an intensely pruritic disorder induced by a delayed type hypersensitivity reaction to infestation of the skin by the mite Sarcoptes scabiei. The diagnosis of scabies is established clinically and confirmed by identifying mites or eggs by microscopic examination of scrapings from the skin or by surface microscopy using a dermatoscope. Reflectance-mode confocal microscopy is a novel technique used for noninvasive imaging of skin structures and lesions at a resolution compatible to that of conventional histology. Recently, the technique was employed for the confirmation of the clinical diagnosis of scabies. We demonstrate the first ever documentation of a larva moving freely inside the skin of a patient infected with scabies.

  8. Full-pupil versus divided-pupil confocal line-scanners for reflectance imaging of human skin in vivo

    NASA Astrophysics Data System (ADS)

    Gareau, Dan; Abeytunge, Sanjeewa; Rajadhyaksha, Milind

    2007-02-01

    A full-pupil confocal line-scanning microscope is under development for imaging human skin in vivo in reflectance. The new design potentially offers an alternative to current point- and line-scanners that may simplify the optics, electronics and mechanics, and lead to simpler and smaller confocal microscopes. With a combination of a cylindrical lens and an objective lens, the line-scanner creates a focused line of laser light in the object plane within tissue. An oscillating galvanometric mirror scans the focused line transverse to its axis. The backscattered light from the tissue is de-scanned and focused onto a linear CMOS detector array. Preliminary measurements of the axial line-spread function, with a 30x, 0.9-NA water immersion objective lens and illumination wavelength of 633 nm, determined the optical sectioning to be 10 μm. The new design is simple, requiring only eight optical components. However, the disadvantage is non-confocality in one dimension that results in 20% weaker sectioning than with a point-scanner, and reduced contrast in scattering tissue. The images of standard reflective targets such as a mirror and grating as well as dermis-like scattering target such as paper offer a preliminary glimpse into the performance of the line-scanner. A similar alternative design is the divided-pupil (theta) line-scanner, which provides 50% weaker sectioning than with a point scanner, but better contrast and less speckle due to the theta configuration. Such line scanners may prove useful for routine imaging of humans in clinical settings.

  9. Confocal reflectance and two-photon microscopy studies of a songbird skull for preparation of transcranial imaging

    NASA Astrophysics Data System (ADS)

    Abi-Haidar, Darine; Oliver, Thomas

    2009-05-01

    We present experiments and analyses of confocal reflectance and two-photon microscopy studies of zebra finch skull samples. The thin and hollow structure of these birds' skulls is quite translucent, which can allow in vivo transcranial two-photon imaging for brain activation monitoring. However, the skull structure is also quite complex, with high refractive index changes on a macroscopic scale. These studies aim at exploring the geometrical and scattering properties of these skull samples with the use of several confocal microscopy contrasts. Moreover, the study of the axial reflectance exponential decay is used to estimate the scattering coefficients of the bone. Finally, two-photon imaging experiments of a fluorescent object located beneath the skull are carried out. It reveals that two-photon fluorescence can be collected through the skull with a strong signal. It also reveals that the spatial resolution loss is quite high and cannot be fully explained by the bulk scattering properties of the bone, but also by the presence of the high refractive index inhomogeneity of this pneumatic skull structure. Even if the optical properties of the skull are different during in vivo experiments, these preliminary studies are aimed at preparing and optimizing transcranial brain activation monitoring experiments on songbirds.

  10. HIV detection by in-situ hybridization based on confocal reflected light microscopy

    NASA Astrophysics Data System (ADS)

    Smith, Louis C.; Jericevic, Zeljko; Cuellar, Roland; Paddock, Stephen W.; Lewis, Dorothy E.

    1991-05-01

    Elucidation of the pathogenesis of AIDS is confounded by the finding that few actively infected CD4+ cells (1 in 104-105) can be detected in the peripheral blood, even though there is dramatic depletion (often >90%) of CD4+ cells as the disease progresses. A sensitive, 35S-based human immunodeficiency virus (HIV) mRNA in situ hybridization technique was coupled with a new detection method, confocal laser scanning microscopy, to examine transcriptionally active HIV-infected cells from individuals at different disease stages. An algorithm for image segmentation and analysis has been developed to determine the proportion of HIV-positive cells. Data obtained using this improved detection method suggest that there are more HIV mRNA-producing cells in HIV-infected individuals than previously thought, based on other detection methods.

  11. Analysis of the efficiency of hair removal by different optical methods: comparison of Trichoscan, reflectance confocal microscopy, and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kuck, Monika; Schanzer, Sabine; Ulrich, Martina; Bartels, Natalie Garcia; Meinke, Martina C.; Fluhr, Joachim; Krah, Martin; Blume-Peytavi, Ulrike; Stockfleth, Eggert; Lademann, Jürgen

    2012-10-01

    Noninvasive diagnostic tools, such as Trichoscan, reflectance confocal microscopy (RCM), and optical coherence tomography (OCT), are efficient methods of hair shaft and growth evaluation. The aim of this study was to carry out a comparative assessment of these three medical procedures by measuring the hair shaft and hair growth after hair removal for a defined period of five days. The application of these techniques was demonstrated by measuring hair growth on the lower leg of six female volunteers. After removal of the hair shaft with a shaving system, the hair follicle infundibula and the length of the growing hairs were measured with the Trichoscan, RCM, and OCT method. All three methods are reliable hair measuring tools after hair removal. Trichoscan is best suited in the implementation of hair growth measurement and RCM in the analysis of hair follicles, whereas the OCT system can be consulted as an additional measurement for the evaluation of the hair follicle and length.

  12. In vivo confocal microscopy in dermatology: from research to clinical application

    NASA Astrophysics Data System (ADS)

    Ulrich, Martina; Lange-Asschenfeldt, Susanne

    2013-06-01

    Confocal laser scanning microscopy (CLSM) represents an emerging technique for the noninvasive histomorphological analysis of skin in vivo and has shown its applicability for dermatological research as well as its value as an adjunct tool in the clinical management of skin cancer patients. Herein, we aim to give an overview on the current clinical indications for CLSM in dermatology and also highlight the diverse applications of CLSM in dermatological research.

  13. In vivo confocal microscopy in dermatology: from research to clinical application.

    PubMed

    Ulrich, Martina; Lange-Asschenfeldt, Susanne

    2013-06-01

    Confocal laser scanning microscopy (CLSM) represents an emerging technique for the noninvasive histomorphological analysis of skin in vivo and has shown its applicability for dermatological research as well as its value as an adjunct tool in the clinical management of skin cancer patients. Herein, we aim to give an overview on the current clinical indications for CLSM in dermatology and also highlight the diverse applications of CLSM in dermatological research. PMID:23338938

  14. Evaluation through in vivo reflectance confocal microscopy of the cutaneous neurogenic inflammatory reaction induced by capsaicin in human subjects

    NASA Astrophysics Data System (ADS)

    Căruntu, Constantin; Boda, Daniel

    2012-08-01

    We perform an in vivo analysis of the effects of capsaicin on cutaneous microvascularization. A total of 29 healthy subjects are administered a solution of capsaicin (CAP group) or a vehicle solution (nonCAP group) on the dorsal side of the nondominant hand. The evaluation is performed using in vivo reflectance confocal microscopy (RCM). Ten minutes after administration, the area of the section, the perimeter, and the Feret's diameter of the capillaries in the dermal papillae become significantly larger in the CAP group as against the nonCAP group, and this difference is maintained until the conclusion of the experiment. In vivo RCM allows the investigation of cutaneous vascular reactions induced by capsaicin. As such, this method may constitute an useful technique both for research and clinical practice.

  15. Application of confocal laser microscopy for monitoring mesh implants in herniology

    SciTech Connect

    Zakharov, V P; Belokonev, V I; Bratchenko, I A; Timchenko, P E; Vavilov, A V; Volova, L T

    2011-04-30

    The state of the surface of mesh implants and their encapsulation region in herniology is investigated by laser confocal microscopy. A correlation between the probability of developing relapses and the size and density of implant microdefects is experimentally shown. The applicability limits of differential reverse scattering for monitoring the post-operation state of implant and adjacent tissues are established based on model numerical experiments. (optical technologies in biophysics and medicine)

  16. Video-Mosaicing of Reflectance Confocal Images For Rapid Examination of Large Areas of Skin In Vivo

    PubMed Central

    Kose, Kivanc; Cordova, Miguel; Duffy, Megan; Flores, Eileen S.; Brooks, Dana H.; Rajadhyaksha, Milind

    2015-01-01

    Background With reflectance confocal microscopy (RCM) imaging, skin cancers can be diagnosed in vivo and margins detected to guide treatment. Since the field of view of an RCM image is much smaller than the typical size of lesions, mosaicing approaches have been developed to display larger areas of skin. However, the current paradigm for RCM mosaicing in vivo is limited both in speed and to pre-selected rectangular-shaped small areas. Another approach, called “video-mosaicing,” enables higher speeds and real-time operator-selected areas of any size and shape, and will be more useful for RCM examination of skin in vivo. Objectives To demonstrate the feasibility and clinical potential of video-mosaicing of RCM images to rapidly display large areas of skin in vivo. Methods Thirteen videos of benign lesions, melanocytic cancers and residual basal cell carcinoma margins were collected on volunteer subjects with a handheld RCM scanner. The images from each video were processed and stitched into mosaics to display the entire area that was imaged. Results Acquisition of RCM videos covering 5.0–16.0 mm2 was performed in 20–60 seconds. The video-mosaics were visually determined to be of high quality for resolution, contrast and seamless contiguity, and the appearance of cellular-level and morphologic detail. Conclusion Video-mosaicing confocal microscopy, with real-time operator-choice of the shape and size of the area to be imaged, will enable rapid examination of large areas of skin in vivo. This approach may further advance noninvasive detection of skin cancer and, eventually, facilitate wider adoption of RCM imaging in the clinic. PMID:24720744

  17. Effect of clearing agents on scattering coefficient and anisotropy of scattering of dermis studied by reflectance confocal microscopy

    NASA Astrophysics Data System (ADS)

    Jacques, S. L.; Samatham, R.; Phillips, K. G.

    2011-03-01

    Optical clearing of mouse dermis by glycerol was tested by reflectance-mode confocal microscopy (rCSLM) using 488- nm light. The reflectance signal R(z) was acquired as a function of the depth of the focus (z) within the upper 100 μm of freshly excised mouse dermis. The results specify the scattering coefficient (μs [cm-1]) and the anisotropy of scattering (g [dimensionless]). The absorption is too low to exert an effect. The results, published in Samatham et al., Journal of Innovative Optical Health Sciences 2010, 3(3):183-188, described how the clearing effect of glycerol was to increase g toward nearly 1.0, while having only a modest effect on μs. In other words, glycerol caused light scattering to become very forward-directed, but did not strongly alter the number of scattering events per unit length of photon path. This paper discusses the possible mechanism of action that is responsible for this clearing effect.

  18. Optical biopsy of early gastroesophageal cancer by catheter-based reflectance-type laser-scanning confocal microscopy.

    PubMed

    Nakao, Madoka; Yoshida, Shigeto; Tanaka, Shinji; Takemura, Yoshito; Oka, Shiro; Yoshihara, Masaharu; Chayama, Kazuaki

    2008-01-01

    Magnified endoscopic observation of the gastrointestinal tract has become possible. However, such observation at the cellular level remains difficult. Laser-scanning confocal microscopy (LCM) is a novel, noninvasive optical imaging method that provides instant microscopic images of untreated tissue under endoscopy. We compare prototype catheter-based reflectance-type LCM images in vivo and histologic images of early gastroesophageal cancer to assess the usefulness of LCM in diagnosing such cancer. 20 sites in the esophagus and 40 sites in the stomach are examined by LCM under endoscopy prior to endoscopic or surgical resection. A prototype catheter LCM system, equipped with a semiconductor laser that oscillates at 685 nm and analyzes reflected light (Mauna Kea Technologies, Paris, France; Fujinon, Saitama, Japan) is used in vivo without fluorescent agent. In all normal esophageal mucosa and esophageal cancers, the nuclei are visualized. In nine of the ten normal esophageal mucosa, cell membranes are visualized, and in five of the ten esophageal cancers, cell membranes are visualized. In all normal gastric mucosa, nuclei and cell membranes are not visualized, but in ten of the 20 gastric cancers, nuclei are visualized. This novel method will aid in immediate diagnosis under endoscopy without the need for biopsy. PMID:19021423

  19. Reflectance confocal microscopy and dermoscopy for in vivo, non-invasive skin imaging of superficial basal cell carcinoma

    PubMed Central

    GHITA, MIHAELA A.; CARUNTU, CONSTANTIN; ROSCA, ADRIAN E.; KALESHI, HARILLAQ; CARUNTU, ANA; MORARU, LILIANA; DOCEA, ANCA OANA; ZURAC, SABINA; BODA, DANIEL; NEAGU, MONICA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.

    2016-01-01

    Superficial basal cell carcinoma (sBCC) is the second most frequent histological type of basal cell carcinoma (BCC), usually requiring a skin biopsy to confirm the diagnosis. It usually appears on the upper trunk and shoulders as erythematous and squamous lesions. Although it has a slow growth and seldom metastasizes, early diagnosis and management are of crucial importance in preventing local invasion and subsequent disfigurement. Dermoscopy is nowadays an indispensable tool for the dermatologist when evaluating skin tumors. Reflectance confocal microscopy (RCM) is a novel imaging technique that allows the non-invasive, in vivo quasi-microscopic morphological and dynamic assessment of superficial skin tumors. Moreover, it offers the advantage of performing infinite repeatable determinations to monitor disease progression and non-surgical treatment for sBCC. Herein, we present three lesions of sBCC evaluated using in vivo and non-invasive imaging techniques, emphasizing the usefulness of combining RCM with dermoscopy for increasing the diagnostic accuracy of sBCC. PMID:27123056

  20. In vivo detection of basal cell carcinoma: comparison of a reflectance confocal microscope and a multiphoton tomograph

    NASA Astrophysics Data System (ADS)

    Ulrich, Martina; Klemp, Marisa; Darvin, Maxim E.; König, Karsten; Lademann, Jürgen; Meinke, Martina C.

    2013-06-01

    The standard diagnostic procedure for basal cell carcinoma (BCC) is invasive tissue biopsy with time-consuming histological examination. To reduce the number of biopsies, noninvasive optical methods have been developed providing high-resolution skin examination. We present direct comparison of a reflectance confocal microscope (RLSM) and a multiphoton tomograph (MPT) for BCC diagnosis. Both systems are applied to nine patients prior to surgery, and the results are analyzed, including histological results. Both systems prove suitable for detecting typical characteristics of BCC in various stages. The RLSM allows large horizontal overview images to be obtained, enabling the investigator to find the regions of interest quickly, e.g., BCC nests. Elongated cells and palisading structures are easily recognized using both methods. Due to the higher resolution, changes in nucleus diameter or cytoplasm could be visualized with the MPT. Therefore, the nucleus diameter, nucleus/cytoplasm ratio, and cell density are estimated for normal and BCC cells using the MPT. The nucleus of elongated BCC cells is significantly longer than other measured normal skin cells, whereas the cell density and nucleus/cytoplasm ratio of BCC cannot be significantly distinguished from granular cells.

  1. Comparison of reflectance confocal microscopy and two-photon second harmonic generation microscopy in fungal keratitis rabbit model ex vivo

    PubMed Central

    Lee, Jun Ho; Lee, Seunghun; Yoon, Calvin J.; Park, Jin Hyoung; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-01-01

    Fungal keratitis is an infection of the cornea by fungal pathogens. Diagnosis methods based on optical microscopy could be beneficial over the conventional microbiology method by allowing rapid and non-invasive examination. Reflectance confocal microscopy (RCM) and two-photon second harmonic generation microscopy (TPSHGM) have been applied to pre-clinical or clinical studies of fungal keratitis. In this report, RCM and TPSHGM were characterized and compared in the imaging of a fungal keratitis rabbit model ex vivo. Fungal infection was induced by using two strains of fungi: aspergillus fumigatus and candida albicans. The infected corneas were imaged in fresh condition by both modalities sequentially and their images were analyzed. Both RCM and TPSHGM could detect both fungal strains within the cornea based on morphology: aspergillus fumigatus had distinctive filamentous structures, and candida albicans had round structures superficially and elongated structures in the corneal stroma. These imaging results were confirmed by histology. Comparison between RCM and TPSHGM showed several characteristics. Although RCM and TPSHGM images had good correlation each other, their images were slightly different due to difference in contrast mechanism. RCM had relatively low image contrast with the infected turbid corneas due to high background signal. TPSHGM visualized cells and collagen in the cornea clearly compared to RCM, but used higher laser power to compensate low autofluorescence. Since these two modalities provide complementary information, combination of RCM and TPSHGM would be useful for fungal keratitis detection by compensating their weaknesses each other. PMID:26977371

  2. Relationship between Histological and Clinical Course of Psoriasis: A Pilot Investigation by Reflectance Confocal Microscopy during Goeckerman Treatment.

    PubMed

    Archid, Rami; Duerr, Hans Peter; Patzelt, Alexa; Philipp, Sandra; Röwert-Huber, Hans-Joachim; Ulrich, Martina; Meinke, Martina Claudia; Knorr, Fanny; Lademann, Jürgen

    2016-01-01

    Alterations of the skin microvasculature are known to play an important role in the development and maintenance of psoriatic skin lesions. In this study, we investigated lesional skin in 11 psoriatic patients during a modified Goeckerman treatment using reflectance confocal microscopy (RCM) to study the relationship between clinical clearance and histological normalization of psoriatic skin and the significance of histological abnormalities on the course of disease. The treatment regimen resulted in a significant reduction of the Psoriasis Area and Severity Index (PASI) as well as capillary and papillary diameters (p < 0.0001). The capillary and papillary diameters were still enlarged when compared to those in normal skin (p < 0.001). Capillary and papillary diameters correlated with each other prior to and after treatment (correlation coefficient = 0.63 and 0.64, p = 0.01 and 0.002, respectively) but not with the PASI. Capillary and papillary diameters after treatment and percentage reduction of the PASI during treatment seemed to be better predictors for the clinical course of relapse than the PASI after treatment. These findings make the subclinical changes of psoriatic skin vessels and dermal papillae a legitimate target for treatment. Further investigations of a large group of patients are needed to evaluate the potential of RCM findings as successor of the PASI in the monitoring of psoriasis. PMID:26841099

  3. Comparison of reflectance confocal microscopy and two-photon second harmonic generation microscopy in fungal keratitis rabbit model ex vivo.

    PubMed

    Lee, Jun Ho; Lee, Seunghun; Yoon, Calvin J; Park, Jin Hyoung; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-02-01

    Fungal keratitis is an infection of the cornea by fungal pathogens. Diagnosis methods based on optical microscopy could be beneficial over the conventional microbiology method by allowing rapid and non-invasive examination. Reflectance confocal microscopy (RCM) and two-photon second harmonic generation microscopy (TPSHGM) have been applied to pre-clinical or clinical studies of fungal keratitis. In this report, RCM and TPSHGM were characterized and compared in the imaging of a fungal keratitis rabbit model ex vivo. Fungal infection was induced by using two strains of fungi: aspergillus fumigatus and candida albicans. The infected corneas were imaged in fresh condition by both modalities sequentially and their images were analyzed. Both RCM and TPSHGM could detect both fungal strains within the cornea based on morphology: aspergillus fumigatus had distinctive filamentous structures, and candida albicans had round structures superficially and elongated structures in the corneal stroma. These imaging results were confirmed by histology. Comparison between RCM and TPSHGM showed several characteristics. Although RCM and TPSHGM images had good correlation each other, their images were slightly different due to difference in contrast mechanism. RCM had relatively low image contrast with the infected turbid corneas due to high background signal. TPSHGM visualized cells and collagen in the cornea clearly compared to RCM, but used higher laser power to compensate low autofluorescence. Since these two modalities provide complementary information, combination of RCM and TPSHGM would be useful for fungal keratitis detection by compensating their weaknesses each other. PMID:26977371

  4. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms.

    PubMed

    Swearingen, Matthew C; Mehta, Ajeet; Mehta, Amar; Nistico, Laura; Hill, Preston J; Falzarano, Anthony R; Wozniak, Daniel J; Hall-Stoodley, Luanne; Stoodley, Paul

    2016-02-01

    Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples. PMID:26536894

  5. Highlighting the impact of aging on type I collagen: label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model

    PubMed Central

    Terryn, Christine; Garnotel, Roselyne; Jeannesson, Pierre; Sockalingum, Ganesh D.; Manfait, Michel; Perraut, François; Dinten, Jean-Marc; Koenig, Anne; Piot, Olivier

    2016-01-01

    During aging, alterations of extracellular matrix proteins contribute to various pathological phenotypes. Among these alterations, type I collagen cross-linking and associated glycation products accumulation over time detrimentally affects its physico-chemical properties, leading to alterations of tissue biomechanical stability. Here, different-age collagen 3D matrices using non-destructive and label-free biophotonic techniques were analysed to highlight the impact of collagen I aging on 3D constructs, at macroscopic and microscopic levels. Matrices were prepared with collagens extracted from tail tendons of rats (newborns, young and old adults) to be within the physiological aging process. The data of diffuse reflectance spectroscopy reveal that aging leads to an inhibition of fibril assembly and a resulting decrease of gel density. Investigations by confocal reflectance microscopy highlight poor-fibrillar structures in oldest collagen networks most likely related to the glycation products accumulation. Complementarily, an infrared analysis brings out marked spectral variations in the Amide I profile, specific of the peptidic bond conformation and for carbohydrates vibrations as function of collagen-age. Interestingly, we also highlight an unexpected behavior for newborn collagen, exhibiting poorly-organized networks and microscopic features close to the oldest collagen. These results demonstrate that changes in collagen optical properties are relevant for investigating the incidence of aging in 3D matrix models. PMID:26885896

  6. Evaluation of the therapeutic results of actinic keratosis treated with topical 5% fluorouracil by reflectance confocal laser microscopy: preliminary study*

    PubMed Central

    Ishioka, Priscila; Maia, Marcus; Rodrigues, Sarita Bartholomei; Marta, Alessandra Cristina; Hirata, Sérgio Henrique

    2015-01-01

    Topical treatment for actinic keratosis with 5% fluorouracil has a recurrence rate of 54% in 12 months of follow-up. This study analyzed thirteen actinic keratoses on the upper limbs through confocal microscopy, at the time of clinical diagnosis and after 4 weeks of treatment with fluorouracil. After the treatment was established and evidence of clinical cure was achieved, in two of the nine actinic keratoses, confocal microscopy enabled visualization of focal areas of atypical honeycomb pattern in the epidermis indicating therapeutic failure. Preliminary data suggest the use of confocal microscopy as a tool for diagnosis and therapeutic control of actinic keratosis. PMID:26131881

  7. An unsupervised machine learning method for delineating stratum corneum in reflectance confocal microscopy stacks of human skin in vivo

    NASA Astrophysics Data System (ADS)

    Bozkurt, Alican; Kose, Kivanc; Fox, Christi A.; Dy, Jennifer; Brooks, Dana H.; Rajadhyaksha, Milind

    2016-02-01

    Study of the stratum corneum (SC) in human skin is important for research in barrier structure and function, drug delivery, and water permeability of skin. The optical sectioning and high resolution of reflectance confocal microscopy (RCM) allows visual examination of SC non-invasively. Here, we present an unsupervised segmentation algorithm that can automatically delineate thickness of the SC in RCM images of human skin in-vivo. We mimic clinicians visual process by applying complex wavelet transform over non-overlapping local regions of size 16 x 16 μm called tiles, and analyze the textural changes in between consecutive tiles in axial (depth) direction. We use dual-tree complex wavelet transform to represent textural structures in each tile. This transform is almost shift-invariant, and directionally selective, which makes it highly efficient in texture representation. Using DT-CWT, we decompose each tile into 6 directional sub-bands with orientations in +/-15, 45, and 75 degrees and a low-pass band, which is the decimated version of the input. We apply 3 scales of decomposition by recursively transforming the low-pass bands and obtain 18 bands of different directionality at different scales. We then calculate mean and variance of each band resulting in a feature vector of 36 entries. Feature vectors obtained for each stack of tiles in axial direction are then clustered using spectral clustering in order to detect the textural changes in depth direction. Testing on a set of 15 RCM stacks produced a mean error of 5.45+/-1.32 μm, compared to the "ground truth" segmentation provided by a clinical expert reader.

  8. In vivo reflectance-mode confocal microscopy assessments: impact of overweight on human skin microcirculation and histomorphology

    NASA Astrophysics Data System (ADS)

    Altintas, Ahmet A.; Aust, Matthias C.; Krämer, Robert; Vogt, Peter M.; Altintas, Mehmet A.

    2016-03-01

    Reflectance-mode confocal microscopy (RCM) enables in vivo assessment of the human skin. Impact of overweight on both human skin microcirculation and histomorphology has not been investigated in vivo. The purpose of this study is to evaluate both microcirculation and histomorphology in vivo in overweight. In 10 normotensive overweight nondiabetic individuals (OW-group, BMI 29.1±2.7 kg/m2) and 10 age- and sex-matched healthy lean controls (CO-group, BMI 20.4±1.9 kg/m2) the following parameters were evaluated using RCM: dermal blood cell flow (DBCF), density of dermal capillaries (DDC), epidermal thickness (ET), and epidermal cell size (ECS). DBCF was counted at 63.11±4.14 cells/min in OW-group and at 51.06±3.84 cells/min in CO-group (P<0.05). DDC was reduced in OW-group (4.91±0.39 capillaries/mm2) compared to the controls (6.02±0.64 capillaries/mm2, P<0.05). Histometric evaluation of ET reveals thickening in OW-group compared to the CO-group (54.79±4.25 μm versus 44.03±3.11 μm, P<0.05). ECS differed significantly (P<0.05) in OW-group (821.3±42.02 μm2) compared to the controls (772.6±34.79 μm2). Inverse correlation of dermal capillary density and overweight point to reduced total tissue perfusion while positive related blood cell flow reveals vasodilatation. Increase of both ET and cell size indicates remodeling of cutaneous histomorphology, maybe as an early stage of adiposity-related skin condition.

  9. Diagnosis of Basal Cell Carcinoma by Reflectance Confocal Microscopy: Study Design and Protocol of a Randomized Controlled Multicenter Trial

    PubMed Central

    Alkemade, Hans A.C; Maessen-Visch, Birgitte; Hendriks, Jan C.M; van Erp, Piet E.J; Adang, Eddy M.M; Gerritsen, Marie-Jeanne P

    2016-01-01

    Background Skin cancer, including basal cell carcinoma (BCC), has become a major health care problem. The limitations of a punch biopsy (at present the gold standard) as diagnostic method together with the increasing incidence of skin cancer point out the need for more accurate, cost-effective, and patient friendly diagnostic tools. In vivo reflectance confocal microscopy (RCM) is a noninvasive imaging technique that has great potential for skin cancer diagnosis. Objective To investigate whether in vivo RCM can correctly identify the subtype of BCC and to determine the cost-effectiveness of RCM compared with punch biopsy (usual care). Study design: Randomized controlled multicenter trial. Methods On the basis of 80% power and an alpha of 0.05, 329 patients with lesions clinically suspicious for BCC will be included in this study. Patients will be randomized for RCM or for a punch biopsy (usual care). When a BCC is diagnosed, surgical excision will follow and a follow-up visit will be planned 3 months later. Several questionnaires will be filled in (EQ-5D, EQ-5D VAS, iMTA PCQ, and TSQM-9). We will perform statistical analysis, cost-effectiveness, and patient outcome analysis after data collection. Results This research started in January 2016 and is ethically approved. We expect to finish this study at the end of 2018. Conclusions In this study, we will investigate whether RCM is at least as good in identifying BCC subtypes as conventional pathological investigation of skin biopsies. Anticipating that RCM is found to be a cost-effective alternative, it saves on direct medical consumption like labor of the pathologist and other medical personnel as well as materials related to treatment failure with at least equal effectiveness. Trial Registration Clinicaltrials.gov NCT02623101; https://clinicaltrials.gov/ct2/show/NCT02623101 (Archived by WebCite at http://www.webcitation.org/6id54WQa2) PMID:27363577

  10. Characterization of different tissue changes in normal, betel chewers, potentially malignant lesions, conditions and oral squamous cell carcinoma using reflectance confocal microscopy: correlation with routine histopathology.

    PubMed

    Anuthama, Krishnamurthy; Sherlin, Herald J; Anuja, N; Ramani, Pratibha; Premkumar, Priya; Chandrasekar, T

    2010-04-01

    The goal of this study was to characterize the features of normal mucosa, mucosa in betel chewers and smokers, potentially malignant lesions and squamous cell carcinoma of oral mucosa using reflectance confocal microscopy. Oral cavity biopsies were acquired from 25 patients from College of Dental Surgery, Saveetha University who underwent screening for suspected lesions of Oral precancer and Oral cancer along with normal patients who underwent impaction. Biopsies were acquired from the clinically suspicious area and immediately placed in Dulbecco modified eagles growth medium (DMEM). Reflectance confocal images were obtained at multiple image plane depths from biopsies within 6h of excision. After imaging, biopsies were fixed in 10% formalin and submitted for routine histopathological examination by an experienced oral and maxillofacial pathologist. Reflectance confocal images were compared with histological images from the same sample to determine the tissue features which contribute to early cellular changes, image contrast and early diagnosis. The confocal images were obtained to a depth of up to 150 microns on intact biopsy specimens and subsequent 3-dimensional images, keratin thickness measurements, cell measurements, cell density analysis and graphical representations were performed using Leica image analysis software. In normal mucosa keratin deposition were seen as alternating dark and bright stacks and in different cell layers the nuclei were seen as disks of varying intensities. In pre-cancerous lesions the keratin thickness and cell nuclear density were found to be increased when compared to normal controls. In OSMF cases confocal images of fibrosis show scattering from individual fibres as hyperdense areas. Oral squamous cell carcinoma cases demonstrated extensive variations in cell size, nuclear size and nuclear morphology. At cellular level, dysplastic features like increased nuclear density, increased nuclear cytoplasmic ratio, nuclear and cellular

  11. Study of the possibility of increasing the probing depth by the method of reflection confocal microscopy upon immersion clearing of near-surface human skin layers

    SciTech Connect

    Meglinskii, I V; Bashkatov, A N; Genina, Elina A; Tuchin, Valerii V; Churmakov, D Yu

    2002-10-31

    The possibility of increasing the human-skin probing depth by the method of reflection confocal microscopy (RCM) upon decreasing the amplitude of spatial fluctuations of the refractive index of the upper skin layers is considered. A change in the probing depth is estimated by analysing the spatial distribution of the probability density of the effective optical paths of detected photons calculated by the Monte Carlo method. The results of the numerical simulation are interpreted within the framework of the possible application of RCM to the study of the human skin exposed to an immersion liquid compatible to it. A diffusion of the immersion agent into the skin depth involves the equalising of the refractive indices of the structural elements of near-surface skin layers, which in turn causes a decrease in the scattering intensity and a certain increase in the transparency of the upper tissue layers. It is shown that a decrease in the light scattering in the near-surface skin layers leads to a significant increase in the probing depth obtained with the RCM technique.

  12. Assessment of a superficial chemical peel combined with a multimodal, hydroquinone-free skin brightener using in vivo reflectance confocal microscopy.

    PubMed

    Goberdhan, Lisa T; Mehta, Rahul C; Aguilar, Caroline; Makino, Elizabeth T; Colvan, Lora

    2013-03-01

    The combination of in-office procedures such as chemical peels with topical maintenance therapies has been shown to provide greater efficacy than either treatment by itself in the management of melasma. A series of 3 case studies were conducted to evaluate the efficacy and tolerability of one superficial chemical peel (containing a proprietary blend of resorcinol, lactic acid, salicylic acid, and retinol) combined with a topical multimodal, hydroquinone-free skin brightener as postpeel maintenance therapy. Patients presented with moderate to severe facial hyperpigmentation. At baseline, subjects received the superficial chemical peel treatment followed by a standard postpeel skin care regimen (cleanser, moisturizer, and SPF 30+ sunscreen). Approximately 1 week after the peel procedure, subjects initiated twice-daily application of the skin brightener. Subjects were then evaluated for Global Improvement in Hyperpigmentation by the investigator for up to 7 weeks postpeel. Standardized digital photographs of the subjects facial skin and in vivo reflectance confocal microscopy (RCM) images were taken of a target hyperpigmented lesion at baseline and at follow-up. Standardized photography and in vivo RCM images at baseline and at postpeel show the improvements observed by the investigator. Results from these case studies suggest that the combination of a superficial chemical peel with topical maintenance and the multimodal skin brightener may provide an effective treatment approach for subjects with moderate to severe facial hyperpigmentation. PMID:23545932

  13. Reflective coatings for solar applications

    SciTech Connect

    Jorgensen, G.

    1993-05-01

    Many applications of solar energy require large mirrors to provide high levels of concentrated sunlight. The success of such conversion systems hinges on the optical durability and economic viability of the reflector materials. A major effort at the National Renewable Energy Laboratory (NREL) has been to improve the existing reflector materials technology and to identify candidates that retain optical performance and durability criteria and offer potential for reduced cost. To attain the goals, it is desirable to maintain and increase the involvement of industrial organizations in reflective materials R&D related to the conversion of solar resources to useful energy. Toward this end, NREL has recently initiated several collaborative efforts with industry to develop advanced reflector materials.

  14. Reflective coatings for solar applications

    SciTech Connect

    Jorgensen, G.

    1993-05-01

    Many applications of solar energy require large mirrors to provide high levels of concentrated sunlight. The success of such conversion systems hinges on the optical durability and economic viability of the reflector materials. A major effort at the National Renewable Energy Laboratory (NREL) has been to improve the existing reflector materials technology and to identify candidates that retain optical performance and durability criteria and offer potential for reduced cost. To attain the goals, it is desirable to maintain and increase the involvement of industrial organizations in reflective materials R D related to the conversion of solar resources to useful energy. Toward this end, NREL has recently initiated several collaborative efforts with industry to develop advanced reflector materials.

  15. Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy

    NASA Astrophysics Data System (ADS)

    Chidley, Matthew D.; Carlson, Kristen D.; Richards-Kortum, Rebecca R.; Descour, Michael R.

    2006-04-01

    The design, analysis, assembly methods, and optical-bench test results for a miniature injection-molded plastic objective lens used in a fiber-optic confocal reflectance microscope are presented. The five-lens plastic objective was tested as a stand-alone optical system before its integration into a confocal microscope for in vivo imaging of cells and tissue. Changing the spacing and rotation of the individual optical elements can compensate for fabrication inaccuracies and improve performance. The system performance of the miniature objective lens is measured by use of an industry-accepted slanted-edge modulation transfer function (MTF) metric. An estimated Strehl ratio of 0.61 and a MTF value of 0.66 at the fiber-optic bundle Nyquist frequency have been obtained. The optical bench testing system is configured to permit interactive optical alignment during testing to optimize performance. These results are part of an effort to demonstrate the manufacturability of low-cost, high-performance biomedical optics for high-resolution in vivo imaging. Disposable endoscopic microscope objectives could help in vivo confocal microscopy technology mature to permit wide-scale clinical screening and detection of early cancers and precancerous lesions.

  16. Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing

    NASA Astrophysics Data System (ADS)

    Lange-Asschenfeldt, Susanne; Bob, Adrienne; Terhorst, Dorothea; Ulrich, Martina; Fluhr, Joachim; Mendez, Gil; Roewert-Huber, Hans-Joachim; Stockfleth, Eggert; Lange-Asschenfeldt, Bernhard

    2012-07-01

    There is a high demand for noninvasive imaging techniques for wound assessment. In vivo reflectance confocal laser scanning microscopy (CLSM) represents an innovative optical technique for noninvasive evaluation of normal and diseased skin in vivo at near cellular resolution. This study was designed to test the feasibility of CLSM for noninvasive analysis of cutaneous wound healing in 15 patients (7 male/8 female), including acute and chronic, superficial and deep dermal skin wounds. A commercially available CLSM system was used for the assessment of wound bed and wound margins in order to obtain descriptive cellular and morphological parameters of cutaneous wound repair noninvasively and over time. CLSM was able to visualize features of cutaneous wound repair in epidermal and superficial dermal wounds, including aspects of inflammation, neovascularisation, and tissue remodelling in vivo. Limitations include the lack of mechanic fixation of the optical system on moist surfaces restricting the analysis of chronic skin wounds to the wound margins, as well as a limited optical resolution in areas of significant slough formation. By describing CLSM features of cutaneous inflammation, vascularisation, and epithelialisation, the findings of this study support the role of CLSM in modern wound research and management.

  17. Neurosurgical confocal endomicroscopy: A review of contrast agents, confocal systems, and future imaging modalities

    PubMed Central

    Zehri, Aqib H.; Ramey, Wyatt; Georges, Joseph F.; Mooney, Michael A.; Martirosyan, Nikolay L.; Preul, Mark C.; Nakaji, Peter

    2014-01-01

    Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid) with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS) microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM), two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery. PMID:24872922

  18. Real time confocal laser scanning microscopy: Potential applications in space medicine and cell biology

    NASA Astrophysics Data System (ADS)

    Rollan, Ana; Ward, Thelma; McHale, Anthony P.

    Photodynamic therapy (PDT), in which tissues may be rendered fatally light-sensitive represents a relatively novel treatment for cancer and other disorders such as cardiovascular disease. It offers significant application to disease control in an isolated environment such as space flight. In studying PDT in the laboratory, low energy lasers such as HeNe lasers are used to activate the photosensitized cellular target. A major problem associated with these studies is that events occurring during actual exposure of the target cells to the system cannot be examined in real time. In this study HeLa cells were photosensitized and photodynamic activation was accomplished using the scanning microbeam from a confocal laser scanning microscope. This form of activation allowed for simultaneous photoactivation and observation and facilitated the recording of events at a microscopic level during photoactivation. Effects of photodynamic activation on the target cells were monitored using the fluorophores rhodamine 123 and ethidium homodimer-1. Potential applications of these forms of analyses to space medicine and cell biology are discussed.

  19. 3D Imaging of Porous Media Using Laser Scanning Confocal Microscopy with Application to Microscale Transport Processes

    SciTech Connect

    Fredrich, J.T.

    1999-02-10

    We present advances in the application of laser scanning confocal microscopy (LSCM) to image, reconstruct, and characterize statistically the microgeometry of porous geologic and engineering materials. We discuss technical and practical aspects of this imaging technique, including both its advantages and limitations. Confocal imaging can be used to optically section a material, with sub-micron resolution possible in the lateral and axial planes. The resultant volumetric image data, consisting of fluorescence intensities for typically {approximately}50 million voxels in XYZ space, can be used to reconstruct the three-dimensional structure of the two-phase medium. We present several examples of this application, including studying pore geometry in sandstone, characterizing brittle failure processes in low-porosity rock deformed under triaxial loading conditions in the laboratory, and analyzing the microstructure of porous ceramic insulations. We then describe approaches to extract statistical microgeometric descriptions from volumetric image data, and present results derived from confocal volumetric data sets. Finally, we develop the use of confocal image data to automatically generate a three-dimensional mesh for numerical pore-scale flow simulations.

  20. Treatment of Basal Cell Carcinoma Using a One-Stop-Shop With Reflectance Confocal Microscopy: Study Design and Protocol of a Randomized Controlled Multicenter Trial

    PubMed Central

    Wolkerstorfer, Albert; Elshot, Yannick; Zupan-Kajcovski, Biljana; Crijns, Marianne B; Starink, Markus V; Bekkenk, Marcel W; van der Wal, Allard C; Spuls, Phyllis I; de Rie, Menno A

    2015-01-01

    Background Basal cell carcinoma (BCC) is the most common cancer diagnosed in white populations worldwide. The rising incidence of BCC is becoming a major worldwide public health problem. Therefore, there is a need for more efficient management. Objective The aim of this research is to assess the efficacy and safety of a one-stop-shop (OSS) concept, using real-time in vivo reflectance confocal microscopy (RCM) (Vivascope 1500; Lucid Technologies, Henrietta, NY, USA) as a diagnostic tool, prior to surgical management of new primary BCCs. Methods This is a prospective non-inferiority multi-center RCT designed to compare the “OSS concept using RCM” to current standards of care in diagnosing and treating clinically suspected BCC. Patients ≥ 18 years attending our outpatient clinic at the Department of Dermatology, Academic Medical Center, University of Amsterdam, and the Department of Dermatology, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (Amsterdam, The Netherlands) with a clinically suspected new primary BCC lesion will be considered for enrollment using predefined inclusion and exclusion criteria, and will be randomly allocated to the experimental or control group. The main outcome parameter is the assessment of incomplete surgical excision margins on the final pathology report of confirmed BCC lesions (either by punch biopsy or RCM imaging). Other outcome measures include diagnostic accuracy (sensitivity and specificity) of RCM for diagnosing BCC and dividing between subtypes, and throughput time. Patient satisfaction data will be collected postoperatively after 3 months during routine follow-up. Results This research is investigator-initiated and received ethics approval. Patient recruitment started in February 2015, and we expect all study-related activities to be completed by fall 2015. Conclusions This RCT is the first to examine an OSS concept using RCM for diagnosing and treating clinically suspected BCC lesions. Results of this

  1. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR QUANTIFYING CYTOMETRIC APPLICATIONS WITH SPECTROSCOPIC INSTRUMENTS

    EPA Science Inventory

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  2. Application and development of a spectrally-resolved confocal microscope: A study of lipofuscin emission properties

    NASA Astrophysics Data System (ADS)

    Haralampus-Grynaviski, Nicole Marie

    A unique spectrally-resolved confocal microscope is developed for use in biophysical applications. This microscope enables the rapid collection of the complete emission spectra for every pixel in a fluorescence image. The basic optical design and function of the device are assessed through examination of fluorescently labeled beads, using both one- and two-photon excitation. The spatial resolution of the device is found to approach the diffraction limit in the lateral plane and ˜2 mum in the axial plane. This device can readily distinguish between overlapping emissions which are not easily differentiated using standard filter techniques. The potential of this device to be used as a detection method in DNA sequence experiments is demonstrated. Images of a human skin tissue section and a mouse kidney section are presented which demonstrate the structure and spectra of biologic samples can be resolved. The emission properties of human ocular lipofuscin, LF, a heterogeneous auto-fluorescent material associated with age-related macular degeneration is investigated in detail. Isolated LF granules show substantial variation in emission spectra. Near-field scanning microscopy experiments find the emissive regions on a single LF granule are homogeneous on the ˜150 nm scale and confirm results obtained on the microscope developed here. For ˜100 studied LF deposits, the histogram of the measured peak emission is centered around 18,000 cm-1 (555 nm). The average emission spectra for large LF aggregates (peak 17,150 cm-1) is red-shifted compared to the average emission from small individual granules (peak 17,600 cm-1). The average LF granule emission observed here is similar to previously reported bulk LF emission and the emission of a previously identified LF chromophore, A2E. Individual LF granules show a broad range in emission maximum whether the LF is isolated from multiple donors or examined within the cells of a single donor. Multiple as yet unidentified chromophores

  3. Application of laser differential confocal technique in back vertex power measurement for phoropters

    NASA Astrophysics Data System (ADS)

    Li, Fei; Li, Lin; Ding, Xiang; Liu, Wenli

    2012-10-01

    A phoropter is one of the most popular ophthalmic instruments used in optometry and the back vertex power (BVP) is one of the most important parameters to evaluate the refraction characteristics of a phoropter. In this paper, a new laser differential confocal vertex-power measurement method which takes advantage of outstanding focusing ability of laser differential confocal (LDC) system is proposed for measuring the BVP of phoropters. A vertex power measurement system is built up. Experimental results are presented and some influence factor is analyzed. It is demonstrated that the method based on LDC technique has higher measurement precision and stronger environmental anti-interference capability compared to existing methods. Theoretical analysis and experimental results indicate that the measurement error of the method is about 0.02m-1.

  4. Application of regularized Richardson-Lucy algorithm for deconvolution of confocal microscopy images.

    PubMed

    Laasmaa, M; Vendelin, M; Peterson, P

    2011-08-01

    Although confocal microscopes have considerably smaller contribution of out-of-focus light than widefield microscopes, the confocal images can still be enhanced mathematically if the optical and data acquisition effects are accounted for. For that, several deconvolution algorithms have been proposed. As a practical solution, maximum-likelihood algorithms with regularization have been used. However, the choice of regularization parameters is often unknown although it has considerable effect on the result of deconvolution process. The aims of this work were: to find good estimates of deconvolution parameters; and to develop an open source software package that would allow testing different deconvolution algorithms and that would be easy to use in practice. Here, Richardson-Lucy algorithm has been implemented together with the total variation regularization in an open source software package IOCBio Microscope. The influence of total variation regularization on deconvolution process is determined by one parameter. We derived a formula to estimate this regularization parameter automatically from the images as the algorithm progresses. To assess the effectiveness of this algorithm, synthetic images were composed on the basis of confocal images of rat cardiomyocytes. From the analysis of deconvolved results, we have determined under which conditions our estimation of total variation regularization parameter gives good results. The estimated total variation regularization parameter can be monitored during deconvolution process and used as a stopping criterion. An inverse relation between the optimal regularization parameter and the peak signal-to-noise ratio of an image is shown. Finally, we demonstrate the use of the developed software by deconvolving images of rat cardiomyocytes with stained mitochondria and sarcolemma obtained by confocal and widefield microscopes. PMID:21323670

  5. Scanning computed confocal imager

    DOEpatents

    George, John S.

    2000-03-14

    There is provided a confocal imager comprising a light source emitting a light, with a light modulator in optical communication with the light source for varying the spatial and temporal pattern of the light. A beam splitter receives the scanned light and direct the scanned light onto a target and pass light reflected from the target to a video capturing device for receiving the reflected light and transferring a digital image of the reflected light to a computer for creating a virtual aperture and outputting the digital image. In a transmissive mode of operation the invention omits the beam splitter means and captures light passed through the target.

  6. EUS-Guided Needle-Based Confocal Laser Endomicroscopy: A Novel Technique With Emerging Applications

    PubMed Central

    Koduru, Pramoda; Joshi, Virendra; Karstensen, John G.; Saftoiu, Adrian; Vilmann, Peter; Giovannini, Marc

    2015-01-01

    Endoscopic ultrasound (EUS) has emerged as an excellent tool for imaging the gastrointestinal tract, as well as surrounding structures. EUS-guided fine-needle aspiration (EUS-FNA) has become the standard of care for the tissue sampling of a variety of masses and lymph nodes within and around the gut, providing further diagnostic and staging information. Confocal laser endomicroscopy (CLE) is a novel endoscopic method that enables imaging at a subcellular level of resolution during endoscopy, allowing up to 1000-fold magnification of tissue and providing an optical biopsy. A new procedure that has been developed in the past few years is needle-based confocal laser endomicroscopy (nCLE), which involves a mini-CLE probe that can be passed through a 1 9-gauge needle during EUS-FNA. This enables the real-time visualization of tissue at a microscopic level, with the potential to further improve the diagnostic accuracy of EUS-FNA. The device has been studied in animals as well as in humans, and the results so far have been promising. Recently, this method has also been used for the visualization of regulatory proteins and receptors in the pancreas, setting a cornerstone for nCLE in molecular imaging. The aim of this article is to review the role of EUS-guided nCLE in modern endoscopy and its implications in molecular imaging. PMID:27099595

  7. The Application of Confocal Microscopy and Particle Size Analysis to Cartridge Case Examinations

    NASA Astrophysics Data System (ADS)

    McClorry, Shannon

    Although cross-correlation analysis is a convenient tool for image comparison, research shows that cross-correlation analysis of surface topographies is incapable of distinguishing between the large numbers of cartridge cases that would be necessary to create a national database. In this study, we manually overlay confocal images of primer face impressions and show that the size distribution of the regions of correspondence between two impressions has the potential to significantly improve the number of discernible topographies. Our results indicate that the average area of the individual regions of correspondence in an overlay provides a more abrupt distinction between matching and non-matching cartridge cases than does the overall extent of correspondence. In the 1950s, Biasotti discovered a similar trend in bullets, noting that the number of consecutive matching striae never exceed a particular number for non-matching bullets.

  8. Towards real-time image deconvolution: application to confocal and STED microscopy

    PubMed Central

    Zanella, R.; Zanghirati, G.; Cavicchioli, R.; Zanni, L.; Boccacci, P.; Bertero, M.; Vicidomini, G.

    2013-01-01

    Although deconvolution can improve the quality of any type of microscope, the high computational time required has so far limited its massive spreading. Here we demonstrate the ability of the scaled-gradient-projection (SGP) method to provide accelerated versions of the most used algorithms in microscopy. To achieve further increases in efficiency, we also consider implementations on graphic processing units (GPUs). We test the proposed algorithms both on synthetic and real data of confocal and STED microscopy. Combining the SGP method with the GPU implementation we achieve a speed-up factor from about a factor 25 to 690 (with respect the conventional algorithm). The excellent results obtained on STED microscopy images demonstrate the synergy between super-resolution techniques and image-deconvolution. Further, the real-time processing allows conserving one of the most important property of STED microscopy, i.e the ability to provide fast sub-diffraction resolution recordings. PMID:23982127

  9. Broadband reflectance coatings for vacuum ultraviolet application

    NASA Technical Reports Server (NTRS)

    Herzig, Howard; Fleetwood, C. M., Jr.; Flint, B. K.

    1987-01-01

    An experimental investigation has obtained results indicating that neither LaF3 nor LiYF4 are acceptable alternatives to MgF2 as coatings for vacuum-deposited aluminum mirrors from which high UV reflectance down to 1150 A is required. Nevertheless, LaF3 may prove useful in those specialized applications in which the suppression of lower wavelength emissions, such as the 1216-A hydrogen line, is desirable.

  10. A fully automated tortuosity quantification system with application to corneal nerve fibres in confocal microscopy images.

    PubMed

    Annunziata, Roberto; Kheirkhah, Ahmad; Aggarwal, Shruti; Hamrah, Pedram; Trucco, Emanuele

    2016-08-01

    Recent clinical research has highlighted important links between a number of diseases and the tortuosity of curvilinear anatomical structures like corneal nerve fibres, suggesting that tortuosity changes might detect early stages of specific conditions. Currently, clinical studies are mainly based on subjective, visual assessment, with limited repeatability and inter-observer agreement. To address these problems, we propose a fully automated framework for image-level tortuosity estimation, consisting of a hybrid segmentation method and a highly adaptable, definition-free tortuosity estimation algorithm. The former combines an appearance model, based on a Scale and Curvature-Invariant Ridge Detector (SCIRD), with a context model, including multi-range learned context filters. The latter is based on a novel tortuosity estimation paradigm in which discriminative, multi-scale features can be automatically learned for specific anatomical objects and diseases. Experimental results on 140 in vivo confocal microscopy images of corneal nerve fibres from healthy and unhealthy subjects demonstrate the excellent performance of our method compared to state-of-the-art approaches and ground truth annotations from 3 expert observers. PMID:27136674

  11. Application of confocal microscopy on glutamate-induced intracellular calcium transient in neurons

    NASA Astrophysics Data System (ADS)

    Zhu, Geng; Zhou, Wei; Zhang, Yuan; Liu, Xiuli; Wu, Yuxiang; Luo, Qingming

    2006-02-01

    Intracellular calcium, as an important second messenger, plays a significant role in cell signaling transduction and metabolism. Glutamate can induce the intracellular calcium transient through triggering diverse signaling pathways. To test the effect of glutamate to neurons, we loaded Fluo-3/Am in cultured rat hippocampal neurons, and then acquired two-dimensional fluorescent image by confocal microscopy and the analyzed fluorescent intensity. In cultured neurons, we observed two types of neurons that have different morphology: bipolar-type and pyramidal-type. Inducing [Ca 2+] i transient by glutamate, we found the amplitude and time constant of the response curves of bipolar neurons are larger than those of pyramidal neurons. Further, we induced [Ca 2+] ii transient under different concentrations of glutamate. Two different types of kinetic of the [Ca 2+] i transient have been found, corresponded to the two kinds of neuron. The amplitude of [Ca 2+] i transient increased when applying higher concentration of glutamate in pyramidal neurons; while it decreased in bipolar ones. Responses of neurons bathing in calcium-free extracellular solution to glutamate were different from those bathing in normal solution. [Ca 2+] i transient of pyramidal neurons caused by any concentration were totally blocked; while [Ca 2+] i transient in bipolar neurons caused by high concentration of glutamate (500μM) were partly inhibited. All of the phenomena suggest that different types of cultured hippocampal neurons may have different mechanism of the response to glutamate.

  12. Application of Laser Scanning Confocal Microscopy to Heat and Mass Transport Modeling in Porous Microstructures

    NASA Technical Reports Server (NTRS)

    Marshall, Jochen; Milos, Frank; Fredrich, Joanne; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    Laser Scanning Confocal Microscopy (LSCM) has been used to obtain digital images of the complicated 3-D (three-dimensional) microstructures of rigid, fibrous thermal protection system (TPS) materials. These orthotropic materials are comprised of refractory ceramic fibers with diameters in the range of 1 to 10 microns and have open porosities of 0.8 or more. Algorithms are being constructed to extract quantitative microstructural information from the digital data so that it may be applied to specific heat and mass transport modeling efforts; such information includes, for example, the solid and pore volume fractions, the internal surface area per volume, fiber diameter distributions, and fiber orientation distributions. This type of information is difficult to obtain in general, yet it is directly relevant to many computational efforts which seek to model macroscopic thermophysical phenomena in terms of microscopic mechanisms or interactions. Two such computational efforts for fibrous TPS materials are: i) the calculation of radiative transport properties; ii) the modeling of gas permeabilities.

  13. Reflectance confocal microscopy as a useful diagnostic tool for monitoring of skin containing vascularized composite allograft rejection: A preliminary study on rats.

    PubMed

    Zor, Fatih; Karagoz, Huseyin; Erdemir, Asli Turgut; Karslioglu, Yildirim; Acikel, Cengiz Han; Kapaj, Rezarta; Guzey, Serbulent; Gurel, Mehmet Salih; Isik, Selcuk; Siemionow, Maria

    2016-02-01

    Vascularized composite allografts can undergo immune-mediated rejection, and skin biopsies are needed for monitoring of the transplant. However it is an invasive method, and requires processing time and pathological assessment. The purpose of this study is to use a new noninvasive monitoring method of the reflectance confocal microscopy (RCM) to determine severity of the allograft rejection on rats. Five groin flap allotransplantation were performed between 10 male Sprague-Dawley rats. Immunosuppressive therapy with cyclosporine A was given to the recipients during 10 days after surgery and was ended at the 10th postoperative days to allow acute transplant rejection. Following cessation of CsA, concomitant RCM evaluation and skin biopsy was performed every other day from each animal until total rejection of the allograft. Complete rejection of the allograft took nearly about 10 days and 4 or 5 RCM evaluation and skin biopsy was performed from each rat during this period. A total of 17 specimens were evaluated. A scoring system was developed based on the RCM findings. Skin biopsies were evaluated according to the Banff 2007 working classification criteria. RCM evaluation revealed epidermal irregularity and collagen destruction, however mild perivascular inflammation and degeneration of the basal epidermal layer were observed in early and late rejection period respectively with histopathologic evaluation. High correlation was found between the RCM scores and histopathologic grading. The RCM may be the useful tool to reduce the need for skin biopsy for monitoring of the skin containing vascularized composite allograft. © 2015 Wiley Periodicals, Inc. Microsurgery 36:144-151, 2016. PMID:25959719

  14. Skin healing and collagen changes of rats after fractional erbium:yttrium aluminum garnet laser: observation by reflectance confocal microscopy with confirmed histological evidence.

    PubMed

    Yang, Jing; Wang, Sha; Dong, Liyun; An, Xiangjie; Li, Yan; Li, Jun; Tu, Yating; Tao, Juan

    2016-08-01

    The fractional erbium:yttrium aluminum garnet (Er:YAG) laser is widely applied. Microstructural changes after laser treatment have been observed with histopathology. Epidermal and dermal microstructures have also been analyzed using reflectance confocal microscopy (RCM). However, no studies have compared these two types of microstructural changes in the same subject at multiple time points after irradiation, and it is unclear if these two types of changes are consistent. We use RCM to observe the effect of different laser energies on skin healing and collagen changes in the skin of Sprague-Dawley rats that had been irradiated by fractional Er:YAG lasering at different energies. RCM was used to observe skin healing and detect collagen changes at different time points. Collagen changes were observed using hematoxylin and eosin (H&E) staining and quantitatively analyzed by western blot. RCM showed that, irrespective of laser energy, microscopic treatment zones (MTZs) were larger at 1 day after irradiation. The MTZs then reduced in size from 3 to 7 days after irradiation. The higher the energy, the larger the MTZ area. The amount of collagen also increased with time from 1 day to 8 weeks. However, the increase in the collagen amount on both RCM and H&E staining was not influenced by the laser energy. Western blotting confirmed that the amount of type I and type III collagens increased over time, but there were no significant differences between the different energy groups (p > 0.05). In conclusion, RCM is a reliable technique for observing and evaluating skin healing and collagen expression after laser irradiation. PMID:27272747

  15. Dermoscopy-guided reflectance confocal microscopy of skin using high-NA objective lens with integrated wide-field color camera

    NASA Astrophysics Data System (ADS)

    Dickensheets, David L.; Kreitinger, Seth; Peterson, Gary; Heger, Michael; Rajadhyaksha, Milind

    2016-02-01

    Reflectance Confocal Microscopy, or RCM, is being increasingly used to guide diagnosis of skin lesions. The combination of widefield dermoscopy (WFD) with RCM is highly sensitive (~90%) and specific (~ 90%) for noninvasively detecting melanocytic and non-melanocytic skin lesions. The combined WFD and RCM approach is being implemented on patients to triage lesions into benign (with no biopsy) versus suspicious (followed by biopsy and pathology). Currently, however, WFD and RCM imaging are performed with separate instruments, while using an adhesive ring attached to the skin to sequentially image the same region and co-register the images. The latest small handheld RCM instruments offer no provision yet for a co-registered wide-field image. This paper describes an innovative solution that integrates an ultra-miniature dermoscopy camera into the RCM objective lens, providing simultaneous wide-field color images of the skin surface and RCM images of the subsurface cellular structure. The objective lens (0.9 NA) includes a hyperhemisphere lens and an ultra-miniature CMOS color camera, commanding a 4 mm wide dermoscopy view of the skin surface. The camera obscures the central portion of the aperture of the objective lens, but the resulting annular aperture provides excellent RCM optical sectioning and resolution. Preliminary testing on healthy volunteers showed the feasibility of combined WFD and RCM imaging to concurrently show the skin surface in wide-field and the underlying microscopic cellular-level detail. The paper describes this unique integrated dermoscopic WFD/RCM lens, and shows representative images. The potential for dermoscopy-guided RCM for skin cancer diagnosis is discussed.

