Sample records for applied electrochemistry prikladnaya

  1. Protein Electrochemistry: Questions and Answers.

    PubMed

    Fourmond, V; Léger, C

    This chapter presents the fundamentals of electrochemistry in the context of protein electrochemistry. We discuss redox proteins and enzymes that are not photoactive. Of course, the principles described herein also apply to photobioelectrochemistry, as discussed in later chapters of this book. Depending on which experiment is considered, electron transfer between proteins and electrodes can be either direct or mediated, and achieved in a variety of configurations: with the protein and/or the mediator free to diffuse in solution, immobilized in a thick, hydrated film, or adsorbed as a sub-monolayer on the electrode. The experiments can be performed with the goal to study the protein or to use it. Here emphasis is on mechanistic studies, which are easier in the configuration where the protein is adsorbed and electron transfer is direct, but we also explain the interpretation of signals obtained when diffusion processes affect the response.This chapter is organized as a series of responses to questions. Questions 1-5 are related to the basics of electrochemistry: what does "potential" or "current" mean, what does an electrochemical set-up look like? Questions 6-9 are related to the distinction between adsorbed and diffusive redox species. The answers to questions 10-13 explain the interpretation of slow and fast scan voltammetry with redox proteins. Questions 14-19 deal with catalytic electrochemistry, when the protein studied is actually an enzyme. Questions 20, 21 and 22 are general.

  2. LCEC: The Combination of Liquid Chromatography and Electrochemistry.

    ERIC Educational Resources Information Center

    Kissinger, Peter T.

    1983-01-01

    Use of combined liquid chromatography and finite-current electrochemistry (LCEC) procedures are discussed. Also discusses the relationship between electroactivity and molecular structure, selectivity in LCEC, and LCEC applications. Because of its selectivity and low detection limits, the procedures are most often applied in biomedical and…

  3. Bipolar electrochemistry.

    PubMed

    Fosdick, Stephen E; Knust, Kyle N; Scida, Karen; Crooks, Richard M

    2013-09-27

    A bipolar electrode (BPE) is an electrically conductive material that promotes electrochemical reactions at its extremities (poles) even in the absence of a direct ohmic contact. More specifically, when sufficient voltage is applied to an electrolyte solution in which a BPE is immersed, the potential difference between the BPE and the solution drives oxidation and reduction reactions. Because no direct electrical connection is required to activate redox reactions, large arrays of electrodes can be controlled with just a single DC power supply or even a battery. The wireless aspect of BPEs also makes it possible to electrosynthesize and screen novel materials for a wide variety of applications. Finally, bipolar electrochemistry enables mobile electrodes, dubbed microswimmers, that are able to move freely in solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Teaching Electrochemistry in the General Chemistry Laboratory through Corrosion Exercises

    ERIC Educational Resources Information Center

    Sanders, Richard W.; Crettol, Gregory L.; Brown, Joseph D.; Plummer, Patrick T.; Schendorf, Tara M.; Oliphant, Alex; Swithenbank, Susan B.; Ferrante, Robert F.; Gray, Joshua P.

    2018-01-01

    Electrochemistry is primarily taught in first-year undergraduate courses through batteries; this lab focuses instead on corrosion to apply electrochemical concepts of electrolytes, standard reduction potentials, galvanic cells, and other chemistry concepts including Le Chatelier's Principle and Henry's Law. Students investigate galvanic corrosion…

  5. Imaging mass spectrometry tackles interfacial challenges in electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiao-Ying

    Electrochemistry has played a significant role in many research fields. Owing to its sensitivity and selectivity, in situ electroanalysis has been widely used as a fast and economical means for achieving outstanding results. Although many spectroscopic techniques have been used in electrochemistry, the challenges to capture short-lived intermediate species as a result of electron transfer in the buried solid electrode and electrolyte solution interface remains a grand challenge. In situ imaging mass spectrometry (IMS) recently has been extended to capture transient species in electrochemistry. This review intends to summarize newest development of IMS and its applications in advancing fundamental electrochemistry.

  6. Factors that Prevent Learning in Electrochemistry

    ERIC Educational Resources Information Center

    Schmidt, Hans-Jurgen; Marohn, Annette; Harrison, Allan G.

    2007-01-01

    Electrochemistry plays an important role in curricula, textbooks, and in everyday life. The purpose of the present study was to identify and understand secondary-school students' problems in learning electrochemistry at an introductory chemistry level. The investigation covered four areas: (a) electrolytes, (b) transport of electric charges in…

  7. Scopus: A system for the evaluation of scientific journals

    NASA Astrophysics Data System (ADS)

    Guz, A. N.; Rushchitsky, J. J.

    2009-04-01

    The paper discusses the evaluation of scientific journals based on the Scopus database, information tools, and criteria. The SJR (SCImago Journal Rank) as the main criterion used by Scopus to evaluate scientific journals is considered. The Scopus and ISI systems are compared using information on the journal Prikladnaya Mekhanika ( International Applied Mechanics), a number of world-known journals on mechanics, and some journals on natural sciences issued by the National Academy of Sciences of Ukraine. Some comments and proposals are formulated. This paper may be considered as a follow up on papers published in Prikladnaya Mekhanika ( International Applied Mechanics) in 2005-2009

  8. Fundamentals and applications of electrochemistry

    NASA Astrophysics Data System (ADS)

    McEvoy, A. J.

    2013-06-01

    The Voltaic pile, invented here on Lake Como 200 years ago, was a crucial step in the development of electrical engineering. For the first time a controlled and reliable source of electric current was available. The science of electrochemistry developed rapidly and is now a key contributor, not just to energy technology but also, for example, to metallurgy and industrial processes. The basic concepts of electrochemistry are presented, with the practical examples of its application in fuel cells, and with the perspective of the history of the subject.

  9. 2015 CEC Annual Workshop on Electrochemistry

    DTIC Science & Technology

    2015-12-30

    Street Suite 5.300 Austin , TX 78712 -1532 23-Aug-2015 ABSTRACT Number of Papers published in peer-reviewed journals: Number of Papers published in non peer...SECURITY CLASSIFICATION OF: The Center for Electrochemistry (CEC) at the University of Texas at Austin held its seventh annual electrochemistry...workshop February 7–8, 2015 in Welch Hall on the campus of The University of Texas at Austin . There were 160 registered attendees for this conference

  10. Computer-Animated Instruction and Students' Conceptual Change in Electrochemistry: Preliminary Qualitative Analysis

    ERIC Educational Resources Information Center

    Talib, Othman; Matthews, Robert; Secombe, Margaret

    2005-01-01

    This paper discusses the potential of applying computer-animated instruction (CAnI) as an effective conceptual change strategy in teaching electrochemistry in comparison to conventional lecture-based instruction (CLI). The core assumption in this study is that conceptual change in learners is an active, constructive process that is enhanced by the…

  11. Inquiry-Based Laboratory Activities in Electrochemistry: High School Students' Achievements and Attitudes

    NASA Astrophysics Data System (ADS)

    Acar Sesen, Burcin; Tarhan, Leman

    2013-02-01

    This study aimed to investigate the effects of inquiry-based laboratory activities on high school students' understanding of electrochemistry and attitudes towards chemistry and laboratory work. The participants were 62 high school students (average age 17 years) in an urban public high school in Turkey. Students were assigned to experimental ( N = 30) and control groups ( N = 32). The experimental group was taught using inquiry-based laboratory activities developed by the researchers and the control group was instructed using traditional laboratory activities. The results of the study indicated that instruction based on inquiry-based laboratory activities caused a significantly better acquisition of scientific concepts related to electrochemistry, and produced significantly higher positive attitudes towards chemistry and laboratory. In the light of the findings, it is suggested that inquiry-based laboratory activities should be developed and applied to promote students' understanding in chemistry subjects and to improve their positive attitudes.

  12. Development of an Electrochemistry Teaching Sequence Using a Phenomenographic Approach

    ERIC Educational Resources Information Center

    Rodriguez-Velazquez, Sorangel

    2013-01-01

    Electrochemistry is the area of chemistry that studies electron transfer reactions across an interface. Chemistry education researchers have acknowledged that difficulties in electrochemistry instruction arise due to the level of abstraction of the topic, lack of adequate explanations and representations found in textbooks, and a quantitative…

  13. [Novel Approaches in DNA Methylation Studies - MS-HRM Analysis and Electrochemistry].

    PubMed

    Bartošík, M; Ondroušková, E

    Cytosine methylation in DNA is an epigenetic mechanism regulating gene expression and plays a vital role in cell differentiation or proliferation. Tumor cells often exhibit aberrant DNA methylation, e.g. hypermethylation of tumor suppressor gene promoters. New methods, capable of determining methylation status of specific DNA sequences, are thus being developed. Among them, MS-HRM (methylation-specific high resolution melting) and electrochemistry offer relatively inexpensive instrumentation, fast assay times and possibility of screening multiple samples/DNA regions simultaneously. MS-HRM is due to its sensitivity and simplicity an interesting alternative to already established techniques, including methylation-specific PCR or bisulfite sequencing. Electrochemistry, when combined with suitable electroactive labels and electrode surfaces, has been applied in several unique strategies for discrimination of cytosines and methylcytosines. Both techniques were successfully tested in analysis of DNA methylation within promoters of important tumor suppressor genes and could thus help in achieving more precise diagnostics and prognostics of cancer. Aberrant methylation of promoters has already been described in hundreds of genes associated with tumorigenesis and could serve as important biomarker if new methods applicable into clinical practice are sufficiently advanced.Key words: DNA methylation - 5-methylcytosine - HRM analysis - melting temperature - DNA duplex - electrochemistry - nucleic acid hybridizationThis work was supported by MEYS - NPS I - LO1413.The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 6. 5. 2016Accepted: 16. 5. 2016.

  14. An Effective Approach to Teaching Electrochemistry.

    ERIC Educational Resources Information Center

    Birss, Viola I.; Truax, D. Rodney

    1990-01-01

    An approach which may be useful for teaching electrochemistry in freshman college chemistry courses is presented. Discussed are the potential problems with teaching this subject and solutions provided by this approach. (CW)

  15. The birth of protein electrochemistry.

    PubMed

    Blanford, Christopher F

    2013-12-11

    The results from a final-year undergraduate project led to an $876M sale of a spin-out company 19 years later: the 1977 communication from Mark Eddowes and Allen Hill seeded the rich field of protein electrochemistry, the technology that underpins commercial glucose biosensors.

  16. Development of an Electrochemistry Teaching Sequence using a Phenomenographic Approach

    NASA Astrophysics Data System (ADS)

    Rodriguez-Velazquez, Sorangel

    Electrochemistry is the area of chemistry that studies electron transfer reactions across an interface. Chemistry education researchers have acknowledged that difficulties in electrochemistry instruction arise due to the level of abstraction of the topic, lack of adequate explanations and representations found in textbooks, and a quantitative emphasis in the application of concepts. Studies have identified conceptions (also referred to as misconceptions, alternative conceptions, etc.) about the electrochemical process that transcends academic and preparation levels (e.g., students and instructors) as well as cultural and educational settings. Furthermore, conceptual understanding of the electrochemical process requires comprehension of concepts usually studied in physics such as electric current, resistance and potential and often neglected in introductory chemistry courses. The lack of understanding of physical concepts leads to students. conceptions with regards to the relation between the concepts of redox reactions and electric circuits. The need for instructional materials to promote conceptual understanding of the electrochemical process motivated the development of the electrochemistry teaching sequence presented in this dissertation. Teaching sequences are educational tools that aim to bridge the gap between student conceptions and the scientific acceptable conceptions that instructors expect students to learn. This teaching sequence explicitly addresses known conceptions in electrochemistry and departs from traditional instruction in electrochemistry to reinforce students. previous knowledge in thermodynamics providing the foundation for the explicit relation of redox reactions and electric circuits during electrochemistry instruction. The scientific foundations of the electrochemical process are explained based on the Gibbs free energy (G) involved rather than on the standard redox potential values (E° ox/red) of redox half-reactions. Representations of

  17. Scanning thermo-ionic microscopy for probing local electrochemistry at the nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eshghinejad, Ahmadreza; Nasr Esfahani, Ehsan; Wang, Peiqi

    2016-05-28

    Conventional electrochemical characterization techniques based on voltage and current measurements only probe faradaic and capacitive rates in aggregate. In this work we develop a scanning thermo-ionic microscopy (STIM) to probe local electrochemistry at the nanoscale, based on imaging of Vegard strain induced by thermal oscillation. It is demonstrated from both theoretical analysis and experimental validation that the second harmonic response of thermally induced cantilever vibration, associated with thermal expansion, is present in all solids, whereas the fourth harmonic response, caused by local transport of mobile species, is only present in ionic materials. The origin of STIM response is further confirmedmore » by its reduced amplitude with respect to increased contact force, due to the coupling of stress to concentration of ionic species and/or electronic defects. The technique has been applied to probe Sm-doped Ceria and LiFePO{sub 4}, both of which exhibit higher concentrations of mobile species near grain boundaries. The STIM gives us a powerful method to study local electrochemistry with high sensitivity and spatial resolution for a wide range of ionic systems, as well as ability to map local thermomechanical response.« less

  18. Electrochemistry and Storage

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1984-01-01

    The term electrochemistry implies the use of devices that convert chemical energy into electrical energy and sometimes vice versa. These devices are usually composed of some number of individual cells that are connected together to form a battery. In the cases where these devices cannot be electrically recharged they are usually referred to as primary batteries, whereas if these batteries can be charged and recharged repeatedly, they are called secondary batteries. The past and present uses of primary and secondary batteries in aerospace applications are discussed.

  19. DNA-Mediated Electrochemistry

    PubMed Central

    Gorodetsky, Alon A.; Buzzeo, Marisa C.

    2009-01-01

    The base pair stack of DNA has been demonstrated as a medium for long range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry. PMID:18980370

  20. Redox-capacitor to connect electrochemistry to redox-biology.

    PubMed

    Kim, Eunkyoung; Leverage, W Taylor; Liu, Yi; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-01-07

    It is well-established that redox-reactions are integral to biology for energy harvesting (oxidative phosphorylation), immune defense (oxidative burst) and drug metabolism (phase I reactions), yet there is emerging evidence that redox may play broader roles in biology (e.g., redox signaling). A critical challenge is the need for tools that can probe biologically-relevant redox interactions simply, rapidly and without the need for a comprehensive suite of analytical methods. We propose that electrochemistry may provide such a tool. In this tutorial review, we describe recent studies with a redox-capacitor film that can serve as a bio-electrode interface that can accept, store and donate electrons from mediators commonly used in electrochemistry and also in biology. Specifically, we (i) describe the fabrication of this redox-capacitor from catechols and the polysaccharide chitosan, (ii) discuss the mechanistic basis for electron exchange, (iii) illustrate the properties of this redox-capacitor and its capabilities for promoting redox-communication between biology and electrodes, and (iv) suggest the potential for enlisting signal processing strategies to "extract" redox information. We believe these initial studies indicate broad possibilities for enlisting electrochemistry and signal processing to acquire "systems level" redox information from biology.

  1. Electrochemistry, biosensors and microfluidics: a convergence of fields.

    PubMed

    Rackus, Darius G; Shamsi, Mohtashim H; Wheeler, Aaron R

    2015-08-07

    Electrochemistry, biosensors and microfluidics are popular research topics that have attracted widespread attention from chemists, biologists, physicists, and engineers. Here, we introduce the basic concepts and recent histories of electrochemistry, biosensors, and microfluidics, and describe how they are combining to form new application-areas, including so-called "point-of-care" systems in which measurements traditionally performed in a laboratory are moved into the field. We propose that this review can serve both as a useful starting-point for researchers who are new to these topics, as well as being a compendium of the current state-of-the art for experts in these evolving areas.

  2. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy.

    PubMed

    Zaleski, Stephanie; Wilson, Andrew J; Mattei, Michael; Chen, Xu; Goubert, Guillaume; Cardinal, M Fernanda; Willets, Katherine A; Van Duyne, Richard P

    2016-09-20

    The chemical sensitivity of surface-enhanced Raman spectroscopy (SERS) methodologies allows for the investigation of heterogeneous chemical reactions with high sensitivity. Specifically, SERS methodologies are well-suited to study electron transfer (ET) reactions, which lie at the heart of numerous fundamental processes: electrocatalysis, solar energy conversion, energy storage in batteries, and biological events such as photosynthesis. Heterogeneous ET reactions are commonly monitored by electrochemical methods such as cyclic voltammetry, observing billions of electrochemical events per second. Since the first proof of detecting single molecules by redox cycling, there has been growing interest in examining electrochemistry at the nanoscale and single-molecule levels. Doing so unravels details that would otherwise be obscured by an ensemble experiment. The use of optical spectroscopies, such as SERS, to elucidate nanoscale electrochemical behavior is an attractive alternative to traditional approaches such as scanning electrochemical microscopy (SECM). While techniques such as single-molecule fluorescence or electrogenerated chemiluminescence have been used to optically monitor electrochemical events, SERS methodologies, in particular, have shown great promise for exploring electrochemistry at the nanoscale. SERS is ideally suited to study nanoscale electrochemistry because the Raman-enhancing metallic, nanoscale substrate duly serves as the working electrode material. Moreover, SERS has the ability to directly probe single molecules without redox cycling and can achieve nanoscale spatial resolution in combination with super-resolution or scanning probe microscopies. This Account summarizes the latest progress from the Van Duyne and Willets groups toward understanding nanoelectrochemistry using Raman spectroscopic methodologies. The first half of this Account highlights three techniques that have been recently used to probe few- or single-molecule electrochemical

  3. Individuals Achieve More Accurate Results with Meters That Are Codeless and Employ Dynamic Electrochemistry

    PubMed Central

    Rao, Anoop; Wiley, Meg; Iyengar, Sridhar; Nadeau, Dan; Carnevale, Julie

    2010-01-01

    Background Studies have shown that controlling blood glucose can reduce the onset and progression of the long-term microvascular and neuropathic complications associated with the chronic course of diabetes mellitus. Improved glycemic control can be achieved by frequent testing combined with changes in medication, exercise, and diet. Technological advancements have enabled improvements in analytical accuracy of meters, and this paper explores two such parameters to which that accuracy can be attributed. Methods Four blood glucose monitoring systems (with or without dynamic electrochemistry algorithms, codeless or requiring coding prior to testing) were evaluated and compared with respect to their accuracy. Results Altogether, 108 blood glucose values were obtained for each system from 54 study participants and compared with the reference values. The analysis depicted in the International Organization for Standardization table format indicates that the devices with dynamic electrochemistry and the codeless feature had the highest proportion of acceptable results overall (System A, 101/103). Results were significant when compared at the 10% bias level with meters that were codeless and utilized static electrochemistry (p = .017) or systems that had static electrochemistry but needed coding (p = .008). Conclusions Analytical performance of these blood glucose meters differed significantly depending on their technologic features. Meters that utilized dynamic electrochemistry and did not require coding were more accurate than meters that used static electrochemistry or required coding. PMID:20167178

  4. Individuals achieve more accurate results with meters that are codeless and employ dynamic electrochemistry.

    PubMed

    Rao, Anoop; Wiley, Meg; Iyengar, Sridhar; Nadeau, Dan; Carnevale, Julie

    2010-01-01

    Studies have shown that controlling blood glucose can reduce the onset and progression of the long-term microvascular and neuropathic complications associated with the chronic course of diabetes mellitus. Improved glycemic control can be achieved by frequent testing combined with changes in medication, exercise, and diet. Technological advancements have enabled improvements in analytical accuracy of meters, and this paper explores two such parameters to which that accuracy can be attributed. Four blood glucose monitoring systems (with or without dynamic electrochemistry algorithms, codeless or requiring coding prior to testing) were evaluated and compared with respect to their accuracy. Altogether, 108 blood glucose values were obtained for each system from 54 study participants and compared with the reference values. The analysis depicted in the International Organization for Standardization table format indicates that the devices with dynamic electrochemistry and the codeless feature had the highest proportion of acceptable results overall (System A, 101/103). Results were significant when compared at the 10% bias level with meters that were codeless and utilized static electrochemistry (p = .017) or systems that had static electrochemistry but needed coding (p = .008). Analytical performance of these blood glucose meters differed significantly depending on their technologic features. Meters that utilized dynamic electrochemistry and did not require coding were more accurate than meters that used static electrochemistry or required coding. 2010 Diabetes Technology Society.

  5. Students' understandings of electrochemistry

    NASA Astrophysics Data System (ADS)

    O'Grady-Morris, Kathryn

    Electrochemistry is considered by students to be a difficult topic in chemistry. This research was a mixed methods study guided by the research question: At the end of a unit of study, what are students' understandings of electrochemistry? The framework of analysis used for the qualitative and quantitative data collected in this study was comprised of three categories: types of knowledge used in problem solving, levels of representation of knowledge in chemistry (macroscopic, symbolic, and particulate), and alternative conceptions. Although individually each of the three categories has been reported in previous studies, the contribution of this study is the inter-relationships among them. Semi-structured, task-based interviews were conducted while students were setting up and operating electrochemical cells in the laboratory, and a two-tiered, multiple-choice diagnostic instrument was designed to identify alternative conceptions that students held at the end of the unit. For familiar problems, those involving routine voltaic cells, students used a working-forwards problem-solving strategy, two or three levels of representation of knowledge during explanations, scored higher on both procedural and conceptual knowledge questions in the diagnostic instrument, and held fewer alternative conceptions related to the operation of these cells. For less familiar problems, those involving non-routine voltaic cells and electrolytic cells, students approached problem-solving with procedural knowledge, used only one level of representation of knowledge when explaining the operation of these cells, scored higher on procedural knowledge than conceptual knowledge questions in the diagnostic instrument, and held a greater number of alternative conceptions. Decision routines that involved memorized formulas and procedures were used to solve both quantitative and qualitative problems and the main source of alternative conceptions in this study was the overgeneralization of theory

  6. Conceptual design and experiments of electrochemistry-flushing technology for the remediation of historically Cr(Ⅵ)-contaminated soil.

    PubMed

    Li, Dong; Sun, Delin; Hu, Siyang; Hu, Jing; Yuan, Xingzhong

    2016-02-01

    A conceptual design and experiments, electrochemistry-flushing (E-flushing), using electrochemistry to enhance flushing efficiency for the remediation of Cr(Ⅵ)-contaminated soil is presented. The rector contained three compartments vertically superposed. The upper was airtight cathode compartment containing an iron-cathode. The middle was soil layer. The bottom was anode compartment containing an iron-anode and connected to a container by circulation pumps. H2 and OH(-) ions were produced at cathode. H2 increased the gas pressure in cathode compartment and drove flushing solution into soil layer forming flushing process. OH(-) ions entered into soil layer by eletromigration and hydraulic flow to enhance the desorption of Cr(Ⅵ). High potential gradient was applied to accelerate the electromigration of desorbed Cr(Ⅵ) ions and produced joule heat to increase soil temperature to enhance Cr(Ⅵ) desorption. In anode compartment, Fe(2+) ions produced at iron-anode reduced the desorbed Cr(Ⅵ) into Cr(3+) ions, which reacted with OH(-) ions forming Cr(OH)3. Experimental results show that Cr(Ⅵ) removal efficiency of E-flushing experiments was more than double of flushing experiments and reached the maximum of removal efficiency determined by desorption kinetics. All electrochemistry processes were positively used in E-flushing technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A Conceptual Change Teaching Strategy To Facilitate High School Students' Understanding of Electrochemistry.

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Chacon, Eleazar

    2003-01-01

    Describes a study that used a teaching strategy based on two teaching experiments which could facilitate students' conceptual understanding of electrochemistry. Involves two sections (n=29 and n=28) of 10th grade high school students in Venezuela. Concludes that the teaching experiments facilitated student understanding of electrochemistry.…

  8. Effects of High Power Lasers, Number 4

    DTIC Science & Technology

    1974-10-31

    KhMM FMiM FTP FTT FZh GiA GiK IAN Arm IAN Az Avtomatika i tclctnukhanika Acta physica polonica Akadcmiya na,uk Armyanskoy SSR. Doklady...obraztsy, tovarnyye znaki Postepy firyki Physics abstracts Prikladnaya mekhanikö Prikladnaya matcmatika i mckhanika Physica status solidi Pribory i

  9. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes.

    PubMed

    Unwin, Patrick R; Güell, Aleix G; Zhang, Guohui

    2016-09-20

    Carbon materials have a long history of use as electrodes in electrochemistry, from (bio)electroanalysis to applications in energy technologies, such as batteries and fuel cells. With the advent of new forms of nanocarbon, particularly, carbon nanotubes and graphene, carbon electrode materials have taken on even greater significance for electrochemical studies, both in their own right and as components and supports in an array of functional composites. With the increasing prominence of carbon nanomaterials in electrochemistry comes a need to critically evaluate the experimental framework from which a microscopic understanding of electrochemical processes is best developed. This Account advocates the use of emerging electrochemical imaging techniques and confined electrochemical cell formats that have considerable potential to reveal major new perspectives on the intrinsic electrochemical activity of carbon materials, with unprecedented detail and spatial resolution. These techniques allow particular features on a surface to be targeted and models of structure-activity to be developed and tested on a wide range of length scales and time scales. When high resolution electrochemical imaging data are combined with information from other microscopy and spectroscopy techniques applied to the same area of an electrode surface, in a correlative-electrochemical microscopy approach, highly resolved and unambiguous pictures of electrode activity are revealed that provide new views of the electrochemical properties of carbon materials. With a focus on major sp(2) carbon materials, graphite, graphene, and single walled carbon nanotubes (SWNTs), this Account summarizes recent advances that have changed understanding of interfacial electrochemistry at carbon electrodes including: (i) Unequivocal evidence for the high activity of the basal surface of highly oriented pyrolytic graphite (HOPG), which is at least as active as noble metal electrodes (e.g., platinum) for outer

  10. Lithium-sulfur batteries: electrochemistry, materials, and prospects.

    PubMed

    Yin, Ya-Xia; Xin, Sen; Guo, Yu-Guo; Wan, Li-Jun

    2013-12-09

    With the increasing demand for efficient and economic energy storage, Li-S batteries have become attractive candidates for the next-generation high-energy rechargeable Li batteries because of their high theoretical energy density and cost effectiveness. Starting from a brief history of Li-S batteries, this Review introduces the electrochemistry of Li-S batteries, and discusses issues resulting from the electrochemistry, such as the electroactivity and the polysulfide dissolution. To address these critical issues, recent advances in Li-S batteries are summarized, including the S cathode, Li anode, electrolyte, and new designs of Li-S batteries with a metallic Li-free anode. Constructing S molecules confined in the conductive microporous carbon materials to improve the cyclability of Li-S batteries serves as a prospective strategy for the industry in the future. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Soviet Material on Internal Wave Effects, No. 4, September 1975

    DTIC Science & Technology

    1975-09-01

    UzbSSR DBAN EOM FAiO FGiV FiKhOM F-KhMM FMiM FTP FTT FZh GiA GiK IAN Arm IAN Az Avtomatika i telemekhanika Acta physica polonica ...promyshlennyye obraztsy, tovarnyye znaki Postepy fizyki Physics abstracts Prikladnaya mekhanika Prikladnaya matematika i mekhanika Physica status

  12. Synthetic Organic Electrochemistry: Calling All Engineers.

    PubMed

    Yan, Ming; Kawamata, Yu; Baran, Phil S

    2018-04-09

    Unmet potential: Electrochemistry is the most simple and basic way of altering the redox-states of organic molecules. Despite extensive studies and its demonstrated promise, it has yet to take off in mainstream synthesis. The reason is due to engineering challenges in instrument design. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Introduction to Electrochemistry and the Use of Electrochemistry to Synthesize and Evaluate Catalysts for Water Oxidation and Reduction

    ERIC Educational Resources Information Center

    Hendel, Samuel J.; Young, Elizabeth R.

    2016-01-01

    Electrochemical analysis is an important skill to teach in chemistry curricula because it is a critical tool in current high-impact chemical research. Electrochemistry enables researchers to analyze a variety of systems extending from molecules to materials that encompass research themes ranging from clean energy to substrate activation in…

  14. Analytical Electrochemistry: Theory and Instrumentation of Dynamic Techniques.

    ERIC Educational Resources Information Center

    Johnson, Dennis C.

    1980-01-01

    Emphasizes trends in the development of six topics concerning analytical electrochemistry, including books and reviews (34 references cited), mass transfer (59), charge transfer (25), surface effects (33), homogeneous reactions (21), and instrumentation (31). (CS)

  15. Electrochemistry at One Nanoparticle.

    PubMed

    Mirkin, Michael V; Sun, Tong; Yu, Yun; Zhou, Min

    2016-10-18

    Electrochemistry at metal nanoparticles (NPs) is of significant current interest because of its applications in catalysis, energy conversion and storage, and sensors. The electrocatalytic activity of NPs depends strongly on their size, shape, and surface attachment. The use of a large number of particles in most reported kinetic experiments obscured the effects of these factors because of polydispersity and different NP orientations. Recent efforts to probe electrochemistry at single NPs included recording of the catalytically amplified current produced by random collisions of particles with the electrode surface, immobilizing an NP on the surface of a small electrode, and delivering individual NPs to electrode surfaces. Although the signals recorded in such experiments were produced by single NPs, the characterization issues and problems with separating an individual particle from other NPs present in the system made it difficult to obtain spatially and/or temporally resolved information about heterogeneous processes occurring at a specific NP. To carry out electrochemical experiments involving only one NP and characterize such an NP in situ, one needs nanoelectrochemical tools with the characteristic dimension smaller than or comparable to those of the particle of interest. This Account presents fundamentals of two complementary approaches to studying NP electrochemistry, i.e., probing single immobilized NPs with the tip of a scanning electrochemical microscope (SECM) and monitoring the collisions between one catalytic NP and a carbon nanopipette. The former technique can provide spatially resolved information about NP geometry and measure its electron transfer properties and catalytic activity under steady-state conditions. The emphasis here is on the extraction of quantitative physicochemical information from nanoelectrochemical data. By employing a polished disk-type nanoelectrode as an SECM tip, one can characterize a specific nanoparticle in situ and then

  16. Analytical Electrochemistry: Methodology and Applications of Dynamic Techniques.

    ERIC Educational Resources Information Center

    Heineman, William R.; Kissinger, Peter T.

    1980-01-01

    Reports developments involving the experimental aspects of finite and current analytical electrochemistry including electrode materials (97 cited references), hydrodynamic techniques (56), spectroelectrochemistry (62), stripping voltammetry (70), voltammetric techniques (27), polarographic techniques (59), and miscellany (12). (CS)

  17. The Effects of Applied Stress and Sensitization on the Passive Film Stability of Al-Mg Alloys

    DTIC Science & Technology

    2013-06-01

    and residual tensile and compressive stresses impact the passive layer film and the material’s electrochemistry. Sample plates of AA5083 were...electrochemistry. Sample plates of AA5083 were sensitized to different levels to promote the formation of intergranular β phase (Al3Mg2). The...41  A.  MATERIAL PROCESSING: FABRICATION AND APPLIED STRESSES OF TEST SAMPLES

  18. Electrochemistry and Spectroelectrochemistry of Luminescent Europium Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, Amanda M.; Wang, Zheming; Clark, Sue B.

    Fast, cost effective, and robust means of detecting and quantifying lanthanides are needed for supporting more efficient tracking within the nuclear, medicinal, and industrial fields. Spectroelectrochemistry (SEC) is a powerful technique combining electrochemistry and spectroscopy that can meet those needs. The primary limitation of SEC as a detection method for lanthanides is their low molar absorptivity in absorbance based measurements and low emission intensities in fluorescence based measurements; both lead to high limits of detection. These limitations can be circumvented by complexing the lanthanides with sensitizing ligands that enhance fluorescence, thereby dropping the limits of detection. Complexation may also stabilizemore » the metal ions in solution and improve the electrochemical reversibility, or Nernstian behavior, of the redox couples. To demonstrate this concept, studies were completed using europium in complexes with four different sensitizing ligands. Initial work indicates Eu in the four complexes studied does display the necessary characteristics for SEC analysis, which was successfully and reproducibly applied to all Eu complexes.« less

  19. Humidity Effect on Nanoscale Electrochemistry in Solid Silver Ion Conductors and the Dual Nature of Its Locality

    DOE PAGES

    Yang, Sangmo; Strelcov, Evgheni; Paranthaman, Mariappan Parans; ...

    2015-01-07

    Scanning probe microscopy (SPM) is a powerful tool to investigate electrochemistry in nanoscale volumes. While most SPM-based studies have focused on reactions at the tip-surface junction, charge and mass conservation requires coupled and intrinsically non-local cathodic and anodic processes that can be significantly affected by ambient humidity. Here, we explore the role of water in both cathodic and anodic processes, associated charge transport, and topographic volume changes depending on the polarity of tip bias. The first-order reversal curve current-voltage technique combined with simultaneous detection of the sample topography, referred to as FORC-IVz, was applied to a silver solid ion conductor.more » We found that the protons generated from water affect silver ionic conduction, silver particle formation and dissolution, and mechanical integrity of the material. This work highlights the dual nature (simultaneously local and non-local) of electrochemical SPM studies, which should be considered for comprehensive understanding of nanoscale electrochemistry.« less

  20. Humidity effect on nanoscale electrochemistry in solid silver ion conductors and the dual nature of its locality.

    PubMed

    Yang, Sang Mo; Strelcov, Evgheni; Paranthaman, M Parans; Tselev, Alexander; Noh, Tae Won; Kalinin, Sergei V

    2015-02-11

    Scanning probe microscopy (SPM) is a powerful tool to investigate electrochemistry in nanoscale volumes. While most SPM-based studies have focused on reactions at the tip-surface junction, charge and mass conservation requires coupled and intrinsically nonlocal cathodic and anodic processes that can be significantly affected by ambient humidity. Here, we explore the role of water in both cathodic and anodic processes, associated charge transport, and topographic volume changes depending on the polarity of tip bias. The first-order reversal curve current-voltage technique combined with simultaneous detection of the sample topography, referred to as FORC-IVz, was applied to a silver solid ion conductor. We found that the protons generated from water affect silver ionic conduction, silver particle formation and dissolution, and mechanical integrity of the material. This work highlights the dual nature (simultaneously local and nonlocal) of electrochemical SPM studies, which should be considered for comprehensive understanding of nanoscale electrochemistry.

  1. 2016 CEC Annual Workshop on Electrochemistry

    DTIC Science & Technology

    2016-08-31

    Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 electrochemistry, electrolytes, lithium - ion batteries , electron transfer REPORT...the following topics: advanced electrolytes with applications, lithium - ion batteries , and electron transfer through films. CEC faculty members...11:40a-1:20p Lunch break. Lithium - ion Batteries Arumugam “Ram” Manthiram, Moderator 1:20-2:10p Steven J. Visco, PolyPlus Battery Company

  2. Electrochemistry in supercritical fluids

    PubMed Central

    Branch, Jack A.; Bartlett, Philip N.

    2015-01-01

    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide–acetonitrile and supercritical HFCs. PMID:26574527

  3. Facilitating Conceptual Change in Students' Understanding of Electrochemistry.

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    2002-01-01

    Constructs a teaching strategy to facilitate conceptual change in freshman students' understanding of electrochemistry. Provides students with the correct response along with alternative responses (teaching experiments), producing a conflicting situation that is conducive to an equilibration of their cognitive structures. Concludes that the…

  4. 2010 Gordon Research Conference, Electrochemistry, January 9-15, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creager, Stephen

    Electrochemical science plays a crucial role in many important technologies and is intimately involved in many natural phenomena. Several new Gordon Research Conferences have appeared recently that are dedicated to electrochemical technologies, however electrochemistry as a discipline continues to thrive and provide the underpinnings of these technologies. The 2010 Electrochemistry GRC will focus on a wide range of fundamental electrochemical phenomena and materials and on their application in areas involving energy storage, information storage, chemical analysis, and motion actuation. The meeting will include sessions dedicated to the following specific topics: electrochemical energy storage (e.g. batteries; at least two sessions); electrochemicalmore » motion actuation (e.g. electrokinesis); electrocatalysis; electrochemistry in digital information storage; and bioelectrochemistry (including bioanalysis). An Open Session devoted to highlighting the activities of {approx}10 young investigators and non-North American visitors via brief 10-minute talks, and two open poster sessions highlighting the contributions of approximately 60 conference participants including graduate students, will be held. Altogether the conference is expected to include approximately 90 presentations. As has been the case in the recent past, the meeting will bring together participants from academia, national labs, and the private sector, including senior and junior-level scientists, postdoctoral scientists, and graduate students for informal interactions and exchange of ideas. An affiliated Gordon-Kenan Research Seminar (GRS) will also be held with the conference. Special efforts will be made to invite participation from members of underrepresented groups.« less

  5. Electrochemistry of metalloproteins: protein film electrochemistry for the study of E. coli [NiFe]-hydrogenase-1.

    PubMed

    Evans, Rhiannon M; Armstrong, Fraser A

    2014-01-01

    Protein film electrochemistry is a technique which allows the direct control of redox-active enzymes, providing particularly detailed information on their catalytic properties. The enzyme is deposited onto a working electrode tip, and through control of the applied potential the enzyme activity is monitored as electrical current, allowing for direct study of inherent activity as electrons are transferred to and from the enzyme redox center(s). No mediators are used. Because the only enzyme present in the experiment is bound at the electrode surface, gaseous and liquid phase inhibitors can be introduced and removed whilst the enzyme remains in situ. Potential control means that kinetics and thermodynamics are explored simultaneously; the kinetics of a reaction can be studied as a function of potential. Steady-state catalytic rates are observed directly as current (for a given potential) and non-steady-state rates (such as interconversions between different forms of the enzyme) are observed from the change in current with time. The more active the enzyme, the higher the current and the better the signal-to-noise. In this chapter we outline the practical aspects of PFE for studying electroactive enzymes, using the Escherichia coli [NiFe]-hydrogenase 1 (Hyd-1) as an example.

  6. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    PubMed Central

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.

    2016-01-01

    Energy technologies of the 21st century require understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. This short review provides a summary of recent works dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. Discussion presents advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry. PMID:27146961

  7. Alleviating the Common Confusion Caused by Polarity in Electrochemistry.

    ERIC Educational Resources Information Center

    Moran, P. J.; Gileadi, E.