  16. Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy

    SciTech Connect

    Shur, V. Ya. Zelenovskiy, P. S.

    2014-08-14

    The application of the most effective methods of the domain visualization in model uniaxial ferroelectrics of lithium niobate (LN) and lithium tantalate (LT) family, and relaxor strontium-barium niobate (SBN) have been reviewed in this paper. We have demonstrated the synergetic effect of joint usage of optical, confocal Raman, and piezoelectric force microscopies which provide extracting of the unique information about formation of the micro- and nanodomain structures. The methods have been applied for investigation of various types of domain structures with increasing complexity: (1) periodical domain structure in LN and LT, (2) nanodomain structures in LN, LT, and SBN, (3) nanodomain structures in LN with modified surface layer, (4) dendrite domain structure in LN. The self-assembled appearance of quasi-regular nanodomain structures in highly non-equilibrium switching conditions has been considered.

  17. FluoRender: An Application of 2D Image Space Methods for 3D and 4D Confocal Microscopy Data Visualization in Neurobiology Research

    PubMed Central

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2013-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists’ demands for qualitative analysis of confocal microscopy data. PMID:23584131

  18. Novel Application of Confocal Laser Scanning Microscopy and 3D Volume Rendering toward Improving the Resolution of the Fossil Record of Charcoal

    PubMed Central

    Belcher, Claire M.; Punyasena, Surangi W.; Sivaguru, Mayandi

    2013-01-01

    Variations in the abundance of fossil charcoals between rocks and sediments are assumed to reflect changes in fire activity in Earth’s past. These variations in fire activity are often considered to be in response to environmental, ecological or climatic changes. The role that fire plays in feedbacks to such changes is becoming increasingly important to understand and highlights the need to create robust estimates of variations in fossil charcoal abundance. The majority of charcoal based fire reconstructions quantify the abundance of charcoal particles and do not consider the changes in the morphology of the individual particles that may have occurred due to fragmentation as part of their transport history. We have developed a novel application of confocal laser scanning microscopy coupled to image processing that enables the 3-dimensional reconstruction of individual charcoal particles. This method is able to measure the volume of both microfossil and mesofossil charcoal particles and allows the abundance of charcoal in a sample to be expressed as total volume of charcoal. The method further measures particle surface area and shape allowing both relationships between different size and shape metrics to be analysed and full consideration of variations in particle size and size sorting between different samples to be studied. We believe application of this new imaging approach could allow significant improvement in our ability to estimate variations in past fire activity using fossil charcoals. PMID:23977267

  19. Enhanced quantitative confocal microscopy and its application for the measurement of tympanic membrane thickness

    NASA Astrophysics Data System (ADS)

    Kuypers, Liesbeth

    2005-11-01

    This work shows that confocal microscopy allows a quantitative study of delicate 3D-biotissue in fresh condition, thus avoiding histological preparation processes. The developed procedure results in exact and accurate thickness data for mum-sized objects with a measuring error of less than 1mum. It is, however, necessary to take into account the effect of focal shift in the case of refractive index mismatch to obtain such precise data. The use of the proposed method is advised instead of the use of a paraxial approximation for the axial scale correction because the method improves measurement precision by a factor of four. The axial scaling correction factors obtained in this work show that for most practical situations the correction cannot be ignored when one wants to obtain precise quantitative data. The thickness correction method can also be used to determine with high accuracy the index of refraction of biological tissue. The thickness measurement method was applied to fresh, untreated tympanic membranes of the gerbil, the cat and the human. Thickness had to be measured at many points as it differs strongly across the membrane. Similar thickness distributions were found in all pars tensas measured even across the species studied: (1) a very thin, central region with a rather constant thickness, curving as a horse shoe upwards around the manubrium (thickness: gerbil: about 7mum, cat: about 10mum, human: large inter-specimen variation: 40mum-120mum), (2) a thinnest zone at the inferior side, (3) a thicker zone at the supero-anterior side, (4) superior to the umbo, an anterior region thicker than the posterior region, (5) maximal thicknesses in a very small region near the entire manubrium and the entire annular periphery. The pars flaccida is found to be thicker than the pars tensa. It shows no central homogeneous zone: the thickness varies irregularly and very rapidly over short distances. Arbitrarily spaced bumps and notches are present over the entire pars

  20. A novel confocal line scanning sensor

    NASA Astrophysics Data System (ADS)

    Chanbai, Sirichanok; Wiora, Georg; Weber, Mark; Roth, Hubert

    2009-05-01

    Optical methods, including confocal microscopes, are widely used for measurements of surface topography. The knowledge of surface morphology and roughness parameters is crucial for many applications, i.e. in industrial and automotive environment, in tribology, wear and functionality prediction. However, confocal microscopy has a limited field of view. A time consuming stitching process is required for extending to long profile lines measurement. Therefore, in this paper we present a novel concept of a Confocal Line Scanning Sensor (CLSS) to cover theoretically infinite profile lengths. The new technique is proposed with no moving parts required for axial scanning, and it has a simpler setup than those of Chromatic Confocal Sensor (CCS). The idea is to produce a stack of focal points on an inclined plane covering a certain axial measurement range. Therefore, by scanning the stack of focal points in lateral direction we can realize a long profile line. By doing that we expect to achieve shorter scanning time, while providing high lateral and axial resolution by using a true confocal principle. A long profile line of a few ten millimeters with a lateral resolution in sub-micrometer range and an axial resolution in tens of nanometers can be expected. Moreover, this concept is easily extensible to an areal measurement. Among other key components, a new design of the pinhole mask has been developed. We design it to produce an inclined focal line with optimum optical parameters. Optimization of the pinhole design fulfills two objectives; minimizing its size by allowing optimal reflected-light intensity, and minimizing crosstalk between nearby pinholes. Further detail of the pinhole design is beyond a scope of this paper. In this paper an overview of the new concept is presented, accompanied by validation of first experimental results.

  1. Ex Vivo (Fluorescence) Confocal Microscopy in Surgical Pathology: State of the Art.

    PubMed

    Ragazzi, Moira; Longo, Caterina; Piana, Simonetta

    2016-05-01

    First developed in 1957, confocal microscopy is a powerful imaging tool that can be used to obtain near real-time reflected light images of untreated human tissue with nearly histologic resolution. Besides its research applications, in the last decades, confocal microscopy technology has been proposed as a useful device to improve clinical diagnosis, especially in ophthalmology, dermatology, and endomicroscopy settings, thanks to advances in instrument development. Compared with the wider use of the in vivo tissue assessment, ex vivo applications of confocal microscopy are not fully explored. A comprehensive review of the current literature was performed here, focusing on the reliable applications of ex vivo confocal microscopy in surgical pathology and on some potential evolutions of this new technique from pathologists' viewpoint. PMID:27058244

  2. Label-free and non-invasive discrimination of HaCaT and melanoma cells in a co-culture model by hyperspectral confocal reflectance microscopy.

    PubMed

    Bertani, Francesca R; Botti, Elisabetta; Ferrari, Luisa; Mussi, Valentina; Costanzo, Antonio; D'Alessandro, Marco; Cilloco, Francesco; Selci, Stefano

    2016-06-01

    A novel hyperspectral confocal microscopy method to separate different cell populations in a co-culture model is presented here. The described methodological and instrumental approach allows discrimination of different cell types using a non-invasive, label free method with good accuracy with a single cell resolution. In particular, melanoma cells are discriminated from HaCaT cells by hyperspectral confocal imaging, principal component analysis and optical frequencies signing, as confirmed by fluorescence labelling cross check. The identification seems to be quite robust to be insensitive to the cellular shape within the studied samples, enabling to separate cells according to their cytotype down to a single cell sensitivity. Set of hyperspectral images of melanoma-keratinocytes co-culture model (left), score plot of principal component analysis and spectral analysis of principal components coefficients (center), label-free spectral identification of cell populations (right). PMID:26375607

  3. Field-Scale N Application Using Crop Reflectance Sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research suggests that variable-rate nitrogen application based on within-season crop canopy reflectance sensing can improve N use efficiency. The overall objective of this project was to use commercial dual-wavelength active reflectance sensors on a fertilizer applicator to quantify reflectance var...

  4. Video-rate Scanning Confocal Microscopy and Microendoscopy

    PubMed Central

    Nichols, Alexander J.; Evans, Conor L.

    2011-01-01

    Confocal microscopy has become an invaluable tool in biology and the biomedical sciences, enabling rapid, high-sensitivity, and high-resolution optical sectioning of complex systems. Confocal microscopy is routinely used, for example, to study specific cellular targets1, monitor dynamics in living cells2-4, and visualize the three dimensional evolution of entire organisms5,6. Extensions of confocal imaging systems, such as confocal microendoscopes, allow for high-resolution imaging in vivo7 and are currently being applied to disease imaging and diagnosis in clinical settings8,9. Confocal microscopy provides three-dimensional resolution by creating so-called "optical sections" using straightforward geometrical optics. In a standard wide-field microscope, fluorescence generated from a sample is collected by an objective lens and relayed directly to a detector. While acceptable for imaging thin samples, thick samples become blurred by fluorescence generated above and below the objective focal plane. In contrast, confocal microscopy enables virtual, optical sectioning of samples, rejecting out-of-focus light to build high resolution three-dimensional representations of samples. Confocal microscopes achieve this feat by using a confocal aperture in the detection beam path. The fluorescence collected from a sample by the objective is relayed back through the scanning mirrors and through the primary dichroic mirror, a mirror carefully selected to reflect shorter wavelengths such as the laser excitation beam while passing the longer, Stokes-shifted fluorescence emission. This long-wavelength fluorescence signal is then passed to a pair of lenses on either side of a pinhole that is positioned at a plane exactly conjugate with the focal plane of the objective lens. Photons collected from the focal volume of the object are collimated by the objective lens and are focused by the confocal lenses through the pinhole. Fluorescence generated above or below the focal plane will

  5. Video-rate scanning confocal microscopy and microendoscopy.

    PubMed

    Nichols, Alexander J; Evans, Conor L

    2011-01-01

    Confocal microscopy has become an invaluable tool in biology and the biomedical sciences, enabling rapid, high-sensitivity, and high-resolution optical sectioning of complex systems. Confocal microscopy is routinely used, for example, to study specific cellular targets, monitor dynamics in living cells, and visualize the three dimensional evolution of entire organisms. Extensions of confocal imaging systems, such as confocal microendoscopes, allow for high-resolution imaging in vivo and are currently being applied to disease imaging and diagnosis in clinical settings. Confocal microscopy provides three-dimensional resolution by creating so-called "optical sections" using straightforward geometrical optics. In a standard wide-field microscope, fluorescence generated from a sample is collected by an objective lens and relayed directly to a detector. While acceptable for imaging thin samples, thick samples become blurred by fluorescence generated above and below the objective focal plane. In contrast, confocal microscopy enables virtual, optical sectioning of samples, rejecting out-of-focus light to build high resolution three-dimensional representations of samples. Confocal microscopes achieve this feat by using a confocal aperture in the detection beam path. The fluorescence collected from a sample by the objective is relayed back through the scanning mirrors and through the primary dichroic mirror, a mirror carefully selected to reflect shorter wavelengths such as the laser excitation beam while passing the longer, Stokes-shifted fluorescence emission. This long-wavelength fluorescence signal is then passed to a pair of lenses on either side of a pinhole that is positioned at a plane exactly conjugate with the focal plane of the objective lens. Photons collected from the focal volume of the object are collimated by the objective lens and are focused by the confocal lenses through the pinhole. Fluorescence generated above or below the focal plane will therefore not

  6. Identifying brain neoplasms using dye-enhanced multimodal confocal imaging

    NASA Astrophysics Data System (ADS)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Kwon, Churl-Su; Frosch, Matthew P.; Curry, William; Yaroslavsky, Anna N.

    2012-02-01

    Brain tumors cause significant morbidity and mortality even when benign. Completeness of resection of brain tumors improves quality of life and survival; however, that is often difficult to accomplish. The goal of this study was to evaluate the feasibility of using multimodal confocal imaging for intraoperative detection of brain neoplasms. We have imaged different types of benign and malignant, primary and metastatic brain tumors. We correlated optical images with histopathology and evaluated the possibility of interpreting confocal images in a manner similar to pathology. Surgical specimens were briefly stained in 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged using a multimodal confocal microscope. Reflectance and fluorescence signals of MB were excited at 642 nm. Fluorescence emission of MB was registered between 670 and 710 nm. After imaging, tissues were processed for hematoxylin and eosin (H&E) histopathology. The results of comparison demonstrate good correlation between fluorescence images and histopathology. Reflectance images provide information about morphology and vascularity of the specimens, complementary to that provided by fluorescence images. Multimodal confocal imaging has the potential to aid in the intraoperative detection of microscopic deposits of brain neoplasms. The application of this technique may improve completeness of resection and increase patient survival.

  7. EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: APPLICATIONS FOR IMAGING MORPHOLOGY AND DEATH IN EMBRYOS AND REPRODUCTIVE TISSUE/ORGANS

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. It is remarkable that procedures to test the performance of these machines are not done routinely by most investigators and thus many of the machines in the field are working at level...

  8. Histopathological confirmation of similar intramucosal distribution of fluorescein in both intravenous administration and local mucosal application for probe-based confocal laser endomicroscopy of the normal stomach

    PubMed Central

    Nonaka, Kouichi; Ohata, Ken; Ban, Shinichi; Ichihara, Shin; Takasugi, Rumi; Minato, Yohei; Tashima, Tomoaki; Matsuyama, Yasushi; Takita, Maiko; Matsuhashi, Nobuyuki; Neumann, Helmut

    2015-01-01

    Probe-based confocal laser endomicroscopy (pCLE) is capable of acquiring in vivo magnified cross-section images of the gastric mucosa. Intravenous injection of fluorescein sodium is used for confocal imaging. However, it is still under debate if local administration of the dye to the mucosa is also effective for confocal imaging as it is not yet clear if topical application also reveals the intramucosal distribution of fluorescein. The objective of this study was to evaluate the intramucosal distribution of fluorescein sodium after topical application and to compare the distribution to the conventional intravenous injection used for confocal imaging. pCLE of the stomach uninfected with Helicobacter pylori was performed in a healthy male employing intravenous administration and local mucosal application of fluorescein. The mucosa of the lower gastric body was biopsied 1 min and 5 min after intravenous administration or local mucosal application of fluorescein, and the distribution of fluorescein in the biopsy samples was examined histologically. Green fluorescence was already observed in the cytoplasm of fundic glandular cells in the biopsied deep mucosa 1 min after local mucosal application of fluorescein. It was also observed in the foveolar lumen and inter-foveolar lamina propria, although it was noted at only a few sites. In the tissue biopsied 5 min after the local mucosal application of fluorescein, green fluorescence was more frequently noted in the cytoplasm of fundic glandular cells than in that 1 min after the local mucosal application of fluorescein, although obvious green fluorescence was not identified in the foveolar lumen or inter-foveolar lamina propria. The distribution of intravenously administered fluorescein in the cytoplasm of fundic glandular cells was also clearly observed similarly to that after local mucosal application of fluorescein. Green fluorescence in more cells was observed in many cells 5 min after intravenous administration compared

  9. Clinical applications of a real-time scanning-slit confocal microscope designed for real-time observations of the in-vivo human cornea

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1995-05-01

    We describe a new, real-time, flying slit confocal microscope, that has unique features and imaging characteristics for in vivo human ocular imaging. In vivo real-time confocal microscopy is currently used to investigate the tear film, renewal of the ocular surface, the role of epithelial innervation in epithelial cell proliferation, wound healing, kinetics of drug penetration, the effects of laser refractive surgery on the keratocyte activation and distribution in the stroma, and the nature of endothelial defects. The following clinical examples will be presented and discussed: confocal microscopy of normal human basal and wing cells in the epithelium, confocal microscopy of lamellar and penetrating corneal grafts, confocal microscopy of corneal ulcer, confocal microscopy of scar formation after herpes keratitis, and confocal microscopy of corneal innervation. The use of scanning slit confocal microscopes has unique advantages over other instrumental systems based on pinhole-containing Nipkow disks (tandem-scanning confocal microscopes) for clinical in vivo confocal microscopy.

  10. Biomedical Applications Of Interference Reflection Microscopy

    NASA Astrophysics Data System (ADS)

    Opas, Michal

    1990-04-01

    The relationship between cell adhesiveness and motility is being studied extensively for its paramount importance in the normal development of an organism and in pathological conditions such as tumour metastasis. Although they have been intensively studied at both the cellular and molecular levels, correlative studies of cell structure and adhesiveness, and the precise determination of cell adhesion to a substratum in living cells have been hampered by the fact that cell adhesion has been very difficult to visualize. Two techniques have emerged recently which have allowed successful visualization of cell adhesion. The most recent one, total internal reflection fluorescence, is technically complicated and thus not widespread and so it will not be dealt with here. The other one is a variant of incident light interferometry of thin layers, known as interference reflection microscopy (IRM).

  11. Hyperspectral confocal microscope

    NASA Astrophysics Data System (ADS)

    Sinclair, Michael B.; Haaland, David M.; Timlin, Jerilyn A.; Jones, Howland D. T.

    2006-08-01

    We have developed a new, high performance, hyperspectral microscope for biological and other applications. For each voxel within a three-dimensional specimen, the microscope simultaneously records the emission spectrum from 500 nm to 800 nm, with better than 3 nm spectral resolution. The microscope features a fully confocal design to ensure high spatial resolution and high quality optical sectioning. Optical throughput and detection efficiency are maximized through the use of a custom prism spectrometer and a backside thinned electron multiplying charge coupled device (EMCCD) array. A custom readout mode and synchronization scheme enable 512-point spectra to be recorded at a rate of 8300 spectra per second. In addition, the EMCCD readout mode eliminates curvature and keystone artifacts that often plague spectral imaging systems. The architecture of the new microscope is described in detail, and hyperspectral images from several specimens are presented.

  12. Hyperspectral confocal microscope.

    PubMed

    Sinclair, Michael B; Haaland, David M; Timlin, Jerilyn A; Jones, Howland D T

    2006-08-20

    We have developed a new, high performance, hyperspectral microscope for biological and other applications. For each voxel within a three-dimensional specimen, the microscope simultaneously records the emission spectrum from 500 nm to 800 nm, with better than 3 nm spectral resolution. The microscope features a fully confocal design to ensure high spatial resolution and high quality optical sectioning. Optical throughput and detection efficiency are maximized through the use of a custom prism spectrometer and a backside thinned electron multiplying charge coupled device (EMCCD) array. A custom readout mode and synchronization scheme enable 512-point spectra to be recorded at a rate of 8300 spectra per second. In addition, the EMCCD readout mode eliminates curvature and keystone artifacts that often plague spectral imaging systems. The architecture of the new microscope is described in detail, and hyperspectral images from several specimens are presented. PMID:16892134

  13. Binary phase digital reflection holograms - Fabrication and potential applications

    NASA Technical Reports Server (NTRS)

    Gallagher, N. C., Jr.; Angus, J. C.; Coffield, F. E.; Edwards, R. V.; Mann, J. A., Jr.

    1977-01-01

    A novel technique for the fabrication of binary-phase computer-generated reflection holograms is described. By use of integrated circuit technology, the holographic pattern is etched into a silicon wafer and then aluminum coated to make a reflection hologram. Because these holograms reflect virtually all the incident radiation, they may find application in machining with high-power lasers. A number of possible modifications of the hologram fabrication procedure are discussed.

  14. Forensic applications of microscopical infrared internal reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Tungol, Mary W.; Bartick, Edward G.; Reffner, John A.

    1994-01-01

    Applications of microscopical infrared internal reflection spectroscopy in forensic science are discussed. Internal reflection spectra of single fibers, hairs, paint chips, vehicle rubber bumpers, photocopy toners, carbon copies, writing ink on paper, lipstick on tissue, black electrical tape, and other types of forensic evidence have been obtained. The technique is convenient, non-destructive, and may permit smeared materials to be analyzed in situ.

  15. Confocal fluorescence microendoscopy of bronchial epithelium

    NASA Astrophysics Data System (ADS)

    Lane, Pierre M.; Lam, Stephen; McWilliams, Annette; Leriche, Jean C.; Anderson, Marshall W.; Macaulay, Calum E.

    2009-03-01

    Confocal microendoscopy permits the acquisition of high-resolution real-time confocal images of bronchial mucosa via the instrument channel of an endoscope. We report here on the construction and validation of a confocal fluorescence microendoscope and its use to acquire images of bronchial epithelium in vivo. Our objective is to develop an imaging method that can distinguish preneoplastic lesions from normal epithelium to enable us to study the natural history of these lesions and the efficacy of chemopreventive agents without biopsy removal of the lesion that can introduce a spontaneous regression bias. The instrument employs a laser-scanning engine and bronchoscope-compatible confocal probe consisting of a fiber-optic image guide and a graded-index objective lens. We assessed the potential of topical application of physiological pH cresyl violet (CV) as a fluorescence contrast-enhancing agent for the visualization of tissue morphology. Images acquired ex vivo with the confocal microendoscope were first compared with a bench-top confocal fluorescence microscope and conventional histology. Confocal images from five sites topically stained with CV were then acquired in vivo from high-risk smokers and compared to hematoxylin and eosin stained sections of biopsies taken from the same site. Sufficient contrast in the confocal imagery was obtained to identify cells in the bronchial epithelium. However, further improvements in the miniature objective lens are required to provide sufficient axial resolution for accurate classification of preneoplastic lesions.

  16. Confocal simultaneous phase-shifting interferometry

    SciTech Connect

    Zhao Chenguang; Tan Jiubin; Tang Jianbo; Liu Tao; Liu Jian

    2011-02-10

    In order to implement the ultraprecise measurement with large range and long working distance in confocal microscopy, confocal simultaneous phase-shifting interferometry (C-SPSI) has been presented. Four channel interference signals, with {pi}/2 phase shift between each other, are detected simultaneously in C-SPSI. The actual surface height is then calculated by combining the optical sectioning with the phase unwrapping in the main cycle of the interference phase response, and the main cycle is determined using the bipolar property of differential confocal microscopy. Experimental results showed that 1 nm of axial depth resolution was achieved for either low- or high-NA objective lenses. The reflectivity disturbance resistibility of C-SPSI was demonstrated by imaging a typical microcircuit specimen. C-SPSI breaks through the restriction of low NA on the axial depth resolution of confocal microscopy effectively.

  17. Confocal microscopy in microgravity research

    NASA Astrophysics Data System (ADS)

    Goede, A. P. H.; Brakenhoff, G. J.; Woldringh, C. L.; Aalders, J. W. G.; Imhof, J. P.; van Kralingen, P.; Mels, W. A.; Schreinemakers, P.; Zegers, A.

    We have studied the application and the feasibility of confocal scanning laser microscopy (CSLM) in microgravity research. Its superior spatial resolution and 3D imaging capabilities and its use of light as a probe, render this instrument ideally suited for the study of living biological material on a (sub-)cellular level. In this paper a number of pertinent biological microgravity experiments is listed, concentrating on the direct observation of developing cells and cellular structures under microgravity condition. A conceptual instrument design is also presented, aimed at sounding rocket application followed by Biorack/Biolab application at a later stage.

  18. Fiber optic confocal microscope: In vivo precancer detection

    NASA Astrophysics Data System (ADS)

    Carlson, Kristen Dawn

    Cancer is a significant public health problem worldwide. Many cancers originate as precancerous lesions in the epithelium which, when removed in sufficient time, can prevent progression to cancer. However, current detection techniques are typically time-consuming and expensive, limiting their acceptance and accessibility. Optical techniques, such as confocal microscopy, have significant potential to provide clinicians with real-time, high-resolution images of cells and tissue without tissue removal. These images of cell morphology and tissue architecture can be used to characterize tissue and determine the presence or extent of precancer and cancer. This dissertation explores the instrumentation and application of fiber optic reflectance confocal microscopy for in vivo precancer detection. The first part of the dissertation presents in vivo imaging of suspicious lesions in the human uterine cervix and oral mucosa using a fiber bundle based confocal microscope with a complex glass miniature objective lens. Images are analyzed quantitatively and qualitatively to determine the potential of this technology in vivo. An analysis of nuclear density from images of 30 cervical epithelium sites shows differentiation between normal and precancerous sites. Similarly, images from 20 oral mucosa sites demonstrate changes in nuclear density and tissue architecture indicative of progression of precancer and cancer. In addition to this multi-fiber confocal microscope used with a glass objective lens for the clinical studies, imaging of tissue samples has been accomplished with the same confocal system using an injection molded plastic miniature objective lens demonstrating comparable optical quality for a significantly less expensive optical component. Finally, a benchtop prototype of a single fiber confocal microscope using a gimbaled two-axis MEMS scanner has been designed and constructed. Imaging of a resolution target and cellular samples demonstrates sufficient resolution and

  19. DMD-enabled confocal microendoscopy

    NASA Astrophysics Data System (ADS)

    Lane, Pierre M.; Dlugan, Andrew L. P.; MacAulay, Calum E.

    2001-05-01

    Conventional endoscopy is limited to imaging macroscopic views of tissue. The British Columbia Cancer Research Center, in collaboration with Digital Optical Imaging Corp., is developing a fiber-bundle based microendoscopy system to enable in vivo confocal imaging of cells and tissue structure through the biopsy channel of an endoscope, hypodermic needle, or catheter. The feasibility of imaging individual cells and tissue architecture will be presented using both reflectance and tissue auto-fluorescence modes of imaging. The system consists of a coherent fiber bundle, low-magnification high-NA objective lens, Digital Micromirror DeviceTM(DMD), light source, and CCD camera. The novel approach is the precise control and manipulation of light flow into and out of individual optical fibers. This control is achieved by employing a DMD to illuminate and detect light from selected fibers such that only the core of each fiber is illuminated or detected. The objective of the research is to develop a low-cost, clinically viable microendoscopy system for a range of detection, diagnostic, localization and differentiation uses associated with cancer and pre-cancerous conditions. Currently, multi-wavelength reflectance confocal images with 1 micrometers lateral resolution and 1.6 micrometers axial resolution have been achieved using a 0.95 mm bundle with 30,000 fibers.

  20. Expanding Imaging Capabilities for Microfluidics: Applicability of Darkfield Internal Reflection Illumination (DIRI) to Observations in Microfluidics

    PubMed Central

    Kawano, Yoshihiro; Otsuka, Chino; Sanzo, James; Higgins, Christopher; Nirei, Tatsuo; Schilling, Tobias; Ishikawa, Takuji

    2015-01-01

    Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics. PMID:25748425

  1. Classification of nanoparticle diffusion processes in vital cells by a multifeature random forests approach: application to simulated data, darkfield, and confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Wagner, Thorsten; Kroll, Alexandra; Wiemann, Martin; Lipinski, Hans-Gerd

    2016-04-01

    Darkfield and confocal laser scanning microscopy both allow for a simultaneous observation of live cells and single nanoparticles. Accordingly, a characterization of nanoparticle uptake and intracellular mobility appears possible within living cells. Single particle tracking makes it possible to characterize the particle and the surrounding cell. In case of free diffusion, the mean squared displacement for each trajectory of a nanoparticle can be measured which allows computing the corresponding diffusion coefficient and, if desired, converting it into the hydrodynamic diameter using the Stokes-Einstein equation and the viscosity of the fluid. However, within the more complex system of a cell's cytoplasm unrestrained diffusion is scarce and several other types of movements may occur. Thus, confined or anomalous diffusion (e.g. diffusion in porous media), active transport, and combinations thereof were described by several authors. To distinguish between these types of particle movement we developed an appropriate classification method, and simulated three types of particle motion in a 2D plane using a Monte Carlo approach: (1) normal diffusion, using random direction and step-length, (2) subdiffusion, using confinements like a reflective boundary with defined radius or reflective objects in the closer vicinity, and (3) superdiffusion, using a directed flow added to the normal diffusion. To simulate subdiffusion we devised a new method based on tracks of different length combined with equally probable obstacle interaction. Next we estimated the fractal dimension, elongation and the ratio of long-time / short-time diffusion coefficients. These features were used to train a random forests classification algorithm. The accuracy for simulated trajectories with 180 steps was 97% (95%-CI: 0.9481-0.9884). The balanced accuracy was 94%, 99% and 98% for normal-, sub- and superdiffusion, respectively. Nanoparticle tracking analysis was used with 100 nm polystyrene particles

  2. Application of a reflectance model to the sensor planning system

    NASA Astrophysics Data System (ADS)

    Koutecký, Tomáś; Paloušek, David; Brandejs, Jan

    2015-05-01

    This study describes a new sensor planning system for the automatic generation of scanning positions based on a computer model of the part for digitization of sheet metal parts. The focus of this paper is in the application of a reflectance model into this sensor planning system. The goal of this sensor planning system and application of this model is to ensure fast, complete and accurate digitization of the parts for their inspection during serial-line production, especially in the automotive industry. A methodology of the sensor planning system consists of positions planning, their simulation for true visibility of the part elements using a reflectance model, and a simulation of the positions for robot reachability. Compared to previous studies, visual properties of the scanned parts' surface can be simulated precisely. The Nayar model is used as a reflectance model. This model is suitable for materials that are characterized by the combination of diffuse and specular reflections and uses three components of reflection: diffuse, specular lobe and specular spike. Results of the scanning that were obtained using an ATOS III Triple Scan fringe projection 3D scanner and a KUKA KR 60 HA industrial robot were compared to the simulation. The comparison based on the correspondence of the polygons area acquired in each sensor position (in simulation and in scanning) shows that in the performed measurements the median of differences between simulation and scanning is around 16%.

  3. Spectral reflectance of selected aqueous solutions for water quality applications

    NASA Technical Reports Server (NTRS)

    Querr, M. R.; Waring, R. C.; Holland, W. E.; Nijm, W.; Hale, G. M.

    1972-01-01

    The relative specular reflectances of individual aqueous solutions having a particular chemical salt content were measured in the 2 to 20 micrometers region of the infrared component or radiant flux. Distilled water was the reflectance standard. The angle of incidence was 70.03 deg plus or minus 0.23 deg. Absolute reflectances of the solutions for the same polarization and angle of incidence were computed by use of the measured relative reflectances, one of the Fresnel equations, and the optical constants of distilled water. Phase shift and phase difference spectra were obtained by respectively applying a Kramers-Kronig dispersion analysis to the absolute and relative reflectance spectra. The optical constants of the solutions were determined by algorithms commonly associated with the Kramers-Kronig analysis. Spectral signatures that qualitatively and quantitatively characterize the solute and that show structure of the infrared bands of water were noted in the phase difference spectra. The relative and absolute reflectances, the phase shift and phase difference spectra and the optical constants are presented in graphical form. Application of these results to remote sensing of the chemical quality of natural waters is discussed briefly.

  4. High-speed multispectral confocal biomedical imaging

    PubMed Central

    Carver, Gary E.; Locknar, Sarah A.; Morrison, William A.; Krishnan Ramanujan, V.; Farkas, Daniel L.

    2014-01-01

    Abstract. A new approach for generating high-speed multispectral confocal images has been developed. The central concept is that spectra can be acquired for each pixel in a confocal spatial scan by using a fast spectrometer based on optical fiber delay lines. This approach merges fast spectroscopy with standard spatial scanning to create datacubes in real time. The spectrometer is based on a serial array of reflecting spectral elements, delay lines between these elements, and a single element detector. The spatial, spectral, and temporal resolution of the instrument is described and illustrated by multispectral images of laser-induced autofluorescence in biological tissues. PMID:24658777

  5. Confocal microscopy via multimode fibers: fluorescence bandwidth

    NASA Astrophysics Data System (ADS)

    Loterie, Damien; Psaltis, Demetri; Moser, Christophe

    2016-03-01

    We recently described a method for confocal reflection imaging through fibers, as a way to increase contrast when imaging unstained biological specimens. Using a transmission matrix, focused spots can be created at the distal end of a fiber. The backscattered field coming back from the sample can be filtered using optical correlation to obtain spatial selectivity in the detection. In this proceedings article, we briefly review the working principle of this method, and we discuss how the scheme could be adapted to confocal fluorescence imaging. In particular, we show simulations of the achievable detection bandwidth when using step-index multimode fibers as imaging devices.

  6. Reflectance of metallic indium for solar energy applications

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.; Hasegawa, T.

    1984-01-01

    An investigation has been conducted in order to compile quantitative data on the reflective properties of metallic indium. The fabricated samples were of sufficiently high quality that differences from similar second-surface silvered mirrors were not apparent to the human eye. Three second-surface mirror samples were prepared by means of vacuum deposition techniques, yielding indium thicknesses of approximately 1000 A. Both hemispherical and specular measurements were made. It is concluded that metallic indium possesses a sufficiently high specular reflectance to be potentially useful in many solar energy applications.

  7. Reflectance Diffuse Optical Tomography: Its Application to Human Brain Mapping

    NASA Astrophysics Data System (ADS)

    Ueda, Yukio; Yamanaka, Takeshi; Yamashita, Daisuke; Suzuki, Toshihiko; Ohmae, Etsuko; Oda, Motoki; Yamashita, Yutaka

    2005-09-01

    We report the successful application of reflectance diffuse optical tomography (DOT) using near-infrared light with the new reconstruction algorithm that we developed to the observation of regional hemodynamic changes in the brain under specific mental tasks. Our results reveal the heterogeneous distribution of oxyhemoglobin and deoxyhemoglobin in the brain, showing complementary images of oxyhemoglobin and deoxyhemoglobin changes in certain regions. We conclude that our reflectance DOT has practical potential for human brain mapping, as well as in the diagnostic imaging of brain diseases.

  8. Reflective Array with Controlled Focusing for Radiotomographic Application

    NASA Astrophysics Data System (ADS)

    Shipilov, S. E.; Eremeev, A. I.; Yakubov, V. P.

    2016-01-01

    It's considered the principle possibility of creation the managed reflectors for formulation of given field distribution in the focus area. Reflectors change the reflect ratio in dependence of the external control. The proposed theoretical modeling of such controlled focused device which provides focuse to a specific point in a given distribution of the reflectors. On the basis of numerical simulation it's considered the application of this approach for the solution of the problem of radiotomography.

  9. Segmentation of three-dimensional images using non-rigid registration: methods and validation with application to confocal microscopy images of bee brains

    NASA Astrophysics Data System (ADS)

    Rohlfing, Torsten; Brandt, Robert; Menzel, Randolf; Maurer, Calvin R., Jr.

    2003-05-01

    This paper describes the application and validation of automatic segmentation of three-dimensional images by non-rigid registration to atlas images. The registration-based segmentation technique is applied to confocal microscopy images acquired from the brains of 20 bees. Each microscopy image is registered to an already segmented reference atlas image using an intensity-based non-rigid image registration algorithm. This paper evaluates and compares four different approaches: registration to an individual atlas image (IND), registration to an average shape atlas image (AVG), registration to the most similar image from a database of individual atlas images (SIM), and registration to all images from a database of individual atlas images with subsequent fuzzy segmentation (FUZ). For each strategy, the segmentation performance of the algorithm was quantified using both a global segmentation correctness measure and the similarity index. Manual segmentation of all microscopy images served as a gold standard. The best segmentation result (median correctness 91 percent of all voxels) was achieved using the FUZ paradigm. Robustness was also the best for this strategy (minimum correctness over all individuals 84 percent). The mean similarity index value of segmentations produced by the FUZ paradigm is 0.86 (IND, 0.81; AVG, 0.84; SIM, 0.82). The superiority of the FUZ paradigm is statistically significant (two-sided paired t-test, P<0.001).

  10. Confocal filtering in cathodoluminescence microscopy of nanostructures

    SciTech Connect

    Narváez, Angela C. E-mail: j.p.hoogenboom@tudelft.nl; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P. E-mail: j.p.hoogenboom@tudelft.nl; Kruit, Pieter

    2014-06-23

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  11. Multimodal confocal hyperspectral imaging microscopy with wavelength sweeping source

    NASA Astrophysics Data System (ADS)

    Kim, Young-Duk; Do, Dukho; Yoo, Hongki; Gweon, DaeGab

    2015-02-01

    There exist microscopes that are able to obtain the chemical properties of a sample, because there are some cases in which it is difficult to find out causality of a phenomenon by using only the structural information of a sample. Obtaining the chemical properties of a sample is important in biomedical imaging, because most biological phenomena include changes in the chemical properties of the sample. Hyperspectral imaging (HSI) is one of the popular imaging methods for characterizing materials and biological samples by measuring the reflectance or emission spectrum of the sample. Because all materials have a unique reflectance spectrum, it is possible to analyze material properties and detect changes in the chemical properties of a sample by measuring the spectral changes with respect to the original spectrum. Because of its ability to measure the spectrum of a sample, HSI is widely used in materials identification applications such as aerial reconnaissance and is the subject of various studies in microscopy. Although there are many advantages to using the method, conventional HSI has some limitations because of its complex configuration and slow speed. In this research we propose a new type of multimodal confocal hyperspectral imaging microscopy with fast image acquisition and a simple configuration that is capable of both confocal and HSI microscopies.

  12. Optimal pupil design for confocal microscopy

    NASA Astrophysics Data System (ADS)

    Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2010-02-01

    Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current instruments are large, complex, and expensive. A simpler, confocal line-scanning microscope may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A confocal reflectance microscope may use a beamsplitter, transmitting and detecting through the pupil, or a divided pupil, or theta configuration, with half used for transmission and half for detection. The divided pupil may offer better sectioning and contrast. We present a Fourier optics model and compare the on-axis irradiance of a confocal point-scanning microscope in both pupil configurations, optimizing the profile of a Gaussian beam in a circular or semicircular aperture. We repeat both calculations with a cylindrical lens which focuses the source to a line. The variable parameter is the fillfactor, h, the ratio of the 1/e2 diameter of the Gaussian beam to the diameter of the full aperture. The optimal values of h, for point scanning are 0.90 (full) and 0.66 for the half-aperture. For line-scanning, the fill-factors are 1.02 (full) and 0.52 (half). Additional parameters to consider are the optimal location of the point-source beam in the divided-pupil configuration, the optimal line width for the line-source, and the width of the aperture in the divided-pupil configuration. Additional figures of merit are field-of-view and sectioning. Use of optimal designs is critical in comparing the experimental performance of the different configurations.

  13. Use of confocal microscopy for nanoparticle drug delivery through skin

    NASA Astrophysics Data System (ADS)

    Zhang, Leshuai W.; Monteiro-Riviere, Nancy A.

    2013-06-01

    Confocal laser scanning microscopy (CLSM) is a well-used microscopic tool that provides valuable morphological and functional information within cells and tissues. The application of CLSM to skin and the topical penetration of nanoparticles (NP) will be addressed. First, we describe the advantages of confocal microscopy compared to other techniques and its use relative to skin research. Second, we discuss the ability of CLSM to detect single NP. Regarding their interaction with skin, the appropriate method to retain nanoparticle localization in the tissue with minimal fixation is critically important. Also, the interaction of several different types of NP (quantum dots, fullerene and dendrimers) and their interaction with skin detected by CLSM under various conditions (flexed, tape stripped and abraded skin) is reviewed. Finally, human epidermal keratinocytes and dendritic cells that serve as appropriate in vitro models for skin cell interactions and cellular uptake of NP are also discussed. In conclusion, the unique functions of CLSM such as the ability to detect fluorescence, optical sectioning, three dimensional remodeling, as well as its use in the reflection mode in tandem with other methods, provides great promise with broad applications regarding the interactions of nanomaterials with skin.

  14. Comprehensive volumetric confocal microscopy with adaptive focusing

    PubMed Central

    Kang, DongKyun; Yoo, Hongki; Jillella, Priyanka; Bouma, Brett E.; Tearney, Guillermo J.

    2011-01-01

    Comprehensive microscopy of distal esophagus could greatly improve the screening and surveillance of esophageal diseases such as Barrett’s esophagus by providing histomorphologic information over the entire region at risk. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that can be configured to image the entire distal esophagus by helically scanning the beam using optics within a balloon-centering probe. It is challenging to image the human esophagus in vivo with balloon-based SECM, however, because patient motion and anatomic tissue surface irregularities decenter the optics, making it difficult to keep the focus at a predetermined location within the tissue as the beam is scanned. In this paper, we present a SECM probe equipped with an adaptive focusing mechanism that can compensate for tissue surface irregularity and dynamic focal variation. A tilted arrangement of the objective lens is employed in the SECM probe to provide feedback signals to an adaptive focusing mechanism. The tilted configuration also allows the probe to obtain reflectance confocal data from multiple depth levels, enabling the acquisition of three-dimensional volumetric data during a single scan of the probe. A tissue phantom with a surface area of 12.6 cm2 was imaged using the new SECM probe, and 8 large-area reflectance confocal microscopy images were acquired over the depth range of 56 μm in 20 minutes. Large-area SECM images of excised swine small intestine tissue were also acquired, enabling the visualization of villous architecture, epithelium, and lamina propria. The adaptive focusing mechanism was demonstrated to enable acquisition of in-focus images even when the probe was not centered and the tissue surface was irregular. PMID:21698005

  15. Bidirectional Reflectance Functions for Application to Earth Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Manalo-Smith, N.; Tiwari, S. N.; Smith, G. L.

    1997-01-01

    Reflected solar radiative fluxes emerging for the Earth's top of the atmosphere are inferred from satellite broadband radiance measurements by applying bidirectional reflectance functions (BDRFs) to account for the anisotropy of the radiation field. BDRF's are dependent upon the viewing geometry (i.e. solar zenith angle, view zenith angle, and relative azimuth angle), the amount and type of cloud cover, the condition of the intervening atmosphere, and the reflectance characteristics of the underlying surface. A set of operational Earth Radiation Budget Experiment (ERBE) BDRFs is available which was developed from the Nimbus 7 ERB (Earth Radiation Budget) scanner data for a three-angle grid system, An improved set of bidirectional reflectance is required for mission planning and data analysis of future earth radiation budget instruments, such as the Clouds and Earth's Radiant Energy System (CERES), and for the enhancement of existing radiation budget data products. This study presents an analytic expression for BDRFs formulated by applying a fit to the ERBE operational model tabulations. A set of model coefficients applicable to any viewing condition is computed for an overcast and a clear sky scene over four geographical surface types: ocean, land, snow, and desert, and partly cloudy scenes over ocean and land. The models are smooth in terms of the directional angles and adhere to the principle of reciprocity, i.e., they are invariant with respect to the interchange of the incoming and outgoing directional angles. The analytic BDRFs and the radiance standard deviations are compared with the operational ERBE models and validated with ERBE data. The clear ocean model is validated with Dlhopolsky's clear ocean model. Dlhopolsky developed a BDRF of higher angular resolution for clear sky ocean from ERBE radiances. Additionally, the effectiveness of the models accounting for anisotropy for various viewing directions is tested with the ERBE along tract data. An area

  16. Confocal coded aperture imaging

    DOEpatents

    Tobin, Jr., Kenneth William; Thomas, Jr., Clarence E.

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  17. Confocal Imaging of porous media

    NASA Astrophysics Data System (ADS)

    Shah, S.; Crawshaw, D.; Boek, D.

    2012-12-01

    Carbonate rocks, which hold approximately 50% of the world's oil and gas reserves, have a very complicated and heterogeneous structure in comparison with sandstone reservoir rock. We present advances with different techniques to image, reconstruct, and characterize statistically the micro-geometry of carbonate pores. The main goal here is to develop a technique to obtain two dimensional and three dimensional images using Confocal Laser Scanning Microscopy. CLSM is used in epi-fluorescent imaging mode, allowing for the very high optical resolution of features well below 1μm size. Images of pore structures were captured using CLSM imaging where spaces in the carbonate samples were impregnated with a fluorescent, dyed epoxy-resin, and scanned in the x-y plane by a laser probe. We discuss the sample preparation in detail for Confocal Imaging to obtain sub-micron resolution images of heterogeneous carbonate rocks. We also discuss the technical and practical aspects of this imaging technique, including its advantages and limitation. We present several examples of this application, including studying pore geometry in carbonates, characterizing sub-resolution porosity in two dimensional images. We then describe approaches to extract statistical information about porosity using image processing and spatial correlation function. We have managed to obtain very low depth information in z -axis (~ 50μm) to develop three dimensional images of carbonate rocks with the current capabilities and limitation of CLSM technique. Hence, we have planned a novel technique to obtain higher depth information to obtain high three dimensional images with sub-micron resolution possible in the lateral and axial planes.

  18. Frustrated Total Internal Reflection: A Simple Application and Demonstration.

    ERIC Educational Resources Information Center

    Zanella, F. P.; Magalhaes, D. V.; Oliveira, M. M.; Bianchi, R. F.; Misoguti, L.; Mendonca, C. R.

    2003-01-01

    Describes the total internal reflection process that occurs when the internal angle of incidence is equal to or greater than the critical angle. Presents a demonstration of the effect of frustrated total internal reflection (FTIR). (YDS)

  19. Using a Database Application to Support Reflective Practice

    ERIC Educational Resources Information Center

    Vallance, Michael

    2008-01-01

    Reflective practice, or reflection, is considered such a vital component of the learning process that strategies and supporting tools warrant continued research in the learning sciences. Reflection has been defined as "deliberating on experience" (Pennington, 1995, p. 47), "an activity or process in which experience is recalled, considered and…

  20. Confocal microscopy and exfoliative cytology

    PubMed Central

    Reddy, Shyam Prasad; Ramani, Pratibha; Nainani, Purshotam

    2013-01-01

    Context: Early detection of potentially malignant lesions and invasive squamous-cell carcinoma in the oral cavity could be greatly improved through techniques that permit visualization of subtle cellular changes indicative of the neoplastic transformation process. One such technique is confocal microscopy. Combining rapidity with reliability, an innovative idea has been put forward using confocal microscope in exfoliative cytology. Aims: The main objective of this study was to assess confocal microscopy for cytological diagnosis and the results were compared with that of the standard PAP stain. Settings and Design: Confocal microscope, acridine orange (AO) stain, PAP (Papanicolaou) stain. The study was designed to assess confocal microscopy for cytological diagnosis. In the process, smears of patients with (clinically diagnosed and/or suspected) oral squamous cell carcinoma as well as those of controls (normal people) were stained with acridine orange and observed under confocal microscope. The results were compared with those of the standard PAP method. Materials and Methods: Samples of buccal mucosa smears from normal patients and squamous cell carcinoma patients were made, fixed in 100% alcohol, followed by AO staining. The corresponding set of smears was stained with PAP stain using rapid PAP stain kit. The results obtained were compared with those obtained with AO confocal microscopy. Results: The study had shown nuclear changes (malignant cells) in the smears of squamous cell carcinoma patients as increased intensity of fluorescence of the nucleus, when observed under confocal microscope. Acridine orange confocal microscopy showed good amount of sensitivity and specificity (93%) in identifying malignant cells in exfoliative cytological smears. Conclusion: Confocal microscopy was found to have good sensitivity in the identification of cancer (malignant) cells in exfoliative cytology, at par with the PAP method. The rapidity of processing and screening a

  1. Confocal Raman Microscopy in Pharmaceutical Development

    NASA Astrophysics Data System (ADS)

    Haefele, Thomas F.; Paulus, Kurt

    There is a wide range of applications of confocal Raman microscopy in pharmaceutical development. It is a powerful tool to probe the distribution of components within a formulation, to characterize homogeneity of pharmaceutical samples, to determine solid state of drug substances and excipients and to characterize contaminations and foreign particulates. The information obtained by confocal Raman microscopy is extremely useful, sometimes even crucial, for drug substance design, for the development of solid and liquid formulations, as a tool for process analytics and for patent infringements and counterfeit analysis. In this chapter, those aspects and applications will be presented, focusing on solid drug formulations. This chapter will also reveal the advantages and demonstrate the synergies of Raman mapping as compared to similar imaging methods such as SEM/EDX, NIR and MIR imaging.

  2. Interference Confocal Microscope Integrated with Spatial Phase Shifter.

    PubMed

    Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian

    2016-01-01

    We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses. PMID:27563909

  3. In Vivo Confocal Microscopy in Chloroquine-Induced Keratopathy

    PubMed Central

    Paladini, Iacopo; Menchini, Ugo; Mencucci, Rita

    2013-01-01

    In vivo confocal microscopy is becoming a mandatory examination to study corneal abnormalities such as drug deposits in systemic disease. A female diagnosed with fibromyalgia on systemic chloroquine for 9 months presented for an ophthalmic examination. Confocal microscopy was performed using the Confoscan 4 (Nidek Co. Ltd., Gamagori, Japan) and multiple highly reflective deposits in the epithelial basal cells were found, that were consistent with choloquine. Deposits were also present in the wing cell layer. In the anterior stroma these deposits were rare. Atypically shaped and branched nerves were also present in the anterior stroma. Corneal deposits of chloroquine can be evaluated by confocal microscopy. Confocal microscopy provides information on corneal metabolism and physiology. Chloroquine keratopathy can affect the anterior stroma in addition to the epithelium. PMID:23580857

  4. The comet assay: Reflections on its development, evolution and applications.

    PubMed

    Singh, Narendra P

    2016-01-01

    The study of DNA damage and its repair is critical to our understanding of human aging and cancer. This review reflects on the development of a simple technique, now known as the comet assay, to study the accumulation of DNA damage and its repair. It describes my journey into aging research and the need for a method that sensitively quantifies DNA damage on a cell-by-cell basis and on a day-by-day basis. My inspirations, obstacles and successes on the path to developing this assay and improving its reliability and sensitivity are discussed. Recent modifications, applications, and the process of standardizing the technique are also described. What was once untried and unknown has become a technique used around the world for understanding and monitoring DNA damage. The comet assay's use has grown exponentially in the new millennium, as emphasis on studying biological phenomena at the single-cell level has increased. I and others have applied the technique across cell types (including germ cells) and species (including bacteria). As it enters new realms and gains clinical relevance, the comet assay may very well illuminate human aging and its prevention. PMID:27036063

  5. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications.

    USGS Publications Warehouse

    Clark, R.N.; Roush, T.L.

    1984-01-01

    Several methods for the analysis of remotely sensed reflectance data are compared, including empirical methods and scattering theories, both of which are important for solving remote sensing problems. The concept of the photon mean path length and the implications for use in modeling reflectance spectra are presented.-from Authors

  6. Scanned optical fiber confocal microscope

    NASA Astrophysics Data System (ADS)

    Dickensheets, David L.; Kino, Gordon S.

    1994-04-01

    The size and weight of conventional optical microscopes often makes them inconvenient for use on the human body or for in-situ examination during materials processing. We describe a new fiber-optic scanning confocal optical microscope which could have a total outside diameter as small as 1 mm, and should lend itself to applications in endoscopy or to optical in vivo histology. The first experimental device utilizes a single-mode optical fiber for illumination and detection. The scanning element is a mechanically resonant fused silica cantilever 1.5 cm long and 0.8 mm across, with a micromachined two-phase zone plate objective mounted at one end. The cantilever is electrostatically scanned near resonance in two dimensions, generating a Lissajous pattern which is scan converted to conventional video for real time display or digitization. The objective lens has N.A. equals 0.25 at (lambda) equals 0.6328 micrometers , with a measured spot size of 1.8 micrometers FWHM.

  7. Combined Confocal and Magnetic Resonance Microscopy

    SciTech Connect

    Wind, Robert A.; Majors, Paul D.; Minard, Kevin R.; Ackerman, Eric J.; Daly, Don S.; Holtom, Gary R.; Thrall, Brian D.; Weber, Thomas J.

    2002-05-12

    Confocal and magnetic resonance microscopy are both used to study live cells in a minimally invasive way. Both techniques provide complementary information. Therefore, by examining cells simultaneously with both methodologies, more detailed information is obtained than is possible with each of the microscopes individually. In this paper two configurations of a combined confocal and magnetic resonance microscope described. In both cases the sample compartment is part of a temperature regulated perfusion system. The first configuration is capable of studying large single cells or three-dimensional cell agglomerates, whereas with the second configuration monolayers of mammalian cells can be investigated . Combined images are shown of Xenopus laevis frog oocytes, model JB6 tumor spheroids, and a single layer of Chinese hamster ovary cells. Finally, potential applications of the combined microscope are discussed.

  8. Any Way You Slice It—A Comparison of Confocal Microscopy Techniques

    PubMed Central

    Jonkman, James

    2015-01-01

    The confocal fluorescence microscope has become a popular tool for life sciences researchers, primarily because of its ability to remove blur from outside of the focal plane of the image. Several different kinds of confocal microscopes have been developed, each with advantages and disadvantages. This article will cover the grid confocal, classic confocal laser-scanning microscope (CLSM), the resonant scanning-CLSM, and the spinning-disk confocal microscope. The way each microscope technique works, the best applications the technique is suited for, the limitations of the technique, and new developments for each technology will be presented. Researchers who have access to a range of different confocal microscopes (e.g., through a local core facility) should find this paper helpful for choosing the best confocal technology for specific imaging applications. Others with funding to purchase an instrument should find the article helpful in deciding which technology is ideal for their area of research. PMID:25802490

  9. Illumination and Reflectance Estimation with its Application in Foreground Detection

    PubMed Central

    Tu, Gang Jun; Karstoft, Henrik; Pedersen, Lene Juul; Jørgensen, Erik

    2015-01-01

    In this paper, we introduce a novel approach to estimate the illumination and reflectance of an image. The approach is based on illumination-reflectance model and wavelet theory. We use a homomorphic wavelet filter (HWF) and define a wavelet quotient image (WQI) model based on dyadic wavelet transform. The illumination and reflectance components are estimated by using HWF and WQI, respectively. Based on the illumination and reflectance estimation we develop an algorithm to segment sows in grayscale video recordings which are captured in complex farrowing pens. Experimental results demonstrate that the algorithm can be applied to detect the domestic animals in complex environments such as light changes, motionless foreground objects and dynamic background. PMID:26343675

  10. A New Multichannel Spectral Imaging Laser Scanning Confocal Microscope

    PubMed Central

    Zhang, Yunhai; Hu, Bian; Dai, Yakang; Yang, Haomin; Huang, Wei; Xue, Xiaojun; Li, Fazhi; Zhang, Xin; Jiang, Chenyu; Gao, Fei; Chang, Jian

    2013-01-01

    We have developed a new multichannel spectral imaging laser scanning confocal microscope for effective detection of multiple fluorescent labeling in the research of biological tissues. In this paper, the design and key technologies of the system are introduced. Representative results on confocal imaging, 3-dimensional sectioning imaging, and spectral imaging are demonstrated. The results indicated that the system is applicable to multiple fluorescent labeling in biological experiments. PMID:23585775

  11. In vivo/ex vivo targeting of Langerhans cells after topical application of the immune response modifier TMX-202: confocal Raman microscopy and histology analysis

    NASA Astrophysics Data System (ADS)

    Darvin, Maxim E.; Thiede, Gisela; Ascencio, Saul Mujica; Schanzer, Sabine; Richter, Heike; Vinzón, Sabrina E.; Hasche, Daniel; Rösl, Frank; May, Roberto; Hazot, Yohan; Tamarkin, Dov; Lademann, Juergen

    2016-05-01

    The increased ability of TMX-202 (derivative of imiquimod) to penetrate the intact stratum corneum (SC) and the follicular orifices of porcine ear skin was shown ex vivo using confocal Raman microscopy and laser scanning microscopy. Moreover, to assess whether TMX-202 is able to reach the immune cells, Langerhans cells extracted from pretreated human skin were investigated ex vivo using confocal Raman microscopy combined with multivariate statistical methods. Tracking the Raman peak of dimethyl sulfoxide centered at 690 cm-1, the absorption of TMX-202 containing formulation by Langerhans cells was shown. To answer the question whether the TMX-202 active ingredient is able to reach Langerhans cells, the attraction of immune cells to TMX-202 containing formulation treated skin was measured in the in vivo rodent model Mastomys coucha. The results show that TMX-202 active ingredient is able to reach Langerhans cells after penetrating through the intact skin and subsequently attract immune cells. Both the intercellular/transcellular as well as the follicular pathways allow the penetration through the intact barrier of the SC.