    1989-01-01

    Discussed is some of the confusion encountered in electrochemistry due to misunderstandings of sign conventions and simple mathematical errors. Clarified are issues involving emf series, IUPAC sign conventions, calculation of cell potentials, reference electrodes, the polarity of electrodes in electrochemical devices, and overpotential. (CW)

  8. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    DOE PAGES

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; ...

    2016-04-21

    Energy technologies of the 21st century require an understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. Our short review provides a summary of recent studies dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. In this discussion we present the advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry.

  9. Board and card games for studying electrochemistry: Preliminary research and early design

    NASA Astrophysics Data System (ADS)

    Kurniawan, Rizmahardian Ashari; Kurniasih, Dedeh; Jukardi

    2017-12-01

    Games in the chemistry classroom can offer engaging and fun alternative method of learning. However, only a few games in chemistry, especially in electrochemistry subject are available commercially. In this research, we developed board and card games for studying electrochemistry. We surveyed chemistry teacher and students from 10 different senior high schools in Pontianak to decide content and characteristic of the game. We have designed the game that can be played by four students or four group of students, either as a specific instruction in the classroom or as a supplementary learning material. The game was designed to help students understanding the voltaic cell configuration and its voltaic potential.

  10. Binding of Substrate Locks the Electrochemistry of CRY-DASH into DNA Repair.

    PubMed

    Gindt, Yvonne M; Messyasz, Adriana; Jumbo, Pamela I

    2015-05-12

    VcCry1, a member of the CRY-DASH family, may serve two diverse roles in vivo, including blue-light signaling and repair of UV-damaged DNA. We have discovered that the electrochemistry of the flavin adenine dinucleotide cofactor of VcCry1 is locked to cycle only between the hydroquinone and neutral semiquinone states when UV-damaged DNA is present. Other potential substrates, including undamaged DNA and ATP, have no discernible effect on the electrochemistry, and the kinetics of the reduction is unaffected by damaged DNA. Binding of the damaged DNA substrate determines the role of the protein and prevents the presumed photochemistry required for blue-light signaling.

  11. Superoxide (Electro)Chemistry on Well-Defined Surfaces in Organic Environments

    DOE PAGES

    Genorio, Bostjan; Staszak-Jirkovský, Jakub; Assary, Rajeev S.; ...

    2016-02-09

    Efficient chemical transformations in energy conversion and storage systems depend on understanding superoxide anion (O 2 –) electrochemistry at atomic and molecular levels. Here, in this work, a combination of experimental and theoretical techniques are used for rationalizing, and ultimately understanding, the complexity of superoxide anion (electro)chemistry in organic environments. By exploring the O 2 + e – ↔ O 2 – reaction on well-characterized metal single crystals (Au, Pt, Ir), Pt single crystal modified with a single layer of graphene (Graphene@Pt(111)), and glassy carbon (GC) in 1,2 dimethoxyethane (DME) electrolytes, we demonstrate that (i) the reaction is an outer-spheremore » process; (ii) the reaction product O 2 – can “attack” any part of the DME molecule, i.e., the C–O bond via nucleophilic reaction and the C–H bond via radical hydrogen abstraction; (iii) the adsorption of carbon-based decomposition products and the extent of formation of a “solid electrolyte interface” (“SEI”) increases in the same order as the reactivity of the substrate, i.e., Pt(hkl)/Ir(hkl) » Au(hkl)/GC > Gaphene@Pt(111); and (iv) the formation of the “SEI” layer leads to irreversible superoxide electrochemistry on Pt(hkl) and Ir(hkl) surfaces. In conclusion, we believe this fundamental insight provides a pathway for the rational design of stable organic solvents that are urgently needed for the development of a new generation of reliable and affordable battery systems.« less

  12. Bipolar electrochemistry: from materials science to motion and beyond.

    PubMed

    Loget, Gabriel; Zigah, Dodzi; Bouffier, Laurent; Sojic, Neso; Kuhn, Alexander

    2013-11-19

    Bipolar electrochemistry, a phenomenon which generates an asymmetric reactivity on the surface of conductive objects in a wireless manner, is an important concept for many purposes, from analysis to materials science as well as for the generation of motion. Chemists have known the basic concept for a long time, but it has recently attracted additional attention, especially in the context of micro- and nanoscience. In this Account, we introduce the fundamentals of bipolar electrochemistry and illustrate its recent applications, with a particular focus on the fields of materials science and dynamic systems. Janus particles, named after the Roman god depicted with two faces, are currently in the heart of many original investigations. These objects exhibit different physicochemical properties on two opposite sides. This makes them a unique class of materials, showing interesting features. They have received increasing attention from the materials science community, since they can be used for a large variety of applications, ranging from sensing to photosplitting of water. So far the great majority of methods developed for the generation of Janus particles breaks the symmetry by using interfaces or surfaces. The consequence is often a low time-space yield, which limits their large scale production. In this context, chemists have successfully used bipolar electrodeposition to break the symmetry. This provides a single-step technique for the bulk production of Janus particles with a high control over the deposit structure and morphology, as well as a significantly improved yield. In this context, researchers have used the bipolar electrodeposition of molecular layers, metals, semiconductors, and insulators at one or both reactive poles of bipolar electrodes to generate a wide range of Janus particles with different size, composition and shape. In using bipolar electrochemistry as a driving force for generating motion, its intrinsic asymmetric reactivity is again the

  13. Electrochemistry of Some New Alkaline Battery Electrodes

    DTIC Science & Technology

    1976-02-01

    1NýT;7 ~~ AFAPI 4TR- 75)aI Electrochemistry of Somwý New Alkaline V CI RG, 0OTNME Dr/ David F., ’Pickett, IM Wayue ’,Hisb’q Mr. R ic ha rd A I Mid...adding ZnO to the electi-olyte (saturated) and usi .j the interc:ell conrec;tor d isr:ussed earlier ,itLh el4cc.roploated zinc ag inst. the silver fo

  14. Strain Engineering to Modify the Electrochemistry of Energy Storage Electrodes

    PubMed Central

    Muralidharan, Nitin; Carter, Rachel; Oakes, Landon; Cohn, Adam P.; Pint, Cary L.

    2016-01-01

    Strain engineering has been a critical aspect of device design in semiconductor manufacturing for the past decade, but remains relatively unexplored for other applications, such as energy storage. Using mechanical strain as an input parameter to modulate electrochemical potentials of metal oxides opens new opportunities intersecting fields of electrochemistry and mechanics. Here we demonstrate that less than 0.1% strain on a Ni-Ti-O based metal-oxide formed on superelastic shape memory NiTi alloys leads to anodic and cathodic peak potential shifts by up to ~30 mV in an electrochemical cell. Moreover, using the superelastic properties of NiTi to enable strain recovery also recovers the electrochemical potential of the metal oxide, providing mechanistic evidence of strain-modified electrochemistry. These results indicate that mechanical energy can be coupled with electrochemical systems to efficiently design and optimize a new class of strain-modulated energy storage materials. PMID:27283872

  15. Evaluation of Tris-Bipyridine Chromium Complexes for Flow Battery Applications: Impact of Bipyridine Ligand Structure on Solubility and Electrochemistry.

    PubMed

    Cabrera, Pablo J; Yang, Xingyi; Suttil, James A; Brooner, Rachel E M; Thompson, Levi T; Sanford, Melanie S

    2015-11-02

    This report describes the design, synthesis, solubility, and electrochemistry of a series of tris-bipyridine chromium complexes that exhibit up to six reversible redox couples as well as solubilities approaching 1 M in acetonitrile. We have systematically modified both the ligand structure and the oxidation state of these complexes to gain insights into the factors that impact solubility and electrochemistry. The results provide a set of structure-solubility-electrochemistry relationships to guide the future development of electrolytes for nonaqueous flow batteries. In addition, we have identified a promising candidate from the series of chromium complexes for further electrochemical and battery assessment.

  16. Understanding Electrochemistry Concepts Using the Predict-Observe-Explain Strategy

    ERIC Educational Resources Information Center

    Karamustafaoglu, Sevilay; Mamlok-Naaman, Rachel

    2015-01-01

    The current study deals with freshman students who study at the Department of Science at the Faculty of Education. The aim of the study was to investigate the effect of teaching electrochemistry concepts using Predict-Observe-Explain (POE) strategy. The study was quasi-experimental design using 20 students each in the experimental group (EG) and…

  17. LIGA-based microsystem manufacturing:the electrochemistry of through-mold depostion and material properties.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, James J.; Goods, Steven Howard

    2005-06-01

    The report presented below is to appear in ''Electrochemistry at the Nanoscale'', Patrik Schmuki, Ed. Springer-Verlag, (ca. 2005). The history of the LIGA process, used for fabricating dimensional precise structures for microsystem applications, is briefly reviewed, as are the basic elements of the technology. The principal focus however, is on the unique aspects of the electrochemistry of LIGA through-mask metal deposition and the generation of the fine and uniform microstructures necessary to ensure proper functionality of LIGA components. We draw from both previously published work by external researchers in the field as well as from published and unpublished studies frommore » within Sandia.« less

  18. Construction and direct electrochemistry of orientation controlled laccase electrode.

    PubMed

    Li, Ying; Zhang, Jiwei; Huang, Xirong; Wang, Tianhong

    2014-03-28

    A laccase has multiple redox centres. Chemisorption of laccases on a gold electrode through a polypeptide tag introduced at the protein surface provides an isotropic orientation of laccases on the Au surface, which allows the orientation dependent study of the direct electrochemistry of laccase. In this paper, using genetic engineering technology, two forms of recombinant laccase which has Cys-6×His tag at the N or C terminus were generated. Via the Au-S linkage, the recombinant laccase was assembled orientationally on gold electrode. A direct electron transfer and a bioelectrocatalytic activity toward oxygen reduction were observed on the two orientation controlled laccase electrodes, but their electrochemical behaviors were found to be quite different. The orientation of laccase on the gold electrode affects both the electron transfer pathway and the electron transfer efficiency of O2 reduction. The present study is helpful not only to the in-depth understanding of the direct electrochemistry of laccase, but also to the development of laccase-based biofuel cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Cobalt-cadmium bimetallic porphyrin coordination polymers for electrochemistry application

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.; Cui, G. Y.; Ding, D.; Zhou, B.

    2018-01-01

    In this paper, we used tetra (4-carboxyphenyl) porphyrin (H2TCPP) and metal cadmium, cobalt as reactants to synthesize metal porphyrin coordination polymers that they had different metal ratio. They were expressed as Co1Cd3TCPP, Co1Cd1TCPP, Co3Cd1TCPP, respectively. The results were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and inductively coupled plasma atomic emission spectrometer (ICP). Herein, a series of metal porphyrin coordination polymers has multiple metal active centers and constructs electrochemistry sensors. In order to increase the conductivity, multi-walled carbon nanotubes (MWCNTs) can be used to modify the electrodes. The polymer/MWCNTs/GCE electrode was studied by cyclic voltammetry and chronoamperometry as sensor for sodium nitrite. The performance of Co1Cd1TCPP/MWCNTs/GCE electrode is best, the sensitivity for sodium nitrite is 350.95 mA M-1 cm-2 and the. The results indicate that metal porphyrin coordination polymers have excellent performance. It also enriches the application of metal porphyrin coordination polymer in electrochemistry sensor.

  20. Enzymatic Activity Detection via Electrochemistry for Enceladus

    NASA Technical Reports Server (NTRS)

    Studemeister, Lucy; Koehne, Jessica; Quinn, Richard

    2017-01-01

    Electrochemical detection of biological molecules is a pertinent topic and application in many fields such as medicine, environmental spills, and life detection in space. Proteases, a class of molecules of interest in the search for life, catalyze the hydrolysis of peptides. Trypsin, a specific protease, was chosen to investigate an optimized enzyme detection system using electrochemistry. This study aims at providing the ideal functionalization of an electrode that can reliably detect a signal indicative of an enzymatic reaction from an Enceladus sample.

  1. Using a Teaching Model To Correct Known Misconceptions in Electrochemistry.

    ERIC Educational Resources Information Center

    Huddle, Penelope Ann; White, Margaret Dawn; Rogers, Fiona

    2000-01-01

    Describes a concrete teaching model designed to eliminate students' misconceptions about current flow in electrochemistry. The model uses a semi-permeable membrane rather than a salt bridge to complete the circuit and demonstrate the maintenance of cell neutrality. Concludes that use of the model led to improvement in students' understanding at…

  2. Serendipity: Genesis of the Electrochemical Instrumentation at Princeton Applied Research Corporation

    ERIC Educational Resources Information Center

    Flato, J. B.

    2007-01-01

    Princeton Applied Research Corporation (PAR) was a small electronic instrument company in early 1960s but once they entered electrochemistry they were very successful. Since then they have developed and designed successful instruments with their tremendous knowledge and have made great contribution to the field of analytical chemistry.

  3. Advanced Electrochemistry of Individual Metal Clusters Electrodeposited Atom by Atom to Nanometer by Nanometer.

    PubMed

    Kim, Jiyeon; Dick, Jeffrey E; Bard, Allen J

    2016-11-15

    Metal clusters are very important as building blocks for nanoparticles (NPs) for electrocatalysis and electroanalysis in both fundamental and applied electrochemistry. Attention has been given to understanding of traditional nucleation and growth of metal clusters and to their catalytic activities for various electrochemical applications in energy harvesting as well as analytical sensing. Importantly, understanding the properties of these clusters, primarily the relationship between catalysis and morphology, is required to optimize catalytic function. This has been difficult due to the heterogeneities in the size, shape, and surface properties. Thus, methods that address these issues are necessary to begin understanding the reactivity of individual catalytic centers as opposed to ensemble measurements, where the effect of size and morphology on the catalysis is averaged out in the measurement. This Account introduces our advanced electrochemical approaches to focus on each isolated metal cluster, where we electrochemically fabricated clusters or NPs atom by atom to nanometer by nanometer and explored their electrochemistry for their kinetic and catalytic behavior. Such approaches expand the dimensions of analysis, to include the electrochemistry of (1) a discrete atomic cluster, (2) solely a single NP, or (3) individual NPs in the ensemble sample. Specifically, we studied the electrocatalysis of atomic metal clusters as a nascent electrocatalyst via direct electrodeposition on carbon ultramicroelectrode (C UME) in a femtomolar metal ion precursor. In addition, we developed tunneling ultramicroelectrodes (TUMEs) to study electron transfer (ET) kinetics of a redox probe at a single metal NP electrodeposited on this TUME. Owing to the small dimension of a NP as an active area of a TUME, extremely high mass transfer conditions yielded a remarkably high standard ET rate constant, k 0 , of 36 cm/s for outer-sphere ET reaction. Most recently, we advanced nanoscale

  4. The merger of electrochemistry and molecular electronics.

    PubMed

    McCreery, Richard L

    2012-02-01

    Molecular Electronics has the potential to greatly enhance existing silicon-based microelectronics to realize new functions, higher device density, lower power consumption, and lower cost. Although the investigation of electron transport through single molecules and molecular monolayers in "molecular junctions" is a recent development, many of the relevant concepts and phenomena are derived from electrochemistry, as practiced for the past several decades. The past 10+ years have seen an explosion of research activity directed toward how the structure of molecules affects electron transport in molecular junctions, with the ultimate objective of "rational design" of molecular components with new electronic functions, such as chemical sensing, interactions with light, and low-cost, low-power consumer electronics. In order to achieve these scientifically and commercially important objectives, the factors controlling charge transport in molecules "connected" to conducting contacts must be understood, and methods for massively parallel manufacturing of molecular circuits must be developed. This Personal Account describes the development of reproducible and robust molecular electronic devices, starting with modified electrodes used in electrochemistry and progressing to manufacturable molecular junctions. Although the field faced some early difficulties in reliability and characterization, the pieces are now in place for rapid advances in understanding charge transport at the molecular level. Inherent in the field of Molecular Electronics are many electrochemical concepts, including tunneling, redox exchange, activated electron transfer, and electron coupling between molecules and conducting contacts. Copyright © 2012 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  5. NASA Glenn Research Center Electrochemistry Branch Overview

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Hoberecht, Mark; Reid, Concha

    2010-01-01

    This presentation covers an overview of NASA Glenn's history and heritage in the development of electrochemical systems for aerospace applications. Current programs related to batteries and fuel cells are addressed. Specific areas of focus are Li-ion batteries and Polymer Electrolyte Membrane Fuel cells systems and their development for future Exploration missions. The presentation covers details of current component development efforts for high energy and ultra high energy Li-ion batteries and non-flow-through fuel cell stack and balance of plant development. Electrochemistry Branch capabilities and facilities are also addressed.

  6. Electroanalytical Evaluation of Nanoparticles by Nano-impact Electrochemistry

    NASA Astrophysics Data System (ADS)

    Karimi, Anahita

    Applications of engineered nanoparticles in electronics, catalysis, solid oxide fuel cells, medicine and sensing continue to increase. Traditionally, nanoparticle systems are characterized by spectroscopic and microscopic techniques. These methods are cumbersome and expensive, which limit their routine use for screening purposes. Electrochemistry is a powerful, yet underutilized tool, for the detection and classification of nanoparticles. The first part of this dissertation investigates a recently developed electrochemical method -- nanoparticle collision electrochemistry -- for detection and characterization of nanoparticles. Three independent projects have been described to evaluate the use of this technique for characterizing nanoparticle based systems including: conjugation with biomolecules, interaction with environmental contaminants and fundamental investigation of conformational changes of nanoparticle capping ligands. The thesis reports the first use of nano-impact electrochemistry to quantitatively investigate bioconjugation and biomolecular recognition at conductive nanoparticles. Furthermore, we also demonstrate the potential of this method as a single step, reagentless and label-free technique for the ultra-sensitive detection of biomolecular targets. A fundamental study of biorecognition is important for the development of therapeutics and molecular diagnosis probes in the biomedical, biosensing and biotechnology fields. The second project describes the use of this method as a screening tool of particle reactivity. We study the interaction and adsorption of a toxic environmental metalloid (Arsenic) with metal oxide nanoparticles to extract mechanistic, speciation and loading information. We discuss the potential of this approach to complement or replace costly characterization techniques and enable routine study of nanoparticles and their reactivity. In the third project, we use the nano-impact method to study the pH-dependent conformational changes

  7. Layered transition metal dichalcogenide electrochemistry: journey across the periodic table.

    PubMed

    Chia, Xinyi; Pumera, Martin

    2018-06-08

    Studies on layered transition metal dichalcogenides (TMDs), in particular for Group VIB TMDs like MoS2 and WS2, have long reached a crescendo in the realms of electrochemical applications initiated by their remarkable catalytic and electronic properties. One area that garnered considerable attention is the fervent pursuit of layered TMDs as electrocatalysts for hydrogen evolution reaction (HER), driven by global efforts towards reducing carbon footprint and attaining hydrogen economy. This Tutorial Review captures the essence of electrochemistry of different classes of layered TMDs and metal chalcogenides across the period table and showcases their tuneable electrochemical and HER catalytic attributes that are governed by the elemental composition, structure and anisotropy. Of interest to the assiduously studied Group VIB TMDs, we describe the role of elemental constituents and material purity in aspects of surface composition and structure, on their electrochemistry. Across families of layered TMDs in the periodic table, we highlight the apparent trends in their electrochemical and electrocatalytic properties through diligent comparison. Inevitably, these trends vary according to the type of chalcogen or transition metal that constitutes the eventual TMD. Beyond layered TMDs, we discuss the electrochemistry and recent progress in HER electrocatalysis of other layered metal chalcogenides that are overshadowed by the success of Group VIB TMDs. At the pinnacle of the emergent applications of layered TMDs, it is prudent to demystify the intrinsic electrochemical behaviour that originates from the participation of the elemental constitution of transition metal or chalcogen. Moreover, knowledge of the catalytic and electronic properties of the various TMD families and emerging trends across the period or down the group is of paramount importance when introducing or refining their prospective uses. The annotations in this Tutorial Review are envisioned to promote

  8. Membrane-entrapped microperoxidase as a 'solid-state' promoter in the electrochemistry of soluble metalloproteins.

    PubMed Central

    Brunori, M; Santucci, R; Campanella, L; Tranchida, G

    1989-01-01

    Immobilization of biological systems in solid matrices is presently of great interest, in view of the many potential advantages associated with both the higher stability of the immobilized macromolecules and the potential utilization for biotechnology. In the present paper the electrochemical behaviour of the undecapeptide from cytochrome c (called microperoxidase) tightly entrapped in cellulose triacetate membrane is reported; its utilization as 'solid-state' promoter in the electrochemistry of soluble metalloproteins is presented. The results obtained indicate that: (i) membrane-entrapped microperoxidase undergoes rapid reversible electron transfer at a glassy carbon electrode; (ii) the electrochemical process is diffusion-controlled; (iii) entrapped microperoxidase acts as 'solid-state' promoter in the electrochemistry of soluble cytochrome c and of azurin. PMID:2557833

  9. DNA Electrochemistry and Electrochemical Sensors for Nucleic Acids.

    PubMed

    Ferapontova, Elena E

    2018-06-12

    Sensitive, specific, and fast analysis of nucleic acids (NAs) is strongly needed in medicine, environmental science, biodefence, and agriculture for the study of bacterial contamination of food and beverages and genetically modified organisms. Electrochemistry offers accurate, simple, inexpensive, and robust tools for the development of such analytical platforms that can successfully compete with other approaches for NA detection. Here, electrode reactions of DNA, basic principles of electrochemical NA analysis, and their relevance for practical applications are reviewed and critically discussed.

  10. Impact electrochemistry on screen-printed electrodes for the detection of monodispersed silver nanoparticles of sizes 10-107 nm.

    PubMed

    Nasir, Muhammad Zafir Mohamad; Pumera, Martin

    2016-10-12

    Impact electrochemistry provides a useful alternative technique for the detection of silver nanoparticles in solutions. The combined use of impact electrochemistry on screen-printed electrodes (SPEs) for the successful detection of silver nanoparticles provides an avenue for future on-site, point-of-care detection devices to be made for environmental, medicinal and biological uses. Here we discuss the use of screen-printed electrodes for the detection of well-defined monodispersed silver nanoparticles of sizes 10, 20, 40, 80, and 107 nm.

  11. Blood glucose meters employing dynamic electrochemistry are stable against hematocrit interference in a laboratory setting.

    PubMed

    Pfützner, Andreas; Musholt, Petra B; Schipper, Christina; Demircik, Filiz; Hengesbach, Carina; Flacke, Frank; Sieber, Jochen; Forst, Thomas

    2013-11-01

    Hematocrit (HCT) is known to be a confounding factor that interferes with many blood glucose (BG) measurement technologies, resulting in wrong readings. Dynamic electrochemistry has been identified as one possible way to correct for these potential deviations. The purpose of this laboratory investigation was to assess the HCT stability of four BG meters known to employ dynamic electrochemistry (BGStar and iBGStar, Sanofi; Wavesense Jazz, AgaMatrix; Wellion Linus, MedTrust) in comparison with three other devices (GlucoDock, Medisana; OneTouch Verio Pro, LifeScan; FreeStyle Freedom InsuLinx, Abbott-Medisense). Venous heparinized blood was immediately aliquoted after draw and manipulated to contain three different BG concentrations (60-90, 130-160, and 280-320 mg/dl) and five different HCT levels (25%, 35%, 45%, 55%, and 60%). After careful oxygenation to normal blood oxygen pressure, each of the resulting 15 different samples was measured six times with three devices and three strip lots of each meter. The YSI Stat 2300 served as laboratory reference method. Stability to HCT influence was assumed when less than 10% difference occurred between the highest and lowest mean glucose deviations in relation to HCT concentrations [hematocrit interference factor (HIF)]. Five of the investigated self-test meters showed a stable performance with the different HCT levels tested in this investigation: BGStar (HIF 4.6%), iBGStar (6.6%), Wavesense Jazz (4.1%), Wellion Linus (8.5%), and OneTouch Verio Pro (6.2%). The two other meters were influenced by HCT (FreeStyle InsuLinx 17.8%; GlucoDock 46.5%). In this study, meters employing dynamic electrochemistry, as used in the BGStar and iBGStar devices, were shown to correct for potential HCT influence on the meter results. Dynamic electrochemistry appears to be an effective way to handle this interfering condition. © 2013 Diabetes Technology Society.

  12. Blood Glucose Meters Employing Dynamic Electrochemistry Are Stable against Hematocrit Interference in a Laboratory Setting

    PubMed Central

    Pfützner, Andreas; Musholt, Petra B.; Schipper, Christina; Demircik, Filiz; Hengesbach, Carina; Flacke, Frank; Sieber, Jochen; Forst, Thomas

    2013-01-01

    Background Hematocrit (HCT) is known to be a confounding factor that interferes with many blood glucose (BG) measurement technologies, resulting in wrong readings. Dynamic electrochemistry has been identified as one possible way to correct for these potential deviations. The purpose of this laboratory investigation was to assess the HCT stability of four BG meters known to employ dynamic electrochemistry (BGStar and iBGStar, Sanofi; Wavesense Jazz, AgaMatrix; Wellion Linus, MedTrust) in comparison with three other devices (GlucoDock, Medisana; OneTouch Verio Pro, LifeScan; FreeStyle Freedom InsuLinx, Abbott-Medisense). Methods Venous heparinized blood was immediately aliquoted after draw and manipulated to contain three different BG concentrations (60–90, 130–160, and 280–320 mg/dl) and five different HCT levels (25%, 35%, 45%, 55%, and 60%). After careful oxygenation to normal blood oxygen pressure, each of the resulting 15 different samples was measured six times with three devices and three strip lots of each meter. The YSI Stat 2300 served as laboratory reference method. Stability to HCT influence was assumed when less than 10% difference occurred between the highest and lowest mean glucose deviations in relation to HCT concentrations [hematocrit interference factor (HIF)]. Results Five of the investigated self-test meters showed a stable performance with the different HCT levels tested in this investigation: BGStar (HIF 4.6%), iBGStar (6.6%), Wavesense Jazz (4.1%), Wellion Linus (8.5%), and OneTouch Verio Pro (6.2%). The two other meters were influenced by HCT (FreeStyle InsuLinx 17.8%; GlucoDock 46.5%). Conclusions In this study, meters employing dynamic electrochemistry, as used in the BGStar and iBGStar devices, were shown to correct for potential HCT influence on the meter results. Dynamic electrochemistry appears to be an effective way to handle this interfering condition. PMID:24351179

  13. Ferrocene-pyrimidine conjugates: Synthesis, electrochemistry, physicochemical properties and antiplasmodial activities.

    PubMed

    Chopra, Rakesh; de Kock, Carmen; Smith, Peter; Chibale, Kelly; Singh, Kamaljit

    2015-07-15

    The promise of hybrid antimalarial agents and the precedence set by the antimalarial drug ferroquine prompted us to design ferrocene-pyrimidine conjugates. Herein, we report the synthesis, electrochemistry and anti-plasmodial evaluation of ferrocenyl-pyrimidine conjugates against chloroquine susceptible NF54 strain of the malaria parasite Plasmodium falciparum. Also their physicochemical properties have been studied. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Effect of Cooperative Learning Strategies on Students' Understanding of Concepts in Electrochemistry

    ERIC Educational Resources Information Center

    Acar, Burcin; Tarhan, Leman

    2007-01-01

    The present study was conducted to investigate the degree of effectiveness of cooperative learning instruction over a traditional approach on 11th grade students' understanding of electrochemistry. The study involved forty-one 11th grade students from two science classes with the same teacher. To determine students' misconceptions concerning…

  15. Construction and direct electrochemistry of orientation controlled laccase electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Zhang, Jiwei; Huang, Xirong, E-mail: xrhuang@sdu.edu.cn

    2014-03-28

    Highlights: • A recombinant laccase with Cys-6×His tag at the N or C terminus was generated. • Orientation controlled laccase electrodes were constructed via self assembly. • The electrochemical behavior of laccase electrodes was orientation dependent. • The C terminus tagged laccase was better for bioelectrocatalytic reduction of O{sub 2}. - Abstract: A laccase has multiple redox centres. Chemisorption of laccases on a gold electrode through a polypeptide tag introduced at the protein surface provides an isotropic orientation of laccases on the Au surface, which allows the orientation dependent study of the direct electrochemistry of laccase. In this paper, usingmore » genetic engineering technology, two forms of recombinant laccase which has Cys-6×His tag at the N or C terminus were generated. Via the Au-S linkage, the recombinant laccase was assembled orientationally on gold electrode. A direct electron transfer and a bioelectrocatalytic activity toward oxygen reduction were observed on the two orientation controlled laccase electrodes, but their electrochemical behaviors were found to be quite different. The orientation of laccase on the gold electrode affects both the electron transfer pathway and the electron transfer efficiency of O{sub 2} reduction. The present study is helpful not only to the in-depth understanding of the direct electrochemistry of laccase, but also to the development of laccase-based biofuel cells.« less

  16. Electrochemistry in the mimicry of oxidative drug metabolism by cytochrome P450s.

    PubMed

    Nouri-Nigjeh, Eslam; Bischoff, Rainer; Bruins, Andries P; Permentier, Hjalmar P

    2011-05-01

    Prediction of oxidative drug metabolism at the early stages of drug discovery and development requires fast and accurate analytical techniques to mimic the in vivo oxidation reactions by cytochrome P450s (CYP). Direct electrochemical oxidation combined with mass spectrometry, although limited to the oxidation reactions initiated by charge transfer, has shown promise in the mimicry of certain CYP-mediated metabolic reactions. The electrochemical approach may further be utilized in an automated manner in microfluidics devices facilitating fast screening of oxidative drug metabolism. A wide range of in vivo oxidation reactions, particularly those initiated by hydrogen atom transfer, can be imitated through the electrochemically-assisted Fenton reaction. This reaction is based on O-O bond activation in hydrogen peroxide and oxidation by hydroxyl radicals, wherein electrochemistry is used for the reduction of molecular oxygen to hydrogen peroxide, as well as the reduction of Fe(3+) to Fe(2+). Metalloporphyrins, as surrogates for the prosthetic group in CYP, utilizing metallo-oxo reactive species, can also be used in combination with electrochemistry. Electrochemical reduction of metalloporphyrins in solution or immobilized on the electrode surface activates molecular oxygen in a manner analogous to the catalytical cycle of CYP and different metalloporphyrins can mimic selective oxidation reactions. Chemoselective, stereoselective, and regioselective oxidation reactions may be mimicked using electrodes that have been modified with immobilized enzymes, especially CYP itself. This review summarizes the recent attempts in utilizing electrochemistry as a versatile analytical and preparative technique in the mimicry of oxidative drug metabolism by CYP. © 2011 Bentham Science Publishers Ltd.

  17. Inquiry-Based Laboratory Activities in Electrochemistry: High School Students' Achievements and Attitudes

    ERIC Educational Resources Information Center

    Sesen, Burcin Acar; Tarhan, Leman

    2013-01-01

    This study aimed to investigate the effects of inquiry-based laboratory activities on high school students' understanding of electrochemistry and attitudes towards chemistry and laboratory work. The participants were 62 high school students (average age 17 years) in an urban public high school in Turkey. Students were assigned to experimental (N =…

  18. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.

    PubMed

    Cheng, Fangyi; Chen, Jun

    2012-03-21

    Because of the remarkably high theoretical energy output, metal-air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal-air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal-air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic-organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal-air batteries (219 references).

  19. Electrochemistry and Spectroelectrochemistry of the Pu (III/IV) and (IV/VI) Couples in Nitric Acid Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, Amanda M.; Adami, Susan R.; Casella, Amanda J.

    The solution chemistry of Pu in nitric acid is explored via electrochemistry and spectroelectrochemistry. By utilizing and comparing these techniques, an improved understanding of Pu behavior and its dependence on nitric acid concentration can be achieved. Here the Pu (III/IV) couple is characterized using cyclic voltammetry, square wave voltammetry, and a spectroelectrochemical Nernst step. Results indicate the formal reduction potential of the couple shifts negative with increasing acid concentration and reversible electrochemistry is no longer attainable above 6 M HNO3. Spectroelectrochemistry is also used to explore the irreversible oxidation of Pu(IV) to Pu(VI) and shine light on the mechanism andmore » acid dependence of the redox reaction.« less

  20. Electrochemistry of moexipril: experimental and computational approach and voltammetric determination.

    PubMed

    Taşdemir, Hüdai I; Kiliç, E

    2014-09-01

    The electrochemistry of moexipril (MOE) was studied by electrochemical methods with theoretical calculations performed at B3LYP/6-31 + G (d)//AM1. Cyclic voltammetric studies were carried out based on a reversible and adsorption-controlled reduction peak at -1.35 V on a hanging mercury drop electrode (HMDE). Concurrently irreversible diffusion-controlled oxidation peak at 1.15 V on glassy carbon electrode (GCE) was also employed. Potential values are according to Ag/AgCI, (3.0 M KCI) and measurements were performed in Britton-Robinson buffer of pH 5.5. Tentative electrode mechanisms were proposed according to experimental results and ab-initio calculations. Square-wave adsorptive stripping voltammetric methods have been developed and validated for quantification of MOE in pharmaceutical preparations. Linear working range was established as 0.03-1.35 microM for HMDE and 0.2-20.0 microM for GCE. Limit of quantification (LOQ) was calculated to be 0.032 and 0.47 microM for HMDE and GCE, respectively. Methods were successfully applied to assay the drug in tablets by calibration and standard addition methods with good recoveries between 97.1% and 106.2% having relative standard deviation less than 10%.

  1. Implementation of Case-Based Instruction on Electrochemistry at the 11th Grade Level

    ERIC Educational Resources Information Center

    Tarkin, Aysegul; Uzuntiryaki-Kondakci, Esen

    2017-01-01

    This study aims to compare the effectiveness of case-based instruction over traditional instruction in improving 11th grade students' understanding of electrochemistry concepts, attitudes toward chemistry, chemistry self-efficacy beliefs, and motivation to learn chemistry. In total, 113 students (47 males and 66 females) from three high schools…

  2. Characterization of solution-phase and gas-phase reactions in on-line electrochemistry-thermospray tandem mass spectrometry.

    PubMed

    Volk, K J; Yost, R A; Brajter-Toth, A

    1989-07-14

    Electrochemistry was used on-line with high-performance liquid chromatography-thermospray tandem mass spectrometry to provide insight into the solution-phase decomposition reactions of electrochemically generated oxidation products. Products formed during electrooxidation were monitored as the electrode potential was varied. The solution reactions which follow the initial electron transfer at the electrode are affected by the vaporizer tip temperature of the thermospray probe and the composition of the thermospray buffer. Either hydrolysis or ammonolysis reactions of the initial electrochemical oxidation products can occur with pH 7 ammonium acetate buffer. Both the electrochemically generated and the synthesized disulfide of 6-thiopurine decompose under thermospray conditions to produce 6-thiopurine and purine-6-sulfinate. Solution-phase studies indicate that nucleophilic and electrophilic substitution reactions with purine-6-sulfinate result in the formation of purine, adenine, and hypoxanthine. Products were identified and characterized by tandem mass spectrometry. This work shows the first example of high-performance liquid chromatography used on-line with electrochemistry to separate stable oxidation products prior to analysis by thermospray tandem mass spectrometry. In addition, solution-phase and gas-phase studies with methylamine show that the site of the nucleophilic and electrophilic reactions is probably inside the thermospray probe. Most importantly, these results also show that the on-line combination of electrochemistry with thermospray tandem mass spectrometry provides valuable information about redox and associated chemical reactions of biological molecules such as the structures of intermediates or products as well as providing insight into reaction pathways.

  3. The Pre-exponential Factor in Electrochemistry.

    PubMed

    He, Zheng-Da; Chen, Yan-Xia; Santos, Elizabeth; Schmickler, Wolfgang

    2018-07-02

    Like many branches of science, not to mention culture in general, electrochemistry has a number of recurring topics: Areas of research that are popular for a certain time, then fade away as their possibilities seem to have been exhausted, only to return decades later as progress in experimental or theoretical techniques offer new possibilities for their investigation. A prime example are fuel cells, which have undergone five such cycles, but here we discuss a general concept of kinetics-the pre-exponential factor of a rate constant-which has undergone two such cycles. The first cycle was in the 1950-1980s, when the methods of electrochemical kinetics were developed, and the interpretation was based on transition-state theory. The second was triggered by the re-discovery of Kramers theory for reactions in condensed phases. This Minireview will show that the time has come for a third cycle based on recent progress in electrocatalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrochemistry-based Battery Modeling for Prognostics

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2013-01-01

    Batteries are used in a wide variety of applications. In recent years, they have become popular as a source of power for electric vehicles such as cars, unmanned aerial vehicles, and commericial passenger aircraft. In such application domains, it becomes crucial to both monitor battery health and performance and to predict end of discharge (EOD) and end of useful life (EOL) events. To implement such technologies, it is crucial to understand how batteries work and to capture that knowledge in the form of models that can be used by monitoring, diagnosis, and prognosis algorithms. In this work, we develop electrochemistry-based models of lithium-ion batteries that capture the significant electrochemical processes, are computationally efficient, capture the effects of aging, and are of suitable accuracy for reliable EOD prediction in a variety of usage profiles. This paper reports on the progress of such a model, with results demonstrating the model validity and accurate EOD predictions.

  5. Molybdenum, molybdenum oxides, and their electrochemistry.

    PubMed

    Saji, Viswanathan S; Lee, Chi-Woo

    2012-07-01

    The electrochemical behaviors of molybdenum and its oxides, both in bulk and thin film dimensions, are critical because of their widespread applications in steels, electrocatalysts, electrochromic materials, batteries, sensors, and solar cells. An important area of current interest is electrodeposited CIGS-based solar cells where a molybdenum/glass electrode forms the back contact. Surprisingly, the basic electrochemistry of molybdenum and its oxides has not been reviewed with due attention. In this Review, we assess the scattered information. The potential and pH dependent active, passive, and transpassive behaviors of molybdenum in aqueous media are explained. The major surface oxide species observed, reversible redox transitions of the surface oxides, pseudocapacitance and catalytic reduction are discussed along with carefully conducted experimental results on a typical molybdenum glass back contact employed in CIGS-based solar cells. The applications of molybdenum oxides and the electrodeposition of molybdenum are briefly reviewed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Conceptual Difficulties Experienced by Senior High School Students of Electrochemistry: Electrochemical (Galvanic) and Electrolytic Cells.