  12. Instrumentation for Reflectance Spectroscopy and Microspectroscopy with Application to Astrobiology

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Blaney, Diana L.; Green, Robert O.

    2008-01-01

    We present instrument concepts for in-situ reflectance spectroscopy over a spatial resolution range from several meters to tens of micrometers. These have been adapted to the low mass and power requirements of rover or similar platforms. Described are a miniaturized imaging spectrometer for rover mast, a combined mast and arm point spectrometer, and an imaging microspectrometer for the rover arm.

  13. Laser differential confocal radius measurement.

    PubMed

    Zhao, Weiqian; Sun, Ruoduan; Qiu, Lirong; Sha, Dingguo

    2010-02-01

    A new laser differential confocal radius measurement (DCRM) is proposed for high precision measurement of radius. Based on the property of an axial intensity curve that the absolute zero precisely corresponds to the focus of the objective in a differential confocal system (DCS), DCRM uses the zero point of the DCS axial intensity curve to precisely identify the cat's-eye and confocal positions of the test lens, and measures the accurate distance between the two positions to achieve the high-precision measurement of radius of curvature (ROC). In comparison with the existing measurement methods, DCRM proposed has a high measurement precision, a strong environmental anti-interference capability and a low cost. The theoretical analyses and preliminary experimental results indicate that DCRM has a relative measurement error of better than 5 ppm. PMID:20174065

  14. Laboratory laser reflectance measurement and applications to asteroid surface analysis

    NASA Astrophysics Data System (ADS)

    Shaw, A.; Daly, M. G.; Cloutis, E. A.; Tait, K. T.; Izawa, M. R. M.; Barnouin, O. S.; Hyde, B. C.; Nicklin, I.

    2014-07-01

    Introduction Laboratory reflectance measurement of asteroid analogs is an important tool for interpreting the reflectance of asteroids. One dominant factor affecting how measured reflectance changes as a function of phase angle (180° minus the scattering angle) is surface roughness [1], which is related to grain size. A major goal of this study is to be able to use the angular distributions (phase functions) of scattered light from various regions on an asteroid surface to determine the relative grain size between those regions. Grain size affects the spectral albedo and continuum slopes of surface materials, has implications in terms of understanding geologic processes on asteroids and is also valuable for the planning and operations of upcoming missions to asteroids, such as the New Frontiers OSIRIS-REx sample return mission to the asteroid (101955) Bennu [2]. Information on surface roughness is particularly powerful when combined with other datasets, such as thermal inertia maps (e.g., a smooth, low-backscatter surface of low thermal inertia likely contains fine grains). Approach To better constrain the composition and surface texture of Bennu, we are conducting experiments to investigate the laser return signature of terrestrial and meteorite analogs to Bennu. The objective is to understand the nature of laser returns given possible compositional, grain size and slope distributions on the surface of Bennu to allow surface characterization, particularly surface grain size, which would significantly aid efforts to identify suitable sites for sampling by the OSIRIS-REx mission. Setup A 1064-nm laser is used to determine the reflectance of Bennu analogs and their constituents (1064 nm is the wavelength of many laser altimeters including the one planned to fly on OSIRIS-REx). Samples of interest include serpentinites (greenalite, etc.), magnetite, and shungite. To perform the experiments, a goniometer has been built. This instrument allows reflectance measurements

  15. Confocal Microscopy and Molecular-Specific Optical Contrast Agents for the Detection of Oral Neoplasia

    PubMed Central

    Carlson, Alicia L.; Gillenwater, Ann M.; Williams, Michelle D.; El-Naggar, Adel K.; Richards-Kortum, R. R.

    2009-01-01

    Using current clinical diagnostic techniques, it is difficult to visualize tumor morphology and architecture at the cellular level, which is necessary for diagnostic localization of pathologic lesions. Optical imaging techniques have the potential to address this clinical need by providing real-time, sub-cellular resolution images. This paper describes the use of dual mode confocal microscopy and optical molecular-specific contrast agents to image tissue architecture, cellular morphology, and sub-cellular molecular features of normal and neoplastic oral tissues. Fresh tissue slices were prepared from 33 biopsies of clinically normal and abnormal oral mucosa obtained from 14 patients. Reflectance confocal images were acquired after the application of 6% acetic acid, and fluorescence confocal images were acquired after the application of a fluorescence contrast agent targeting the epidermal growth factor receptor (EGFR). The dual imaging modes provided images similar to light microscopy of hematoxylin and eosin and immunohistochemistry staining, but from thick fresh tissue slices. Reflectance images provided information on the architecture of the tissue and the cellular morphology. The nuclear-to-cytoplasmic (N/C) ratio from the reflectance images was at least 7.5 times greater for the carcinoma than the corresponding normal samples, except for one case of highly keratinized carcinoma. Separation of carcinoma from normal and mild dysplasia was achieved using this ratio (p<0.01). Fluorescence images of EGFR expression yielded a mean fluorescence labeling intensity (FLI) that was at least 2.7 times higher for severe dysplasia and carcinoma samples than for the corresponding normal sample, and could be used to distinguish carcinoma from normal and mild dysplasia (p<0.01). Analyzed together, the N/C ratio and the mean FLI may improve the ability to distinguish carcinoma from normal squamous epithelium. PMID:17877424

  16. 834-A reflective coating for magnetospheric imagery applications

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Supriya; Edelstein, Jerry; Keski-Kuha, Ritva A.; Threat, Felix T.

    1992-06-01

    Imaging upflowing O(superscript +) ions of ionospheric origin and plasmaspheric O(superscript +) can be achieved through solar resonance scattering at 834 angstroms. Unfortunately, several strong background emissions, including the ones at 1025 angstroms and 1216 angstroms due to geocoronal hydrogen atoms, pose serious problems to its implementation. Most common optical coatings have higher reflectivity at 1025 angstroms and 1216 angstroms than at 834 angstroms. We have designed a multiple-layer coating which selectively reflects 834 angstroms radiation and suppresses 1025 angstroms and 1216 angstroms radiation. The structure of the coating material consists of a very thin (50 - 150 angstroms) method (nickel) layer, on top of a semitransparent dielectric material (magnesium fluoride), over an aluminum substrate. Three such coatings were produced at NASA Goddard Space Flight Center using an existing coating facility which is not optimized for thin coatings. In spite of such fabrication difficulties, we have obtained encouraging results.

  17. Optical detection of the spin transition by reflectivity: application to ?

    NASA Astrophysics Data System (ADS)

    Morscheidt, W.; Jeftic, J.; Codjovi, E.; Linares, J.; Bousseksou, A.; Constant-Machado, H.; Varret, F.

    1998-08-01

    Apparatus for measuring a reflected light signal on crystalline or powder samples of thermochromic materials, such as `spin-crossover' materials, has been developed in conjunction with a helium cryostat enabling measurements from cryogenic to ambient temperatures. Depending on the intensity and wavelength of the incident light and optical properties of the sample, reflectivity measurements provide information about a relatively thin surface layer of the investigated compound. The thermal spin transition or photoexcitation from the low-spin state, which is usually coloured, to the high-spin state, which is white or transparent, is detected by a change in the relative intensity as shown on examples of 0957-0233/9/8/025/img10 crystalline powders (btr = bis - triazole). To compare the situation in the bulk, simultaneous magnetic measurements were performed.

  18. Application of multispectral reflectance for early detection of tomato disease

    NASA Astrophysics Data System (ADS)

    Xu, Huirong; Zhu, Shengpan; Ying, Yibin; Jiang, Huanyu

    2006-10-01

    Automatic diagnosis of plant disease is important for plant management and environmental preservation in the future. The objective of this study is to use multispectral reflectance measurements to make an early discrimination between the healthy and infected plants by the strain of tobacco mosaic virus (TMV-U1) infection. There were reflectance changes in the visible (VIS) and near infrared spectroscopy (NIR) between the healthy and infected plants. Discriminant models were developed using discriminant partial least squares (DPLS) and Mahalanobis distance (MD). The DPLS models had a root mean square error of calibration (RMSEC) of 0.397 and correlation coefficient (r) of 0.59 and the MD model correctly classified 86.7% healthy plants and up to 91.7% infected plants.

  19. Application of acoustic reflection tomography to sonar imaging.

    PubMed

    Ferguson, Brian G; Wyber, Ron J

    2005-05-01

    Computer-aided tomography is a technique for providing a two-dimensional cross-sectional view of a three-dimensional object through the digital processing of many one-dimensional views (or projections) taken at different look directions. In acoustic reflection tomography, insonifying the object and then recording the backscattered signal provides the projection information for a given look direction (or aspect angle). Processing the projection information for all possible aspect angles enables an image to be reconstructed that represents the two-dimensional spatial distribution of the object's acoustic reflectivity function when projected on the imaging plane. The shape of an idealized object, which is an elliptical cylinder, is reconstructed by applying standard backprojection, Radon transform inversion (using both convolution and filtered backprojections), and direct Fourier inversion to simulated projection data. The relative merits of the various reconstruction algorithms are assessed and the resulting shape estimates compared. For bandpass sonar data, however, the wave number components of the acoustic reflectivity function that are outside the passband are absent. This leads to the consideration of image reconstruction for bandpass data. Tomographic image reconstruction is applied to real data collected with an ultra-wideband sonar transducer to form high-resolution acoustic images of various underwater objects when the sonar and object are widely separated. PMID:15957762

  20. Custom-made modification of a commercial confocal microscope to photolyze caged compounds using the conventional illumination module and its application to the observation of Inositol 1,4,5-trisphosphate-mediated calcium signals

    NASA Astrophysics Data System (ADS)

    Sigaut, Lorena; Barella, Mariano; Espada, Rocío; Ponce, María Laura; Dawson, Silvina Ponce

    2011-06-01

    The flash photolysis of ``caged'' compounds is a powerful experimental technique for producing rapid changes in concentrations of bioactive signaling molecules. These caged compounds are inactive and become active when illuminated with ultraviolet light. This paper describes an inexpensive adaptation of an Olympus confocal microscope that uses as source of ultraviolet light the mercury lamp that comes with the microscope for conventional fluorescence microscopy. The ultraviolet illumination from the lamp (350 - 400 nm) enters through an optical fiber that is coupled to a nonconventional port of the microscope. The modification allows to perform the photolysis of caged compounds over wide areas (~200 μm) and obtain confocal fluorescence images simultaneously. By controlling the ultraviolet illumination exposure time and intensity it is possible to regulate the amount of photolyzed compounds. In the paper we characterize the properties of the system and show its capabilities with experiments done in aqueous solution and in Xenopus Laevis oocytes. The latter demonstrate its applicability for the study of Inositol 1,4,5-trisphosphate-mediated intracellular calcium signals.

  1. An 834 A reflective coating for magnetospheric imagery applications

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Supriya; Edelstein, Jerry; Keski-Kuha, Ritva A. M.; Threat, Feliz T.

    We have designed a multiple-layer coating which selectively reflects 834 A radiation and suppresses 1025 A and 1216 A radiation. The structure of the coating material consists of a very thin (50-150 A) metal (nickel) layer, on top of a semitransparent dielectric material (magnesium fluoride), over an aluminum substrate. Three such coatings were produced at NASA Goddard Space Flight Center using an existing coating facility which is not optimized for thin coatings. In spite of such fabrication difficulties, we have obtained encouraging results.

  2. Reflecting Schmidt imaging spectrometers. [for earth remote sensing applications

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Page, N. A.; Shannon, R. R.; Rodgers, J. M.

    1983-01-01

    A new wide-angle imaging spectrometer configuration is proposed where an all-reflecting Schmidt camera is used with a prism spectrometer to give a field of view up to 60 deg or more. Four different designs using this approach are presented. These are the Imaging Spectrometer Free Flyer, the Shuttle Imaging Spectrometer A, the Shuttle Imaging Spectrometer B, and the Wide-Field System. These systems are capable of broadband spectral coverage from 0.4 to 2.5 microns, with footprints 20 m on a side or less, and with swath widths hundreds of kilometers; they are capable of spectral resolving powers of 200 or more.

  3. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of emitted signals. The accuracy of these measurements demands that...

  4. Effects of Reflection Category and Reflection Quality on Learning Outcomes during Web-Based Portfolio Assessment Process: A Case Study of High School Students in Computer Application Course

    ERIC Educational Resources Information Center

    Chou, Pao-Nan; Chang, Chi-Cheng

    2011-01-01

    This study examines the effects of reflection category and reflection quality on learning outcomes during Web-based portfolio assessment process. Experimental subjects consist of forty-five eight-grade students in a "Computer Application" course. Through the Web-based portfolio assessment system, these students write reflection, and join…

  5. Skeleton-migration: Applications in deep crustal reflection seismic profiling

    NASA Astrophysics Data System (ADS)

    Eaton, D. W.; Vasudevan, K.

    2009-12-01

    The reflection geometry of the sub-surface is three-dimensional in character. A 3-D seismic data acquisition and processing would be the ideal modus operandi for true seismic interpretation. However, almost all deep-crustal reflection profiles recorded on land follow quasi-linear geometry, for economic reasons. Although conventional processing of the lines accommodates crooked-line geometry, the migration algorithms used to produce seismic images for interpretation are generally 2-D in nature. Consequently, the effects of 3-D geometry are not usually well-accounted for. For example, the out-of-plane reflections lead to mislocation errors that increase with recording time. The events may be mislocated by 10’s of km and show spurious apparent dip after migration. In order to circumvent these problems and to gain insight into 3-D structures, we present an easy-to-implement “Skeleton-migration” algorithm. The skeleton-migration method follows a two-step procedure. In the first step, we introduce a fast skeletonization of the final pre-processed stack to generate a digital catalogue containing a variety of event attributes including two-way travel times and location information in UTM co-ordinates. In the second step, we apply ray-based migration to the catalogue of events or two-way travel times of the 2-D stack using an appropriate velocity model for the crust and upper mantle. Since often we do not know a priori the strike direction of the reflectors, we have implemented a fast visualization-based optimization procedure to determine the strike. In subsequent steps, we use visualization methods to view and interpret the skeleton-migration results. We illustrate the usefulness of the method with examples from both the synthetic and deep crustal seismic reflection data. For the synthetic examples, we consider physical models corresponding to a point-scatterer, a synform, a fault and a subducting slab. In all these instances, we use an elastic Kirchhoff algorithm

  6. Confocal luminescence microscopy study of defect-domain wall interaction in lithium niobate and its application to light-induced domain engineering

    NASA Astrophysics Data System (ADS)

    Sandmann, Christian

    Understanding the mutual interaction of extrinsic and intrinsic defects with the ferroelectric domain walls of LiNbO3 is the key to achieve domain patterns on the sub-micron scale. For that reason the influence of domain inversion on the Er3+ defect was investigated in a detailed study, in which energetic shifts and changes in the intensity ratio of individual Er3+ sites were found. The results led to an improved model describing the Er3+ defect in LiNbO3 and to the introduction of a concept of an atomistic probe. This atomistic probe allows the determination of the orientation of the ferroelectric axis by means of optical spectroscopy and allows three-dimensional imaging of domain structures with high spatial resolution without topographic artifacts. For this purpose a confocal luminescence microscope was developed, adapted to allow investigation at low temperature and applied electric fields. Based on the concept of an atomistic probe, the interaction of Er and Ti dopants was investigated, and significant spectral broadening and line shifting were found. Calibrating these changes to the [Ti4+]-concentration allows imaging of [Ti4+]-profiles, as found in integrated optical devices. The [Ti4+]-concentration profile can be imaged without artifacts caused by topology, intensity fluctuations, or variations in the [Er3+]-concentration profile. A novel approach was introduced for directly writing ferroelectric domain patterns into LiNbO3 substrates using the confocal microscope to focus visible light from an argon ion laser to a diffraction limited spot. It was shown that space charge fields, created by light with a wavelength of 488nm, can reduce the external applied field needed for domain inversion by up to 30%. So far, structures with a period down to 8mum have been demonstrated. In-situ experiments during domain inversion demonstrated the possibility to monitor the domain inversion process in-situ with a temporal resolution of up to t = 7ms. It could be

  7. Real-Time Confocal Imaging Of The Living Eye

    NASA Astrophysics Data System (ADS)

    Jester, James V.; Cavanagh, H. Dwight; Essepian, John; Shields, William J.; Lemp, Michael A.

    1989-12-01

    In 1986, we adapted the Tandem Scanning Reflected Light Microscope of Petran and Hadraysky to permit non-invasive, confocal imaging of the living eye in real-time. We were first to obtain stable, confocal optical sections in vivo, from human and animal eyes. Using confocal imaging systems we have now studied living, normal volunteers, rabbits, cats and primates sequentially, non-invasively, and in real-time. The continued development of real-time confocal imaging systems will unlock the door to a new field of cell biology involving for the first time the study of dynamic cellular processes in living organ systems. Towards this end we have concentrated our initial studies on three areas (1) evaluation of confocal microscope systems for real-time image acquisition, (2) studies of the living normal cornea (epithelium, stroma, endothelium) in human and other species; and (3) sequential wound-healing responses in the cornea in single animals to lamellar-keratectomy injury (cellular migration, inflammation, scarring). We believe that this instrument represents an important, new paradigm for research in cell biology and pathology and that it will fundamentally alter all experimental and clinical approaches in future years.

  8. Terahertz antiresonant reflecting hollow-core waveguides for sensing applications

    NASA Astrophysics Data System (ADS)

    You, Borwen; Lu, Ja-Yu; Chan, Chi-Yu; Yu, Chin-Ping; Chen, Hao-Zai; Liu, Tze-An; Peng, Jin-Long

    2011-02-01

    A dielectric hollow-core tube utilized as a terahertz anti-resonant reflecting hollow-core waveguide (THz-ARRHW) sensor has been demonstrated to detect the minute variation of both refractive index and thickness in macromolecule layers, deposited on the tube wall, and to identify liquid vapors from the various core indices. The minimal quantity of macromolecule layers loaded on the tube wall of a polypropylene tube can be detected at 1.2picomole/mm2 and 0.2%, corresponding to the variation of 2.9μm-thickness and 0.001-refractive-index. And the sensing performance of a THz- ARRHW to detect core index variation for identifying volatile liquids is also realized at 0.0001g/cm3- vapor density.

  9. Use of probe-based confocal laser endomicroscopy (pCLE) in gastrointestinal applications. A consensus report based on clinical evidence

    PubMed Central

    Wang, Kenneth K; Carr-Locke, David L; Singh, Satish K; Neumann, Helmut; Bertani, Helga; Arsenescu, Razvan I; Caillol, Fabrice; Chang, Kenneth J; Chaussade, Stanislas; Coron, Emmanuel; Costamagna, Guido; Dlugosz, Aldona; Ian Gan, S; Giovannini, Marc; Gress, Frank G; Haluszka, Oleh; Ho, Khek Y; Kahaleh, Michel; Konda, Vani J; Prat, Frederic; Shah, Raj J; Sharma, Prateek; Slivka, Adam; Wolfsen, Herbert C; Zfass, Alvin

    2015-01-01

    Background Probe-based confocal laser endomicroscopy (pCLE) provides microscopic imaging during an endoscopic procedure. Its introduction as a standard modality in gastroenterology has brought significant progress in management strategies, affecting many aspects of clinical care and requiring standardisation of practice and training. Objective This study aimed to provide guidance on the standardisation of its practice and training in Barrett’s oesophagus, biliary strictures, colorectal lesions and inflammatory bowel diseases. Methods Initial statements were developed by five group leaders, based on the available clinical evidence. These statements were then voted and edited by the 26 participants, using a modified Delphi approach. After two rounds of votes, statements were validated if the threshold of agreement was higher than 75%. Results Twenty-six experts participated and, among a total of 77 statements, 61 were adopted (79%) and 16 were rejected (21%). The adoption of each statement was justified by the grade of evidence. Conclusion pCLE should be used to enhance the diagnostic arsenal in the evaluation of these indications, by providing microscopic information which improves the diagnostic performance of the physician. In order actually to implement this technology in the clinical routine, and to ensure good practice, standardised initial and continuing institutional training programmes should be established. PMID:26137298

  10. Confocal spectral imaging by microspectrofluorometry using two-photon excitation: application to the study of anticancer drugs within single living cancer cells

    NASA Astrophysics Data System (ADS)

    Chourpa, Igor; Pereira, Manuela; Millot, Jean-Marc; Morjani, Hamid; Manfait, Michel

    1999-06-01

    The use of the two-photon excitation (TPE) is believed to be prominent for fluorometric studies with cells. We evaluated the advantages and limitations of the two-photon technique compared to the single photon one when it used to detect potent anticancer drugs, camptothecins (CPTs), within single living cancer cells. The technique we used was confocal microspectrofluorometry amplified with possibility of the spectral imaging analysis. We have previously reported the use of the florescence emission of CPTs to study them qualitatively and quantitatively, namely, to follow the status of their hydrolyzable lactone moiety. However, the intracellular investigation of CPTs using microspectrofluorometry with single photon UV excitation (SPE) is hindered by significant interference of their fluorescence emission with cellular autofluorescence. We attempted to overcome these problems using the two-photon excitation. The intracellular single-photon- and two-photon-excited emission spectra from treated and control cells (HCT-116 line) were recorded using a spectral imaging approach. The obtained data demonstrate that, apart from intrinsically increased three- dimensional resolution, the two-photon approach was advantageous over the single-photon method with respect to selective fluorometric detection of intracellular CPTs. Nevertheless, much attention should be paid to avoid any excessive irradiation of the cells with UV and even NIR light.

  11. High-speed line-field confocal holographic microscope for quantitative phase imaging.

    PubMed

    Liu, Changgeng; Knitter, Sebastian; Cong, Zhilong; Sencan, Ikbal; Cao, Hui; Choma, Michael A

    2016-05-01

    We present a high-speed and phase-sensitive reflectance line-scanning confocal holographic microscope (LCHM). We achieved rapid confocal imaging using a fast line-scan CCD camera and quantitative phase imaging using off-axis digital holography (DH) on a 1D, line-by-line basis in our prototype experiment. Using a 20 kHz line scan rate, we achieved a frame rate of 20 Hz for 512x512 pixels en-face confocal images. We realized coherent holographic detection two different ways. We first present a LCHM using off-axis configuration. By using a microscope objective of a NA 0.65, we achieved axial and lateral resolution of ~3.5 micrometers and ~0.8 micrometers, respectively. We demonstrated surface profile measurement of a phase target at nanometer precision and the digital refocusing of a defocused confocal en-face image. Ultrahigh temporal resolution M mode is demonstrated by measuring the vibration of a PZT-actuated mirror driven by a sine wave at 1 kHz. We then report our experimental work on a LCHM using an in-line configuration. In this in-line LCHM, the coherent detection is enabled by moving the reference arm at a constant speed, thereby introducing a Doppler frequency shift that leads to spatial interference fringes along the scanning direction. Lastly, we present a unified formulation that treats off-axis and in-line LCHM in a unified joint spatiotemporal modulation framework and provide a connection between LCHM and the traditional off-axis DH. The presented high-speed LCHM may find applications in optical metrology and biomedical imaging. PMID:27137541

  12. Automated cellular pathology in noninvasive confocal microscopy

    NASA Astrophysics Data System (ADS)

    Ting, Monica; Krueger, James; Gareau, Daniel

    2014-03-01

    A computer algorithm was developed to automatically identify and count melanocytes and keratinocytes in 3D reflectance confocal microscopy (RCM) images of the skin. Computerized pathology increases our understanding and enables prevention of superficial spreading melanoma (SSM). Machine learning involved looking at the images to measure the size of cells through a 2-D Fourier transform and developing an appropriate mask with the erf() function to model the cells. Implementation involved processing the images to identify cells whose image segments provided the least difference when subtracted from the mask. With further simplification of the algorithm, the program may be directly implemented on the RCM images to indicate the presence of keratinocytes in seconds and to quantify the keratinocytes size in the en face plane as a function of depth. Using this system, the algorithm can identify any irregularities in maturation and differentiation of keratinocytes, thereby signaling the possible presence of cancer.

  13. Developments of new force reflecting control schemes and an application to a teleoperation training simulator

    NASA Technical Reports Server (NTRS)

    Kim, Won S.

    1992-01-01

    Two schemes of force reflecting control, position-error based force reflection and low-pass-filtered force reflection, both combined with shared compliance control, were developed for dissimilar master-slave arms. These schemes enabled high force reflection gains, which were not possible with a conventional scheme when the slave arm was much stiffer than the master arm. The experimental results with a peg-in-hole task indicated that the newly force reflecting control schemes combined with compliance control resulted in best task performances. As a related application, a simulated force reflection/shared compliance control teleoperation trainer was developed that provided the operator with the feel of kinesthetic force virtual reality.

  14. Optical Electronic Bragg Reflection Sensor System with Hydrodynamic Flow Applications

    NASA Technical Reports Server (NTRS)

    Lyons, D. R.

    2003-01-01

    This project, as described in the following report, involved design and fabrication of fiber optic sensors for the detection and measurement of dynamic fluid density variations. These devices are created using UV (ultraviolet) ablation and generally modified transverse holographic fiber grating techniques. The resulting phase gratings created on or immediately underneath the flat portion of D-shaped optical waveguides are characterized as evanescent field sensing devices. The primary applications include the sensor portion of a real-time localized or distributed measurement system for hydrodynamic flow, fluid density measurements, and phase change phenomena. Several design modifications were implemented in an attempt to accomplish the tasks specified in our original proposal. In addition, we have established key collaborative relationships with numerous people and institutions.

  15. Confocal Raman microspectroscopy of the skin.

    PubMed

    Förster, Matthias; Bolzinger, Marie-Alexandrine; Montagnac, Gilles; Briançon, Stéphanie

    2011-01-01

    Confocal Raman spectroscopy is a technique with considerable potential for the non-invasive study of biological tissues and skin samples in vitro or in vivo. It can be used to study skin physiology and possible pathological conditions and to obtain data about molecular composition and the structure of skin, for example, water content, moisturization and changes in the skin barrier function can all be observed. In-depth measurements also allow biopharmaceutical studies, such as analyzing the rate of penetration of a drug and the biochemical changes that may be induced by an applied formulation. Confocal Raman microspectroscopy is now at such a stage of refinement that it opens up new vistas. The big leap forward in its ease of use enables this technology to be used as an analytical method by more and more non-specialist laboratories. This review gives an overview of the state of the art of this technology by presenting an update on the principles of Raman spectroscopy and then by looking at examples of new developments in in vivo and in vitro applications. PMID:21914580

  16. Confocal Raman Imaging of Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Schmidt, Ute; Müller, Jörg; Koenen, Joachim

    Polymers play an essential role in modern materials science. Due to the wide variety of mechanical and chemical properties of polymers, they are used in almost every field of application and are still a dynamic area in the development of new materials with demanding requirements. Raman spectroscopy is one of the standard characterization techniques used to uniquely determine the chemical composition of a polymer. Modern materials, however, are generally heterogeneous, in which various chemical components or polymorphs of the same chemical species can be present in a very small sample volume. For the analysis of such heterogeneous materials, the combination of Raman spectroscopy with confocal microscopy delivers information about the spatial distribution of the various chemical species with a resolution down to 200 nm. The aim of this contribution is to demonstrate the power of confocal Raman imaging for the characterization of heterogeneous polymeric materials. The first section will deal with polymorphs of polypropylene in polymer films, followed by the nondestructive analysis of polymer blends. A later section will deal with multi-layer polymer coatings and paints and finally various additives to polymer matrices will be discussed.

  17. Tracheobronchial amyloidosis and confocal endomicroscopy.

    PubMed

    Newton, Richard C; Kemp, Samuel V; Yang, Guang-Zhong; Darzi, Ara; Sheppard, Mary N; Shah, Pallav L

    2011-01-01

    Tracheobronchial amyloidosis is one of many causes of endobronchial stenosis and nodularity, the concrete diagnosis of which currently requires the finding of apple-green birefringence from endobronchial biopsies. Bronchoscopic probe-based confocal endomicroscopy (pCLE) is a novel optical biopsy technique which provides real-time images of the lattice structure of the bronchial basement membrane - a finding lost in malignancy. This case study outlines the imperfect, essentially palliative management of this rare disease, and shows for the first time the unusual dappled in vivo pCLE images of amyloid-affected endobronchium. PMID:21430359

  18. Fluorescein as a contrast agent for confocal intra-operative imaging of basal cell carcinomas: a preliminary ex vivo study

    NASA Astrophysics Data System (ADS)

    Sierra, Heidy; Qi, Qiaochu; Jiang, Angela; Taskar, Nikash; Rossi, Anthony; Rajadhyaksha, Milind

    2016-03-01

    When used for intra-operative imaging of residual basal cell carcinomas (BCCs), reflectance confocal microscopy (RCM) is limited to detection of relatively large tumors. Small tumors remain hidden in the surrounding bright dermis. Fluorescence confocal microscopy (FCM) may improve the sensitivity for detecting small tumors. Fluorescein enhances cell cytoplasm contrast in fluorescence confocal images, but has had limited clinical impact on imaging BCCs in vivo because there is a lack of a well-defined protocol (concentration and application time) that can be effectively used for intraoperative imaging. We conducted an ex vivo study, using discarded tissue from Mohs surgery and a benchtop FCM with 488nm wavelength for excitation and 521nm detection for imaging Concentrations of 6, 0.6 and 0.6 mM with immersion times of 5, 15, 30, and 60 seconds were repeatedly tested (total of 76 specimens).. The 0.6 mM and immersion time of 60 seconds showed that cellular cytoplasm can be labeled with controlled saturation and without leaving the yellow color on the surface of the tissue. Initial results show that, fluorescein may enhance cellular structures contrast relative to other normal dermal structures, improving the detection of small BCCs. This study provide an optimized set of parameters for subsequently testing of topical application in vivo for intraopertive imaging of BCCs.

  19. Study of liquid jet instability by confocal microscopy.

    PubMed

    Yang, Lisong; Adamson, Leanne J; Bain, Colin D

    2012-07-01

    The instability of a liquid microjet was used to measure the dynamic surface tension of liquids at the surface ages of ≤1 ms using confocal microscopy. The reflected light from a laser beam at normal incidence to the jet surface is linear in the displacement of the surface near the confocal position, leading to a radial resolution of 4 nm and a dynamic range of 4 μm in the surface position, thus permitting the measurement of amplitude of oscillation at the very early stage of jet instability. For larger oscillations outside the linear region of the confocal response, the swell and neck position of the jet can be located separately and the amplitude of oscillation determined with an accuracy of 0.2 μm. The growth rate of periodically perturbed water and ethanol∕water mixture jets with a 100-μm diameter nozzle and mean velocity of 5.7 m s(-1) has been measured. The dynamic surface tension was determined from the growth rate of the instability with a linear, axisymmetric, constant property model. Synchronisation of the confocal imaging system with the perturbation applied to the jet permitted a detailed study of the temporal evolution of the neck into a ligament and eventually into a satellite drop. PMID:22852668

  20. Study of liquid jet instability by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Lisong; Adamson, Leanne J.; Bain, Colin D.

    2012-07-01

    The instability of a liquid microjet was used to measure the dynamic surface tension of liquids at the surface ages of ≤1 ms using confocal microscopy. The reflected light from a laser beam at normal incidence to the jet surface is linear in the displacement of the surface near the confocal position, leading to a radial resolution of 4 nm and a dynamic range of 4 μm in the surface position, thus permitting the measurement of amplitude of oscillation at the very early stage of jet instability. For larger oscillations outside the linear region of the confocal response, the swell and neck position of the jet can be located separately and the amplitude of oscillation determined with an accuracy of 0.2 μm. The growth rate of periodically perturbed water and ethanol/water mixture jets with a 100-μm diameter nozzle and mean velocity of 5.7 m s-1 has been measured. The dynamic surface tension was determined from the growth rate of the instability with a linear, axisymmetric, constant property model. Synchronisation of the confocal imaging system with the perturbation applied to the jet permitted a detailed study of the temporal evolution of the neck into a ligament and eventually into a satellite drop.

  1. Confocal fluctuation spectroscopy and imaging.

    PubMed

    Földes-Papp, Zeno; Liao, Shih-Chu Jeff; You, Tiefeng; Terpetschnig, Ewald; Barbieri, Beniamino

    2010-09-01

    Currently, work with subnanomolar concentrations is routine while femtomolar and even single-molecule studies are possible with some efforts getting high on single-molecule biophysics and biochemistry. Methodological breakthroughs, such as reducing the background light contribution in single-molecule studies, which has plagued many studies of molecular fluorescence in dilute solution, and particularly in live cells, have recently described by us. We first demonstrated how optimized time-gating of the fluorescence signal, together with time-correlated, single-photon counting, can be used to substantially boost the experimental signal-to-noise ratio about 140-fold, making it possible to measure analyte concentrations that are as low as 15 pM. By detection of femtomolar bulk concentrations, confocal microsopy has the potential to address the observation of one and the same molecule in dilute solution without immobilization or hydrodynamic/electrokinetic focusing at longer observation times than currently available. We present relevant physics. The equations are derived using Einstein's approach showing how it fits with Fick's law and the autocorrelation function. An improved technology is being developed at ISS for femtomolar microscopy. The general concepts and provided experimental examples should help to compare our approach to those used in conventional confocal microscopy. PMID:20497113

  2. Confocal microscopy of the living eye.

    PubMed

    Cavanagh, H D; Jester, J V; Essepian, J; Shields, W; Lemp, M A

    1990-01-01

    Confocal microscopy is an imaging paradigm that allows optical sectioning of almost any material with increased axial and lateral spatial resolution and better image contrast. We have applied this technology to the study of the living eye of cats, albino rabbits, and humans. The technique allows in vivo, noninvasive, real time images of the eye at magnifications (630x) which allow resolution of anatomical detail at the cellular level. In this paper we report details of our current instrument techniques and some of our results. The past development, present state-of-the-art, and projected future advances and applications of this novel microscopy are discussed. Preliminary observations are reported for all layers of the cornea, the limbus, and wound-healing responses in single animals. PMID:2407380

  3. The use of laser scanning confocal microscopy (LSCM) in materials science.

    PubMed

    Hovis, D B; Heuer, A H

    2010-12-01

    Laser scanning confocal microscopes are essential and ubiquitous tools in the biological, biochemical and biomedical sciences, and play a similar role to scanning electron microscopes in materials science. However, modern laser scanning confocal microscopes have a number of advantages for the study of materials, in addition to their obvious uses for high resolution reflected and transmitted light optical microscopy. In this paper, we provide several examples that exploit the laser scanning confocal microscope's capabilities of pseudo-infinite depth of field imaging, topographic imaging, photo-stimulated luminescence imaging and Raman spectroscopic imaging. PMID:21077878

  4. EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: PRETTY PICTURES OR CONFOCAL QA

    EPA Science Inventory

    Evaluation of confocal microscopy system performance: Pretty pictures or confocal QA?

    Robert M. Zucker

    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, N...

  5. Applications of high power lasers. [using reflection holograms for machining and surface treatment

    NASA Technical Reports Server (NTRS)

    Angus, J. C.

    1979-01-01

    The use of computer generated, reflection holograms in conjunction with high power lasers for precision machining of metals and ceramics was investigated. The Reflection holograms which were developed and made to work at both optical wavelength (He-Ne, 6328 A) and infrared (CO2, 10.6) meet the primary practical requirement of ruggedness and are relatively economical and simple to fabricate. The technology is sufficiently advanced now so that reflection holography could indeed be used as a practical manufacturing device in certain applications requiring low power densities. However, the present holograms are energy inefficient and much of the laser power is lost in the zero order spot and higher diffraction orders. Improvements of laser machining over conventional methods are discussed and addition applications are listed. Possible uses in the electronics industry include drilling holes in printed circuit boards making soldered connections, and resistor trimming.

  6. TOTAL INTERNAL REFLECTION WITH FLUORESCENCE CORRELATION SPECTROSCOPY: APPLICATIONS TO SUBSTRATE-SUPPORTED PLANAR MEMBRANES

    PubMed Central

    Thompson, Nancy L.; Wang, Xiang; Navaratnarajah, Punya

    2009-01-01

    In this review paper, the conceptual basis and experimental design of total internal reflection with fluorescence correlation spectroscopy (TIR-FCS) is described. The few applications to date of TIR-FCS to supported membranes are discussed, in addition to a variety of applications not directly involving supported membranes. Methods related, but not technically equivalent, to TIR-FCS are also summarized. Future directions for TIR-FCS are outlined. PMID:19269331

  7. "Knowing Is Not Enough; We Must Apply": Reflections on a Failed Action Learning Application

    ERIC Educational Resources Information Center

    Reese, Simon

    2015-01-01

    This paper reflects upon a sub-optimal action learning application with a strategic business re-design project. The objective of the project was to improve the long-term business performance of a subsidiary business and build the strategic plan. Action learning was introduced to aid the group in expanding their view of the real problems…

  8. ALTERNATIVES TO USING A REFERENCE STRIP FOR REFLECTANCE-BASED NITROGEN APPLICATION IN CORN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excess nitrogen application on corn fields result in increased potential for nitrogen loss to ground or surface waters, while reducing the amount of nitrogen applied creates a risk of diminished productivity and lower yields. Crop canopy reflectance sensor technology for optimizing nitrogen applicat...

  9. Promoting Reflective Thinking Skills by Using Web 2.0 Application

    ERIC Educational Resources Information Center

    Abdullah, Mohamed

    2015-01-01

    The study aims to investigate are using Web 2.0 applications promoting reflective thinking skills for higher education student in faculty for education. Although the literature reveals that technology integration is a trend in higher education and researchers and educators have increasingly shared their ideas and examples of implementations of Web…

  10. Universal Design for Learning in Postsecondary Education: Reflections on Principles and their Application

    ERIC Educational Resources Information Center

    Rose, David H.; Harbour, Wendy S.; Johnston, Catherine Sam; Daley, Samantha G.; Abarbanell, Linda

    2006-01-01

    Authored by the teaching staff of T-560: Meeting the Challenge of Individual Differences at the Harvard Graduate School of Education, this article reflects on potential applications of universal design for learning (UDL) in university courses, illustrating major points with examples from T-560. The article explains the roots of UDL in cognitive…

  11. Visible and near-infrared reflectivity of solid and liquid methane: application to spectroscopy of Titan's hydrocarbon lakes

    NASA Astrophysics Data System (ADS)

    Adams, K.; Jacobsen, S. D.; Liu, Z.; Somayazulu, M.; Thomas, S.; Jurdy, D. M.

    2011-12-01

    Reflectance spectroscopy provides one of the few direct observations of outer solar system bodies for interpreting their surface compositions. At Titan, the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini spacecraft revealed dark patches on the surface through the narrow 2 and 5 μm windows of Titan's atmosphere, which have been interpreted as hydrocarbon lakes forming seasonally through a methane cycle. Whereas the composition of planetary materials in the solar system has been inferred from characteristic absorption bands, the need to identify phase states (liquid versus solid) on dynamic planetary surfaces requires laboratory reflectance ratio measurements at relevant temperatures. Using visible and near-infrared radiation from the National Synchrotron Light Source (NSLS), we will present confocal reflectance ratio measurements of solid (single crystal) and liquid CH4 at temperatures from 50-100 K. Although the position and shape of the six characteristic methane absorption bands at around 1.7 and 2.3 μm are insensitive to temperature or phase state from 50-100 K, the broad-spectrum reflectance between 0.5-2 μm decreases upon melting by about 25% at 87-94 K. Transition from solid CH4-I to liquid states at ~90 K displays a reflectance ratio (sold/liquid) of about 1.3 at 2 μm. Darkening of CH4 upon melting is similar at visible wavelengths, and consistent with VIMS observations of hydrocarbon lakes in the far northern and southern latitudes of Titan.

  12. Confocal endomicroscopy of the larynx

    NASA Astrophysics Data System (ADS)

    Just, T.; Wiechmann, T.; Stachs, O.; Stave, J.; Guthoff, R.; Hüttmann, G.; Pau, H. W.

    2012-02-01

    Beside the good image quality with the confocal laser scanning microscope (HRTII) and the Rostock Cornea Module (RCM), this technology can not be used to investigate the human larynx in vivo. To accomplish this, a rigid custom-made endoscope (KARL STORZ GmbH & Co. KG; Tuttlingen Germany) was developed. A connector was developed to connect the scanner head of the HRTII to the rigid endoscope. With the connector, the starting plane can be set manually. To achieve optical sectioning of the laryngeal tissue (80 μm per volume scan), the scanning mechanism of the HRTII needs to be activated using a foot switch. The devices consisting of the endoscope, HRTII, and the connector supply images of 400 x 400 μm and reach average penetration depths of 100-300 μm (λ/4 plate of the scanner head of the HRTII was removed). The lateral and axial resolutions are about 1-2 μm and 2 μm, respectively. In vivo rigid confocal endoscopy is demonstrated with an acquisition time for a volume scan of 6 s. The aim of this study was to differentiate pre-malignant laryngeal lesions from micro-invasive carcinoma of the larynx. 22 patients with suspicious lesions of the true vocal cords were included. This pilot study clearly demonstrates the possibility to detect dysplastic cells close to the basal cell layer and within the subepithelial space in lesions with small leukoplakia (thin keratin layer). These findings may have an impact on microlaryngoscopy to improve the precision for biopsy and on microlaryngoscopic laser surgery of the larynx to identify the margins of the pre-malignant lesion.

  13. Needle-based confocal laser endomicroscopy

    PubMed Central

    Giovannini, Marc

    2015-01-01

    New applications of confocal laser endomicroscopy were developed as pCLE in the bile duct and nCLE for pancreatic cystic tumors, pancreatic masses and lymph nodes. The aim of this paper would be to give you an update in this new technology and to try to define its place in the diagnosis of cystic and solid pancreatic masses. The material used was a 19G EUS-needle in which the stylet was replaced by the Confocal mini-probe. The mini-probe (0.632 mm of diameter) is pre-loaded and screwed by a locking device in the EUS-Needle and guided endosonographically in the target. Regarding pancreatic cystic lesion, the presence of epithelial villous structures based on nCLE was associated with pancreatic cystic neoplasm (IPMN) (P = 0.004) and provided a sensitivity of 59%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 50%. A superficial vascular network pattern visualized on nCLE was identified in serous cystadenomas. It corresponded on pathological specimen to a dense and subepithelial capillary vascularization. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of this sign for the diagnosis of SCA were 87%, 69%, 100%, 100%, and 82%, respectively. In pancreatic adenocarcinomas, nCLE found vascular leakage with irregular vessels with leakage of fluorescein into the tumor, large dark clumps which correspond to humps of malignant cells. These criteria correlate with the histological structure of those tumors which are characterized by tumoral glands, surrounded by fibrosis in case of fibrous stroma tumor. Neuroendocrine tumors showed a dense network of small vessels on a dark background, which fits with the histological structure based on cord of cells surrounded by vessels and by fibrosis. nCLE is feasible during a EUS examination; these preliminary results are very encouraging and may be used in the future in case of inconclusive EUS-FNA. PMID:26643694

  14. Multimodal confocal mosaicing microscopy: an emphasis on squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Chen, Nathaniel W.; Sensibaugh, Jordan; Ardeshiri, Ardaland; Blanchard, Adam; Jacques, Steven; Gareau, Daniel

    2010-02-01

    Our previous study reported a sensitivity of 96.6% and a specificity of 89.2% in rapidly detecting Basal Cell Carcinomas (BCCs) when nuclei were stained with acridine orange. Squamous Cell Carcinomas (SCCs) and infiltrative BCCs remain difficult to detect. More complete screening can be achieved utilizing both acridine orange for nuclei staining and eosin for cytoplasmic contrast, using two lasers to excite the two stains independently. Nuclear fluorescence is achieved by staining with acridine orange (0.5mM, 60 s), and cytoplasmic fluorescence is achieved by staining with eosin working solution (30 s). This work shows good morphological contrast of SCC and infiltrative BCC with eosin, acridine orange, and reflectance, and presents a means for rapid SCC and infiltrative BCC detection in fresh skin excisions using multimodal confocal microscopy. In addition, digital staining is shown to effectively simulate hematoxylin and eosin (H&E) histology with confocal mosaics.

  15. Imaging retinal densitometry with a confocal Scanning Laser Ophthalmoscope.

    PubMed

    van Norren, D; van de Kraats, J

    1989-01-01

    We describe a novel use of the Scanning Laser Ophthalmoscope (SLO), viz. as an imaging retinal densitometer. In our SLO a helium-neon or an argon laser beam is moved in a raster pattern over the retina; the reflected light is descanned (confocal SLO) and collected by a photomultiplier. Images of the fundus subtending 22 by 18 deg are displayed on a TV monitor. Single frames taken with 514 nm light were stored in a computer in arrays of 256 by 256 pixels and density differences between dark adapted and bleached images were calculated. With a full bleach density differences of about 0.35 were found in the center of the fovea; at retinal eccentricities of 15-20 deg we found 0.15. After selective bleaching with 633 nm light substantial density differences were only seen in the foveal area. We conclude that the confocal SLO is a very suitable instrument for imaging fundus reflectometry. PMID:2631402

  16. EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE

    EPA Science Inventory

    BACKGROUND. The confocal laser scanning microscope (CLSM) has enormous potential in many biological fields. Currently there is a subjective nature in the assessment of a confocal microscope's performance by primarily evaluating the system with a specific test slide provided by ea...

  17. Submillimeter Confocal Imaging Active Module

    NASA Technical Reports Server (NTRS)

    Hong, John; Mehdi, Imran; Siegel, Peter; Chattopadhyay, Goutam; Cwik, Thomas; Rowell, Mark; Hacker, John

    2009-01-01

    The term submillimeter confocal imaging active module (SCIAM) denotes a proposed airborne coherent imaging radar system that would be suitable for use in reconnaissance, surveillance, and navigation. The development of the SCIAM would include utilization and extension of recent achievements in monolithic microwave integrated circuits capable of operating at frequencies up to and beyond a nominal radio frequency of 340 GHz. Because the SCIAM would be primarily down-looking (in contradistinction to primarily side-looking), it could be useful for imaging shorter objects located between taller ones (for example, objects on streets between buildings). The SCIAM would utilize a confocal geometry to obtain high cross-track resolution, and would be amenable to synthetic-aperture processing of its output to obtain high along-track resolution. The SCIAM (see figure) would include multiple (two in the initial version) antenna apertures, separated from each other by a cross-track baseline of suitable length (e.g., 1.6 m). These apertures would both transmit the illuminating radar pulses and receive the returns. A common reference oscillator would generate a signal at a controllable frequency of (340 GHz + (Delta)f)/N, where (Delta)f is an instantaneous swept frequency difference and N is an integer. The output of this oscillator would be fed to a frequency- multiplier-and-power-amplifier module to obtain a signal, at 340 GHz + (Delta)f, that would serve as both the carrier signal for generating the transmitted pulses and a local-oscillator (LO) signal for a receiver associated with each antenna aperture. Because duplexers in the form of circulators or transmit/receive (T/R) switches would be lossy and extremely difficult to implement, the antenna apertures would be designed according to a spatial-diplexing scheme, in which signals would be coupled in and out via separate, adjacent transmitting and receiving feed horns. This scheme would cause the transmitted and received beams

  18. Confocal Annular Josephson Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Monaco, Roberto

    2016-04-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  19. Confocal Annular Josephson Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Monaco, Roberto

    2016-09-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  20. Application of HCMM satellite and airplane reflection and heat maps in agrohydrology

    NASA Astrophysics Data System (ADS)

    Nieuwenhuis, G. J. A.

    In April 1978 the Heat Capacity Mapping Mission (HCMM) satellite was launched by NASA. About each 5 days reflection and heat maps over nearly all Western Europe were obtained. If it would prove to be possible to convert these maps into maps of actual evapotranspiration, these data would offer the possibility to find out when and where drought damage might occur. Soer [1] developed for grassland the TERGRA-model. This model simulates under specified meteorological and different soil water conditions the daily behaviour of crop temperature as well as the components of the energy balance including the evapotranspiration rate. A quantitative evaluation of regional evapotranspiration from measured radiation temperatures is rather complicated. However, for a crop transpiring the potential evapotranspiration simple relations have been found between certain reflection parameters as derived from the scanned reflection maps and the crop radiation temperature. From a combination of the reflection and the thermal behaviour of crops a rapid impression can be obtained when and where special hydrological, i.c. dry, conditions occur. This approach is treated in this paper. In the near future such a simple qualitative analysis will become more easy to handle and of greater applicability when detailed reflection and heat maps over large areas will regularly be supplied by satellites as Landsat D.

  1. Integrated photoacoustic, confocal, and two-photon microscope

    PubMed Central

    Rao, Bin; Soto, Florentina; Kerschensteiner, Daniel; Wang, Lihong V.

    2014-01-01

    Abstract. The invention of green fluorescent protein and other molecular fluorescent probes has promoted applications of confocal and two-photon fluorescence microscopy in biology and medicine. However, exogenous fluorescence contrast agents may affect cellular structure and function, and fluorescence microscopy cannot image nonfluorescent chromophores. We overcome this limitation by integrating optical-resolution photoacoustic microscopy into a modern Olympus IX81 confocal, two-photon, fluorescence microscope setup to provide complementary, label-free, optical absorption contrast. Automatically coregistered images can be generated from the same sample. Imaging applications in ophthalmology, developmental biology, and plant science are demonstrated. For the first time, in a familiar microscopic fluorescence imaging setting, this trimodality microscope provides a platform for future biological and medical discoveries. PMID:24589986

  2. ARES: a new reflective/emissive imaging spectrometer for terrestrial applications

    NASA Astrophysics Data System (ADS)

    Mueller, Andreas A.; Richter, Rolf; Habermeyer, Martin; Mehl, Harald; Dech, Stefan; Kaufmann, Hermann J.; Segl, Karl; Strobl, Peter; Haschberger, Peter; Bamler, Richard

    2003-04-01

    A new airborne imaging spectrometer introduced: the ARES (Airborne Reflective Emissive Spectrometer) to be built by Integrated Spectronics, Sydney, Australia, financed by DLR German Aerospace Center and the GFZ GeoResearch Center Potsdam, Germany, and will be available to the scientific community from 2003/2004 on. The ARES sensor will provide 160 channels in the solar reflective region (0.45-2.45 μm) and the thermal region (8-13 μm). It will consists of two separate coregistered optical systems for the reflective and thermal part of the spectrum. The spectral resolution is intended to be between 12 and 15 nm in the solar wavelength range and should reach 150nm in the thermal. ARES will be used mainly for environmental applications in terrestrial ecosystems. The thematic focus is thought to be on soil sciences, geology, agriculture and forestry. Limnologic applications should be possible but will not play a key role in the thematic applications. For all above mentioned key application scenarios the spectral response of soils, rocks, and vegetation as well as their mixtures contain the valuable information to be extracted and quantified. The radiometric requirements for the instrument have been modelled based on realistic application scenarios and account for the most demanding requirements of the three application fields: a spectral bandwidth of 15 nm in the 0.45-1.8 μm region, and 12 nm in the 2 - 2.45 μm region. The required noise equivalent radiance is 0.005, 0.003, and 0.003 mWcm-2sr-1μm-1 for the spectral regions 0.45-1 μm, 1 - 1.8 μm, and 2 - 2.45 μm, respectively.

  3. Chromatic confocal microscope using hybrid aspheric diffractive lenses

    NASA Astrophysics Data System (ADS)

    Rayer, Mathieu; Mansfield, Daniel

    2014-05-01

    A chromatic confocal microscope is a single point non-contact distance measurement sensor. For three decades the vast majority of the chromatic confocal microscope use refractive-based lenses to code the measurement axis chromatically. However, such an approach is limiting the range of applications. In this paper the performance of refractive, diffractive and Hybrid aspheric diffractive are compared. Hybrid aspheric diffractive lenses combine the low geometric aberration of a diffractive lens with the high optical power of an aspheric lens. Hybrid aspheric diffractive lenses can reduce the number of elements in an imaging system significantly or create large hyper- chromatic lenses for sensing applications. In addition, diffractive lenses can improve the resolution and the dynamic range of a chromatic confocal microscope. However, to be suitable for commercial applications, the diffractive optical power must be significant. Therefore, manufacturing such lenses is a challenge. We show in this paper how a theoretical manufacturing model can demonstrate that the hybrid aspheric diffractive configuration with the best performances is achieved by step diffractive surface. The high optical quality of step diffractive surface is then demonstrated experimentally. Publisher's Note: This paper, originally published on 5/10/14, was replaced with a corrected/revised version on 5/19/14. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.

  4. Study and Development of near-Infrared Reflective and Absorptive Materials for Energy Saving Application

    NASA Astrophysics Data System (ADS)

    Cui, Yu Xing

    Near-Infrared (NIR) materials find applications in the field of energy saving. Both NIR reflective and absorptive materials can be used as energy saving materials with different working principles. The reflective materials can reflect the NIR light preventing it from being transmitted. Silver thin films are the best option as reflective films based on its reflectivity and cost. On the other hand, NIR absorptive materials can effectively convert the absorbed NIR light from sunlight to heat or electric energy. The first part of this research explored methods of preparing silver thin films that could be processed at low cost. The second part involved the design, synthesis and characterization of nickel coordination polymers as NIR absorptive materials. In part 1, different solution based methods of preparing silver thin films were studied. A silver nanoparticles solution was used to make thin film by a spray-pyrolysis process. Another method involved the surface activation with a fluoro-compound or silver nanoparticles followed by electroless silver plating on different substrates. Both methods could be processed at low cost. The obtained silver films showed NIR reflection of 50˜90% with transmission of 15-28% in the visible region. In part 2, two Nickel coordination polymers were explored. Tetraamino compounds were used as bridging ligands to increase the scope of electronic delocalization and metal-ligand orbital overlap which would reduce the energy gap to the NIR region. As a result, both polymers showed broad NIR absorption with maximum of 835 and 880 nm, respectively. In addition, the polymer showed NIR halochromism. This ground study pointed out both Ni coordination polymers as NIR absorptive materials with NIR halochromism.

  5. Confocal unstable-resonator semiconductor laser

    NASA Technical Reports Server (NTRS)

    Salzman, J.; Lang, R.; Yariv, A.; Larson, A.

    1986-01-01

    GaAs/GaAlAs heterostructure lasers with a monolithic confocal unstable resonator were demonstrated. The curved mirrors satisfying the confocal condition were fabricated by etching. Close to threshold, the lasers operate in a single lateral mode with a nearly collimated output beam. A single-lobe far-field intensity distribution as narrow as 1.9-deg full width at half maximum was measured.

  6. A Love Wave Reflective Delay Line with Polymer Guiding Layer for Wireless Sensor Application

    PubMed Central

    Wang, Wen; He, Shitang

    2008-01-01

    This paper presents an optimal design for a Love wave reflective delay line on 41° YX LiNbO3 with a polymer guiding layer for wireless sensor applications. A theoretical model was established to describe the Love wave propagation along the larger piezoelectric substrate with polymer waveguide, and the lossy mechanism from the viscoelastic waveguide was discussed, which results in the optimal guiding layer thickness. Coupling of modes (COM) was used to determine the optimal design parameters of the reflective delay line structured by single phase unidirectional transducers (SPUDTs) and shorted grating reflectors. Using the network analyzer, the fabricated Love wave reflective delay line was characterized, high signal noise ratio (S/N), sharp reflection peaks, and few spurious noise between the peaks were found, and the measured result agrees well with the simulated one. Also, the optimal guiding layer thickness of 1.5∼1.8µm was extracted experimentally, and it is consistent with the theoretical analysis.

  7. Combined reflection and transmission microscope for telemedicine applications in field settings.

    PubMed

    Biener, Gabriel; Greenbaum, Alon; Isikman, Serhan O; Lee, Kelvin; Tseng, Derek; Ozcan, Aydogan

    2011-08-21

    We demonstrate a field-portable upright and inverted microscope that can image specimens in both reflection and transmission modes. This compact and cost-effective dual-mode microscope weighs only ∼135 grams (<4.8 ounces) and utilizes a simple light emitting diode (LED) to illuminate the sample of interest using a beam-splitter cube that is positioned above the object plane. This LED illumination is then partially reflected from the sample to be collected by two lenses, creating a reflection image of the specimen onto an opto-electronic sensor-array that is positioned above the beam-splitter cube. In addition to this, the illumination beam is also partially transmitted through the same specimen, which then casts lensfree in-line holograms of the same objects onto a second opto-electronic sensor-array that is positioned underneath the beam-splitter cube. By rapid digital reconstruction of the acquired lensfree holograms, transmission images (both phase and amplitude) of the same specimen are also created. We tested the performance of this field-portable microscope by imaging various micro-particles, blood smears as well as a histopathology slide corresponding to skin tissue. Being compact, light-weight and cost-effective, this combined reflection and transmission microscope might especially be useful for telemedicine applications in resource limited settings. PMID:21709875

  8. Combined reflection and transmission microscope for telemedicine applications in field settings

    PubMed Central

    Biener, Gabriel; Greenbaum, Alon; Isikman, Serhan O.; Lee, Kelvin; Tseng, Derek; Ozcan, Aydogan

    2011-01-01

    We demonstrate a field-portable upright and inverted microscope that can image specimens in both reflection and transmission modes. This compact and cost-effective dual-mode microscope weighs only ~135 grams (<4.8 ounces) and utilizes a simple light emitting diode (LED) to illuminate the sample of interest using a beam-splitter cube that is positioned above the object plane. This LED illumination is then partially reflected from the sample to be collected by two lenses, creating a reflection image of the specimen onto an opto-electronic sensor-array that is positioned above the beam-splitter cube. In addition to this, the illumination beam is also partially transmitted through the same specimen, which then casts lensfree in-line holograms of the same objects onto a second opto-electronic sensor-array that is positioned underneath the beam-splitter cube. By rapid digital reconstruction of the acquired lensfree holograms, transmission images (both phase and amplitude) of the same specimen are also created. We tested the performance of this field-portable microscope by imaging various micro-particles, blood smears as well as a histopathology slide corresponding to skin tissue. Being compact, light-weight and cost-effective, this combined reflection and transmission microscope might especially be useful for telemedicine applications in resource limited settings. PMID:21709875

  9. Confocal Raman Microspectroscopy of Oral Streptococci

    NASA Astrophysics Data System (ADS)

    Beier, Brooke D.