    ERIC Educational Resources Information Center

    Garnett, Pamela J.; Treagust, David F.

    1992-01-01

    This research used semistructured interviews to investigate students' (n=32) understanding of electrochemistry following a 7-9 week course of instruction. Three misconceptions were identified and incorporated with five previously reported into an alternative framework about electric current involving drifting electrons. Also noted was the tendency…

  7. Li/Ag 2VO 2PO 4 batteries: the roles of composite electrode constituents on electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bock, David C.; Bruck, Andrea M.; Pelliccione, Christopher J.

    2016-11-01

    Silver vanadium phosphorous oxide, Ag 2V 2OPO 4, was used as a model system to systematically study the impact on the constituents of a composite electrode, including polymeric and conductive additives, on electrochemistry. Three different electrode compositions were investigated.

  8. Integration of electrochemistry in micro-total analysis systems for biochemical assays: recent developments.

    PubMed

    Xu, Xiaoli; Zhang, Song; Chen, Hui; Kong, Jilie

    2009-11-15

    Micro-total analysis systems (microTAS) integrate different analytical operations like sample preparation, separation and detection into a single microfabricated device. With the outstanding advantages of low cost, satisfactory analytical efficiency and flexibility in design, highly integrated and miniaturized devices from the concept of microTAS have gained widespread applications, especially in biochemical assays. Electrochemistry is shown to be quite compatible with microanalytical systems for biochemical assays, because of its attractive merits such as simplicity, rapidity, high sensitivity, reduced power consumption, and sample/reagent economy. This review presents recent developments in the integration of electrochemistry in microdevices for biochemical assays. Ingenious microelectrode design and fabrication methods, and versatility of electrochemical techniques are involved. Practical applications of such integrated microsystem in biochemical assays are focused on in situ analysis, point-of-care testing and portable devices. Electrochemical techniques are apparently suited to microsystems, since easy microfabrication of electrochemical elements and a high degree of integration with multi-analytical functions can be achieved at low cost. Such integrated microsystems will play an increasingly important role for analysis of small volume biochemical samples. Work is in progress toward new microdevice design and applications.

  9. The Effects of Problem-Based Learning (PBL) on the Academic Achievement of Students Studying "Electrochemistry"

    ERIC Educational Resources Information Center

    Günter, Tugçe; Alpat, Sibel Kilinç

    2017-01-01

    This study investigates the effects of problem-based learning (PBL) on students' academic achievements in studying "Electrochemistry" within a course on Analytical Chemistry. The research was of a pretest-posttest control group quasi-experimental design and it was conducted with second year students in the Chemistry Teaching Program at…

  10. A Preliminary Study of Some of the Learning and Assessment Difficulties in Connection with O-Level Electrochemistry.

    ERIC Educational Resources Information Center

    Hillman, R. A. H.; And Others

    1981-01-01

    Describes a study which explored some difficulties related to technical and nontechnical vocabulary and the structure of the examination questions in electrochemistry. Includes results from a sample of 1,500 students in the fourth forms. (DS)

  11. Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications

    NASA Astrophysics Data System (ADS)

    Lehmann, Volker

    2002-04-01

    Silicon has been and will most probably continue to be the dominant material in semiconductor technology. Although the defect-free silicon single crystal is one of the best understood systems in materails science, its electrochemistry to many people is still a kind of "alchemy". This view is partly due to the interdisciplinary aspects of the topic: Physics meets chemistry at the silicon-electrolyte interface. This book gives a comprehensive overview of this important aspect of silicon technology as well as examples of applications ranging from photonic crystals to biochips. It will serve materials scientists as well as engineers involved in silicon technology as a quick reference with its more than 150 technical tables and diagrams and ca. 1000 references cited for easy access of the original literature.

  12. Synthesis of Cation and Water Free Cryptomelane Type OMS-2 Cathode Materials: The Impact of Tunnel Water on Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyraz, Altug S.; Huang, Jianping; Zhang, Bingjie

    Cryptomelane type manganese dioxides (α-MnO 2, OMS-2) are interesting potential cathode materials due to the ability of their one dimensional (1D) tunnels to reversibly host various cations including Li +and an accessible stable 3+/4+ redox couple. Here, we synthesized metal cation free OMS-2 materials where the tunnels were occupied by only water and hydronium ions. Water was subsequently removed from the tunnels. Cation free OMS-2 and Dry-OMS-2 were used as cathodes in Li based batteries to investigate the role of tunnel water on their electrochemistry. The initial discharge capacity was higher for Dry-OMS-2 (252 mAh/g) compared to OMS-2 (194 mAh/g),more » however, after 100 cycles Dry-OMS-2 and OMS-2 delivered 137 mAh/g and 134 mAh/g, respectively. Li +ion diffusion was more facile for Dry-OMS as evidenced by rate capability, at 400 mA/g. Dry-OMS-2 delivered 135mAh/g whereas OMS-2 delivered ~115 mAh/g. This first report of the impact of tunnel water on the electrochemistry of OMS-2 type materials demonstrates that the presence of tunnel water in OMS-2 type materials negatively impacts the electrochemistry.« less

  13. Effects of Jigsaw and Animation Techniques on Students' Understanding of Concepts and Subjects in Electrochemistry

    ERIC Educational Resources Information Center

    Doymus, Kemal; Karacop, Ataman; Simsek, Umit

    2010-01-01

    This study investigated the effect of jigsaw cooperative learning and animation versus traditional teaching methods on students' understanding of electrochemistry in a first-year general chemistry course. This study was carried out in three different classes in the department of primary science education during the 2007-2008 academic year. The…

  14. A Historical Analysis of the Daniell Cell and Electrochemistry Teaching in French and Tunisian Textbooks

    ERIC Educational Resources Information Center

    Boulabiar, Ahlem; Bouraoui, Kamel; Chastrette, Maurice; Abderrabba, Manef

    2004-01-01

    The condition in which the Daniell Cell was historically constructed is examined and the evolution of its presentation in French and Tunisian chemistry textbooks is analyzed. Based on the studies, several innovations to facilitate the teaching of the cell, and more generally, the teaching of electrochemistry and of ionic conduction are proposed.

  15. A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes.

    PubMed

    Deng, Shengyuan; Jian, Guoqiang; Lei, Jianping; Hu, Zheng; Ju, Huangxian

    2009-10-15

    A novel biosensor for glucose was prepared by immobilizing glucose oxidase (GOx) on nitrogen-doped carbon nanotubes (CNx-MWNTs) modified electrode. The CNx-MWNTs membrane showed an excellent electrocatalytic activity toward the reduction of O(2) due to its diatomic side-on adsorption on CNx-MWNTs. The nitrogen doping accelerated the electron transfer from electrode surface to the immobilized GOx, leading to the direct electrochemistry of GOx. The biofunctional surface showed good biocompatibility, excellent electron-conductive network and large surface-to-volume ratio, which were characterized by scanning electron microscopy, contact angle and electrochemical impedance technique. The direct electron transfer of immobilized GOx led to stable amperometric biosensing for glucose with a linear range from 0.02 to 1.02 mM and a detection limit of 0.01 mM (S/N=3). These results indicated that CNx-MWNTs are good candidate material for construction of the third-generation enzyme biosensors based on the direct electrochemistry of immobilized enzymes.

  16. Common Principles of Molecular Electronics and Nanoscale Electrochemistry.

    PubMed

    Bueno, Paulo Roberto

    2018-05-24

    The merging of nanoscale electronics and electrochemistry can potentially modernize the way electronic devices are currently engineered or constructed. It is well known that the greatest challenges will involve not only miniaturizing and improving the performance of mobile devices, but also manufacturing reliable electrical vehicles, and engineering more efficient solar panels and energy storage systems. These are just a few examples of how technological innovation is dependent on both electrochemical and electronic elements. This paper offers a conceptual discussion of this central topic, with particular focus on the impact that uniting physical and chemical concepts at a nanoscale could have on the future development of electroanalytical devices. The specific example to which this article refers pertains to molecular diagnostics, i.e., devices that employ physical and electrochemical concepts to diagnose diseases.

  17. Introducing Students to Inner Sphere Electron Transfer Concepts through Electrochemistry Studies in Diferrocene Mixed-Valence Systems

    ERIC Educational Resources Information Center

    Ventura, Karen; Smith, Mark B.; Prat, Jacob R.; Echegoyen, Lourdes E.; Villagran´, Dino

    2017-01-01

    We have designed a 4 h physical chemistry laboratory to introduce upper division students to electrochemistry concepts, including mixed valency and electron transfer (ET), using cyclic and differential pulse voltammetries. In this laboratory practice, students use a ferrocene dimer consisting of two ferrocene centers covalently bonded through a…

  18. Phase I and phase II reductive metabolism simulation of nitro aromatic xenobiotics with electrochemistry coupled with high resolution mass spectrometry.

    PubMed

    Bussy, Ugo; Chung-Davidson, Yu-Wen; Li, Ke; Li, Weiming

    2014-11-01

    Electrochemistry combined with (liquid chromatography) high resolution mass spectrometry was used to simulate the general reductive metabolism of three biologically important nitro aromatic molecules: 3-trifluoromethyl-4-nitrophenol (TFM), niclosamide, and nilutamide. TFM is a pesticide used in the Laurential Great Lakes while niclosamide and nilutamide are used in cancer therapy. At first, a flow-through electrochemical cell was directly connected to a high resolution mass spectrometer to evaluate the ability of electrochemistry to produce the main reduction metabolites of nitro aromatic, nitroso, hydroxylamine, and amine functional groups. Electrochemical experiments were then carried out at a constant potential of -2.5 V before analysis of the reduction products by LC-HRMS, which confirmed the presence of the nitroso, hydroxylamine, and amine species as well as dimers. Dimer identification illustrates the reactivity of the nitroso species with amine and hydroxylamine species. To investigate xenobiotic metabolism, the reactivity of nitroso species to biomolecules was also examined. Binding of the nitroso metabolite to glutathione was demonstrated by the observation of adducts by LC-ESI(+)-HRMS and the characteristics of their MSMS fragmentation. In conclusion, electrochemistry produces the main reductive metabolites of nitro aromatics and supports the observation of nitroso reactivity through dimer or glutathione adduct formation.

  19. The use of bipolar electrochemistry in nanoscience: Contact free methods for the site selective modification of nanostructured carbon materials

    NASA Astrophysics Data System (ADS)

    Ndungu, Patrick Gathura

    Bipolar electrochemistry occurs when an isolated conductive substrate inside an electric field supports both oxidation and reduction reactions. The method requires no direct contact between the power supply and the substrate. In the following thesis bipolar electrochemistry has been used to deposit palladium onto isolated graphite platelets, carbon nanofibers (CNF), and carbon nanotubes (CNT), as well as, various metals, a semiconductor, and an electropolymer on CNTs. Initial work used pulsed DC electric fields to deposit palladium onto isolated graphite platelets. Transmission electron microscopy (TEM) studies on the platelets found palladium metal on one area, indicative of a bipolar mechanism, and palladium deposits that varied from surface bound to highly ramified deposits. No correlation was found between the frequency used to prepare the deposits and the palladium metal dispersion. The same field intensities and frequencies used on the graphite platelets were used to produce CNFs with palladium on one tip. The amount of palladium deposited on one tip of a CNF was controlled by adjusting how long the electric field was applied. Preliminary experiments to produce bulk quantities of CNFs with palladium bipolar electrodeposits used CNFs ball milled with silica, and CNFs suspended in tetrahydrofuran or methylene chloride. The palladium content, measured by atomic absorption spectroscopy, of the functionalized CNFs in silica showed no difference with increased CNF loading; however, TEM studies found a small number of functionalized chloride used suspensions with high loadings of CNFs which led to small percentages of CNFs with bipolar electrodeposited palladium. Finally CNTs obtained commercially and CNTs grown using chemical vapor deposition were successfully functionalized using bipolar electrodeposition. These experiments demonstrate a reliable and controlled method to modify nanostructured materials.

  20. Direct electrochemistry and electrocatalysis of a glucose oxidase-functionalized bioconjugate as a trace label for ultrasensitive detection of thrombin.

    PubMed

    Bai, Lijuan; Yuan, Ruo; Chai, Yaqin; Yuan, Yali; Wang, Yan; Xie, Shunbi

    2012-11-18

    For the first time, a glucose oxidase-functionalized bioconjugate was prepared and served as a new trace label through its direct electrochemistry and electrocatalysis in a sandwich-type electrochemical aptasensor for ultrasensitive detection of thrombin.

  1. Topic-Specific Pedagogical Content Knowledge (TSPCK) in Redox and Electrochemistry of Experienced Teachers

    NASA Astrophysics Data System (ADS)

    O'Brien, Stephanie

    Topic specific pedagogical content knowledge (TSPCK) is the basis by which knowledge of subject matter of a particular topic is conveyed to students. This includes students' prior knowledge, curricular saliency, what makes a topic easy or difficult to teach, representations, and teaching strategies. The goal of this study is to assess the pedagogical content knowledge of chemistry teachers in a professional learning community in the areas of redox and electrochemistry, as this has been regarded in previous literature as conceptually challenging for students to learn. By acquiring information regarding the PCK development of experienced chemistry teachers, the education and practice of all science teachers can be advanced. This study builds upon previous research that developed validated instruments to evaluate TSPCK. The research questions sought to determine which components of TSPCK were evidenced by the instructional design decisions teachers made, what shared patterns and trends were evident, and how TSPCK related to student learning outcomes. To answer the research questions subjects completed a background questionnaire, a TSPCK assessment, and interview tasks to elicit information about pedagogical decision making and processes that influenced student learning in their classrooms. The TSPCK exam and interview responses were coded to align with thematic constructs. To determine the effect of TSPCK on student learning gains, pre/post-assessment data on redox and electrochemistry were compared to teachers' TSPCK. The chemistry teachers displayed varying levels of TSPCK in redox and electrochemistry, as evidenced by their knowledge of student learning obstacles, curricular saliency, and teaching methodologies. There was evidence of experienced teachers lacking in certain areas of TSPCK, such as the ability to identify student misconceptions, suggesting the need for programmatic improvements in pre-service and in-service training to address the needs of current

  2. Effectiveness of Interactive Multimedia Module with Pedagogical Agent (IMMPA) in the Learning of Electrochemistry: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Lee, Tien Tien; Osman, Kamisah

    2011-01-01

    Electrochemistry is found to be a difficult topic to learn due to its abstract concepts that involve the macroscopic, microscopic and symbolic representation levels. Research showed that animation and simulation using Information and Communication Technology (ICT) can help students to visualize and hence enhance students' understanding in learning…

  3. Direct electrochemistry and intramolecular electron transfer of ascorbate oxidase confined on L-cysteine self-assembled gold electrode.

    PubMed

    Patil, Bhushan; Kobayashi, Yoshiki; Fujikawa, Shigenori; Okajima, Takeyoshi; Mao, Lanqun; Ohsaka, Takeo

    2014-02-01

    A direct electrochemistry and intramolecular electron transfer of multicopper oxidases are of a great importance for the fabrication of these enzyme-based bioelectrochemical-devices. Ascorbate oxidase from Acremonium sp. (ASOM) has been successfully immobilized via a chemisorptive interaction on the l-cysteine self-assembled monolayer modified gold electrode (cys-SAM/AuE). Thermodynamics and kinetics of adsorption of ASOM on the cys-SAM/AuE were studied using cyclic voltammetry. A well-defined redox wave centered at 166±3mV (vs. Ag│AgCl│KCl(sat.)) was observed in 5.0mM phosphate buffer solution (pH7.0) at the fabricated ASOM electrode, abbreviated as ASOM/cys-SAM/AuE, confirming a direct electrochemistry, i.e., a direct electron transfer (DET) between ASOM and cys-SAM/AuE. The direct electrochemistry of ASOM was further confirmed by taking into account the chemical oxidation of ascorbic acid (AA) by O2 via an intramolecular electron transfer in the ASOM as well as the electrocatalytic oxidation of AA at the ASOM/cys-SAM/AuE. Thermodynamics and kinetics of the adsorption of ASOM on the cys-SAM/AuE have been elaborated along with its direct electron transfer at the modified electrodes on the basis of its intramolecular electron transfer and electrocatalytic activity towards ascorbic acid oxidation and O2 reduction. ASOM saturated surface area was obtained as 2.41×10(-11)molcm(-2) with the apparent adsorption coefficient of 1.63×10(6)Lmol(-1). The ASOM confined on the cys-SAM/AuE possesses its essential enzymatic function. © 2013.

  4. DNA Electrochemistry with Tethered Methylene Blue

    PubMed Central

    Pheeney, Catrina G.

    2012-01-01

    Methylene blue (MB′), covalently attached to DNA through a flexible C12 alkyl linker, provides a sensitive redox reporter in DNA electrochemistry measurements. Tethered, intercalated MB′ is reduced through DNA-mediated charge transport; the incorporation of a single base mismatch at position 3, 10, or 14 of a 17-mer causes an attenuation of the signal to 62 ± 3% of the well-matched DNA, irrespective of position in the duplex. The redox signal intensity for MB′–DNA is found to be least 3-fold larger than that of Nile blue (NB)–DNA, indicating that MB′ is even more strongly coupled to the π-stack. The signal attenuation due to an intervening mismatch does, however, depend on DNA film density and the backfilling agent used to passivate the surface. These results highlight two mechanisms for reduction of MB′ on the DNA-modified electrode: reduction mediated by the DNA base pair stack and direct surface reduction of MB′ at the electrode. These two mechanisms are distinguished by their rates of electron transfer that differ by 20-fold. The extent of direct reduction at the surface can be controlled by assembly and buffer conditions. PMID:22512327

  5. Film Self-Assembly of Oppositely Charged Macromolecules Triggered by Electrochemistry through a Morphogenic Approach.

    PubMed

    Dochter, Alexandre; Garnier, Tony; Pardieu, Elodie; Chau, Nguyet Trang Thanh; Maerten, Clément; Senger, Bernard; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia

    2015-09-22

    The development of new surface functionalization methods that are easy to use, versatile, and allow local deposition represents a real scientific challenge. Overcoming this challenge, we present here a one-pot process that consists in self-assembling, by electrochemistry on an electrode, films made of oppositely charged macromolecules. This method relies on a charge-shifting polyanion, dimethylmaleic-modified poly(allylamine) (PAHd), that undergoes hydrolysis at acidic pH, leading to an overall switching of its charge. When a mixture of the two polyanions, PAHd and poly(styrenesulfonate) (PSS), is placed in contact with an electrode, where the pH is decreased locally by electrochemistry, the transformation of PAHd into a polycation (PAH) leads to the continuous self-assembly of a nanometric PAH/PSS film by electrostatic interactions. The pH decrease is obtained by the electrochemical oxidation of hydroquinone, which produces protons locally over nanometric distances. Using a negatively charged enzyme, alkaline phosphatase (AP), instead of PSS, this one-pot process allows the creation of enzymatically active films. Under mild conditions, self-assembled PAH/AP films have an enzymatic activity which is adjustable simply by controlling the self-assembly time. The selective functionalization of microelectrode arrays by PAH/AP was achieved, opening the route toward miniaturized biosensors.

  6. Electrochemistry coupled to (LC-)MS for the simulation of oxidative biotransformation reactions of PAHs.

    PubMed

    Wigger, Tina; Seidel, Albrecht; Karst, Uwe

    2017-06-01

    Electrochemistry coupled to liquid chromatography and mass spectrometry was used for simulating the biological and environmental fate of polycyclic aromatic hydrocarbons (PAHs) as well as for studying the PAH degradation behavior during electrochemical remediation. Pyrene and benzo[a]pyrene were selected as model compounds and oxidized within an electrochemical thin-layer cell equipped with boron-doped diamond electrode. At potentials of 1.2 and 1.6 V vs. Pd/H 2 , quinones were found to be the major oxidation products for both investigated PAHs. These quinones belong to a large group of PAH derivatives referred to as oxygenated PAHs, which have gained increasing attention in recent years due to their high abundance in the environment and their significant toxicity. Separation of oxidation products allowed the identification of two pyrene quinone and three benzo[a]pyrene quinone isomers, all of which are known to be formed via photooxidation and during mammalian metabolism. The good correlation between electrochemically generated PAH quinones and those formed in natural processes was also confirmed by UV irradiation experiments and microsomal incubations. At potentials higher than 2.0 V, further degradation of the initial oxidation products was observed which highlights the capability of electrochemistry to be used as remediation technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Effect of Process Oriented Guided Inquiry Learning (POGIL) on 11th Graders' Conceptual Understanding of Electrochemistry

    ERIC Educational Resources Information Center

    Sen, Senol; Yilmaz, Ayhan; Geban, Ömer

    2016-01-01

    The purpose of this study was to investigate the effect of Process Oriented Guided Inquiry Learning (POGIL) method compared to traditional teaching method on 11th grade students' conceptual understanding of electrochemistry concepts. Participants were 115 students from a public school in Turkey. Nonequivalent control group design was used. Two…

  8. Electro-Fermentation - Merging Electrochemistry with Fermentation in Industrial Applications.

    PubMed

    Schievano, Andrea; Pepé Sciarria, Tommy; Vanbroekhoven, Karolien; De Wever, Heleen; Puig, Sebastià; Andersen, Stephen J; Rabaey, Korneel; Pant, Deepak

    2016-11-01

    Electro-fermentation (EF) merges traditional industrial fermentation with electrochemistry. An imposed electrical field influences the fermentation environment and microbial metabolism in either a reductive or oxidative manner. The benefit of this approach is to produce target biochemicals with improved selectivity, increase carbon efficiency, limit the use of additives for redox balance or pH control, enhance microbial growth, or in some cases enhance product recovery. We discuss the principles of electrically driven fermentations and how EF can be used to steer both pure culture and microbiota-based fermentations. An overview is given on which advantages EF may bring to both existing and innovative industrial fermentation processes, and which doors might be opened in waste biomass utilization towards added-value biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Impact of Interactive Multimedia Module with Pedagogical Agents on Students' Understanding and Motivation in the Learning of Electrochemistry

    ERIC Educational Resources Information Center

    Osman, Kamisah; Lee, Tien Tien

    2014-01-01

    The Electrochemistry topic is found to be difficult to learn due to its abstract concepts involving macroscopic, microscopic, and symbolic representation levels. Studies have shown that animation and simulation using information and communication technology (ICT) can help students to visualize and hence enhance their understanding in learning…

  10. Bibliography of Soviet Material on Internal Waves, Number 5, June- October 1975

    DTIC Science & Technology

    1975-11-10

    GiK IAN Arm IAN Az Avtomatika i tclemekhanika Acta physica polonica Akadcmiya nauk Armyanskoy SSR. DokUdy Akademiya nauk Azerbaydzhanskoy...Prikladnaya matematika i mekhanika Physica status solidi Pribory i sistcmy upravleniya Pribory i tckhnika ekspcrimenta Radiotekhnika Radiotckhnika i

  11. Synthesis of Copper Birnessite, Cu xMnO y·nH 2O with Crystallite Size Control: Impact of Crystallite Size on Electrochemistry

    DOE PAGES

    Li, Yue Ru; Marschilok, Amy C.; Takeuchi, Esther S.; ...

    2015-11-24

    This report describes the first detailed electrochemical examination of a series of copper birnessite samples under lithium-based battery conditions, allowing a structure/function analysis of the electrochemistry and related material properties. To obtain the series of copper birnessite samples, a novel synthetic approach for the preparation of copper birnessite, Cu xMnO y·nH 2O is reported. The copper content (x) in Cu xMnO y·nH 2O, 0.28 >= x >= 0.20, was inversely proportional to crystallite size, which ranged from 12 to 19 nm. The electrochemistry under lithium-based battery conditions showed that the higher copper content (x = 0.28) and small crystallite sizemore » (similar to 12 nm) sample delivered similar to 194 mAh/g, about 20% higher capacity than the low copper content (x = 0.22) and larger crystallite size (similar to 19 nm) material. In addition, Cu xMnO y·nH 2O displays quasi-reversible electrochemistry in magnesium based electrolytes, indicating that copper birnessite could be a candidate for future application in magnesium-ion batteries.« less

  12. Non-haloaluminate room-temperature ionic liquids in electrochemistry--a review.

    PubMed

    Buzzeo, Marisa C; Evans, Russell G; Compton, Richard G

    2004-08-20

    Some twenty-five years after they first came to prominence as alternative electrochemical solvents, room temperature ionic liquids (RTILs) are currently being employed across an increasingly wide range of chemical fields. This review examines the current state of ionic liquid-based electrochemistry, with particular focus on the work of the last decade. Being composed entirely of ions and possesing wide electrochemical windows (often in excess of 5 volts), it is not difficult to see why these compounds are seen by electrochemists as attractive potential solvents. Accordingly, an examination of the pertinent properties of ionic liquids is presented, followed by an assessment of their application to date across the various electrochemical disciplines, concluding with an outlook viewing current problems and directions.

  13. Structural properties and electrochemistry of α-LiFeO2

    NASA Astrophysics Data System (ADS)

    Abdel-Ghany, A. E.; Mauger, A.; Groult, H.; Zaghib, K.; Julien, C. M.

    2012-01-01

    In this work, we study the physico-chemistry and electrochemistry of lithium ferrite synthesized by solid-state reaction. Characterization included X-ray diffraction (XRD), scanning electronic microscopy (SEM), Raman scattering (RS), Fourier transform infrared spectroscopy (FTIR), and SQUID magnetometry. XRD peaks gradually sharpen with increasing firing temperature; all the diffraction peaks can be indexed to the cubic α-LiFeO2 phase (Fm3m space group) with the refined cell parameter a = 4.155 Å. RS and FTIR spectra show the vibrational modes due to covalent Fe-O bonds and the Li-cage mode at low-frequency. The electrochemical properties of Li/LiFeO2 are revisited along with the post-mortem analysis of the positive electrode material using XRD and Raman experiments.

  14. Electrochemistry of sulfur and polysulfides in ionic liquids.

    PubMed

    Manan, Ninie S A; Aldous, Leigh; Alias, Yatimah; Murray, Paul; Yellowlees, Lesley J; Lagunas, M Cristina; Hardacre, Christopher

    2011-12-01

    The electrochemistry of elemental sulfur (S(8)) and the polysulfides Na(2)S(4) and Na(2)S(6) has been studied for the first time in nonchloroaluminate ionic liquids. The cyclic voltammetry of S(8) in the ionic liquids is different to the behavior reported in some organic solvents, with two reductions and one oxidation peak observed. Supported by in situ UV-vis spectro-electrochemical experiments, the main reduction products of S(8) in [C(4)mim][DCA] ([C(4)mim] = 1-butyl-3-methylimidazolium; DCA = dicyanamide) have been identified as S(6)(2-) and S(4)(2-), and plausible pathways for the formation of these species are proposed. Dissociation and/or disproportionation of the polyanions S(6)(2-) and S(4)(2-) appears to be slow in the ionic liquid, with only small amounts of the blue radical species S(3)(•-) formed in the solutions at r.t., in contrast with that observed in most molecular solvents. © 2011 American Chemical Society

  15. Electrochemistry-mass spectrometry for in-vitro determination of selected chemotherapeutics and their electrochemical products in comparison to in-vivo approach.

    PubMed

    Szultka-Mlynska, Malgorzata; Buszewski, Boguslaw

    2016-11-01

    Chemotherapeutics are among the most frequently prescribed medications in modern medicine. They are widely prescribed; however, problems with organisms developing resistance to these drugs means that their efficacy may be lost, so care should be taken to avoid unnecessary prescription. It is therefore of great interest to study the detailed metabolism of these biologically active compounds. This study aimed at developing an efficient analytical protocol for the determination of in-vitro electrochemical products of selected antibiotic drugs (amoxicillin, cefotaxime, fluconazole, linezolid, metronidazole and moxifloxacin). Combination of electrochemistry (EC) and mass spectrometry (MS) was applied for the in-vitro determination of the studied antibiotics and their electrochemical products. To identify the structure of the detected electrochemical products, MS/MS experiments were performed. This was one of the first applications of the EC system for generation of electrochemical products produced from antibiotic drugs. Adjustment of appropriate conditions and such parameters as the potential value, mobile phase (pH), working electrode and temperature had significant influence on electrochemical simulations and the creation of selected derivatives. Consequently, several working electrodes were evaluated for this purpose. In most of the studied cases, mainly two types of products were observed. One corresponded to an increase in mass by 14Da, which can be explained by a process consisting of oxidation (+16 m/z) and dehydrogenation (-2 m/z); The second in turn showed mass reduction by 14Da, which can be attributed to the loss of -CH2 as a result of N-demethylation. The performed experiments consisted of two stages: electrochemical oxidation of the analyzed samples (phase I of metabolic transformation), and addition of glutathione (GSH) for follow-up reactions (phase II conjunction). The electrochemical results were compared to in-vivo experiments by analyzing urine

  16. Citation analysis of publications of NASU mechanicians in the database of the Thomson Reuters Institute for Scientific Information

    NASA Astrophysics Data System (ADS)

    Guz, A. N.; Rushchitsky, J. J.

    2009-07-01

    The paper performs a citation analysis of publications of mechanicians of the National Academy of Sciences of Ukraine (NASU) based on information tools developed by the Thomson Reuters Institute for Scientific Information. Two groups of mechanicians are considered: representatives of the S. P. Timoshenko Institute of Mechanics of the NASU (NASU members, heads of departments) and members (academicians) of the NASU Division of Mechanics. Three elements of the Citation Report (Results Found, Citation Index (Sum of the Times Cited), h-index) are presented for each scientist. This paper may be considered as a follow-up on the papers [6-11] published by Prikladnaya Mekhanika ( International Applied Mechanics) in 2005-2009

  17. Relative Effect of Lecture Method Supplemented with Music and Computer Animation on Senior Secondary School Students' Retention in Electrochemistry

    ERIC Educational Resources Information Center

    Akpoghol, T. V.; Ezeudu, F. O.; Adzape, J. N.; Otor, E. E.

    2016-01-01

    The study investigated the effects of Lecture Method Supplemented with Music (LMM) and Computer Animation (LMC) on senior secondary school students' retention in electrochemistry in Makurdi metropolis. Three research questions and three hypotheses guided the study. The design of the study was quasi experimental, specifically the pre-test,…

  18. Light Emission Mechanisms in CuInS 2 Quantum Dots Evaluated by Spectral Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuhr, Addis S.; Yun, Hyeong Jin; Makarov, Nikolay S.

    Luminescent CuInS 2 (CIS) quantum dots (QDs) exhibit highly efficient intragap emission and long, hundreds-of-nanoseconds radiative lifetimes. These spectral properties, distinct from structurally similar II–VI QDs, can be explained by the involvement of intragap defect states containing a localized hole capable of coupling with a conduction band electron for a radiative transition. However, the absolute energies of the intragap and band-edge states, the structure of the emissive defect(s), and the role and origin of nonemissive decay channels still remain poorly understood. Here, we address these questions by applying methods of spectral electrochemistry. Cyclic voltammetry measurements reveal a well-defined intragap statemore » whose redox potential is close to that of the Cu x defect state (where x = 1+ or 2+). The energy offset of this state from the valence band accounts well for the apparent photoluminescence Stokes shift observed in optical spectra. These results provide direct evidence that Cu-related defects serve as emission centers responsible for strong intragap emission from CIS QDs. We then use in situ spectroelectrochemistry to reveal two distinct emission pathways based on the differing oxidation states of Cu defects, which can be controlled by altering QD stoichiometry (1+ for stoichiometric QDs and 2+ for Cu-deficient QDs).« less

  19. Light Emission Mechanisms in CuInS 2 Quantum Dots Evaluated by Spectral Electrochemistry

    DOE PAGES

    Fuhr, Addis S.; Yun, Hyeong Jin; Makarov, Nikolay S.; ...

    2017-09-07

    Luminescent CuInS 2 (CIS) quantum dots (QDs) exhibit highly efficient intragap emission and long, hundreds-of-nanoseconds radiative lifetimes. These spectral properties, distinct from structurally similar II–VI QDs, can be explained by the involvement of intragap defect states containing a localized hole capable of coupling with a conduction band electron for a radiative transition. However, the absolute energies of the intragap and band-edge states, the structure of the emissive defect(s), and the role and origin of nonemissive decay channels still remain poorly understood. Here, we address these questions by applying methods of spectral electrochemistry. Cyclic voltammetry measurements reveal a well-defined intragap statemore » whose redox potential is close to that of the Cu x defect state (where x = 1+ or 2+). The energy offset of this state from the valence band accounts well for the apparent photoluminescence Stokes shift observed in optical spectra. These results provide direct evidence that Cu-related defects serve as emission centers responsible for strong intragap emission from CIS QDs. We then use in situ spectroelectrochemistry to reveal two distinct emission pathways based on the differing oxidation states of Cu defects, which can be controlled by altering QD stoichiometry (1+ for stoichiometric QDs and 2+ for Cu-deficient QDs).« less

  20. Electrochemistry of 1,1'-bis(2,4-dialkylphosphetanyl)ferrocene and 1,1'-bis(2,5-dialkylphospholanyl)ferrocene ligands: free phosphines, metal complexes, and chalcogenides.

    PubMed

    Mandell, Chelsea L; Kleinbach, Shannon S; Dougherty, William G; Kassel, W Scott; Nataro, Chip

    2010-10-18

    The oxidative electrochemistries of a series of chiral bisphosphinoferrocene ligands, 1,1'-bis(2,4-dialkylphosphetanyl)ferrocene (FerroTANE) and 1,1'-bis(2,5-dialkylphospholanyl)ferrocene (FerroLANE), were examined. The reversibility of the oxidation is sensitive to the steric bulk of the alkyl groups. New transition metal compounds and phosphine chalcogenides of these ligands were prepared and characterized. X-ray crystal structures of 10 of these compounds are reported. The percent buried volume (%V(bur)) is a recently developed measurement based on crystallographic data that examines the steric bulk of N-heterocyclic carbene and phosphine ligands. The %V(bur) for the FerroTANE and FerroLANE structures with methyl or ethyl substituents suggests these ligands are similar in steric properties to 1,1'-bis(diphenylphosphino)ferrocene (dppf). In addition the %V(bur) has been found to correlate well with the Tolman cone angle for phosphine chalcogenides. The oxidative electrochemistries of the transition metal complexes occur at more positive potentials than the free ligands. While a similar positive shift is seen for the oxidative electrochemistries of the phosphine chalcogenides, the oxidation of the phosphine selenides does not occur at the iron center, but rather oxidation occurs at the selenium atoms.

  1. Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy.

    PubMed

    Huang, Zhen-Feng; Song, Jiajia; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun

    2015-09-23

    The conversion, storage, and utilization of renewable energy have all become more important than ever before as a response to ever-growing energy and environment concerns. The performance of energy-related technologies strongly relies on the structure and property of the material used. The earth-abundant family of tungsten oxides (WOx ≤3 ) receives considerable attention in photocatalysis, electrochemistry, and phototherapy due to their highly tunable structures and unique physicochemical properties. Great breakthroughs have been made in enhancing the optical absorption, charge separation, redox capability, and electrical conductivity of WOx ≤3 through control of the composition, crystal structure, morphology, and construction of composite structures with other materials, which significantly promotes the efficiency of processes and devices based on this material. Herein, the properties and synthesis of WOx ≤3 family are reviewed, and then their energy-related applications are highlighted, including solar-light-driven water splitting, CO2 reduction, and pollutant removal, electrochromism, supercapacitors, lithium batteries, solar and fuel cells, non-volatile memory devices, gas sensors, and cancer therapy, from the aspect of function-oriented structure design and control. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effects of Lecture Method Supplemented with Music and Computer Animation on Senior Secondary School Students' Academic Achievement in Electrochemistry

    ERIC Educational Resources Information Center

    Akpoghol, T. V.; Ezeudu, F. O.; Adzape, J. N.; Otor, E. E.

    2016-01-01

    The study investigated the effects of Lecture Method Supplemented with Music (LMM) and Computer Animation (LMC) on senior secondary school students' academic achievement in electrochemistry in Makurdi metropolis. Six research questions and six hypotheses guided the study. The design of the study was quasi experimental, specifically the pre-test,…

  3. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode.

    PubMed

    Deng, Chunyan; Chen, Jinhua; Chen, Xiaoli; Xiao, Chunhui; Nie, Lihua; Yao, Shouzhuo

    2008-03-14

    Due to their unique physicochemical properties, doped carbon nanotubes are now extremely attractive and important nanomaterials in bioanalytical applications. In this work, selecting glucose oxidase (GOD) as a model enzyme, we investigated the direct electrochemistry of GOD based on the B-doped carbon nanotubes/glassy carbon (BCNTs/GC) electrode with cyclic voltammetry. A pair of well-defined, quasi-reversible redox peaks of the immobilized GOD was observed at the BCNTs based enzyme electrode in 0.1M phosphate buffer solution (pH 6.98) by direct electron transfer between the protein and the electrode. As a new platform in glucose analysis, the new glucose biosensor based on the BCNTs/GC electrode has a sensitivity of 111.57 microA mM(-1)cm(-2), a linear range from 0.05 to 0.3mM and a detection limit of 0.01mM (S/N=3). Furthermore, the BCNTs modified electrode exhibits good stability and excellent anti-interferent ability to the commonly co-existed uric acid and ascorbic acid. These indicate that boron-doped carbon nanotubes are the good candidate material for the direct electrochemistry of the redox-active enzyme and the construction of the related enzyme biosensors.

  4. Analysis of the electrochemistry of hemes with Ems spanning 800 mV

    PubMed Central

    Zheng, Zhong; Gunner, M. R.