    Raman spectroscopy has been used in a variety of applications throughout the field of biomedical optics. It has the ability to acquire chemically-specific information in a non-invasive manner, without the need for exogenous markers. This makes it useful in the identification of bacterial species, as well as in the study of tissues and other cells. In this work, a species identification model has been created in order to discriminate between the oral bacterial species Streptococcus sanguinis and Streptococcus mutans. These are two of the most prevalent species within the human mouth and their relative concentrations can be an indicator of a patient's oral health and risk of tooth decay. They are predominantly found within plaque on the tooth's surface. To study a simplified model for dental plaque, we have examined S. sanguinis and S. mutans grown in biofilm forms. Raman spectroscopy has been implemented here through a confocal microscope. The optical system has been equipped with computationally controlled stages to allow for automated scanning, including autofocusing to probe a consistent depth within a sample. A spectrum has been acquired from each position within a scan and sent for spectral preprocessing before being submitted for species identification. This preprocessing includes an algorithm that has been developed to remove fluorescence features from known contaminants within the confocal volume, to include signal from a fluorescent substrate. Species classification has been accomplished using a principal component score-fed logistic regression model constructed from a variety of biofilm samples that have been transferred and allowed to dry, as might occur with the study of plaque samples. This binary classification model has been validated on other samples with identical preparations. The model has also been transferred to determine the species of hydrated biofilms studied in situ. Artificially mixed biofilms have been examined to test the spatial

  10. Confocal microlaparoscope for imaging the fallopian tube

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Yu; Schafer, Rachel; Rouse, Andrew R.; Gmitro, Arthur F.

    2012-02-01

    Recent evidence suggests that epithelial ovarian cancer may originate in the fimbriated end of the fallopian tube1. Unlike many other cancers, poor access to the ovary and fallopian tubes has limited the ability to study the progression of this deadly disease and to diagnosis it during the early stage when it is most amenable to therapy. We have previously reported on a rigid confocal microlaparoscope system that is currently undergoing a clinical trial to image the epithelial surface of the ovary2. In order to gain in vivo access to the fallopian tubes we have developed a new confocal microlaparoscope with an articulating distal tip. The new instrument builds upon the technology developed for the existing confocal microlaparoscope. It has an ergonomic handle fabricated by a rapid prototyping printer. While maintaining compatibility with a 5 mm trocar, the articulating distal tip of the instrument consists of a 2.2 mm diameter bare fiber bundle catheter with automated dye delivery for fluorescence imaging. This small and flexible catheter design should enable the confocal microlaparoscope to image early stage ovarian cancer arising inside the fallopian tube. Early ex vivo mages of human fallopian tube and in vivo imaging results from recent open surgeries using the rigid confocal microlaparoscope system are presented. Ex vivo images from animal models using the new articulating bare fiber system are also presented. These high quality images collected by the new flexible system are similar in quality to those obtained from the epithelial surface of ovaries with the rigid clinical confocal microlaparoscope.

  11. Evaluation of general non-reflecting boundary conditions for industrial CFD applications

    NASA Astrophysics Data System (ADS)

    Basara, Branislav; Frolov, Sergei; Lidskii, Boris; Posvyanskii, Vladimir

    2007-11-01

    The importance of having proper boundary conditions for the calculation domain is a known issue in Computational Fluid Dynamics (CFD). In many situations, it is very difficult to define a correct boundary condition. The flow may enter and leave the computational domain at the same time and at the same boundary. In such circumstances, it is important that numerical implementation of boundary conditions enforces certain physical constraints leading to correct results which then ensures a better convergence rate. The aim of this paper is to evaluate recently proposed non-reflecting boundary conditions (Frolov et al., 2001, Advances in Chemical Propulsion) on industrial CFD applications. Derivation of the local non-reflecting boundary conditions at the open boundary is based on finding the solution of linearized Euler equations vanishing at infinity for both incompressible and compressible formulations. This is implemented into the in-house CFD package AVL FIRE and some numerical details will be presented as well. The key applications in this paper are from automotive industry, e.g. an external car aerodynamics, an intake port, etc. The results will show benefits of using effective non-reflecting boundary conditions.

  12. In vivo 783-channel diffuse reflectance imaging system and its application

    NASA Astrophysics Data System (ADS)

    Yang, Joon-Mo; Han, Yong-Hui; Yoon, Gilwon; Ahn, Byung Soo; Lee, Byung-Cheon; Soh, Kwang-Sup

    2007-08-01

    A fiber-based reflectance imaging system was constructed to produce in vivo absorption spectroscopic images of biological tissues with diffuse light in the cw domain. The principal part of this system is the 783-channel fiber probe, composed of 253 illumination fibers and 530 detection fibers distributed in a 20×20 mm square region. During illumination with the 253 illumination fibers, diffuse reflected lights are collected by the 530 detection fibers and recorded simultaneously as an image with an electron multiplying CCD camera for fast data acquisition. After signal acquisition, a diffuse reflectance image was reconstructed by applying the spectral normalization method we devised. To test the applicability of the spectral normalization, we conducted two phantom experiments with chicken breast tissue and white Delrin resin by using animal blood as an optical inhomogeneity. In the Delrin phantom experiment, we present images produced by two methods, spectral normalization and reference signal normalization, along with a comparison of the two. To show the feasibility of our system for biomedical applications, we took images of a human vein in vivo with the spectral normalization method.

  13. Chromatic confocal microscopy using staircase diffractive surface.

    PubMed

    Rayer, Mathieu; Mansfield, Daniel

    2014-08-10

    A chromatic confocal microscope (CCM) is a high-dynamic-range noncontact distance measurement sensor; it is based on a hyperchromatic lens. The vast majority of commercial CCMs use refractive-based chromatic dispersion to chromatically code the optical axis. This approach significantly limits the range of applications and performance of the CCM. In order to be a suitable alternative to a laser triangulation gauge and laser encoder, the performance of the CCM must be improved. In this paper, it is shown how hybrid aspheric diffractive (HAD) lenses can bring the CCM to its full potential by increasing the dynamic range by a factor of 2 and the resolution by a factor of 5 while passively athermizing and increasing the light throughput efficiency of the optical head [M. Rayer, U.S. patent 1122052.2 (2011)]. The only commercially suitable manufacturing process is single-point diamond turning. However, the optical power carried by the diffractive side of a hybrid aspheric diffractive lens is limited by the manufacturing process. A theoretical study of manufacturing losses has revealed that the HAD configuration with the highest diffraction efficiency is for a staircase diffractive surface (SDS). SDS lenses have the potential to reduce light losses associated with manufacturing limits by a factor of 5 without increasing surface roughness, allowing scalar diffraction-limited optical design with a diffractive element. PMID:25320920

  14. High-resolution confocal microscopy using synchrotron radiation.

    PubMed

    van der Oord, C J; Jones, G R; Shaw, D A; Munro, I H; Levine, Y K; Gerritsen, H C

    1996-06-01

    A confocal scanning light microscope coupled to the Daresbury Synchrotron Radiation Source is described. The broad spectrum of synchrotron radiation and the application of achromatic quartz/CaF2 optics allows for confocal imaging over the wavelength range 200-700 nm. This includes UV light, which is particularly suitable for high-resolution imaging. The results of test measurements using 290-nm light indicate that a lateral resolution better than 100 nm is obtained. An additional advantage of the white synchrotron radiation is that the excitation wavelength can be chosen to match the absorption band of any fluorescent dye. The availability of UV light for confocal microscopy enables studies of naturally occurring fluorophores. The potential applications of the microscope are illustrated by the real-time imaging of hormone traffic using the naturally occurring oestrogen coumestrol. (The IUPAC name for coumestrol is 3,9-dihydroxy-6H-benzofurol[3,2-c][1]benzo-pyran-6-one (Chem. Abstr. Reg. No. 479-13-0). The trivial name will be used throughout this paper. PMID:8801359

  15. Confocal microscopy of skin cancers: Translational advances toward clinical utility

    PubMed Central

    Rajadhyaksha, Milind

    2014-01-01

    Recent advances in translational research in and technology for confocal microscopy of skin cancers, toward clinical applications, are described. Advances in translational research are in diagnosis of melanoma in vivo, pre-operative mapping of lentigo maligna melanoma margins to guide surgery and intra-operative imaging of residual basal cell carcinomas to guide shave-biopsy. Advances in technology include mosaicing microscopy for detection of basal cell carcinomas in large areas of excised tissue, toward rapid pathology-at-the-bedside, and development of small, simple and low-cost line-scanning confocal microscopes for worldwide use in diverse primary healthcare settings. Current limitations and future opportunities and challenges for both clinicians and technologists are discussed. PMID:19964286

  16. Large Area Microencapsulated Reflective Guest-Host Liquid Crystal Displays and Their Applications

    NASA Astrophysics Data System (ADS)

    Nakai, Yutaka; Tanaka, Masao; Enomoto, Shintaro; Iwanaga, Hiroki; Hotta, Aira; Kobayashi, Hitoshi; Oka, Toshiyuki; Kizaki, Yukio; Kidzu, Yuko; Naito, Katsuyuki

    2002-07-01

    We have developed reflective liquid crystal displays using microencapsulated guest-host liquid crystals, whose size was sufficiently large for viewing documents. A high-brightness image can be realized because there is no need for polarizers. Easy fabrication processes, consisting of screen-printing of microencapsulated liquid crystal and film adhesion, have enabled the realization of thinner and lighter cell structures. It has been confirmed that the display is tolerant of the pressures to which it would be subject in actual use. The optimization of fabrication processes has enabled the realization of reflectance uniformity in the display area and reduction of the driving voltage. Our developed display is suitable for portable information systems, such as electronic book applications.

  17. Big five personality traits reflected in job applicants' social media postings.

    PubMed

    Stoughton, J William; Thompson, Lori Foster; Meade, Adam W

    2013-11-01

    Job applicants and incumbents often use social media for personal communications allowing for direct observation of their social communications "unfiltered" for employer consumption. As such, these data offer a glimpse of employees in settings free from the impression management pressures present during evaluations conducted for applicant screening and research purposes. This study investigated whether job applicants' (N=175) personality characteristics are reflected in the content of their social media postings. Participant self-reported social media content related to (a) photos and text-based references to alcohol and drug use and (b) criticisms of superiors and peers (so-called "badmouthing" behavior) were compared to traditional personality assessments. Results indicated that extraverted candidates were prone to postings related to alcohol and drugs. Those low in agreeableness were particularly likely to engage in online badmouthing behaviors. Evidence concerning the relationships between conscientiousness and the outcomes of interest was mixed. PMID:23790360

  18. Agminated cellular blue naevi of the penis: dermoscopic, confocal and histopathological correlation of two cases.

    PubMed

    Collgros, H; Vicente, A; Díaz, A M; Rodríguez-Carunchio, L; Malvehy, J; Puig, S

    2016-07-01

    Blue naevi may present rarely as multiple lesions grouped in a circumscribed area, described as agminated blue naevi. This clinical presentation may mimic metastatic malignant melanoma. We present two cases of agminated cellular blue naevi of the penis, with dermoscopy, reflectance confocal microscopy and histopathological correlation. Dermoscopy of the area showed multiple grouped lesions of homogeneous dark-brown to blue colour. Using reflectance confocal microscopy, focusing on the bluish areas, predominantly bright dendritic cells were visible at the dermoepidermal junction and papillary dermis, while in the brownish areas the presence of dendritic and bright cells predominated in the basal layer. Our patients are of special interest as they are the first cases, to our knowledge, reported of agminated blue naevi on the penis, studied by both dermoscopy and confocal microscopy, confirming the diagnosis with histopathological correlation. Moreover, one case represented a divided or 'kissing' blue naevus of the penis. PMID:26801517

  19. Detection of forests using mid-IR reflectance: An application for aerosol studies

    SciTech Connect

    Kaufman, Y.J. . Goddard Space Flight Center); Remer, L.A. )

    1994-05-01

    The detection of dark, dense vegetation is an important step in the remote sensing of aerosol loading. Current methods that employ the red (0.64 [mu]m) and the near-IR (0.84 [mu]m) regions are unsatisfactory in that the presence of aerosols in the scene distorts the apparent reflectance in the visible and near-IR ranges of the spectrum. The mid-IR spectral region is also sensitive to vegetation due to the absorption of liquid water in the foliage, but is not sensitive to the presence of most aerosols (except for dust). Therefore, mid-IR channels on the AVHRR and EOS-MODIS (e.g., the 3.75 [mu]m or the 3.95 [mu]m channels) have a unique potential for the remote sensing of dark, dense vegetation, particularly in the presence of biomass burning smoke or industrial/urban haze. The reflective part of the 3.75 [mu]m channel ([rho][sub 3.75]) is applied to images of the AVHRR over the eastern US. This channel was found to be correlated to reflectance at 0.64 [mu]m ([rho][sub 0.64]), less sensitive to haze than the visible channel and superior to both the 0.64 [mu]m reflectance and the normalized difference vegetation index (NDVI) to determine forest pixels in an image. However, its application to monitor the seasonal evolution of vegetation is presently questionable. For the purpose of the remote sensing of aerosol over dark, dense vegetation, it is proposed that the dark, dense vegetation be determined from [rho][sub 3.75] < 0.025. These findings may have further implications for other specific applications of the remote sensing of vegetation in hazy atmospheres.

  20. Application of genetic algorithms to processing of reflectance spectra of semiconductor compounds

    NASA Astrophysics Data System (ADS)

    Zaharov, Ivan S.; Kochura, Alexey V.; Kurkin, Alexandr Y.; Belogorohov, Alexandr I.

    2004-11-01

    The basic task of mathematical processing of reflectance spectra - restoration from them of a view of dependence of inductivity, which is responsible for the response of a crystal to an external electromagnetic field from frequency of incident radia-tion. The most modern and perspective way of the solution of this task is the dis-persion analysis (DA). However DA requires large volume of computing works on selection of optimum parameters of phonons. The rapid development of computer facilities recently promotes overcoming of this difficulty. However without appli-cation of effective methods of optimization practically it is impossible to execute DA for composite reflectance spectra. In this paper the questions of application of Genetic algorithms (GA) to processing reflectance spectra of crystal materials are considered. GA is a rather new class of methods of optimization belonging to family of evolutionary algorithms. The basic features distinguishing GA from algorithms of other classes: - GA is an iterative algorithm of generations, in which the search of an extreme is made not in initial space of search, but in the conjugate set of chromosomes. The set of chromosomes on each step of iterations of algorithm is termed as a popula-tion; - The generation of the new trial solutions in this set is carried out by a set of the special genetic operators. The genetic operators are probabilistic, i.e. the result of their application to the concrete chromosome is not unequivocal; - The creation of a new population from the solutions of the current population and solutions generated by the genetic operators is carried out by special algorithms of selection. The efficiency GA strongly depends on such details, as a method of coding of the solutions, embodying of the genetic operators, mechanisms of selection, adjust-ment of other parameters of algorithm, criterion of success. The theoretical work reflected in the literature devoted to these algorithms does not give the bases

  1. Multidepth imaging by chromatic dispersion confocal microscopy

    NASA Astrophysics Data System (ADS)

    Olsovsky, Cory A.; Shelton, Ryan L.; Saldua, Meagan A.; Carrasco-Zevallos, Oscar; Applegate, Brian E.; Maitland, Kristen C.

    2012-03-01

    Confocal microscopy has shown potential as an imaging technique to detect precancer. Imaging cellular features throughout the depth of epithelial tissue may provide useful information for diagnosis. However, the current in vivo axial scanning techniques for confocal microscopy are cumbersome, time-consuming, and restrictive when attempting to reconstruct volumetric images acquired in breathing patients. Chromatic dispersion confocal microscopy (CDCM) exploits severe longitudinal chromatic aberration in the system to axially disperse light from a broadband source and, ultimately, spectrally encode high resolution images along the depth of the object. Hyperchromat lenses are designed to have severe and linear longitudinal chromatic aberration, but have not yet been used in confocal microscopy. We use a hyperchromat lens in a stage scanning confocal microscope to demonstrate the capability to simultaneously capture information at multiple depths without mechanical scanning. A photonic crystal fiber pumped with a 830nm wavelength Ti:Sapphire laser was used as a supercontinuum source, and a spectrometer was used as the detector. The chromatic aberration and magnification in the system give a focal shift of 140μm after the objective lens and an axial resolution of 5.2-7.6μm over the wavelength range from 585nm to 830nm. A 400x400x140μm3 volume of pig cheek epithelium was imaged in a single X-Y scan. Nuclei can be seen at several depths within the epithelium. The capability of this technique to achieve simultaneous high resolution confocal imaging at multiple depths may reduce imaging time and motion artifacts and enable volumetric reconstruction of in vivo confocal images of the epithelium.

  2. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics

    PubMed Central

    Hayashi, Shinichi; Okada, Yasushi

    2015-01-01

    Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro­tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30–100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. PMID:25717185

  3. Laser-excited confocal-fluorescence gel scanner

    SciTech Connect

    Mathies, R.A.; Scherer, J.R.; Quesada, M.A. ); Rye, H.S.; Glazer, A.N. )

    1994-04-01

    A high-sensitivity, laser-excited, confocal-fluorescence scanner has been developed for the detection of fluorescently labeled nucleic acids separated on slab gels. The gel is placed on a motor-driven, two-dimensional scan stage and raster scanned past the optical detection system. The 488-nm argon ion laser beam is introduced into the confocal optical system at a long-pass dichroic beam splitter and focused within the gel to an [similar to]2 [mu]m diameter spot by a high-numerical aperture microscope objective. The resulting fluorescence is gathered by the objective, passed back through the first long-pass beam splitter, and relayed to a second dichroic beam splitter that separates the red and green emissions. The fluorescence is then focused on confocal spatial filters to reduce stray and scattered light, passed through spectral filters, and detected with photomultipliers. The resulting signals are amplified, filtered, and digitized for display on a computer. This system can detect as little as 5[times]10[sup [minus]12] M fluorescein, the resolution as operated is 160 [mu]m, and it can scan a 6 cm[times]6 cm gel using a scan rate of 4 cm/s in 12 min. The detection of DNA on slab gels, two-color DNA fragment sizing, and microtiter plate scanning are presented to illustrate some of the possible applications of this apparatus.

  4. Confocal microlaparoscope for imaging the fallopian tube

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Yu; Rouse, Andrew R.; Chambers, Setsuko K.; Hatch, Kenneth D.; Gmitro, Arthur F.

    2014-11-01

    Recent evidence suggests that ovarian cancer can originate in the fallopian tube. Unlike many other cancers, poor access to the ovary and fallopian tubes has limited the ability to study the progression of this deadly disease and to diagnosis it during the early stage when it is most amenable to therapy. A rigid confocal microlaparoscope system designed to image the epithelial surface of the ovary in vivo was previously reported. A new confocal microlaparoscope with an articulating distal tip has been developed to enable in vivo access to human fallopian tubes. The new microlaparoscope is compatible with 5-mm trocars and includes a 2.2-mm-diameter articulating distal tip consisting of a bare fiber bundle and an automated dye delivery system for fluorescence confocal imaging. This small articulating device should enable the confocal microlaparoscope to image early stage ovarian cancer arising inside the fallopian tube. Ex vivo images of animal tissue and human fallopian tube using the new articulating device are presented along with in vivo imaging results using the rigid confocal microlaparoscope system.

  5. [Application of near-infrared reflectance spectroscopy in grass breeding with space flight mutagenesis].

    PubMed

    Ren, Wei-Bo; Han, Jian-Guo; Zhang, Yun-Wei; Guo, Hui-Qin

    2008-02-01

    Near infrared reflectance spectroscopy is a new fast and efficient analysis method. It has been wildly used in many areas such as evaluation of feedstuff, assessment of soil fertilizer and so on. In the present paper, the principle, technique method and merits of NIRS were introduced. The potential application of NIRS in grass breeding with space flight mutagenesis was discussed in areas such as analysis of grass nutrition, estimate of secondary metabolism compounds, forecast of disease and insects resistance, and evaluation of abiotic stress. The conclusion is that application of NIRS in grass breeding with space mutagenesis is significant in both academic and technical areas because it not only improves the efficiency of mutation selection but helps uncover the mechanism of space mutation breeding. PMID:18479009

  6. Multi-spectral confocal microendoscope for in-vivo imaging

    NASA Astrophysics Data System (ADS)

    Rouse, Andrew Robert

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.

  7. Ghost reflections of Gaussian beams in anamorphic optical systems with an application to Michelson interferometer.

    PubMed

    Abd El-Maksoud, Rania H

    2016-02-20

    In this paper, a methodology is developed to model and analyze the effect of undesired (ghost) reflections of Gaussian beams that are produced by anamorphic optical systems. The superposition of these beams with the nominal beam modulates the nominal power distribution at the recording plane. This modulation may cause contrast reduction, veiling parts of the nominal image, and/or the formation of spurious interference fringes. The developed methodology is based on synthesizing the beam optical paths into nominal and ghost optical beam paths. Similar to the nominal beam, we present the concept that each ghost beam is characterized by a beam size, wavefront radius of curvature, and Gouy phase in the paraxial regime. The nominal and ghost beams are sequentially traced through the system and formulas for estimating the electric field magnitude and phase of each ghost beam at the recording plane are presented. The effective electric field is the addition of the individual nominal and ghost electric fields. Formulas for estimating Gouy phase, the shape of the interference fringes, and the central interference order are introduced. As an application, the theory of the formation of the interference fringes by Michelson interferometer is presented. This theory takes into consideration the ghost reflections that are formed by the beam splitter. To illustrate the theory and to show its wide applicability, simulation examples that include a Mangin mirror, a Michelson interferometer, and a black box optical system are provided. PMID:26906582

  8. Confocal multiview light-sheet microscopy

    PubMed Central

    Medeiros, Gustavo de; Norlin, Nils; Gunther, Stefan; Albert, Marvin; Panavaite, Laura; Fiuza, Ulla-Maj; Peri, Francesca; Hiiragi, Takashi; Krzic, Uros; Hufnagel, Lars

    2015-01-01

    Selective-plane illumination microscopy has proven to be a powerful imaging technique due to its unsurpassed acquisition speed and gentle optical sectioning. However, even in the case of multiview imaging techniques that illuminate and image the sample from multiple directions, light scattering inside tissues often severely impairs image contrast. Here we combine multiview light-sheet imaging with electronic confocal slit detection implemented on modern camera sensors. In addition to improved imaging quality, the electronic confocal slit detection doubles the acquisition speed in multiview setups with two opposing illumination directions allowing simultaneous dual-sided illumination. Confocal multiview light-sheet microscopy eliminates the need for specimen-specific data fusion algorithms, streamlines image post-processing, easing data handling and storage. PMID:26602977

  9. Spectrally multiplexed chromatic confocal multipoint sensing.

    PubMed

    Hillenbrand, Matthias; Lorenz, Lucia; Kleindienst, Roman; Grewe, Adrian; Sinzinger, Stefan

    2013-11-15

    We present a concept for chromatic confocal distance sensing that employs two levels of spectral multiplexing for the parallelized evaluation of multiple lateral measurement points; at the first level, the chromatic confocal principle is used to encode distance information within the spectral distribution of the sensor signal. For lateral multiplexing, the total spectral bandwidth of the sensor is split into bands. Each band is assigned to a different lateral measurement point by a segmented diffractive element. Based on this concept, we experimentally demonstrate a chromatic confocal three-point sensor that is suitable for harsh production environments, since it works with a single-point spectrometer and does not require scanning functionality. The experimental system has a working distance of more than 50 mm, a measurement range of 9 mm, and an axial resolution of 50 μm. PMID:24322108

  10. ARES: a new reflective/emissive imaging spectrometer for terrestrial applications

    NASA Astrophysics Data System (ADS)

    Mueller, Andreas; Richter, Rolf; Habermeyer, Martin; Mehl, Harald; Dech, Stefan; Kaufmann, Hermann J.; Segl, Karl; Strobl, Peter; Haschberger, Peter; Bamler, Richard

    2004-10-01

    Airborne imaging spectrometers have a history of about 20 years starting with the operation of AIS in 1982. During the following years, many other instruments were built and successfully operated, e.g., AVIRIS, CASI, DAIS-7915, and HyMap. Since imaging spectrometers cover a spectral region with a large number of narrow contiguous bands they are able to retrieve the spectral reflectance signature of the earth allowing tasks such as mineral identification and abundance mapping, monitoring of vegetation properties, and assessment of water constituents. An essential prerequisite for the evaluation of imaging spectrometer data is a stable spectral and radiometric calibration. Although a considerable progress has been achieved in this respect over the last two decades, this issue is still technically challenging today, especially for low-to-medium cost instruments. This paper introduces a new airborne imaging spectrometer, the ARES (Airborne Reflective Emissive Spectrometer) to be built by Integrated Spectronics, Sydney, Australia, and co-financed by DLR German Aerospace Center and the GFZ GeoResearch Center Potsdam, Germany. The instrument shall feature a high performance over the entire optical wavelength range and will be available to the scientific community from 2006 on. The ARES sensor will provide 150 channels in the solar reflective region (0.47-2.42 μm) and the thermal region (8.1-12.1 μm). It will consist of two co-registered optical systems for the reflective and thermal part of the spectrum. The spectral resolution is intended to be between 12 and 16 nm in the solar wavelength range and should reach 150 nm in the thermal range. ARES will be used mainly for environmental applications in terrestrial ecosystems. The thematic focus is thought to be on soil sciences, geology, agriculture and forestry. Limnologic applications should be possible but will not play a key role in the thematic applications. For all above mentioned key application scenarios, the

  11. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer

    SciTech Connect

    Qi, Wenjuan; Li, Rui; Ma, Teng; Kirk Shung, K.; Zhou, Qifa; Chen, Zhongping

    2014-03-24

    We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.

  12. Performance of "Moth Eye" Anti-Reflective Coatings for Solar Cell Applications

    SciTech Connect

    Clark, E.; Kane, M.; Jiang, P.

    2011-03-14

    An inexpensive, effective anti-reflective coating (ARC) has been developed at the University of Florida to significantly enhance the absorption of light by silicon in solar cells. This coating has nano-scale features, and its microstructure mimics that of various night active insects (e.g. a moth's eye). It is a square array of pillars, each about 700 nm high and having a diameter of about 300 nm. Samples of silicon having this coating were exposed either to various combinations of either elevated temperature and humidity or to gamma irradiation ({sup 60}Co) at the Savannah River National Laboratory, or to a broad spectrum ultraviolet light and to a 532 nm laser light at the University of Florida. The anti-reflective properties of the coatings were unaffected by any of these environmental stresses, and the microstructure of the coating was also unaffected. In fact, the reflectivity of the gamma irradiated ARC became lower (advantageous for solar cell applications) at wavelengths between 400 and 1000 nm. These results show that this coating is robust and should be tested in actual systems exposed to either weather or a space environment. Structural details of the ARCs were studied to optimize their performance. Square arrays performed better than hexagonal arrays - the natural moth-eye coating is indeed a square array. The optimal depth of the templated nanopillars in the ARC was investigated. A wet etching technology for ARC formation was developed that would be less expensive and much faster than dry etching. Theoretical modeling revealed that dimple arrays should perform better than nipple arrays. A method of fabricating both dimple and nipple arrays having the same length was developed, and the dimple arrays performed better than the nipple arrays, in agreement with the modeling. The commercial viability of the technology is quite feasible, since the technology is scalable and inexpensive. This technology is also compatible with current industrial fabrication of

  13. Application of representative layer theory to near-infrared reflectance spectra of powdered samples.

    PubMed

    Cairós, Carlos; Coello, Jordi; Maspoch, Santiago

    2008-12-01

    The diffuse reflectance near-infrared (NIR) spectrum of a powdered sample includes the contribution of specular and diffuse reflectance, which is a function of absorbance and scattering. The fraction of light scattered depends in a complex manner on the physical properties of the sample such as particle size, refraction index, etc. Several theories to study the dependence of NIR spectra on the particle size have been proposed. The best known is the Kubelka-Munk model, an approach based on continuous mathematics. Recently Dahm and Dahm put forward an alternative method, the representative layer theory (RLT), which uses discontinuous mathematics as a basis. This approach can be used to identify and disentangle the scattering and absorbance signals as well as their dependence on the particle size. The scattering and absorption coefficient of NaCl (a nonabsorbing material) and of potassium hydrogen phthalate, KHP (a strong absorber), have been estimated through the application of the representative layer theory, working on a particle size range from 63 to 450 microm. In both samples, the absorption coefficient of the sample (K) remains constant and practically independent of the particle size, while the scattering coefficient of the sample (S) decreases when the particle diameter increases, becoming stable around a diameter of 250 microm. PMID:19094396

  14. Multiple-reflection time-of-flight mass spectrometry for in situ applications

    NASA Astrophysics Data System (ADS)

    Dickel, T.; Plaß, W. R.; Lang, J.; Ebert, J.; Geissel, H.; Haettner, E.; Jesch, C.; Lippert, W.; Petrick, M.; Scheidenberger, C.; Yavor, M. I.

    2013-12-01

    Multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) have recently been installed at different low-energy radioactive ion beam facilities. They are used as isobar separators with high ion capacity and as mass spectrometers with high mass resolving power and accuracy for short-lived nuclei. Furthermore, MR-TOF-MS have a huge potential for applications in other fields, such as chemistry, biology, medicine, space science, and homeland security. The development, commissioning and results of an MR-TOF-MS is presented, which serves as proof-of-principle to show that very high mass resolving powers (∼105) can be achieved in a compact device (length ∼30 cm). Based on this work, an MR-TOF-MS for in situ application has been designed. For the first time, this device combines very high mass resolving power (>105), mobility, and an atmospheric pressure inlet in one instrument. It will enable in situ measurements without sample preparation at very high mass accuracy. Envisaged applications of this mobile MR-TOF-MS are discussed.

  15. Vibrometry using a chromatic confocal sensor

    NASA Astrophysics Data System (ADS)

    Berkovic, G.; Zilberman, S.; Shafir, E.; Cohen-Sabban, J.

    2014-05-01

    We demonstrate vibrometry using a chromatic confocal sensor which measures displacements with 0.1 μm resolution at a rate of 10 kHz. This technique was used to study the vibration of a musical tuning fork with a resonance at 523 Hz. Other examples presented include vibration of water waves and multiple point vibrometry of a vibrating steel rod.

  16. Quantitative phase-contrast confocal microscope

    PubMed Central

    Liu, Changgeng; Marchesini, Stefano; Kim, Myung K.

    2014-01-01

    We present a quantitative phase-contrast confocal microscope (QPCCM) by combining a line-scanning confocal system with digital holography (DH). This combination can merge the merits of these two different imaging modalities. High-contrast intensity images with low coherent noise, and the optical sectioning capability are made available due to the confocality. Phase profiles of the samples become accessible thanks to DH. QPCCM is able to quantitatively measure the phase variations of optical sections of the opaque samples and has the potential to take high-quality intensity and phase images of non-opaque samples such as many biological samples. Because each line scan is recorded by a hologram that may contain the optical aberrations of the system, it opens avenues for a variety of numerical aberration compensation methods and development of full digital adaptive optics confocal system to emulate current hardware-based adaptive optics system for biomedical imaging, especially ophthalmic imaging. Preliminary experiments with a microscope objective of NA 0.65 and 40 × on opaque samples are presented to demonstrate this idea. The measured lateral and axial resolutions of the intensity images from the current system are ~0.64μm and ~2.70μm respectively. The noise level of the phase profile by QPCCM is ~2.4nm which is better than the result by DH. PMID:25089404

  17. Active confocal imaging for visual prostheses

    PubMed Central

    Jung, Jae-Hyun; Aloni, Doron; Yitzhaky, Yitzhak; Peli, Eli

    2014-01-01

    There are encouraging advances in prosthetic vision for the blind, including retinal and cortical implants, and other “sensory substitution devices” that use tactile or electrical stimulation. However, they all have low resolution, limited visual field, and can display only few gray levels (limited dynamic range), severely restricting their utility. To overcome these limitations, image processing or the imaging system could emphasize objects of interest and suppress the background clutter. We propose an active confocal imaging system based on light-field technology that will enable a blind user of any visual prosthesis to efficiently scan, focus on, and “see” only an object of interest while suppressing interference from background clutter. The system captures three-dimensional scene information using a light-field sensor and displays only an in-focused plane with objects in it. After capturing a confocal image, a de-cluttering process removes the clutter based on blur difference. In preliminary experiments we verified the positive impact of confocal-based background clutter removal on recognition of objects in low resolution and limited dynamic range simulated phosphene images. Using a custom-made multiple-camera system, we confirmed that the concept of a confocal de-cluttered image can be realized effectively using light field imaging. PMID:25448710

  18. Image inpainting for the differential confocal microscope

    NASA Astrophysics Data System (ADS)

    Qiu, Lirong; Wang, Lei; Liu, Dali; Hou, Maosheng; Zhao, Weiqian

    2015-02-01

    In the process of zero-crossing trigger measurement of differential confocal microscope, the sample surface features or tilt will cause the edges can't be triggered. Meanwhile, environment vibration can also cause false triggering. In order to restore the invalid information of sample, and realize high-precision surface topography measurement, Total Variation (TV) inpainting model is applied to restore the scanning images. Emulation analysis and experimental verification of this method are investigated. The image inpainting algorithm based on TV model solves the minimization of the energy equation by calculus of variations, and it can effectively restore the non-textured image with noises. Using this algorithm, the simulation confocal laser intensity curve and height curve of standard step sample are restored. After inpainting the intensity curve below the threshold is repaired, the maximum deviation from ideal situation is 0.0042, the corresponding edge contour of height curve is restored, the maximum deviation is 0.1920, which proves the algorithm is effective. Experiment of grating inpainting indicates that the TV algorithm can restore the lost information caused by failed triggering and eliminate the noise caused by false triggering in zero-crossing trigger measurement of differential confocal microscope. The restored image is consistent with the scanning result of OLYMPUS confocal microscope, which can satisfy the request of follow-up measurement analysis.

  19. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: LASER POWER MEASUREMENTS

    EPA Science Inventory

    Laser power abstract
    The reliability of the confocal laser-scanning microscope (CLSM) to obtain intensity measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. The laser power test appears to be one ...

  20. Confocal Laser Induced Fluorescence of Argon Plasmas

    NASA Astrophysics Data System (ADS)

    Scime, Earl; Soderholm, Mark

    2015-11-01

    Laser Induced Fluorescence (LIF) provides measurements of flow speed, temperature and when absolutely calibrated, density of ions or neutrals in a plasma. Traditionally, laser induced fluorescence requires two ports on a plasma device. One port is used for laser injection and the other is used for fluorescence emission collection. Traditional LIF is tedious and time consuming to align. These difficulties motivate the development of an optical configuration that requires a single port and remains fully aligned at all times; confocal LIF. Our confocal optical design employs a single two inch diameter lens to both inject the laser light and collect the stimulated emission from an argon plasma. A pair of axicon lenses create an annular beam path for the emission collection and the pump laser light is confined inside the annulus of the collection beam. The measurement location is scanned radially by manually adjusting the final focusing lens position. Here we present optical modeling of and initial results from the axicon based confocal optical system. The confocal measurements are compared to traditional, two-port, LIF measurements over the same radial range. This work is supported by US National Science Foundation grant number PHY-1360278.

  1. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: AXIAL RESOLUTION

    EPA Science Inventory

    Abstract

    Confocal Microscopy System Performance: Axial resolution.
    Robert M. Zucker, PhD

    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Re...

  2. Confocal microscopy imaging of solid tissue

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer acquired images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ...

  3. Atherosclerotic plaque detection by confocal Brillouin and Raman microscopies

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Basagaoglu, Berkay; Yakovlev, Vladislav V.

    2015-02-01

    Atherosclerosis, the development of intraluminal plaque, is a fundamental pathology of cardiovascular system and remains the leading cause of morbidity and mortality worldwide. Biomechanical in nature, plaque rupture occurs when the mechanical properties of the plaque, related to the morphology and viscoelastic properties, are compromised, resulting in intraluminal thrombosis and reduction of coronary blood flow. In this report, we describe the first simultaneous application of confocal Brillouin and Raman microscopies to ex-vivo aortic wall samples. Such a non-invasive, high specific approach allows revealing a direct relationship between the biochemical and mechanical properties of atherosclerotic tissue.

  4. [Application of Fourier transform attenuated total reflection infrared spectroscopy in analysis of pulp and paper industry].

    PubMed

    Zhang, Yong; Cao, Chun-yu; Feng, Wen-ying; Xu, Ming; Su, Zhen-hua; Liu, Xiao-meng; Lü, Wei-jun

    2011-03-01

    As one of the most powerful tools to investigate the compositions of raw materials and the property of pulp and paper, infrared spectroscopy has played an important role in pulp and paper industry. However, the traditional transmission infrared spectroscopy has not met the requirements of the producing processes because of its disadvantages of time consuming and sample destruction. New technique would be needed to be found. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) is an advanced spectroscopic tool for nondestructive evaluation and could rapidly, accurately estimate the production properties of each process in pulp and paper industry. The present review describes the application of ATR-FTIR in analysis of pulp and paper industry. The analysis processes will include: pulping, papermaking, environmental protecting, special processing and paper identifying. PMID:21595211

  5. Applications of diffuse reflectance Fourier transform infrared spectroscopy to fiber-reinforced composites

    SciTech Connect

    Cole, K.C.; Noel, D.; Hechler, J.J.

    1988-12-01

    Diffuse reflectance Fourier transform infrared (FTIR) spectroscopy can be used to obtain infrared spectra directly from the surface of composite materials, with little or no sample preparation. It is thus of interest as a nondestructive method for industrial inspection. In many cases, the IR spectra provide detailed information concerning the chemical composition and molecular structure of the material. The technique works particularly well for carbon-fiber composites. This paper describes the principles involved, some factors which influence the quality of the spectra, and a number of examples of applications. These include the characterization of epoxy matrices (composition, curing, degradation), the detection of surface contamination, and the determination of the degree of crystallinity in poly(phenylene sulfide)-based composites. 24 references.

  6. Infrared Reflection-Absorption Spectroscopy: Principles and Applications to Lipid-Protein Interaction in Langmuir Films

    PubMed Central

    Mendelsohn, Richard; Mao, Guangru; Flach, Carol R.

    2010-01-01

    Infrared reflection-absorption spectroscopy (IRRAS) of lipid/protein monolayer films in situ at the air/water interface provides unique molecular structure and orientation information from the film constituents. The technique is thus well suited for studies of lipid/protein interaction in a physiologically relevant environment. Initially, the nature of the IRRAS experiment is described and the molecular structure information that may be obtained is recapitulated. Subsequently, several types of applications, including the determination of lipid chain conformation and tilt as well as elucidation of protein secondary structure are reviewed. The current article attempts to provide the reader with an understanding of the current capabilities of IRRAS instrumentation and the type of results that have been achieved to date from IRRAS studies of lipids, proteins and lipid/protein films of progressively increasing complexity. Finally, possible extensions of the technology are briefly considered. PMID:20004639

  7. Total-Internal-Reflection Platforms for Chemical and Biological Sensing Applications

    NASA Astrophysics Data System (ADS)

    Sapsford, Kim E.

    Sensing platforms based on the principle of total internal reflection (TIR) represent a fairly mature yet still expanding and exciting field of research. Sensor development has mainly been driven by the need for rapid, stand-alone, automated devices for application in the fields of clinical diagnosis and screening, food and water safety, environmental monitoring, and chemical and biological warfare agent detection. The technologies highlighted in this chapter are continually evolving, taking advantage of emerging advances in microfabrication, lab-on-a-chip, excitation, and detection techniques. This chapter describes many of the underlying principles of TIR-based sensing platforms and additionally focusses on planar TIR fluorescence (TIRF)-based chemical and biological sensors.

  8. Infrared reflection-absorption spectroscopy: principles and applications to lipid-protein interaction in Langmuir films.

    PubMed

    Mendelsohn, Richard; Mao, Guangru; Flach, Carol R

    2010-04-01

    Infrared reflection-absorption spectroscopy (IRRAS) of lipid/protein monolayer films in situ at the air/water interface provides unique molecular structure and orientation information from the film constituents. The technique is thus well suited for studies of lipid/protein interaction in a physiologically relevant environment. Initially, the nature of the IRRAS experiment is described and the molecular structure information that may be obtained is recapitulated. Subsequently, several types of applications, including the determination of lipid chain conformation and tilt as well as elucidation of protein secondary structure are reviewed. The current article attempts to provide the reader with an understanding of the current capabilities of IRRAS instrumentation and the type of results that have been achieved to date from IRRAS studies of lipids, proteins, and lipid/protein films of progressively increasing complexity. Finally, possible extensions of the technology are briefly considered. PMID:20004639

  9. Application of Neutron Reflectivity for Studies of Biomolecular Structures and Functions at Interfaces

    SciTech Connect

    Johs, Alexander; Liang, Liyuan; Gu, Baohua; Ankner, John Francis; Wang, Wei

    2009-01-01

    Structures and functions of cell membranes are of central importance in understanding processes such as cell signaling, chemotaxis, redox transformation, biofilm formation, and mineralization occurring at interfaces. This chapter provides an overview of the application of neutron reflectivity (NR) as a unique tool for probing biomolecular structures and mechanisms as a first step toward understanding protein protein, protein lipid, and protein mineral interactions at the membrane substrate interfaces. Emphasis is given to the review of existing literature on the assembly of biomimetic membrane systems, such as supported membranes for NR studies, and demonstration of model calculations showing the potential of NR to elucidate molecular fundamentals of microbial cell mineral interactions and structure functional relationships of electron transport pathways. The increased neutron flux afforded by current and upcoming neutron sources holds promise for elucidating detailed processes such as phase separation, formation of microdomains, and membrane interactions with proteins and peptides in biological systems.

  10. Multipass cell based on confocal mirrors for sensitive broadband laser spectroscopy in the near infrared.

    PubMed

    Mohamed, T; Zhu, F; Chen, S; Strohaber, J; Kolomenskii, A A; Bengali, A A; Schuessler, H A

    2013-10-10

    We report on broadband absorption spectroscopy in the near IR using a multipass cell design based on highly reflecting mirrors in a confocal arrangement having the particular aim of achieving long optical paths. We demonstrate a path length of 314 m in a cell consisting of two sets of highly reflecting mirrors with identical focal length, spaced 0.5 m apart. The multipass cell covers this path length in a relatively small volume of 1.25 l with the light beam sampling the whole volume. In a first application, the absorption spectra of the greenhouse gases CO(2), CH(4), and CO were measured. In these measurements we used a femtosecond fiber laser with a broadband spectral range spanning the near IR from 1.5 to 1.7 μm. The absorption spectra show a high signal-to-noise ratio, from which we derive a sensitivity limit of 6 ppmv for methane observed in a mixture with air. PMID:24217732

  11. Miniature objective lens with variable focus for confocal endomicroscopy

    PubMed Central

    Kim, Minkyu; Kang, DongKyun; Wu, Tao; Tabatabaei, Nima; Carruth, Robert W.; Martinez, Ramses V; Whitesides, George M.; Nakajima, Yoshikazu; Tearney, Guillermo J.

    2014-01-01

    Spectrally encoded confocal microscopy (SECM) is a reflectance confocal microscopy technology that can rapidly image large areas of luminal organs at microscopic resolution. One of the main challenges for large-area SECM imaging in vivo is maintaining the same imaging depth within the tissue when patient motion and tissue surface irregularity are present. In this paper, we report the development of a miniature vari-focal objective lens that can be used in an SECM endoscopic probe to conduct adaptive focusing and to maintain the same imaging depth during in vivo imaging. The vari-focal objective lens is composed of an aspheric singlet with an NA of 0.5, a miniature water chamber, and a thin elastic membrane. The water volume within the chamber was changed to control curvature of the elastic membrane, which subsequently altered the position of the SECM focus. The vari-focal objective lens has a diameter of 5 mm and thickness of 4 mm. A vari-focal range of 240 μm was achieved while maintaining lateral resolution better than 2.6 μm and axial resolution better than 26 μm. Volumetric SECM images of swine esophageal tissues were obtained over the vari-focal range of 260 μm. SECM images clearly visualized cellular features of the swine esophagus at all focal depths, including basal cell nuclei, papillae, and lamina propria. PMID:25574443

  12. Cosmetic assessment of the human hair by confocal microscopy.

    PubMed

    Hadjur, Christophe; Daty, Gérard; Madry, Geneviève; Corcuff, Pierre

    2002-01-01

    The optical sectioning property of the confocal microscope offers a breakthrough from the classic observation of the hair in a scanning electron microscope (SEM). Confocal microscopy requires minimal sampling preparation, and the hair can be observed in its natural environment with less damage than by other microscopic methods such as SEM. While used in the reflection mode, the true morphology of the cuticle and the various exogenous deposits at the surface can be identified and quantified. This relatively noninvasive, nondestructive technique is routinely used by us to monitor the efficiency of cleansing shampoos, to assess the homogeneity of layering polymers, and to evaluate the changes they induce in the optical properties of the hair surface in terms of opacity, transparency, and brilliancy. A second important field of investigation uses the fluorescence channel which reveals the internal structure of the hair. Fluorescent probes (rhodamine and its derivatives) demonstrate the routes of penetration and outline the geometry of cortical cells and of the medulla according to their lipophilic or hydrophilic properties. A volume rendering of a hair cylinder provides a better understanding of the interrelationships between cuticle cells, cortical cells, and the medullar channel. This recent technology is becoming an invaluable tool for the cosmetic assessment of the hair. PMID:11998902

  13. Imaging intracellular protein dynamics by spinning disk confocal microscopy

    PubMed Central

    Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten

    2012-01-01

    The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541

  14. Measurement of steep edges and undercuts in confocal microscopy.

    PubMed

    Mueller, T; Jordan, M; Schneider, T; Poesch, A; Reithmeier, E

    2016-05-01

    Confocal microscopy is widely used to measure the surface topography of specimen with a precision in the micrometer range. The measurement uncertainty and quality of the acquired data of confocal microscopy depends on various effects, such as optical aberrations, vibrations of the measurement setup and variations in the surface reflectivity. In this article, the influence of steep edges and undercuts on measurement results is examined. Steep edges on the specimen's surface lead to a reduced detector signal which influences the measurement accuracy and undercuts cause surface regions, which cannot be captured in a measurement. The article describes a method to overcome the negative effects of steep edges and undercuts by capturing several measurements of the surface with different angles between the surface and the optical axis of the objective. An algorithm is introduced which stitches different angle measurements together without knowledge of the exact position and orientation of the rotation axis. Thus, the measurement uncertainty due to steep edges and undercuts can be avoided without expensive high-precision rotation stages and time consuming adjustment of the measurement setup. PMID:27011256

  15. Anti-confocal versus confocal assessment of the middle ear simulated by Monte Carlo methods.

    PubMed

    Jung, David S; Crowe, John A; Birchall, John P; Somekh, Michael G; See, Chung W

    2015-10-01

    The ability to monitor the inflammatory state of the middle ear mucosa would provide clinical utility. To enable spectral measurements on the mucosa whilst rejecting background signal from the eardrum an anti-confocal system is investigated. In contrast to the central pinhole in a confocal system the anti-confocal system uses a central stop to reject light from the in-focus plane, the eardrum, with all other light detected. Monte Carlo simulations of this system show an increase in detected signal and improved signal-to-background ratio compared to a conventional confocal set-up used to image the middle ear mucosa. System parameters are varied in the simulation and their influence on the level of background rejection are presented. PMID:26504633

  16. Light localization properties of biological cells via confocal imaging

    NASA Astrophysics Data System (ADS)

    Sahay, Peeyush; Ghimire, Hemendra M.; Almabadi, Huda; Pradhan, Prabhakar

    2015-03-01

    Detection and characterization of the spatial refractive index fluctuations of very weakly disordered optical dielectric media has ample applications in various fields ranging from soft condensed matter to biological research. We report a study of the submicron scale degree of the structural disorder of heterogeneous weakly disordered optical dielectric media, such as biological cells, by quantifying their submicron scale light-localization properties. Confocal microscopy is used to construct disordered optical lattices of these dielectric media. Light-localization properties are studied by the statistical analysis of the inverse participation ratio (IPR) of the localized eigenfunctions of these optical lattices at the submicron scales. The method is described and its importance is highlighted. As one of the applications, we demonstrate that using this method, different types of normal and cancerous cells can be distinguished by quantifying the structural disorder inside the cells via their confocal micrographs. Other potential applications of the technique to characterize weakly disordered media, as well as biological cells, in particular cancer detection, are also discussed. NIH and University of Memphis.

  17. Experimental design for reflection measurements of highly reactive liquid or solid substances with application to liquid sodium

    SciTech Connect

    Chan, S.H.; Gossler, A.A.

    1980-06-30

    A versatile goniometer system with associated electronic components and mechanical instruments has been assembled. It is designed to measure spectral, specular reflectances of highly reactive liquid or solid substances over a spectral range of 0.3 to 9 ..mu.. and incidence angles of 12 to 30/sup 0/ off the normal direction. The capability of measuring reflectances of liquid substances clearly distinguishes this experimental design from conventional systems which are applicable only to solid substances. This design has been used to measure the spectral, specular reflectance of liquid sodium and preliminary results obtained are compared with those of solid sodium measured by other investigators.

  18. [Near infrared reflectance spectroscopy (NIRS) and its application in the determination for the quality of animal feed and products].

    PubMed

    Wang, Li; Meng, Qing-Xiang; Ren, Li-Ping; Yang, Jian-Song

    2010-06-01

    Near-infrared reflectance spectroscopy (NIRS) has been the most rapidly developing and noticeable spectrographic analytical technique in recent years. The determining principle and progresses of near-infrared reflectance spectroscopy are presented briefly. It mainly includes the progresses in pre-processing technique and analyzing model of near-infrared reflectance spectroscopy. Two pre-processing techniques, including differential coefficient-dealt with technique, the signal-smoothing technique, and four analyzing models of near-infrared spectroscopy, including the multiplied lined regression (MLR), principal component analysis (PCA), partial least squares (PLS), and artificial nerve network (ANN). The application of near-infrared reflectance spectroscopy to the first time. The investigation of reviewed papers shows that the near-infrared reflectance spectroscopy is widely applied in feed analysis and animal products analysis because of its rapidness, non-destruction and non-pollution. The near infrared reflectance spectroscopy has been used to determine the feed common ingredient, such as dry matter, crude protein, crude fiber, crude fat and so on, micro-components including amino acid, vitamin, and noxious components, and to determine the physical and chemical properties of animal products which including egg, mutton, beef and pork. Details of the analytical characteristics of feed and animal products described in the reviewed papers are given. New trends and limits to the application of near-infrared reflectance spectroscopy in these fields are also discussed. PMID:20707134

  19. Surface microstructure profilometry based on laser confocal feedback

    NASA Astrophysics Data System (ADS)

    Wang, Weiping; Zhang, Shulian; Li, Yan

    2015-10-01

    We demonstrate a surface microstructure profile measurement method, which utilizes the positioning ability of confocal technology and the high sensitivity of frequency-shift feedback of a microchip laser. The surface profile is measured by combination of the amplitude and phase information of the feedback light reflected by the sample. The amplitude information is used for coarse measurement and to determine the integral number of half lasing wavelengths contained in the sample profile variation. The phase information is used for fine measurement and to determine the fractional number. The measurement realizes both a large axial measuring range of tens of microns and a high axial resolution of ˜2 nm. Meanwhile, a heterodyne phase measurement approach is introduced to compensate for environmental disturbance and to realize high axial resolution measurement under common room conditions. The surface profile of a grating is measured and proves the feasibility of the method.

  20. Endoscopic probe optics for spectrally encoded confocal microscopy

    PubMed Central

    Kang, DongKyun; Carruth, Robert W.; Kim, Minkyu; Schlachter, Simon C.; Shishkov, Milen; Woods, Kevin; Tabatabaei, Nima; Wu, Tao; Tearney, Guillermo J.

    2013-01-01

    Spectrally encoded confocal microscopy (SECM) is a form of reflectance confocal microscopy that can achieve high imaging speeds using relatively simple probe optics. Previously, the feasibility of conducting large-area SECM imaging of the esophagus in bench top setups has been demonstrated. Challenges remain, however, in translating SECM into a clinically-useable device; the tissue imaging performance should be improved, and the probe size needs to be significantly reduced so that it can fit into luminal organs of interest. In this paper, we report the development of new SECM endoscopic probe optics that addresses these challenges. A custom water-immersion aspheric singlet (NA = 0.5) was developed and used as the objective lens. The water-immersion condition was used to reduce the spherical aberrations and specular reflection from the tissue surface, which enables cellular imaging of the tissue deep below the surface. A custom collimation lens and a small-size grating were used along with the custom aspheric singlet to reduce the probe size. A dual-clad fiber was used to provide both the single- and multi- mode detection modes. The SECM probe optics was made to be 5.85 mm in diameter and 30 mm in length, which is small enough for safe and comfortable endoscopic imaging of the gastrointestinal tract. The lateral resolution was 1.8 and 2.3 µm for the single- and multi- mode detection modes, respectively, and the axial resolution 11 and 17 µm. SECM images of the swine esophageal tissue demonstrated the capability of this device to enable the visualization of characteristic cellular structural features, including basal cell nuclei and papillae, down to the imaging depth of 260 µm. These results suggest that the new SECM endoscopic probe optics will be useful for imaging large areas of the esophagus at the cellular scale in vivo. PMID:24156054

  1. Digital confocal microscopy through a multimode fiber.

    PubMed

    Loterie, Damien; Farahi, Salma; Papadopoulos, Ioannis; Goy, Alexandre; Psaltis, Demetri; Moser, Christophe

    2015-09-01

    Acquiring high-contrast optical images deep inside biological tissues is still a challenging problem. Confocal microscopy is an important tool for biomedical imaging since it improves image quality by rejecting background signals. However, it suffers from low sensitivity in deep tissues due to light scattering. Recently, multimode fibers have provided a new paradigm for minimally invasive endoscopic imaging by controlling light propagation through them. Here we introduce a combined imaging technique where confocal images are acquired through a multimode fiber. We achieve this by digitally engineering the excitation wavefront and then applying a virtual digital pinhole on the collected signal. In this way, we are able to acquire images through the fiber with significantly increased contrast. With a fiber of numerical aperture 0.22, we achieve a lateral resolution of 1.5µm, and an axial resolution of 12.7µm. The point-scanning rate is currently limited by our spatial light modulator (20Hz). PMID:26368478

  2. In-vivo multi-spectral confocal microscopy

    NASA Astrophysics Data System (ADS)

    Rouse, Andrew R.; Udovich, Joshua A.; Gmitro, Arthur F.

    2005-03-01

    A multi-spectral confocal microendoscope (MCME) for in-vivo imaging has been developed. The MCME employs a flexible fiber-optic catheter coupled to a slit-scan confocal microscope with an imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The focus mechanism allows for imaging to a maximum tissue depth of 200 microns. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3 micron lateral resolution and 30 micron axial resolution. The system incorporates two laser sources and is therefore capable of simultaneous acquisition of spectra from multiple dyes using dual excitation. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 8nm to 16nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersion characteristics of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. In-vitro, and ex-vivo multi-spectral results are presented.

  3. Probe based confocal laser endomicroscopy of the pancreatobiliary system

    PubMed Central

    Almadi, Majid A; Neumann, Helmut

    2015-01-01

    AIM: To review applications of confocal laser endomicroscopy (CLE) in pancreatobiliary lesions and studies that assessed training and interpretation of images. METHODS: A computerized literature search was performed using OVID MEDLINE, EMBASE, Cochrane library, and the ISI Web of Knowledge from 1980 to October 2014. We also searched abstracts from major meetings that included the Digestive Disease Week, Canadian Digestive Disease Week and the United European Gastroenterology Week using a combination of controlled vocabulary and text words related to pCLE, confocal, endomicroscopy, probe-based confocal laser endomicroscopy, and bile duct to identify reports of trials. In addition, recursive searches and cross-referencing was performed, and manual searches of articles identified after the initial search was also completed. We included fully published articles and those in abstract form. Given the relatively recent introduction of CLE we included randomized trials and cohort studies. RESULTS: In the evaluation of indeterminate pancreatobiliary strictures CLE with ERCP compared to ERCP alone can increase the detection of cancerous strictures with a sensitivity of (98% vs 45%) and has a negative predictive value (97% vs 69%), but decreased the specificity (67% vs 100%) and the positive predictive value (71% vs 100%) when compared to index pathology. Modifications in the classification systems in indeterminate biliary strictures have increased the specificity of pCLE from 67% to 73%. In pancreatic cystic lesions there is a need to develop similar systems to interpret and characterize lesions based on CLE images obtained. The presence of superficial vascular network predicts serous cystadenomas accurately. Also training in acquiring and interpretation of images is feasible in those without any prior knowledge in CLE in a relatively simple manner and computer-aided diagnosis software is a promising innovation. CONCLUSION: The role of pCLE in the evaluation of

  4. MEMS-Based Dual Axes Confocal Microendoscopy

    PubMed Central

    Piyawattanametha, Wibool; Wang, Thomas D.

    2011-01-01

    We demonstrate a miniature, near-infrared microscope (λ = 785 nm) that uses a novel dual axes confocal architecture. Scalability is achieved with post-objective scanning, and a MEMS mirror provides real time (>4 Hz) in vivo imaging. This instrument can achieve sub-cellular resolution with deep tissue penetration and large field of view. An endoscope-compatible version can image digestive tract epithelium to guide tissue biopsy and monitor therapy. PMID:22190845

  5. Spectrally encoded confocal scanning laser ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Tao, Yuankai K.; Izatt, Joseph A.

    2010-02-01

    Fundus imaging has become an essential clinical diagnostic tool in ophthalmology. Current generation scanning laser ophthalmoscopes (SLO) offer advantages over conventional fundus photography and indirect ophthalmoscopy in terms of light efficiency and contrast. As a result of the ability of SLO to provide rapid, continuous imaging of retinal structures and its versatility in accommodating a variety of illumination wavelengths, allowing for imaging of both endogenous and exogenous fluorescent contrast agents, SLO has become a powerful tool for the characterization of retinal pathologies. However, common implementations of SLO, such as the confocal scanning laser ophthalmoscope (CSLO) and line-scanning laser ophthalmoscope (LSLO), require imaging or multidimensional scanning elements which are typically implemented in bulk optics placed close to the subject eye. Here, we apply a spectral encoding technique in one dimension combined with single-axis lateral scanning to create a spectrally encoded confocal scanning laser ophthalmoscope (SECSLO) which is fully confocal. This novel implementation of the SLO allows for high contrast, high resolution in vivo human retinal imaging with image transmission through a single-mode optical fiber. Furthermore, the scanning optics are similar and the detection engine is identical to that of current-generation spectral domain optical coherence tomography (SDOCT) systems, potentially allowing for a simplistic implementation of a joint SECSLO-SDOCT imaging system.

  6. A near-infrared confocal scanner

    NASA Astrophysics Data System (ADS)

    Lee, Seungwoo; Yoo, Hongki

    2014-06-01

    In the semiconductor industry, manufacturing of three-dimensional (3D) packages or 3D integrated circuits is a high-performance technique that requires combining several functions in a small volume. Through-silicon vias, which are vertical electrical connections extending through a wafer, can be used to direct signals between stacked chips, thus increasing areal density by stacking and connecting multiple patterned chips. While defect detection is essential in the semiconductor manufacturing process, it is difficult to identify defects within a wafer or to monitor the bonding results between bonded surfaces because silicon and many other semiconductor materials are opaque to visible wavelengths. In this context, near-infrared (NIR) imaging is a promising non-destructive method to detect defects within silicon chips, to inspect bonding between chips and to monitor the chip alignment since NIR transmits through silicon. In addition, a confocal scanner provides high-contrast, optically-sectioned images of the specimen due to its ability to reject out-of-focus noise. In this study, we report an NIR confocal scanner that rapidly acquires high-resolution images with a large field of view through silicon. Two orthogonal line-scanning images can be acquired without rotating the system or the specimen by utilizing two orthogonally configured resonant scanning mirrors. This NIR confocal scanner can be efficiently used as an in-line inspection system when manufacturing semiconductor devices by rapidly detecting defects on and beneath the surface.

  7. Applications of Bayesian Procrustes shape analysis to ensemble radar reflectivity nowcast verification

    NASA Astrophysics Data System (ADS)

    Fox, Neil I.; Micheas, Athanasios C.; Peng, Yuqiang

    2016-07-01

    This paper introduces the use of Bayesian full Procrustes shape analysis in object-oriented meteorological applications. In particular, the Procrustes methodology is used to generate mean forecast precipitation fields from a set of ensemble forecasts. This approach has advantages over other ensemble averaging techniques in that it can produce a forecast that retains the morphological features of the precipitation structures and present the range of forecast outcomes represented by the ensemble. The production of the ensemble mean avoids the problems of smoothing that result from simple pixel or cell averaging, while producing credible sets that retain information on ensemble spread. Also in this paper, the full Bayesian Procrustes scheme is used as an object verification tool for precipitation forecasts. This is an extension of a previously presented Procrustes shape analysis based verification approach into a full Bayesian format designed to handle the verification of precipitation forecasts that match objects from an ensemble of forecast fields to a single truth image. The methodology is tested on radar reflectivity nowcasts produced in the Warning Decision Support System - Integrated Information (WDSS-II) by varying parameters in the K-means cluster tracking scheme.

  8. The application of visible wavelength reflectance hyperspectral imaging for the detection and identification of blood stains.

    PubMed

    Li, Bo; Beveridge, Peter; O'Hare, William T; Islam, Meez

    2014-12-01

    Current methods of detection and identification of blood stains rely largely on visual examination followed by presumptive tests such as Kastle-Meyer, Leuco-malachite green or luminol. Although these tests are useful, they can produce false positives and can also have a negative impact on subsequent DNA tests. A novel application of visible wavelength reflectance hyperspectral imaging has been used for the detection and positive identification of blood stains in a non contact and non destructive manner on a range of coloured substrates. The identification of blood staining was based on the unique visible absorption spectrum of haemoglobin between 400 and 500 nm. Images illustrating successful discrimination of blood stains from nine red substances are included. It has also been possible to distinguish between blood and approximately 40 other reddish stains. The technique was also successfully used to detect latent blood stains deposited on white filter paper at dilutions of up to 1 in 512 folds and on red tissue at dilutions of up to 1 in 32 folds. Finally, in a blind trial, the method successfully detected and identified a total of 9 blood stains on a red T-shirt. PMID:25498930

  9. Ultracompact silicon-on-insulator-based reflective arrayed waveguide gratings for spectroscopic applications.

    PubMed

    Zou, Jun; Lang, Tingting; Le, Zichun; He, Jian-Jun

    2016-05-01

    Ultracompact reflective arrayed waveguide gratings (RAWGs) employing a half horseshoe-shaped waveguide layout and distributed Bragg reflector mirrors in the array region are designed and fabricated. Two sets of RAWGs with 400 and 200 GHz channel spacing are experimentally demonstrated for TE and TM polarizations, respectively. Because of the high-index contrast between the silicon core and the oxide cladding, these RAWGs have very compact sizes. With the off-centered light input, we obtained the minimal on-chip losses of 7 and 9 dB and cross talks of <-8 and <-5  dB for 9×400  GHz and 20×200  GHz RAWGs, respectively, for TE polarization. The measured minimal on-chip losses are 10 and 12.5 dB, and cross talks are <-11 and <-7  dB for 8×400  GHz and 10×200  GHz RAWGs, respectively, for TM polarization. These RAWGs can find applications for on-chip spectroscopic sensing. PMID:27140366

  10. Application of a wide-field phantom eye for optical coherence tomography and reflectance imaging

    PubMed Central

    Corcoran, Anthony; Muyo, Gonzalo; van Hemert, Jano; Gorman, Alistair; Harvey, Andrew R.

    2015-01-01

    Optical coherence tomography (OCT) and reflectance imaging are used in clinical practice to measure the thickness and transverse dimensions of retinal features. The recent trend towards increasing the field of view (FOV) of these devices has led to an increasing significance of the optical aberrations of both the human eye and the device. We report the design, manufacture and application of the first phantom eye that reproduces the off-axis optical characteristics of the human eye, and allows the performance assessment of wide-field ophthalmic devices. We base our design and manufacture on the wide-field schematic eye, [Navarro, R. J. Opt. Soc. Am. A, 1985, 2.] as an accurate proxy to the human eye and enable assessment of ophthalmic imaging performance for a ±70∘ external FOV. We used multi-material 3D-printed retinal targets to assess imaging performance of the following ophthalmic instruments: the Optos 200Tx, Heidelberg Spectralis, Zeiss FF4 fundus camera and Optos OCT SLO and use the phantom to provide an insight into some of the challenges of wide-field OCT. PMID:26740737

  11. Application of a wide-field phantom eye for optical coherence tomography and reflectance imaging

    NASA Astrophysics Data System (ADS)

    Corcoran, Anthony; Muyo, Gonzalo; van Hemert, Jano; Gorman, Alistair; Harvey, Andrew R.

    2015-12-01

    Optical coherence tomography (OCT) and reflectance imaging are used in clinical practice to measure the thickness and transverse dimensions of retinal features. The recent trend towards increasing the field of view (FOV) of these devices has led to an increasing significance of the optical aberrations of both the human eye and the device. We report the design, manufacture and application of the first phantom eye that reproduces the off-axis optical characteristics of the human eye, and allows the performance assessment of wide-field ophthalmic devices. We base our design and manufacture on the wide-field schematic eye, [Navarro, R. J. Opt. Soc. Am. A, 1985, 2.] as an accurate proxy to the human eye and enable assessment of ophthalmic imaging performance for a ? external FOV. We used multi-material 3D-printed retinal targets to assess imaging performance of the following ophthalmic instruments: the Optos 200Tx, Heidelberg Spectralis, Zeiss FF4 fundus camera and Optos OCT SLO and use the phantom to provide an insight into some of the challenges of wide-field OCT.

  12. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    NASA Astrophysics Data System (ADS)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang

    2016-01-01

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  13. Digital differential confocal microscopy based on spatial shift transformation.

    PubMed

    Liu, J; Wang, Y; Liu, C; Wilson, T; Wang, H; Tan, J

    2014-11-01

    Differential confocal microscopy is a particularly powerful surface profilometry technique in industrial metrology due to its high axial sensitivity and insensitivity to noise. However, the practical implementation of the technique requires the accurate positioning of point detectors in three-dimensions. We describe a simple alternative based on spatial transformation of a through-focus series of images obtained from a homemade beam scanning confocal microscope. This digital differential confocal microscopy approach is described and compared with the traditional Differential confocal microscopy approach. The ease of use of the digital differential confocal microscopy system is illustrated by performing measurements on a 3D standard specimen. PMID:25303106

  14. ConfocalCheck - A Software Tool for the Automated Monitoring of Confocal Microscope Performance

    PubMed Central

    Hng, Keng Imm; Dormann, Dirk

    2013-01-01

    Laser scanning confocal microscopy has become an invaluable tool in biomedical research but regular quality testing is vital to maintain the system’s performance for diagnostic and research purposes. Although many methods have been devised over the years to characterise specific aspects of a confocal microscope like measuring the optical point spread function or the field illumination, only very few analysis tools are available. Our aim was to develop a comprehensive quality assurance framework ranging from image acquisition to automated analysis and documentation. We created standardised test data to assess the performance of the lasers, the objective lenses and other key components required for optimum confocal operation. The ConfocalCheck software presented here analyses the data fully automatically. It creates numerous visual outputs indicating potential issues requiring further investigation. By storing results in a web browser compatible file format the software greatly simplifies record keeping allowing the operator to quickly compare old and new data and to spot developing trends. We demonstrate that the systematic monitoring of confocal performance is essential in a core facility environment and how the quantitative measurements obtained can be used for the detailed characterisation of system components as well as for comparisons across multiple instruments. PMID:24224017

  15. Materials and corrosion characterization using the confocal resonator

    SciTech Connect

    Tigges, C.P.; Sorensen, N.R.; Hietala, V.M.; Plut, T.A.

    1997-05-01

    Improved characterization and process control is important to many Sandia and DOE programs related to manufacturing. Many processes/structures are currently under-characterized including thin film growth, corrosion and semiconductor structures, such as implant profiles. A sensitive tool is required that is able to provide lateral and vertical imaging of the electromagnetic properties of a sample. The confocal resonator is able to characterize the surface and near-surface impedance of materials. This device may be applied to a broad range of applications including in situ evaluation of thin film processes, physical defect detection/characterization, the characterization of semiconductor devices and corrosion studies. In all of these cases, the technology should work as a real-time process diagnostic or as a feedback mechanism regarding the quality of a manufacturing process. This report summarizes the development and exploration of several diagnostic applications.

  16. Enhanced confocal microscopy and ophthalmoscopy with polarization imaging

    NASA Astrophysics Data System (ADS)

    Campbell, Melanie C. W.; Bueno, Juan M.; Cookson, Christopher J.; Liang, Qingyuan; Kisilak, Marsha L.; Hunter, Jennifer J.

    2005-09-01

    We previously developed a Mueller matrix formalism to improve confocal imaging in microscopes and ophthalmoscopes. Here we describe a procedure simplified by firstly introducing a generator of polarization states in the illumination pathway of a confocal scanning laser microscope and secondly computing just four elements of the Mueller matrix of any sample and instrument combination. Using a subset of Mueller matrix elements, the best images are reconstructed. The method was tested for samples with differing properties (specular, diffuse and partially depolarizing). Images were also studied of features at the rear of the eye. The best images obtained with this technique were compared to the original images and those obtained from frame averaging. Images corresponding to non-polarized incident light were also computed. For all cases, the best reconstructed images were of better quality than both the original and frame-averaged images. The best reconstructed images also showed an improvement compared with the images corresponding to non polarized light. This methodology will have broad application in biomedical imaging.

  17. Template-driven segmentation of confocal microscopy images.

    PubMed

    Chen, Ying-Cheng; Chen, Yung-Chang; Chiang, Ann-Shyn

    2008-03-01

    High quality 3D visualization of anatomic structures is necessary for many applications. The anatomic structures first need to be segmented. A variety of segmentation algorithms have been developed for this purpose. For confocal microscopy images, the noise introduced during the specimen preparation process, such as the procedure of penetration or staining, may cause images to be of low contrast in some regions. This property will make segmentation difficult. Also, the segmented structures may have rugged surfaces in 3D visualization. In this paper, we present a hybrid method that is suitable for segmentation of confocal microscopy images. A rough segmentation result is obtained from the atlas-based segmentation via affine registration. The boundaries of the segmentation result are close to the object boundaries, and are regarded as the initial contours of the active contour models. After convergence of the snake algorithm, the resulting contours in regions of low contrast are locally refined by parametric bicubic surfaces to alleviate the problem of incorrect convergence. The proposed method increases the accuracy of the snake algorithm because of better initial contours. Besides, it can provide smoother segmented results in 3D visualization. PMID:18178286

  18. Confocal detection of planar homogeneous and heterogeneous immunosorbent assays

    NASA Astrophysics Data System (ADS)

    Ghafari, Homanaz; Zhou, Yanzhou; Ali, Selman; Hanley, Quentin S.

    2009-11-01

    Optically sectioned detection of fluorescence immunoassays using a confocal microscope enables the creation of both homo- and heterogeneous planar format assays. We report a set assays requiring optically sectioned detection using a model system and analysis procedures for separating signals of a surface layer from an overlying solution. A model sandwich assay with human immunoglobulin G as the target antigen is created on a glass substrate. The prepared surfaces are exposed to antigen and a FITC-labeled secondary antibody. The resulting preparations are either read directly to provide a homogeneous assay or after wash steps, giving a heterogeneous assay. The simplicity of the object shapes arising from the planar format makes the decomposition of analyte signals from the thin film bound to the surface and overlayer straightforward. Measured response functions of the thin film and overlayer fit well to the Cauchy-Lorentz and cumulative Cauchy-Lorentz functions, respectively, enabling the film and overlayer to be separated. Under the conditions used, the detection limits for the homogeneous and heterogeneous forms of the assay are 2.2 and 5.5 ng/ml, respectively. Planar format, confocally read fluorescence assays enable wash-free detection of antigens and should be applicable to a wide range of assays involving surface-bound species.

  19. Variational attenuation correction in two-view confocal microscopy

    PubMed Central

    2013-01-01

    Background Absorption and refraction induced signal attenuation can seriously hinder the extraction of quantitative information from confocal microscopic data. This signal attenuation can be estimated and corrected by algorithms that use physical image formation models. Especially in thick heterogeneous samples, current single view based models are unable to solve the underdetermined problem of estimating the attenuation-free intensities. Results We present a variational approach to estimate both, the real intensities and the spatially variant attenuation from two views of the same sample from opposite sides. Assuming noise-free measurements throughout the whole volume and pure absorption, this would in theory allow a perfect reconstruction without further assumptions. To cope with real world data, our approach respects photon noise, estimates apparent bleaching between the two recordings, and constrains the attenuation field to be smooth and sparse to avoid spurious attenuation estimates in regions lacking valid measurements. Conclusions We quantify the reconstruction quality on simulated data and compare it to the state-of-the art two-view approach and commonly used one-factor-per-slice approaches like the exponential decay model. Additionally we show its real-world applicability on model organisms from zoology (zebrafish) and botany (Arabidopsis). The results from these experiments show that the proposed approach improves the quantification of confocal microscopic data of thick specimen. PMID:24350574

  20. Theoretical analysis of a rotating-disk partially confocal scanning microscope.

    PubMed

    Conchello, J A; Lichtman, J W

    1994-02-01

    Confocal scanning microscopy is widely used for three-dimensional (3-D) visualization of fixed specimens but has found only a limited 3-D reconstruction application for living specimens because the high intensity of the excitation often damages the specimen or causes the fluorescent dye to bleach. Computational optical-sectioning microscopy also suffers from drawbacks because nonconfocal 3-D imaging is fundamentally constrained by an artifactual elongation in the optical axis imposed by the so-called missing cone. We investigate the imaging properties of a new rotating-disk partially confocal scanning microscope (PCSM) that greatly reduces collection time by using multiple apertures for both excitation and detection, effectively working as many confocal microscopes in parallel. We show that this PCSM behaves as a hybrid microscope; near the in-focus plane it behaves near the theoretical optimum for confocal microscopy, and away from this plane its behavior approaches that of a nonconfocal microscope. We also show that the rotating-disk PCSM does not suffer from a missing cone. In fact, the optical transfer function of the theoretically optimal confocal microscope and the rotating-disk PCSM have practically the same bandpass in the spatial-frequency domain. PMID:20862053

  1. Repartition of oil miscible and water soluble UV filters in an applied sunscreen film determined by confocal Raman microspectroscopy.

    PubMed

    Sohn, Myriam; Buehler, Theodor; Imanidis, Georgios

    2016-07-01

    Photoprotection provided by topical sunscreens is expressed by the sun protection factor (SPF) which depends primarily on the UV filters contained in the product and the applied sunscreen amount. Recently, the vehicle was shown to significantly impact film thickness distribution of an applied sunscreen and sunscreen efficacy. In the present work, repartition of the UV filters within the sunscreen film upon application is investigated for its role to affect sun protection efficacy. The spatial repartition of an oil-miscible and a water-soluble UV filter within the sunscreen film was studied using confocal Raman microspectroscopy. Epidermis of pig ear skin was used as substrate for application of three different sunscreen formulations, an oil-in-water emulsion, a water-in-oil emulsion, and a clear lipo-alcoholic spray (CAS) and SPF in vitro was measured. Considerable differences in the repartition of the UV filters upon application and evaporation of volatile ingredients were found between the tested formulations. A nearly continuous phase of lipid-miscible UV filter was formed only for the WO formulation with dispersed aggregates of water-soluble UV filter. OW emulsion and CAS exhibited interspersed patches of the two UV filters, whereas the segregated UV filter domains of the latter formulation were by comparison of a much larger scale and spanned the entire thickness of the sunscreen film. CAS therefore differed markedly from the other two formulations with respect to filter repartition. This difference should be reflected in SPF when the absorption spectra of the employed UV filters are not the same. Confocal Raman microspectroscopy was shown to be a powerful technique for studying this mechanism of sun protection performance of sunscreens. PMID:27256969

  2. Optical clearing assisted confocal microscopy of ex vivo transgenic mouse skin

    NASA Astrophysics Data System (ADS)

    Song, Eunjoo; Ahn, YoonJoon; Ahn, Jinhyo; Ahn, Soyeon; Kim, Changhwan; Choi, Sanghoon; Boutilier, Richard Martin; Lee, Yongjoong; Kim, Pilhan; Lee, Ho

    2015-10-01

    We examined the optical clearing assisted confocal microscopy of the transgenic mouse skin. The pinna and dorsal skin were imaged with a confocal microscope after the application of glycerol and FocusClear. In case of the glycerol-treated pinna, the clearing was minimal due to the inefficient permeability. However, the imaging depth was improved when the pinna was treated with FocusClear. In case of dorsal skin, we were able to image deeply to the subcutaneous connective tissue with both agents. Various skin structures such as the vessel, epithelium cells, cartilage, dermal cells, and hair follicles were clearly imaged.

  3. Three-dimensional photoacoustic imaging system in line confocal mode for breast cancer detection

    NASA Astrophysics Data System (ADS)

    Ye, Fei; Yang, Sihua; Xing, Da

    2010-11-01

    We present a three-dimensional (3-D) photoacoustic imaging system (PAIS) in line confocal mode for breast cancer detection. With the line confocal mode, the spatial resolution of the PAIS was tested to be improved about three times compared with the nonconfocal mode PAIS. Furthermore, with a flexible scanning system and no compression on the breast, the PAIS could supply a comfortable and safe diagnosis process for the patient. An ex vivo breast tumor imaging experiment was performed and the tumor was visualized by the 3-D photoacoustic image. The experimental result demonstrated that the system had great potential of application in breast cancer detection.

  4. Thermal maturity of Tasmanites microfossils from confocal laser scanning fluorescence microscopy

    USGS Publications Warehouse

    Hackley, Paul C.; Kus, Jolanta

    2015-01-01

    We report here, for the first time, spectral properties of Tasmanites microfossils determined by confocal laser scanning fluorescence microscopy (CLSM, using Ar 458 nm excitation). The Tasmanites occur in a well-characterized natural maturation sequence (Ro 0.48–0.74%) of Devonian shale (n = 3 samples) from the Appalachian Basin. Spectral property λmax shows excellent agreement (r2 = 0.99) with extant spectra from interlaboratory studies which used conventional fluorescence microscopy techniques. This result suggests spectral measurements from CLSM can be used to infer thermal maturity of fluorescent organic materials in geologic samples. Spectra of regions with high fluorescence intensity at fold apices and flanks in individual Tasmanites are blue-shifted relative to less-deformed areas in the same body that have lower fluorescence intensity. This is interpreted to result from decreased quenching moiety concentration at these locations, and indicates caution is needed in the selection of measurement regions in conventional fluorescence microscopy, where it is common practice to select high intensity regions for improved signal intensity and better signal to noise ratios. This study also documents application of CLSM to microstructural characterization of Tasmanites microfossils. Finally, based on an extant empirical relation between conventional λmax values and bitumen reflectance, λmax values from CLSM of Tasmanites microfossils can be used to calculate a bitumen reflectance equivalent value. The results presented herein can be used as a basis to broaden the future application of CLSM in the geological sciences into hydrocarbon prospecting and basin analysis.

  5. Characterization and Application of a Grazing Angle Objective for Quantitative Infrared Reflection Microspectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.

    1995-01-01

    A grazing angle objective on an infrared microspectrometer is studied for quantitative spectroscopy by considering the angular dependence of the incident intensity within the objective's angular aperture. The assumption that there is no angular dependence is tested by comparing the experimental reflectance of Si and KBr surfaces with the reflectance calculated by integrating the Fresnel reflection coefficient over the angular aperture under this assumption. Good agreement was found, indicating that the specular reflectance of surfaces can straight-forwardly be quantitatively integrated over the angular aperture without considering non-uniform incident intensity. This quantitative approach is applied to the thickness determination of dipcoated Krytox on gold. The infrared optical constants of both materials are known, allowing the integration to be carried out. The thickness obtained is in fair agreement with the value determined by ellipsometry in the visible. Therefore, this paper illustrates a method for more quantitative use of a grazing angle objective for infrared reflectance microspectroscopy.

  6. On some properties of reflected skew Brownian motions and applications to dispersion in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Song, Shiyu; Wang, Suxin; Wang, Yongjin

    2016-08-01

    Motivated by the close connection between the skew Brownian motion and the random particle motion in heterogeneous media, we investigate the reflected skew Brownian motion and try to find out its relationship with the corresponding dispersion problem when there exists a reflecting boundary. Through the use of the knowledge of stochastic analysis, we provide some basic properties of reflected skew Brownian motions, including the transition density, the Laplace transform of the first passage time, and some related results. A simple method to generate the sample path is also proposed. At the end of this paper, we reveal the strong relationship between the reflected skew Brownian motion and the solute dispersion in the presence of a sharp interface and a reflecting boundary.

  7. Analysis for Mar Vel Black and acetylene soot low reflectivity surfaces for star tracker sunshade applications

    NASA Technical Reports Server (NTRS)

    Yung, E.

    1974-01-01

    Mar Vel Black is a revolutionary new extremely low reflectivity anodized coating developed by Martin Marietta of Denver. It is of great interest in optics in general, and in star trackers specifically because it can reduce extraneous light reflections. A sample of Mar Vel Black was evaluated. Mar Vel Black looks much like a super black surface with many small peaks and very steep sides so that any light incident upon the surface will tend to reflect many times before exiting that surface. Even a high reflectivity surface would thus appear to have a very low reflectivity under such conditions. Conversely, acetylene soot does not have the magnified surface appearance of a super black surface. Its performance is, however, predictable from the surface structure, considering the known configuration of virtually pure carbon.

  8. Design and Demonstration of a Miniature Catheter for a Confocal Microendoscope

    NASA Astrophysics Data System (ADS)

    Rouse, Andrew R.; Kano, Angelique; Udovich, Joshua A.; Kroto, Shona M.; Gmitro, Arthur F.

    2004-11-01

    The fluorescence confocal microendoscope provides high-resolution, in vivo imaging of cellular pathology during optical biopsy. The confocal microendoscope employs a flexible fiber-optic catheter coupled to a custom-built slit-scan confocal microscope. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The 3-mm-diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope, adding microscopic imaging capability to conventional endoscopy. The design and performance of the miniature objective and focus assembly are discussed. Primary applications of the system include diagnosis of disease in the gastrointestinal tract and female reproductive system.

  9. Effects of Fluorescein Staining on Laser In Vivo Confocal Microscopy Images of the Cornea

    PubMed Central

    Sindt, Christine W.; Critser, D. Brice; Grout, Trudy K.; Kern, Jami R.

    2012-01-01

    This study was designed to identify whether topical fluorescein, a common ophthalmic tool, affects laser in vivo confocal microscopy of the cornea, a tool with growing applications. Twenty-five eye care specialists were asked to identify presence or absence of fluorescein in 99 confocal micrographs of healthy corneas. Responses were statistically similar to guessing for the epithelium (48% ± 14% of respondents correct per image) and the subbasal nerve plexus (49% ± 11% correct), but results were less clear for the stroma. Dendritic immune cells were quantified in bilateral images from subjects who had been unilaterally stained with fluorescein. Density of dendritic immune cells was statistically similar between the unstained and contralateral stained eyes of 24 contact lens wearers (P = .72) and of 10 nonwearers (P = .53). Overall, the results indicated that fluorescein staining did not interfere with laser confocal microscopy of corneal epithelium, subbasal nerves, or dendritic immune cells. PMID:22363837

  10. Corneal confocal microscopy: Recent progress in the evaluation of diabetic neuropathy

    PubMed Central

    Papanas, Nikolaos; Ziegler, Dan

    2015-01-01

    The present brief review discusses recent progress with corneal confocal microscopy for the evaluation of diabetic sensorimotor polyneuropathy. Corneal confocal microscopy is a new, non-invasive and reproducible diagnostic modality, and it can also be easily applied for patient follow up. It enables new perspectives of studying the natural history of diabetic sensorimotor polyneuropathy, severity of nerve fiber pathology and documenting early nerve fiber regeneration after therapeutic intervention. It shows moderate to high sensitivity and specificity for the timely diagnosis of diabetic sensorimotor polyneuropathy. Currently, corneal confocal microscopy is mainly used in specialized centers, but deserves more widespread application for the assessment of diabetic sensorimotor polyneuropathy. Finally, further progress is required in terms of technical improvements for automated nerve fiber quantification and for analysis of larger images. PMID:26221515

  11. Corneal confocal microscopy: Recent progress in the evaluation of diabetic neuropathy.

    PubMed

    Papanas, Nikolaos; Ziegler, Dan

    2015-07-01

    The present brief review discusses recent progress with corneal confocal microscopy for the evaluation of diabetic sensorimotor polyneuropathy. Corneal confocal microscopy is a new, non-invasive and reproducible diagnostic modality, and it can also be easily applied for patient follow up. It enables new perspectives of studying the natural history of diabetic sensorimotor polyneuropathy, severity of nerve fiber pathology and documenting early nerve fiber regeneration after therapeutic intervention. It shows moderate to high sensitivity and specificity for the timely diagnosis of diabetic sensorimotor polyneuropathy. Currently, corneal confocal microscopy is mainly used in specialized centers, but deserves more widespread application for the assessment of diabetic sensorimotor polyneuropathy. Finally, further progress is required in terms of technical improvements for automated nerve fiber quantification and for analysis of larger images. PMID:26221515

  12. Study of neutron noise from reflected, metal assemblies with criticality safety applications in mind

    SciTech Connect

    Barnett, C.S.

    1985-08-20

    The author studied the statistics of detected neutrons that leaked from four subcritical reflected, enriched-uranium assemblies, to explore the feasibility of developing a criticality warning system based on neutron noise analysis. The calculated multiplication factors of the assemblies are 0.59, 0.74, 0.82, and 0.92. The author studied three possible discriminators, i.e., three signatures that might be used to discriminate among assemblies of various multiplications. They are: (1) variance-to-mean ratio of the counts in a time bin (V/M); (2) covariance-to-mean ratio of the counts in a common time bin from two different detectors (C/M); and (3) covariance-to-mean ratio of the counts from a single detector in two adjacent time bins of equal length, which the author calls the serial-covariance-to-mean ratio (SC/M). The performances of the three discriminators were not greatly different, but a hierarchy did emerge: SC/M greater than or equal to V/M greater than or equal to C/M. An example of some results: in the neighborhood of k = 0.6 the ..delta..k required for satisfactory discrimination varies from about 3% to 7% as detector solid angle varies from 19% to 5%. In the neighborhood of k = 0.8 the corresponding ..delta..ks are 1% and 2%. The noise analysis techniques studied performed well enough in deeply subcritical situations to deserve testing in an applications environment. They have a good chance of detecting changes in reactivity that are potentially dangerous. One can expect sharpest results when doing comparisons, i.e., when comparing two records, one taken in the past under circumstances known to be normal and one taken now to search for change.

  13. Fluorescence performance standards for confocal microscopy

    NASA Astrophysics Data System (ADS)

    Rüttinger, Steffen; Kapusta, Peter; Völlkopf, Volker; Koberling, Felix; Erdmann, Rainer; Macdonald, Rainer

    2010-02-01

    State of the art confocal microscopes offer diffraction limited (or even better) spatial resolution, highest (single molecule) sensitivity and ps-fluorescence lifetime measurement accuracy. For developers, manufacturers, as well as users of confocal microscopes it is mandatory to assign values to these qualities. In particular for users, it is often not easy to ascertain that the instrument is properly aligned as a large number of factors influence resolution or sensitivity. Therefore, we aspire to design a set of performance standards to be deployed on a day-to-day fashion in order to check the instruments characteristics. The main quantities such performance standard must address are: • Spatial resolution • Sensitivity • Fluorescence lifetime To facilitate the deployment and thus promote wide range adoption in day-to-day performance testing the corresponding standards have to be ready made, easy to handle and to store. The measurement procedures necessary should be available on as many different setups as possible and the procedures involved in their deployment should be as easy as possible. To this end, we developed two performance standards to accomplish the mentioned goals: • Resolution reference • Combined molecular brightness and fluorescence lifetime reference The first one is based on sub-resolution sized Tetra-SpeckTM fluorescent beads or alternatively on single molecules on a glass surface to image and to determine quantitatively the confocal volume, while the latter is a liquid sample containing fluorescent dyes of different concentrations and spectral properties. Both samples are sealed in order to ease their use and prolong their storage life. Currently long-term tests are performed to ascertain durability and road capabilities.

  14. Detection limits of confocal surface plasmon microscopy

    PubMed Central

    Pechprasarn, Suejit; Somekh, Michael G.

    2014-01-01

    This paper applies rigorous diffraction theory to evaluate the minimum mass sensitivity of a confocal optical microscope designed to excite and detect surface plasmons operating on a planar metallic substrate. The diffraction model is compared with an intuitive ray picture which gives remarkably similar predictions. The combination of focusing the surface plasmons and accurate phase measurement mean that under favorable but achievable conditions detection of small numbers of molecules is possible, however, we argue that reliable detection of single molecules will benefit from the use of structured surfaces. System configurations needed to optimize performance are discussed. PMID:24940537

  15. Off-axis reflecting telescope with axially-symmetric optical property and its applications

    NASA Astrophysics Data System (ADS)

    Chang, Seunghyuk

    2006-06-01

    The basic concept and fundamental result of a recently developed geometric aberration theory for classical off-axis reflecting telescopes and imaging systems are presented. It is shown that a classical off-axis reflecting telescope can be designed to have practically axially-symmetric optical property by eliminating the dominant aberration (linear astigmatism) caused by the asymmetric geometry. A simple closed-form equation for elimination of linear astigmatism is presented. Also, to show how the developed aberration theory can be applied to current and future telescopes, several off-axis reflecting telescopes and imaging systems are designed and analyzed.

  16. Diffusion of photoacid generators by laser scanning confocal microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Ping L.; Webber, Stephen E.; Mendenhall, J.; Byers, Jeffrey D.; Chao, Keith K.

    1998-06-01

    Diffusion of the photogenerated acid during the period of time between exposure and development can cause contrast loss and ultimately loss of the latent image. This is especially relevant for chemically amplified photoresists that require a post-exposure baking step, which in turn facilitates acid diffusion due to the high temperature normally employed. It is thus important to develop techniques with good spatial resolution to monitor the photogeneration of acid. More precisely, we need techniques that provide two distinct types of information: spatial resolution on various length scales within the surface layer and also sufficient depth resolution so that one can observe the transition from very surface layer to bulk structure in the polymer blend coated on silicon substrate. Herein laser scanning confocal microscopy is used to evaluate the resist for the first time. We report the use of the confocal microscopy to map the pag/dye distribution in PHS matrices, with both reflectance images and fluorescence images. A laser beam is focused onto a small 3D volume element, termed a voxel. It is typically 200 nm X 200 nm laterally and 800 nm axially. The illuminated voxel is viewed such that only signals emanating from this voxel are detected, i.e., signal from outside the probed voxel is not detected. By adjusting the vertical position of the laser focal point, the voxel can be moved to the designated lateral plane to produce an image. Contrast caused by topology difference between the exposed and unexposed area can be eliminated. Bis-p-butylphenyl iodonium triflat (7% of polyhydroxystyrene) is used as photoacid generators. 5% - 18% (by weight, PHS Mn equals 13 k) resist in PGMEA solution is spin cast onto the treated quartz disk with thickness of 1.4 micrometers , 5 micrometers space/10 micrometers pitch chrome mask is used to generate the pattern with mercury DUV illumination. Fluoresceinamine, the pH-sensitive dye, is also used to enhance the contrast of

  17. Surface roughness and gloss study of prints: application of specular reflection at near infrared

    NASA Astrophysics Data System (ADS)

    Silfsten, P.; Dutta, R.; Pääkkönen, P.; Tåg, C.-M.; Gane, P. A. C.; Peiponen, K.-E.

    2012-12-01

    Absolute reflectance data were measured with a spectrophotometer in the visible and near infrared (NIR) spectral range. The specular reflectance data in the NIR were used for the assessment of the surface roughness of magenta, yellow, cyan and black prints on paper. In addition, surface roughness data obtained from the prints with a mechanical diamond stylus, an optical profiling system and the spectrophotometer are compared with each other. The surface roughness obtained with the aid of the spectrophotometer data suggests a smoother surface than when measured with the diamond stylus and the optical profiling system. The gloss of the prints can be obtained from the absolute specular reflectance spectra in the spectral region of visible light. It is shown that specular reflection data at a fixed wavelength in the NIR are useful also in the interpretation of gloss in the visible spectral range, but using an unconventional grazing angle of incidence.

  18. Imaging System With Confocally Self-Detecting Laser.

    DOEpatents

    Webb, Robert H.; Rogomentich, Fran J.

    1996-10-08

    The invention relates to a confocal laser imaging system and method. The system includes a laser source, a beam splitter, focusing elements, and a photosensitive detector. The laser source projects a laser beam along a first optical path at an object to be imaged, and modulates the intensity of the projected laser beam in response to light reflected from the object. A beam splitter directs a portion of the projected laser beam onto a photodetector. The photodetector monitors the intensity of laser output. The laser source can be an electrically scannable array, with a lens or objective assembly for focusing light generated by the array onto the object of interest. As the array is energized, its laser beams scan over the object, and light reflected at each point is returned by the lens to the element of the array from which it originated. A single photosensitive detector element can generate an intensity-representative signal for all lasers of the array. The intensity-representative signal from the photosensitive detector can be processed to provide an image of the object of interest.

  19. Applications of shallow high-resolution seismic reflection to various environmental problems

    USGS Publications Warehouse

    Miller, R.D.; Steeples, D.W.

    1994-01-01

    Shallow seismic reflection has been successfully applied to environmental problems in a variety of geologic settings. Increased dynamic range of recording equipment and decreased cost of processing hardware and software have made seismic reflection a cost-effective means of imaging shallow geologic targets. Seismic data possess sufficient resolution in many areas to detect faulting with displacement of less than 3 m and beds as thin as 1 m. We have detected reflections from depths as shallow as 2 m. Subsurface voids associated with abandoned coal mines at depths of less than 20 m can be detected and mapped. Seismic reflection has been successful in mapping disturbed subsurface associated with dissolution mining of salt. A graben detected and traced by seismic reflection was shown to be a preferential pathway for leachate leaking from a chemical storage pond. As shown by these case histories, shallow high-resolution seismic reflection has the potential to significantly enhance the economics and efficiency of preventing and/or solving many environmental problems. ?? 1994.

  20. Confocal Raman imaging for cancer cell classification

    NASA Astrophysics Data System (ADS)

    Mathieu, Evelien; Van Dorpe, Pol; Stakenborg, Tim; Liu, Chengxun; Lagae, Liesbet

    2014-05-01

    We propose confocal Raman imaging as a label-free single cell characterization method that can be used as an alternative for conventional cell identification techniques that typically require labels, long incubation times and complex sample preparation. In this study it is investigated whether cancer and blood cells can be distinguished based on their Raman spectra. 2D Raman scans are recorded of 114 single cells, i.e. 60 breast (MCF-7), 5 cervix (HeLa) and 39 prostate (LNCaP) cancer cells and 10 monocytes (from healthy donors). For each cell an average spectrum is calculated and principal component analysis is performed on all average cell spectra. The main features of these principal components indicate that the information for cell identification based on Raman spectra mainly comes from the fatty acid composition in the cell. Based on the second and third principal component, blood cells could be distinguished from cancer cells; and prostate cancer cells could be distinguished from breast and cervix cancer cells. However, it was not possible to distinguish breast and cervix cancer cells. The results obtained in this study, demonstrate the potential of confocal Raman imaging for cell type classification and identification purposes.

  1. Line-scanning, stage scanning confocal microscope

    NASA Astrophysics Data System (ADS)

    Carucci, John A.; Stevenson, Mary; Gareau, Daniel

    2016-03-01

    We created a line-scanning, stage scanning confocal microscope as part of a new procedure: video assisted micrographic surgery (VAMS). The need for rapid pathological assessment of the tissue on the surface of skin excisions very large since there are 3.5 million new skin cancers diagnosed annually in the United States. The new design presented here is a confocal microscope without any scanning optics. Instead, a line is focused in space and the sample, which is flattened, is physically translated such that the line scans across its face in a direction perpendicular to the line its self. The line is 6mm long and the stage is capable of scanning 50 mm, hence the field of view is quite large. The theoretical diffraction-limited resolution is 0.7um lateral and 3.7um axial. However, in this preliminary report, we present initial results that are a factor of 5-7 poorer in resolution. The results are encouraging because they demonstrate that the linear array detector measures sufficient signal from fluorescently labeled tissue and also demonstrate the large field of view achievable with VAMS.

  2. Experimental design for reflection measurements of highly reactive liquid or solid substances with application to liquid sodium. [LMFBR

    SciTech Connect

    Chan, S.H.; Gossler, A.A.

    1980-06-30

    This technical report describes the experimental part of a program on thermal radiation properties of reactor materials. A versatile goniometer system with associated electronic components and mechanical instruments has been assembled. It is designed to measure spectral, specular reflectances of highly reactive liquid or solid substances over a spectral range of 0.3 ..mu.. to 9 ..mu.. and incidence angles of 12/sup 0/ to 30/sup 0/ off the normal direction. The capability of measuring reflectances of liquid substances clearly distinguishes this experimental design from conventional systems which are applicable only to solid substances. This design has been used to measure the spectral, specular reflectance of liquid sodium and preliminary results obtained are compared with those of solid sodium measured by other investigators.

  3. Confocal imaging of ionised calcium in living plant cells.

    PubMed

    Williams, D A; Cody, S H; Gehring, C A; Parish, R W; Harris, P J

    1990-04-01

    Laser-scanning confocal microscopy has been used in conjunction with Fluo-3, a highly fluorescent visible wavelength probe for Ca2+, to visualize Ca2(+)-dynamics in the function of living plant cells. This combination has overcome many of the problems that have limited the use of fluorescence imaging techniques in the study of the role of cations (Ca2+ and H+) in plant cell physiology and enables these processes to be studied in single cells within intact plant tissue preparations. Maize coleoptiles respond to application of ionophores and plant growth hormones with elevations in cytosolic Ca2+ that can be resolved with a high degree of spatial resolution and can be interpreted quantitatively. PMID:2113832

  4. Three-dimensional chemical mapping with a confocal XRF setup.

    PubMed

    Lühl, Lars; Mantouvalou, Ioanna; Schaumann, Ina; Vogt, Carla; Kanngießer, Birgit

    2013-04-01

    A new approach for the nondestructive reconstruction of stratified systems with constant elemental composition but with varying chemical compounds has been developed. The procedure is based on depth scans with a confocal X-ray fluorescence setup at certain energies near absorption edges. These so-called marker energies, where XAFS signals of the involved chemical compounds differ significantly, can also be used to uncover the chemical composition and its topology. A prominent field of application is homogeneous material that is degraded due to chemical reactions like oxidation or reduction. A procedure for the semiquantitative reconstruction of stratified material by means of depth scans at marker energies is elaborated and validated and a three-dimensional mapping is presented. PMID:23445459

  5. Reflections on current and future applications of multiangle imaging to aerosol and cloud remote sensing

    NASA Astrophysics Data System (ADS)

    Diner, David

    2010-05-01

    The Multi-angle Imaging SpectroRadiometer (MISR) instrument has been collecting global Earth data from NASA's Terra satellite since February 2000. With its 9 along-track view angles, 4 spectral bands, intrinsic spatial resolution of 275 m, and stable radiometric and geometric calibration, no instrument that combines MISR's attributes has previously flown in space, nor is there is a similar capability currently available on any other satellite platform. Multiangle imaging offers several tools for remote sensing of aerosol and cloud properties, including bidirectional reflectance and scattering measurements, stereoscopic pattern matching, time lapse sequencing, and potentially, optical tomography. Current data products from MISR employ several of these techniques. Observations of the intensity of scattered light as a function of view angle and wavelength provide accurate measures of aerosol optical depths (AOD) over land, including bright desert and urban source regions. Partitioning of AOD according to retrieved particle classification and incorporation of height information improves the relationship between AOD and surface PM2.5 (fine particulate matter, a regulated air pollutant), constituting an important step toward a satellite-based particulate pollution monitoring system. Stereoscopic cloud-top heights provide a unique metric for detecting interannual variability of clouds and exceptionally high quality and sensitivity for detection and height retrieval for low-level clouds. Using the several-minute time interval between camera views, MISR has enabled a pole-to-pole, height-resolved atmospheric wind measurement system. Stereo imagery also makes possible global measurement of the injection heights and advection speeds of smoke plumes, volcanic plumes, and dust clouds, for which a large database is now available. To build upon what has been learned during the first decade of MISR observations, we are evaluating algorithm updates that not only refine retrieval

  6. Numerical study of a confocal ultrasonic setup for creation of cavitation

    SciTech Connect

    Lafond, Maxime Chavrier, Françoise; Prieur, Fabrice; Mestas, Jean-Louis; Lafon, Cyril

    2015-10-28

    Acoustic cavitation is used for various therapeutic applications such as local enhancement of drug delivery, histotripsy or hyperthermia. One of the utmost important parameter for cavitation creation is the rarefaction pressure. The typical magnitude of the rarefaction pressure required to initiate cavitation from gas dissolved in tissue is beyond the range of the megapascal. Because nonlinear effects need to be taken into account, a numerical simulator based on the Westervelt equation was used to study the pressure waveform and the acoustic field generated by a setup for creation of cavitation consisting of two high intensity focused ultrasound transducers mounted confocally. At constant acoustic power, simulations with only one and both transducers from the confocal setup showed that the distortion of the pressure waveform due to the combined effects of nonlinearity and diffraction is less pronounced when both confocal transducers are used. Consequently, the confocal setup generates a greater peak negative pressure at focus which is more favorable for cavitation initiation. Comparison between the confocal setup and a single transducer with the same total emitting surface puts in evidence the role of the spatial separation of the two beams. Furthermore, it has been previously shown that the location of the peak negative pressure created by a single transducer shifts from focus towards the transducers in the presence of nonlinear effects. The simulator was used to study a configuration where the acoustical axes of transducers intersect on the peak negative pressure instead of the geometrical focus. For a representative confocal setup, namely moderate nonlinear effects, a 2% increase of the peak negative pressure and 8% decrease of the peak positive pressure resulted from this configuration. These differences tend to increase by increasing nonlinear effects. Although the optimal position of the transducers varies with the nonlinear regimen, the intersection point

  7. Numerical study of a confocal ultrasonic setup for creation of cavitation

    NASA Astrophysics Data System (ADS)

    Lafond, Maxime; Chavrier, Françoise; Prieur, Fabrice; Mestas, Jean-Louis; Lafon, Cyril

    2015-10-01

    Acoustic cavitation is used for various therapeutic applications such as local enhancement of drug delivery, histotripsy or hyperthermia. One of the utmost important parameter for cavitation creation is the rarefaction pressure. The typical magnitude of the rarefaction pressure required to initiate cavitation from gas dissolved in tissue is beyond the range of the megapascal. Because nonlinear effects need to be taken into account, a numerical simulator based on the Westervelt equation was used to study the pressure waveform and the acoustic field generated by a setup for creation of cavitation consisting of two high intensity focused ultrasound transducers mounted confocally. At constant acoustic power, simulations with only one and both transducers from the confocal setup showed that the distortion of the pressure waveform due to the combined effects of nonlinearity and diffraction is less pronounced when both confocal transducers are used. Consequently, the confocal setup generates a greater peak negative pressure at focus which is more favorable for cavitation initiation. Comparison between the confocal setup and a single transducer with the same total emitting surface puts in evidence the role of the spatial separation of the two beams. Furthermore, it has been previously shown that the location of the peak negative pressure created by a single transducer shifts from focus towards the transducers in the presence of nonlinear effects. The simulator was used to study a configuration where the acoustical axes of transducers intersect on the peak negative pressure instead of the geometrical focus. For a representative confocal setup, namely moderate nonlinear effects, a 2% increase of the peak negative pressure and 8% decrease of the peak positive pressure resulted from this configuration. These differences tend to increase by increasing nonlinear effects. Although the optimal position of the transducers varies with the nonlinear regimen, the intersection point

  8. In vivo confocal microscopy for the oral cavity: Current state of the field and future potential.

    PubMed

    Maher, N G; Collgros, H; Uribe, P; Ch'ng, S; Rajadhyaksha, M; Guitera, P

    2016-03-01

    Confocal microscopy (CM) has been shown to correlate with oral mucosal histopathology in vivo. The purposes of this review are to summarize what we know so far about in vivo CM applications for oral mucosal pathologies, to highlight some current developments with CM devices relevant for oral applications, and to formulate where in vivo CM could hold further application for oral mucosal diagnosis and management. Ovid Medline® and/or Google® searches were performed using the terms 'microscopy, confocal', 'mouth neoplasms', 'mouth mucosa', 'leukoplakia, oral', 'oral lichen planus', 'gingiva', 'cheilitis', 'taste', 'inflammatory oral confocal', 'mucosal confocal' and 'confocal squamous cell oral'. In summary, inclusion criteria were in vivo use of any type of CM for the human oral mucosa and studies on normal or pathological oral mucosa. Experimental studies attempting to identify proteins of interest and microorganisms were excluded. In total 25 relevant articles were found, covering 8 main topics, including normal oral mucosal features (n=15), oral dysplasia or neoplasia (n=7), inflamed oral mucosa (n=3), taste impairment (n=3), oral autoimmune conditions (n=2), pigmented oral pathology/melanoma (n=1), delayed type hypersensitivity (n=1), and cheilitis glandularis (n=1). The evidence for using in vivo CM in these conditions is poor, as it is limited to mainly small descriptive studies. Current device developments for oral CM include improved probe design. The authors propose that future applications for in vivo oral CM may include burning mouth syndrome, intra-operative mapping for cancer surgery, and monitoring and targeted biopsies within field cancerization. PMID:26786962

  9. Inter-Comparison of ASTER and MODIS Surface Reflectance and Vegetation Index Products for Synergistic Applications to Natural Resource Monitoring

    PubMed Central

    Miura, Tomoaki; Yoshioka, Hiroki; Fujiwara, Kayo; Yamamoto, Hirokazu

    2008-01-01

    Synergistic applications of multi-resolution satellite data have been of a great interest among user communities for the development of an improved and more effective operational monitoring system of natural resources, including vegetation and soil. In this study, we conducted an inter-comparison of two remote sensing products, namely, visible/near-infrared surface reflectances and spectral vegetation indices (VIs), from the high resolution Advanced Thermal Emission and Reflection Radiometer (ASTER) (15 m) and lower resolution Moderate Resolution Imaging Spectroradiometer (MODIS) (250 m – 500 m) sensors onboard the Terra platform. Our analysis was aimed at understanding the degree of radiometric compatibility between the two sensors' products due to sensor spectral bandpasses and product generation algorithms. Multiple pairs of ASTER and MODIS standard surface reflectance products were obtained at randomly-selected, globally-distributed locations, from which two types of VIs were computed: the normalized difference vegetation index and the enhanced vegetation indices with and without a blue band. Our results showed that these surface reflectance products and the derived VIs compared well between the two sensors at a global scale, but subject to systematic differences, of which magnitudes varied among scene pairs. An independent assessment of the accuracy of ASTER and MODIS standard products, in which “in-house” surface reflectances were obtained using in situ Aeronet atmospheric data for comparison, suggested that the performance of the ASTER atmospheric correction algorithm may be variable, reducing overall quality of its standard reflectance product. Atmospheric aerosols, which were not corrected for in the ASTER algorithm, were found not to impact the quality of the derived reflectances. Further investigation is needed to identify the sources of inconsistent atmospheric correction results associated with the ASTER algorithm, including additional quality

  10. Middleware enabling computational self-reflection: exploring the need for and some costs of selfreflecting networks with application to homeland defense

    NASA Astrophysics Data System (ADS)

    Kramer, Michael J.; Bellman, Kirstie L.; Landauer, Christopher

    2002-07-01

    This paper will review and examine the definitions of Self-Reflection and Active Middleware. Then it will illustrate a conceptual framework for understanding and enumerating the costs of Self-Reflection and Active Middleware at increasing levels of Application. Then it will review some application of Self-Reflection and Active Middleware to simulations. Finally it will consider the application and additional kinds of costs applying Self-Reflection and Active Middleware to sharing information among the organizations expected to participate in Homeland Defense.

  11. Reflecting Reflective Practice

    ERIC Educational Resources Information Center

    Galea, Simone

    2012-01-01

    This paper demystifies reflective practice on teaching by focusing on the idea of reflection itself and how it has been conceived by two philosophers, Plato and Irigaray. It argues that reflective practice has become a standardized method of defining the teacher in teacher education and teacher accreditation systems. It explores how practices of…

  12. Confocal imaging of benign and malignant proliferative skin lesions in vivo

    NASA Astrophysics Data System (ADS)

    Gonzalez, Salvador; Rajadhyaksha, Milind M.; Anderson, R. Rox

    1999-06-01

    Near-infrared confocal reflectance microscopy (CM) provides non- invasive real-time images of thin en-face tissue sections with high resolution and contrast. Imaging of cells, nuclei, other organelles, microvessels, and hair follicles has been possible at resolution comparable to standard histology, to a maximum depth of 250-300 μm in human skin in vivo. We have characterized psoriasis as a prototype of benign proliferative skin conditions, and non-pigmented skin malignancies in vivo based on their unstained, native histologic features using CM. Our data shows that reflectance CM may potentially diagnose and morphometrically evaluate proliferative skin lesions in vivo.

  13. Particular features of the application of IR reflection spectroscopy methods in studies in archeology and paleontology

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. M.; Khlopachev, G. A.

    2013-06-01

    We have considered an optical model of a porous rough surface with optical properties of objects (bone, flint) that are typical of archeology and paleontology. We have formulated an approach that makes it possible to perform mathematical processing of the IR reflection spectra of objects of this kind using standard algorithms and determine criteria that ensure obtaining reliable information on objects with a rough surface in the course of interpretation of frequencies in their IR reflection spectra. The potential of the approach has been demonstrated using as an example an investigation by the IR Fourier-transform reflection spectroscopy of mineralization processes of mammoth tusks from two paleolithic sites (14000 and 16000 BCE) located by the town of Yudinovo, Bryansk oblast, Russia.

  14. [Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn].

    PubMed

    Rui, Yu-kui; Luo, Yun-bo; Huang, Kun-lun; Wang, Wei-min; Zhang, Lu-da

    2005-10-01

    With the rapid development of the GMO, more and more GMO food has been pouring into the market. Much attention has been paid to GMO labeling under the controversy of GMO safety. Transgenic corns and their parents were scanned by continuous wave of near infrared diffuse reflectance spectroscopy range of 12000-4000 cm(-1); the resolution was 4 cm(-1); scanning was carried out for 64 times; BP algorithm was applied for data processing. The GMO food was easily resolved. Near-infrared diffuse reflectance spectroscopy is unpolluted and inexpensive compared with PCR and ELISA, so it is a very promising detection method for GMO food. PMID:16395887

  15. Handheld confocal Raman microspectrometer for in-vivo skin cancer measurement

    NASA Astrophysics Data System (ADS)

    Lieber, Chad A.; Ellis, Darrel L.; Billheimer, D. D.; Mahadevan-Jansen, Anita

    2004-07-01

    Several studies have demonstrated Raman spectroscopy to be capable of tissue diagnosis with accuracy rivaling that of histopathologic analysis. This technique obtains biochemical-specific information noninvasively, and can eliminate the pain, time, and cost associated with biopsy and pathological analysis. Furthermore, when used in a confocal arrangement, Raman spectra can be obtained from localized regions of the tissue. Skin cancers are an ideal candidate for this emerging technology, due to their obvious accessibility and presentation at specific depths. However, most commercially available confocal Raman microspectrometers are large, rigid systems ill-suited for clinical application. We developed a bench-top confocal Raman microspectrometer using a portable external-cavity diode laser excitation source. This system was used to study several skin lesions in vitro. Results show the depth-resolved Raman spectra can diagnose in vitro skin lesions with 96% sensitivity, 88% specificity, and 86% pathological classification accuracy. Based on the success of this study, a portable Raman system with a handheld confocal microscope was developed for clinical application. Preliminary in vivo data show several distinct spectral differences between skin pathologies. Diagnostic algorithms are planned for this continuing study to assess the capability of Raman spectroscopy for clinical skin cancer diagnosis.

  16. A microfabricated scanning confocal optical microscope for in situ imaging

    NASA Astrophysics Data System (ADS)

    Dickensheets, David Lee

    Scanning confocal optical microscopes are well suited for imaging living tissue because of their ability to 'cross section' intact tissue. They are not, however, well suited for imaging tissues in situ. This dissertation describes a new, miniature, mirror scanned, high resolution confocal optical microscope that operates in real time. It is small enough to fit into an endoscope, and may eventually be incorporated into a hypodermic needle. Such a device would provide immediate in-situ tissue assessment at the cellular level and may enable, for example, biopsy without tissue removal. Non-medical applications may include process monitoring and endoscopic inspection. The microfabricated confocal optical scanning microscope, or μCOSM, incorporates single mode optical fiber illumination, silicon torsional scan mirrors, and an off- axis micro diffractive lens. The prototype device is monochromatic, at 633 nm, with a 1.1 mm working distance and 0.25 NA. It achieves a line response of 0.98 μm FWHM, and an axial response of 11.1 μm FWHM. The first part of the dissertation describes the opto- mechanical design of the microscope, which was chosen to be compatible with the microfabrication technologies used for its construction. Then the imaging properties of the off-axis diffractive objective lens are developed, including the aberrations of second and third order which constrain its use. The lens is a surface relief phase grating, and a rigorous electromagnetic analysis is employed to specify the pupil function of the microscope. Then the image forming properties of the μCOSM are derived and compared to experimental results. The second part of the dissertation describes the fabrication of the individual elements of the μCOSM, and their assembly into an imaging instrument. The lens is constructed using electron beam lithography and reactive ion etching of a fused silica substrate. The scanning mirrors for the microscope, which comprise a single crystal silicon plate

  17. 3D imaging of neutron tracks using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4

  18. Visualizing Cochlear Mechanics Using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Ulfendahl, M.; Boutet de Monvel, J.; Fridberger, A.