    2009-01-01

    The free energy of heme reduction in different proteins is found to vary over more than 18 kcal/mol. It is a challenge to determine how proteins manage to achieve this enormous range of Ems with a single type of redox cofactor. Proteins containing 141 unique hemes of a-, b-, and c-type, with bis-His, His-Met, and aquo-His ligation were calculated using Multi-Conformation Continuum Electrostatics (MCCE). The experimental Ems range over 800 mV from −350 mV in cytochrome c3 to 450 mV in cytochrome c peroxidase (vs. SHE). The quantitative analysis of the factors that modulate heme electrochemistry includes the interactions of the heme with its ligands, the solvent, the protein backbone, and sidechains. MCCE calculated Ems are in good agreement with measured values. Using no free parameters the slope of the line comparing calculated and experimental Ems is 0.73 (R2 = 0.90), showing the method accounts for 73% of the observed Em range. Adding a +160 mV correction to the His-Met c-type hemes yields a slope of 0.97 (R2 = 0.93). With the correction 65% of the hemes have an absolute error smaller than 60 mV and 92% are within 120 mV. The overview of heme proteins with known structures and Ems shows both the lowest and highest potential hemes are c-type, whereas the b-type hemes are found in the middle Em range. In solution, bis-His ligation lowers the Em by ≈205 mV relative to hemes with His-Met ligands. The bis-His, aquo-His, and His-Met ligated b-type hemes all cluster about Ems which are ≈200 mV more positive in protein than in water. In contrast, the low potential bis-His c-type hemes are shifted little from in solution, whereas the high potential His-Met c-type hemes are raised by ≈300 mV from solution. The analysis shows that no single type of interaction can be identified as the most important in setting heme electrochemistry in proteins. For example, the loss of solvation (reaction field) energy, which raises the Em, has been suggested to be a major factor in

  5. Conceptual Difficulties Experienced by Prospective Teachers in Electrochemistry: Half-Cell Potential, Cell Potential, and Chemical and Electrochemical Equilibrium in Galvanic Cells.

    ERIC Educational Resources Information Center

    Ozkaya, Ali Riza

    2002-01-01

    A previous study of prospective teachers found that students from different countries and different levels of electrochemistry hold common misconceptions, indicating that concepts were presented to them poorly. Reports on how prospective teachers' scientifically incorrect ideas were used to form assertion-reason-type questions and how these…

  6. Electrochemistry for the Generation of Renewable Chemicals: One-Pot Electrochemical Deoxygenation of Xylose to δ-Valerolactone.

    PubMed

    James, Olusola O; Sauter, Waldemer; Schröder, Uwe

    2017-05-09

    In this study, the electrochemical conversion of xylose to δ-valerolactone via carbonyl intermediates is demonstrated. The conversion was achieved in aqueous media and at ambient conditions. This study also demonstrates that the feedstock for production of renewable chemicals and biofuels through electrochemistry can be extended to primary carbohydrate molecules. This is the first report on a one-pot electrochemical deoxygenation of xylose to δ-valerolactone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nanopore Electrochemistry: A Nexus for Molecular Control of Electron Transfer Reactions

    PubMed Central

    2018-01-01

    Pore-based structures occur widely in living organisms. Ion channels embedded in cell membranes, for example, provide pathways, where electron and proton transfer are coupled to the exchange of vital molecules. Learning from mother nature, a recent surge in activity has focused on artificial nanopore architectures to effect electrochemical transformations not accessible in larger structures. Here, we highlight these exciting advances. Starting with a brief overview of nanopore electrodes, including the early history and development of nanopore sensing based on nanopore-confined electrochemistry, we address the core concepts and special characteristics of nanopores in electron transfer. We describe nanopore-based electrochemical sensing and processing, discuss performance limits and challenges, and conclude with an outlook for next-generation nanopore electrode sensing platforms and the opportunities they present. PMID:29392173

  8. In-Depth Characterization of Protein Disulfide Bonds by Online Liquid Chromatography-Electrochemistry-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Switzar, Linda; Nicolardi, Simone; Rutten, Julie W.; Oberstein, Saskia A. J. Lesnik; Aartsma-Rus, Annemieke; van der Burgt, Yuri E. M.

    2016-01-01

    Disulfide bonds are an important class of protein post-translational modifications, yet this structurally crucial modification type is commonly overlooked in mass spectrometry (MS)-based proteomics approaches. Recently, the benefits of online electrochemistry-assisted reduction of protein S-S bonds prior to MS analysis were exemplified by successful characterization of disulfide bonds in peptides and small proteins. In the current study, we have combined liquid chromatography (LC) with electrochemistry (EC) and mass analysis by Fourier transform ion cyclotron resonance (FTICR) MS in an online LC-EC-MS platform to characterize protein disulfide bonds in a bottom-up proteomics workflow. A key advantage of a LC-based strategy is the use of the retention time in identifying both intra- and interpeptide disulfide bonds. This is demonstrated by performing two sequential analyses of a certain protein digest, once without and once with electrochemical reduction. In this way, the "parent" disulfide-linked peptide detected in the first run has a retention time-based correlation with the EC-reduced peptides detected in the second run, thus simplifying disulfide bond mapping. Using this platform, both inter- and intra-disulfide-linked peptides were characterized in two different proteins, ß-lactoglobulin and ribonuclease B. In order to prevent disulfide reshuffling during the digestion process, proteins were digested at a relatively low pH, using (a combination of) the high specificity proteases trypsin and Glu-C. With this approach, disulfide bonds in ß-lactoglobulin and ribonuclease B were comprehensively identified and localized, showing that online LC-EC-MS is a useful tool for the characterization of protein disulfide bonds.

  9. Expedient preparation of nazlinine and a small library of indole alkaloids using flow electrochemistry as an enabling technology.

    PubMed

    Kabeshov, Mikhail A; Musio, Biagia; Murray, Philip R D; Browne, Duncan L; Ley, Steven V

    2014-09-05

    An expedient synthesis of the indole alkaloid nazlinine is reported. Judicious choice of flow electrochemistry as an enabling technology has permitted the rapid generation of a small library of unnatural relatives of this biologically active molecule. Furthermore, by conducting the key electrochemical Shono oxidation in a flow cell, the loading of electrolyte can be significantly reduced to 20 mol % while maintaining a stable, broadly applicable process.

  10. Boundary asymptotics for a non-neutral electrochemistry model with small Debye length

    NASA Astrophysics Data System (ADS)

    Lee, Chiun-Chang; Ryham, Rolf J.

    2018-04-01

    This article addresses the boundary asymptotics of the electrostatic potential in non-neutral electrochemistry models with small Debye length in bounded domains. Under standard physical assumptions motivated by non-electroneutral phenomena in oxidation-reduction reactions, we show that the electrostatic potential asymptotically blows up at boundary points with respect to the bulk reference potential as the scaled Debye length tends to zero. The analysis gives a lower bound for the blow-up rate with respect to the model parameters. Moreover, the maximum potential difference over any compact subset of the physical domain vanishes exponentially in the zero-Debye-length limit. The results mathematically confirm the physical description that electrolyte solutions are electrically neutral in the bulk and are strongly electrically non-neutral near charged surfaces.

  11. 2006 Electrochemistry Gordon Research Conference - February 12-17-2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abruna, Hector D.

    The Gordon Research Conference (GRC) on Electrochemistry was held at Santa Ynez Valley Marriott, Buellton California from February 12-17, 2006. The Conference was well-attended with 113 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time formore » formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, "free time" was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.« less

  12. Electrochemistry-Assisted Top-Down Characterization of Disulfide-Containing Proteins

    PubMed Central

    Zhang, Yun; Cui, Weidong; Zhang, Hao; Dewald, Howard D.; Chen, Hao

    2013-01-01

    Covalent disulfide bond linkage in a protein represents an important challenge for mass spectrometry (MS)-based top-down protein structure analysis as it reduces the backbone cleavage efficiency for MS/MS dissociation. This study presents a strategy for solving this critical issue via integrating electrochemistry (EC) online with top-down MS approach. In this approach, proteins undergo electrolytic reduction in an electrochemical cell to break disulfide bonds and then online ionized into gaseous ions for analysis by electron-capture dissociation (ECD) and collision-induced dissociation (CID). The electrochemical reduction of proteins allows to remove disulfide bond constraints and also leads to increased charge numbers of the resulting protein ions. As a result, sequence coverage was significantly enhanced, as exemplified by β-lactoglobulin A (24 vs. 73 backbone cleavages before and after electrolytic reduction, respectively) and lysozyme (5 vs. 66 backbone cleavages before and after electrolytic reduction, respectively). This methodology is fast and does not need chemical reductants, which would have an important impact in high-throughput proteomics research. PMID:22448817

  13. Electrochemistry-assisted top-down characterization of disulfide-containing proteins.

    PubMed

    Zhang, Yun; Cui, Weidong; Zhang, Hao; Dewald, Howard D; Chen, Hao

    2012-04-17

    Covalent disulfide bond linkage in a protein represents an important challenge for mass spectrometry (MS)-based top-down protein structure analysis as it reduces the backbone cleavage efficiency for MS/MS dissociation. This study presents a strategy for solving this critical issue via integrating electrochemistry (EC) online with a top-down MS approach. In this approach, proteins undergo electrolytic reduction in an electrochemical cell to break disulfide bonds and then undergo online ionization into gaseous ions for analysis by electron-capture dissociation (ECD) and collision-induced dissociation (CID). The electrochemical reduction of proteins allows one to remove disulfide bond constraints and also leads to increased charge numbers of the resulting protein ions. As a result, sequence coverage was significantly enhanced, as exemplified by β-lactoglobulin A (24 vs 75 backbone cleavages before and after electrolytic reduction, respectively) and lysozyme (5 vs 66 backbone cleavages before and after electrolytic reduction, respectively). This methodology is fast and does not need chemical reductants, which would have an important impact in high-throughput proteomics research.

  14. Direct electrochemistry of glucose oxidase and glucose biosensing on a hydroxyl fullerenes modified glassy carbon electrode.

    PubMed

    Gao, Yun-Fei; Yang, Tian; Yang, Xiao-Lu; Zhang, Yu-Shuai; Xiao, Bao-Lin; Hong, Jun; Sheibani, Nader; Ghourchian, Hedayatollah; Hong, Tao; Moosavi-Movahedi, Ali Akbar

    2014-10-15

    Direct electrochemistry of glucose oxidase (GOD) was achieved when GOD-hydroxyl fullerenes (HFs) nano-complex was immobilized on a glassy carbon (GC) electrode and protected with a chitosan (Chit) membrane. The ultraviolet-visible absorption spectrometry (UV-vis), transmission electron microscopy (TEM), and circular dichroism spectropolarimeter (CD) methods were utilized for additional characterization of the GOD, GOD-HFs and Chit/GOD-HFs. Chit/HFs may preserve the secondary structure and catalytic properties of GOD. The cyclic voltammograms (CVs) of the modified GC electrode showed a pair of well-defined quasi-reversible redox peaks with the formal potential (E°') of 353 ± 2 mV versus Ag/AgCl at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was calculated to be 2.7 ± 0.2s(-1). The modified electrode response to glucose was linear in the concentrations ranging from 0.05 to 1.0mM, with a detection limit of 5 ± 1 μM. The apparent Michaelis-Menten constant (Km(app)) was 694 ± 8 μM. Thus, the modified electrode could be applied as a third generation biosensor for glucose with high sensitivity, selectivity and low detection limit. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Electrochemistry at Edge of Single Graphene Layer in a Nanopore

    PubMed Central

    Banerjee, Shouvik; Shim, Jiwook; Rivera, Jose; Jin, Xiaozhong; Estrada, David; Solovyeva, Vita; You, Xiuque; Pak, James; Pop, Eric; Aluru, Narayana; Bashir, Rashid

    2013-01-01

    We study the electrochemistry of single layer graphene edges using a nanopore-based structure consisting of stacked graphene and Al2O3 dielectric layers. Nanopores, with diameters ranging from 5 to 20 nm, are formed by an electron beam sculpting process on the stacked layers. This leads to unique edge structure which, along with the atomically thin nature of the embedded graphene electrode, demonstrates electrochemical current densities as high as 1.2 × 104 A/cm2. The graphene edge embedded structure offers a unique capability to study the electrochemical exchange at an individual graphene edge, isolated from the basal plane electrochemical activity. We also report ionic current modulation in the nanopore by biasing the embedded graphene terminal with respect to the electrodes in the fluid. The high electrochemical specific current density for a graphene nanopore-based device can have many applications in sensitive chemical and biological sensing, and energy storage devices. PMID:23249127

  16. Direct electrochemistry of Shewanella loihica PV-4 on gold nanoparticles-modified boron-doped diamond electrodes fabricated by layer-by-layer technique.

    PubMed

    Wu, Wenguo; Xie, Ronggang; Bai, Linling; Tang, Zuming; Gu, Zhongze

    2012-05-01

    Microbial Fuel Cells (MFCs) are robust devices capable of taping biological energy, converting pollutants into electricity through renewable biomass. The fabrication of nanostructured electrodes with good bio- and electrochemical activity, play a profound role in promoting power generation of MFCs. Au nanoparticles (AuNPs)-modified Boron-Doped Diamond (BDD) electrodes are fabricated by layer-by-layer (LBL) self-assembly technique and used for the direct electrochemistry of Shewanella loihica PV-4 in an electrochemical cell. Experimental results show that the peak current densities generated on the Au/PAH multilayer-modified BDD electrodes increased from 1.25 to 2.93 microA/cm(-2) as the layer increased from 0 to 6. Different cell morphologies of S. loihica PV-4 were also observed on the electrodes and the highest density of cells was attached on the (Au/PAH)6/BDD electrode with well-formed three-dimensional nanostructure. The electrochemistry of S. loihica PV-4 was enhanced on the (Au/PAH)4/BDD electrode due to the appropriate amount of AuNPsand thickness of PAH layer.

  17. Graphene oxide electrochemistry: the electrochemistry of graphene oxide modified electrodes reveals coverage dependent beneficial electrocatalysis

    PubMed Central

    Smith, Graham C.

    2017-01-01

    The modification of electrode surfaces is widely implemented in order to try and improve electron transfer kinetics and surface interactions, most recently using graphene related materials. Currently, the use of ‘as is’ graphene oxide (GO) has been largely overlooked, with the vast majority of researchers choosing to reduce GO to graphene or use it as part of a composite electrode. In this paper, ‘as is’ GO is explored and electrochemically characterized using a range of electrochemical redox probes, namely potassium ferrocyanide(II), N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD), dopamine hydrochloride and epinephrine. Furthermore, the electroanalytical efficacy of GO is explored towards the sensing of dopamine hydrochloride and epinephrine via cyclic voltammetry. The electrochemical response of GO is benchmarked against pristine graphene and edge plane-/basal plane pyrolytic graphite (EPPG and BPPG respectively) alternatives, where the GO shows an enhanced electrochemical/electroanalytical response. When using GO as an electrode material, the electrochemical response of the analytes studied herein deviate from that expected and exhibit altered electrochemical responses. The oxygenated species encompassing GO strongly influence and dominate the observed voltammetry, which is crucially coverage dependent. GO electrocatalysis is observed, which is attributed to the presence of beneficial oxygenated species dictating the response in specific cases, demonstrating potential for advantageous electroanalysis to be realized. Note however, that crucial coverage based regions are observed at GO modified electrodes, owing to the synergy of edge plane sites and oxygenated species. We report the true beneficial electrochemistry of GO, which has enormous potential to be beneficially used in various electrochemical applications ‘as is’ rather than be simply used as a precursor to making graphene and is truly a fascinating member of the graphene family. PMID

  18. In situ solid-state electrochemistry of mass-selected ions at well-defined electrode–electrolyte interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakaran, Venkateshkumar; Johnson, Grant E.; Wang, Bingbing

    2016-11-07

    Molecular-level understanding of electrochemical processes occurring at electrode-electrolyte interfaces (EEI) is key to the rational development of high-performance and sustainable electrochemical technologies. This article reports the development and first application of solid-state in situ electrochemical probes to study redox and catalytic processes occurring at well-defined EEI generated using soft-landing of mass- and charge-selected cluster ions (SL). In situ electrochemical probes with excellent mass transfer properties are fabricated using carefully-designed nanoporous ionic liquid membranes. SL enables deposition of pure active species that are not obtainable with other techniques onto electrode surfaces with precise control over charge state, composition, and kinetic energy.more » SL is, therefore, a unique tool for studying fundamental processes occurring at EEI. For the first time using an aprotic electrochemical probe, the effect of charge state (PMo12O403-/2-) and the contribution of building blocks of Keggin polyoxometalate (POM) clusters to redox processes are characterized by populating EEI with novel POM anions generated by electrospray ionization and gas phase dissociation. Additionally, a proton conducting electrochemical probe has been developed to characterize the reactive electrochemistry (oxygen reduction activity) of bare Pt clusters (Pt40 ~1 nm diameter), thus demonstrating the capability of the probe for studying reactions in controlled gaseous environments. The newly developed in situ electrochemical probes combined with ion SL provide a versatile method to characterize the EEI in solid-state redox systems and reactive electrochemistry at precisely-defined conditions. This capability will advance molecular-level understanding of processes occurring at EEI that are critical to many energy-related technologies.« less

  19. Improvement of capabilities of the Distributed Electrochemistry Modeling Tool for investigating SOFC long term performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez Galdamez, Rinaldo A.; Recknagle, Kurtis P.

    2012-04-30

    This report provides an overview of the work performed for Solid Oxide Fuel Cell (SOFC) modeling during the 2012 Winter/Spring Science Undergraduate Laboratory Internship at Pacific Northwest National Laboratory (PNNL). A brief introduction on the concept, operation basics and applications of fuel cells is given for the general audience. Further details are given regarding the modifications and improvements of the Distributed Electrochemistry (DEC) Modeling tool developed by PNNL engineers to model SOFC long term performance. Within this analysis, a literature review on anode degradation mechanisms is explained and future plans of implementing these into the DEC modeling tool are alsomore » proposed.« less

  20. Direct electrochemistry of nitrate reductase from the fungus Neurospora crassa.

    PubMed

    Kalimuthu, Palraj; Ringel, Phillip; Kruse, Tobias; Bernhardt, Paul V

    2016-09-01

    We report the first direct (unmediated) catalytic electrochemistry of a eukaryotic nitrate reductase (NR). NR from the filamentous fungus Neurospora crassa, is a member of the mononuclear molybdenum enzyme family and contains a Mo, heme and FAD cofactor which are involved in electron transfer from NAD(P)H to the (Mo) active site where reduction of nitrate to nitrite takes place. NR was adsorbed on an edge plane pyrolytic graphite (EPG) working electrode. Non-turnover redox responses were observed in the absence of nitrate from holo NR and three variants lacking the FAD, heme or Mo cofactor. The FAD response is due to dissociated cofactor in all cases. In the presence of nitrate, NR shows a pronounced cathodic catalytic wave with an apparent Michaelis constant (KM) of 39μM (pH7). The catalytic cathodic current increases with temperature from 5 to 35°C and an activation enthalpy of 26kJmol(-1) was determined. In spite of dissociation of the FAD cofactor, catalytically activity is maintained. Copyright © 2016. Published by Elsevier B.V.

  1. Electrochemistry in Near-Critical and Supercritical Fluids. 4. Nitrogen Heterocycles, Nitrobenzene, and Solvated Electrons in Ammonia at Temperatures to 150C.

    DTIC Science & Technology

    1986-09-01

    of pyraz ne quinoxaline, phenazine and solvated electrons in near-critical and supercritical ammonia was investigated by cycU-i Voltanimetry and...Crooks and Allen J. Bard Department of Chemistry, University of Texas Austin, Texas 78712 ABSTRACT The electrochemistry of pyrazine, quinoxaline, phenazine ...in liquid ammonia at -40° C. The reductions of pyrazine, quinoxaline and phenazine at room temperature, and in the supercritical fluid (SCF), occur

  2. Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part II. [4Fe-4S] and [3Fe-4S] iron-sulfur proteins.

    PubMed

    Zanello, Piero

    2018-06-01

    In the context of the plethora of proteins harboring iron-sulfur clusters we have already reviewed structure/electrochemistry of metalloproteins expressing single types of iron-sulfur clusters (namely: {Fe(Cys) 4 }, {[Fe 2 S 2 ](Cys) 4 }, {[Fe 2 S 2 ](Cys) 3 (X)} (X = Asp, Arg, His), {[Fe 2 S 2 ](Cys) 2 (His) 2 }, {[Fe 3 S 4 ](Cys) 3 }, {[Fe 4 S 4 ](Cys) 4 } and {[Fe 4 S 4 ](S γ Cys ) 3 (nonthiolate ligand)} cores) and their synthetic analogs. More recently we are focussing on structure/electrochemistry of metalloproteins harboring iron-sulfur centres of different nuclearities. Having started such a subject with proteins harboring [4Fe-4S] and [2Fe-2S] clusters, we now depict the state of art of proteins containing [4Fe-4S] and [3Fe-4S] clusters. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Magnesium-ion battery-relevant electrochemistry of MgMn 2O 4: crystallite size effects and the notable role of electrolyte water content

    DOE PAGES

    Yin, Jiefu; Brady, Alexander B.; Takeuchi, Esther S.; ...

    2017-03-06

    MgMn 2O 4 nanoparticles with crystallite sizes of 11 (MMO-1) and 31 nm (MMO-2) were synthesized and their magnesium-ion battery-relevant electrochemistry was investigated. Here, MMO-1 delivered an initial capacity of 220 mA h g –1 (678 mW h g –1). Electrolyte water content had a profound effect on cycle retention.

  4. Chelating ionic liquids for reversible zinc electrochemistry.

    PubMed

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions.

  5. Li/Ag 2VO 2PO 4 batteries: the roles of composite electrode constituents on electrochemistry

    DOE PAGES

    Bock, David C.; Bruck, Andrea M.; Pelliccione, Christopher J.; ...

    2016-11-01

    In this study, we utilize silver vanadium phosphorous oxide, Ag 2VO 2PO 4, as a model system to systematically study the impact of the constituents of a composite electrode, including polymeric and conductive additives, on electrochemistry. Notably, although highly resistive, this bimetallic cathode can be discharged as a pure electroactive material in the absence of a conductive additive as it generates an in situ conductive matrix via a reduction displacement reaction resulting in the formation of silver metal nanoparticles. Also, three different electrode compositions were investigated: Ag 2VO 2PO 4 only, Ag 2VO 2PO 44 with binder, and Ag 2VOmore » 2PO 4 with binder and carbon. Constant current discharge, pulse testing and impedance spectroscopy measurements were used to characterize the electrochemical properties of the electrodes as a function of depth of discharge. In situ EDXRD was used to spatially resolve the discharge progression within the cathode by following the formation of Ag 0. Ex situ XRD and EXAFS modeling were used to quantify the amount of Ag 0 formed. Results indicate that the metal center reduced (V 5+ or Ag +) was highly dependent on composite composition (presence of PTFE, carbon), depth of discharge (Ag 0 nanoparticle formation), and spatial location within the cathode. The addition of a binder was found to increase cell polarization, and the percolation network provided by the carbon in the presence of PTFE was further increased with reduction and formation of Ag 0. Lastly, this study provides insight into the factors controlling the electrochemistry of resistive active materials in composite electrodes.« less

  6. Li/Ag 2VO 2PO 4 batteries: the roles of composite electrode constituents on electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bock, David C.; Bruck, Andrea M.; Pelliccione, Christopher J.

    In this study, we utilize silver vanadium phosphorous oxide, Ag 2VO 2PO 4, as a model system to systematically study the impact of the constituents of a composite electrode, including polymeric and conductive additives, on electrochemistry. Notably, although highly resistive, this bimetallic cathode can be discharged as a pure electroactive material in the absence of a conductive additive as it generates an in situ conductive matrix via a reduction displacement reaction resulting in the formation of silver metal nanoparticles. Also, three different electrode compositions were investigated: Ag 2VO 2PO 4 only, Ag 2VO 2PO 44 with binder, and Ag 2VOmore » 2PO 4 with binder and carbon. Constant current discharge, pulse testing and impedance spectroscopy measurements were used to characterize the electrochemical properties of the electrodes as a function of depth of discharge. In situ EDXRD was used to spatially resolve the discharge progression within the cathode by following the formation of Ag 0. Ex situ XRD and EXAFS modeling were used to quantify the amount of Ag 0 formed. Results indicate that the metal center reduced (V 5+ or Ag +) was highly dependent on composite composition (presence of PTFE, carbon), depth of discharge (Ag 0 nanoparticle formation), and spatial location within the cathode. The addition of a binder was found to increase cell polarization, and the percolation network provided by the carbon in the presence of PTFE was further increased with reduction and formation of Ag 0. Lastly, this study provides insight into the factors controlling the electrochemistry of resistive active materials in composite electrodes.« less

  7. Investigations by Protein Film Electrochemistry of Alternative Reactions of Nickel-Containing Carbon Monoxide Dehydrogenase.

    PubMed

    Wang, Vincent C-C; Islam, Shams T A; Can, Mehmet; Ragsdale, Stephen W; Armstrong, Fraser A

    2015-10-29

    Protein film electrochemistry has been used to investigate reactions of highly active nickel-containing carbon monoxide dehydrogenases (CODHs). When attached to a pyrolytic graphite electrode, these enzymes behave as reversible electrocatalysts, displaying CO2 reduction or CO oxidation at minimal overpotential. The O2 sensitivity of CODH is suppressed by adding cyanide, a reversible inhibitor of CO oxidation, or by raising the electrode potential. Reduction of N2O, isoelectronic with CO2, is catalyzed by CODH, but the reaction is sluggish, despite a large overpotential, and results in inactivation. Production of H2 and formate under highly reducing conditions is consistent with calculations predicting that a nickel-hydrido species might be formed, but the very low rates suggest that such a species is not on the main catalytic pathway.

  8. On the importance of identifying, characterizing, and predicting fundamental phenomena towards microbial electrochemistry applications.

    PubMed

    Torres, César Iván

    2014-06-01

    The development of microbial electrochemistry research toward technological applications has increased significantly in the past years, leading to many process configurations. This short review focuses on the need to identify and characterize the fundamental phenomena that control the performance of microbial electrochemical cells (MXCs). Specifically, it discusses the importance of recent efforts to discover and characterize novel microorganisms for MXC applications, as well as recent developments to understand transport limitations in MXCs. As we increase our understanding of how MXCs operate, it is imperative to continue modeling efforts in order to effectively predict their performance, design efficient MXC technologies, and implement them commercially. Thus, the success of MXC technologies largely depends on the path of identifying, understanding, and predicting fundamental phenomena that determine MXC performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. USSR Report. Life Sciences: Biomedical and Behavioral Sciences

    DTIC Science & Technology

    1987-03-31

    BIOKHIMIYA I MIKROBIOLOGIYA, No 4, Jul-Aug 85) 6 Bioactive Substances of Botrytis Cinerea (Literature Review) (M.V. Filimonova; PRIKLADNAYA...references 6: 5 Russian, 1 Western. 12172/13046 CSO: 1840/192 UDC 577.169;577.17 BIOACTIVE SUBSTANCES OF BOTRYTIS CINEREA (LITERATURE REVIEW) Moscow...with the various bioactive substances produced by the fungus Botrytis cinerea Pers. Among the substances produced by B. cinerea are photoreceptors

  10. Study on tribological and electrochemistry properties of metal materials in H2O2 solutions

    NASA Astrophysics Data System (ADS)

    Yuan, Chengqing; Yu, Li; Li, Jian; Yan, Xinping

    2012-03-01

    Hydrogen peroxide (H2O2) is a kind of ideal green propellant. It is crucial to study the wear behavior and failure modes of the metal materials under the strong oxidizing environment of H2O2. This study aims to investigate the wear of rubbing pairs of 2Cr13 stainless steel against 1045 metal in H2O2 solutions, which has a great effect on wear, the decomposition and damage mechanism of materials. The comparison analysis of the friction coefficients, wear mass loss, worn surface topographies and current densities was conducted under different concentrations of H2O2 solutions. There were significant differences in the tribological and electrochemistry properties of the rubbing pairs in different H2O2 solutions.

  11. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet

    PubMed Central

    Yuan, Wenjing; Zhou, Yu; Li, Yingru; Li, Chun; Peng, Hailin; Zhang, Jin; Liu, Zhongfan; Dai, Liming; Shi, Gaoquan

    2013-01-01

    Graphene has a unique atom-thick two-dimensional structure and excellent properties, making it attractive for a variety of electrochemical applications, including electrosynthesis, electrochemical sensors or electrocatalysis, and energy conversion and storage. However, the electrochemistry of single-layer graphene has not yet been well understood, possibly due to the technical difficulties in handling individual graphene sheet. Here, we report the electrochemical behavior at single-layer graphene-based electrodes, comparing the basal plane of graphene to its edge. The graphene edge showed 4 orders of magnitude higher specific capacitance, much faster electron transfer rate and stronger electrocatalytic activity than those of graphene basal plane. A convergent diffusion effect was observed at the sub-nanometer thick graphene edge-electrode to accelerate the electrochemical reactions. Coupling with the high conductivity of a high-quality graphene basal plane, graphene edge is an ideal electrode for electrocatalysis and for the storage of capacitive charges. PMID:23896697

  12. Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor.

    PubMed

    Dai, Zhihui; Shao, Guojian; Hong, Jianmin; Bao, Jianchun; Shen, Jian

    2009-01-01

    A tetragonal pyramid-shaped porous ZnO (TPSP-ZnO) nanostructure is used for the immobilization, direct electrochemistry and biosensing of proteins. The prepared ZnO has a large surface area and good biocompatibility. Using glucose oxidase (GOD) as a model, this shaped ZnO is tested for immobilization of proteins and the construction of electrochemical biosensors with good electrochemical performances. The interaction between GOD and TPSP-ZnO is examined by using AFM, N(2) adsorption isotherms and electrochemical methods. The immobilized GOD at a TPSP-ZnO-modified glassy carbon electrode shows a good direct electrochemical behavior, which depends on the properties of the TPSP-ZnO. Based on a decrease of the electrocatalytic response of the reduced form of GOD to dissolved oxygen, the proposed biosensor exhibits a linear response to glucose concentrations ranging from 0.05 to 8.2mM with a detection limit of 0.01mM at an applied potential of -0.50V which has better biosensing properties than those from other morphological ZnO nanoparticles. The biosensor shows good stability, reproducibility, low interferences and can diagnose diabetes very fast and sensitively. Such the TPSP-ZnO nanostructure provides a good matrix for protein immobilization and biosensor preparation.

  13. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin.

    PubMed

    Sun, Wei; Dong, Lifeng; Deng, Ying; Yu, Jianhua; Wang, Wencheng; Zhu, Qianqian

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Fabrication of graphene-platinum nanocomposite for the direct electrochemistry and electrocatalysis of myoglobin.

    PubMed

    Sun, Wei; Li, Linfang; Lei, Bingxin; Li, Tongtong; Ju, Xiaomei; Wang, Xiuzheng; Li, Guangjiu; Sun, Zhenfan

    2013-05-01

    In this paper a platinum (Pt) nanoparticle decorated graphene (GR) nanosheet was synthesized and used for the investigation on direct electrochemistry of myoglobin (Mb). By integrating GR-Pt nanocomposite with Mb on the surface of carbon ionic liquid electrode (CILE), a new electrochemical biosensor was fabricated. UV-Vis absorption and FT-IR spectra indicated that Mb remained its native structure in the nanocomposite film. Electrochemical behaviors of Nafion/Mb-GR-Pt/CILE were investigated with a pair of well-defined redox peak appeared, which indicated that direct electron transfer of Mb was realized on the underlying electrode with the usage of the GR-Pt nanocomposite. The fabricated electrode showed good electrocatalytic activity to the reduction of trichloroacetic acid in the linear range from 0.9 to 9.0 mmol/L with the detection limit as 0.32 mmol/L (3σ), which showed potential application for fabricating novel electrochemical biosensors and bioelectronic devices. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Electrochemistry and capillary condensation theory reveal the mechanism of corrosion in dense porous media.

    PubMed

    Stefanoni, Matteo; Angst, Ueli M; Elsener, Bernhard

    2018-05-09

    Corrosion in carbonated concrete is an example of corrosion in dense porous media of tremendous socio-economic and scientific relevance. The widespread research endeavors to develop novel, environmentally friendly cements raise questions regarding their ability to protect the embedded steel from corrosion. Here, we propose a fundamentally new approach to explain the scientific mechanism of corrosion kinetics in dense porous media. The main strength of our model lies in its simplicity and in combining the capillary condensation theory with electrochemistry. This reveals that capillary condensation in the pore structure defines the electrochemically active steel surface, whose variability upon changes in exposure relative humidity is accountable for the wide variability in measured corrosion rates. We performed experiments that quantify this effect and find good agreement with the theory. Our findings are essential to devise predictive models for the corrosion performance, needed to guarantee the safety and sustainability of traditional and future cements.

  16. 99Tc and Re incorporated into metal oxide polyoxometalates: oxidation state stability elucidated by electrochemistry and theory.

    PubMed

    McGregor, Donna; Burton-Pye, Benjamin P; Mbomekalle, Israel M; Aparicio, Pablo A; Romo, Susanna; López, Xavier; Poblet, Josep M; Francesconi, Lynn C

    2012-08-20

    The radioactive element technetium-99 ((99)Tc, half-life = 2.1 × 10(5) years, β(-) of 253 keV), is a major byproduct of (235)U fission in the nuclear fuel cycle. (99)Tc is also found in radioactive waste tanks and in the environment at National Lab sites and fuel reprocessing centers. Separation and storage of the long-lived (99)Tc in an appropriate and stable waste-form is an important issue that needs to be addressed. Considering metal oxide solid-state materials as potential storage matrixes for Tc, we are examining the redox speciation of Tc on the molecular level using polyoxometalates (POMs) as models. In this study we investigate the electrochemistry of Tc complexes of the monovacant Wells-Dawson isomers, α(1)-P(2)W(17)O(61)(10-) (α1) and α(2)-P(2)W(17)O(61)(10-) (α2) to identify features of metal oxide materials that can stabilize the immobile Tc(IV) oxidation state accessed from the synthesized Tc(V)O species and to interrogate other possible oxidation states available to Tc within these materials. The experimental results are consistent with density functional theory (DFT) calculations. Electrochemistry of K(7-n)H(n)[Tc(V)O(α(1)-P(2)W(17)O(61))] (Tc(V)O-α1), K(7-n)H(n)[Tc(V)O(α(2)-P(2)W(17)O(61))] (Tc(V)O-α2) and their rhenium analogues as a function of pH show that the Tc-containing derivatives are always more readily reduced than their Re analogues. Both Tc and Re are reduced more readily in the lacunary α1 site as compared to the α2 site. The DFT calculations elucidate that the highest oxidation state attainable for Re is VII while, under the same electrochemistry conditions, the highest oxidation state for Tc is VI. The M(V)→ M(IV) reduction processes for Tc(V)O-α1 are not pH dependent or only slightly pH dependent suggesting that protonation does not accompany reduction of this species unlike the M(V)O-α2 (M = (99)Tc, Re) and Re(V)O-α1 where M(V/IV) reduction process must occur hand in hand with protonation of the terminal M═O to

  17. Direct electrochemistry of hemoglobin immobilized in CuO nanowire bundles.

    PubMed

    Li, Yueming; Zhang, Qian; Li, Jinghong

    2010-11-15

    It is one of main challenges to find the suitable materials to enhance the direct electron transfer between the electrode and redox protein for direct electrochemistry field. Nano-structured metal oxides have attracted considerable interest because of unique properties, well biocompatibility, and good stability. In this paper, the copper oxide nanowire bundles (CuO NWBs) were prepared via a template route, and the bioelectrochemical performances of hemoglobin (Hb) on the CuO NWBs modified glass carbon electrodes (denoted as Hb-CuO NWBs/GC) were studied. TEM and XRD were used to characterize the morphology and structure of the as synthesized CuO NWBs. Fourier transform-infrared spectroscopy (FT-IR) proved that Hb in the CuO NWBs matrix could retain its native secondary structure. A pair of well-defined and quasi-reversible redox peaks at approximately -0.325 V (vs. Ag/AgCl saturated KCl) were shown in the cyclic voltammogram curve for the Hb-CuO NWBs/GC electrode, which indicated the direct electrochemical behavior. The Hb-CuO NWBs/GC electrode also displayed a good electrocatalytic activity toward the reduction of hydrogen peroxide. These results indicate that the CuO NWBs are good substrates for immobilization of biomolecules and might be promising in the fields of (bio) electrochemical analysis. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Direct electrochemistry and electrocatalytic behavior of hemoglobin entrapped in Ag@C nanocables/gold nanoparticles nanocomposites film.

    PubMed

    Hu, Xiao-Wei; Mao, Chang-Jie; Song, Ji-Ming; Niu, He-Lin; Zhang, Sheng-Yi; Cui, Rong-Jing

    2012-10-01

    Direct electrochemistry of hemoglobin (Hb) was successfully fabricated by immobilizing Hb on the nanocomposites containing of Ag@C nanocables and Au nanoparticles (AuNPs) modified glassy carbon electrode (GCE). The immobilized Hb retained its biological activity and shown high catalytic activities to the reduction of H2O2 by circular dicroism (CD) spectrum, fourier transform infrared (FT-IR) spectrum and cyclic voltammetry (CV). Experimental conditions such as scan rate and pH Value were studied and optimized. The results indicated that the resulting biosensor are linear to the concentrations of H2O2 in the ranges of 6.67 x 10(-7)-2.40 x 10(5) M, and the detection limit is 2.02 x 10(-7) M. The electrochemical biosensor has also high stability and good reproducibility.

  19. One-step synthesis of large-scale graphene film doped with gold nanoparticles at liquid-air interface for electrochemistry and Raman detection applications.

    PubMed

    Zhang, Panpan; Huang, Ying; Lu, Xin; Zhang, Siyu; Li, Jingfeng; Wei, Gang; Su, Zhiqiang

    2014-07-29

    We demonstrated a facile one-step synthesis strategy for the preparation of a large-scale reduced graphene oxide multilayered film doped with gold nanoparticles (RGO/AuNP film) and applied this film as functional nanomaterials for electrochemistry and Raman detection applications. The related applications of the fabricated RGO/AuNP film in electrochemical nonenzymatic H2O2 biosensor, electrochemical oxygen reduction reaction (ORR), and surface-enhanced Raman scattering (SERS) detection were investigated. Electrochemical data indicate that the H2O2 biosensor fabricated by RGO/AuNP film shows a wide linear range, low limitation of detection, high selectivity, and long-term stability. In addition, it was proved that the created RGO/AuNP film also exhibits excellent ORR electrochemical catalysis performance. The created RGO/AuNP film, when serving as SERS biodetection platform, presents outstanding performances in detecting 4-aminothiophenol with an enhancement factor of approximately 5.6 × 10(5) as well as 2-thiouracil sensing with a low concentration to 1 μM. It is expected that this facile strategy for fabricating large-scale graphene film doped with metallic nanoparticles will spark inspirations in preparing functional nanomaterials and further extend their applications in drug delivery, wastewater purification, and bioenergy.