    2003-02-01

    The sound-evoked vibration pattern of the hearing organ is based on complex mechanical interactions between different cellular structures. To explore the structural changes occurring within the organ of Corti during basilar-membrane motion, stepwise alterations of the scala tympani pressure were applied in an in vitro preparation of the guinea-pig temporal bone. Confocal images were acquired at each pressure level. In this way, the motion of several structures could be simultaneously observed with high resolution in a nearly intact system. Images were analyzed using a novel wavelet-based optical-flow estimation algorithm. Under the present experimental conditions, the reticular lamina moved as a stiff plate with a center of rotation in the region of the inner hair cells. The outer hair cells appeared non-rigid and the basal, synaptic regions of these cells displayed significant radial motion indicative of cellular bending and internal shearing.

  19. Confocal imaging with orthogonally polarized illumination beams

    NASA Astrophysics Data System (ADS)

    Kalita, Ranjan; Boruah, Bosanta R.

    2016-03-01

    In confocal microscopy the polarization of the illumination beam plays an important role in determining the orientation of the fluorescent molecules being illuminated. The efficiency of the excitation depends on the angle between the excitation electric field and the direction of the molecular dipole. In order to determine the orientation of the fluorescent molecules in the focal plane the molecules are to be excited using two mutually orthogonal electric fields. In this paper we show how a computer generated holography technique can be implemented using a ferroelectric liquid crystal spatial light modulator to conveniently obtain two images of the same target once with an X polarized illumination beam and another with a Y polarized illumination beam.

  20. Three-dimensional scanning confocal laser microscope

    DOEpatents

    Anderson, R. Rox; Webb, Robert H.; Rajadhyaksha, Milind

    1999-01-01

    A confocal microscope for generating an image of a sample includes a first scanning element for scanning a light beam along a first axis, and a second scanning element for scanning the light beam at a predetermined amplitude along a second axis perpendicular to the first axis. A third scanning element scans the light beam at a predetermined amplitude along a third axis perpendicular to an imaging plane defined by the first and second axes. The second and third scanning element are synchronized to scan at the same frequency. The second and third predetermined amplitudes are percentages of their maximum amplitudes. A selector determines the second and third predetermined amplitudes such that the sum of the percentages is equal to one-hundred percent.

  1. Fluorescence confocal endomicroscopy in biological imaging

    NASA Astrophysics Data System (ADS)

    Delaney, Peter; Thomas, Steven; Allen, John; McLaren, Wendy; Murr, Elise; Harris, Martin

    2007-02-01

    In vivo fluorescence microscopic imaging of biological systems in human disease states and animal models is possible with high optical resolution and mega pixel point-scanning performance using optimised off-the-shelf turn-key devices. There are however various trade-offs between tissue access and instrument performance when miniaturising in vivo microscopy systems. A miniature confocal scanning technology that was developed for clinical human endoscopy has been configured into a portable device for direct hand-held interrogation of living tissue in whole animal models (Optiscan FIVE-1 system). Scanning probes of 6.3mm diameter with a distal tip diameter of 5.0mm were constructed either in a 150mm length for accessible tissue, or a 300mm probe for laparoscopic interrogation of internal tissues in larger animal models. Both devices collect fluorescence confocal images (excitation 488 nm; emission >505 or >550 nm) comprised of 1024 x 1204 sampling points/image frame, with lateral resolution 0.7um; axial resolution 7um; FOV 475 x 475um. The operator can dynamically control imaging depth from the tissue surface to approx 250um in 4um steps via an internally integrated zaxis actuator. Further miniaturisation is achieved using an imaging contact probe based on scanning the proximal end of a high-density optical fibre bundle (~30,000 fibres) of <1mm diameter to transfer the confocal imaging plane to tissue in intact small animal organs, albeit at lower resolution (30,000 sampling points/image). In rodent models, imaging was performed using various fluorescent staining protocols including fluorescently labelled receptor ligands, labelled antibodies, FITC-dextrans, vital dyes and labelled cells administered topically or intravenously. Abdominal organs of large animals were accessed laparoscopically and contrasted using i.v. fluorescein-sodium. Articular cartilage of sheep and pigs was fluorescently stained with calcein-AM or fluorescein. Surface and sub-surface cellular and

  2. Comparison of Three Canopy Reflectance Sensors for Variable-Rate Nitrogen Application in Corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, canopy reflectance sensing has been investigated for in-season assessment of crop nitrogen (N) health and subsequent control of N fertilization. The several sensor systems that are now commercially available have design and operational differences. One difference is the sensed wavel...

  3. Design Study of a Visible/Infrared Periscope for Intense Radiation Applications using Reflective Optics

    SciTech Connect

    Medley, S.S.

    1998-05-01

    In magnetically confined fusion devices employing deuterium-tritium (D-T) operation, refractive optical components exposed to neutron and gamma radiation can be subject to degradation of the transmission characteristics, induced luminescence, and altered mechanical properties including dimensional changes. Although radiation resistant refractive optics functioned well for the Tokamak Fusion Test Reactor (TFTR) periscope system during D-T operation, this design approach is unpromising in the much more hostile radiation environment of future D-T devices such as the International Thermonumclear Experimental Reactor (ITER). Under contract to the Princeton Plasma Physics Laboratory, Ball Aerospace of Colorado carried out a periscope design study based on the use of reflective optics. In this design, beryllium reflective input optics supported by a fused silica optical bench were interfaced to a Cassegrain relay system to transfer plasma images to remotely located cameras. This system is also capable of measuring first-wall surface temperatures in the range of 300 - 2,000 degrees C even under projected heating of the reflective optics themselves to several hundred degrees Celsius. Tests of beryllium mirror samples, however, revealed that operation at temperatures above 700 degrees C leads to a loss of specular reflectivity, thus placing an upper limit on the acceptable thermal environment. The main results of this periscope study are presented in this paper.

  4. Being In-Between: Reflecting on Time, Space and Career during the Tenure Application Process

    ERIC Educational Resources Information Center

    Eichler, Mathew

    2015-01-01

    Part of the process of becoming a tenured faculty member is applying for tenure. This reflective essay reports on the period after the submission of tenure materials for review but before the review process for tenure is completed. This is an "in-between" space, where the race of the tenure track is no longer present, but the role of…

  5. Nadir and oblique canopy reflectance sensing for N application in corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canopy reflectance sensing can be used to assess in-season crop nitrogen (N) health for subsequent control of N fertilization. The several sensor systems that are now commercially available have design and operational differences, including sensed wavelengths, size of the sensed area, and nadir vs. ...

  6. Dual-detection confocal microscopy: high-speed surface profiling without depth scanning

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Ryoung; Gweon, Dae-Gab; Yoo, Hongki

    2016-03-01

    We propose a new method for three-dimensional (3-D) imaging without depth scanning that we refer to as the dual-detection confocal microscopy (DDCM). Compared to conventional confocal microscopy, DDCM utilizes two pinholes of different sizes. DDCM generates two axial response curves which have different stiffness according to the pinhole diameters. The two axial response curves can draw the characteristics curve of the system which shows the relationship between the axial position of the sample and the intensity ratio. Utilizing the characteristic curve, the DDCM reconstructs a 3-D surface profile with a single 2-D scanning. The height of each pixel is calculated by the intensity ratio of the pixel and the intensity ratio curve. Since the height information can be obtained directly from the characteristic curve without depth scanning, a major advantage of DDCM over the conventional confocal microscopy is a speed. The 3-D surface profiling time is dramatically reduced. Furthermore, DDCM can measure 3-D images without the influence of the sample condition since the intensity ratio is independent of the quantum yield and reflectance. We present two types of DDCM, such as a fluorescence microscopy and a reflectance microscopy. In addition, we extend the measurement range axially by varying the pupil function. Here, we demonstrate the working principle of DDCM and the feasibility of the proposed methods.

  7. Innovative acoustic reflection imaging techniques and application to clinical breast tomography

    NASA Astrophysics Data System (ADS)

    Schmidt, Steve P.

    Conventional ultrasound techniques use beam-formed, constant sound speed ray models for fast image reconstruction. However, these techniques are inadequate for the emerging new field of ultrasound tomography (UST). We present a new technique for reconstruction of reflection images from UST data. We have extended the planar Kirchhoff migration method used in geophysics, and combined it with sound speed and attenuation data obtained from the transmission signals to create reflection ultrasound images that are corrected for refractive and attenuative effects. The resulting techniques were applied to simulated numerical phantom data, physical phantom data and in-vivo breast data obtained with an experimental ring transducer prototype. Additionally, the ring transducer was customized to test compatibility with an existing ultrasound workstation. We were able to obtain independently recorded radio-frequency (RF) data for individual transmit-receive pair combinations for all 128 transducers. The signal data was then successfully reconstructed into reflection data using the Kirchhoff migration techniques. The results from the use of sound speed and attenuation corrections lead to significant improvements in image quality, particularly in dense tissues where the refractive and scattering effects are the greatest. The procedure was applied to a variety of breast densities and masses of different natures. The resulting reflection images successfully resolved boundaries and textures. The reflection characteristics of tomographic ultrasound maintain an indispensible position in the quantification of proper mass identification. The results of this project indicate the clinical significance of the invocation of properly compensated Kirchhoff based reconstruction method with the use of sound speed and attenuation parameters for the visualization and classification of masses and tissue.

  8. Research and Development Data to Define the Thermal Performance of Reflective Materials Used to Conserve Energy in Building Applications

    SciTech Connect

    Eisenberg, J

    2001-04-09

    A comprehensive experimental laboratory study has been conducted on the thermal performance of reflective insulation systems. The goal of this study was to develop test and evaluation protocols and to obtain thermal performance data on a selected number of idealized and commercial systems containing reflective airspaces for use in analytical models. Steady-state thermal resistance has been measured on 17 different test panels using two guarded hot boxes. Additional instrumentation was installed to measure the temperature of critical locations inside the test panels. The test parameters which have been studied are heat flow direction (horizontal, up, and down), number of airspaces comprising the cavity, airspace effective emittance, airspace aspect ratio, airspace mean temperature and temperature difference, and the thermal resistance of the stud material. Tests have also been performed on similar constructions with mass insulation. Two one-dimensional calculation techniques (ASHRAE and proposed ASTM) have been employed to determine the cavity thermal resistance from the measured test panel results. The measured cavity thermal resistance is compared with literature data which is commonly employed to calculate the thermal resistance of reflective airspace assemblies. A consumer-oriented handbook pertaining to reflective insulation for building and commercial applications has also been prepared as part of this study.

  9. Bidirectional Reflectance of Flat, Optically Thick Particulate Layers: An Efficient Radiative Transfer Solution and Applications to Snow and Soil Surfaces

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yanovitsku, Edgard G.; Zakharova, Nadia T.

    1999-01-01

    We describe a simple and highly efficient and accurate radiative transfer technique for computing bidirectional reflectance of a macroscopically flat scattering layer composed of nonabsorbing or weakly absorbing, arbitrarily shaped, randomly oriented and randomly distributed particles. The layer is assumed to be homogeneous and optically semi-infinite, and the bidirectional reflection function (BRF) is found by a simple iterative solution of the Ambartsumian's nonlinear integral equation. As an exact Solution of the radiative transfer equation, the reflection function thus obtained fully obeys the fundamental physical laws of energy conservation and reciprocity. Since this technique bypasses the computation of the internal radiation field, it is by far the fastest numerical approach available and can be used as an ideal input for Monte Carlo procedures calculating BRFs of scattering layers with macroscopically rough surfaces. Although the effects of packing density and coherent backscattering are currently neglected, they can also be incorporated. The FORTRAN implementation of the technique is available on the World Wide Web at http://ww,,v.giss.nasa.gov/-crmim/brf.html and can be applied to a wide range of remote sensing, engineering, and biophysical problems. We also examine the potential effect of ice crystal shape on the bidirectional reflectance of flat snow surfaces and the applicability of the Henyey-Greenstein phase function and the 6-Eddington approximation in calculations for soil surfaces.

  10. CONFOCAL LASER SCANNING MICROSCOPY OF RAT FOLLICLE DEVELOPMENT

    EPA Science Inventory

    This study used confocal laser scanning microscopy (CLSM) to study follicular development in millimeter pieces of rat ovary. To use this technology, it is essential to stain the tissue before laser excitation with the confocal microscope. Various fluorescent stains (Yo-Pro, Bo-Pr...

  11. Evaluation and purchase of confocal microscopes: Numerous factors to consider

    EPA Science Inventory

    The purchase of a confocal microscope can be a complex and difficult decision for an individual scientist, group or evaluation committee. This is true even for scientists that have used confocal technology for many years. The task of reaching the optimal decision becomes almost i...

  12. Near-infrared reflectance spectra-applications to problems in asteroid-meteorite relationships

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy A.; Chamberlin, Alan; Vilas, Faith

    1991-01-01

    Near-infrared spectral reflectance data were collected at the Infrared Telescope Facility (IRTF) at Mauna Kea Observatories in 1985 and 1986 for the purpose of searching the region near the 3:1 Kirkwood gap for asteroids with the spectral signatures of ordinary chondrite parent bodies. Twelve reflectance spectra are observed. The presence of ordinary chondrite parent bodies among this specific set of observed asteroids is not obvious, though the sample is biased towards the larger asteroids in the region due to limitations imposed by detector sensitivity. The data set, which was acquired with the same instrumentation used for the 52-color asteroid survey (Bell et al., 1987), also presents some additional findings. The range of spectral characteristics that exist among asteroids of the same taxonomic type is noted. Conclusions based on the findings are discussed.

  13. Application of the Total Reflection X-ray Fluorescence technique to trace elements determination in tobacco

    NASA Astrophysics Data System (ADS)

    Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.

    2008-12-01

    Many studies have identified an important number of toxic elements along with organic carcinogen molecules and radioactive isotopes in tobacco. In this work we have analyzed by Total Reflection X-Ray Fluorescence 9 brands of cigarettes being manufactured and distributed in the Mexican market. Two National Institute of Standards and Technology standards and a blank were equally treated at the same time. Results show the presence of some toxic elements such as Pb and Ni. These results are compared with available data for some foreign brands, while their implications for health are discussed. It can be confirmed that the Total Reflection X-Ray Fluorescence method provides precise (reproducible) and accuracy (trueness) data for 15 elements concentration in tobacco samples.

  14. Optimization and Application of Reflective LSPR Optical Fiber Biosensors Based on Silver Nanoparticles

    PubMed Central

    Chen, Jiangping; Shi, Se; Su, Rongxin; Qi, Wei; Huang, Renliang; Wang, Mengfan; Wang, Libing; He, Zhimin

    2015-01-01

    In this study, we developed a reflective localized surface plasmon resonance (LSPR) optical fiber sensor, based on silver nanoparticles (Ag NPs). To enhance the sensitivity of the LSPR optical sensor, two key parameters were optimized, the length of the sensing area and the coating time of the Ag NPs. A sensing length of 1.5 cm and a 1-h coating time proved to be suitable conditions to produce highly sensitive sensors for biosensing. The optimized sensor has a high refractive index sensitivity of 387 nm/RIU, which is much higher than that of other reported individual silver nanoparticles in solutions. Moreover, the sensor was further modified with antigen to act as a biosensor. Distinctive wavelength shifts were found after each surface modification step. In addition, the reflective LSPR optical fiber sensor has high reproducibility and stability. PMID:26016910

  15. Application of total internal reflection microscopy for laser damage studies on fused silica

    SciTech Connect

    Sheehan, L. M., LLNL

    1997-12-01

    Damage studies show that the majority of damage on ultraviolet grade fused silica initiates at the front or rear surface. The grinding and polishing processes used to produce the optical surfaces of transparent optics play a key role in the development of defects which can ultimately initiate damage. These defects can be on or breaking through the surface or can be sub-surface damage. Total Internal Reflection Microscopy has been documented as a tool for revealing both sub-surface and surface defects in transparent materials. Images taken which compare both Total Internal Reflection Microscopy and Atomic Force Microscopy show that the observed defects can be less than one micron in size. Total Internal Reflection Microscopy has the added benefit of being able to observe large areas (1 square millimeter) with sub-micron detection. Both off-line and in-situ systems have been applied in the Lawrence Livermore National Laboratory`s damage laboratory in order to understand defects in the surface and subsurface of polished fused silica. There is a preliminary indication that TIRM quality can be related to the damage resistance. The in-situ microscope is coupled into a 355 run, 7.5 ns, 10 Hz Nd:YAG laser system in order to study damage occurring at localized scatter sites revealed with the Total Internal Reflection Microscopy method. The tests indicate damage initiating at observed artifacts which have many different morphologies and damage behaviors. Some of the scatter sites and damage morphologies revealed have been related back to the finishing process.

  16. Multimodal confocal mosaics enable high sensitivity and specificity in screening of in situ squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Grados Luyando, Maria del Carmen; Bar, Anna; Snavely, Nicholas; Jacques, Steven; Gareau, Daniel S.

    2014-02-01

    Screening cancer in excision margins with confocal microscopy may potentially save time and cost over the gold standard histopathology (H and E). However, diagnostic accuracy requires sufficient contrast and resolution to reveal pathological traits in a growing set of tumor types. Reflectance mode images structural details due to microscopic refractive index variation. Nuclear contrast with acridine orange fluorescence provides enhanced diagnostic value, but fails for in situ squamous cell carcinoma (SCC), where the cytoplasm is important to visualize. Combination of three modes [eosin (Eo) fluorescence, reflectance (R) and acridine orange (AO) fluorescence] enable imaging of cytoplasm, collagen and nuclei respectively. Toward rapid intra-operative pathological margin assessment to guide staged cancer excisions, multimodal confocal mosaics can image wide surgical margins (~1cm) with sub-cellular resolution and mimic the appearance of conventional H and E. Absorption contrast is achieved by alternating the excitation wavelength: 488nm (AO fluorescence) and 532nm (Eo fluorescence). Superposition and false-coloring of these modes mimics H and E, enabling detection of the carcinoma in situ in the epidermal layer The sum mosaic Eo+R is false-colored pink to mimic eosins' appearance in H and E, while the AO mosaic is false-colored purple to mimic hematoxylins' appearance in H and E. In this study, mosaics of 10 Mohs surgical excisions containing SCC in situ and 5 containing only normal tissue were subdivided for digital presentation equivalent to 4X histology. Of the total 16 SCC in situ multimodal mosaics and 16 normal cases presented, two reviewers made 1 and 2 (respectively) type-2 errors (false positives) but otherwise scored perfectly when using the confocal images to screen for the presence of SCC in situ as compared to the gold standard histopathology. Limitations to precisely mimic H and E included occasional elastin staining by AO. These results suggest that

  17. Quantification of confocal images of biofilms grown on irregular surfaces.

    PubMed

    Sommerfeld Ross, Stacy; Tu, Mai Han; Falsetta, Megan L; Ketterer, Margaret R; Kiedrowski, Megan R; Horswill, Alexander R; Apicella, Michael A; Reinhardt, Joseph M; Fiegel, Jennifer

    2014-05-01

    Bacterial biofilms grow on many types of surfaces, including flat surfaces such as glass and metal and irregular surfaces such as rocks, biological tissues and polymers. While laser scanning confocal microscopy can provide high-resolution images of biofilms grown on any surface, quantification of biofilm-associated bacteria is currently limited to bacteria grown on flat surfaces. This can limit researchers studying irregular surfaces to qualitative analysis or quantification of only the total bacteria in an image. In this work, we introduce a new algorithm called modified connected volume filtration (MCVF) to quantify bacteria grown on top of an irregular surface that is fluorescently labeled or reflective. Using the MCVF algorithm, two new quantification parameters are introduced. The modified substratum coverage parameter enables quantification of the connected-biofilm bacteria on top of the surface and on the imaging substratum. The utility of MCVF and the modified substratum coverage parameter were shown with Pseudomonas aeruginosa and Staphylococcus aureus biofilms grown on human airway epithelial cells. A second parameter, the percent association, provides quantified data on the colocalization of the bacteria with a labeled component, including bacteria within a labeled tissue. The utility of quantifying the bacteria associated with the cell cytoplasm was demonstrated with Neisseria gonorrhoeae biofilms grown on cervical epithelial cells. This algorithm provides more flexibility and quantitative ability to researchers studying biofilms grown on a variety of irregular substrata. PMID:24632515

  18. Single-layer-coated surfaces with linearized reflectance versus angle of incidence: application to passive and active silicon rotation sensors

    NASA Astrophysics Data System (ADS)

    Azzam, R. M. A.; Howlader, M. M. K.; Georgiou, T. Y.

    1995-08-01

    A transparent or absorbing substrate can be coated with a transparent thin film to produce a linear reflectance-versus-angle-of-incidence response over a certain range of angles. Linearization at and near normal incidence is a special case that leads to a maximally flat response for p -polarized, s -polarized, or unpolarized light. For midrange and high-range linearization with moderate and high slopes, respectively, the best results are obtained when the incident light is s polarized. Application to a Si substrate that is coated with a SiO2 film leads to novel passive and active reflection rotation sensors. Experimental results and an error analysis of this rotation sensor are presented.

  19. Dye-enhanced multimodal confocal microscopy for noninvasive detection of skin cancers in mouse models

    NASA Astrophysics Data System (ADS)

    Park, Jesung; Mroz, Pawel; Hamblin, Michael R.; Yaroslavsky, Anna N.

    2010-03-01

    Skin cancer is the most common form of human cancer. Its early diagnosis and timely treatment is of paramount importance for dermatology and surgical oncology. In this study, we evaluate the use of reflectance and fluorescence confocal microscopy for detecting skin cancers in an in-vivo trial with B16F10 melanoma and SCCVII squamous cell carcinoma in mice. For the experiments, the mice are anesthetized, then the tumors are infiltrated with aqueous solution of methylene blue and imaged. Reflectance images are acquired at 658 nm. Fluorescence is excited at 658 nm and registered in the range between 690 and 710 nm. After imaging, the mice are sacrificed. The tumors are excised and processed for hematoxylin and eosin histopathology, which is compared to the optical images. The results of the study indicate that in-vivo reflectance images provide valuable information on vascularization of the tumor, whereas the fluorescence images mimic the structural features seen in histopathology. Simultaneous dye-enhanced reflectance and fluorescence confocal microscopy shows promise for the detection, demarcation, and noninvasive monitoring of skin cancer development.

  20. Hyperspectral confocal fluorescence imaging of cells

    NASA Astrophysics Data System (ADS)

    Haaland, David M.; Jones, Howland D. T.; Sinclair, Michael B.; Carson, Bryan; Branda, Catherine; Poschet, Jens F.; Rebeil, Roberto; Tian, Bing; Liu, Ping; Brasier, Allan R.

    2007-09-01

    Confocal fluorescence imaging of biological systems is an important method by which researchers can investigate molecular processes occurring in live cells. We have developed a new 3D hyperspectral confocal fluorescence microscope that can further enhance the usefulness of fluorescence microscopy in studying biological systems. The new microscope can increase the information content obtained from the image since, at each voxel, the microscope records 512 wavelengths from the emission spectrum (490 to 800 nm) while providing optical sectioning of samples with diffraction-limited spatial resolution. When coupled with multivariate curve resolution (MCR) analyses, the microscope can resolve multiple spatially and spectrally overlapped emission components, thereby greatly increasing the number of fluorescent labels, relative to most commercial microscopes, that can be monitored simultaneously. The MCR algorithm allows the "discovery" of all emitting sources and estimation of their relative concentrations without cross talk, including those emission sources that might not have been expected in the imaged cells. In this work, we have used the new microscope to obtain time-resolved hyperspectral images of cellular processes. We have quantitatively monitored the translocation of the GFP-labeled RelA protein (without interference from autofluorescence) into and out of the nucleus of live HeLa cells in response to continuous stimulation by the cytokine, TNFα. These studies have been extended to imaging live mouse macrophage cells with YFP-labeled RelA and GFP-labeled IRF3 protein. Hyperspectral imaging coupled with MCR analysis makes possible, for the first time, quantitative analysis of GFP, YFP, and autofluorescence without concern for cross-talk between emission sources. The significant power and quantitative capabilities of the new hyperspectral imaging system are further demonstrated with the imaging of a simple fluorescence dye (SYTO 13) traditionally used to stain the

  1. Simulation of attenuated total reflection infrared absorbance spectra: applications to automotive clear coat forensic analysis.

    PubMed

    Lavine, Barry K; Fasasi, Ayuba; Mirjankar, Nikhil; Nishikida, Koichi; Campbell, Jay

    2014-01-01

    Attenuated total reflection (ATR) is a widely used sampling technique in infrared (IR) spectroscopy because minimal sample preparation is required. Since the penetration depth of the ATR analysis beam is quite shallow, the outer layers of a laminate or multilayered paint sample can be preferentially analyzed with the entire sample intact. For this reason, forensic laboratories are taking advantage of ATR to collect IR spectra of automotive paint systems that may consist of three or more layers. However, the IR spectrum of a paint sample obtained by ATR will exhibit distortions, e.g., band broadening and lower relative intensities at higher wavenumbers, compared with its transmission counterpart. This hinders library searching because most library spectra are measured in transmission mode. Furthermore, the angle of incidence for the internal reflection element, the refractive index of the clear coat, and surface contamination due to inorganic contaminants can profoundly influence the quality of the ATR spectrum obtained for automotive paints. A correction algorithm to allow ATR spectra to be searched using IR transmission spectra of the paint data query (PDQ) automotive database is presented. The proposed correction algorithm to convert transmission spectra from the PDQ library to ATR spectra is able to address distortion issues such as the relative intensities and broadening of the bands, and the introduction of wavelength shifts at lower frequencies, which prevent library searching of ATR spectra using archived IR transmission data. PMID:25014606

  2. Cascaded holographic polymer reflection grating filters for optical-code-division multiple-access applications.

    PubMed

    Kostuk, Raymond K; Maeda, Wendi; Chen, Chia-Hung; Djordjevic, Ivan; Vasic, Bane

    2005-12-10

    We evaluate the use of edge-illuminated holographic Bragg filters formed in phenanthrenequinone-doped poly(methyl methacrylate) for optical-code-division multiple-access (OCDMA) coding and decoding applications. Experimental cascaded Bragg filters are formed to select two different wavelengths with a fixed distance between the gratings and are directly coupled to a fiber-measurement system. The configuration and tolerances of the cascaded gratings are shown to be practical for time-wavelength OCDMA applications. PMID:16363782

  3. Optimization of confocal scanning laser ophthalmoscope design

    PubMed Central

    Dhalla, Al-Hafeez; Kelly, Michael P.; Farsiu, Sina; Izatt, Joseph A.

    2013-01-01

    Abstract. Confocal scanning laser ophthalmoscopy (cSLO) enables high-resolution and high-contrast imaging of the retina by employing spatial filtering for scattered light rejection. However, to obtain optimized image quality, one must design the cSLO around scanner technology limitations and minimize the effects of ocular aberrations and imaging artifacts. We describe a cSLO design methodology resulting in a simple, relatively inexpensive, and compact lens-based cSLO design optimized to balance resolution and throughput for a 20-deg field of view (FOV) with minimal imaging artifacts. We tested the imaging capabilities of our cSLO design with an experimental setup from which we obtained fast and high signal-to-noise ratio (SNR) retinal images. At lower FOVs, we were able to visualize parafoveal cone photoreceptors and nerve fiber bundles even without the use of adaptive optics. Through an experiment comparing our optimized cSLO design to a commercial cSLO system, we show that our design demonstrates a significant improvement in both image quality and resolution. PMID:23864013

  4. Deep stroma investigation by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Tatini, Francesca; Pini, Roberto; Valente, Paola; Ardia, Roberta; Buzzonetti, Luca; Canovetti, Annalisa; Malandrini, Alex; Lenzetti, Ivo; Menabuoni, Luca

    2015-03-01

    Laser assisted keratoplasty is nowadays largely used to perform minimally invasive surgery and partial thickness keratoplasty [1-3]. The use of the femtosecond laser enables to perform a customized surgery, solving the specific problem of the single patient, designing new graft profiles and partial thickness keratoplasty (PTK). The common characteristics of the PTKs and that make them eligible respect to the standard penetrating keratoplasty, are: the preservation of eyeball integrity, a reduced risk of graft rejection, a controlled postoperative astigmatism. On the other hand, the optimal surgical results after these PTKs are related to a correct comprehension of the deep stroma layers morphology, which can help in the identification of the correct cleavage plane during surgeries. In the last years some studies were published, giving new insights about the posterior stroma morphology in adult subjects [4,5]. In this work we present a study performed on two groups of tissues: one group is from 20 adult subjects aged 59 +/- 18 y.o., and the other group is from 15 young subjects, aged 12+/-5 y.o.. The samples were from tissues not suitable for transplant in patients. Confocal microscopy and Environmental Scanning Electron Microscopy (ESEM) were used for the analysis of the deep stroma. The preliminary results of this analysis show the main differences in between young and adult tissues, enabling to improve the knowledge of the morphology and of the biomechanical properties of human cornea, in order to improve the surgical results in partial thickness keratoplasty.

  5. Usage of cornea and sclera back reflected images captured in security cameras for forensic and card games applications

    NASA Astrophysics Data System (ADS)

    Zalevsky, Zeev; Ilovitsh, Asaf; Beiderman, Yevgeny

    2013-10-01

    We present an approach allowing seeing objects that are hidden and that are not positioned in direct line of sight with security inspection cameras. The approach is based on inspecting the back reflections obtained from the cornea and the sclera of the eyes of people attending the inspected scene and which are positioned in front of the hidden objects we aim to image after performing proper calibration with point light source (e.g. a LED). The scene can be a forensic scene or for instance a casino in which the application is to see the cards of poker players seating in front of you.

  6. Reflectors with directional-mixed reflection properties for application in luminaries with high-power LED diodes

    NASA Astrophysics Data System (ADS)

    Zaremba, Krzysztof

    2008-06-01

    Application of directional-mixed reflectors results in a luminance decrease of the apparent image of light emitting diodes (LEDs), which is advantageous as far as glare reduction is concerned. On the other hand, reflectors have a negative impact on luminous intensity curves of the luminaries. This work analyzes an impact of surfaces with directional-mixed reflection properties in a mirror reflector designed for a luminary equipped with high-power LEDs. We present an algorithm used to determine the shape of the reflector of the surface with small scattering, where the axis twist angle for a parabolic reflector varies in a predefined range and follows a power function.

  7. Reflective and refractive optical materials for earth and space applications; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    NASA Astrophysics Data System (ADS)

    Riedl, Max J.; Hale, Robert R.; Parsonage, Thomas B.

    The present conference discusses beryllium mirror design and fabrication, production of aspheric beryllium optical surfaces by HIP consolidation, the control of thermally induced porosity for the fabrication of beryllium optics, fine-grained beryllium optical coatings, light-absorbing beryllium baffle materials, and advanced broadband baffle materials. Also discussed are radiation-resistant optical glasses, a catalog of IR and cryooptical properties of selected materials, durable metal-dielectric mirror coatings, the optical stability of diffuse reflectance materials, and optical filters for space applications.

  8. Reflective and refractive optical materials for earth and space applications; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    NASA Technical Reports Server (NTRS)

    Riedl, Max J. (Editor); Hale, Robert R. (Editor); Parsonage, Thomas B. (Editor)

    1991-01-01

    The present conference discusses beryllium mirror design and fabrication, production of aspheric beryllium optical surfaces by HIP consolidation, the control of thermally induced porosity for the fabrication of beryllium optics, fine-grained beryllium optical coatings, light-absorbing beryllium baffle materials, and advanced broadband baffle materials. Also discussed are radiation-resistant optical glasses, a catalog of IR and cryooptical properties of selected materials, durable metal-dielectric mirror coatings, the optical stability of diffuse reflectance materials, and optical filters for space applications.

  9. Fabrication of highly transparent diamond-like carbon anti-reflecting coating for Si solar cell application

    SciTech Connect

    Banerjee, Amit Das, Debajyoti

    2014-04-24

    ARC grade highly transparent unhydrogenated diamond-like carbon (DLC) films were produced, directly from a-C target, using RF magnetron sputtering deposition technique, for optoelectronic applications. Optical band gap, transmittance, reflectance, sp{sup 3} fraction, I{sub D}/I{sub G}, density, and refractive index of the films have been estimated with the help of optical tools like Uv-vis spectrophotometer, ellipsometer and micro-Raman. Optimum ARC-qualities have been identified in low-temperature grown DLC films at an Ar pressure of 4 mTorr in the reactor, accomplishing its key requirements for use in silicon solar cells.

  10. Critical Reflectance Derived from MODIS: Application for the Retrieval of Aerosol Absorption over Desert Regions

    NASA Technical Reports Server (NTRS)

    Wells, Kelley C.; Martins, J. Vanderlei; Remer, Lorraine A.; Kreidenweis, Sonia M.; Stephens, Graeme L.

    2012-01-01

    Aerosols are tiny suspended particles in the atmosphere that scatter and absorb sunlight. Smoke particles are aerosols, as are sea salt, particulate pollution and airborne dust. When you look down at the earth from space sometimes you can see vast palls of whitish smoke or brownish dust being transported by winds. The reason that you can see these aerosols is because they are reflecting incoming sunlight back to the view in space. The reason for the difference in color between the different types of aerosol is that the particles arc also absorbing sunlight at different wavelengths. Dust appears brownish or reddish because it absorbs light in the blue wavelengths and scatters more reddish light to space, Knowing how much light is scattered versus how much is absorbed, and knowin that as a function of wavelength is essential to being able to quantify the role aerosols play in the energy balance of the earth and in climate change. It is not easy measuring the absorption properties of aerosols when they are suspended in the atmosphere. People have been doing this one substance at a time in the laboratory, but substances mix when they are in the atmosphere and the net absorption effect of all the particles in a column of air is a goal of remote sensing that has not yet been completely successful. In this paper we use a technique based on observing the point at which aerosols change from brightening the surface beneath to darkening it. If aerosols brighten a surface. they must scatter more light to space. If they darken the surface. they must be absorbing more. That cross over point is called the critical reflectance and in this paper we show that critical reflectance is a monotonic function of the intrinsic absorption properties of the particles. This parameter we call the single scattering albedo. We apply the technique to MODIS imagery over the Sahara and Sahel regions to retrieve the single scattering albedo in seven wavelengths, compare these retrievals to ground

  11. Transmissive grating-reflective mirror-based fiber optic accelerometer for stable signal acquisition in industrial applications

    NASA Astrophysics Data System (ADS)

    Lee, Yeon-Gwan; Kim, Dae-Hyun; Kim, Chun-Gon

    2012-05-01

    This paper discusses an applicable fiber-optic accelerometer composed of a transmissive grating panel, a reflection mirror, and two optical fibers with a separation of quarter grating pitch as transceivers that monitor the low-frequency accelerations of civil engineering structures. This sensor structure brings together the advantages of both a simple sensor structure, which leads to simplified cable design by 50% in comparison with the conventional transmission-type fiber optic accelerometer, and a stable reflected signals acquisition with repeatability in comparison to the researched grating-reflection type fiber optic accelerometer. The vibrating displacement and sinusoidal acceleration measured from the proposed fiber optic sensor demonstrated good agreement with those of a commercial laser displacement sensor and a MEMS accelerometer without electromagnetic interference. The developed fiber optic accelerometer can be used in frequency ranges below 4.0 Hz with a margin of error that is less than 5% and a high sensitivity of 5.06 rad/(m/s)2.

  12. Reflections on the development and application of FISH whole chromosome painting.

    PubMed

    Tucker, James D

    2015-01-01

    This review describes my personal reflections on the development of whole chromosome painting using fluorescence in situ hybridization and how my laboratory applied the technology in humans and in animal models. The trials and triumphs of the early years are emphasized, along with some of the scientific surprises that were encountered along the way. Scientific issues that my laboratory addressed using chromosome painting technologies are summarized and related to questions in radiation dosimetry, chemical clastogenesis, translocation persistence, and translocation frequencies in unexposed people. A description is provided of scientific controversies that were encountered and how they were resolved. I hope this paper will encourage young scientists to follow their passions and pursue their scientific dreams even if the task seems daunting and the circumstances appear exceedingly difficult. In my case the journey has been challenging, exciting, and richly rewarding on many levels. PMID:25795112

  13. [Quantitative analysis of contents in compound fertilizer and application research using near infrared reflectance spectroscopy].

    PubMed

    Song, Le; Zhang, Hong; Ni, Xiao-Yu; Wu, Lin; Liu, Bin-Mei; Yu, Li-Xiang; Wang, Qi; Wu, Yue-Jin

    2014-01-01

    In the present study, a new approach to fast determining the content of urea, biuret and moisture in compound fertilizer composed of urea, ammonium dihydrogenphosphate and potassium chloride was proposed by using near infrared diffuse reflectance spectroscopy. After preprocessing the original spectrum, partial least squares (PLS) models of urea, biuret and moisture were built with the R2 values of 0.9861, 0.9770 and 0.9713 respectively, the root mean square errors of cross validation were 2.59, 0.38, 0.132 respectively. And the prediction correlation factors were 0.9733, 0.9215 and 0.9679 respectively. The authors detected six kinds of compound fertilizer in market for the model verification, the correlation factors were 0.9237, 0.9786 and 0.9874 respectively. The data implied that the new method can be used for situ quality control in the production process of compound fertilizer. PMID:24783536

  14. Polymer Cholesteric-Liquid-Crystal (PCLC) Flake/Fluid Host Electro-Optical Suspensions and Their Applications in Color Flexible Reflective Displays

    SciTech Connect

    Marshall, K.L.; Trajkovska-Petkoska, A.; Hasman, K.; Leitch, M.; Cox, G.; Kosc, T.Z.; Jacobs, S.D.

    2008-03-13

    Polymer cholesteric-liquid-crystal (PCLC) flake/fluid-host suspensions are a novel particle display technology for full-color reflective display applications on rigid or flexible substrates. These “polarizing pigments” require no polarizers or color filters, switch rapidly at very low voltages, and produce highly saturated colors with a reflection efficiency approaching 80%.

  15. Improving transverse resolution of confocal microscopy through spatiotemporal modulation

    NASA Astrophysics Data System (ADS)

    Wang, Baokai; Zou, Limin; Zhang, Su; Tan, Jiubin

    2015-11-01

    A new method is proposed in this paper to improve transverse resolution of a confocal microscope. By setting up the model of a confocal microscope system through spatiotemporal modulation with moving gratings or acousto-optical modulation without defocus distance under coherent light illumination and deducing two-dimensional coherent image formula and transfer function, simulation tests are run with or without spatiotemporal modulation to prove the effectiveness of the proposed method. Simulation results indicate the proposed method can be used to improve the transverse resolution of a confocal microscope system.

  16. Calculation of confocal microscope images of cholesteric blue phases

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun-ichi; Okumura, Yasushi; Kikuchi, Hirotsugu

    2016-03-01

    Real-space images of bulk cholesteric blue phases (BPs) have been successfully obtained by confocal microscopy observations using structural color without doping fluorescent dye. However, theoretical interpretation of these images (for example, the understanding of the relation between intensity distribution and the ordering of BPs) remains challenging because typical lattice spacing of BPs is of the order of the wavelength of visible light, and therefore geometrical optics is entirely useless. In this work, we present a numerical approach to calculate the confocal images of BPs by solving the Maxwell equations. Calculated confocal images are consistent with experimental observations in terms of in-plane symmetry.

  17. Confocal Microscopy of Unfixed Breast Needle Core Biopsies: A Comparison to Fixed and Stained Sections

    PubMed Central

    2009-01-01

    Background Needle core biopsy, often in conjunction with ultrasonic or stereotactic guided techniques, is frequently used to diagnose breast carcinoma in women. Confocal scanning laser microscopy (CSLM) is a technology that provides real-time digital images of tissues with cellular resolution. This paper reports the progress in developing techniques to rapidly screen needle core breast biopsy and surgical specimens at the point of care. CSLM requires minimal tissue processing and has the potential to reduce the time from excision to diagnosis. Following imaging, specimens can still be submitted for standard histopathological preparation. Methods Needle core breast specimens from 49 patients were imaged at the time of biopsy. These lesions had been characterized under the Breast Imaging Reporting And Data System (BI-RADS) as category 3, 4 or 5. The core biopsies were imaged with the CSLM before fixation. Samples were treated with 5% citric acid and glycerin USP to enhance nuclear visibility in the reflectance confocal images. Immediately following imaging, the specimens were fixed in buffered formalin and submitted for histological processing and pathological diagnosis. CSLM images were then compared to the standard histology. Results The pathologic diagnoses by standard histology were 7 invasive ductal carcinomas, 2 invasive lobular carcinomas, 3 ductal carcinomas in-situ (CIS), 21 fibrocystic changes/proliferative conditions, 9 fibroadenomas, and 5 other/benign; two were excluded due to imaging difficulties. Morphologic and cellular features of benign and cancerous lesions were identified in the confocal images and were comparable to standard histologic sections of the same tissue. Conclusion CSLM is a technique with the potential to screen needle core biopsy specimens in real-time. The confocal images contained sufficient information to identify stromal reactions such as fibrosis and cellular proliferations such as intra-ductal and infiltrating carcinoma, and

  18. Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions

    NASA Astrophysics Data System (ADS)

    Gareau, Dan; Bar, Anna; Snaveley, Nicholas; Lee, Ken; Chen, Nathaniel; Swanson, Neil; Simpson, Eric; Jacques, Steve

    2012-06-01

    For rapid, intra-operative pathological margin assessment to guide staged cancer excisions, multimodal confocal mosaic scan image wide surgical margins (approximately 1 cm) with sub-cellular resolution and mimic the appearance of conventional hematoxylin and eosin histopathology (H&E). The goal of this work is to combine three confocal imaging modes: acridine orange fluorescence (AO) for labeling nuclei, eosin fluorescence (Eo) for labeling cytoplasm, and endogenous reflectance (R) for marking collagen and keratin. Absorption contrast is achieved by alternating the excitation wavelength: 488 nm (AO fluorescence) and 532 nm (Eo fluorescence). Superposition and false-coloring of these modes mimics H&E, enabling detection of cutaneous squamous cell carcinomas (SCC). The sum of mosaic Eo+R is false-colored pink to mimic the appearance of eosin, while the AO mosaic is false-colored purple to mimic the appearance of hematoxylin in H&E. In this study, mosaics of 10 Mohs surgical excisions containing invasive SCC, and five containing only normal tissue were subdivided for digital presentation equivalent to 4× histology. Of the total 50 SCC and 25 normal sub-mosaics presented, two reviewers made two and three type-2 errors (false positives), respectively. Limitations to precisely mimic H&E included occasional elastin staining by AO. These results suggest that confocal mosaics may effectively guide staged SCC excisions in skin and other tissues.

  19. Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions

    PubMed Central

    Bar, Anna; Snaveley, Nicholas; Lee, Ken; Chen, Nathaniel; Swanson, Neil; Simpson, Eric; Jacques, Steve

    2012-01-01

    Abstract. For rapid, intra-operative pathological margin assessment to guide staged cancer excisions, multimodal confocal mosaic scan image wide surgical margins (approximately 1 cm) with sub-cellular resolution and mimic the appearance of conventional hematoxylin and eosin histopathology (H&E). The goal of this work is to combine three confocal imaging modes: acridine orange fluorescence (AO) for labeling nuclei, eosin fluorescence (Eo) for labeling cytoplasm, and endogenous reflectance (R) for marking collagen and keratin. Absorption contrast is achieved by alternating the excitation wavelength: 488 nm (AO fluorescence) and 532 nm (Eo fluorescence). Superposition and false-coloring of these modes mimics H&E, enabling detection of cutaneous squamous cell carcinomas (SCC). The sum of mosaic Eo+R is false-colored pink to mimic the appearance of eosin, while the AO mosaic is false-colored purple to mimic the appearance of hematoxylin in H&E. In this study, mosaics of 10 Mohs surgical excisions containing invasive SCC, and five containing only normal tissue were subdivided for digital presentation equivalent to 4× histology. Of the total 50 SCC and 25 normal sub-mosaics presented, two reviewers made two and three type-2 errors (false positives), respectively. Limitations to precisely mimic H&E included occasional elastin staining by AO. These results suggest that confocal mosaics may effectively guide staged SCC excisions in skin and other tissues. PMID:22734774

  20. Penetration of resin-based materials into initial erosion lesion: A confocal microscopic study.

    PubMed

    Ionta, Franciny Querobim; Boteon, Ana Paula; Moretto, Marcelo Juliano; Júnior, Odair Bim; Honório, Heitor Marques; Silva, Thiago Cruvinel; Wang, Linda; Rios, Daniela

    2016-02-01

    The application of resin-based materials is an alternative of treatment for eroded lesions. Nevertheless, there are no studies about the penetration of these materials into eroded lesion, which might affect its adhesion. Therefore, this study evaluated the penetration of four resin-based materials, with and without enamel etching. By using an in vitro protocol, types of treatment were studied at five levels (AdheSE(®) , Tetric N-Bond(®) , Single Bond 2(®) , Helioseal Clear(®) , Icon(®) ) and types of enamel etching in two levels (with and without). Materials were stained with 0.02 mg/mL ethanolic solution of tetramethylrhodamine isothiocyanate. Bovine enamel samples (4 × 4 mm) were immersed in 0.01 M HCl, pH 2.3, for 30 seconds to produce initial eroded lesions. Afterward, the materials were applied on half of sample enamel surface following the manufacturer's instructions. On the other half of sample, the materials were applied without etching the enamel. Materials penetration into the enamel was assessed by Confocal Laser Scanning Microscopy on reflection and fluorescence modes. The penetration depth (PD) was measured using ImageJ software. Data were analyzed by two-way ANOVA and Tukey test (P < 0.05). Regardless of the material, etched enamel resulted in higher PD than non-etched (P < 0.05). Icon(®) showed the highest PD in enamel followed by Helioseal Clear(®) (P < 0.05), with significant difference between them (P < 0.05) and no difference was found among AdheSE(®) , Tetric N-Bond(®) , and Single Bond 2(®) (P > 0.05). It can be concluded that prior enamel etching increased the materials penetration into eroded enamel and the Icon(®) -infiltrant presented highest penetration. PMID:26626706

  1. Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy

    NASA Astrophysics Data System (ADS)

    Chidley, Matthew D.; Liang, Chen; Descour, Michael R.; Sung, Kung-Bin; Richards-Kortum, Rebecca R.; Gillenwater, Ann

    2002-12-01

    In collaboration with the Department of Biomedical Engineering at the University of Texas at Austin and the UT MD Anderson Cancer Center, a laser scanning fiber confocal reflectance microscope (FCRM) system has been designed and tested for in vivo detection of cervical and oral pre-cancers. This system along with specially developed diagnosis algorithms and techniques can achieve an unprecedented specificity and sensitivity for the diagnosis of pre-cancers in epithelial tissue. The FCRM imaging system consists of an NdYAG laser (1064 nm), scanning mirrors/optics, precision pinhole, detector, and an endoscopic probe (the objective). The objective is connected to the rest of the imaging system via a fiber bundle. The fiber bundle allows the rest of the system to be remotely positioned in a convenient location. Only the objective comes into contact with the patient. It is our intent that inexpensive mass-produced disposable endoscopic probes would be produced for large clinical trials. This paper touches on the general design process of developing a miniature, high numerical aperture, injection-molded (IM) objective. These IM optical designs are evaluated and modified based on manufacturing and application constraints. Based on these driving criteria, one specific optical design was chosen and a detailed tolerance analysis was conducted. The tolerance analysis was custom built to create a realistic statistical analysis for integrated IM lens elements that can be stacked one on top of another using micro-spheres resting in tiny circular grooves. These configurations allow each lens element to be rotated and possibly help compensate for predicted manufacturing errors. This research was supported by a grant from the National Institutes of Health (RO1 CA82880). Special thanks go to Applied Image Group/Optics for the numerous fabrication meetings concerning the miniature IM objective.

  2. Early and delayed afterdepolarizations in rabbit heart Purkinje cells viewed by confocal microscopy.

    PubMed

    Cordeiro, J M; Bridge, J H; Spitzer, K W

    2001-05-01

    We investigated action potentials and Ca(2+) transients in rabbit Purkinje myocytes using whole cell patch clamp recordings and a confocal microscope. Purkinje cells were loaded with 5 microM Fluo-3/AM for 30min. Action potentials were elicited by application of a stimulus delivered through the recording pipettes. When Purkinje cells were stimulated in 2.0mM Ca(2+), transverse XT line scans revealed a symmetrical 'U'-shaped Ca(2+) transient demonstrating that the transient was initiated at the cell periphery. When Purkinje cells were superfused with 1 microM isoprenaline, both early and delayed afterdepolarizations were induced. XT line scans of cells exhibiting early afterdepolarizations showed a second symmetrical 'U'-shaped transient. This Ca(2+) transient was initiated at the cell periphery suggesting reactivation of the Ca(2+) current. In contrast, in Purkinje cells exhibiting delayed afterdepolarizations and a corresponding transient inward current, XT line scans revealed a heterogenous rise in Ca(2+) at both peripheral and central regions of the cell. Immunofluorescence staining of Purkinje cells with an antibody to ryanodine receptors (RyRs) revealed that RyRs are located at regularly spaced intervals throughout the interior of Purkinje cells. These results suggest that, although RyRs are located throughout Purkinje cells, only peripheral RyRs are activated to produce transients, sparks and early afterdepolarizations. During delayed afterdepolarizations, we observed a heterogenous rise in Ca(2+) at both peripheral and central regions of the cell as well as large central increases in Ca(2+). Although the latter may result from central release, we cannot exclude the possibility that it reflects Ca(2+) diffusion from subsarcolemmal sites. PMID:11292386

  3. Retrieving the optical parameters of biological tissues using diffuse reflectance spectroscopy and Fourier series expansions. I. theory and application

    PubMed Central

    Muñoz Morales, Aarón A.; Vázquez y Montiel, Sergio

    2012-01-01

    The determination of optical parameters of biological tissues is essential for the application of optical techniques in the diagnosis and treatment of diseases. Diffuse Reflection Spectroscopy is a widely used technique to analyze the optical characteristics of biological tissues. In this paper we show that by using diffuse reflectance spectra and a new mathematical model we can retrieve the optical parameters by applying an adjustment of the data with nonlinear least squares. In our model we represent the spectra using a Fourier series expansion finding mathematical relations between the polynomial coefficients and the optical parameters. In this first paper we use spectra generated by the Monte Carlo Multilayered Technique to simulate the propagation of photons in turbid media. Using these spectra we determine the behavior of Fourier series coefficients when varying the optical parameters of the medium under study. With this procedure we find mathematical relations between Fourier series coefficients and optical parameters. Finally, the results show that our method can retrieve the optical parameters of biological tissues with accuracy that is adequate for medical applications. PMID:23082281

  4. Near infrared reflectance spectra: Applications to problems in asteroid-meteorite relationships

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy A.; Chamberlin, Alan B.

    1992-01-01

    An observing program designed to search for evidence of ordinary chondrite parent bodies near the 3:1 Kirkwood Gap was carried out in 1985 and 1986. Studies by Wisdom (1985), Wetherill (1985), and subsequent work by Milani et al. (1989) indicate that the 3:1 Kirkwood gap is the most probable source region for the majority of ordinary chondrite meteorites. The diversity of the reflectance spectra among this small data set is surprising. Early work by Gaffey and McCord (1978) showed that the inner region of the main asteroid belt is dominated by high albedo objects with mafic silicate surfaces. One would expect to see mostly spectra with 1- and 2-micron absorption bands based on this earlier work. Only 5 (of 12) spectra have these expected features. The distribution of taxonomic types presented by Gradie and Tedesco (1982) is in most cases a useful simplification of the compositional structure of the asteroid belt. The range of spectral characteristics seen with higher resolution in the near-IR has not been previously reported and is not represented in the standard asteroid taxonomy. Near-IR spectra contain valuable mineralogical information which enhances knowledge of the composition and structure of asteroids.

  5. Reflection polarized light microscopy and its application to pyrolytic carbon deposits

    NASA Astrophysics Data System (ADS)

    Bortchagovsky, E. G.

    2004-05-01

    The methods for the measurement of extinction angles by reflection polarized light microscopy were analyzed with respect to the investigation of pyrolytic carbon deposits. It is demonstrated that measurements of the extinction angle for deposits with circular morphology (e.g., a pyrolytic carbon layer on a fiber) must be strictly distinguished from the standard measurements of optically uniaxial materials with spatially uniform optical properties, such as a single crystal (e.g., graphite or pyrolytic carbon on a planar substrate). On the basis of the mathematical description of the method, an expression of the extinction angle for materials with a circular morphology is derived. This expression differs from the equation describing measurements of the extinction angle for optically uniaxial materials with spatially uniform properties erroneously applied for circular morphology. It is demonstrated on the basis of the developed formalism that no discrepancy exists between measured extinction angles for circular pyrolytic carbon deposits and single crystalline graphite, which was discussed earlier due to the misinterpretation of data measured by two different methods. The physical meaning of extinction angles is discussed and approaches for the measurement of two meaningful ellipsometric parameters instead of one extinction angle are proposed.

  6. Determination of element levels in human serum: Total reflection X-ray fluorescence applications

    NASA Astrophysics Data System (ADS)

    Majewska, U.; Łyżwa, P.; Łyżwa, K.; Banaś, D.; Kubala-Kukuś, A.; Wudarczyk-Moćko, J.; Stabrawa, I.; Braziewicz, J.; Pajek, M.; Antczak, G.; Borkowska, B.; Góźdź, S.

    2016-08-01

    Deficiency or excess of elements could disrupt proper functioning of the human body and could lead to several disorders. Determination of their concentrations in different biological human fluids and tissues should become a routine practice in medical treatment. Therefore the knowledge about appropriate element concentrations in human organism is required. The purpose of this study was to determine the concentration of several elements (P, S, Cl, K, Ca, Cr, Fe, Cu, Zn, Se, Br, Rb, Pb) in human serum and to define the reference values of element concentration. Samples of serum were obtained from 105 normal presumably healthy volunteers (66 women aged between 15 and 78 years old; 39 men aged between 15 and 77 years old). Analysis has been done for the whole studied population and for subgroups by sex and age. It is probably first so a wide study of elemental composition of serum performed in the case of Świętokrzyskie region. Total reflection X-ray fluorescence (TXRF) method was used to perform the elemental analysis. Spectrometer S2 Picofox (Bruker AXS Microanalysis GmbH) was used to identify and measure elemental composition of serum samples. Finally, 1st and 3rd quartiles were accepted as minimum and maximum values of concentration reference range.

  7. Reflections on clinical applications of yoga in voice therapy with MTD.

    PubMed

    Moore, Carmelle

    2012-12-01

    This paper explores the application of modified yoga techniques, as an adjunct to voice therapy, by a speech pathologist who is also a yoga teacher. Yoga practices, with effects that may be short-term, are not considered a substitute for comprehensive and integrated somatic retraining systems (such as the Alexander Technique or Feldenkrais ATM). However, when yoga is conducted emphasizing kinaesthetic and proprioceptive awareness, the client may achieve an 'awareness state' that facilitates the learning of vocal remediation techniques (for example, by more easily 'tuning in' to the subtle sensations of supralaryngeal deconstriction). Core yoga elements and clinical applications are identified. The potential benefits and considerations when using yoga as an adjunct to the treatment of muscle tension dysphonia (MTD) are explored. PMID:23137146

  8. In vivo confocal microscopy of meibomian glands in primary blepharospasm

    PubMed Central

    Lin, Tong; Gong, Lan

    2016-01-01

    Abstract The aim of the study was to evaluate the morphological changes of meibomian glands (MGs) in primary blepharospasm (PBS) by in vivo laser scanning confocal microscopy (LSCM) and to investigate the correlations between clinical data of PBS and LSCM parameters of MGs. This prospective and case–control study recruited 30 consecutive PBS patients and 30 age- and gender-matched healthy controls. After questionnaire assessments of ocular surface disease index (OSDI), Jankovic rating scale, and blepharospasm disability index, all subjects underwent blink rate evaluation, tear film break-up time (TBUT), corneal fluorescein staining (CFS), Schirmer test, MG expressibility, meibum quality, MG dropout, and LSCM examination of the MGs. The main LSCM outcomes included the mean MG acinar area and density, orifice diameter, meibum secretion reflectivity, acinar irregularity, and inhomogeneity of interstice and acinar wall. The PBS patients had significantly higher blink rate, higher OSDI and CFS scores, lower TBUT and Schirmer test value, and worse MG expressibility than the controls (All P < 0.05), whereas meibum quality showed no difference (P > 0.05). The PBS patients showed lower values of MG acinar area, orifice diameter and meibum secretion reflectivity, and higher scores of acinar irregularity and inhomogeneity of interstices than the controls (All P < 0.05). For the PBS patients, the severity of blepharospasm evaluated by JCR scale was strong correlated with MG acinar area (P < 0.001), orifice diameter (P = 0.002), meibum secretion reflectivity (P = 0.002), and MG acinar irregularity (P = 0.013). The MG expressibility was significantly correlated to MG acinar area (P = 0.039), orifice diameter (P < 0.001), and MG acinar irregularity (P = 0.014). The OSDI score was moderate correlated with MG acinar irregularity (P = 0.016), whereas the TBUT value was positively correlated with MG acinar area (P = 0.045) and negatively correlated to MG acinar

  9. Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope

    PubMed Central

    Ra, Hyejun; Piyawattanametha, Wibool; Mandella, Michael J.; Hsiung, Pei-Lin; Hardy, Jonathan; Wang, Thomas D.; Contag, Christopher H.; Kino, Gordon S.; Solgaard, Olav

    2008-01-01

    We present a handheld dual-axes confocal microscope that is based on a two-dimensional microelectromechanical systems (MEMS) scanner. It performs reflectance and fluorescence imaging at 488 nm wavelength, with three-dimensional imaging capability. The fully packaged microscope has a diameter of 10 mm and acquires images at 4 Hz frame rate with a maximum field of view of 400 μm × 260 μm. The transverse and axial resolutions of the handheld probe are 1.7 μm and 5.8 μm, respectively. Capability to perform real time small animal imaging is demonstrated in vivo in transgenic mice. PMID:18545427

  10. Spectrally encoded slit confocal microscopy using a wavelength-swept laser

    NASA Astrophysics Data System (ADS)

    Kim, Soocheol; Hwang, Jaehyun; Heo, Jung; Ryu, Suho; Lee, Donghak; Kim, Sang-Hoon; Oh, Seung Jae; Joo, Chulmin

    2015-03-01

    We present an implementation of spectrally encoded slit confocal microscopy. The method employs a rapid wavelength-swept laser as the light source and illuminates a specimen with a line focus that scans through the specimen as the wavelength sweeps. The reflected light from the specimen is imaged with a stationary line scan camera, in which the finite pixel height serves as a slit aperture. This scanner-free operation enables a simple and cost-effective implementation in a small form factor, while allowing for the three-dimensional imaging of biological samples.

  11. Solar Confocal Interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines, Terence C.

    2006-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. Methods: We have constructed and tested two confocal interferometers. Conclusions: In this paper we compare the confocal interferometer with other spectral imaging filters, provide initial design parameters, show construction details for two designs, and report on the laboratory test results for these interferometers, and propose a multiple etalon system for future testing of these units and to obtain sub-picometer spectral resolution information on the photosphere in both the visible and near-infrared.

  12. Laser confocal radius measurement method for unpolished spheres.

    PubMed

    Wang, Xu; Zhao, Weiqian; Qiu, Lirong; Yang, Shuai; Wang, Zhongyu

    2016-06-10

    A laser confocal radius measurement method for unpolished spheres (CRMUS) is proposed for measuring the radius of an unpolished sphere during optical sphere processing. CRMUS uses the laser confocal focusing technique to accurately identify the cat's eye and confocal positions of the unpolished sphere, and then uses the distance between the cat's eye and confocal positions measured by a distance measurement interferometer to derive the radius. The partially coherent optical theoretical model of the CRMUS derived indicates that the CRMUS is able to measure the radius of the unpolished sphere with a roughness of less than 0.15 μm. Using an unpolished sphere made of Schott BK7 as the test sphere, experimental results indicate that the CRMUS has a relative expanded uncertainty of less than 20 ppm. The CRMUS could greatly increase processing efficiency. PMID:27409012

  13. CALIBRATION AND VALIDATION OF CONFOCAL SPECTRAL IMAGING SYSTEMS

    EPA Science Inventory

    Confocal spectral imaging (CSI) microscope systems now on the market can perform spectral characterization of biological specimens containing fluorescent proteins, labels or dyes. Some CSI have been found to present inconsistent spectral characterizations within a particular syst...

  14. WAVELENGTH AND ALIGNMENT TESTS FOR CONFOCAL SPECTRAL IMAGING SYSTEMS

    EPA Science Inventory

    Confocal spectral imaging (CSI) microscope systems now on the market delineate multiple fluorescent proteins, labels, or dyes within biological specimens by performing spectral characterizations. However, we find that some CSI present inconsistent spectral profiles of reference s...

  15. Confocal stereology: an efficient tool for measurement of microscopic structures.

    PubMed

    Kubínová, Lucie; Janáček, Jiří

    2015-04-01

    Quantitative measurements of geometric forms or counting of objects in microscopic specimens is an essential tool in studies of microstructure. Confocal stereology represents a contemporary approach to the evaluation of microscopic structures by using a combination of stereological methods and confocal microscopy. 3-D images acquired by confocal microscopy can be used for the estimation of geometrical characteristics of microscopic structures by stereological methods, based on the evaluation of optical sections within a thick slice and using computer-generated virtual test probes. Such methods can be used for estimating volume, number, surface area and length using relevant spatial probes, which are generated by specific software. The interactions of the probes with the structure under study are interactively evaluated. An overview of the methods of confocal stereology developed during the past 30 years is presented. Their advantages and pitfalls in comparison with other methods for measurement of geometrical characteristics of microscopic structures are discussed. PMID:25743691

  16. Confocal fluorescence microscopy for detection of cervical preneoplastic lesions

    NASA Astrophysics Data System (ADS)

    Sheikhzadeh, Fahime; Ward, Rabab K.; Carraro, Anita; Chen, Zhaoyang; van Niekerk, Dirk; MacAulay, Calum; Follen, Michele; Lane, Pierre; Guillaud, Martial

    2015-03-01

    We examined and established the potential of ex-vivo confocal fluorescence microscopy for differentiating between normal cervical tissue, low grade Cervical Intraepithelial Neoplasia (CIN1), and high grade CIN (CIN2 and CIN3). Our objectives were to i) use Quantitative Tissue Phenotype (QTP) analysis to quantify nuclear and cellular morphology and tissue architecture in confocal microscopic images of fresh cervical biopsies and ii) determine the accuracy of high grade CIN detection via confocal microscopy. Cervical biopsy specimens of colposcopically normal and abnormal tissues obtained from 15 patients were evaluated by confocal fluorescence microscopy. Confocal images were analyzed and about 200 morphological and architectural features were calculated at the nuclear, cellular, and tissue level. For the purpose of this study, we used four features to delineate disease grade including nuclear size, cell density, estimated nuclear-cytoplasmic (ENC) ratio, and the average of three nearest Delaunay neighbors distance (3NDND). Our preliminary results showed ENC ratio and 3NDND correlated well with histopathological diagnosis. The Spearman correlation coefficient between each of these two features and the histopathological diagnosis was higher than the correlation coefficient between colposcopic appearance and histopathological diagnosis. Sensitivity and specificity of ENC ratio for detecting high grade CIN were both equal to 100%. QTP analysis of fluorescence confocal images shows the potential to discriminate high grade CIN from low grade CIN and normal tissues. This approach could be used to help clinicians identify HGSILs in clinical settings.

  17. Personal reflections on the highlights and changes in radiation and radioisotope measurement applications

    NASA Astrophysics Data System (ADS)

    Gardner, Robin P.; Lee, Kyoung O.

    2015-11-01

    This paper describes the recent changes that the authors have perceived in the use of radiation and radioisotope measurement applications. The first change is that due to the increased use of Monte Carlo simulation which has occurred from a normal evolutionary process. This is due in large part to the increased accuracy that is being obtained by the use of detector response functions (DRFs) and the simultaneous increased computational efficiency that has become available with these DRFs, the availability of a greatly improved weight windows variance reduction method, and the availability of inexpensive computer clusters. This first change is a happy one. The other change that is occurring is in response to recent terrorist activities. That change is the replacement or major change in the use of long-lived radioisotopes in radioisotope measurement and other radioisotope source applications. In general this can be done by improving the security of these radioisotope sources or by replacing them altogether by using machine sources of radiation. In either case one would like to preclude altogether or at least minimize the possibility of terrorists being able to obtain radioisotopes and use them for clandestine purposes.

  18. Confocal laser endomicroscopy in gastrointestinal and pancreatobiliary diseases.

    PubMed

    Nakai, Yousuke; Isayama, Hiroyuki; Shinoura, Susumu; Iwashita, Takuji; Samarasena, Jason B; Chang, Kenneth J; Koike, Kazuhiko

    2014-01-01

    Confocal laser endomicroscopy (CLE) is an emerging diagnostic procedure that enables in vivo pathological evaluation during ongoing endoscopy. There are two types of CLE: endoscope-based CLE (eCLE), which is integrated in the tip of the endoscope, and probe-based CLE (pCLE), which goes through the accessory channel of the endoscope. Clinical data of CLE have been reported mainly in gastrointestinal (GI) diseases including Barrett's esophagus, gastric neoplasms, and colon polyps, but, recently, a smaller pCLE, which goes through a catheter or a fine-needle aspiration needle, was developed and clinical data in the diagnosis of biliary stricture or pancreatic cysts have been increasingly reported. The future application of this novel technique expands beyond the pathological diagnosis to functional or molecular imaging. Despite these promising data, the generalizability of the procedure should be confirmed especially in Japan and other Asian countries, where the current diagnostic yield for GI luminal diseases is high. Given the high cost of CLE devices, cost-benefit analysis should also be considered. PMID:24033351

  19. Laser ablation of basal cell carcinomas guided by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sierra, Heidy; Cordova, Miguel; Nehal, Kishwer; Rossi, Anthony; Chen, Chih-Shan Jason; Rajadhyaksha, Milind

    2016-02-01

    Laser ablation offers precise and fast removal of superficial and early nodular types of basal cell carcinomas (BCCs). Nevertheless, the lack of histological confirmation has been a limitation. Reflectance confocal microscopy (RCM) imaging combined with a contrast agent can offer cellular-level histology-like feedback to detect the presence (or absence) of residual BCC directly on the patient. We conducted an ex vivo bench-top study to provide a set of effective ablation parameters (fluence, number of passes) to remove superficial BCCs while also controlling thermal coagulation post-ablation to allow uptake of contrast agent. The results for an Er:YAG laser (2.9 um and pulse duration 250us) show that with 6 passes of 25 J/cm2, thermal coagulation can be effectively controlled, to allow both the uptake of acetic acid (contrast agent) and detection of residual (or absence) BCCs. Confirmation was provided with histological examination. An initial in vivo study on 35 patients shows that the uptake of contrast agent aluminum chloride) and imaging quality is similar to that observed in the ex vivo study. The detection of the presence of residual tumor or complete clearance was confirmed in 10 wounds with (additional) histology and in 25 lesions with follow-up imaging. Our results indicate that resolution is sufficient but further development and use of appropriate contrast agent are necessary to improve sensitivity and specificity. Advances in RCM technology for imaging of lateral and deep margins directly on the patient may provide less invasive, faster and less expensive image-guided approaches for treatment of BCCs.

  20. Application Research on Nondestructive Testing Technology for Quality of Anchor Based on Elastic Wave Reflection Method

    NASA Astrophysics Data System (ADS)

    Xiao, G.; Zhou, L.

    2014-12-01

    deconvolution, which enabled us to obtain improved signal to noise ratio and sensing precision. Through the above mentioned systematical studies, we developed a reliable nondestructive test method for both short and long anchors based on elastic wave reflection. This research is funded by National Natural Science Foundation of China (Grant No. 41202223)

  1. Three-dimensional resolution and contrast-enhanced confocal microscopy with array detection.

    PubMed

    Ge, Baoliang; Wang, Yifan; Huang, Yujia; Kuang, Cuifang; Fang, Yue; Xiu, Peng; Rong, Zihao; Liu, Xu

    2016-05-01

    What we believe is a novel method for improving confocal microscopy's resolution and contrast in 3D space is proposed. Based on a conventional confocal microscopy setup, we use an array detector composed of 32 photomultiplier tubes (PMTs) to replace one point-detector, where the location offset of each PMT caused a different effective point spread function (PSF). By applying array detection and the fluorescence emission difference method of an image with a solid PSF and another with a donut-shaped PSF, we can enhance lateral resolution about 27% in real time with only one scan, and improve the axial resolving ability by about 22% simultaneously. Experimental results of both fluorescent beads and living cells are presented to verify the applicability and effectiveness of our method. PMID:27128062

  2. Three-dimensional reconstruction of topological deformation in chiral nematic microspheres using fluorescence confocal polarizing microscopy.

    PubMed

    Guo, Jin-Kun; Song, Jang-Kun

    2016-04-01

    Chiral nematic droplets exhibit abundant topological defect structures, which have been intensively studied, both theoretically and experimentally. However, to observe and reconstruct the exact shape of three-dimensional (3D) defect structures has been a challenging task. In this study, we successfully reconstruct the 3D defect structures within a CLC microsphere with long helical pitches by combining polarized optical microscopy (POM) and laser scanning type fluorescence confocal polarizing microscopy (FCPM). The obtained confocal stack images provide us with the vertical location of disclination defects, to allow reconstruction of the full 3D structures. The reconstructed 3D structures can be viewed from different directions, providing a better understanding of the topological structure. Moreover, the defect lines are identified to be + 1 defects, different from the previous prediction. Thus, FCPM provides an excellent tool to study the complex topological configuration in microspheres, and fosters its potential applicability in new devices based on topologically structured soft media. PMID:27137028

  3. Confocal Raman microscopy to monitor extracellular matrix during dental pulp stem cells differentiation

    NASA Astrophysics Data System (ADS)

    Salehi, Hamideh; Collart-Dutilleul, Pierre-Yves; Gergely, Csilla; Cuisinier, Frédéric J. G.

    2015-07-01

    Regenerative medicine brings promising applications for mesenchymal stem cells, such as dental pulp stem cells (DPSCs). Confocal Raman microscopy, a noninvasive technique, is used to study osteogenic differentiation of DPSCs. Integrated Raman intensities in the 2800 to 3000 cm-1 region (C-H stretching) and the 960 cm-1 peak (ν1 PO43-) were collected (to image cells and phosphate, respectively), and the ratio of two peaks 1660 over 1690 cm-1 (amide I bands) to measure the collagen cross-linking has been calculated. Raman spectra of DPSCs after 21 days differentiation reveal several phosphate peaks: ν1 (first stretching mode) at 960 cm-1, ν2 at 430 cm-1, and ν4 at 585 cm-1 and collagen cross-linking can also be calculated. Confocal Raman microscopy enables monitoring osteogenic differentiation in vitro and can be a credible tool for clinical stem cell based research.

  4. Dental pulp stem cells (DPSCs) differentiation study by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Collart-Dutilleul, P.-Y.; Gergely, C.; Cuisinier, F. J. G.

    2014-03-01

    Regenerative medicine brings a huge application for Mesenchymal stem cells such as Dental Pulp Stem Cells (DPSCs). Confocal Raman microscopy, a non-invasive, label free , real time and high spatial resolution imaging technique is used to study osteogenic differentiation of DPSCs. Integrated Raman intensities in the 2800-3000 cm-1 region (C-H stretching) and 960 cm-1 peak (phosphate PO4 3-) were collected. In Dental Pulp Stem Cells 21st day differentiated in buffer solution, phosphate peaks ν1 PO4 3- (first vibrational mode) at 960cm-1 and ν2 PO4 3- at 430cm-1 and ν4 PO4 3- at 585cm-1 are obviously present. Confocal Raman microscopy enables the detection of cell differentiation and it can be used to investigate clinical stem cell research.

  5. Confocal, two-photon laser-induced fluorescence technique for the detection of nitric oxide.

    PubMed

    Reeves, M; Musculus, M; Farrell, P

    1998-10-01

    We describe a confocal two-photon laser-induced fluorescence scheme for the detection of gaseous NO. Excitation from a simple YAG-pumped Coumarin 450 dye system near 452.6 nm was used to promote the two-photon NO(A (2)?(+), nu? = 0 ? X (2)?, nu? = 0) transition in the gamma(0, 0) band. Subsequent fluorescence detection in the range 200-300 nm permitted almost total rejection of elastic and geometric scatter of laser radiation for excellent signal/noise ratio characteristics. The goal of the research was to apply NO fluorescence to a relatively realistic limited optical access combustion environment. A confocal optical arrangement was demonstrated for single-point measurements of NO concentration in gas samples and in atmospheric-pressure flames. The technique is suitable for applications that offer only a single direction for optical access and when significant elastic scatter is present. PMID:18301470

  6. Evaluation of human sclera after femtosecond laser ablation using two photon and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Kurtz, Ronald; Juhasz, Tibor

    2012-08-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial thickness intrascleral channels can be created with a femtosecond laser operating at a wavelength of 1700 nm. Such channels have the potential to increase outflow facility and reduce elevated IOP. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in human cadaver eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such channels. This demonstrates that concept of integrating femtosecond laser surgery, and two-photon and confocal imaging has the future potential for image-guided high-precision surgery in transparent and translucent tissue.

  7. Bidirectional Reflectance of a Macroscopically Flat, High-Albedo Particulate Surface: An Efficient Radiative Transfer Solution and Applications to Regoliths

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Zakharova, Nadia T.

    1999-01-01

    Many remote sensing applications rely on accurate knowledge of the bidirectional reflection function (BRF) of surfaces composed of discrete, randomly positioned scattering particles. Theoretical computations of BRFs for plane-parallel particulate layers are usually reduced to solving the radiative transfer equation (RTE) using one of existing exact or approximate techniques. Since semi-empirical approximate approaches are notorious for their low accuracy, violation of the energy conservation law, and ability to produce unphysical results, the use of numerically exact solutions of RTE has gained justified popularity. For example, the computation of BRFs for macroscopically flat particulate surfaces in many geophysical publications is based on the adding-doubling (AD) and discrete ordinate (DO) methods. A further saving of computer resources can be achieved by using a more efficient technique to solve the plane-parallel RTE than the AD and DO methods. Since many natural particulate surfaces can be well represented by the model of an optically semi-infinite, homogeneous scattering layer, one can find the BRF directly by solving the Ambartsumian's nonlinear integral equation using a simple iterative technique. In this way, the computation of the internal radiation field is avoided and the computer code becomes highly efficient and very accurate and compact. Furthermore, the BRF thus obtained fully obeys the fundamental physical laws of energy conservation and reciprocity. In this paper, we discuss numerical aspects and the computer implementation of this technique, examine the applicability of the Henyey-Greenstein phase function and the sigma-Eddington approximation in BRF and flux calculations, and describe sample applications demonstrating the potential effect of particle shape on the bidirectional reflectance of flat regolith surfaces. Although the effects of packing density and coherent backscattering are currently neglected, they can also be incorporated. The

  8. Reflective Teaching

    ERIC Educational Resources Information Center

    Farrell, Thomas S. C.

    2013-01-01

    Thomas Farrell's "Reflective Teaching" outlines four principles that take teachers from just doing reflection to making it a way of being. Using the four principles, Reflective Practice Is Evidence Based, Reflective Practice Involves Dialogue, Reflective Practice Links Beliefs and Practices, and Reflective Practice Is a Way of Life,…

  9. Application of Reflectance Transformation Imaging Technique to Improve Automated Edge Detection in a Fossilized Oyster Reef

    NASA Astrophysics Data System (ADS)

    Djuricic, Ana; Puttonen, Eetu; Harzhauser, Mathias; Dorninger, Peter; Székely, Balázs; Mandic, Oleg; Nothegger, Clemens; Molnár, Gábor; Pfeifer, Norbert

    2016-04-01

    The world's largest fossilized oyster reef is located in Stetten, Lower Austria excavated during field campaigns of the Natural History Museum Vienna between 2005 and 2008. It is studied in paleontology to learn about change in climate from past events. In order to support this study, a laser scanning and photogrammetric campaign was organized in 2014 for 3D documentation of the large and complex site. The 3D point clouds and high resolution images from this field campaign are visualized by photogrammetric methods in form of digital surface models (DSM, 1 mm resolution) and orthophoto (0.5 mm resolution) to help paleontological interpretation of data. Due to size of the reef, automated analysis techniques are needed to interpret all digital data obtained from the field. One of the key components in successful automation is detection of oyster shell edges. We have tested Reflectance Transformation Imaging (RTI) to visualize the reef data sets for end-users through a cultural heritage viewing interface (RTIViewer). The implementation includes a Lambert shading method to visualize DSMs derived from terrestrial laser scanning using scientific software OPALS. In contrast to shaded RTI no devices consisting of a hardware system with LED lights, or a body to rotate the light source around the object are needed. The gray value for a given shaded pixel is related to the angle between light source and the normal at that position. Brighter values correspond to the slope surfaces facing the light source. Increasing of zenith angle results in internal shading all over the reef surface. In total, oyster reef surface contains 81 DSMs with 3 m x 2 m each. Their surface was illuminated by moving the virtual sun every 30 degrees (12 azimuth angles from 20-350) and every 20 degrees (4 zenith angles from 20-80). This technique provides paleontologists an interactive approach to virtually inspect the oyster reef, and to interpret the shell surface by changing the light source direction

  10. Spectral matrix analysis for detection of polarized wave arrivals and its application to seismic reflection studies using local earthquake data

    NASA Astrophysics Data System (ADS)

    Moriya, H.

    2009-12-01

    Local earthquakes observed at Sendai, Japan, were analyzed to confirm the validity of a method of polarization analysis using the spectral matrix of seismic wave and its application to seismic reflection studies of the crust using local earthquake data. Reflectors (Bright spots) are known below the Nagamachi-Rifu fault, which caused an M 5.0 class event in 1998. Polarization analysis was applied to earthquake data in and around the fault. Use of the Z-parameter, which is defined using the eigenvalues of the spectral matrix and a statistical value representing the confidence level for the detection of the arrival of polarized waves, allowed detection of linearly and elliptically polarized waves in coda waves. The Z-parameter was also used to image the reflectors by using a migration technique that assumes the P × P and S × S reflection waves travel through a multi-layered velocity structure. Distinct reflectors were detected at depths of around 10 km, 14 km, 17 km, 21-26 km, 35 km and 40 km, that is, from deeper than the fault and the Moho. This study demonstrated the feasibility of using the spectral matrix of three-component seismic signal to detect polarized waves and to image reflectors in the earth's crust and upper mantle.

  11. Generalized ray matrix for spherical mirror reflection and its application in square ring resonators and monolithic triaxial ring resonators.

    PubMed

    Yuan, Jie; Long, Xingwu; Chen, Meixiong

    2011-03-28

    To the best of our knowledge, the generalized ray matrix, an augmented 5×5 ray matrix for a spherical mirror reflection with all the possible perturbation sources including three kinds of displacements and its detailed deducing process have been proposed in this paper for the first time. Square ring resonators and monolithic triaxial ring resonators have been chosen as examples to show its application, and some novel results of the optical-axis perturbation have been obtained. A novel method to eliminate the diaphragm mismatching error and the gain capillary mismatching error in monolithic triaxial ring resonators more effectively has also been proposed. Both those results and method have been confirmed by related experiments and the experimental results have been described with diagrammatic representation. This generalized ray matrix is valuable for ray analysis of various kinds of resonators. These results are important for the cavity design, cavity improvement and alignment of high accuracy and super high accuracy ring laser gyroscopes. PMID:21451703

  12. Application of attenuated total reflectance Fourier transform infrared spectroscopy for determination of cefixime in oral pharmaceutical formulations

    NASA Astrophysics Data System (ADS)

    Kandhro, Aftab A.; Laghari, Abdul Hafeez; Mahesar, Sarfaraz A.; Saleem, Rubina; Nelofar, Aisha; Khan, Salman Tariq; Sherazi, S. T. H.

    2013-11-01

    A quick and reliable analytical method for the quantitative assessment of cefixime in orally administered pharmaceutical formulations is developed by using diamond cell attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy as an easy procedure for quality control laboratories. The standards for calibration were prepared in aqueous medium ranging from 350 to 6000 mg/kg. The calibration model was developed based on partial least square (PLS) using finger print region of FT-IR spectrum in the range from 1485 to 887 cm-1. Excellent coefficient of determination (R2) was achieved as high as 0.99976 with root mean square error of 44.8 for calibration. The application of diamond cell (smart accessory) ATR FT-IR proves a reliable determination of cefixime in pharmaceutical formulations to assess the quality of the final product.

  13. Reflective Packaging

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The aluminized polymer film used in spacecraft as a radiation barrier to protect both astronauts and delicate instruments has led to a number of spinoff applications. Among them are aluminized shipping bags, food cart covers and medical bags. Radiant Technologies purchases component materials and assembles a barrier made of layers of aluminized foil. The packaging reflects outside heat away from the product inside the container. The company is developing new aluminized lines, express mailers, large shipping bags, gel packs and insulated panels for the building industry.

  14. Correction of terrestrial LiDAR intensity channel using Oren-Nayar reflectance model: An application to lithological differentiation

    NASA Astrophysics Data System (ADS)

    Carrea, Dario; Abellan, Antonio; Humair, Florian; Matasci, Battista; Derron, Marc-Henri; Jaboyedoff, Michel

    2016-03-01

    Ground-based LiDAR has been traditionally used for surveying purposes via 3D point clouds. In addition to XYZ coordinates, an intensity value is also recorded by LiDAR devices. The intensity of the backscattered signal can be a significant source of information for various applications in geosciences. Previous attempts to account for the scattering of the laser signal are usually modelled using a perfect diffuse reflection. Nevertheless, experience on natural outcrops shows that rock surfaces do not behave as perfect diffuse reflectors. The geometry (or relief) of the scanned surfaces plays a major role in the recorded intensity values. Our study proposes a new terrestrial LiDAR intensity correction, which takes into consideration the range, the incidence angle and the geometry of the scanned surfaces. The proposed correction equation combines the classical radar equation for LiDAR with the bidirectional reflectance distribution function of the Oren-Nayar model. It is based on the idea that the surface geometry can be modelled by a relief of multiple micro-facets. This model is constrained by only one tuning parameter: the standard deviation of the slope angle distribution (σslope) of micro-facets. Firstly, a series of tests have been carried out in laboratory conditions on a 2 m2 board covered by black/white matte paper (perfect diffuse reflector) and scanned at different ranges and incidence angles. Secondly, other tests were carried out on rock blocks of different lithologies and surface conditions. Those tests demonstrated that the non-perfect diffuse reflectance of rock surfaces can be practically handled by the proposed correction method. Finally, the intensity correction method was applied to a real case study, with two scans of the carbonate rock outcrop of the Dents-du-Midi (Swiss Alps), to improve the lithological identification for geological mapping purposes. After correction, the intensity values are proportional to the intrinsic material reflectance

  15. Automatic morphing using image registration: Application to continuous tracking of radar reflectivity and rain fields

    NASA Astrophysics Data System (ADS)

    Vongsaard, Jearanai

    Rainfall is one of the most important natural phenomenon that influences human life. Accurate rainfall estimation and prediction are crucial for flood forecasting, flood control, climate diagnostics, and water resource management. Rain data may be collected from numerous sources. Conventional rain gauge networks or meteorological radars provide continuous coverage in time. Satellite observations provide snap-shots of precipitation fields at poor temporal resolution. While a number of spaceborne platforms have been deployed for rain observation, the development of continuous space/time rainfall remains a major challenge. This dissertation seeks alternative techniques to automatically generate continuous data streams of rainfall data from sparse or intermittent observations. In order to avoid human intervention in the process, an automatic procedure is needed for real-time operations. For this purpose, Automatic Morphing Using Image Registration (AMIR) model is developed by integrating automatic image registration and image morphing algorithm. The new AMIR technique uses automatic image registration as the basis for finding control points for the morphing process. In the study of data assimilation for weather forecasting, there is a need to generate continuous streams of rainfall data to alleviate the so-called "spin up" problem, or the inability to provide short-term forecasts [Road90]. The proposed algorithm has been tested using remote sensing images from Next Generation Weather Radars (NEXRAD) and Tropical Rainfall Measuring Mission (TRMM). Three cases of rainfall data have been used. These include the passage of a storm in Florida, hurricane Floyd, and scattered rain in the southwestern of the United States for the same period using NEXRAD radar data as surrogate for spaceborne observations. These cases have drastically different spatial and temporal characteristics and hence provide tests on the applicability of the AMIR method. Comparative experimental results

  16. Measuring Corneal Haze by Using Scheimpflug Photography and Confocal Microscopy

    PubMed Central

    McLaren, Jay W.; Wacker, Katrin; Kane, Katrina M.; Patel, Sanjay V.

    2016-01-01

    Purpose We compared corneal backscatter estimated from a Scheimpflug camera with backscatter estimated from a clinical confocal microscope across a wide range of corneal haze. Methods A total of 59 corneas from 35 patients with a range of severity of Fuchs' endothelial corneal dystrophy and 15 corneas from 9 normal participants were examined using a Scheimpflug camera (Pentacam) and a confocal microscope (ConfoScan 4). The mean image brightness from the anterior 120 μm, midcornea, and posterior 60 μm of the cornea across the central 2 mm recorded by the Scheimpflug camera and analogous regions from the confocal microscope were measured and standardized. Differences between instruments and correlations between backscatter and disease severity were determined by using generalized estimating equation models. Results Backscatter measured by the two instruments in the anterior and midcornea were correlated (r = 0.67 and 0.43, respectively, P < 0.001), although in the posterior cornea they were not correlated (r = 0.13, P = 0.66). Measured with the Scheimpflug camera, mean backscatter from the anterior and midcornea were greater, whereas backscatter from the posterior cornea was lower (P < 0.001) than that measured by the confocal microscope. Backscatter from the anterior cornea was correlated with disease severity for both instruments (Scheimpflug, r = 0.55, P < 0.001; confocal, r = 0.49, P = 0.003). Conclusions The Scheimpflug camera and confocal microscope should not be used interchangeably to measure corneal haze. The ability to detect changes in backscatter with disease severity is superior with the Scheimpflug camera. However, the confocal microscope provides higher resolution of corneal structure. PMID:26803798

  17. Super-resolution mapping of glutamate receptors in C. elegans by confocal correlated PALM.

    PubMed

    Vangindertael, Jeroen; Beets, Isabel; Rocha, Susana; Dedecker, Peter; Schoofs, Liliane; Vanhoorelbeke, Karen; Vanhoorelbeeke, Karen; Hofkens, Johan; Mizuno, Hideaki

    2015-01-01

    Photoactivated localization microscopy (PALM) is a super-resolution imaging technique based on the detection and subsequent localization of single fluorescent molecules. PALM is therefore a powerful tool in resolving structures and putative interactions of biomolecules at the ultimate analytical detection limit. However, its limited imaging depth restricts PALM mostly to in vitro applications. Considering the additional need for anatomical context when imaging a multicellular organism, these limitations render the use of PALM in whole animals difficult. Here we integrated PALM with confocal microscopy for correlated imaging of the C. elegans nervous system, a technique we termed confocal correlated PALM (ccPALM). The neurons, lying below several tissue layers, could be visualized up to 10 μm deep inside the animal. By ccPALM, we visualized ionotropic glutamate receptor distributions in C. elegans with an accuracy of 20 nm, revealing super-resolution structure of receptor clusters that we mapped onto annotated neurons in the animal. Pivotal to our results was the TIRF-independent detection of single molecules, achieved by genetic regulation of labeled receptor expression and localization to effectively reduce the background fluorescence. By correlating PALM with confocal microscopy, this platform enables dissecting biological structures with single molecule resolution in the physiologically relevant context of whole animals. PMID:26323790

  18. Atomic force microscopy and confocal laser scanning microscopy on the cytoskeleton of permeabilised and embedded cells.

    PubMed

    Meller, Karl; Theiss, Carsten

    2006-03-01

    We describe a technical method of cell permeabilisation and embedding to study the organisation and distribution of intracellular proteins with aid of atomic force microscopy and confocal laser scanning microscopy in identical areas. While confocal laser scanning microscopy is useful for the identification of certain proteins subsequent labelling with markers or antibodies, atomic force microscopy allows the observation of macromolecular structures in fixed and living cells. To demonstrate the field of application of this preparatory technique, cells were permeabilised, fixed, and the actin cytoskeleton was stained with phalloidin-rhodamine. Confocal laser scanning microscopy was used to show the organisation of these microfilaments, e.g. geodesic dome structures. Thereafter, cells were embedded in Durcupan water-soluble resin, followed by UV-polymerisation of resin at 4 degrees C. This procedure allowed intracellular visualisation of the cell nucleus or cytoskeletal elements by atomic force microscopy, for instance to analyse the globular organisation of actin filaments. Therefore, this method offers a great potential to combine both microscopy techniques in order to understand and interpret intracellular protein relations, for example, the biochemical and morphological interaction of the cytoskeleton. PMID:16360280

  19. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    PubMed Central

    Späth, Andreas; Raabe, Jörg; Fink, Rainer H.

    2015-01-01

    Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed. PMID:25537596

  20. In vivo Confocal Microscopy Report after Lasik with Sequential Accelerated Corneal Collagen Cross-Linking Treatment

    PubMed Central

    Mazzotta, Cosimo; Balestrazzi, Angelo; Traversi, Claudio; Caragiuli, Stefano; Caporossi, Aldo

    2014-01-01

    We report the first pilot qualitative confocal microscopic analysis of a laser in situ keratomileusis (Lasik) treatment combined with sequential high-fluence accelerated corneal collagen cross-linking, denominated Lasik XTra, by means of HRT II laser scanning in vivo confocal microscopy after a 6-month follow-up. After obtaining approval from the Siena University Hospital Institutional Review Board, a 33-year-old female patient underwent a Lasik XTra procedure in her left eye. Confocal analysis demonstrated induced slight corneal microstructural changes by the interaction between UV-A, riboflavin and corneal stromal collagen, beyond the interface to a depth of 160 µm, without adverse events at the interface and endothelial levels. This application may be considered a prophylactic biomechanical treatment, stiffening the intermediate corneal stroma to prevent corneal ectasia and stabilizing the clinical results of refractive surgery. According to our preliminary experiences, this combined approach may be useful in higher-risk Lasik patients for hyperopic treatments, high myopia and lower corneal thicknesses. PMID:24847258

  1. Fibre optic confocal imaging (FOCI) for subsurface microscopy of the colon in vivo.

    PubMed Central

    Delaney, P M; King, R G; Lambert, J R; Harris, M R

    1994-01-01

    Fibre optic confocal imaging (FOCI) is a new type of microscopy which has been recently developed (Delaney et al. 1993). In contrast to conventional light microscopy, FOCI and other confocal techniques allow clear imaging of subsurface structures within translucent objects. However, unlike conventional confocal microscopes which are bulky (because of a need for accurate alignment of large components) FOCI allows the imaging end to be miniaturised and relatively mobile. FOCI is thus particularly suited for clear subsurface imaging of structures within living animals or subjects. The aim of the present study was to assess the suitability of using FOCI for imaging of subsurface structures within the colon, both in vitro (human and rat biopsies) and in vivo (in rats). Images were obtained in fluorescence mode (excitation 488 nm, detection above 515 nm) following topical application of fluorescein. By this technique the glandular structure of the colon was imaged. FOCI is thus suitable for subsurface imaging of the colon in vivo. Images Fig. 2 Fig. 3 PMID:8157487

  2. Super-resolution mapping of glutamate receptors in C. elegans by confocal correlated PALM

    PubMed Central

    Vangindertael, Jeroen; Beets, Isabel; Rocha, Susana; Dedecker, Peter; Schoofs, Liliane; Vanhoorelbeeke, Karen; Hofkens, Johan; Mizuno, Hideaki

    2015-01-01

    Photoactivated localization microscopy (PALM) is a super-resolution imaging technique based on the detection and subsequent localization of single fluorescent molecules. PALM is therefore a powerful tool in resolving structures and putative interactions of biomolecules at the ultimate analytical detection limit. However, its limited imaging depth restricts PALM mostly to in vitro applications. Considering the additional need for anatomical context when imaging a multicellular organism, these limitations render the use of PALM in whole animals difficult. Here we integrated PALM with confocal microscopy for correlated imaging of the C. elegans nervous system, a technique we termed confocal correlated PALM (ccPALM). The neurons, lying below several tissue layers, could be visualized up to 10 μm deep inside the animal. By ccPALM, we visualized ionotropic glutamate receptor distributions in C. elegans with an accuracy of 20 nm, revealing super-resolution structure of receptor clusters that we mapped onto annotated neurons in the animal. Pivotal to our results was the TIRF-independent detection of single molecules, achieved by genetic regulation of labeled receptor expression and localization to effectively reduce the background fluorescence. By correlating PALM with confocal microscopy, this platform enables dissecting biological structures with single molecule resolution in the physiologically relevant context of whole animals. PMID:26323790

  3. In vivo molecular and morphological imaging by real time confocal mini-microscopy

    NASA Astrophysics Data System (ADS)

    Goetz, Martin; Gregor, Sebastian; Fottner, Christian; Garcia-Lazaro, Jose; Schirrmacher, Esther; Kempski, Oliver; Bartenstein, Peter; Weber, Mathias; Biesterfeld, Stefan; Galle, Peter R.; Neurath, Markus F.; Kiesslich, Ralf

    2006-02-01

    We evaluated a newly developed miniaturized confocal laser microscopy probe for real-time in vivo molecular and morphological imaging of normal, inflammatory, and malignant tissue in rodents. In the rigid mini-microscopy probe (diameter 7 mm), a single line laser delivers an excitation wavelength of 488 nm. Optical slice thickness is 7 μm, lateral resolution 0.7 μm. The range of the z-axis is 0 - 250 μm below the tissue surface. Organ systems were examined in vivo in rodent models of human diseases. FITC-labeled Lycopersion esculentum lectin was injected or selected cell populations stained for molecular targeting. Morphological imaging was performed using fluorescein sodium, FITC-labeled dextran, and/or acriflavine hydrochloride. Cellular and subcellular details could be readily visualised in vivo at high resolution. Tissue characteristics of different organs were rendered at real time. Selective blood cell staining allowed observation of blood flow and cell migration. Inflammatory diseases such as hepatitis were diagnosed, and tumors were characterized under microscopic control in vivo. Confocal mini-microscopy allows real time in vivo molecular and morphological histologic imaging at high resolution of normal and diseased tissue. Since confocal microscopy is applicable to humans, this technology will have a high impact on different faculties in medicine.

  4. Confocal Raman microscopy of protein adsorbed in chromatographic particles.

    PubMed

    Xiao, Yuewu; Stone, Thomas; Bell, David; Gillespie, Christopher; Portoles, Marta

    2012-09-01

    Confocal Raman microscopy is a nondestructive analytical technique that combines the chemical information from vibrational spectroscopy with the spatial resolution of confocal microscopy. It was applied, for the first time, to measure conformation and distribution of protein adsorbed in wetted chromatographic particles. Monoclonal antibody was loaded into the Fractogel EMD SO(3) (M) cation exchanger at 2 mS/cm or 10 mS/cm. Amide I and III frequencies in the Raman spectrum of the adsorbed protein suggest that there are no detectable changes of the original β-sheet conformation in the chromatographic particles. Protein depth profile measurements indicate that, when the conductivity is increased from 2 mS/cm to 10 mS/cm, there is a change in mass transport mechanism for protein adsorption, from the shrinking-core model to the homogeneous-diffusion model. In this study, the use of confocal Raman microscopy to measure protein distribution in chromatographic particles fundamentally agrees with previous confocal laser scanning microscopic investigations, but confocal Raman spectroscopy enjoys additional advantages: use of unlabeled protein to eliminate fluorescent labeling, ability for characterization of protein secondary structure, and ability for spectral normalization to provide a nondestructive experimental approach to correct light attenuation effects caused by refractive index (RI) mismatching in semiopaque chromatographic particles. PMID:22803776

  5. Digital adaptive optics line-scanning confocal imaging system.

    PubMed

    Liu, Changgeng; Kim, Myung K

    2015-01-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea. PMID:26140334

  6. Digital adaptive optics line-scanning confocal imaging system

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng; Kim, Myung K.

    2015-11-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack-Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.

  7. To see the unseeable: confocal miniprobes for routine microscopic imaging during endoscopy

    NASA Astrophysics Data System (ADS)

    Osdoit, A.; Lacombe, F.; Cavé, C.; Loiseau, S.; Peltier, E.

    2007-02-01

    Confocal fluorescence high resolution imaging during standard endoscopic procedures has been presented as a very promising tool to enhance patient care and physician practice by providing supplementary diagnostic information in real-time. The purpose of this paper is to show not only potential, but convincing results of endoscopic microscopy using a catheter-based approach. Mauna Kea Technologies' core technology, Cellvizio, delivers dynamic imaging at 12 frames/second using confocal miniprobes inserted through the operating channel of regular endoscopes. Cellvizio is composed of 3 parts including (a) a Laser Scanning Unit, (b) Confocal Miniprobe TM with the following characteristics: 5-15 μm axial resolution, 2-5 μm lateral resolution, 15-100 μm depth of penetration, field of view of 600x500 μm and (c) a software package with onthe- fly processing capabilities. With several tens of patients examined during routine GI endoscopy procedures, the most relevant clinical parameters could be assessed in a doubled-blinded fashion between the endoscopist and a pathologist and results showing very high accuracy in the differentiation of neoplasia from normal and hyperplastic tissue were obtained. In the field of pulmonology, the micro-autofluorescence properties of tissues could be assessed and structures never before accessed in vivo were observed. Cellvizio® may be useful to study bronchial remodeling in asthma and chronic obstructive pulmonary diseases. Using appropriate topical fluorescent dye, the Confocal Miniprobes may also make it possible to perform optical biopsy of precancerous and superficial bronchial cancers. Cellvizio® is as a new tool towards "targeted biopsies", leading to earlier, more reliable and cost effective diagnostic procedures. Other applications, specifically in molecular imaging are also made possible by the miniaturization of the probe (combination with biopsy needle for solid organs use or lymph node detection) and by the

  8. Reflection Coefficients.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1994-01-01

    Discusses and provides an example of reflectivity approximation to determine whether reflection will occur. Provides a method to show thin-film interference on a projection screen. Also applies the reflectivity concepts to electromagnetic wave systems. (MVL)

  9. Confocal Fabry-Perot interferometer for frequency stabilization of laser

    NASA Astrophysics Data System (ADS)

    Pan, H.-J.; Ruan, P.; Wang, H.-W.; Li, F.

    2011-02-01

    The frequency shift of laser source of Doppler lidar is required in the range of a few megahertzs. To satisfy this demand, a confocal Fabry-Perot (F-P) interferometer was manufactured as the frequency standard for frequency stabilization. After analyzing and contrasting the center frequency shift of confocal Fabry-Perot interferometers that are made of three different types of material with the change of temperature, the zerodur material was selected to fabricate the interferometer, and the cavity mirrors were optically contacted onto the end of spacer. The confocal Fabry-Perot interferometer was situated within a double-walled chamber, and the change of temperature in the chamber was less than 0.01 K. The experimental results indicate that the free spectral range is 500 MHz, the full-width at half maximum is 3.33 MHz, and the finesse is 150.

  10. Colloidal structural evolution of asphaltene studied by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Hung, Jannett; Castillo, Jimmy A.; Reyes, A.

    2004-10-01

    In this work, a detail analysis of the flocculation kinetic of asphaltenes colloidal particles has been carried out usng confocal microscopy. The colloidal structural evolution of the asphaltene flocculated has had varies postulated; however, the aggregation process of asphaltene is still not fully understood. In a recent paper, using Confocal microscope (homemade), we reported high-resolution micrographic images of asphaltenes flocculated and the correlation between crude oil stability and flocculation process. This technique permitted visualizes directly the physical nature of asphaltene flocculated. In this work, a detail analysis of the flocculation kinetic of asphaltene colloidal particles has been carried out using confocal microscopy. The physical nature of asphaltene flocculated from different crude oils is showed through of high-resolution image micrographies and its colloidal structural evolution.

  11. High-resolution confocal Raman microscopy using pixel reassignment.

    PubMed

    Roider, Clemens; Ritsch-Marte, Monika; Jesacher, Alexander

    2016-08-15

    We present a practical modification of fiber-coupled confocal Raman scanning microscopes that is able to provide high confocal resolution in conjunction with high light collection efficiency. For this purpose, the single detection fiber is replaced by a hexagonal lenslet array in combination with a hexagonally packed round-to-linear multimode fiber bundle. A multiline detector is used to collect individual Raman spectra for each fiber. Data post-processing based on pixel reassignment allows one to improve the lateral resolution by up to 41% compared to a single fiber of equal light collection efficiency. We present results from an experimental implementation featuring seven collection fibers, yielding a resolution improvement of about 30%. We believe that our implementation represents an attractive upgrade for existing confocal Raman microscopes that employ multi-line detectors. PMID:27519099

  12. Tri-modal confocal margin screening for the presence of residual squamous cell carcinoma in Mohs surgical excisions

    NASA Astrophysics Data System (ADS)

    Bar, Anna; Snavely, Nicholas; Chen, Nathaniel; Jacques, Steven; Gareau, Daniel S.

    2012-03-01

    Screening cancer in excision margins may be done with confocal microscopy to save time and cost over the gold standard histopathology (H&E). However, diagnostic accuracy requires sufficient contrast. Reflectance mode enables detection of large (>500um) nodular tumors. Enhanced nuclear contrast with acridine orange fluorescence mode additionally enables detection of tiny (<50um) basal cell carcinomas. Here, we present a novel combination of three modes to detect squamous cell carcinoma (SCC). Accurate screening of SCC requires eosin fluorescence, reflectance and acridine orange fluorescence to enable contrast for cytoplasm, collagen and nuclei respectively. Combining these signals replicates H&E for rapid clinical translation.

  13. Frequency Division Multiplexed Multichannel High-Speed Fluorescence Confocal Microscope

    PubMed Central

    Wu, Fei; Zhang, Xueqian; Cheung, Joseph Y.; Shi, Kebin; Liu, Zhiwen; Luo, Claire; Yin, Stuart; Ruffin, Paul

    2006-01-01

    In this article, we report a new type of fluorescence confocal microscope: frequency division multiplexed multichannel fluorescence confocal microscope, in which we encode the spatial location information into the frequency domain. In this microscope, the exciting laser beam is first split into multiple beams and each beam is modulated at a different frequency. These multiple beams are focused at different locations of the target to form multiple focal points, which further generate multiple fluorescent emission spots. The fluorescent emissions from different focal points are also modulated at different frequencies, because the exciting beams are modulated at different frequencies (or difference carrier frequency). Then, all the fluorescent emissions (modulated at different frequencies) are collected together and detected by a highly sensitive, large-dynamic-range photomultiplier tube. By demodulating the detected signal (i.e., via the Fourier transform), we can distinguish the fluorescent light emitted from the different locations by the corresponding carrier frequencies. The major advantage of this unique fluorescence confocal microscope is that it not only has a high sensitivity because of the use of photomultiplier tube but also can get multiple-point data simultaneously, which is crucial to study the dynamic behavior of many biological process. As an initial step, to verify the feasibility of the proposed multichannel confocal microscope, we have developed a two-channel confocal fluorescence microscope and applied it to study the dynamic behavior of the changes of the calcium ion concentration during the single cardiac myocyte contraction. Our preliminary experimental results demonstrated that we could indeed realize multichannel confocal fluorescence microscopy by utilizing the frequency division multiplexed microscope, which could become an effective tool to study the dynamic behavior of many biological processes. PMID:16815894

  14. High resolution, molecular-specific, reflectance imaging in optically dense tissue phantoms with structured-illumination

    NASA Astrophysics Data System (ADS)

    Tkaczyk, Tomasz S.; Rahman, Mohammed; Mack, Vivian; Sokolov, Konstantin; Rogers, Jeremy D.; Richards-Kortum, Rebecca; Descour, Michael R.

    2004-08-01

    Structured-illumination microscopy delivers confocal-imaging capabilities and may be used for optical sectioning in bio-imaging applications. However, previous structured-illumination implementations are not capable of imaging molecular changes within highly scattering, biological samples in reflectance mode. Here, we present two advances which enable successful structured illumination reflectance microscopy to image molecular changes in epithelial tissue phantoms. First, we present the sine approximation algorithm to improve the ability to reconstruct the in-focus plane when the out-of-focus light is much greater in magnitude. We characterize the dependencies of this algorithm on phase step error, random noise and backscattered out-of-focus contributions. Second, we utilize a molecular-specific reflectance contrast agent based on gold nanoparticles to label disease-related biomarkers and increase the signal and signal-to-noise ratio (SNR) in structured illumination microscopy of biological tissue. Imaging results for multi-layer epithelial cell phantoms with optical properties characteristic of normal and cancerous tissue labeled with nanoparticles targeted against the epidermal growth factor receptor (EGFR) are presented. Structured illumination images reconstructed with the sine approximation algorithm compare favorably to those obtained with a standard confocal microscope; this new technique can be implemented in simple and small imaging platforms for future clinical studies.

  15. Confocal Raman imaging of crystalline an glassy materials

    SciTech Connect

    Bradley, N.L.; Morris, M.D.

    1995-12-31

    Spatial distribution of materials components can be measured by confocal Raman imaging. We describe a confocal line-imaging system in which the spectrograph entrance slit functions as a spatial filter. The instrument uses a scanning galvanometer mirror to generate uniform intensity line illumination. A flexure mount with better than 0.1 micrometer positioning accuracy moves the sample under the fixed optical system. The Raman scatter is collected and projected along the entrance slit of an axial transmissive spectrograph. A CCD collects spatially resolved spectra.

  16. Confocal Raman microscopy for identification of bacterial species in biofilms

    NASA Astrophysics Data System (ADS)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2011-03-01

    Implemented through a confocal microscope, Raman spectroscopy has been used to distinguish between biofilm samples of two common oral bacteria species, Streptococcus sanguinis and mutans, which are associated with healthy and cariogenic plaque, respectively. Biofilms of these species are studied as a model of dental plaque. A prediction model has been calibrated and validated using pure biofilms. This model has been used to identify the species of transferred and dehydrated samples (much like a plaque scraping) as well as hydrated biofilms in situ. Preliminary results of confocal Raman mapping of species in an intact two-species biofilm will be shown.

  17. Full-field interferometric confocal microscopy using a VCSEL array

    PubMed Central

    Redding, Brandon; Bromberg, Yaron; Choma, Michael A.; Cao, Hui

    2014-01-01

    We present an interferometric confocal microscope using an array of 1200 VCSELs coupled to a multimode fiber. Spatial coherence gating provides ~18,000 continuous virtual pinholes allowing an entire en face plane to be imaged in a snapshot. This approach maintains the same optical sectioning as a scanning confocal microscope without moving parts, while the high power of the VCSEL array (~5 mW per laser) enables high-speed image acquisition with integration times as short as 100 µs. Interferometric detection also recovers the phase of the image, enabling quantitative phase measurements and improving the contrast when imaging phase objects. PMID:25078199

  18. Confocal shift interferometry of coherent emission from trapped dipolar excitons

    SciTech Connect

    Repp, J.; Schinner, G. J.; Schubert, E.; Rai, A. K.; Wieck, A. D.; Reuter, D.; Wurstbauer, U.; Holleitner, A. W.; and others

    2014-12-15

    We introduce a confocal shift-interferometer based on optical fibers. The presented spectroscopy allows measuring coherence maps of luminescent samples with a high spatial resolution even at cryogenic temperatures. We apply the spectroscopy onto electrostatically trapped, dipolar excitons in a semiconductor double quantum well. We find that the measured spatial coherence length of the excitonic emission coincides with the point spread function of the confocal setup. The results are consistent with a temporal coherence of the excitonic emission down to temperatures of 250 mK.

  19. Application of visible/near-infrared reflectance spectroscopy to uranium ore concentrates for nuclear forensic analysis and attribution.

    PubMed

    Klunder, Gregory L; Plaue, Jonathan W; Spackman, Paul E; Grant, Patrick M; Lindvall, Rachel E; Hutcheon, Ian D

    2013-09-01

    Uranium ore concentrates (UOCs) are produced at mining facilities from the various types of uranium-bearing ores using several processes that can include different reagents, separation procedures, and drying conditions. The final UOC products can consist of different uranium species, which are important to identify to trace interdicted samples back to their origins. Color has been used as a simple indicator; however, visual determination is subjective and no chemical information is provided. In this work, we report the application of near-infrared (NIR) spectroscopy as a non-contact, non-destructive method to rapidly analyze UOC materials for species and/or process information. Diffuse reflectance spectra from 350 to 2500 nm were measured from a number UOC samples that were also characterized by X-ray diffraction. Combination and overtone bands were used to identify the amine and hydroxyl-containing species, such as ammonium uranates or ammonium uranyl carbonate, while other uranium oxide species (e.g., uranium trioxide [UO3] and triuranium octoxide [U3O8]) exhibit absorption bands arising from crystal field effects and electronic transitions. Principal component analysis was used to classify the different UOC materials. PMID:24067636

  20. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy.

    PubMed

    Huang, Chao; Sachse, Frank B; Hitchcock, Robert W; Kaza, Aditya K

    2016-01-01

    Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2 ± 0.3% and 98.0 ± 0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2 ± 0.3% and 94.0 ± 2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease. PMID:26808149

  1. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy

    PubMed Central

    Huang, Chao; Sachse, Frank B.; Hitchcock, Robert W.; Kaza, Aditya K.

    2016-01-01

    Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2±0.3% and 98.0±0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2±0.3% and 94.0±2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease. PMID:26808149

  2. A confocal microscope position sensor for micron-scale target alignment in ultra-intense laser-matter experiments

    NASA Astrophysics Data System (ADS)

    Willis, Christopher; Poole, Patrick L.; Akli, Kramer U.; Schumacher, Douglass W.; Freeman, Richard R.

    2015-05-01

    A diagnostic tool for precise alignment of targets in laser-matter interactions based on confocal microscopy is presented. This device permits precision alignment of targets within the Rayleigh range of tight focusing geometries for a wide variety of target surface morphologies. This confocal high-intensity positioner achieves micron-scale target alignment by selectively accepting light reflected from a narrow range of target focal planes. Additionally, the design of the device is such that its footprint and sensitivity can be tuned for the desired chamber and experiment. The device has been demonstrated to position targets repeatably within the Rayleigh range of the Scarlet laser system at The Ohio State University, where use of the device has provided a marked increase in ion yield and maximum energy.

  3. Confocal microscopy and variable-focal length microlenses

    NASA Astrophysics Data System (ADS)

    Mac Raighne, Aaron M.; Yang, Lisong; Dunbar, L. Andrea; McCabe, Eithne M.; Scharf, Toralf

    2004-07-01

    Confocal microscopy has a unique optical sectioning property which allows three-dimensional images at different depths. Use of a microlens array is a potential alternative to the Nipkow disk for parallel imaging with high throughput in real-time confocal microscopy. The use of variable-focal-length microlenses can provide a way to axially scan the foci electronically avoiding the inflexible mechanical movement of the lens or the sample. Here we demonstrate a combination of a variable-focal-length microlens array and a fiber optic bundle as a way to create a high throughput aperture array that would be potentially applied as confocal imaging in vivo biological specimens. Variable focal length microlenses that we use consist of a liquid crystal film sandwiched between a pair of conductive substrates with patterned electrodes. The incident side of the microlens array was determined by examining the focus distribution in the axial direction. The variation of the focal length obtained by changing the voltage and corresponding focus intensity were measured through a conventional microscope. Meanwhile, the fiber bundle was characterized by coupling with either coherent or incoherent light source. We use the fiber bundle as both a multiple aperture and an image-carrying element and combine it with a microlens array to built up a confocal system. Axial responses are measured in two optical arrangements as a route to investigate endoscope potential.

  4. Laser excited confocal microscope fluorescence scanner and method

    DOEpatents

    Mathies, Richard A.; Peck, Konan

    1992-01-01

    A fluorescent scanner for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier including a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from said volume to provide a display of the separated sample.

  5. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY AND FOUNDATIONS FOR QUANTITATION

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The reliability of the CLSM to obtain specific measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. For man...

  6. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR MEASUREMENTS, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  7. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR CALIBRATION, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of emitted signals. The accuracy of these measurements demands that...

  8. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: QA TESTS, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    Confocal Microscopy System Performance: QA tests, Quantitation and Spectroscopy.

    Robert M. Zucker 1 and Jeremy M. Lerner 2,
    1Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research Development, U.S. Environmen...

  9. Laser excited confocal microscope fluorescence scanner and method

    DOEpatents

    Mathies, R.A.; Peck, K.

    1992-02-25

    A fluorescent scanner is designed for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier. The scanner includes a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from the volume to provide a display of the separated sample. 8 figs.

  10. Three-dimensional imaging of carbon nanostructures by scanning confocal electron microscopy

    NASA Astrophysics Data System (ADS)

    Hashimoto, Ayako; Shimojo, Masayuki; Mitsuishi, Kazutaka; Takeguchi, Masaki

    2009-10-01

    Although scanning confocal electron microscopy (SCEM) shows a promise for optical depth sectioning with high resolution, practical and theoretical problems have prevented its application to three-dimensional (3D) imaging. We employed a stage-scanning system in which only the specimen is moved three dimensionally under a fixed lens configuration, and an annular dark-field (ADF) aperture which blocks direct beams and selects only the scattered electrons. This ADF-SCEM improved depth resolution sufficiently to perform optical depth sectioning. Finally, we succeeded in demonstrating the 3D reconstruction of carbon nanocoils using ADF-SCEM.

  11. Two-photon fluorescence properties of curcumin as a biocompatible marker for confocal imaging

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Li, Lian; Chaturvedi, Akanksha; Brzostowski, Joseph; Chittigori, Joshna; Pierce, Susan; Samuelson, Lynne A.; Sandman, Daniel; Kumar, Jayant

    2012-05-01

    Two-photon (TP) fluorescence properties of an antioxidant and anti-tumor molecule, curcumin, were investigated. The two-photon absorption (TPA) action cross-section was measured in organic solvents and found to be 6 GM in tetrahydrofuran and 2 GM in dimethyl sulfoxide. The measured TPA cross-section is comparable to that of rhodamine 6G. One-photon and TP confocal microscopy has demonstrated that curcumin is internalized in cells and can be used for imaging applications. Our investigation indicates that curcumin is a viable biocompatible TP fluorescent marker.