  20. End-of-Discharge and End-of-Life Prediction in Lithium-Ion Batteries with Electrochemistry-Based Aging Models

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Kulkarni, Chetan S.

    2016-01-01

    As batteries become increasingly prevalent in complex systems such as aircraft and electric cars, monitoring and predicting battery state of charge and state of health becomes critical. In order to accurately predict the remaining battery power to support system operations for informed operational decision-making, age-dependent changes in dynamics must be accounted for. Using an electrochemistry-based model, we investigate how key parameters of the battery change as aging occurs, and develop models to describe aging through these key parameters. Using these models, we demonstrate how we can (i) accurately predict end-of-discharge for aged batteries, and (ii) predict the end-of-life of a battery as a function of anticipated usage. The approach is validated through an experimental set of randomized discharge profiles.

  1. Mathematical modeling of synthesis gas fueled electrochemistry and transport including H2/CO co-oxidation and surface diffusion in solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin

    2015-10-01

    Fuel flexibility is a significant advantage of solid oxide fuel cell (SOFC). A comprehensive macroscopic framework is proposed for synthesis gas (syngas) fueled electrochemistry and transport in SOFC anode with two main novelties, i.e. analytical H2/CO electrochemical co-oxidation, and correction of gas species concentration at triple phase boundary considering competitive absorption and surface diffusion. Staring from analytical approximation of the decoupled charge and mass transfer, we present analytical solutions of two defined variables, i.e. hydrogen current fraction and enhancement factor. Giving explicit answer (rather than case-by-case numerical calculation) on how many percent of the current output contributed by H2 or CO and on how great the water gas shift reaction plays role on, this approach establishes at the first time an adaptive superposition mechanism of H2-fuel and CO-fuel electrochemistry for syngas fuel. Based on the diffusion equivalent circuit model, assuming series-connected resistances of surface diffusion and bulk diffusion, the model predicts well at high fuel utilization by keeping fixed porosity/tortuosity ratio. The model has been validated by experimental polarization behaviors in a wide range of operation on a button cell for H2-H2O-CO-CO2-N2 fuel systems. The framework could be helpful to narrow the gap between macro-scale and meso-scale SOFC modeling.

  2. Simulating Electrochemistry of Hydrothermal Vents on Enceladus and Other Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Barge, L. M.; Krause, F. C.; Jones, J. P.; Billings, K.; Sobron, P.

    2017-12-01

    Gradients generated in hydrothermal systems provide a significant source of free energy for chemosynthetic life, and may play a role in present-day habitability on ocean worlds such as Enceladus that are thought to host hydrothermal activity. Hydrothermal vents are similar in some ways to typical fuel cell devices: redox/pH gradients between seawater and hydrothermal fluid are analogous to the oxidant and fuel reservoirs; conductive natural mineral deposits are analogous to electrodes; and, in hydrothermal chimneys, the porous chimney wall can function as a separator or ion-exchange membrane. Electrochemistry, founded on quantitative study of redox and other chemical disequilibria as well as the chemistry of interfaces, is uniquely suited to studying these systems. We have performed electrochemical studies to better understand the catalytic potential of seafloor minerals and vent chimneys, using samples from a black smoker vent chimney as an initial demonstration. Fuel cell experiments with electrodes made from black smoker chimney material accurately simulated the redox reactions that occur in a geological setting with this particular catalyst. Similar methods with other geo-catalysts (natural or synthetic) could be utilized to test which redox reactions or metabolisms could be driven in other hydrothermal systems, including putative vent systems on other worlds.

  3. Electrochemistry of Cytochrome P450 BM3 in Sodium Dodecyl Sulfate Films

    PubMed Central

    Udit, Andrew K.; Hill, Michael G.; Gray, Harry B.

    2008-01-01

    Direct electrochemistry of the cytochrome P450 BM3 heme domain (BM3) was achieved by confining the protein within sodium dodecyl sulfate (SDS) films on the surface of basal-plane graphite (BPG) electrodes. Cyclic voltammetry revealed the heme FeIII/II redox couple at −330 mV (vs. Ag/AgCl, pH 7.4). Up to 10 V/s, the peak current was linear with scan rate, allowing us to treat the system as surface-confined within this regime. The standard heterogeneous rate constant determined at 10 V/s was estimated to be 10 s−1. Voltammograms obtained for the BM3-SDS-BPG system in the presence of dioxygen exhibited catalytic waves at the onset of FeIII reduction. The altered heme reduction potential of the BM3-SDS-graphite system indicates that SDS is likely bound in the enzyme active-site region. Compared to other P450-surfactant systems, we find redox potentials and electron transfer rates that differ by ~ 100 mV and > 10-fold, respectively, indicating that the nature of the surfactant environment has a significant effect on the observed heme redox properties. PMID:17129070

  4. Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry

    NASA Technical Reports Server (NTRS)

    Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh

    2010-01-01

    Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.

  5. Fast single run of vanilla fingerprint markers on microfluidic-electrochemistry chip for confirmation of common frauds.

    PubMed

    Avila, Mónica; Zougagh, Mohammed; Escarpa, Alberto; Ríos, Angel

    2009-10-01

    A new strategy based on the fast separation of the fingerprint markers of Vanilla planifolia extracts and vanilla-related samples on microfluidic-electrochemistry chip is proposed. This methodology allowed the detection of all required markers for confirmation of common frauds in this field. The elution order was strategically connected with sequential sample screening and analyte confirmation steps, where first ethyl vanillin was detected to distinguish natural from adultered samples; second, vanillin as prominent marker in V. planifolia, but frequently added in its synthetic form; and third, the final detection of the fingerprint markers (p-hydroxybenzaldehyde, vanillic acid, and p-hydroxybenzoic acid) of V. planifolia with confirmation purposes. The reliability of the proposed methodology was demonstrated in the confirmation the natural or non-natural origin of vanilla in samples using V. planifolia extracts and other selected food samples containing this flavor.

  6. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid

    PubMed Central

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-01-01

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L−1 accompanied by a detection limit of 0.30 mmol·L−1 (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors. PMID:26703621

  7. On the level of coverage and citation of publications by mechanicians of the national academy of sciences of Ukraine in the Scopus database

    NASA Astrophysics Data System (ADS)

    Guz, A. N.; Rushchitsky, J. J.

    2009-11-01

    The paper analyzes the level of coverage and citation of publications by mechanicians of the National Academy of Sciences of Ukraine (NASU) in the Scopus database. Two groups of mechanicians are considered. One group includes 66 doctors of sciences of the S. P. Timoshenko Institute of Mechanics as representatives of the oldest institute of the NASU. The other group includes 34 members (academicians and corresponding members) of the Division of Mechanics of the NASU as representatives of the authoritative community of mechanicians in Ukraine. The results are presented for each scientist in the form of two indices—the total number of publications accessible in the database as the level of coverage of the scientist's publications in this database and the h-index as the citation level of these publications. This paper may be considered to continue the papers [6-12] published in Prikladnaya Mekhanika (International Applied Mechanics) in 2005-2009

  8. USSR and Eastern Europe Scientific Abstracts, Biomedical and Behavioral Sciences, Number 79

    DTIC Science & Technology

    1977-10-13

    1 Western. USSR UDC 577.154.3 DENATURATION OF ALPHA-AMYLASE OF BACILLUS SUBTILIS IN AN ACID MEDIUM Moscow PRIKLADNAYA BIOKHIMIYA I...42,000 units per gram, the protein content is 140 xng/g. KMDM gel is a carboxyl cationite based on methacrylic acid . The denaturation rate constants of...tables 3; refer- ences 10: 9 Russian, 1 English. 13 UDC 577.1.547.965:612.8.015:591.35 USSR CONTENT OF DICARBOXYLIC AMINO ACIDS AND y-AMINOBUTYRIC

  9. STM, SECPM, AFM and Electrochemistry on Single Crystalline Surfaces

    PubMed Central

    Wolfschmidt, Holger; Baier, Claudia; Gsell, Stefan; Fischer, Martin; Schreck, Matthias; Stimming, Ulrich

    2010-01-01

    Scanning probe microscopy (SPM) techniques have had a great impact on research fields of surface science and nanotechnology during the last decades. They are used to investigate surfaces with scanning ranges between several 100 μm down to atomic resolution. Depending on experimental conditions, and the interaction forces between probe and sample, different SPM techniques allow mapping of different surface properties. In this work, scanning tunneling microscopy (STM) in air and under electrochemical conditions (EC-STM), atomic force microscopy (AFM) in air and scanning electrochemical potential microscopy (SECPM) under electrochemical conditions, were used to study different single crystalline surfaces in electrochemistry. Especially SECPM offers potentially new insights into the solid-liquid interface by providing the possibility to image the potential distribution of the surface, with a resolution that is comparable to STM. In electrocatalysis, nanostructured catalysts supported on different electrode materials often show behavior different from their bulk electrodes. This was experimentally and theoretically shown for several combinations and recently on Pt on Au(111) towards fuel cell relevant reactions. For these investigations single crystals often provide accurate and well defined reference and support systems. We will show heteroepitaxially grown Ru, Ir and Rh single crystalline surface films and bulk Au single crystals with different orientations under electrochemical conditions. Image studies from all three different SPM methods will be presented and compared to electrochemical data obtained by cyclic voltammetry in acidic media. The quality of the single crystalline supports will be verified by the SPM images and the cyclic voltammograms. Furthermore, an outlook will be presented on how such supports can be used in electrocatalytic studies. PMID:28883327

  10. ZnO/Cu nanocomposite: a platform for direct electrochemistry of enzymes and biosensing applications.

    PubMed

    Yang, Chi; Xu, Chunxiang; Wang, Xuemei

    2012-03-06

    Unique structured nanomaterials can facilitate the direct electron transfer between redox proteins and the electrodes. Here, in situ directed growth on an electrode of a ZnO/Cu nanocomposite was prepared by a simple corrosion approach, which enables robust mechanical adhesion and electrical contact between the nanostructured ZnO and the electrodes. This is great help to realize the direct electron transfer between the electrode surface and the redox protein. SEM images demonstrate that the morphology of the ZnO/Cu nanocomposite has a large specific surface area, which is favorable to immobilize the biomolecules and construct biosensors. Using glucose oxidase (GOx) as a model, this ZnO/Cu nanocomposite is employed for immobilization of GOx and the construction of the glucose biosensor. Direct electron transfer of GOx is achieved at ZnO/Cu nanocomposite with a high heterogeneous electron transfer rate constant of 0.67 ± 0.06 s(-1). Such ZnO/Cu nanocomposite provides a good matrix for direct electrochemistry of enzymes and mediator-free enzymatic biosensors.

  11. Epitaxial Fe(1-x)Gax/GaAs structures via electrochemistry for spintronics applications

    NASA Astrophysics Data System (ADS)

    Reddy, K. Sai Madhukar; Maqableh, Mazin M.; Stadler, Bethanie J. H.

    2012-04-01

    In this study, thin films of Fe83Ga17 (a giant magnetostrictive alloy) were grown on single-crystalline n-GaAs (001) and polycrystalline brass substrates via electrochemical synthesis from ferrous and gallium sulfate electrolytes. Extensive structural characterization using microdiffraction, high-resolution ω - 2θ, and rocking-curve analysis revealed that the films grown on GaAs(001) are highly textured with ⟨001⟩ orientation along the substrate normal, and the texture improved further upon annealing at 300 °C for 2 h in N2 environment. On the contrary, films grown on brass substrates exhibited ⟨011⟩ preferred orientation. Rocking-curve analysis done on Fe83Ga17/GaAs structures further confirmed that the ⟨001⟩ texture in the Fe83Ga17 thin film is a result of epitaxial nucleation and growth. The non-linear current-voltage plot obtained for the Fe-Ga/GaAs Schottky contacts was characteristic of tunneling injection, and showed improved behavior with annealing. Thus, this study demonstrates the feasibility of fabricating spintronic devices that incorporate highly magnetostrictive Fe(1-x)Gax thin films grown epitaxially via electrochemistry.

  12. Electrochemistry of Prebiotic Early Earth Hydrothermal Chimney Systems

    NASA Astrophysics Data System (ADS)

    Hermis, N.; Barge, L. M.; Chin, K. B.; LeBlanc, G.; Cameron, R.

    2017-12-01

    Hydrothermal chimneys are self-organizing chemical garden precipitates generated from geochemical disequilibria within sea-vent environments, and have been proposed as a possible setting for the emergence of life because they contain mineral catalysts and transect ambient pH / Eh / chemical gradients [1]. We simulated the growth of hydrothermal chimneys in early Earth vent systems by using different hydrothermal simulants such as sodium sulfide (optionally doped with organic molecules) which were injected into an early Earth ocean simulant containing dissolved ferrous iron, nickel, and bicarbonate [2]. Chimneys on the early Earth would have constituted flow-through reactors, likely containing Fe/Ni-sulfide catalysts that could have driven proto-metabolic electrochemical reactions. The electrochemical activity of the chimney system was characterized non-invasively by placing electrodes at different locations across the chimney wall and in the ocean to analyze the bulk properties of surface charge potential in the chimney / ocean / hydrothermal fluid system. We performed in-situ characterization of the chimney using electrochemical impedance spectroscopy (EIS) which allowed us to observe the changes in physio-chemical behavior of the system through electrical spectra of capacitance and impedance over a wide range of frequencies during the metal sulfide chimney growth. The electrochemical properties of hydrothermal chimneys in natural systems persist due to the disequilibria maintained between the ocean and hydrothermal fluid. When the injection in our experiment (analogous to fluid flow in a vent) stopped, we observed a corresponding decline in open circuit voltage across the chimney wall, though the impedance of the precipitate remained lor. Further work is needed to characterize the electrochemistry of simulated chimney systems by controlling response factors such as electrode geometry and environmental conditions, in order to simulate electrochemical reactions

  13. The application of electrochemistry to pharmaceutical stability testing--comparison with in silico prediction and chemical forced degradation approaches.

    PubMed

    Torres, Susana; Brown, Roland; Szucs, Roman; Hawkins, Joel M; Zelesky, Todd; Scrivens, Garry; Pettman, Alan; Taylor, Mark R

    2015-11-10

    The aim of this study was to evaluate the use of electrochemistry to generate oxidative degradation products of a model pharmaceutical compound. The compound was oxidized at different potentials using an electrochemical flow-cell fitted with a glassy carbon working electrode, a Pd/H2 reference electrode and a titanium auxiliary electrode. The oxidative products formed were identified and structurally characterized by LC-ESI-MS/MS using a high resolution Q-TOF mass spectrometer. Results from electrochemical oxidation using electrolytes of different pH were compared to those from chemical oxidation and from accelerated stability studies. Additionally, oxidative degradation products predicted using an in silico commercially available software were compared to those obtained from the various experimental methods. The electrochemical approach proved to be useful as an oxidative stress test as all of the final oxidation products observed under accelerated stability studies could be generated; previously reported reactive intermediate species were not observed most likely because the electrochemical mechanism differs from the oxidative pathway followed under accelerated stability conditions. In comparison to chemical degradation tests electrochemical degradation has the advantage of being much faster and does not require the use of strong oxidizing agents. Moreover, it enables the study of different operating parameters in short periods of time and optimisation of the reaction conditions (pH and applied potential) to achieve different oxidative products mixtures. This technique may prove useful as a stress test condition for the generation of oxidative degradation products and may help accelerate structure elucidation and development of stability indicating analytical methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Electrochemistry-based Approaches to Low Cost, High Sensitivity, Automated, Multiplexed Protein Immunoassays for Cancer Diagnostics

    PubMed Central

    Dixit, Chandra K.; Kadimisetty, Karteek; Otieno, Brunah A.; Tang, Chi; Malla, Spundana; Krause, Colleen E.; Rusling, James F.

    2015-01-01

    Early detection and reliable diagnostics are keys to effectively design cancer therapies with better prognoses. Simultaneous detection of panels of biomarker proteins holds great promise as a general tool for reliable cancer diagnostics. A major challenge in designing such a panel is to decide upon a coherent group of biomarkers which have higher specificity for a given type of cancer. The second big challenge is to develop test devices to measure these biomarkers quantitatively with high sensitivity and specificity, such that there are no interferences from the complex serum or tissue matrices. Lastly, integrating all these tests into a technology that doesn’t require exclusive training to operate, and can be used at point-of-care (POC) is another potential bottleneck in futuristic cancer diagnostics. In this article, we review electrochemistry-based tools and technologies developed and/or used in our laboratories to construct low-cost microfluidic protein arrays for highly sensitive detection of the panel of cancer-specific biomarkers with high specificity and at the same time have the potential to be translated into a POC. PMID:26525998

  15. Electrochemistry-based approaches to low cost, high sensitivity, automated, multiplexed protein immunoassays for cancer diagnostics.

    PubMed

    Dixit, Chandra K; Kadimisetty, Karteek; Otieno, Brunah A; Tang, Chi; Malla, Spundana; Krause, Colleen E; Rusling, James F

    2016-01-21

    Early detection and reliable diagnostics are keys to effectively design cancer therapies with better prognoses. The simultaneous detection of panels of biomarker proteins holds great promise as a general tool for reliable cancer diagnostics. A major challenge in designing such a panel is to decide upon a coherent group of biomarkers which have higher specificity for a given type of cancer. The second big challenge is to develop test devices to measure these biomarkers quantitatively with high sensitivity and specificity, such that there are no interferences from the complex serum or tissue matrices. Lastly, integrating all these tests into a technology that does not require exclusive training to operate, and can be used at point-of-care (POC) is another potential bottleneck in futuristic cancer diagnostics. In this article, we review electrochemistry-based tools and technologies developed and/or used in our laboratories to construct low-cost microfluidic protein arrays for the highly sensitive detection of a panel of cancer-specific biomarkers with high specificity which at the same time has the potential to be translated into POC applications.

  16. Direct electrochemistry of dopamine on gold-Agaricus bisporus laccase enzyme electrode: characterization and quantitative detection.

    PubMed

    Shervedani, Reza Karimi; Amini, Akbar

    2012-04-01

    Direct electrochemistry of a new laccase enzyme immobilized on gold and its application as a biosensor for dopamine (DA) are investigated by voltammetry and electrochemical impedance spectroscopy. The sensor demonstrated a redox adsorption behavior with E(0') = + 180 mV vs. Ag/AgCl for immobilized Agaricus bisporus laccase (LacAB) enzyme. The MPA platform was assembled on Au with and without utilization of ultrasounds. Excellent results were obtained by using the enzyme electrode fabricated based on MPA assembled with sonication. The LacAB immobilized in this condition showed a large electrocatalytic activity for oxidation of DA. Accordingly, a third-generation (mediator free) biosensor was constructed for DA. The DA concentration could be measured in the linear range of 0.5 to 13.0 and 47.0 to 430.0 μmol L(-1) with correlation coefficients of 0.999 and 0.989, respectively, and a detection limit of 29.0 nmol L(-1). The biosensor was successfully tested for determination of DA in human blood plasma and pharmaceutical samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Direct Electrochemistry of Bilirubin Oxidase from Magnaporthe orizae on Covalently-Functionalized MWCNT for the Design of High-Performance Oxygen-Reducing Biocathodes.

    PubMed

    Gentil, Solène; Carrière, Marie; Cosnier, Serge; Gounel, Sébastien; Mano, Nicolas; Le Goff, Alan

    2018-06-12

    Herein, the direct electrochemistry of bilirubin oxidase from Magnaporthe orizae (MoBOD) was studied on CNTs functionalized by electrografting several types of diazonium salts. The functionalization induces favorable or unfavorable orientation of MoBOD, the latter being compared to the well-known BOD from Myrothecium verrucaria (MvBOD). On the same nanostructured electrodes, MoBOD can surpass MvBOD in terms of both current densities and minimal overpotentials. Added to the fact that MoBOD is also highly active at the gas-diffusion electrode (GDE), these findings make MoBOD one of the MCOs with the highest catalytic activity towards the oxygen reduction reaction (ORR). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Simulation of the oxidative metabolism of diclofenac by electrochemistry/(liquid chromatography/)mass spectrometry.

    PubMed

    Faber, Helene; Melles, Daniel; Brauckmann, Christine; Wehe, Christoph Alexander; Wentker, Kristina; Karst, Uwe

    2012-04-01

    Diclofenac is a frequently prescribed drug for rheumatic diseases and muscle pain. In rare cases, it may be associated with a severe hepatotoxicity. In literature, it is discussed whether this toxicity is related to the oxidative phase I metabolism, resulting in electrophilic quinone imines, which can subsequently react with nucleophiles present in the liver in form of glutathione or proteins. In this work, electrochemistry coupled to mass spectrometry is used as a tool for the simulation of the oxidative pathway of diclofenac. Using this purely instrumental approach, diclofenac was oxidized in a thin layer cell equipped with a boron doped diamond working electrode. Sum formulae of generated oxidation products were calculated based on accurate mass measurements with deviations below 2 ppm. Quinone imines from diclofenac were detected using this approach. It could be shown for the first time that these quinone imines do not react with glutathione exclusively but also with larger molecules such as the model protein β-lactoglobulin A. A tryptic digest of the generated drug-protein adduct confirms that the protein is modified at the only free thiol-containing peptide. This simple and purely instrumental set-up offers the possibility of generating reactive metabolites of diclofenac and to assess their reactivity rapidly and easily.

  19. Integration of electrochemistry with ultra-performance liquid chromatography/mass spectrometry.

    PubMed

    Cai, Yi; Zheng, Qiuling; Liu, Yong; Helmy, Roy; Loo, Joseph A; Chen, Hao

    2015-01-01

    This study presents the development of ultra-performance liquid chromatography (UPLC) mass spectrometry (MS) combined with electrochemistry (EC) for the first time and its application for the structural analysis of proteins/peptides that contain disulfide bonds. In our approach, a protein/peptide mixture sample undergoes a fast UPLC separation and subsequent electrochemical reduction in an electrochemical flow cell followed by online MS and tandem mass spectrometry (MS/MS) analyses. The electrochemical cell is coupled to the mass spectrometer using our recently developed desorption electrospray ionization (DESI) interface. Using this UPLC/EC/DESI-MS method, peptides that contain disulfide bonds can be differentiated from those without disulfide bonds, as the former are electroactive and reducible. MS/MS analysis of the disulfide-reduced peptide ions provides increased information on the sequence and disulfide-linkage pattern. In a reactive DESI- MS detection experiment in which a supercharging reagent was used to dope the DESI spray solvent, increased charging was obtained for the UPLC-separated proteins. Strikingly, upon online electrolytic reduction, supercharged proteins (e.g., α-lactalbumin) showed even higher charging, which will be useful in top- down protein structure MS analysis as increased charges are known to promote protein ion dissociation. Also, the separation speed and sensitivity are enhanced by approximately 1(~)2 orders of magnitude by using UPLC for the liquid chromatography (LC)/EC/MS platform, in comparison to the previously used high- performance liquid chromatography (HPLC). This UPLC/EC/DESI-MS method combines the power of fast UPLC separation, fast electrochemical conversion, and online MS structural analysis for a potentially valuable tool for proteomics research and bioanalysis.

  20. Interconnection of Key Microbial Functional Genes for Enhanced Benzo[a]pyrene Biodegradation in Sediments by Microbial Electrochemistry.

    PubMed

    Yan, Zaisheng; He, Yuhong; Cai, Haiyuan; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Krumholz, Lee R; Jiang, He-Long

    2017-08-01

    Sediment microbial fuel cells (SMFCs) can stimulate the degradation of polycyclic aromatic hydrocarbons in sediments, but the mechanism of this process is poorly understood at the microbial functional gene level. Here, the use of SMFC resulted in 92% benzo[a]pyrene (BaP) removal over 970 days relative to 54% in the controls. Sediment functions, microbial community structure, and network interactions were dramatically altered by the SMFC employment. Functional gene analysis showed that c-type cytochrome genes for electron transfer, aromatic degradation genes, and extracellular ligninolytic enzymes involved in lignin degradation were significantly enriched in bulk sediments during SMFC operation. Correspondingly, chemical analysis of the system showed that these genetic changes resulted in increases in the levels of easily oxidizable organic carbon and humic acids which may have resulted in increased BaP bioavailability and increased degradation rates. Tracking microbial functional genes and corresponding organic matter responses should aid mechanistic understanding of BaP enhanced biodegradation by microbial electrochemistry and development of sustainable bioremediation strategies.

  1. Electrochemistry at a Metal Nanoparticle on a Tunneling Film: A Steady-State Model of Current Densities at a Tunneling Ultramicroelectrode.

    PubMed

    Hill, Caleb M; Kim, Jiyeon; Bard, Allen J

    2015-09-09

    Here, a new methodology is proposed for treating electrochemical current densities in metal-insulator-metal nanoparticle (M-I-MNP) systems. The described model provides broad, practical insights about MNP-mediated electron transfer to redox species in solution, where electron transfer from the underlying electrode to a MNP via tunneling and heterogeneous electron transfer from the MNP to redox species in solution are treated as sequential steps. Tunneling is treated through an adaptation of the Simmons model of tunneling in metal-insulator-metal structures, and explicit equations are provided for tunneling currents, which demonstrate the effect of various experimental parameters, such as insulator thickness and MNP size. Overall, a general approach is demonstrated for determining experimental conditions where tunneling will have a measurable impact on the electrochemistry of M-I-MNP systems.

  2. Recent Advances in Modeling Transition Metal Oxides for Photo-electrochemistry

    NASA Astrophysics Data System (ADS)

    Caspary Toroker, Maytal

    Computational research offers a wide range of opportunities for materials science and engineering, especially in the energy arena where there is a need for understanding how material composition and structure control energy conversion, and for designing materials that could improve conversion efficiency. Potential inexpensive materials for energy conversion devices are metal oxides. However, their conversion efficiency is limited by at least one of several factors: a too large band gap for efficiently absorbing solar energy, similar conduction and valence band edge characters that may lead to unfavorably high electron-hole recombination rates, a valence band edge that is not positioned well for oxidizing water, low stability, low electronic conductivity, and low surface reactivity. I will show how we model metal oxides with ab-initio methods, primarily DFT +U. Our previous results show that doping with lithium, sodium, or hydrogen could improve iron (II) oxide's electronic properties, and alloying with zinc or nickel could improve iron (II) oxide's optical properties. Furthermore, doping nickel (II) oxide with lithium could improve several key properties including solar energy absorption. In this talk I will highlight new results on our understanding of the mechanism of iron (III) oxide's surface reactivity. Our theoretical insights bring us a step closer towards understanding how to design better materials for photo-electrochemistry. References: 1. O. Neufeld and M. Caspary Toroker, ``Pt-doped Fe2O3 for enhanced water splitting efficiency: a DFT +U study'', J. Phys. Chem. C 119, 5836 (2015). 2. M. Caspary Toroker, ``Theoretical Insights into the Mechanism of Water Oxidation on Non-stoichiometric and Ti - doped Fe2O3 (0001)'', J. Phys. Chem. C, 118, 23162 (2014). This research was supported by the Morantz Energy Research Fund, the Nancy and Stephen Grand Technion Energy Program, the I-CORE Program of the Planning and Budgeting Committee, and The Israel Science

  3. Tunnel Structured α-MnO 2 with Different Tunnel Cations (H + , K + , Ag + ) as Cathode Materials in Rechargeable Lithium Batteries: The Role of Tunnel Cation on Electrochemistry

    DOE PAGES

    Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo; ...

    2017-07-12

    α-MnO 2 type manganese dioxide is an interesting prospective cathode material for reversible lithium insertion owing to its cation accessible tunnels (0.46nm x 0.46nm), high voltage, and low cost. The tunneled structure is synthetically formed by the assistance of cations acting as structure directing agents where the cations may remain in the tunnel. The electrochemistry of this family of materials is strongly dependent on the morphological and physicochemical (i.e. surface area, crystallite size, and average manganese oxidation state) properties as well as tunnel occupancy. For this work, we prepared a set of materials Mn 8O 16·0.81H 2O, K 0.81Mn 8Omore » 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O with similar nanorod morphology, crystallite size, surface area, and tunnel water content. This set of samples allowed us to investigate the role of tunnel cations in the electrochemistry of α-MnO 2 type manganese dioxide in a lithium based environment while minimizing the effects of the other parameters. The electrochemistry was evaluated using cyclic voltammetry, galvanostatic cycling, rate capability, and galvanostatic intermittent titration type testing. Mn 8O 16·0.81H 2O showed higher loaded voltages, improved capacity retention, and higher specific energy relative to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O. After 100 cycles, Mn 8O 16·0.81H 2O delivered ~200% more capacity than Ag 1.33Mn 8O 16·0.95H 2O (64 vs. 129 mAh/g) and ~35% more capacity than K 0.81Mn 8O 16·0.78H 2O (85 vs. 129 mAh/g). Mn 8O 16·0.81H 2O also showed higher effective lithium diffusion coefficients (DLi+) and higher rate capability compared to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O suggesting faster Li+ ion diffusion in the absence of large metal tunnel cations.« less

  4. Tunnel Structured α-MnO 2 with Different Tunnel Cations (H + , K + , Ag + ) as Cathode Materials in Rechargeable Lithium Batteries: The Role of Tunnel Cation on Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo

    α-MnO 2 type manganese dioxide is an interesting prospective cathode material for reversible lithium insertion owing to its cation accessible tunnels (0.46nm x 0.46nm), high voltage, and low cost. The tunneled structure is synthetically formed by the assistance of cations acting as structure directing agents where the cations may remain in the tunnel. The electrochemistry of this family of materials is strongly dependent on the morphological and physicochemical (i.e. surface area, crystallite size, and average manganese oxidation state) properties as well as tunnel occupancy. For this work, we prepared a set of materials Mn 8O 16·0.81H 2O, K 0.81Mn 8Omore » 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O with similar nanorod morphology, crystallite size, surface area, and tunnel water content. This set of samples allowed us to investigate the role of tunnel cations in the electrochemistry of α-MnO 2 type manganese dioxide in a lithium based environment while minimizing the effects of the other parameters. The electrochemistry was evaluated using cyclic voltammetry, galvanostatic cycling, rate capability, and galvanostatic intermittent titration type testing. Mn 8O 16·0.81H 2O showed higher loaded voltages, improved capacity retention, and higher specific energy relative to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O. After 100 cycles, Mn 8O 16·0.81H 2O delivered ~200% more capacity than Ag 1.33Mn 8O 16·0.95H 2O (64 vs. 129 mAh/g) and ~35% more capacity than K 0.81Mn 8O 16·0.78H 2O (85 vs. 129 mAh/g). Mn 8O 16·0.81H 2O also showed higher effective lithium diffusion coefficients (DLi+) and higher rate capability compared to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O suggesting faster Li+ ion diffusion in the absence of large metal tunnel cations.« less

  5. Observation of nanometer-sized electro-active defects in insulating layers by fluorescence microscopy and electrochemistry.

    PubMed

    Renault, Christophe; Marchuk, Kyle; Ahn, Hyun S; Titus, Eric J; Kim, Jiyeon; Willets, Katherine A; Bard, Allen J

    2015-06-02

    We report a method to study electro-active defects in passivated electrodes. This method couples fluorescence microscopy and electrochemistry to localize and size electro-active defects. The method was validated by comparison with a scanning probe technique, scanning electrochemical microscopy. We used our method for studying electro-active defects in thin TiO2 layers electrodeposited on 25 μm diameter Pt ultramicroelectrodes (UMEs). The permeability of the TiO2 layer was estimated by measuring the oxidation of ferrocenemethanol at the UME. Blocking of current ranging from 91.4 to 99.8% was achieved. Electro-active defects with an average radius ranging between 9 and 90 nm were observed in these TiO2 blocking layers. The distribution of electro-active defects over the TiO2 layer is highly inhomogeneous and the number of electro-active defect increases for lower degree of current blocking. The interest of the proposed technique is the possibility to quickly (less than 15 min) image samples as large as several hundreds of μm(2) while being able to detect electro-active defects of only a few tens of nm in radius.

  6. Water as a promoter and catalyst for dioxygen electrochemistry in aqueous and organic media.

    DOE PAGES

    Staszak-Jirkovsky, Jakub; Subbaraman, Ram; Strmcnik, Dusan; ...

    2015-11-01

    Water and oxygen electrochemistry lies at the heart of interfacial processes controlling energy transformations in fuel cells, electrolyzers, and batteries. Here, by comparing results for the ORR obtained in alkaline aqueous media to those obtained in ultradry organic electrolytes with known amounts of H2O added intentionally, we propose a new rationale in which water itself plays an important role in determining the reaction kinetics. This effect derives from the formation of HOad center dot center dot center dot H2O (aqueous solutions) and LiO2 center dot center dot center dot H2O (organic solvents) complexes that place water in a configurationally favorablemore » position for proton transfer to weakly adsorbed intermediates. We also find that, even at low concentrations (<10 ppm), water acts simultaneously as a promoter and as a catalyst in the production of Li2O2, regenerating itself through a sequence of steps that include the formation and recombination of H+ and OH-. We conclude that, although the binding energy between metal surfaces and oxygen intermediates is an important descriptor in electrocatalysis, understanding the role of water as a proton-donor reactant may explain many anomalous features in electrocatalysis at metal-liquid interfaces.« less

  7. Forensic electrochemistry: indirect electrochemical sensing of the components of the new psychoactive substance "Synthacaine".

    PubMed

    Cumba, Loanda R; Kolliopoulos, Athanasios V; Smith, Jamie P; Thompson, Paul D; Evans, Peter R; Sutcliffe, Oliver B; do Carmo, Devaney R; Banks, Craig E

    2015-08-21

    "Synthacaine" is a New Psychoactive Substance which is, due to its inherent psychoactive properties, reported to imitate the effects of cocaine and is therefore consequently branded as "legal cocaine". The only analytical approach reported to date for the sensing of "Synthacaine" is mass spectrometry. In this paper, we explore and evaluate a range of potential analytical techniques for its quantification and potential use in the field screening "Synthacaine" using Raman spectroscopy, presumptive (colour) testing, High Performance Liquid Chromatography (HPLC) and electrochemistry. HPLC analysis of street samples reveals that "Synthacaine" comprises a mixture of methiopropamine (MPA) and 2-aminoindane (2-AI). Raman spectroscopy and presumptive (colour) tests, the Marquis, Mandelin, Simon's and Robadope test, are evaluated towards a potential in-the-field screening approach but are found to not be able to discriminate between the two when they are both present in the same sample, as is the case in the real street samples. We report for the first time a novel indirect electrochemical protocol for the sensing of MPA and 2-AI which is independently validated in street samples with HPLC. This novel electrochemical approach based upon one-shot disposable cost effective screen-printed graphite macroelectrodes holds potential for in-the-field screening for "Synthacaine".

  8. Tetramer model of leukoemeraldine-emeraldine electrochemistry in the presence of trihalogenoacetic acids. DFT approach.

    PubMed

    Barbosa, Nuno Almeida; Grzeszczuk, Maria; Wieczorek, Robert

    2015-01-15

    First results of the application of the DFT computational approach to the reversible electrochemistry of polyaniline are presented. A tetrameric chain was used as the simplest model of the polyaniline polymer species. The system under theoretical investigation involved six tetramer species, two electrons, and two protons, taking part in 14 elementary reactions. Moreover, the tetramer species were interacting with two trihalogenoacetic acid molecules. Trifluoroacetic, trichloroacetic, and tribromoacetic acids were found to impact the redox transformation of polyaniline as shown by cyclic voltammetry. The theoretical approach was considered as a powerful tool for investigating the main factors of importance for the experimental behavior. The DFT method provided molecular structures, interaction energies, and equilibrium energies of all of the tetramer-acid complexes. Differences between the energies of the isolated tetramer species and their complexes with acids are discussed in terms of the elementary reactions, that is, ionization potentials and electron affinities, equilibrium constants, electrode potentials, and reorganization energies. The DFT results indicate a high impact of the acid on the reorganization energy of a particular elementary electron-transfer reaction. The ECEC oxidation path was predicted by the calculations. The model of the reacting system must be extended to octamer species and/or dimeric oligomer species to better approximate the real polymer situation.

  9. Electrochemistry and Spectroelectrochemistry of Lead Halide Perovskite Films: Materials Science Aspects and Boundary Conditions.

    PubMed

    Samu, Gergely F; Scheidt, Rebecca A; Kamat, Prashant V; Janáky, Csaba

    2018-02-13

    The unique optoelectronic properties of lead halide perovskites have triggered a new wave of excitement in materials chemistry during the past five years. Electrochemistry, spectroelectrochemistry, and photoelectrochemistry could be viable tools both for analyzing the optoelectronic features of these materials and for assembling them into hybrid architectures (e.g., solar cells). At the same time, the instability of these materials limits the pool of solvents and electrolytes that can be employed in such experiments. The focus of our study is to establish a stability window for electrochemical tests for all-inorganic CsPbBr 3 and hybrid organic-inorganic MAPbI 3 perovskites. In addition, we aimed to understand the reduction and oxidation events that occur and to assess the damage done during these processes at extreme electrochemical conditions. In this vein, we demonstrated the chemical, structural, and morphological changes of the films in both reductive and oxidative environments. Taking all these results together as a whole, we propose a set of boundary conditions and protocols for how electrochemical experiments with lead halide perovskites should be carried out and interpreted. The presented results will contribute to the understanding of the electrochemical response of these materials and lead to a standardization of results in the literature so that comparisons can more easily be made.

  10. Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on reduced graphene oxide and silver nanoparticles nanocomposite modified electrode.

    PubMed

    Palanisamy, Selvakumar; Karuppiah, Chelladurai; Chen, Shen-Ming

    2014-02-01

    The direct electrochemistry of glucose oxidase (GOx) was successfully realized on electrochemically reduced graphene oxide and silver nanoparticles (RGO/Ag) nanocomposite modified electrode. The fabricated nanocomposite was characterized by field emission scanning electron microscope and energy dispersive spectroscopy. The GOx immobilized nanocomposite modified electrode showed a pair of well-defined redox peaks with a formal potential (E°) of -0.422 V, indicating that the bioactivity of GOx was retained. The heterogeneous electron transfer rate constant (Ks) of GOx at the nanocomposite was calculated to be 5.27 s(-1), revealing a fast direct electron transfer of GOx. The GOx immobilized RGO/Ag nanocomposite electrode exhibited a good electrocatalytic activity toward glucose over a linear concentration range from 0.5 to 12.5 mM with a detection limit of 0.16 mM. Besides, the fabricated biosensor showed an acceptable sensitivity and selectivity for glucose. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Synthesis, electrochemistry, and electrogenerated chemiluminescence of two BODIPY-appended bipyridine homologues.

    PubMed

    Qi, Honglan; Teesdale, Justin J; Pupillo, Rachel C; Rosenthal, Joel; Bard, Allen J

    2013-09-11

    Two new 2,2'-bipyridine (bpy) derivatives containing ancillary BODIPY chromophores attached at the 5- and 5'-positions (BB3) or 6- and 6'-positions (BB4) were prepared and characterized. In this work, the basic photophysics, electrochemistry, and electrogenerated chemiluminescence (ECL) of BB3 and BB4 are compared with those previously reported for a related bpy-BODIPY derivative (BB2) (J. Phys. Chem. C 2011, 115, 17993-18001). Cyclic voltammetry revealed that BB3 and BB4 display reversible 2e(-) oxidation and reduction waves, which consist of two closely spaced (50-70 mV) 1e(-) events. This redox behavior is consistent with the frontier molecular orbitals calculated for BB3 and BB4 and indicates that the 2,2'-bipyridine spacer of each bpy-BODIPY homologue does not facilitate efficient electronic communication between the tethered indacene units. In the presence of a coreactant such as tri-n-propylamine (TPA) or benzoyl peroxide (BPO), BB3 and BB4 exhibit strong ECL and produce spectra that are very similar to their corresponding photoluminescence profiles. The ECL signal obtained under annihilation conditions, however, is significantly different and is characterized by two distinct bands. One of these bands is centered at ∼570 nm and is attributed to emission via an S- or T-route. The second band occurs at longer wavelengths and is centered around ∼740 nm. The shape and concentration dependence of this long-wavelength ECL signal is not indicative of emission from an excimer or aggregate, but rather it suggests that a new emissive species is formed from the bpy-BODIPY luminophores during the annihilation process.

  12. Synthesis, Electrochemistry and Electrogenerated Chemiluminesce of two BODIPY-Appended Bipyridine Homologues

    PubMed Central

    Qi, Honglan; Teesdale, Justin J.; Pupillo, Rachel C.

    2014-01-01

    Two new 2,2’-bipyridine (bpy) derivatives containing ancillary BODIPY chromophores attached at the 5- and 5’-positions (BB3) or 6- and 6’-positions (BB4) were prepared and characterized. In this work, the basic photophysics, electrochemistry and electrogenerated chemiluminescence (ECL) of BB3 and BB4 are compared with those previously reported for a related bpy-BODIPY derivative (BB2) (J. Phys. Chem. C 2011, 115, 17993–18001). Cyclic voltammetry revealed that BB3 and BB4 display reversible 2e− oxidation and reduction waves, which consist of two closely spaced (50 – 70 mV) 1e− events. This redox behavior is consistent with the frontier molecular orbitals calculated for BB3 and BB4 and indicates that the 2,2’-bipyridine spacer of each bpy- BODIPY homologue does not facilitate efficient electronic communication between the tethered indacene units. In the presence of a coreactant such as tri-n-propylamine (TPA) or benzoyl peroxide (BPO), BB3 and BB4 exhibit strong ECL and produce spectra that are very similar to their corresponding photoluminescence profiles. The ECL signal obtained under annihilation conditions, however, is significantly different and is characterized by two distinct bands. One of these bands is centered at ~570 nm and is attributed to emission via an S- or T-route. The second band, occurs at longer wavelengths and is centered around ~740 nm. The shape and concentration dependence of this long-wavelength ECL signal is not indicative of emission from an excimer or aggregate, but rather is suggests that a new emissive species is formed from the bpy-BODIPY luminophores during the annihilation process. PMID:23980850

  13. Synthesis and electrochemistry of heterobimetallic ruthenium/platinum and molybdenum/platinum complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orth, S.D.; Terry, M.R.; Abboud, K.A.

    1996-02-14

    As starting materials for heterobimetallic complexes, [RuCp(PPh{sub 3})CO(PPh{sub 2}H)]PF{sub 6} and [RuCp(PPh{sub 3})CO({eta}-dppm)]-PF{sub 6} were prepared from RuCp(PPh{sub 3})(CO)Cl. In the course of preparing [RuCp({eta}{sup 2}-dppm)({eta}-dppm)]Cl from RuCp(Ph{sub 3}P)({eta}-dppm)Cl, the monomer RuCpCl({eta}-dppm){sub 2} was isolated. The uncommon coordination mode of the two monodentatebis(phosphines) was confirmed by X-ray crystallography [a = 11.490(1) {angstrom}, b = 14.869(2) {angstrom}, c = 15.447(2) {angstrom}, {alpha} = 84.63(1){degrees}, {beta} = 70.55(1){degrees}, {gamma} = 72.92(1){degrees}, V = 2378.7(5) {angstrom}{sup 3}, d{sub calc} = 1.355 g cm{sup -3} (298 K), triclinic, P1, Z = 2]. The dppm-bridged bimetallic complexes RuCp(PPh{sub 3})Cl({mu}-dppm)PtCl{sub 2}, RuCpCl({mu}-dppm){sub 2}PtCl{sub 2}, and [RuCp(PPh{submore » 3})CO({mu}-dppm)PtCl{sub 2}]PF{sub 6} each exhibit electrochemistry consistent with varying degrees of metal-metal interaction. The cationic heterobimetallic complexes [Mo(CO){sub 3}({mu}-dppm){sub 2}Pt(H)]PF{sub 6} and [MoCp-(CO){sub 2}-({mu}-PPh{sub 2})({mu}-H)Pt(PPh{sub 3})(MeCN)]PF{sub 6} were prepared by chloride abstraction from the corresponding neutral bimetallic species and show electrochemical behavior similar to the analogous Ru/Pt complexes.« less

  14. Integration of Electrochemistry with Ultra Performance Liquid Chromatography/Mass Spectrometry (UPLC/MS)

    PubMed Central

    Cai, Yi; Zheng, Qiuling; Liu, Yong; Helmy, Roy; Loo, Joseph A.; Chen, Hao

    2015-01-01

    This study presents the development of ultra-performance liquid chromatography/mass spectrometry (UPLC/MS) combined with electrochemistry (EC) for the first time and its application for the structural analysis of disulfide bond-containing proteins/peptides. In our approach, a protein/peptide mixture sample undergoes fast UPLC separation and subsequent electrochemical reduction in an electrochemical flow cell followed by online MS and MS/MS analyses. The electrochemical cell is coupled to MS using our recently developed desorption electrospray ionization (DESI) interface. Using this UPLC/EC/DESI-MS method, disulfide bond-containing peptides can be differentiated from those without disulfide bonds as the former are electroactive and reducible. Tandem MS analysis of the disulfide-reduced peptide ions provides increased sequence and disulfide linkage pattern information. In a reactive DESI-MS detection experiment in which a supercharging reagent was used to dope the DESI spray solvent, increased charging was obtained for the UPLC-separated proteins. Strikingly, upon online electrolytic reduction, supercharged proteins (e.g., α-lactalbumin) showed even higher charging, which would be useful in top-down protein structure analysis as increased charges are known to promote protein ion dissociation. Also, the separation speed and sensitivity are enhanced by approximately 1~2 orders of magnitude by using UPLC for the LC/EC/MS platform, in comparison to the previously used high performance liquid chromatography (HPLC). This UPLC/EC/DESI-MS method combines the power of fast UPLC separation, fast electrochemical conversion and online MS structural analysis for a potentially valuable tool for proteomics research and bioanalysis. PMID:26307715

  15. Composition-Graded MoWSx Hybrids with Tailored Catalytic Activity by Bipolar Electrochemistry.

    PubMed

    Tan, Shu Min; Pumera, Martin

    2017-12-06

    Among transition metal dichalcogenide (TMD)-based composites, TMD/graphene-related material and bichalcogen TMD composites have been widely studied for application toward energy production via the hydrogen evolution reaction (HER). However, scarcely any literature explored the possibility of bimetallic TMD hybrids as HER electrocatalysts. The use of harmful chemicals and harsh preparation conditions in conventional syntheses also detracts from the objective of sustainable energy production. Herein, we present the conservational alternative synthesis of MoWS x via one-step bipolar electrochemical deposition. Through bipolar electrochemistry, the simultaneous fabrication of composition-graded MoWS x hybrids, i.e., sulfur-deficient Mo x W (1-x) S 2 and Mo x W (1-x) S 3 (MoWS x /BPE cathodic and MoWS x /BPE anodic , respectively) under cathodic and anodic overpotentials, was achieved. The best-performing MoWS x /BPE cathodic and MoWS x /BPE anodic materials exhibited Tafel slopes of 45.7 and 50.5 mV dec -1 , together with corresponding HER overpotentials of 315 and 278 mV at -10 mA cm -2 . The remarkable HER activities of the composite materials were attributed to their small particle sizes, as well as the near-unity value of their surface Mo/W ratios, which resulted in increased exposed HER-active sites and differing active sites for the concurrent adsorption of protons and desorption of hydrogen gas. The excellent electrocatalytic performances achieved via the novel methodology adopted here encourage the empowerment of electrochemical deposition as the foremost fabrication approach toward functional electrocatalysts for sustainable energy generation.

  16. Ultrasensitive signal-on DNA biosensor based on nicking endonuclease assisted electrochemistry signal amplification.

    PubMed

    Liu, Zhongyuan; Zhang, Wei; Zhu, Shuyun; Zhang, Ling; Hu, Lianzhe; Parveen, Saima; Xu, Guobao

    2011-11-15

    Combining the advantages of signal-on strategy and nicking endonuclease assisted electrochemistry signal amplification (NEAESA), a new sensitive and signal-on electrochemical DNA biosensor for the sequence specific DNA detection based on NEAESA has been developed for the first time. A Hairpin-shape probe (HP), containing the target DNA recognition sequence, is thiol-modified at 5' end and immobilized on gold electrode via Au-S bonding. Subsequently, the HP modified electrode is hybridized with target DNA to form a duplex. Then the nicking endonuclease is added and nicks the HP strand in the duplex. After nicking, 3'-ferrocene (Fc)-labeled part complementary probe (Fc-PCP) is introduced on the electrode surface by hybridizing with the thiol-modified HP fragment, which results in the generation of electrochemical signal. Hence, the DNA biosensor is constructed successfully. The present DNA biosensor shows a wide linear range of 5.0×10(-13)-5.0×10(-8)M for detecting target DNA, with a low detection limit of 0.167pM. The proposed strategy does not require any amplifying labels (enzymes, DNAzymes, nanoparticles, etc.) for biorecognition events, which avoids false-positive results to occur frequently. Moreover, the strategy has the benefits of simple preparation, convenient operation, good selectivity, and high sensitivity. With the advantages mentioned above, this simple and sensitive strategy has the potential to be integrated in portable, low cost and simplified devices for diagnostic applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Electrochemistry of cytochrome P450 17α-hydroxylase/17,20-lyase (P450c17).

    PubMed

    Martin, Lisandra L; Kubeil, Clemens; Simonov, Alexandr N; Kuznetsov, Vladimir L; Corbin, C Jo; Auchus, Richard J; Conley, Alan J; Bond, Alan M; Rodgers, Raymond J

    2017-02-05

    Within the superfamily of cytochrome P450 enzymes (P450s), there is a small class which is functionally employed for steroid biosynthesis. The enzymes in this class appear to have a small active site to accommodate the steroid substrates specifically and snuggly, prior to the redox transformation or hydroxylation to form a product. Cytochrome P450c17 is one of these and is also a multi-functional P450, with two activities, the first 17α-hydroxylation of pregnenolone is followed by a subsequent 17,20-lyase transformation to dehydroepiandrosterone (DHEA) as the dominant pathways to cortisol precursors or androgens in humans, respectively. How P450c17 regulates these two redox reactions is of special interest. There is a paucity of direct electrochemical studies on steroidogenic P450s, and in this mini-review we provide an overview of these studies with P450c17. Historical consideration as to the difficulties in obtaining reliable electrochemistry due to issues of handling proteins on an electrode, together with advances in the electrochemical techniques are addressed. Recent work using Fourier transformed alternating current voltammetry is highlighted as this technique can provide both catalytic information simultaneously with the underlying redox transfer with the P450 haem. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Dispersion of nanocrystalline Fe 3O 4 within composite electrodes: Insights on battery-related electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David C. Bock; Takeuchi, Kenneth J.; Pelliccione, Christopher J.

    2016-04-20

    Aggregation of nanosized materials in composite lithium-ion-battery electrodes can be a significant factor influencing electrochemical behavior. In this study, aggregation was controlled in magnetite, Fe 3O 4, composite electrodes via oleic acid capping and subsequent dispersion in a carbon black matrix. A heat treatment process was effective in the removal of the oleic acid capping agent while preserving a high degree of Fe 3O 4 dispersion. Electrochemical testing showed that Fe 3O 4 dispersion is initially beneficial in delivering a higher functional capacity, in agreement with continuum model simulations. However, increased capacity fade upon extended cycling was observed for themore » dispersed Fe 3O 4 composites relative to the aggregated Fe 3O 4 composites. X-ray absorption spectroscopy measurements of electrodes post cycling indicated that the dispersed Fe 3O 4 electrodes are more oxidized in the discharged state, consistent with reduced reversibility compared with the aggregated sample. Higher charge-transfer resistance for the dispersed sample after cycling suggests increased surface-film formation on the dispersed, high-surface-area nanocrystalline Fe 3O 4 compared to the aggregated materials. Furthermore, this study provides insight into the specific effects of aggregation on electrochemistry through a multiscale view of mechanisms for magnetite composite electrodes.« less

  19. Dispersion of Nanocrystalline Fe 3 O 4 within Composite Electrodes: Insights on Battery-Related Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bock, David C.; Pelliccione, Christopher J.; Zhang, Wei

    2016-04-20

    Aggregation of nanosized materials in composite lithium-ion-battery electrodes can be a significant factor influencing electrochemical behavior. In this study, aggregation was controlled in magnetite, Fe 3O 4, composite electrodes via oleic acid capping and subsequent dispersion in a carbon black matrix. A heat treatment process was effective in the removal of the oleic acid capping agent while preserving a high degree of Fe 3O 4 dispersion. Electrochemical testing showed that Fe 3O 4 dispersion is initially beneficial in delivering a higher functional capacity, in agreement with continuum model simulations. However, increased capacity fade upon extended cycling was observed for themore » dispersed Fe 3O 4 composites relative to the aggregated Fe 3O 4 composites. X-ray absorption spectroscopy measurements of electrodes post cycling indicated that the dispersed Fe 3O 4 electrodes are more oxidized in the discharged state, consistent with reduced reversibility compared with the aggregated sample. Higher charge-transfer resistance for the dispersed sample after cycling suggests increased surface-film formation on the dispersed, high-surface-area nanocrystalline Fe 3O 4 compared to the aggregated materials. This study provides insight into the specific effects of aggregation on electrochemistry through a multiscale view of mechanisms for magnetite composite electrodes.« less

  20. Surface chemistry of bulk nanocrystalline pure iron and electrochemistry study in gas-flow physiological saline.

    PubMed

    Nie, F L; Zheng, Y F

    2012-07-01

    Conventional microcrystalline pure iron (MC-Fe) becomes a new candidate as biodegradable metals, which has the insufficient physical feature and inferior biodegradation behavior. Novel bulk nanocrystalline pure iron (NC-Fe) was fabricated via equal channel angular pressing technique in the present work to overcome these problems. The contact angle test with water and glycerol droplets shows a smaller angle (though >90°) of NC-Fe than that of MC-Fe, which implies a lower surface energy of NC-Fe. The surface roughness of NC-Fe increased greatly than that of MC-Fe. A further comparative study of corrosion and electrochemistry performance between NC-Fe and its original MC-Fe was investigated in physiological saline with different dissolved oxygen concentration, aiming to in vitro simulate the corrosion process of coronary stent occurred in physiological environment. The electrochemical impedance spectra analysis and anodic polarization measurements indicated that the NC-Fe exhibited higher corrosion resistance than that of the MC-Fe; meanwhile obvious enhanced corrosion resistance with the decrement of dissolved oxygen concentration was observed. Related equivalent circuit model and surface reconstruction process were further discussed, and the degradation mechanism of the MC-Fe and NC-Fe were finally established. Copyright © 2012 Wiley Periodicals, Inc.

  1. Three Redox States of Trypanosoma brucei Alternative Oxidase Identified by Infrared Spectroscopy and Electrochemistry

    PubMed Central

    Maréchal, Amandine; Kido, Yasutoshi; Kita, Kiyoshi; Moore, Anthony L.; Rich, Peter R.

    2009-01-01

    Electrochemistry coupled with Fourier transform infrared (IR) spectroscopy was used to investigate the redox properties of recombinant alternative ubiquinol oxidase from Trypanosoma brucei, the organism responsible for African sleeping sickness. Stepwise reduction of the fully oxidized resting state of recombinant alternative ubiquinol oxidase revealed two distinct IR redox difference spectra. The first of these, signal 1, titrates in the reductive direction as an n = 2 Nernstian component with an apparent midpoint potential of 80 mV at pH 7.0. However, reoxidation of signal 1 in the same potential range under anaerobic conditions did not occur and only began with potentials in excess of 500 mV. Reoxidation by introduction of oxygen was also unsuccessful. Signal 1 contained clear features that can be assigned to protonation of at least one carboxylate group, further perturbations of carboxylic and histidine residues, bound ubiquinone, and a negative band at 1554 cm−1 that might arise from a radical in the fully oxidized protein. A second distinct IR redox difference spectrum, signal 2, appeared more slowly once signal 1 had been reduced. This component could be reoxidized with potentials above 100 mV. In addition, when both signals 1 and 2 were reduced, introduction of oxygen caused rapid oxidation of both components. These data are interpreted in terms of the possible active site structure and mechanism of oxygen reduction to water. PMID:19767647

  2. Achieving direct electrochemistry of glucose oxidase by one step electrochemical reduction of graphene oxide and its use in glucose sensing.

    PubMed

    Shamsipur, Mojtaba; Tabrizi, Mahmoud Amouzadeh

    2014-12-01

    In this paper, the direct electrochemistry of glucose oxidase (GOD) was accomplished at a glassy carbon electrode modified with electrochemically reduced graphene oxide/sodium dodecyl sulfate (GCE/ERGO/SDS). A pair of reversible peaks is exhibited on GCE/ERGO/SDS/GOD by cyclic voltammetry. The peak-to-peak potential separation of immobilized GOD is 28 mV in 0.1 M phosphate buffer solution (pH7.0) with a scan rate of 50 mV/s. The average surface coverage is 2.62×10(-10) mol cm(-2). The resulting biosensor exhibited a good response to glucose with linear range from 1 to 8 mM (R(2)=0.9878), good reproducibility and detection limit of 40.8 μM. The results from the biosensor were similar (±5%) to those obtained from the clinical analyzer. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric nitrite biosensor.

    PubMed

    Haldorai, Yuvaraj; Hwang, Seung-Kyu; Gopalan, Anantha-Iyengar; Huh, Yun Suk; Han, Young-Kyu; Voit, Walter; Sai-Anand, Gopalan; Lee, Kwang-Pill

    2016-05-15

    In this report, titanium nitride (TiN) nanoparticles decorated multi-walled carbon nanotube (MWCNTs) nanocomposite is fabricated via a two-step process. These two steps involve the decoration of titanium dioxide nanoparticles onto the MWCNTs surface and a subsequent thermal nitridation. Transmission electron microscopy shows that TiN nanoparticles with a mean diameter of ≤ 20 nm are homogeneously dispersed onto the MWCNTs surface. Direct electrochemistry and electrocatalysis of cytochrome c immobilized on the MWCNTs-TiN composite modified on a glassy carbon electrode for nitrite sensing are investigated. Under optimum conditions, the current response is linear to its concentration from 1 µM to 2000 µM with a sensitivity of 121.5 µA µM(-1)cm(-2) and a low detection limit of 0.0014 µM. The proposed electrode shows good reproducibility and long-term stability. The applicability of the as-prepared biosensor is validated by the successful detection of nitrite in tap and sea water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Application of three-dimensional reduced graphene oxide-gold composite modified electrode for direct electrochemistry and electrocatalysis of myoglobin.

    PubMed

    Shi, Fan; Xi, Jingwen; Hou, Fei; Han, Lin; Li, Guangjiu; Gong, Shixing; Chen, Chanxing; Sun, Wei

    2016-01-01

    In this paper a three-dimensional (3D) reduced graphene oxide (RGO) and gold (Au) composite was synthesized by electrodeposition and used for the electrode modification with carbon ionic liquid electrode (CILE) as the substrate electrode. Myoglobin (Mb) was further immobilized on the surface of 3D RGO-Au/CILE to obtain an electrochemical sensing platform. Direct electrochemistry of Mb on the modified electrode was investigated with a pair of well-defined redox waves appeared on cyclic voltammogram, indicating the realization of direct electron transfer of Mb with the modified electrode. The results can be ascribed to the presence of highly conductive 3D RGO-Au composite on the electrode surface that accelerate the electron transfer rate between the electroactive center of Mb and the electrode. The Mb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.2 to 36.0 mmol/L with the detection limit of 0.06 mmol/L (3σ). Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Electrochemistry coupled online to liquid chromatography-mass spectrometry for fast simulation of biotransformation reactions of the insecticide chlorpyrifos.

    PubMed

    Mekonnen, Tessema F; Panne, Ulrich; Koch, Matthias

    2017-05-01

    An automated method is presented for fast simulation of (bio)transformation products (TPs) of the organophosphate insecticide chlorpyrifos (CPF) based on electrochemistry coupled online to liquid chromatography-mass spectrometry (EC-LC-MS). Oxidative TPs were produced by a boron doped diamond (BDD) electrode, separated by reversed phase HPLC and online detected by electrospray ionization-mass spectrometry (ESI-MS). Furthermore, EC oxidative TPs were investigated by HPLC-tandem mass spectrometry (LC-MS/MS) and FT-ICR high resolution mass spectrometry (HRMS) and compared to in vitro assay metabolites (rat and human liver microsomes). Main phase I metabolites of CPF: chlorpyrifos oxon (CPF oxon), trichloropyridinol (TCP), diethylthiophosphate (DETP), diethylphosphate (DEP), desethyl chlorpyrifos (De-CPF), and desethyl chlorpyrifos oxon (De-CPF oxon), were successfully identified by the developed EC-LC-MS method. The EC-LC-MS method showed similar metabolites compared to the in vitro assay with possibilities of determining reactive species. Our results reveal that online EC-(LC)-MS brings an advantage on time of analysis by eliminating sample preparation steps and matrix complexity compared to conventional in vivo or in vitro methods.

  6. Synthesis, characterization and electrochemistry studies of iron(III) complex with curcumin ligand.

    PubMed

    Özbolat, Gülüzar; Yegani, Arash Alizadeh; Tuli, Abdullah

    2018-05-11

    Iron overload is a serious clinical condition for humans and is a key target in drug development. The aim of this study was to investigate the coordination of iron(III) ions with curcumin ligand that may be used in the treatment of iron overload. Iron(III) complex of curcumin was synthesized and structurally characterized in its solid and solution state by FT-IR, UV-Vis, elemental analysis, and magnetic susceptibility. Electrochemical behaviour of the ligand and the complexes were examined using cyclic voltammetry. The cytotoxic activities of the ligand and the iron(III) complex were evaluated by the MTT assay. Curcumin reacted with iron in high concentrations at physiological pH at room temperature. Subsequently, a brown-red complex was formed. Data regarding magnetic susceptibility showed that the complexes with a 1:2 (metal/ligand) mole ratio had octahedral geometry. The complex showed higher anti-oxidant effect towards the cell line ECV304 at IC 50 values of 4.83 compared to curcumin. The complex exhibited very high cytotoxic activity and showed a cytotoxic effect that was much better than that of the ligand. The potentials for redox were calculated as 0.180 V and 0.350 V, respectively. The electrochemistry studies showed that Fe 3+ /Fe 2+ couple redox process occurred at low potentials. This value was within the range of compounds that are expected to show superoxide dismutase activity. This finding indicates that the iron complex is capable of removing free radicals. The observed cytotoxicity could be pursued to obtain a potential drug. Further studies investigating the use of curcumin for this purpose are needed. © 2018 John Wiley & Sons Australia, Ltd.

  7. Oxygen-participated electrochemistry of new lithium-rich layered oxides Li3MRuO5 (M = Mn, Fe).

    PubMed

    Laha, S; Natarajan, S; Gopalakrishnan, J; Morán, E; Sáez-Puche, R; Alario-Franco, M Á; Dos Santos-Garcia, A J; Pérez-Flores, J C; Kuhn, A; García-Alvarado, F

    2015-02-07

    We describe the synthesis, crystal structure and lithium deinsertion-insertion electrochemistry of two new lithium-rich layered oxides, Li3MRuO5 (M = Mn, Fe), related to rock salt based Li2MnO3 and LiCoO2. The Li3MnRuO5 oxide adopts a structure related to Li2MnO3 (C2/m) where Li and (Li0.2Mn0.4Ru0.4) layers alternate along the c-axis, while the Li3FeRuO5 oxide adopts a near-perfect LiCoO2 (R3[combining macron]m) structure where Li and (Li0.2Fe0.4Ru0.4) layers are stacked alternately. Magnetic measurements indicate for Li3MnRuO5 the presence of Mn(3+) and low spin configuration for Ru(4+) where the itinerant electrons occupy a π*-band. The onset of a net maximum in the χ vs. T plot at 9.5 K and the negative value of the Weiss constant (θ) of -31.4 K indicate the presence of antiferromagnetic superexchange interactions according to different pathways. Lithium electrochemistry shows a similar behaviour for both oxides and related to the typical behaviour of Li-rich layered oxides where participation of oxide ions in the electrochemical processes is usually found. A long first charge process with capacities of 240 mA h g(-1) (2.3 Li per f.u.) and 144 mA h g(-1) (1.38 Li per f.u.) is observed for Li3MnRuO5 and Li3FeRuO5, respectively. An initial sloping region (OCV to ca. 4.1 V) is followed by a long plateau (ca. 4.3 V). Further discharge-charge cycling points to partial reversibility (ca. 160 mA h g(-1) and 45 mA h g(-1) for Mn and Fe, respectively). Nevertheless, just after a few cycles, cell failure is observed. X-ray photoelectron spectroscopy (XPS) characterisation of both pristine and electrochemically oxidized Li3MRuO5 reveals that in the Li3MnRuO5 oxide, Mn(3+) and Ru(4+) are partially oxidized to Mn(4+) and Ru(5+) in the sloping region at low voltage, while in the long plateau, O(2-) is also oxidized. Oxygen release likely occurs which may be the cause for failure of cells upon cycling. Interestingly, some other Li-rich layered oxides have been reported to

  8. Deconvolution of Composition and Crystallite Size of Silver Hollandite Nanorods: Influence on Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, Jessica L.; Huang, Jianping; Zhang, Bingjie

    In this paper, silver hollandite (Ag 1.4Mn 8O 16) has been synthesized by an aqueous, low-temperature co-precipitation technique to afford silver hollandite with distinct crystallite sizes (10 and 15 nm, identified as S-Ag 1.4Mn 8O 16 and L-Ag 1.4Mn 8O 16, respectively) and equivalent silver content (x), allowing for the deconvolution of electrochemical effects related to crystallite size and silver content. The as-prepared silver hollandite materials were confirmed to be structurally analogous. Notably, TEM imaging reveals a high degree of bundling of S-Ag 1.4Mn 8O 16 nanorods compared to L-Ag 1.4Mn 8O 16 which facilitates more intimate connection of themore » S-Ag 1.4Mn 8O 16 material with enhanced interparticle contact. The electrochemical behavior and lithium diffusion properties were investigated by galvanostatic cycling, CV, electrochemical impedance, pulsed-discharge experiments, and ex-situ XAS analysis of cycled cathodes. Lithium based electrochemical cells containing S-Ag 1.4Mn 8O 16 delivered a capacity 15X higher than L-Ag 1.4Mn 8O 16 on cycle 1. Ex-situ XAS demonstrated structural change for S-Ag 1.4Mn 8O 16 and formation of Ag 0 on insertion of 3.8 Li + intercalation. However, the samples of L-Ag 1.4Mn 8O 16 were lithiated by a more limited 0.25 molar equivalents, where no significant structural changes were observed. Finally, the findings affirm crystallite size significantly impacts electrochemistry independent of cation occupancy of the α-MnO 2 type structure.« less

  9. Deconvolution of Composition and Crystallite Size of Silver Hollandite Nanorods: Influence on Electrochemistry

    DOE PAGES

    Durham, Jessica L.; Huang, Jianping; Zhang, Bingjie; ...

    2017-12-16

    In this paper, silver hollandite (Ag 1.4Mn 8O 16) has been synthesized by an aqueous, low-temperature co-precipitation technique to afford silver hollandite with distinct crystallite sizes (10 and 15 nm, identified as S-Ag 1.4Mn 8O 16 and L-Ag 1.4Mn 8O 16, respectively) and equivalent silver content (x), allowing for the deconvolution of electrochemical effects related to crystallite size and silver content. The as-prepared silver hollandite materials were confirmed to be structurally analogous. Notably, TEM imaging reveals a high degree of bundling of S-Ag 1.4Mn 8O 16 nanorods compared to L-Ag 1.4Mn 8O 16 which facilitates more intimate connection of themore » S-Ag 1.4Mn 8O 16 material with enhanced interparticle contact. The electrochemical behavior and lithium diffusion properties were investigated by galvanostatic cycling, CV, electrochemical impedance, pulsed-discharge experiments, and ex-situ XAS analysis of cycled cathodes. Lithium based electrochemical cells containing S-Ag 1.4Mn 8O 16 delivered a capacity 15X higher than L-Ag 1.4Mn 8O 16 on cycle 1. Ex-situ XAS demonstrated structural change for S-Ag 1.4Mn 8O 16 and formation of Ag 0 on insertion of 3.8 Li + intercalation. However, the samples of L-Ag 1.4Mn 8O 16 were lithiated by a more limited 0.25 molar equivalents, where no significant structural changes were observed. Finally, the findings affirm crystallite size significantly impacts electrochemistry independent of cation occupancy of the α-MnO 2 type structure.« less

  10. Transformations of the FeS Clusters of the Methylthiotransferases MiaB and RimO, Detected by Direct Electrochemistry

    PubMed Central

    2016-01-01

    The methylthiotransferases (MTTases) represent a subfamily of the S-adenosylmethionine (AdoMet) radical superfamily of enzymes that catalyze the attachment of a methylthioether (-SCH3) moiety on unactivated carbon centers. These enzymes contain two [4Fe-4S] clusters, one of which participates in the reductive fragmentation of AdoMet to generate a 5′-deoxyadenosyl 5′-radical and the other of which, termed the auxiliary cluster, is believed to play a central role in constructing the methylthio group and attaching it to the substrate. Because the redox properties of the bound cofactors within the AdoMet radical superfamily are so poorly understood, we have examined two MTTases in parallel, MiaB and RimO, using protein electrochemistry. We resolve the redox potentials of each [4Fe-4S] cluster, show that the auxiliary cluster has a potential higher than that of the AdoMet-binding cluster, and demonstrate that upon incubation of either enzyme with AdoMet, a unique low-potential state of the enzyme emerges. Our results are consistent with a mechanism whereby the auxiliary cluster is transiently methylated during substrate methylthiolation. PMID:27598886

  11. Impact of Soil Composition and Electrochemistry on Corrosion of Rock-cut Slope Nets along Railway Lines in China.

    PubMed

    Chen, Jiao; Chen, Zhaoqiong; Ai, Yingwei; Xiao, Jingyao; Pan, Dandan; Li, Wei; Huang, Zhiyu; Wang, Yumei

    2015-10-09

    Taking the slope of Suiyu Railway to study, the research separately studied soil resistivity, soil electrochemistry (corrosion potential, oxidization reduction potential, electric potential gradient and pH), soil anions (total soluble salt, Cl(-), SO4(2-) and ), and soil nutrition (moisture content, organic matter, total nitrogen, alkali-hydrolysable nitrogen, available phosphorus, and available potassium) at different slope levels, and conducted corrosion grade evaluation on artificial soil according to its single index and comprehensive indexes. Compared with other factors, water has the biggest impact on the corrosion of slope protection net, followed by anion content. Total soluble salt has the moderate impact on the corrosion of slope protection net, and stray current has the moderate impact on the corrosion of mid-slope protection net. Comprehensive evaluation on the corrosive degree of soil samples indicates that the corrosion of upper slope is moderate, and the corrosion of mid-slope and lower slope is strong. Organic matter in soil is remarkably relevant to electric potential gradient. Available nitrogen, available potassium and available phosphorus are remarkably relevant to anions. The distribution of soil nutrient is indirectly relevant to slope type.

  12. Impact of Soil Composition and Electrochemistry on Corrosion of Rock-cut Slope Nets along Railway Lines in China

    PubMed Central

    Chen, Jiao; Chen, Zhaoqiong; Ai, Yingwei; Xiao, Jingyao; Pan, Dandan; Li, Wei; Huang, Zhiyu; Wang, Yumei

    2015-01-01

    Taking the slope of Suiyu Railway to study, the research separately studied soil resistivity, soil electrochemistry (corrosion potential, oxidization reduction potential, electric potential gradient and pH), soil anions (total soluble salt, Cl−, SO42− and ), and soil nutrition (moisture content, organic matter, total nitrogen, alkali-hydrolysable nitrogen, available phosphorus, and available potassium) at different slope levels, and conducted corrosion grade evaluation on artificial soil according to its single index and comprehensive indexes. Compared with other factors, water has the biggest impact on the corrosion of slope protection net, followed by anion content. Total soluble salt has the moderate impact on the corrosion of slope protection net, and stray current has the moderate impact on the corrosion of mid-slope protection net. Comprehensive evaluation on the corrosive degree of soil samples indicates that the corrosion of upper slope is moderate, and the corrosion of mid-slope and lower slope is strong. Organic matter in soil is remarkably relevant to electric potential gradient. Available nitrogen, available potassium and available phosphorus are remarkably relevant to anions. The distribution of soil nutrient is indirectly relevant to slope type. PMID:26450811

  13. Depth probing of the hydride formation process in thin Pd films by combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy.

    PubMed

    Wickman, Björn; Fredriksson, Mattias; Feng, Ligang; Lindahl, Niklas; Hagberg, Johan; Langhammer, Christoph

    2015-07-15

    We demonstrate a flexible combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy setup to gain insight into the depth evolution of electrochemical hydride and oxide formation in Pd films with thicknesses of 20 and 100 nm. The thicknesses of our model systems are chosen such that the films are thinner or significantly thicker than the optical skin depth of Pd to create two distinctly different situations. Low power white light is irradiated on the sample and analyzed in three different configurations; transmittance through, and, reflectance from the front and the back side of the film. The obtained optical sensitivities correspond to fractions of a monolayer of adsorbed or absorbed hydrogen (H) and oxygen (O) on Pd. Moreover, a combined simultaneous readout obtained from the different optical measurement configurations provides mechanistic insights into the depth-evolution of the studied hydrogenation and oxidation processes.

  14. Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar.

    PubMed

    Zhao, Ling; Cao, Xinde; Zheng, Wei; Wang, Qun; Yang, Fan

    2015-10-01

    The feedstocks for biochar production are diverse and many of them contain various minerals in addition to being rich in carbon. Twelve types of biomass classified into 2 categories: plant-based and municipal waste, were employed to produce biochars under 350 °C and 500 °C. Their pH, point of zero net charge (PZNC), zeta potential, cation and anion exchange capacity (CEC and AEC) were analyzed. The municipal waste-based biochars (MW-BC) had higher mineral levels than the plant-based biochars (PB-BC). However, the water soluble mineral levels were lower in the MW-BCs due to the dominant presence of less soluble minerals, such as CaCO3 and (Ca,Mg)3(PO4)2. The higher total minerals in MW-BCs accounted for the higher PZNC (5.47-9.95) than in PB-BCs (1.91-8.18), though the PZNCs of the PB-BCs increased more than that of the MW-BCs as the production temperature rose. The minerals had influence on the zeta potentials via affecting the negative charges of biochars and the ionic strength of solution. The organic functional groups in PB-BCs such as -COOH and -OH had a greater effect on the CEC and AEC, while the minerals had a greater effect on that of MW-BCs. The measured CEC and AEC values had a strong positive correlation with the total amount of soluble cations and anions, respectively. Results indicated that biochar surface charges depend not only on the organic functional groups, but also on the minerals present and to some extent, minerals have more influences on the surface electrochemistry and ion exchange properties of biochar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The significant role of carboxylated carbonaceous fragments in the electrochemistry of carbon nanotubes.

    PubMed

    Ma, Xiao; Jia, Li; Zhang, Lu; Zhu, Liande

    2014-04-01

    Carbon nanotubes (CNTs) have been widely employed as electrode materials in diverse branches of electrochemistry, which are claimed to display dramatically improved electrochemical behaviour compared to the conventional carbon materials. But a series of recent publications have demonstrated that the electrocatalysis of CNTs might be due to the presence of some impurities, such as metallic catalysts, nanographitic particles and amorphous carbon. For this reason, CNTs are usually purified or treated with nitric acid or nitric and sulphuric acid prior to their versatile applications. However, the strong acidic and oxidative conditions are so aggressive that serious erosion of the tube structures has inevitably taken place, which creates defects on the sidewalls and gives rise to numerous molecular byproducts, commonly referred as carboxylated carbonaceous fragments (CCFs). The adsorption of CCFs on CNTs greatly alters the surface conditions of CNTs which may significantly impact on their electrochemical properties. To this end, we wish to disclose whether the electrocatalysis of the nitric acid purified CNTs is affected by the adsorption of the CCFs. Ascorbic acid (AA) and β-nicotinamide adenine dinucleotide (NADH) as selected as the targeting benchmarks that are known to be insensitive to the presence of metallic impurities, which may guarantee the preclusion of the promoting contributions from the metallic catalysts resident in CNTs. We have demonstrated that the electrocatalytic activities of the CNTs are actually dominated by the adsorbed CCFs generated during the acidic pre-treatment. After removal of the CCFs by base rinse, the electrocatalytic properties of CNTs are greatly deteriorated and degraded to the level similar to the conventional graphite powder. We believe this finding is particularly meaningful to uncover the mysterious electrocatalysis of CNTs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ultrasensitive thrombin detection based on direct electrochemistry of highly loaded hemoglobin spheres-encapsulated platinum nanoparticles as labels and electrocatalysts.