  12. Insights into esophagus tissue architecture using two-photon confocal microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Nenrong; Wang, Yue; Feng, Shangyuan; Chen, Rong

    2013-08-01

    In this paper, microstructures of human esophageal mucosa were evaluated using the two-photon laser scanning confocal microscopy (TPLSCM), based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). The distribution of epithelial cells, muscle fibers of muscularis mucosae has been distinctly obtained. Furthermore, esophageal submucosa characteristics with cancer cells invading into were detected. The variation of collagen, elastin and cancer cells is very relevant to the pathology in esophagus, especially early esophageal cancer. Our experimental results indicate that the MPM technique has the much more advantages for label-free imaging, and has the potential application in vivo in the clinical diagnosis and monitoring of early esophageal cancer.

  13. Polymer Cholesteric Liquid Crystal (PCLC) Flake/Fluid Host Suspensions: A Novel Electro-Optical Medium for Reflective Color Display Applications

    SciTech Connect

    Marshall, K.L.; Trajkovska-Petkoska, A.; Kosc, T.Z.; Jacobs, S.D.

    2006-04-17

    Polymer cholesteric liquid crystal (PCLC) flake/fluid host suspensions are a new and promising particle display technology for both full-color flexible display applications and electronic paper. Devices containing these "polarizing pigments" switch rapidly at very low voltages and produce highly saturated, circularly polarized reflectance colors without requiring polarizers or color filters.

  14. Solar Confocal interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines. Terence C.

    2007-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. In particular, profile inversion allows improved velocity and magnetic field gradients to be determined independent of multiple line analysis using different energy levels and ions. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. The higher throughput for the interferometer provides significant decrease in the aperture, which is important in spaceflight considerations. We have constructed and tested two confocal interferometers. A slow-response thermal-controlled interferometer provides a stable system for laboratory investigation, while a piezoelectric interferometer provides a rapid response for solar observations. In this paper we provide design parameters, show construction details, and report on the laboratory test for these interferometers. The field of view versus aperture for confocal interferometers is compared with other types of spectral imaging filters. We propose a multiple etalon system for observing with these units using existing planar interferometers as pre-filters. The radiometry for these tests established that high spectral resolution profiles can be obtained with imaging confocal interferometers. These sub-picometer spectral data of the photosphere in both the visible and near-infrared can provide important height variation information. However, at the diffraction-limited spatial resolution of the telescope, the spectral data is photon starved due to the decreased spectral passband.

  15. The Reflective Learning Continuum: Reflecting on Reflection

    ERIC Educational Resources Information Center

    Peltier, James W.; Hay, Amanda; Drago, William

    2005-01-01

    The importance of reflection to marketing educators is increasingly recognized. However, there is a lack of empirical research that considers reflection within the context of both the marketing and general business education literature. This article describes the use of an instrument that can be used to measure four identified levels of a…

  16. Plasmon resonance and the imaging of metal-impregnated neurons with the laser scanning confocal microscope

    PubMed Central

    Thompson, Karen J; Harley, Cynthia M; Barthel, Grant M; Sanders, Mark A; Mesce, Karen A

    2015-01-01

    The staining of neurons with silver began in the 1800s, but until now the great resolving power of the laser scanning confocal microscope has not been utilized to capture the in-focus and three-dimensional cytoarchitecture of metal-impregnated cells. Here, we demonstrate how spectral confocal microscopy, typically reserved for fluorescent imaging, can be used to visualize metal-labeled tissues. This imaging does not involve the reflectance of metal particles, but rather the excitation of silver (or gold) nanoparticles and their putative surface plasmon resonance. To induce such resonance, silver or gold particles were excited with visible-wavelength laser lines (561 or 640 nm), and the maximal emission signal was collected at a shorter wavelength (i.e., higher energy state). Because the surface plasmon resonances of noble metal nanoparticles offer a superior optical signal and do not photobleach, our novel protocol holds enormous promise of a rebirth and further development of silver- and gold-based cell labeling protocols. DOI: http://dx.doi.org/10.7554/eLife.09388.001 PMID:26670545

  17. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Rasta, Seyed Hossein; Manivannan, Ayyakkannu; Sharp, Peter F.

    2012-11-01

    To evaluate retinal perfusion in the human eye, a dual-wavelength confocal scanning laser ophthalmoscope (cSLO) was developed that provides spectral imaging of the fundus using a combination of red (670 nm) and near-infrared (810 nm) wavelengths. The image of the ocular fundus was analyzed to find out if quantitative measurements of the reflectivity of tissue permit assessment of the oxygen perfusion of tissue. We explored problems that affect the reproducibility of patient measurements such as non-uniformity errors on the image. For the first time, an image processing technique was designed and used to minimize the errors of oxygen saturation measurements by illumination correction in retina wide field by increasing SNR. Retinal images were taken from healthy and diabetic retinopathy eyes using the cSLO with a confocal aperture of 100 μm. The ratio image (RI) of red/IR, as oxygen saturation (SO2) index, was calculated for normal eyes. The image correction technique improved the reproducibility of the measurements. Average RI intensity variation of healthy retina tissue was determined within a range of about 5.5%. The capability of the new technique to discriminate oxygenation levels of retinal artery and vein was successfully demonstrated and showed good promise in the diagnosis of the perfused retina.

  18. High throughput, detailed, cell-specific neuroanatomy of dendritic spines using microinjection and confocal microscopy

    PubMed Central

    Dumitriu, Dani; Rodriguez, Alfredo; Morrison, John H.

    2012-01-01

    Morphological features such as size, shape and density of dendritic spines have been shown to reflect important synaptic functional attributes and potential for plasticity. Here we describe in detail a protocol for obtaining detailed morphometric analysis of spines using microinjection of fluorescent dyes, high resolution confocal microscopy, deconvolution and image analysis using NeuronStudio. Recent technical advancements include better preservation of tissue resulting in prolonged ability to microinject, and algorithmic improvements that compensate for the residual Z-smear inherent in all optical imaging. Confocal imaging parameters were probed systematically for the identification of both optimal resolution as well as highest efficiency. When combined, our methods yield size and density measurements comparable to serial section transmission electron microscopy in a fraction of the time. An experiment containing 3 experimental groups with 8 subjects in each can take as little as one month if optimized for speed, or approximately 4 to 5 months if the highest resolution and morphometric detail is sought. PMID:21886104

  19. Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy

    SciTech Connect

    Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

    2007-11-01

    We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity.

  20. Confocal Laser Microscope Scanning Applied To Three-Dimensional Studies Of Biological Specimens.

    NASA Astrophysics Data System (ADS)

    Franksson, Olof; Liljeborg, Anders; Carlsson, Kjell; Forsgren, Per-Ola

    1987-08-01

    The depth-discriminating property of confocal laser microscope scanners can be used to record the three-dimensional structure of specimens. A number of thin sections (approx. 1 μm thick) can be recorded by a repeated process of image scanning and refocusing of the microscope. We have used a confocal microscope scanner in a number of feasibility studies to investigate its possibilities and limitations. It has proved to be well suited for examining fluorescent specimens with a complicated three-dimensional structure, such as nerve cells. It has also been used to study orchid seeds, as well as cell colonies, greatly facilitating evaluation of such specimens. Scanning of the specimens is performed by a focused laser beam that is deflected by rotating mirrors, and the reflected or fluorescent light from the specimen is detected. The specimen thus remains stationary during image scanning, and is only moved stepwise in the vertical direction for refocusing between successive sections. The scanned images consist of 256*256 or 512*512 pixels, each pixel containing 8 bits of data. After a scanning session a large number of digital images, representing consecutive sections of the specimen, are stored on a disk memory. In a typical case 200 such 256*256 images are stored. To display and process this information in a meaningful way requires both appropriate software and a powerful computer. The computer used is a 32-bits minicomputer equipped with an array processor (FPS 100). The necessary software was developed at our department.

  1. Technique of laser confocal and Raman spectroscopy for living cell analysis

    NASA Astrophysics Data System (ADS)

    Meng, Xiaochen; Zhu, Lianqing

    2013-10-01

    Because of the shortcomings of the main methods used to analysis single cell, the need of single living cell analysis with no damage, unmarked and in situ dynamic multi-parameter measurement is urgent in the life sciences and biomedical advanced research field. And the method of for living cells analysis is proposed. The spectral pretreatment technology of living cell is the key work of laser confocal Raman spectroscopy. To study the spectrum processing methods for Raman spectrum on single living cell and develop the pre-process techniques to enhance the signal-to-noise ratio, sensitivity, and decrease the influence of fluorescence, elimination the cosmic rays was used to improve the spectrum. The classification, average and filtration of spectrum were applied to enhance signal-to-noise ratio. The fluorescence was depressed for quantity analysis or utilized for analysis by comparing the background and the spectrum. The results show that the proposed technique for laser confocal Raman spectrum of single cell can perform the sensitive and weak intensity peaks and reflect the information of molecules structures very well.

  2. Correlation of histological and ex-vivo confocal tumor thickness in malignant melanoma.

    PubMed

    Hartmann, Daniela; Krammer, Sebastian; Ruini, Cristel; Ruzicka, Thomas; von Braunmühl, Tanja

    2016-07-01

    The ex-vivo confocal laser scanning microscopy (ex-vivo CLSM) is a novel diagnostic method for fresh tissue examination, which has already shown promising results in the evaluation of healthy skin and different skin tumors. In malignant melanoma, the histological tumor thickness plays an essential role for further treatment strategies. The immediate perioperative measurement of tumor thickness by means of ex-vivo CLSM might accelerate the decision for further operating procedures in malignant melanoma. Ten histologically confirmed malignant melanomas from various donor sites were blindly examined by two investigators via ex-vivo CLSM and conventional light microscopy. The histopathological tumor thickness (HTT) and confocal tumor thickness (CTT) were measured independently and evaluated using correlation curves, Spearman's correlation coefficient, and Bland-Altman plots. Bland-Altman plots for HTT and reflectance-mode CTT, as well as for fluorescence-mode CTT, showed high correlations. Spearman's correlation coefficient of HTT and CTT was 1.00 in FM and RM. The mean difference of RM-CTT and FM-CTT versus HTT was 0.09 ± 0.30 mm and 0.19 ± 0.35 mm. In one case, the HTT was identical to the CTT in both modes. This pilot study shows high conformity of CTT and HTT measured in malignant melanoma underlining the potential of ex-vivo CLSM for perioperative decisions on safety margin excisions of malignant melanoma in the future. PMID:27056706

  3. Confocal mosaicing microscopy in skin excisions: a demonstration of rapid surgical pathology

    PubMed Central

    Gareau, D.S.; Patel, Y.G.; Li, Y.; Aranda, I.; Halpern, A.C.; Nehal, K.S.; Rajadhyaksha, M.

    2009-01-01

    Summary Precise micro-surgical removal of tumour with minimal damage to the surrounding normal tissue requires a series of excisions, each guided by an examination of frozen histology of the previous. An example is Mohs surgery for the removal of basal cell carcinomas (BCCs) in skin. The preparation of frozen histology is labour-intensive and slow. Confocal microscopy may enable rapid detection of tumours directly in surgical excisions with minimal need for frozen histology. Mosaicing of images enables observation of nuclear and cellular morphology in large areas of surgically excised tissue. In skin, the use of 10–1% acetic acid as a reflectance contrast agent brightens nuclei in 0.5–5 min and enhances nuclear-to-dermis contrast and detectability of BCCs. A tissue fixture was engineered for precisely mounting surgical excisions to enable mosaicing of 36 × 36 images to create a field of view of 12 × 12 mm. This large field of view displays the excision at 2× magnification, similar to that routinely used by Mohs surgeons when examining frozen histology. Comparison of mosaics to histology demonstrates detectability of BCCs. Confocal mosaicing presently requires 9 min, instead of 20–45 min per excision for preparing frozen histology, and thus may provide a means for rapid pathology-at-the-bedside to expedite and guide surgery. PMID:19196421

  4. In vivo fluorescence confocal microscopy: indocyanine green enhances the contrast of epidermal and dermal structures

    NASA Astrophysics Data System (ADS)

    Skvara, Hans; Kittler, Harald; Schmid, Johannes A.; Plut, Ulrike; Jonak, Constanze

    2011-09-01

    In recent years, in vivo skin imaging devices have been successfully implemented in skin research as well as in clinical routine. Of particular importance is the use of reflectance confocal microscopy (RCM) and fluorescence confocal microscopy (FCM) that enable visualization of the tissue with a resolution comparable to histology. A newly developed commercially available multi-laser device in which both technologies are integrated now offers the possibility to directly compare RCM with FCM. The fluorophore indocyanine green (ICG) was intradermally injected into healthy forearm skin of 10 volunteers followed by in vivo imaging at various time points. In the epidermis, accurate assessment of cell morphology with FCM was supplemented by identification of pigmented cells and structures with RCM. In dermal layers, only with FCM connective tissue fibers were clearly contoured down to a depth of more than 100 μm. The fluorescent signal still provided a favorable image contrast 24 and 48 hours after injection. Subsequently, ICG was applied to different types of skin diseases (basal cell carcinoma, actinic keratosis, seborrhoeic keratosis, and psoriasis) in order to demonstrate the diagnostic benefit of FCM when directly compared with RCM. Our data suggest a great impact of FCM in combination with ICG on clinical and experimental dermatology in the future.

  5. Automated detection of malignant features in confocal microscopy on superficial spreading melanoma versus nevi

    NASA Astrophysics Data System (ADS)

    Gareau, Dan; Hennessy, Ricky; Wan, Eric; Pellacani, Giovanni; Jacques, Steven L.

    2010-11-01

    In-vivo reflectance confocal microscopy (RCM) shows promise for the early detection of superficial spreading melanoma (SSM). RCM of SSM shows pagetoid melanocytes (PMs) in the epidermis and disarray at the dermal-epidermal junction (DEJ), which are automatically quantified with a computer algorithm that locates depth of the most superficial pigmented surface [DSPS(x,y)] containing PMs in the epidermis and pigmented basal cells near the DEJ. The algorithm uses 200 noninvasive confocal optical sections that image the superficial 200 μm of ten skin sites: five unequivocal SSMs and five nevi. The pattern recognition algorithm automatically identifies PMs in all five SSMs and finds none in the nevi. A large mean gradient ψ (roughness) between laterally adjacent points on DSPS(x,y) identifies DEJ disruption in SSM ψ = 11.7 +/- 3.7 [-] for n = 5 SSMs versus a small ψ = 5.5 +/- 1.0 [-] for n = 5 nevi (significance, p = 0.0035). Quantitative endpoint metrics for malignant characteristics make digital RCM data an attractive diagnostic asset for pathologists, augmenting studies thus far, which have relied largely on visual assessment.

  6. Scanning microphotolysis: a new photobleaching technique based on fast intensity modulation of a scanned laser beam and confocal imaging.

    PubMed

    Wedekind, P; Kubitscheck, U; Peters, R

    1994-10-01

    The fluorescence photobleaching method has been widely used to study molecular transport in single living cells and other microsystems while confocal microscopy has opened new avenues to high-resolution, three-dimensional imaging. A new technique, scanning microphotolysis (Scamp), combines the potential of photobleaching, beam scanning and confocal imaging. A confocal scanning laser microscope was equipped with a sufficiently powerful laser and a novel device, the 'Scamper'. This consisted essentially of a filter changer, an acousto-optical modulator (AOM) and a computer. The computer was programmed to activate the AOM during scanning according to a freely defined image mask. As a result, almost any desired pattern could be bleached ('written') into fluorescent samples at high definition and then imaged ('read') at non-bleaching conditions, employing full confocal resolution. Furthermore, molecular transport could be followed by imaging the dissipation of bleach patterns. Experiments with living cells concerning dynamic processes in cytoskeletal filaments and the lateral mobility of membrane lipids suggest a wide range of potential biological applications. Thus, Scamp offers new possibilities for the optical manipulation and analysis of both technical and biological microsystems. PMID:7799426

  7. Descemetic and Predescemetic DALK in Keratoconus Patients: A Clinical and Confocal Perspective Study

    PubMed Central

    Schiano-Lomoriello, Domenico; Colabelli-Gisoldi, Rossella Annamaria; Nubile, Mario; Oddone, Francesco; Villani, Carlo Maria; Pocobelli, Augusto

    2014-01-01

    Purpose. To evaluate the clinical outcomes and in vivo confocal microscopy (IVCM) features of keratoconus patients who underwent deep anterior lamellar keratoplasty (DALK). Methods. DALK was performed using the big bubble technique in all the patients. If the bubble was not successful to bare the descemet membrane, a manual dissection layer-by layer was performed to expose a deep stromal plane close to the DM. The patients were divided in two groups depending on the intraoperative baring of the descemet membrane: predescemetic DALK (PD-DALK) and descemetic DALK (D-DALK) group. Results. One month after surgery the D-DALK patients show an increase of mean BCVA. In the PD-DALK group mean BCVA did not show significant improvement as compared to preoperative values. At 6 months after surgery mean BCVA was found to be similar in both groups. At 1 month IVCM the peak of reflectivity of the interface was lower in D-DALK group compared to PD-DALK. At 6 months the values of reflectivity were comparable. Conclusions. At 1 month D-DALK seems to lead to a minor interface reflectivity and to a better BCVA; these differences disappear after 6 months and the values of interface reflectivity and BCVA are comparable between D-DALK and PD-DALK. PMID:25243112

  8. Application of CO2 Snow Jet Cleaning in Conjunction with Laboratory Based Total Reflection X-Ray Fluorescence

    NASA Technical Reports Server (NTRS)

    Schmeling, M.; Burnett, D. S.; Allton, J. H.; Rodriquez, M.; Tripa, C. E.; Veryovkin, I. V.

    2013-01-01

    The Genesis mission was the first mission returning solar material to Earth since the Apollo program [1,2]. Unfortunately the return of the space craft on September 8, 2004 resulted in a crash landing, which shattered the samples into small fragments and exposed them to desert soil and other debris. Thus only small fragments of the original collectors are available, each having different degrees of surface contamination. Thorough surface cleaning is required to allow for subsequent analysis of solar wind material embedded within. An initial cleaning procedure was developed in coordination with Johnson Space Center which focused on removing larger sized particulates and a thin film organic contamination acquired during collection in space [3]. However, many of the samples have additional residues and more rigorous and/or innovative cleaning steps might be necessary. These cleaning steps must affect only the surface to avoid leaching and re-distribution of solar wind material from the bulk of the collectors. To aid in development and identification of the most appropriate cleaning procedures each sample has to be thoroughly inspected before and after each cleaning step. Laboratory based total reflection X-ray fluorescence (TXRF) spectrometry lends itself to this task as it is a non-destructive and surface sensitive analytical method permitting analysis of elements from aluminum onward present at and near the surface of a flat substrate [4]. The suitability of TXRF has been demonstrated for several Genesis solar wind samples before and after various cleaning methods including acid treatment, gas cluster ion beam, and CO2 snow jet [5 - 7]. The latter one is non-invasive and did show some promise on one sample [5]. To investigate the feasibility of CO2 snow jet cleaning further, several flown Genesis samples were selected to be characterized before and after CO2 snow application with sample 61052 being discussed below.

  9. Three-Dimensional Visualization of Interfacial Phenomena Using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Shieh, Ian C.

    Surfactants play an integral role in numerous functions ranging from stabilizing the emulsion in a favorite salad dressing to organizing the cellular components that make life possible. We are interested in lung surfactant, which is a mixture of lipids and proteins essential for normal respiration because it modulates the surface tension of the air-liquid interface of the thin fluid lining in the lungs. Through this surface tension modulation, lung surfactant ensures effortless lung expansion and prevents lung collapse during exhalation, thereby effecting proper oxygenation of the bloodstream. The function of lung surfactant, as well as numerous interfacial lipid systems, is not solely dictated by the behavior of materials confined to the two-dimensional interface. Rather, the distributions of materials in the liquid subphase also greatly influence the performance of interfacial films of lung surfactant. Therefore, to better understand the behavior of lung surfactant and other interfacial lipid systems, we require a three-dimensional characterization technique. In this dissertation, we have developed a novel confocal microscopy methodology for investigating the interfacial phenomena of surfactants at the air-liquid interface of a Langmuir trough. Confocal microscopy provides the excellent combination of in situ, fast, three-dimensional visualization of multiple components of the lung surfactant system that other characterization techniques lack. We detail the solutions to the numerous challenges encountered when imaging a dynamic air-liquid interface with a high-resolution technique like confocal microscopy. We then use confocal microscopy to elucidate the distinct mechanisms by which a polyelectrolyte (chitosan) and nonadsorbing polymer (polyethylene glycol) restore the function of lung surfactant under inhibitory conditions mimicking the effects of lung trauma. Beyond this physiological model, we also investigate several one- and two-component interfacial films

  10. On optical depth profiling using confocal Raman spectroscopy.

    PubMed

    Freebody, N A; Vaughan, A S; Macdonald, A M

    2010-04-01

    Until 2006 the performance of confocal Raman spectroscopy depth profiling was typically described and modeled through the application of geometrical optics, including refraction at the surface, to explain the degree of resolution and the precise form of the depth profile obtained from transparent and semicrystalline materials. Consequently a range of techniques, physical and analytical, was suggested to avoid the errors thus encountered in order to improve the practice of Raman spectroscopy, if not the understanding of the underlying mechanisms. These approaches were completely unsuccessful in accounting for the precise form of the depth profile, the fact that spectra obtained from laminated samples always contain characteristic peaks from all materials present both well above and below the focal point and that spectra can be obtained when focused some 40 mum above the sample surface. This paper provides further evidence that the physical processes underlying Raman spectroscopy are better modeled and explained through the concept of an extended illuminated volume contributing to the final Raman spectrum and modeled through a photon scattering approach rather than a point focus ray optics approach. The power of this numerical model lies in its ability to incorporate, simultaneously, the effects of degree of refraction at the surface (whether using a dry or oil objective lens), the degree of attenuation due to scatter by the bulk of the material, the Raman scattering efficiency of the material, and surface roughness effects. Through this we are now able to explain why even removing surface aberration and refraction effects through the use of oil immersion objective lenses cannot reliably ensure that the material sampled is only that at or close to the point of focus of the laser. Furthermore we show that the precise form of the depth profile is affected by the degree of flatness of the surface of the sample. Perhaps surprisingly, we show that the degree of flatness

  11. Confocal Microscopy of Jammed Matter: From Elasticity to Granular Thermodynamics

    NASA Astrophysics Data System (ADS)

    Jorjadze, Ivane

    Packings of particles are ubiquitous in nature and are of interest not only to the scientific community but also to the food, pharmaceutical, and oil industries. In this thesis we use confocal microscopy to investigate packing geometry and stress transmission in 3D jammed particulate systems. By introducing weak depletion attraction we probe the accessible phase-space and demonstrate that a microscopic approach to jammed matter gives validity to statistical mechanics framework, which is intriguing because our particles are not thermally activated. We show that the fluctuations of the local packing parameters can be successfully captured by the recently proposed 'granocentric' model, which generates packing statistics according to simple stochastic processes. This model enables us to calculate packing entropy and granular temperature, the so-called 'compactivity', therefore, providing a basis for a statistical mechanics of granular matter. At a jamming transition point at which there are formed just enough number of contacts to guarantee the mechanical stability, theoretical arguments suggest a singularity which gives rise to the surprising scaling behavior of the elastic moduli and the microstructure, as observed in numerical simulations. Since the contact network in 3D is typically hidden from view, experimental test of the scaling law between the coordination number and the applied pressure is lacking in the literature. Our data show corrections to the linear scaling of the pressure with density which takes into account the creation of contacts. Numerical studies of vibrational spectra, in turn, reveal sudden features such as excess of low frequency modes, dependence of mode localization and structure on the pressure. Chapter four describes the first calculation of vibrational density of states from the experimental 3D data and is in qualitative agreement with the analogous computer simulations. We study the configurational role of the pressure and demonstrate

  12. FTIR microscopy and confocal Raman microscopy for studying lateral drug diffusion from a semisolid formulation.

    PubMed

    Gotter, B; Faubel, W; Neubert, R H H

    2010-01-01

    Fourier transform infrared (FTIR) microscopy was applied to obtain information on lateral drug diffusion of dithranol in artificial acceptor membranes. Lateral (2D) drug distribution into an artificial membrane was investigated on an area of 300microm x 1000microm with a lateral resolution of 25microm x 25microm by integrating a specific IR band located at 1430cm(-1). The concentration profiles show a heterogeneous distribution of dithranol particles resulting in non-uniform drug diffusion. Use of the FTIR microscope either in the transmission or in the reflection mode was restricted to a thickness of the DDC membrane <15microm. The third dimension (depth profile) was analysed by means of confocal Raman microscopy (CRM). In an artificial membrane, the depth range from a minimum of 1.5microm up to a maximum of 49microm was analysed for dithranol distribution. PMID:19615444

  13. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy.

    PubMed

    Albert, O; Sherman, L; Mourou, G; Norris, T B; Vdovin, G

    2000-01-01

    Off-axis aberrations in a beam-scanning multiphoton confocal microscope are corrected with a deformable mirror. The optimal mirror shape for each pixel is determined by a genetic learning algorithm, in which the second-harmonic or two-photon fluorescence signal from a reference sample is maximized. The speed of the convergence is improved by use of a Zernike polynomial basis for the deformable mirror shape. This adaptive optical correction scheme is implemented in an all-reflective system by use of extremely short (10-fs) optical pulses, and it is shown that the scanning area of an f:1 off-axis parabola can be increased by nine times with this technique. PMID:18059779

  14. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system

    PubMed Central

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2015-01-01

    We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy. PMID:26413560

  15. Advances in the reduction and compensation of film stress in high-reflectance multilayer coatings for extreme ultraviolet lithography applications

    SciTech Connect

    Mirkarimi, P.B., LLNL

    1998-02-20

    Due to the stringent surface figure requirements for the multilayer-coated optics in an extreme ultraviolet (EUV) projection lithography system, it is desirable to minimize deformation due to the multilayer film stress. However, the stress must be reduced or compensated without reducing EUV reflectivity, since the reflectivity has a strong impact on the throughput of a EUV lithography tool. In this work we identify and evaluate several leading techniques for stress reduction and compensation as applied to Mo/Si and Mo/Be multilayer films. The measured film stress for Mo/Si films with EUV reflectances near 67.4% at 13.4 nm is approximately - 420 MPa (compressive), while it is approximately +330 MPa (tensile) for Mo/Be films with EUV reflectances near 69.4% at 11.4 nm. Varying the Mo-to-Si ratio can be used to reduce the stress to near zero levels, but at a large loss in EUV reflectance (> 20%). The technique of varying the base pressure (impurity level) yielded a 10% decrease in stress with a 2% decrease in reflectance for our multilayers. Post-deposition annealing was performed and it was observed that while the cost in reflectance is relatively high (3.5%) to bring the stress to near zero levels (i.e., reduce by 1 00%), the stress can be reduced by 75% with only a 1.3% drop in reflectivity at annealing temperatures near 200{degrees}C. A study of annealing during Mo/Si deposition was also performed; however, no practical advantage was observed by heating during deposition. A new non-thermal (athermal) buffer-layer technique was developed to compensate for the effects of stress. Using this technique with amorphous silicon and Mo/Be buffer-layers it was possible to obtain Mo/Be and Mo/Si multilayer films with a near zero net film stress and less than a 1% loss in reflectivity. For example a Mo/Be film with 68.7% reflectivity at 11.4 nm and a Mo/Si film with 66.5% reflectivity at 13.3 nm were produced with net stress values less than 30 MPa.

  16. Design of an affordable fluorescence confocal laser scanning microscope for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Bechtel, Christin; Knobbe, Jens; Grüger, Heinrich; Lakner, Hubert

    2012-12-01

    Confocal fluorescence microscopes are a promising imaging tool in medical diagnostics due to their capability to selectively survey cross-sections of individual layers from `thick' samples. Non-invasive depth resolved investigation of neoplastic skin disorders is one example among other applications. However these microscopes are at present uncommon in medical practice. This is due to their main application area in research. The instruments dealt with here are generally complex, stationary units and are accordingly cost-intensive. It is for this reason, that we have designed a robust and portable MEMS based confocal fluorescence microscope with a field of view of 0.6mm x 0.6mm. This has been made possible by the integration of a 2D micro scanner mirror developed at Fraunhofer IPMS. A variable acquisition depth of cross-sectional images of the fluorescence specimen is enabled by an integrated z-shifter. With the use of commercially available optics an optical demonstrator set up has been realized. To characterize and to demonstrate the ability of this system test measurements were performed. The resolution of the microscope is better than 228 lp/mm determined by 1951 USAF resolution test target. Images of various biological samples are presented and optical sectioning capabilities are shown. A comparison of the measured with the predicted system performance will be given.

  17. Confocal Laser Endomicroscopy of Bladder and Upper Tract Urothelial Carcinoma: A New Era of Optical Diagnosis?

    PubMed Central

    Chen, Stephanie P.; Liao, Joseph C.

    2014-01-01

    Urothelial carcinoma of the bladder and upper tract pose significant diagnostic and therapeutic challenges. White light endoscopy plays a central role in the management of urothelial carcinoma but has several well-recognized shortcomings. New optical imaging technologies may improve diagnostic accuracy, enhance local cancer control, and better stratify treatment options. Confocal laser endomicroscopy enables dynamic imaging of the cellular structures below the mucosal surface and holds promise in providing real time optical diagnosis and grading of urothelial carcinoma. A variety of imaging probes are available that are compatible with the full spectrum of cystoscopes and ureteroscopes. We review the underlying principles and technique of confocal laser endomicroscopy in the urinary tract, with emphasis on specific application towards urothelial carcinoma. While the available data are largely related to urothelial carcinoma of the bladder, the lessons learned are directly applicable to the upper tract, where the clinical needs are significant. Ongoing efforts to optimize this technology offer an exciting glimpse into future advances in optical imaging and intraoperative image guidance. PMID:25002073

  18. Photothermal confocal multicolor microscopy of nanoparticles and nanodrugs in live cells.

    PubMed

    Nedosekin, Dmitry A; Foster, Stephen; Nima, Zeid A; Biris, Alexandru S; Galanzha, Ekaterina I; Zharov, Vladimir P

    2015-08-01

    Growing biomedical applications of non-fluorescent nanoparticles (NPs) for molecular imaging, disease diagnosis, drug delivery, and theranostics require new tools for real-time detection of nanomaterials, drug nano-carriers, and NP-drug conjugates (nanodrugs) in complex biological environments without additional labeling. Photothermal (PT) microscopy (PTM) has enormous potential for absorption-based identification and quantification of non-fluorescent molecules and NPs at a single molecule and 1.4 nm gold NP level. Recently, we have developed confocal PTM providing three-dimensional (3D) mapping and spectral identification of multiple chromophores and fluorophores in live cells. Here, we summarize recent advances in the application of confocal multicolor PTM for 3D visualization of single and clustered NPs, alone and in individual cells. In particular, we demonstrate identification of functionalized magnetic and gold-silver NPs, as well as graphene and carbon nanotubes in cancer cells and among blood cells. The potential to use PTM for super-resolution imaging (down to 50 nm), real-time NP tracking, guidance of PT nanotherapy, and multiplex cancer markers targeting, as well as analysis of non-linear PT phenomena and amplification of nanodrug efficacy through NP clustering and nano-bubble formation are also discussed. PMID:26133539

  19. Reflectance properties of selected arctic-boreal land cover types: field measurements and their application in remote sensing

    NASA Astrophysics Data System (ADS)

    Peltoniemi, J. I.; Suomalainen, J.; Puttonen, E.; Näränen, J.; Rautiainen, M.

    2008-03-01

    We developed a mobile remote sensing measurement facility for spectral and anisotropic reflectance measurements. We measured reflection properties (BRF) of over 100 samples from most common land cover types in boreal and subarctic regions. This extensive data set serves as a unique reference opportunity for developing interpretation algorithms for remotely sensed materials as well as for modelling climatic effects in the boreal and subarctic zones. Our goniometric measurements show that the reflectances of the most common land cover types in the boreal and subarctic region can differ from each other by a factor of 100. Some types are strong forward scatterers, some backward scatterers, some reflect specularly, some have strong colours, some are bright in visual, some in infrared. We noted that spatial variations in reflectance, even among the same type of vegetation, can be well over 20%, diurnal variations of the same order and seasonal variation often over a factor of 10. This has significant consequences on the interpretation of satellite and airborne images and on the development of radiation regime models in both optical remote sensing and climate change research. We propose that the accuracy of optical remote sensing can be improved by an order of magnitude, if better physical reflectance models can be introduced. Further improvements can be reached by more optimised design of sensors and orbits/flight lines, by the effective combining of several data sources and better processing of atmospheric effects. We conclude that more extensive and systematic laboratory experiments and field measurements are needed, with more modelling effort.

  20. Polarization conversion in confocal microscopy with radially polarized illumination.

    PubMed

    Tang, Wai Teng; Yew, Elijah Y S; Sheppard, Colin J R

    2009-07-15

    The effects of using radially polarized illumination in a confocal microscope are discussed, and the introduction of a polarization mode converter into the detection optics of the microscope is proposed. We find that with such a configuration, bright-field imaging can be performed without losing the resolution advantage of radially polarized illumination. The detection efficiency can be increased by three times without having to increase the pinhole radius and sacrificing the confocality of the system. Furthermore, the merits of such a setup are also discussed in relation to surface plasmon microscopy and single-molecule orientation studies, where the doughnut point spread function can be engineered into a single-lobed point spread function. PMID:19823530

  1. Confocal Raman microscopy for investigation of the level of differentiation in living neuroblastoma tumor cells

    NASA Astrophysics Data System (ADS)

    Scalfi-Happ, Claudia; Jauss, Andrea; Hollricher, Olaf; Fulda, Simone; Hauser, Carmen; Steiner, Rudolf; Rück, Angelika

    2007-07-01

    The investigation of living cells at physiological conditions requires very sensitive, sophisticated, non invasive methods. In this study, Raman spectral imaging is used to identify different biomolecules inside of cells. Raman spectroscopy, a chemically and structurally sensitive measuring technique, is combined with high resolution confocal microscopy. In Raman spectral imaging mode, a complete Raman spectrum is recorded at every confocal image point, giving insight into the chemical composition of each sample compartment. Neuroblastoma is the most common solid extra-cranial tumor in children. One of the unique features of neuroblastoma cells is their ability to differentiate spontaneously, eventually leading to complete remission. Since differentiation agents are currently used in the clinic for neuroblastoma therapy, there is a special need to develop non-invasive and sensitive new methods to monitor neuroblastoma cell differentiation. Neuroblastoma cells at different degrees of differentiation were analysed with the confocal Raman microscope alpha300 R (WITec GmbH, Germany), using a frequency doubled Nd:YAG laser at 532 nm and 10 mW for excitation. Integration time per spectrum was 80-100 ms. A lateral resolution in submicrometer range was achieved by using a 60x water immersion lens with a numerical aperture of 1,0. Raman images of cells were generated from these sets of data by either integrating over specific Raman bands, by basis analysis using reference spectra or by cluster analysis. The automated evaluation of all spectra results in spectral unmixed images providing insight into the chemical composition of the sample. With these procedures, different cell organelles, cytosol, membranes could be distinguished. Since neuroblastoma cells at high degree of differentiation overproduce noradrenaline, an attempt was made to trace the presence of this neurotransmitter as a marker for differentiation. The results of this work may have applications in the

  2. One shot confocal microscopy based on wavelength/space conversion by use of multichannel spectrometer

    NASA Astrophysics Data System (ADS)

    Miyamoto, Shuji; Hase, Eiji; Ichikawa, Ryuji; Mnamikawa, Takeo; Yasui, Takeshi; Yamamoto, Hirotugu

    2016-03-01

    Confocal laser microscope (CLM) has been widely used in the fields of the non-contact surface topography, biomedical imaging, and other applications, because of two-dimensional (2D) or three-dimensional (3D) imaging capability with the confocal effect and the stray light elimination. Although the conventional CLM has acquired the 2D image by mechanical scanning of the focused beam spot, further reduction of image acquisition time and the robustness to various disturbances are strongly required. To this end, it is essential to omit mechanical scanning for the image acquisition. In this article, we developed the scan-less, full-field CLM by combination of the line-focused CLM with the wavelength/1D-space conversion. This combination enables us to form the 2D focal array of a 2D rainbow beam on a sample and to encode the 2D image information of a sample on the 2D rainbow beam. The image-encoded 2D rainbow beam was decoded as a spectral line image by a multi-channel spectrometer equipped with a CMOS camera without the need for the mechanical scanning. The confocal full-field image was acquired during 0.23 ms with the lateral resolution of 26.3μm and 4.9μm for the horizontal and vertical directions, respectively, and the depth resolution of 34.9μm. We further applied this scan-less, full-field CLM for biomedical imaging of a sliced specimen and non-contact surface topography of an industry products. These demonstrations highlight a high potential of the proposed scan-less, full-field CLM.

  3. A surgical confocal microlaparoscope for real-time optical biopsies

    NASA Astrophysics Data System (ADS)

    Tanbakuchi, Anthony Amir

    The first real-time fluorescence confocal microlaparoscope has been developed that provides instant in vivo cellular images, comparable to those provided by histology, through a nondestructive procedure. The device includes an integrated contrast agent delivery mechanism and a computerized depth scan system. The instrument uses a fiber bundle to relay the image plane of a slit-scan confocal microlaparoscope into tissue. The confocal laparoscope was used to image the ovaries of twenty-one patients in vivo using fluorescein sodium and acridine orange as the fluorescent contrast agents. The results indicate that the device is safe and functions as designed. A Monte Carlo model was developed to characterize the system performance in a scattering media representative of human tissues. The results indicate that a slit aperture has limited ability to image below the surface of tissue. In contrast, the results show that multi-pinhole apertures such as a Nipkow disk or a linear pinhole array can achieve nearly the same depth performance as a single pinhole aperture. The model was used to determine the optimal aperture spacing for the multi-pinhole apertures. The confocal microlaparoscope represents a new type of in vivo imaging device. With its ability to image cellular details in real time, it has the potential to aid in the early diagnosis of cancer. Initially, the device may be used to locate unusual regions for guided biopsies. In the long term, the device may be able to supplant traditional biopsies and allow the surgeon to identify early stage cancer in vivo.

  4. Photothermal Confocal Spectromicroscopy of Multiple Cellular Chromophores and Fluorophores

    PubMed Central

    Nedosekin, D.A.; Galanzha, E.I.; Ayyadevara, Srinivas; Shmookler Reis, Robert J.; Zharov, V.P.

    2012-01-01

    Confocal fluorescence microscopy is a powerful biological tool providing high-resolution, three-dimensional (3D) imaging of fluorescent molecules. Many cellular components are weakly fluorescent, however, and thus their imaging requires additional labeling. As an alternative, label-free imaging can be performed by photothermal (PT) microscopy (PTM), based on nonradiative relaxation of absorbed energy into heat. Previously, little progress has been made in PT spectral identification of cellular chromophores at the 3D microscopic scale. Here, we introduce PTM integrating confocal thermal-lens scanning schematic, time-resolved detection, PT spectral identification, and nonlinear nanobubble-induced signal amplification with a tunable pulsed nanosecond laser. The capabilities of this confocal PTM were demonstrated for high-resolution 3D imaging and spectral identification of up to four chromophores and fluorophores in live cells and Caenorhabditis elegans. Examples include cytochrome c, green fluorescent protein, Mito-Tracker Red, Alexa-488, and natural drug-enhanced or genetically engineered melanin as a PT contrast agent. PTM was able to guide spectral burning of strong absorption background, which masked weakly absorbing chromophores (e.g., cytochromes in the melanin background). PTM provided label-free monitoring of stress-related changes to cytochrome c distribution, in C. elegans at the single-cell level. In nonlinear mode ultrasharp PT spectra from cyt c and the lateral resolution of 120 nm during calibration with 10-nm gold film were observed, suggesting a potential of PTM to break through the spectral and diffraction limits, respectively. Confocal PT spectromicroscopy could provide a valuable alternative or supplement to fluorescence microscopy for imaging of nonfluorescent chromophores and certain fluorophores. PMID:22325291

  5. Confocal foveated endomicroscope for the detection of esophageal carcinoma

    PubMed Central

    Shadfan, Adam; Hellebust, Anne; Richards-Kortum, Rebecca; Tkaczyk, Tomasz

    2015-01-01

    By mimicking the variable resolution of the human eye, a newly designed foveated endomicroscopic objective shows the potential to improve current endoscopic based techniques of identifying abnormal tissue in the esophagus and colon. The prototype miniature foveated objective is imaged with a confocal microscope to provide large field of view images combined with a high resolution central region to rapidly observe morphological structures associated with cancer development in a mouse model. PMID:26203363

  6. Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP

    PubMed Central

    Mueller, Lukas N; de Brouwer, Jody FC; Almeida, Jonas S; Stal, Lucas J; Xavier, João B

    2006-01-01

    Background Confocal laser scanning microscopy (CLSM) is the method of choice to study interfacial biofilms and acquires time-resolved three-dimensional data of the biofilm structure. CLSM can be used in a multi-channel modus where the different channels map individual biofilm components. This communication presents a novel image quantification tool, PHLIP, for the quantitative analysis of large amounts of multichannel CLSM data in an automated way. PHLIP can be freely downloaded from Results PHLIP is an open source public license Matlab toolbox that includes functions for CLSM imaging data handling and ten image analysis operations describing various aspects of biofilm morphology. The use of PHLIP is here demonstrated by a study of the development of a natural marine phototrophic biofilm. It is shown how the examination of the individual biofilm components using the multi-channel capability of PHLIP allowed the description of the dynamic spatial and temporal separation of diatoms, bacteria and organic and inorganic matter during the shift from a bacteria-dominated to a diatom-dominated phototrophic biofilm. Reflection images and weight measurements complementing the PHLIP analyses suggest that a large part of the biofilm mass consisted of inorganic mineral material. Conclusion The presented case study reveals new insight into the temporal development of a phototrophic biofilm where multi-channel imaging allowed to parallel monitor the dynamics of the individual biofilm components over time. This application of PHLIP presents the power of biofilm image analysis by multi-channel CLSM software and demonstrates the importance of PHLIP for the scientific community as a flexible and extendable image analysis platform for automated image processing. PMID:16412253

  7. 140-GHz gyrotron experiments based on a confocal cavity

    SciTech Connect

    Hu, W.; Shapiro, M.A.; Kreischer, K.E.; Temkin, R.J.

    1998-06-01

    The authors have designed and experimentally demonstrated the operation of a novel quasioptical gyrotron oscillator based on an overmoded confocal waveguide cavity. This cavity effectively suppresses undesired modes, and therefore has extremely low mode density. Stable single-mode, single-frequency operation was achieved in the TE06 mode at 136 GHz. A peak RF output power of 66 kW, corresponding to an efficiency of 18%, was measured. By varying the cavity magnetic field, high-power generation was observed at 136 GHz in the TE{sub 06} mode and at 114 GHz in the TE{sub 05} mode. These frequencies correspond to the high Q modes of the confocal resonator. The low Q modes were either weak or not observed. In this paper, the authors will review the design procedure for this cavity and present experimental data verifying its effectiveness in reducing the number of modes that can be excited. The confocal waveguide could also be used in high-power, gyro-TWT amplifiers to provide greater operating stability and bandwidth, especially in an overmoded waveguide structure.

  8. Parallel detection experiment of fluorescence confocal microscopy using DMD.

    PubMed

    Wang, Qingqing; Zheng, Jihong; Wang, Kangni; Gui, Kun; Guo, Hanming; Zhuang, Songlin

    2016-05-01

    Parallel detection of fluorescence confocal microscopy (PDFCM) system based on Digital Micromirror Device (DMD) is reported in this paper in order to realize simultaneous multi-channel imaging and improve detection speed. DMD is added into PDFCM system, working to take replace of the single traditional pinhole in the confocal system, which divides the laser source into multiple excitation beams. The PDFCM imaging system based on DMD is experimentally set up. The multi-channel image of fluorescence signal of potato cells sample is detected by parallel lateral scanning in order to verify the feasibility of introducing the DMD into fluorescence confocal microscope. In addition, for the purpose of characterizing the microscope, the depth response curve is also acquired. The experimental result shows that in contrast to conventional microscopy, the DMD-based PDFCM system has higher axial resolution and faster detection speed, which may bring some potential benefits in the biology and medicine analysis. SCANNING 38:234-239, 2016. © 2015 Wiley Periodicals, Inc. PMID:26331288

  9. Quantification of Multilayer Samples by Confocal {mu}XRF

    SciTech Connect

    Perez, R. Daniel; Sanchez, H. J.; Rubio, M.; Perez, C. A.

    2009-01-29

    The confocal setup consists of x-ray lenses in the excitation as well as in the detection channel. In this configuration, a micro volume defined by the overlap of the foci of both x-ray lenses is analyzed. Scanning this micro volume through the sample, 1-3 dimensional studies can be performed. For intermediate thin homogeneous layers a scanning in the normal direction to the surface sample provides information of its thickness and elemental composition. For multilayer samples it also provides the order of each layer in the stratified structure. For the confocal setup, we used a glass monocapillary in the excitation channel and a monolithic half polycapillary in the detection channel. The experiment was carried out at the D09B beamline of the LNLS using white beam. In the present work, a new algorithm was applied to analyze in detail by confocal {mu}XRF a sample of three paint layers on a glass substrate. Using the proposed algorithm, information about thickness and elemental densities was obtained for each layer of these samples.

  10. Confocal Imaging of the Embryonic Heart: How Deep?

    NASA Astrophysics Data System (ADS)

    Miller, Christine E.; Thompson, Robert P.; Bigelow, Michael R.; Gittinger, George; Trusk, Thomas C.; Sedmera, David

    2005-06-01

    Confocal microscopy allows for optical sectioning of tissues, thus obviating the need for physical sectioning and subsequent registration to obtain a three-dimensional representation of tissue architecture. However, practicalities such as tissue opacity, light penetration, and detector sensitivity have usually limited the available depth of imaging to 200 [mu]m. With the emergence of newer, more powerful systems, we attempted to push these limits to those dictated by the working distance of the objective. We used whole-mount immunohistochemical staining followed by clearing with benzyl alcohol-benzyl benzoate (BABB) to visualize three-dimensional myocardial architecture. Confocal imaging of entire chick embryonic hearts up to a depth of 1.5 mm with voxel dimensions of 3 [mu]m was achieved with a 10× dry objective. For the purpose of screening for congenital heart defects, we used endocardial painting with fluorescently labeled poly-L-lysine and imaged BABB-cleared hearts with a 5× objective up to a depth of 2 mm. Two-photon imaging of whole-mount specimens stained with Hoechst nuclear dye produced clear images all the way through stage 29 hearts without significant signal attenuation. Thus, currently available systems allow confocal imaging of fixed samples to previously unattainable depths, the current limiting factors being objective working distance, antibody penetration, specimen autofluorescence, and incomplete clearing.

  11. Multispectral confocal microendoscope for in vivo and in situ imaging

    PubMed Central

    Makhlouf, Houssine; Gmitro, Arthur F.; Tanbakuchi, Anthony A.; Udovich, Josh A.; Rouse, Andrew R.

    2016-01-01

    We describe the design and operation of a multispectral confocal microendoscope. This fiber-based fluorescence imaging system consists of a slit-scan confocal microscope coupled to an imaging catheter that is designed to be minimally invasive and allow for cellular level imaging in vivo. The system can operate in two imaging modes. The grayscale mode of operation provides high resolution real-time in vivo images showing the intensity of fluorescent signal from the specimen. The multispectral mode of operation uses a prism as a dispersive element to collect a full multispectral image of the fluorescence emission. The instrument can switch back and forth nearly instantaneously between the two imaging modes (less than half a second). In the current configuration, the multispectral confocal microendoscope achieves 3-μm lateral resolution and 30-μm axial resolution. The system records light from 500 to 750 nm, and the minimum resolvable wavelength difference varies from 2.9 to 8.3 nm over this spectral range. Grayscale and multispectral imaging results from ex-vivo human tissues and small animal tissues are presented. PMID:19021344

  12. Confocal endomicroscopy: Is it time to move on?

    PubMed Central

    Robles-Medranda, Carlos

    2016-01-01

    Confocal laser endomicroscopy permits in-vivo microscopy evaluation during endoscopy procedures. It can be used in all the parts of the gastrointestinal tract and includes: Esophagus, stomach, small bowel, colon, biliary tract through and endoscopic retrograde cholangiopancreatography and pancreas through needles during endoscopic ultrasound procedures. Many researches demonstrated a high correlation of results between confocal laser endomicroscopy and histopathology in the diagnosis of gastrointestinal lesions; with accuracy in about 86% to 96%. Moreover, in spite that histopathology remains the gold-standard technique for final diagnosis of any diseases; a considerable number of misdiagnosis rate could be present due to many factors such as interpretation mistakes, biopsy site inaccuracy, or number of biopsies. Theoretically; with the diagnostic accuracy rates of confocal laser endomicroscopy could help in a daily practice to improve diagnosis and treatment management of the patients. However, it is still not routinely used in the clinical practice due to many factors such as cost of the procedure, lack of codification and reimbursement in some countries, absence of standard of care indications, availability, physician image-interpretation training, medico-legal problems, and the role of the pathologist. These limitations are relative, and solutions could be found based on new researches focused to solve these barriers. PMID:26788257

  13. Segmentation of confocal microscopic image of insect brain

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Jin; Lin, Chih-Yang; Ching, Yu-Tai

    2002-05-01

    Accurate analysis of insect brain structures in digital confocal microscopic images is valuable and important to biology research needs. The first step is to segment meaningful structures from images. Active contour model, known as snakes, is widely used for segmentation of medical images. A new class of active contour model called gradient vector flow snake has been introduced in 1998 to overcome some critical problems encountered in the traditional snake. In this paper, we use gradient vector flow snake to segment the mushroom body and the central body from the confocal microscopic insect brain images. First, an edge map is created from images by some edge filters. Second, a gradient vector flow field is calculated from the edge map using a computational diffusion process. Finally, a traditional snake deformation process starts until it reaches a stable configuration. User interface is also provided here, allowing users to edit the snake during deformation process, if desired. Using the gradient vector flow snake as the main segmentation method and assist with user interface, we can properly segment the confocal microscopic insect brain image for most of the cases. The identified mushroom and central body can then be used as the preliminary results toward a 3-D reconstruction process for further biology researches.

  14. Application of the specular and diffuse reflection analysis for in vitro diagnostics of dental erosion: correlation with enamel softening, roughness, and calcium release.

    PubMed

    Rakhmatullina, Ekaterina; Bossen, Anke; Höschele, Christoph; Wang, Xiaojie; Beyeler, Barbara; Meier, Christoph; Lussi, Adrian

    2011-10-01

    We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r(2) ≥ -0.86) as well as calcium release (r(2) ≥ -0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r(2) = 0.42-0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo. PMID:22029364

  15. Application of the specular and diffuse reflection analysis for in vitro diagnostics of dental erosion: correlation with enamel softening, roughness, and calcium release

    NASA Astrophysics Data System (ADS)

    Rakhmatullina, Ekaterina; Bossen, Anke; Höschele, Christoph; Wang, Xiaojie; Beyeler, Barbara; Meier, Christoph; Lussi, Adrian

    2011-10-01

    We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r2 >= -0.86) as well as calcium release (r2 >= -0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r2 = 0.42-0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo.

  16. Application of the specular and diffuse reflection analysis for in vitro diagnostics of dental erosion: correlation with enamel softening, roughness, and calcium release

    PubMed Central

    Rakhmatullina, Ekaterina; Bossen, Anke; Höschele, Christoph; Wang, Xiaojie; Beyeler, Barbara; Meier, Christoph; Lussi, Adrian

    2011-01-01

    We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r2 ≥ −0.86) as well as calcium release (r2 ≥ −0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r2 = 0.42–0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo. PMID:22029364

  17. Protocol for Validation of the Land Surface Reflectance Fundamental Climate Data Record using AERONET: Application to the Global MODIS and VIIRS Data Records

    NASA Astrophysics Data System (ADS)

    Roger, J. C.; Vermote, E.; Holben, B. N.

    2014-12-01

    The land surface reflectance is a fundamental climate data record at the basis of the derivation of other climate data records (Albedo, LAI/Fpar, Vegetation indices) and a key parameter in the understanding of the land-surface-climate processes. It is essential that a careful validation of its uncertainties is performed on a global and continuous basis. One approach is the direct comparison of this product with ground measurements but that approach presents several issues related to scale, the episodic nature of ground measurements and the global representativeness. An alternative is to compare the surface reflectance product to reference reflectance determined from Top of atmosphere reflectance corrected using accurate radiative transfer code and very detailed measurements of the atmosphere obtained over the AERONET sites (Vermote and al, 2014, RSE) which allows to test for a large range of aerosol characteristics; formers being important inputs for atmospheric corrections. However, the application of this method necessitates the definition of a very detailed protocol for the use of AERONET data especially as far as size distribution and absorption are concerned, so that alternative validation methods or protocols could be compared. This paper describes the protocol we have been working on based on our experience with the AERONET data and its application to the MODIS and VIIRS record.

  18. Effects of acids used in the microabrasion technique: Microhardness and confocal microscopy analysis

    PubMed Central

    Pini, Núbia-Inocencya-Pavesi; Ambrosano, Gláucia-Maria-Bovi; da Silva, Wander-José; Aguiar, Flávio-Henrique-Baggio; Lovadino, José-Roberto

    2015-01-01

    Background This study evaluated the effects of the acids used in the microabrasion on enamel. Material and Methods Seventy enamel/dentine blocks (25 mm2) of bovine incisors were divided into 7 groups (n=10). Experimental groups were treated by active/passive application of 35% H3PO4 (E1/E2) or 6.6% HCl (E3/E4). Control groups were treated by microabrasion with H3PO4+pumice (C5), HCl+silica (C6), or no treatment (C7). The superficial (SMH) and cross-sectional (CSMH; depths of 10, 25, 50, and 75 µm) microhardness of enamel were analyzed. Morphology was evaluated by confocal laser-scanning microscopy (CLSM). Data were analyzed by analysis of variance (Proc Mixed), Tukey, and Dunnet tests (α=5%). Results Active application (E1 and E3) resulted in higher microhardness than passive application (E2 and E4), with no difference between acids. For most groups, the CSMH decreased as the depth increased. All experimental groups and negative controls (C5 and C6) showed significantly reduced CSMH values compared to the control. A significantly higher mean CSMH result was obtained with the active application of H3PO4 (E1) compared to HCl (E3). Passive application did not result in CSMH differences between acids. CLSM revealed the conditioning pattern for each group. Conclusions Although the acids displayed an erosive action, use of microabrasive mixture led to less damage to the enamel layers. Key words:Enamel microabrasion, enamel microhardness, confocal laser scanning microscopy. PMID:26535098

  19. Confocal Light Absorption and Scattering Spectroscopic (CLASS) imaging: From cancer detection to sub-cellular function

    NASA Astrophysics Data System (ADS)

    Qiu, Le

    Light scattering spectroscopy (LSS), an optical technique that relates the spectroscopic properties of light elastically scattered by small particles to their size, refractive index and shape, has been recently successfully employed for sensing morphological and biochemical properties of epithelial tissues and cells in vivo. LSS does not require exogenous markers, is non-invasive, and, due to its multispectral nature, can sense biological structures well beyond the diffraction limit. All that makes LSS be a very good candidate to be used both in clinical medicine for in vivo detection of disease and in cell biology to monitor cell function on the organelle scale. Recently we developed two LSS-based imaging modalities: clinical Polarized LSS (PLSS) Endoscopic Technique for locating early pre-cancerous changes in GI tract and Confocal Light Absorption and Scattering Spectroscopic (CLASS) Microscopy for studying cells in vivo without exogenous markers. One important application of the clinical PLSS endoscopic instrument, a noncontact scanning imaging device compatible with the standard clinical endoscopes and capable of detecting dysplastic changes, is to serve as a guide for biopsy in Barrett's esophagus (BE). The instrument detects parallel and perpendicular components of the polarized light, backscattered from epithelial tissues, and determines characteristics of epithelial nuclei from the residual spectra. It also can find tissue oxygenation, hemoglobin content and other properties from the diffuse light component. By rapidly scanning esophagus the PLSS endoscopic instrument makes sure the entire BE portion is scanned and examined for the presence of dysplasia. CLASS microscopy, on the other hand, combines principles of light scattering spectroscopy (LSS) with confocal microscopy. Its main purpose is to image cells on organelle scale in vivo without the use of exogenous labels which may affect the cell function. The confocal geometry selects specific region and

  20. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Polarisation splitting of laser beams by large angles with minimal reflection losses

    NASA Astrophysics Data System (ADS)

    Davydov, B. L.

    2006-05-01

    New crystal anisotropic prisms for splitting orthogonally polarised components of laser radiation by large angles with minimal reflection losses caused by the Brewster refraction and total internal reflection of polarised waves from the crystal—air interface are considered and the method for their calculation is described. It is shown that, by assembling glue-free combinations of two or three prisms, thermally stable beamsplitters can be fabricated, which are free from the beam astigmatism and the wave dispersion of the output angles of the beams. The parameters and properties of new beamsplitters are presented in a convenient form in figures and tables.