    PubMed

    Wu, Yongmei; Xu, Wenju; Bai, Lijuan; Yuan, Yali; Yi, Huayu; Chai, Yaqin; Yuan, Ruo

    2013-12-15

    For the first time, a sandwich-type electrochemical method was proposed for ultrasensitive thrombin (TB) detection based on direct electrochemistry of highly loaded hemoglobin spheres-encapsulated platinum nanoparticles (PtNPs@Hb) as labels and electrocatalysts. The prepared PtNPs@Hb not only exhibited good biocompatibility, excellent electrocatalytic activity, but also presented redox activity of Hb. Thus, it was employed for the fabrication of aptasensor without any extraneous redox mediators, leading to a simple preparation process for the aptasensor. The high loading of Hb spheres as redox mediators could enhance the electrochemical signal. Importantly, the synergetic electrocatalytic behavior of Hb and PtNPs toward H2O2 reduction greatly amplified the electrochemical signal, resulting in the high sensitivity of aptasensor. Consequently, under optimal conditions, the designed aptasensor exhibited a lower detection limit of 0.05 pM and wide dynamic linear range from 0.15 pM to 40 nM for TB detection. Additionally, the proposed mediator-free and signal-amplified electrochemical aptasensor showed great potential in portable and cost-effective TB sensing devices. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. An aptamer-based biosensing platform for highly sensitive detection of platelet-derived growth factor via enzyme-mediated direct electrochemistry.

    PubMed

    Deng, Kun; Xiang, Yang; Zhang, Liqun; Chen, Qinghai; Fu, Weiling

    2013-01-08

    In this work, a new label-free electrochemical aptamer-based sensor (aptasensor) was constructed for detection of platelet-derived growth factor (PDGF) based on the direct electrochemistry of glucose oxidase (GOD). For this proposed aptasensor, poly(diallyldimethylammonium chloride) (PDDA)-protected graphene-gold nanoparticles (P-Gra-GNPs) composite was firstly coated on electrode surface to form the interface with biocompatibility and huge surface area for the adsorption of GOD layer. Subsequently, gold nanoclusters (GNCs) were deposited on the surface of GOD to capture PDGF binding aptamer (PBA). Finally, GOD as a blocking reagent was employed to block the remaining active sites of the GNCs and avoid the nonspecific adsorption. With the direct electron transfer of double layer GOD membranes, the aptasensor showed excellent electrochemical response and the peak current decreased linearly with increasing logarithm of PDGF concentration from 0.005 nM to 60 nM with a relatively low limit of detection of 1.7 pM. The proposed aptasensor exhibited high specificity, good reproducibility and long-term stability, which provided a new promising technique for aptamer-based protein detection. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.

    PubMed

    Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil

    2013-05-21

    Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery's electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of

  19. Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Feng; Liu, Yijin; Yu, Xiqian

    Rechargeable battery technologies have ignited major breakthroughs in contemporary society, including but not limited to revolutions in transportation, electronics, and grid energy storage. The remarkable development of rechargeable batteries is largely attributed to in-depth efforts to improve battery electrode and electrolyte materials. There are, however, still intimidating challenges of lower cost, longer cycle and calendar life, higher energy density, and better safety for large scale energy storage and vehicular applications. Further progress with rechargeable batteries may require new chemistries (lithium ion batteries and beyond) and better understanding of materials electrochemistry in the various battery technologies. In the past decade, advancementmore » of battery materials has been complemented by new analytical techniques that are capable of probing battery chemistries at various length and time scales. Synchrotron X-ray techniques stand out as one of the most effective methods that allows for nearly nondestructive probing of materials characteristics such as electronic and geometric structures with various depth sensitivities through spectroscopy, scattering, and imaging capabilities. This article begins with the discussion of various rechargeable batteries and associated important scientific questions in the field, followed by a review of synchrotron X-ray based analytical tools (scattering, spectroscopy and imaging) and their successful applications (ex situ, in situ, and in operando) in gaining fundamental insights into these scientific questions. Furthermore, electron microscopy and spectroscopy complement the detection length scales of synchrotron X-ray tools, and are also discussed towards the end. We highlight the importance of studying battery materials by combining analytical techniques with complementary length sensitivities, such as the combination of X-ray absorption spectroscopy and electron spectroscopy with spatial resolution

  20. Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries

    DOE PAGES

    Lin, Feng; Liu, Yijin; Yu, Xiqian; ...

    2017-08-30

    Rechargeable battery technologies have ignited major breakthroughs in contemporary society, including but not limited to revolutions in transportation, electronics, and grid energy storage. The remarkable development of rechargeable batteries is largely attributed to in-depth efforts to improve battery electrode and electrolyte materials. There are, however, still intimidating challenges of lower cost, longer cycle and calendar life, higher energy density, and better safety for large scale energy storage and vehicular applications. Further progress with rechargeable batteries may require new chemistries (lithium ion batteries and beyond) and better understanding of materials electrochemistry in the various battery technologies. In the past decade, advancementmore » of battery materials has been complemented by new analytical techniques that are capable of probing battery chemistries at various length and time scales. Synchrotron X-ray techniques stand out as one of the most effective methods that allows for nearly nondestructive probing of materials characteristics such as electronic and geometric structures with various depth sensitivities through spectroscopy, scattering, and imaging capabilities. This article begins with the discussion of various rechargeable batteries and associated important scientific questions in the field, followed by a review of synchrotron X-ray based analytical tools (scattering, spectroscopy and imaging) and their successful applications (ex situ, in situ, and in operando) in gaining fundamental insights into these scientific questions. Furthermore, electron microscopy and spectroscopy complement the detection length scales of synchrotron X-ray tools, and are also discussed towards the end. We highlight the importance of studying battery materials by combining analytical techniques with complementary length sensitivities, such as the combination of X-ray absorption spectroscopy and electron spectroscopy with spatial resolution

  1. Electrochemistry of mixed-metal bimetallic complexes containing the pentacyanoferrate(II) or pentaammineruthenium(II) metal center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K.J.; Lee, L.; Mabbott, G.A.

    1983-03-30

    The electrochemistry of a series of mixed-metal bimetallic complexes of the type B/sub 5/MLM'B'/sub 5/, where B/sub 5/M = (CNN)/sub 5/Fe/sup II/ or (NH/sub 3/)/sub 5/Ru/sup II/, L = pyrazine, 4,4'-bipyridine, or 4-cyanopyridine, M'B'/sub 5/ = Rh/sup III/(NH/sub 3/)/sub 5/ or Co/sup III/(CN)/sub 5/, is reported. The bimetallic complexes all have metal-to-ligand charge-transfer (MLCT) bands associated with the M-B unit (d/sub ..pi../M ..-->.. p/sub ..pi../*L). The effect of the remote metal center, M'B'/sub 5/, is to function as a Lewis acid, shifting the MLCT maximum to lower energy and shifting the M/sup III///sup II/ reduction potential more positive with respectmore » to free B/sub 5/ML. The remote metal influence is attenuated by longer bridging ligands and by reduced ..pi..-overlap. A comparison of the electrochemical data of the mixed-valence Fe(II)/Fe(III) and Ru(II)/Ru(III) complexes to the mixed-metal Fe(II)/Co(III) and Ru(II)/Rh(III) complexes has enabled a quantitative measure of the stabilization due to electron delocalization in the mixed-valence complexes. The results show that electron delocalization is greater for the ruthenium complexes than for the iron complexes, is a small contributor to the total stabilization of the mixed-valence state, and even in ruthenium drops off rapidly as the length of the bridge increases.« less

  2. Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor.

    PubMed

    Pakapongpan, Saithip; Poo-Arporn, Rungtiva P

    2017-07-01

    A novel approach of the immobilization of a highly selective and stable glucose biosensor based on direct electrochemistry was fabricated by a self-assembly of glucose oxidase (GOD) on reduced graphene oxide (RGO) covalently conjugated to magnetic nanoparticles (Fe 3 O 4 NPs) modified on a magnetic screen-printed electrode (MSPE). The RGO-Fe 3 O 4 nanocomposite has remarkable enhancement in large surface areas, is favorable environment for enzyme immobilization, facilitates electron transfer between enzymes and electrode surfaces and possesses superparamagnetism property. The morphology and electrochemical properties of RGO-Fe 3 O 4 /GOD were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, cyclic voltammetry (CV) and amperometry. The modified electrode was a fast, direct electron transfer with an apparent electron transfer rate constant (k s ) of 13.78s -1 . The proposed biosensor showed fast amperometric response (3s) to glucose with a wide linear range from 0.05 to 1mM, a low detection limit of 0.1μM at a signal to noise ratio of 3 (S/N=3) and good sensitivity (5.9μA/mM). The resulting biosensor has high stability, good reproducibility, excellent selectivity and successfully applied detection potential at -0.45V. This mediatorless glucose sensing used the advantages of covalent bonding and self-assembly as a new approach for immobilizing enzymes without any binder. It would be worth noting that it opens a new avenue for fabricating excellent electrochemical biosensors. This is a new approach that reporting the immobilization of glucose oxidase on reduced graphene oxide (RGO) covalently conjugated to magnetic nanoparticles (Fe 3 O 4 NPs) by electrostatic interaction and modified screen printed electrode. We propose the reagentless with fabrication method without binder and adhesive agents for immobilized enzyme. Fe 3 O 4 NPs increasing surface area to enhance the immobilization and prevent

  3. Using porphyrin-amino acid pairs to model the electrochemistry of heme proteins: experimental and theoretical investigations.

    PubMed

    Samajdar, Rudra N; Manogaran, Dhivya; Yashonath, S; Bhattacharyya, Aninda J

    2018-04-18

    Quasi reversibility in electrochemical cycling between different oxidation states of iron is an often seen characteristic of iron containing heme proteins that bind dioxygen. Surprisingly, the system becomes fully reversible in the bare iron-porphyrin complex: hemin. This leads to the speculation that the polypeptide bulk (globin) around the iron-porphyrin active site in these heme proteins is probably responsible for the electrochemical quasi reversibility. To understand the effect of such polypeptide bulk on iron-porphyrin, we study the interaction of specific amino acids with the hemin center in solution. We choose three representative amino acids-histidine (a well-known iron coordinator in bio-inorganic systems), tryptophan (a well-known fluoroprobe for proteins), and cysteine (a redox-active organic molecule). The interactions of these amino acids with hemin are studied using electrochemistry, spectroscopy, and density functional theory. The results indicate that among these three, the interaction of histidine with the iron center is strongest. Further, histidine maintains the electrochemical reversibility of iron. On the other hand, tryptophan and cysteine interact weakly with the iron center but disturb the electrochemical reversibility by contributing their own redox active processes to the system. Put together, this study attempts to understand the molecular interactions that can control electrochemical reversibility in heme proteins. The results obtained here from the three representative amino acids can be scaled up to build a heme-amino acid interaction database that may predict the electrochemical properties of any protein with a defined polypeptide sequence.

  4. Electrochemistry, surface plasmon resonance, and quartz crystal microbalance: an associative study on cytochrome c adsorption on pyridine tail-group monolayers on gold.

    PubMed

    Paulo, Tércio de F; de Sousa, Ticyano P; de Abreu, Dieric S; Felício, Nathalie H; Bernhardt, Paul V; Lopes, Luiz G de F; Sousa, Eduardo H S; Diógenes, Izaura C N

    2013-07-25

    Quartz crystal microbalance (QCM), surface plasmon resonance (SPR), and electrochemistry techniques were used to study the electron-transfer (ET) reaction of cytochrome c (Cyt c) on gold surfaces modified with thionicotinamide, thioisonicotinamide, 4-mercaptopyridine, 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol, 5-phenyl-1,3,4-oxadiazole-2-thiol, 4,4'-bipyridine, and 4,4'-dithiopyridine. The electrochemical results showed that the ET process is complex, being chiefly diffusional with steps depending on the orientation of the pyridine or phenyl tail group of the modifiers. The correlation between the electrochemical results and those acquired by SPR and QCM indicated the presence of an adlayer of Cyt c adsorbed on the thiolate SAMs. This adlayer, although being not electroactive, is essential to assess the ET reaction of Cyt c in solution. The results presented in this work are consistent with the statement (Feng, Z. Q.; Imabayashi, S.; Kakiuchi, T.; Niki, K. J. Electroanal. Chem. 1995, 394, 149-154) that the ET reaction of Cyt c can be explained in terms of the through-bond tunneling mechanism.

  5. Determination of psychostimulants and their metabolites by electrochemistry linked on-line to flowing atmospheric pressure afterglow mass spectrometry.

    PubMed

    Smoluch, Marek; Mielczarek, Przemyslaw; Reszke, Edward; Hieftje, Gary M; Silberring, Jerzy

    2014-09-07

    The flowing atmospheric pressure afterglow (FAPA) ion source operates in the ambient atmosphere and has been proven to be a promising tool for direct and rapid determination of numerous compounds. Here we linked a FAPA-MS system to an electrochemical flow cell for the identification of drug metabolites generated electrochemically in order to study simulated metabolic pathways. Psychostimulants and their metabolites produced by electrochemistry (EC) were detected on-line by FAPA-MS. The FAPA source has never been used before for an on-line connection with liquid flow, neither for identification of products generated in an electrochemical flow cell. The system was optimized to achieve the highest ionization efficiency by adjusting several parameters, including distances and angles between the ion source and the outlet of the EC system, the high voltage for plasma generation, flow-rates, and EC parameters. Simulated metabolites from tested compounds [methamphetamine (MAF), para-methoxy-N-methylamphetamine (PMMA), dextromethorphan (DXM), and benzydamine (BAM)] were formed in the EC cell at various pH levels. In all cases the main products were oxidized substrates and compounds after N-demethylation. Generation of such products and their thorough on-line identification confirm that the cytochrome P450 - driven metabolism of pharmaceuticals can be efficiently simulated in an electrochemical cell; this approach may serve as a step towards predictive pharmacology using a fast and robust design.

  6. A multi-site array for combined local electrochemistry and electrophysiology in the non-human primate brain.

    PubMed

    Disney, Anita A; McKinney, Collin; Grissom, Larry; Lu, Xuekun; Reynolds, John H

    2015-11-30

    Currently, the primary technique employed in circuit-level study of the brain is electrophysiology, recording local field or action potentials (LFPs or APs). However most communication between neurons is chemical and the relationship between electrical activity within neurons and chemical signaling between them is not well understood in vivo, particularly for molecules that signal at least in part by non-synaptic transmission. We describe a multi-contact array and accompanying head stage circuit that together enable concurrent electrophysiological and electrochemical recording. The array is small (<200 μm) and can be assembled into a device of arbitrary length. It is therefore well-suited for use in all major in vivo model systems in neuroscience, including non-human primates where the large brain and need for daily insertion and removal of recording devices places particularly strict demands on design. We present a protocol for array fabrication. We then show that a device built in the manner described can record LFPs and perform enzyme-based amperometric detection of choline in the awake macaque monkey. Comparison with existing methods Existing methods allow single mode (electrophysiology or electrochemistry) recording. This system is designed for concurrent, dual-mode recording. It is also the only system designed explicitly to meet the challenges of recording in non-human primates. Our system offers the possibility for conducting in vivo studies in a range of species that examine the relationship between the electrical activity of neurons and their chemical environment, with exquisite spatial and temporal precision. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. A multi-site array for combined local electrochemistry and electrophysiology in the non-human primate brain

    PubMed Central

    Disney, Anita A; McKinney, Collin; Grissom, Larry; Lu, Xuekun; Reynolds, John H

    2015-01-01

    Background Currently, the primary technique employed in circuit-level study of the brain is electrophysiology, recording local field or action potentials (LFPs or APs). However most communication between neurons is chemical and the relationship between electrical activity within neurons and chemical signaling between them is not well understood in vivo, particularly for molecules that signal at least in part by non-synaptic transmission. New Method We describe a multi-contact array and accompanying head stage circuit that together enable concurrent electrophysiological and electrochemical recording. The array is small (<200μm) and can be assembled into a device of arbitrary length. It is therefore well-suited for use in all major in vivo model systems in neuroscience, including non-human primates where the large brain and need for daily insertion and removal of recording devices places particularly strict demands on design. Results We present a protocol for array fabrication. We then show that a device built in the manner described can record LFPs and perform enzyme-based amperometric detection of choline in the awake macaque monkey. Comparison with existing methods Existing methods allow single mode (electrophysiology or electrochemistry) recording. This system is designed for concurrent, dual-mode recording. It is also the only system designed explicitly to meet the challenges of recording in non-human primates. Conclusions Our system offers the possibility for conducting in vivo studies in a range of species that examine the relationship between the electrical activity of neurons and their chemical environment, with exquisite spatial and temporal precision. PMID:26226654

  8. Fabrication of biomembrane-like films on carbon electrodes using alkanethiol and diazonium salt and their application for direct electrochemistry of myoglobin.

    PubMed

    Anjum, Saima; Qi, Wenjing; Gao, Wenyue; Zhao, Jianming; Hanif, Saima; Aziz-Ur-Rehman; Xu, Guobao

    2015-03-15

    Alkanethiols generally form self-assembled monolayers on gold electrodes and the electrochemical reduction of aromatic diazonium salts is a popular method for the covalent modification of carbon. Based on the reaction of alkanethiol with aldehyde groups covalently bound on carbon surface by the electrochemical reduction of aromatic diazonium salts, a new strategy for the modification of carbon electrodes with alkanethiols has been developed. The modification of carbon surface with aldehyde groups is achieved by the electrochemical reduction of aromatic diazonium salts in situ electrogenerated from a nitro precursor, p-nitrophenylaldehyde, in the presence of nitrous acid. By this way, in situ electrogenerated p-aminophenyl aldehyde from p-nitrophenylaldehyde immediately reacts with nitrous acid, effectively minimizing the side reaction of amine groups and aldehyde groups. The as-prepared alkanethiol-modified glassy carbon electrode was further used to make biomembrane-like films by casting didodecyldimethylammonium bromide on its surface. The biomembrane-like films enable the direct electrochemistry of immobilized myoglobin for the detection of hydrogen peroxide. The response is linear over the range of 1-600μM with a detection limit of 0.3μM. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Template Synthesis and Magnetic Manipulation of Nickel Nanowires

    ERIC Educational Resources Information Center

    Bentley, Anne K.; Crone, Wendy C.; Farhoud, Mohammed; Ellis, Arthur B.; Lisensky, George C.; Nickel, Anne-Marie L.

    2005-01-01

    An experiment that highlights the role electrochemistry plays in the fabrication of nanoscale structures is presented. The movement and alignment of the nickel nanowires were observed, when manipulated using magnetic fields through the lens of an optical microscope using common magnets to alter the applied magnetic field.

  10. Electrochemical Study and Determination of Electroactive Species with Screen-Printed Electrodes

    ERIC Educational Resources Information Center

    Martín-Yerga, Daniel; Costa Rama, Estefanía; Costa García, Agustín

    2016-01-01

    A lab appropriate to introduce voltammetric techniques and basic electrochemical parameters is described in this work. It is suitable to study theoretical concepts of electrochemistry in an applied way for analytical undergraduate courses. Two electroactive species, hexaammineruthenium and dopamine, are used as simple redox systems. Screen-printed…

  11. Influence of the substituents on the electronic and electrochemical properties of a new square-planar nickel-bis(quinoxaline-6,7-dithiolate) system: synthesis, spectroscopy, electrochemistry, crystallography, and theoretical investigation.

    PubMed

    Bolligarla, Ramababu; Reddy, Samala Nagaprasad; Durgaprasad, Gummadi; Sreenivasulu, Vudagandla; Das, Samar K

    2013-01-07

    We describe the synthesis, crystal structures, electronic absorption spectra, and electrochemistry of a series of square-planar nickel-bis(quinoxaline-6,7-dithiolate) complexes with the general formula [Bu(4)N](2)[Ni(X(2)6,7-qdt)(2)], where X = H (1a), Ph (2a), Cl (3), and Me (4). The solution and solid-state electronic absorption spectral behavior and electrochemical properties of these compounds are strongly dependent on the electron donating/accepting nature of the substituent X, attached to the quinoxaline-6,7-dithiolate ring in the system [Bu(4)N](2)[Ni(X(2)6,7-qdt)(2)]. Particularly, the charge transfer (CT) transition bands observed in the visible region are greatly affected by the electronic nature of the substituent. A possible explanation for this influence of the substituents on electronic absorption and electrochemistry is described based on highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) gaps, which is further supported by ground-state electronic structure calculations. In addition to this, the observed CT bands in all the complexes are sensitive to the solvent polarity. Interestingly, compounds 1a, 2a, 3, and 4 undergo reversible oxidation at very low oxidation potentials appearing at E(1/2) = +0.12 V, 0.033 V, 0.18 V, and 0.044 V vs Ag/AgCl, respectively, in MeOH solutions, corresponding to the respective couples [Ni(X(2)6,7-qdt)(2)](-)/[Ni(X(2)6,7-qdt)(2)](2-). Compounds 1a, 3, and 4 have been characterized unambiguously by single crystal X-ray structural analysis; compound 2a could not be characterized by single crystal X-ray structure determination because of the poor quality of the concerned crystals. Thus, we have synthesized the tetraphenyl phosphonium salt of the complex anion of 2a, [PPh(4)](2)[Ni(Ph(2)6,7-qdt)(2)]·3DMF (2b) for its structural characterization.

  12. Chemical and Electrochemical Studies in Ionic Liquids

    DTIC Science & Technology

    1990-01-12

    Electrochemistry and Witchcraft ", Gordon Research Conference on Electrochemistry", Santa Barbara, CA, January, 1985. OR. A. Osteryoung, ’An Introduction to...Temperature Chloroaluminate Ionic Liquids: Chemistry, Electrochemistry and Witchcraft ", Chemistry Department Colloquium, University of Alabama...Tuscaloosa, Alabama, December 1, 1988. OR. A. Osteryoung, "Ambient Temperature Chloroaluminate Ionic Liquids: Chemistry, Electrochemistry and Witchcraft

  13. A facile electrochemical intercalation and microwave assisted exfoliation methodology applied to screen-printed electrochemical-based sensing platforms to impart improved electroanalytical outputs.

    PubMed

    Pierini, Gastón D; Foster, Christopher W; Rowley-Neale, Samuel J; Fernández, Héctor; Banks, Craig E

    2018-06-12

    Screen-printed electrodes (SPEs) are ubiquitous with the field of electrochemistry allowing researchers to translate sensors from the laboratory to the field. In this paper, we report an electrochemically driven intercalation process where an electrochemical reaction uses an electrolyte as a conductive medium as well as the intercalation source, which is followed by exfoliation and heating/drying via microwave irradiation, and applied to the working electrode of screen-printed electrodes/sensors (termed EDI-SPEs) for the first time. This novel methodology results in an increase of up to 85% of the sensor area (electrochemically active surface area, as evaluated using an outer-sphere redox probe). Upon further investigation, it is found that an increase in the electroactive area of the EDI-screen-printed based electrochemical sensing platforms is critically dependent upon the analyte and its associated electrochemical mechanism (i.e. adsorption vs. diffusion). Proof-of-concept for the electrochemical sensing of capsaicin, a measure of the hotness of chillies and chilli sauce, within both model aqueous solutions and a real sample (Tabasco sauce) is demonstrated in which the electroanalytical sensitivity (a plot of signal vs. concentration) is doubled when utilising EDI-SPEs over that of SPEs.

  14. Spin-Dependent Transport through Chiral Molecules Studied by Spin-Dependent Electrochemistry

    PubMed Central

    2016-01-01

    Conspectus Molecular spintronics (spin + electronics), which aims to exploit both the spin degree of freedom and the electron charge in molecular devices, has recently received massive attention. Our recent experiments on molecular spintronics employ chiral molecules which have the unexpected property of acting as spin filters, by way of an effect we call “chiral-induced spin selectivity” (CISS). In this Account, we discuss new types of spin-dependent electrochemistry measurements and their use to probe the spin-dependent charge transport properties of nonmagnetic chiral conductive polymers and biomolecules, such as oligopeptides, L/D cysteine, cytochrome c, bacteriorhodopsin (bR), and oligopeptide-CdSe nanoparticles (NPs) hybrid structures. Spin-dependent electrochemical measurements were carried out by employing ferromagnetic electrodes modified with chiral molecules used as the working electrode. Redox probes were used either in solution or when directly attached to the ferromagnetic electrodes. During the electrochemical measurements, the ferromagnetic electrode was magnetized either with its magnetic moment pointing “UP” or “DOWN” using a permanent magnet (H = 0.5 T), placed underneath the chemically modified ferromagnetic electrodes. The spin polarization of the current was found to be in the range of 5–30%, even in the case of small chiral molecules. Chiral films of the l- and d-cysteine tethered with a redox-active dye, toludin blue O, show spin polarizarion that depends on the chirality. Because the nickel electrodes are susceptible to corrosion, we explored the effect of coating them with a thin gold overlayer. The effect of the gold layer on the spin polarization of the electrons ejected from the electrode was investigated. In addition, the role of the structure of the protein on the spin selective transport was also studied as a function of bias voltage and the effect of protein denaturation was revealed. In addition to

  15. Functionalization of carbon nanotubes with water-insoluble porphyrin in ionic liquid: direct electrochemistry and highly sensitive amperometric biosensing for trichloroacetic acid.

    PubMed

    Tu, Wenwen; Lei, Jianping; Ju, Huangxian

    2009-01-01

    A functional composite of single-walled carbon nanotubes (SWNTs) with hematin, a water-insoluble porphyrin, was first prepared in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) ionic liquid. The novel composite in ionic liquid was characterized by scanning electron microscopy, ultraviolet absorption spectroscopy, and electrochemical impedance spectroscopy, and showed a pair of direct redox peaks of the Fe(III)/Fe(II) couple. The composite-[BMIM][PF(6)]-modified glassy carbon electrode showed excellent electrocatalytic activity toward the reduction of trichloroacetic acid (TCA) in neutral media due to the synergic effect among SWNTs, [BMIM][PF(6)], and porphyrin, which led to a highly sensitive and stable amperometric biosensor for TCA with a linear range from 9.0x10(-7) to 1.4x10(-4) M. The detection limit was 3.8x10(-7) M at a signal-to-noise ratio of 3. The TCA biosensor had good analytical performance, such as rapid response, good reproducibility, and acceptable accuracy, and could be successfully used for the detection of residual TCA in polluted water. The functional composite in ionic liquid provides a facile way to not only obtain the direct electrochemistry of water-insoluble porphyrin, but also construct novel biosensors for monitoring analytes in real environmental samples.

  16. A Quasi-Optical Method for Measuring the Complex Permittivity of Materials.

    DTIC Science & Technology

    1984-09-01

    structural mechanics, flight dynamics; high-temperature thermomechanica, gas kinetics and radiation; research in environmental chemistry and...specific chemical reactions and radia- tion transport in rocket pluses, applied laser spectroscopy, laser chemistry, batery electrochemistry, space...corrosion; evaluation of materials in space environment ; materials performance In space transportation systems; anal- ysis of system vulnerability and

  17. Goals.

    ERIC Educational Resources Information Center

    Phillips, David A.; Phillips, Prudence

    1985-01-01

    Presents two discussions which focus on the rationale for and goals of teaching electrochemistry at high school and college levels. The first is "Electrochemistry" by Ronald Perkins and the second is "Goals in Teaching Electrochemistry" by J. T. Maloy. (JN)

  18. Fullerene-nitrogen doped carbon nanotubes for the direct electrochemistry of hemoglobin and its application in biosensing.

    PubMed

    Sheng, Qinglin; Liu, Ruixiao; Zheng, Jianbin

    2013-12-01

    The direct electrochemistry of hemoglobin (Hb) immobilized by a fullerene-nitrogen doped carbon nanotubes and chitosan (C60-NCNTs/CHIT) composite matrix is demonstrated. The cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the modified electrode. In the deaerated buffer solution, the cyclic voltammogram of the Hb/C60-NCNTs/CHIT composite film modified electrode showed a pair of well-behaved redox peaks with the E°'=-0.335 (± 0.3) V (vs. SCE). The redox peaks are assigned to the redox reaction of Hb(Fe(III)/Fe(II)) and confirm the effective immobilization of Hb on the composite film. The large value of ks = 1.8 (± 0.2)s(-1) suggests that the immobilized Hb achieved a relative fast electron transfer process. The fast electron transfer interaction between protein and electrode surface suggested that the C60-NCNTs/CHIT composite film may mimic some physiological process and further elucidate the relationship between protein structures and biological functions. Moreover, the resulting electrode exhibited excellent electrocatalytic ability towards the reduction of hydrogen peroxide (H2O2) with the linear dynamic range of 2.0-225.0 μM. The linear regression equation was Ip/μA=7.35 (± 0.08)+0.438 (± 0.007)C/μM with the correlation coefficient of 0.9993. The detection limit was estimated at about 1 μM (S/N=3). The sensitivity was 438.0 (± 2.5) μA mM(-1). It is expected that the method presented here can not only be easily extended to other redox enzymes or proteins, but also be used as an electrochemical sensing devices for the determination of H2O2 in cell extracts or urine. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Fully solar-driven thermo- and electrochemistry for advanced oxidation processes (STEP-AOPs) of 2-nitrophenol wastewater.

    PubMed

    Nie, Chunhong; Shao, Nan; Wang, Baohui; Yuan, Dandan; Sui, Xin; Wu, Hongjun

    2016-07-01

    The STEP (Solar Thermal Electrochemical Process) for Advanced Oxidation Processes (AOPs, combined to STEP-AOPs), fully driven by solar energy without the input of any other forms of energy and chemicals, is introduced and demonstrated from the theory to experiments. Exemplified by the persistent organic pollutant 2-nitrophenol in water, the fundamental model and practical system are exhibited for the STEP-AOPs to efficiently transform 2-nitrophenol into carbon dioxide, water, and the other substances. The results show that the STEP-AOPs system performs more effectively than classical AOPs in terms of the thermodynamics and kinetics of pollutant oxidation. Due to the combination of solar thermochemical reactions with electrochemistry, the STEP-AOPs system allows the requisite electrolysis voltage of 2-nitrophenol to be experimentally decreased from 1.00 V to 0.84 V, and the response current increases from 18 mA to 40 mA. STEP-AOPs also greatly improve the kinetics of the oxidation at 30 °C and 80 °C. As a result, the removal rate of 2-nitrophenol after 1 h increased from 19.50% at 30 °C to 32.70% at 80 °C at constant 1.90 V. Mechanistic analysis reveals that the oxidation pathway is favorably changed because of thermal effects. The tracking of the reaction displayed that benzenediol and hydroquinone are initial products, with maleic acid and formic acid as sequential carboxylic acid products, and carbon dioxide as the final product. The theory and experiments on STEP-AOPs system exemplified by the oxidation of 2-nitrophenol provide a broad basis for extension of the STEP and AOPs for rapid and efficient treatment of organic wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Microbial Electrochemistry and its Application to Energy and Environmental Issues

    NASA Astrophysics Data System (ADS)

    Hastings, Jason Thomas

    Microbial electrochemistry forms the basis of a wide range of topics from microbial fuel cells to fermentation of carbon food sources. The ability to harness microbial electron transfer processes can lead to a greener and cleaner future. This study focuses on microbial electron transfer for liquid fuel production, novel electrode materials, subsurface environments and removal of unwanted byproducts. In the first chapter, exocellular electron transfer through direct contact utilizing passive electrodes for the enhancement of bio-fuel production was tested. Through the application of microbial growth in a 2-cell apparatus on an electrode surface ethanol production was enhanced by 22.7% over traditional fermentation. Ethanol production efficiencies of close to 95% were achieved in a fraction of the time required by traditional fermentation. Also, in this chapter, the effect of exogenous electron shuttles, electrode material selection and resistance was investigated. Power generation was observed using the 2-cell passive electrode system. An encapsulation method, which would also utilize exocellular transfer of electrons through direct contact, was hypothesized for the suspension of viable cells in a conductive polymer substrate. This conductive polymer substrate could have applications in bio-fuel production. Carbon black was added to a polymer solution to test electrospun polymer conductivity and cell viability. Polymer morphology and cell viability were imaged using electron and optical microscopy. Through proper encapsulation, higher fuel production efficiencies would be achievable. Electron transfer through endogenous exocellular protein shuttles was observed in this study. Secretion of a soluble redox active exocellular protein by Clostridium sp. have been shown utilizing a 2-cell apparatus. Cyclic voltammetry and gel electrophoresis were used to show the presence of the protein. The exocellular protein is capable of reducing ferrous iron in a

  1. Lorentz Force on Sodium and Chlorine Ions in a Salt Water Solution Flow under a Transverse Magnetic Field

    ERIC Educational Resources Information Center

    De Luca, R.

    2009-01-01

    It is shown that, by applying elementary concepts in electromagnetism and electrochemistry to a system consisting of salt water flowing in a thin rectangular pipe at an average velocity v[subscript A] under the influence of a transverse magnetic field B[subscript 0], an electromotive force generator can be conceived. In fact, the Lorentz force…

  2. Science and Technology Text Mining: Electric Power Sources

    DTIC Science & Technology

    2004-04-01

    Transactions of Power Systems), Thermal Engineering (Applied Thermal Engineering, JSME International Journal Series B – Fluids Thermal Engineering...Renewables ( International Journal of Hydrogen Energy, Biomass and Bioenergy, Solar Energy), Electrochemistry (Solid State Ionics, Journal of the...pollutants, with balanced emphasis given to solar and biomass systems. The papers in International Journal of Energy Research focus on performance of total

  3. Preparation and structure of Na2Ag5Fe3(P2O7)4 -Ag metal composite: Insights on electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiman; Marschilok, Amy C.; Takeuchi, Esther S.

    ABSTRACT Ag 7Fe 3(P 2O 7) 4is a 3D structured material which has been recently studied as a possible cathode material for lithium batteries. Notably, Na 7Fe 3(P 2O 7) 4is reported to be a fast-ion conductor, yet poor electrical conductor. Here, partial replacement of Na +for Ag +yielded Na 2Ag 5Fe 3(P 2O 7) 4pyrophosphate framework where the formation of Ag metal is proposed to increase the intrinsic low electrical conductivity of this polyanion electrode. Specifically, the Ag 5Na 2Fe 3(P 2O 7) 4-Ag composite is synthesized via chemical reduction of Ag 7Fe 3(P 2O 7) 4using NaBH 4.more » The occupancy of Ag +and Na +in each site was determined via Rietveld analysis of the diffraction pattern. Electrochemistry of the Ag 5Na 2Fe 3(P 2O 7) 4-Ag metal composite was explored with voltammetry and galvanostatic charge/discharge cycling. The Ag 5Na 2Fe 3(P 2O 7) 4-Ag metal composite electrodes displayed good rate capability assisted by the presence of Ag metal from the chemical reduction and in-situ electrochemical formation of a Ag conductive network.« less

  4. Characterization of core/shell Cu/Ag nanopowders synthesized by electrochemistry and assessment of their impact on hemolysis, platelet aggregation, and coagulation on human blood for potential wound dressing use

    NASA Astrophysics Data System (ADS)

    Laloy, Julie; Haguet, Hélène; Alpan, Lutfiye; Mancier, Valérie; Mejia, Jorge; Levi, Samuel; Dogné, Jean-Michel; Lucas, Stéphane; Rousse, Céline; Fricoteaux, Patrick

    2017-08-01

    Copper/silver core/shell nanopowders with different metal ratio have been elaborated by electrochemistry (ultrasound-assisted electrolysis followed by a displacement reaction). Characterization was performed by several methods (X-ray diffraction, scanning electron microscope, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, centrifugal liquid sedimentation, and zeta potential measurements). The mean diameter of all nanoparticles is around 10 nm. The impact of each nanopowder on hemolysis, platelet aggregation, and coagulation has been studied on whole human blood. Hemolysis assays were performed with spectrophotometric measurement and platelet aggregation, with light transmission aggregometry and was compared to Cu/Pt core/shell nanoparticles with similar size as negative control. Calibrated thrombin generation test has been used for a coagulation study. They neither impact platelet aggregation nor hemolysis and have a procoagulant effect whatever their composition (i.e., metal ratio). These results highlight that such nanopowders have a potential use in medical applications (e.g., wound dressing).

  5. Sol-gel derived silica/chitosan/Fe3O4 nanocomposite for direct electrochemistry and hydrogen peroxide biosensing

    NASA Astrophysics Data System (ADS)

    Satvekar, R. K.; Rohiwal, S. S.; Tiwari, A. P.; Raut, A. V.; Tiwale, B. M.; Pawar, S. H.

    2015-01-01

    A novel strategy to fabricate hydrogen peroxide third generation biosensor has been developed from sol-gel of silica/chitosan (SC) organic-inorganic hybrid material assimilated with iron oxide magnetic nanoparticles (Fe3O4). The large surface area of Fe3O4 and porous morphology of the SC composite facilitates a high loading of horseradish peroxidase (HRP). Moreover, the entrapped enzyme preserves its conformation and biofunctionality. The fabrication of hydrogen peroxide biosensor has been carried out by drop casting of the SC/F/HRP nanocomposite on glassy carbon electrode (GCE) for study of direct electrochemistry. The x-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) confirms the phase purity and particle size of as-synthesized Fe3O4 nanoparticles, respectively. The nanocomposite was characterized by UV-vis spectroscopy, fluorescence spectroscopy and Fourier transform infrared (FTIR) for the characteristic structure and conformation of enzyme. The surface topographies of the nanocomposite thin films were investigated by scanning electron microscopy (SEM). Dynamic light scattering (DLS) was used to determine the particle size distribution. The electrostatic interactions of the SC composite with Fe3O4 nanoparticles were studied by the zeta potential measurement. Electrochemical impedance spectroscopy (EIS) of the SC/F/HRP/GCE electrode displays Fe3O4 nanoparticles as an excellent candidate for electron transfer. The SC/F/HRP/GCE exhibited a pair of well-defined quasi reversible cyclic voltammetry peaks due to the redox couple of HRP-heme Fe (III)/Fe (II) in pH 7.0 potassium phosphate buffer. The biosensor was employed to detect H2O2 with linear range of 5 μM to 40 μM and detection limit of 5 μM. The sensor displays excellent selectivity, sensitivity, good reproducibility and long term stability.

  6. High Efficiency Space Power Systems Project Advanced Space-Rated Batteries

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2011-01-01

    Case Western Reserve University (CWRU) has an agreement with China National Offshore Oil Corporation New Energy Investment Company, Ltd. (CNOOC), under the United States-China EcoPartnerships Framework, to create a bi-national entity seeking to develop technically feasible and economically viable solutions to energy and environmental issues. Advanced batteries have been identified as one of the initial areas targeted for collaborations. CWRU invited NASA Glenn Research Center (GRC) personnel from the Electrochemistry Branch to CWRU to discuss various aspects of advanced battery development as they might apply to this partnership. Topics discussed included: the process for the selection of a battery chemistry; the establishment of an integrated development program; project management/technical interactions; new technology developments; and synergies between batteries for automotive and space operations. Additional collaborations between CWRU and NASA GRC's Electrochemistry Branch were also discussed.

  7. Low-Temperature Synthesis, Structural Characterization, and Electrochemistry of Ni-Rich Spinel-like LiNi 2–y Mn y O 4 (0.4 ≤ y ≤ 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam

    The thermal conversion of chemically delithiated layered Li 0.5Ni 1-yMn yO 2 (0.2 ≤ y ≤ 0.5) into spinel-like LiNi 2-yMn yO 4 (0.4 ≤ y ≤ 1) has been systematically investigated. The formed spinel-like phases are metastable and cannot be accessed by a conventional high-temperature solid-state method. The layered-to-spinel transformation mechanism has been studied by the Rietveld refinement of in situ neutron diffraction as a function of temperature (25–300 °C). In particular, the ionic diffusion of Li and M ions is quantified at different temperatures. Electrochemistry of the metastable spinel-like phases obtained has been studied in lithium-ion cells. Amore » bond valence sum map has been performed to understand the ionic diffusion of lithium ions in the Ni-rich layered, spinel, and rock-salt structures. The study can aid the understanding of the possible phases that could be formed during the cycling of Ni-rich layered oxide cathodes.« less

  8. Low-Temperature Synthesis, Structural Characterization, and Electrochemistry of Ni-Rich Spinel-like LiNi 2–yMn yO 4 (0.4 ≤ y ≤ 1)

    DOE PAGES

    Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam

    2015-10-28

    The thermal conversion of chemically delithiated layered Li 0.5Ni 1–yMn yO 2 (0.2 ≤ y ≤ 0.5) into spinel-like LiNi 2–yMn yO 4 (0.4 ≤ y ≤ 1) has been systematically investigated in this paper. The formed spinel-like phases are metastable and cannot be accessed by a conventional high-temperature solid-state method. The layered-to-spinel transformation mechanism has been studied by the Rietveld refinement of in situ neutron diffraction as a function of temperature (25–300 °C). In particular, the ionic diffusion of Li and M ions is quantified at different temperatures. Electrochemistry of the metastable spinel-like phases obtained has been studied inmore » lithium-ion cells. A bond valence sum map has been performed to understand the ionic diffusion of lithium ions in the Ni-rich layered, spinel, and rock-salt structures. Finally, the study can aid the understanding of the possible phases that could be formed during the cycling of Ni-rich layered oxide cathodes.« less

  9. Low-Temperature Synthesis, Structural Characterization, and Electrochemistry of Ni-Rich Spinel-like LiNi 2–yMn yO 4 (0.4 ≤ y ≤ 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam

    The thermal conversion of chemically delithiated layered Li 0.5Ni 1–yMn yO 2 (0.2 ≤ y ≤ 0.5) into spinel-like LiNi 2–yMn yO 4 (0.4 ≤ y ≤ 1) has been systematically investigated in this paper. The formed spinel-like phases are metastable and cannot be accessed by a conventional high-temperature solid-state method. The layered-to-spinel transformation mechanism has been studied by the Rietveld refinement of in situ neutron diffraction as a function of temperature (25–300 °C). In particular, the ionic diffusion of Li and M ions is quantified at different temperatures. Electrochemistry of the metastable spinel-like phases obtained has been studied inmore » lithium-ion cells. A bond valence sum map has been performed to understand the ionic diffusion of lithium ions in the Ni-rich layered, spinel, and rock-salt structures. Finally, the study can aid the understanding of the possible phases that could be formed during the cycling of Ni-rich layered oxide cathodes.« less

  10. Electrochemistry in hollow-channel paper analytical devices.

    PubMed

    Renault, Christophe; Anderson, Morgan J; Crooks, Richard M

    2014-03-26

    In the present article we provide a detailed analysis of fundamental electrochemical processes in a new class of paper-based analytical devices (PADs) having hollow channels (HCs). Voltammetry and amperometry were applied under flow and no flow conditions yielding reproducible electrochemical signals that can be described by classical electrochemical theory as well as finite-element simulations. The results shown here provide new and quantitative insights into the flow within HC-PADs. The interesting new result is that despite their remarkable simplicity these HC-PADs exhibit electrochemical and hydrodynamic behavior similar to that of traditional microelectrochemical devices.

  11. Electrochemistry and the Earth's Core-Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Walker, D.

    2001-12-01

    The Earth's core-mantle boundary consists of a highly heterogeneous metal-oxide interface subjected to high temperatures, pressures, and additionally, to the presence of a temporally- and spatially-varying electrical field generated by the outer core dynamo. An understanding of the core-mantle boundary should include the nature of its electrical behavior, its electrically induced chemical partitioning, and any resultant core-mantle dynamic coupling. To this end, we have developed a method to measure the electrical behavior of metal-silicate interfaces at high pressures (15-25 kbar) and temperatures (1300-1400° C) in a piston-cylinder apparatus. Platinum electrical leads are placed at each end of the sample, which consists of a layer of iron and/or iron alloy below a layer of silicate. The sample is enclosed in a sintered MgO chamber which is then surrounded by a metal Faraday cage, allowing the sample to be electrically insulated from the AC field of the graphite heater. The platinum electric leads are threaded through the thermocouple tube and connected with an HP4284A LCR meter to measure AC impedance, or to a DC power supply to apply a field such that either the silicate or the metal end is the anode (+). AC impedance measurements performed in-situ on samples consisting of Fe, Fe-Ni-S, and a basalt-olivine mixture in series show that conductivity is strongly dependent on the electrical polarization of the silicate relative to the sulfide. When the silicate is positively charged (silicate is the anode) and when there is no applied charge, the probe-to-probe resistance displays semiconductor behavior, with conductivity ( ~10-2 S/cm) strongly thermally activated. However, when the electrical polarity is reversed, and the sulfide is the anode, the electrical conductivity between the two probes increases dramatically (to ~1 S/cm) over timescales of minutes. If the polarity is removed or reversed, the conductivity returns to its original values over similar

  12. Synthetic Control of Crystallite Size of Silver Vanadium Phosphorous Oxide (Ag 0.50VOPO 4·1.9H 2O): Impact on Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huie, Matthew M.; Marschilok, Amy C.; Takeuchi, Esther S.

    Here, this report describes a synthetic approach to control the crystallite size of silver vanadium phosphorous oxide, Ag 0.50VOPO 4·1.9H 2O, and the impact on electrochemistry in lithium based batteries. Ag 0.50VOPO 4·1.9H 2O was synthesized using a stirred hydrothermal method over a range of temperatures. X-ray diffraction (XRD) was used to confirm the crystalline phase and the crystallite size sizes of 11, 22, 38, 40, 49, and 120 nm. Particle shape was plate-like with edges <1 micron to >10 microns. Under galvanostatic reduction the samples with 22 nm crystallites and 880 nm particles produced the highest capacity, ~25% moremore » capacity than the 120 nm sample. Notably, the 11 nm sample resulted in reduced delivered capacity and higher resistance consistent with increased grain boundaries contributing to resistance. Under intermittent pulsing ohmic resistance decreased with increasing crystallite size from 11 nm to 120 nm implying that electrical conduction within a crystal is more facile than between crystallites and across grain boundaries. Finally, this systematic study of material dimension shows that crystallite size impacts deliverable capacity as well as cell resistance where both interparticle and intraparticle transport are important.« less

  13. Synthetic Control of Crystallite Size of Silver Vanadium Phosphorous Oxide (Ag 0.50VOPO 4·1.9H 2O): Impact on Electrochemistry

    DOE PAGES

    Huie, Matthew M.; Marschilok, Amy C.; Takeuchi, Esther S.; ...

    2017-04-12

    Here, this report describes a synthetic approach to control the crystallite size of silver vanadium phosphorous oxide, Ag 0.50VOPO 4·1.9H 2O, and the impact on electrochemistry in lithium based batteries. Ag 0.50VOPO 4·1.9H 2O was synthesized using a stirred hydrothermal method over a range of temperatures. X-ray diffraction (XRD) was used to confirm the crystalline phase and the crystallite size sizes of 11, 22, 38, 40, 49, and 120 nm. Particle shape was plate-like with edges <1 micron to >10 microns. Under galvanostatic reduction the samples with 22 nm crystallites and 880 nm particles produced the highest capacity, ~25% moremore » capacity than the 120 nm sample. Notably, the 11 nm sample resulted in reduced delivered capacity and higher resistance consistent with increased grain boundaries contributing to resistance. Under intermittent pulsing ohmic resistance decreased with increasing crystallite size from 11 nm to 120 nm implying that electrical conduction within a crystal is more facile than between crystallites and across grain boundaries. Finally, this systematic study of material dimension shows that crystallite size impacts deliverable capacity as well as cell resistance where both interparticle and intraparticle transport are important.« less

  14. Imidazoline derivative templated synthesis of broccoli-like Bi2S3 and its electrocatalysis towards the direct electrochemistry of hemoglobin.

    PubMed

    Chen, Xiaoqian; Wang, Qingxiang; Wang, Liheng; Gao, Feng; Wang, Wei; Hu, Zhengshui

    2015-04-15

    A broccoli-like bismuth sulfide (bBi2S3) was synthesized via a solvothermal method using a self-made imidazoline derivative of 2-undecyl-1-dithioureido-ethyl-imidazoline as the soft template. The morphology and chemical constitution of the product were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electrochemical characterization experiments show that the bBi2S3 has the higher specific surface area and standard heterogeneous electron transfer rate constant than the rod-like Bi2S3 (rBi2S3). Hemoglobin (Hb) was then chosen as a protein model to investigate the electrocatalytic property of the synthesized bBi2S3. The results show that Hb entrapped in the composite film of chitosan and bBi2S3 displays an excellent direct electrochemistry, and retains its biocatalytic activity toward the electro-reduction of hydrogen peroxide. The current response in the amperometry shows a linear response to H2O2 concentrations in the range from 0.4 to 4.8µM with high sensitivity (444µAmM(-1)) and low detection limit (0.096µM). The Michaelis-Menten constant (KM(app)) of the fabricated bioelectrode for H2O2 was determined as low as 1µM. These results demonstrate that the synthesized bBi2S3 offers a new path for the immobilization of redox-active protein and the construction of the third-generation biosensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Direct modeling of the electrochemistry in the three-phase boundary of solid oxide fuel cell anodes by density functional theory: a critical overview.

    PubMed

    Shishkin, M; Ziegler, T

    2014-02-07

    The first principles modeling of electrochemical reactions has proven useful for the development of efficient, durable and low cost solid oxide full cells (SOFCs). In this account we focus on recent advances in modeling of structural, electronic and catalytic properties of the SOFC anodes based on density functional theory (DFT) first principle calculations. As a starting point, we highlight that the adequate analysis of cell electrochemistry generally requires modeling of chemical reactions at the metal/oxide interface rather than on individual metal or oxide surfaces. The atomic models of Ni/YSZ and Ni/CeO2 interfaces, required for DFT simulations of reactions on SOFC anodes are discussed next, together with the analysis of the electronic structure of these interfaces. Then we proceed to DFT-based findings on charge transfer mechanisms during redox reactions on these two anodes. We provide a comparison of the electronic properties of Ni/YSZ and Ni/CeO2 interfaces and present an interpretation of their different chemical performances. Subsequently we discuss the computed energy pathways of fuel oxidation mechanisms, obtained by various groups to date. We also discuss the results of DFT studies combined with microkinetic modeling as well as the results of kinetic Monte Carlo simulations. In conclusion we summarize the key findings of DFT modeling of metal/oxide interfaces to date and highlight possible directions in the future modeling of SOFC anodes.

  16. Guiding Principles of Hydrogenase Catalysis Instigated and Clarified by Protein Film Electrochemistry.

    PubMed

    Armstrong, Fraser A; Evans, Rhiannon M; Hexter, Suzannah V; Murphy, Bonnie J; Roessler, Maxie M; Wulff, Philip

    2016-05-17

    Protein film electrochemistry (PFE) is providing cutting-edge insight into the chemical principles underpinning biological hydrogen. Attached to an electrode, many enzymes exhibit "reversible" electrocatalytic behavior, meaning that a catalyzed redox reaction appears reversible or quasi-reversible when viewed by cyclic voltammetry. This efficiency is most relevant for enzymes that are inspiring advances in renewable energy, such as hydrogen-activating and CO2-reducing enzymes. Exploiting the rich repertoire of available instrumental methods, PFE experiments yield both a general snapshot and fine detail, all from tiny samples of enzyme. The dynamic electrochemical investigations blaze new trails and add exquisite detail to the information gained from structural and spectroscopic studies. This Account describes recent investigations of hydrogenases carried out in Oxford, including ideas initiated with PFE and followed through with complementary techniques, all contributing to an eventual complete picture of fast and efficient H2 activation without Pt. By immobilization of an enzyme on an electrode, catalytic electron flow and the chemistry controlling it can be addressed at the touch of a button. The buried nature of the active site means that structures that have been determined by crystallography or spectroscopy are likely to be protected, retained, and fully relevant in a PFE experiment. An electrocatalysis model formulated for the PFE of immobilized enzymes predicts interesting behavior and gives insight into why some hydrogenases are H2 producers and others are H2 oxidizers. Immobilization also allows for easy addition and removal of inhibitors along with precise potential control, one interesting outcome being that formaldehyde forms a reversible complex with reduced [FeFe]-hydrogenases, thereby providing insight into the order of electron and proton transfers. Experiments on O2-tolerant [NiFe]-hydrogenases show that O2 behaves like a reversible inhibitor: it

  17. Electrochemistry of poly(3,4-ethylenedioxythiophene)-polyaniline/ Prussian blue electrochromic devices containing an ionic liquid based gel electrolyte film.

    PubMed

    Deepa, Melepurath; Awadhia, Arvind; Bhandari, Shweta

    2009-07-21

    Electrochromic devices based on poly(3,4-ethylenedioxythiophene) (PEDOT) as the cathodic coloring electrode and polyaniline (PANI) or Prussian blue (PB) as the counter electrode containing a highly conductive, self-supporting, distensible and transparent polymer-gel electrolyte film encapsulating an ionic liquid, 1-butyl-1-methylpyrrolidiniumbis-(trifluoromethylsulfonyl)imide, have been fabricated. Polarization, charge transfer and diffusion processes control the electrochemistry of the functional electrodes during coloration and bleaching and these phenomena differ when PEDOT and PANI/PB were employed alternately as working electrodes. While the electrochemical impedance response shows good similitude for PEDOT and PANI electrodes, the responses of PEDOT and PB were significantly different in the PEDOT-PB device, especially during reduction of PB, wherein the overall amplitude of the impedance response is enormous. Large values of the coloration efficiency maxima of 281 cm2 C(-1) (lambda = 583 nm) and 274 cm2 C(-1) (lambda = 602 nm), achieved at -1.0 and -1.5 V for the PEDOT PANI and PEDOT-PB devices have been correlated to the particularly low magnitude of charge transfer resistance and high polarization capacitance operative at the PEDOT ionic liquid based electrolyte interface at these dc potentials, thus allowing facile ion-transport and consequently resulting in enhanced absorption modulation. Moderately fast switching kinetics and the ability of these devices to sustain about 2500 cycles of clear-to-dark and dark-to-clear without incurring major losses in the optical contrast, along with the ease of construction of these cells in terms of high scalability and reproducibility of the synthetic procedure for fabrication of the electrochromic films and the ionic liquid based gel electrolyte film, are indicators of the promise these devices hold for practical applications like electrochromic windows and displays.

  18. A New Composite Electrode Applied for Studying the Electrochemistry of Insoluble Particles: α-HgS.

    PubMed

    Yang, Minjun; Compton, Richard G

    2018-05-22

    The redox chemistry of solid α-HgS particles is revealed using a carbon/PVDF composite containing α-HgS, carbon black, polyvinylidene fluoride (PVDF). The electrochemical behaviour of the carbon/PVDF composite is first characterised with three water insoluble organic solids. Then the reduction of solid α-HgS particles is investigated and found to occur at a high negative potential, -1.82 V versus saturated mercury sulphate reference electrode, to form metallic mercury and sulphide ions. The subsequent oxidation of metallic mercury and sulphide occurs at +0.24 and -0.49 V versus MSE respectively. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Prediction of biotransformation products of the fungicide fluopyram by electrochemistry coupled online to liquid chromatography-mass spectrometry and comparison with in vitro microsomal assays.

    PubMed

    Mekonnen, Tessema F; Panne, Ulrich; Koch, Matthias

    2018-04-01

    Biotransformation processes of fluopyram (FLP), a new succinate dehydrogenase inhibitor (SDHI) fungicide, were investigated by electrochemistry (EC) coupled online to liquid chromatography (LC) and electrospray mass spectrometry (ESI-MS). Oxidative phase I metabolite production was achieved using an electrochemical flow-through cell equipped with a boron-doped diamond (BDD) electrode. Structural elucidation and prediction of oxidative metabolism pathways were assured by retention time, isotopic patterns, fragmentation, and accurate mass measurements using EC/LC/MS, LC-MS/MS, and/or high-resolution mass spectrometry (HRMS). The results obtained by EC were compared with conventional in vitro studies by incubating FLP with rat and human liver microsomes (RLM, HLM). Known phase I metabolites of FLP (benzamide, benzoic acid, 7-hydroxyl, 8-hydroxyl, 7,8-dihydroxyl FLP, lactam FLP, pyridyl acetic acid, and Z/E-olefin FLP) were successfully simulated by EC/LC/MS. New metabolites including an imide, hydroxyl lactam, and 7-hydroxyl pyridyl acetic acid oxidative metabolites were predicted for the first time in our study using EC/LC/MS and liver microsomes. We found oxidation by dechlorination to be one of the major metabolism mechanisms of FLP. Thus, our results revealed that EC/LC/MS-based metabolic elucidation was more advantageous on time and cost of analysis and enabled matrix-free detection with valuable information about the mechanisms and intermediates of metabolism processes. Graphical abstract Oxidative metabolism of fluopyram.

  20. The Microscale Synthesis and Electrochemistry of Low-Valent Mononuclear Complexes (h3-C3H5)Fe(CO)3 X (X = I, Br, Cl)

    NASA Astrophysics Data System (ADS)

    Mocellin, Enrico; Russell, Richard; Ravera, Mauro

    1998-06-01

    The experimental content of this paper will appeal to pedagogues and students who might be looking for new ideas that have an element of challenge. By combining experimental procedures which place microscale, chemical synthesis, and an inclusive, unified, product characterization in perspective, we have afforded the student the scope to obtain progressive, disciplined results and the opportunity to discuss these in the subsequent reporting. By this process, it is our experience that the students often identify with the practical work that is being undertaken, and they develop considerable empathy during their contribution to the "discovery" process that this laboratory program offers. The experimental work can be abbreviated to a single compound, subdivided into synthesis or electrochemistry, or extended to macroscale and other instrumental techniques of characterization, thus offering opportunities to accommodate time constraints, class results combination and discussion, and individual student enthusiasm. We believe that having to accept and/or constructively criticize sequential experimental results, collected by fellow students, mimics more realistically the practice of chemistry at the workplace and can build enthusiasm and elicit contagious fellowship from the class. All of these aspects can simply be achieved by utilizing the listed journals and references therein. Most importantly, it affords the students the opportunity to extricate themselves as innocent bystanders from the conventional "single experiment" practical laboratory to a path of practice and achievement in the scientific method.

  1. Electrospray ion source with reduced analyte electrochemistry

    DOEpatents

    Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN

    2011-08-23

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  2. Electrospray ion source with reduced analyte electrochemistry

    DOEpatents

    Kertesz, Vilmos; Van Berkel, Gary J

    2013-07-30

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  3. Tailoring the Ag + Content within the Tunnels and on the Exposed Surfaces of α-MnO 2 Nanowires: Impact on Impedance and Electrochemistry

    DOE PAGES

    Zhang, Bingjie; Smith, Paul F.; Lee, Seung-Yong; ...

    2016-12-01

    Efficient conduction of both electrons and cations (e.g., Li +) has a profound effect on the current and capacity of lithium-based batteries. With this study, we focus on cathode effects, with the preparation of pure silver hollandite materials with variable silver ion content within (intra-tunnel) and on the surface of α-MnO 2 tunneled materials, followed by the measurement and analysis of impedance and electrochemistry data. Specifically, pure Ag xMn 8O 16-y materials with low (x = 1.13) and high (x = 1.54) intra-tunnel silver content are compared with Ag xMn 8O 16-y·aAg 2O (a = 0.25, 0.63, 1.43) composites preparedmore » via a new Ag 2O coating strategy. When the Ag 2O (a = 0, 0.25) content is low, the material with higher intra-tunnel silver (x = 1.53) content delivers up to ~5-fold higher capacity accounted for by a ~10-fold lower impedance than its lower intra-tunnel silver (x = 1.13) counterpart. In the presence of high Ag 2O content (a = 0.63, 1.43), both composites exhibit comparable impedance but the lower intra-tunnel silver (x = 1.13) composite delivers up to ~1.5-fold higher capacity than higher intra-tunnel silver composite, highlighting the key role of Li + transport under those conditions. Our results demonstrate material design strategies which can significantly increase electronic and ionic conductivities.« less

  4. Tailoring the Ag + Content within the Tunnels and on the Exposed Surfaces of α-MnO 2 Nanowires: Impact on Impedance and Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bingjie; Smith, Paul F.; Lee, Seung-Yong

    Efficient conduction of both electrons and cations (e.g., Li +) has a profound effect on the current and capacity of lithium-based batteries. With this study, we focus on cathode effects, with the preparation of pure silver hollandite materials with variable silver ion content within (intra-tunnel) and on the surface of α-MnO 2 tunneled materials, followed by the measurement and analysis of impedance and electrochemistry data. Specifically, pure Ag xMn 8O 16-y materials with low (x = 1.13) and high (x = 1.54) intra-tunnel silver content are compared with Ag xMn 8O 16-y·aAg 2O (a = 0.25, 0.63, 1.43) composites preparedmore » via a new Ag 2O coating strategy. When the Ag 2O (a = 0, 0.25) content is low, the material with higher intra-tunnel silver (x = 1.53) content delivers up to ~5-fold higher capacity accounted for by a ~10-fold lower impedance than its lower intra-tunnel silver (x = 1.13) counterpart. In the presence of high Ag 2O content (a = 0.63, 1.43), both composites exhibit comparable impedance but the lower intra-tunnel silver (x = 1.13) composite delivers up to ~1.5-fold higher capacity than higher intra-tunnel silver composite, highlighting the key role of Li + transport under those conditions. Our results demonstrate material design strategies which can significantly increase electronic and ionic conductivities.« less

  5. Extremophiles for microbial-electrochemistry applications: A critical review.

    PubMed

    Shrestha, Namita; Chilkoor, Govinda; Vemuri, Bhuvan; Rathinam, Navanietha; Sani, Rajesh K; Gadhamshetty, Venkataramana

    2018-05-01

    Extremophiles, notably archaea and bacteria, offer a good platform for treating industrial waste streams that were previously perceived as hostile to the model organisms in microbial electrochemical systems (MESs). Here we present a critical overview of the fundamental and applied biology aspects of halophiles and thermophiles in MESs. The current study suggests that extremophiles enable the MES operations under a seemingly harsh conditions imposed by the physical (pressure, radiation, and temperature) and geochemical extremes (oxygen levels, pH, and salinity). We highlight a need to identify the underpinning mechanisms that define the exceptional electrocatalytic performance of extremophiles in MESs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Direct electrochemistry and electrocatalysis of heme proteins immobilised in carbon-coated nickel magnetic nanoparticle-chitosan-dimethylformamide composite films in room-temperature ionic liquids.

    PubMed

    Wang, Ting; Wang, Lu; Tu, Jiaojiao; Xiong, Huayu; Wang, Shengfu

    2013-12-01

    The direct electrochemistry and electrocatalysis of heme proteins entrapped in carbon-coated nickel magnetic nanoparticle-chitosan-dimethylformamide (CNN-CS-DMF) composite films were investigated in the hydrophilic ionic liquid [bmim][BF4]. The surface morphologies of a representative set of films were characterised via scanning electron microscopy. The proteins immobilised in the composite films were shown to retain their native secondary structure using UV-vis spectroscopy. The electrochemical performance of the heme proteins-CNN-CS-DMF films was evaluated via cyclic voltammetry and chronoamperometry. A pair of stable and well-defined redox peaks was observed for the heme protein films at formal potentials of -0.151 V (HRP), -0.167 V (Hb), -0.155 V (Mb) and -0.193 V (Cyt c) in [bmim][BF4]. Moreover, several electrochemical parameters of the heme proteins were calculated by nonlinear regression analysis of the square-wave voltammetry. The addition of CNN significantly enhanced not only the electron transfer of the heme proteins but also their electrocatalytic activity toward the reduction of H2O2. Low apparent Michaelis-Menten constants were obtained for the heme protein-CNN-CS-DMF films, demonstrating that the biosensors have a high affinity for H2O2. In addition, the resulting electrodes displayed a low detection limit and improved sensitivity for detecting H2O2, which indicates that the biocomposite film can serve as a platform for constructing new non-aqueous biosensors for real detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Energetics of the Semiconductor-Electrolyte Interface.

    ERIC Educational Resources Information Center

    Turner, John A.

    1983-01-01

    The use of semiconductors as electrodes for electrochemistry requires an understanding of both solid-state physics and electrochemistry, since phenomena associated with both disciplines are seen in semiconductor/electrolyte systems. The interfacial energetics of these systems are discussed. (JN)

  8. HYDROGENATION OF OLEFINS USING PALLADIUM NANOPARTICLES PREPARED WITH PULSE ELECTROCHEMICAL DEPOSITION

    EPA Science Inventory

    Electrochemistry has been used to synthesize nano-structured materials. In this project, we have conducted the application of electrochemistry for the synthesis of nano-palladium catalysts that may have application in the area of green chemistry. The electrochemical technique use...

  9. Applied Linguistics and the "Annual Review of Applied Linguistics."

    ERIC Educational Resources Information Center

    Kaplan, Robert B.; Grabe, William

    2000-01-01

    Examines the complexities and differences involved in granting disciplinary status to the role of applied linguistics, discusses the role of the "Annual Review of Applied Linguistics" as a contributor to the development of applied linguistics, and highlights a set of publications for the future of applied linguistics. (Author/VWL)

  10. Who is more efficient: Teacher or pedagogical agents?

    NASA Astrophysics Data System (ADS)

    Lee, Tien Tien; Mustapha, Nur Hanani

    2017-05-01

    The purpose of the study is to investigate the impact of pedagogical agent's and teacher's role on students' understanding and motivation in the learning of Electrochemistry. Interactive Multimedia Module with Pedagogical Agents, EC Lab (IMMPA EC Lab) was used in this study. IMMPA EC Lab consists of five subunits in Electrochemistry topic. The research was a non-equivalent control group quasi experimental design involving two treatment groups and one control group. The first treatment group studied Electrochemistry with expert agent (Professor T) while the second treatment group studied Electrochemistry with learning companion agent (Lisa). On the other hand, the control group learned Electrochemistry with their Chemistry teacher using the material in the IMMPA EC Lab. The study was conducted at a secondary science school in the Pasir Puteh district involving 74 form four students. The instruments used in this research were the Electrochemistry achievement tests in the form of pre-test and post-test, IMMPA EC Lab and motivation questionnaire. ANCOVA results found that there was no significant difference among the three groups in post-test. On the other hand, One-way ANOVA test proved that there were significant differences for the post-motivation scores between the control group and the treatment groups. Post motivation mean scores for expert agent treatment group and learning companion treatment group surpassed the control group. The study focus on the impact of pedagogical agents with different roles on students' learning and motivation should be promoted. Various versions of pedagogical agents that fulfil the good characteristics should be designed to enhance students' learning and motivation.

  11. Run-D.M.C.: A Mnemonic Aid for Explaining Mass Transfer in Electrochemical Systems

    ERIC Educational Resources Information Center

    Miles, Deon T.

    2013-01-01

    Electrochemistry is a significant area of analytical chemistry encompassing electrical measurements of chemical systems. The applications associated with electrochemistry appear in many aspects of everyday life: explaining how batteries work, how the human nervous system functions, and how metal corrosion occurs. The most common electrochemical…

  12. From the Science Fair to the NASDAQ

    ERIC Educational Resources Information Center

    Kissinger, Peter T.

    2007-01-01

    Electrochemistry, which combines chemistry and electronics, is an exciting field and those who are in this field are very versatile scientists. Electrochemistry is a combination of true phenomena and an instrument to teach much about other fields and its technological advances touch many other fields as well.

  13. Grade 12 Students' Conceptual Understanding and Mental Models of Galvanic Cells before and after Learning by Using Small-Scale Experiments in Conjunction with a Model Kit

    ERIC Educational Resources Information Center

    Supasorn, Saksri

    2015-01-01

    This study aimed to develop the small-scale experiments involving electrochemistry and the galvanic cell model kit featuring the sub-microscopic level. The small-scale experiments in conjunction with the model kit were implemented based on the 5E inquiry learning approach to enhance students' conceptual understanding of electrochemistry. The…

  14. Battery Relevant Electrochemistry of Ag 7Fe 3(P 2O 7 ) 4 : Contrasting Contributions from the Redox Chemistries of Ag + and Fe 3+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiman; Kirshenbaum, Kevin C.; Marschilok, Amy C.

    Ag 7Fe 3(P 2O 7 ) 4 is an example of an electrochemical displacement material which contains two different electrochemically active metal cations, where one cation (Ag +) forms metallic silver nanoparticles external to the crystals of Ag 7Fe 3(P 2O 7 ) 4 via an electrochemical reduction displacement reaction, while the other cation (Fe +3) is electrochemically reduced with the retention of iron cations within the anion structural framework concomitant with lithium insertion. These contrasting redox chemistries within one pure cathode material enable high rate capability and reversibility when Ag 7Fe 3(P 2O 7 ) 4 is employed asmore » cathode material in a lithium ion battery (LIB). Further, pyrophosphate materials are thermally and electrically stable, desirable attributes for cathode materials in LIBs. In this article, a bimetallic pyrophosphate material Ag 7Fe 3(P 2O 7 ) 4 is synthesized and confirmed to be a single phase by Rietveld refinement. Electrochemistry of Ag 7Fe 3(P 2O 7 ) 4 is reported for the first time in the context of lithium based batteries using cyclic voltammetry and galvanostatic discharge–charge cycling. The reduction displacement reaction and the lithium (de)insertion processes are investigated using ex situ X-ray absorption spectroscopy and X-ray diffraction of electrochemically reduced and oxidized Ag 7Fe 3(P 2O 7 ) 4. Ag 7Fe 3(P 2O 7 ) 4 exhibits good reversibility at the iron centers indicated by ~80% capacity retention over 100 cycles following the initial formation cycle and excellent rate capability exhibited by ~70% capacity retention upon a 4-fold increase in current.« less

  15. Battery Relevant Electrochemistry of Ag 7Fe 3(P 2O 7 ) 4 : Contrasting Contributions from the Redox Chemistries of Ag + and Fe 3+

    DOE PAGES

    Zhang, Yiman; Kirshenbaum, Kevin C.; Marschilok, Amy C.; ...

    2016-10-12

    Ag 7Fe 3(P 2O 7 ) 4 is an example of an electrochemical displacement material which contains two different electrochemically active metal cations, where one cation (Ag +) forms metallic silver nanoparticles external to the crystals of Ag 7Fe 3(P 2O 7 ) 4 via an electrochemical reduction displacement reaction, while the other cation (Fe +3) is electrochemically reduced with the retention of iron cations within the anion structural framework concomitant with lithium insertion. These contrasting redox chemistries within one pure cathode material enable high rate capability and reversibility when Ag 7Fe 3(P 2O 7 ) 4 is employed asmore » cathode material in a lithium ion battery (LIB). Further, pyrophosphate materials are thermally and electrically stable, desirable attributes for cathode materials in LIBs. In this article, a bimetallic pyrophosphate material Ag 7Fe 3(P 2O 7 ) 4 is synthesized and confirmed to be a single phase by Rietveld refinement. Electrochemistry of Ag 7Fe 3(P 2O 7 ) 4 is reported for the first time in the context of lithium based batteries using cyclic voltammetry and galvanostatic discharge–charge cycling. The reduction displacement reaction and the lithium (de)insertion processes are investigated using ex situ X-ray absorption spectroscopy and X-ray diffraction of electrochemically reduced and oxidized Ag 7Fe 3(P 2O 7 ) 4. Ag 7Fe 3(P 2O 7 ) 4 exhibits good reversibility at the iron centers indicated by ~80% capacity retention over 100 cycles following the initial formation cycle and excellent rate capability exhibited by ~70% capacity retention upon a 4-fold increase in current.« less

  16. Nonfaradaic nanoporous electrochemistry for conductometry at high electrolyte concentration.

    PubMed

    Bae, Je Hyun; Kang, Chung Mu; Choi, Hyoungseon; Kim, Beom Jin; Jang, Woohyuk; Lim, Sung Yul; Kim, Hee Chan; Chung, Taek Dong

    2015-02-17

    Nanoporous electrified surfaces create a unique nonfaradaic electrochemical behavior that is sensitively influenced by pore size, morphology, ionic strength, and electric field modulation. Here, we report the contributions of ion concentration and applied ac frequency to the electrode impedance through an electrical double layer overlap and ion transport along the nanopores. Nanoporous Pt with uniform pore size and geometry (L2-ePt) responded more sensitively to conductivity changes in aqueous solutions than Pt black with poor uniformity despite similar real surface areas and enabled the previously difficult quantitative conductometry measurements at high electrolyte concentrations. The nanopores of L2-ePt were more effective in reducing the electrode impedance and exhibited superior linear responses to not only flat Pt but also Pt black, leading to successful conductometric detection in ion chromatography without ion suppressors and at high ionic strengths.

  17. Applying Applied Ethics through ethics consulting.

    PubMed

    Moore, W

    2010-04-01

    Applied Ethics is frequently described as a discipline of philosophy that concerns itself with the application of moral theories such as deontology and utilitarianism to real world dilemmas. However, these applications often remain restricted to the academic world. The focus of new versions ethics consulting has since the mid-1980s shifted from what the ethicist knows to what the ethicist does or enables. This shift remodelled the ethicist's role to that of a facilitator in an inherently social process of moral inquiry. Applying these developments in the Namibian context has already proved to be of great value to the local health care industry. (c) 2010. Published by Elsevier Ltd.

  18. Argument Based Science Inquiry (ABSI) Learning Model in Voltaic Cell Concept

    NASA Astrophysics Data System (ADS)

    Subarkah, C. Z.; Fadilah, A.; Aisyah, R.

    2017-09-01

    Voltaic Cell is a sub-concept of electrochemistry that is considered difficult to be comprehended by learners Voltaic Cell is a sub concept of electrochemistry that is considered difficult to be understood by learners so that impacts on student activity in learning process. Therefore the learning model Argument Based Science Inquiry (ABSI) will be applied to the concept of Voltaic cell. This research aims to describe students’ activities during learning process using ABSI model and to analyze students’ competency to solve ABSI-based worksheets (LK) of Voltaic Cell concept. The method used in this research was the “mix-method-quantitative-embedded” method with subjects of the study: 39 second-semester students of Chemistry Education study program. The student activity is quite good during ABSI learning. The students’ ability to complete worksheet (LK) for every average phase is good. In the phase of exploration of post instruction understanding, it is categorized very good, and in the phase of negotiation shape III: comparing science ideas to textbooks or other printed resources merely reach enough category. Thus, the ABSI learning has improved the student levels of activity and students’ competency to solve the ABSI-based worksheet (LK).

  19. Lithium Vanadium Oxide (Li 1.1V 3O 8) Coated with Amorphous Lithium Phosphorous Oxynitride (LiPON): Role of Material Morphology and Interfacial Structure on Resulting Electrochemistry

    DOE PAGES

    Zhang, Qing; Kercher, Andrew K.; Veith, Gabriel M.; ...

    2017-05-16

    In the present work, lithium vanadium oxide (Li 1.1V 3O 8) particles synthesized at two different temperatures were coated with an amorphous lithium phosphorous oxynitride (LiPON) film for the first time, and the effects of the LiPON coating on the electrochemistry of the Li 1.1V 3O 8 materials with different morphologies were systematically investigated by comparing uncoated Li 1.1V 3O 8 and Li 1.1V 3O 8 coated with LiPON of various thicknesses. Galvanostatic discharge-charge cycling revealed increased functional capacity for the LiPON-coated materials. Post-cycling electrochemical impedance spectroscopy showed that LiPON-coated Li 1.1V 3O 8 materials developed less interfacial resistance withmore » extended cycling, rationalized by vanadium migration into the LiPON coating seen by electron energy loss spectra. Post-mortem quantitative analysis of the anodes revealed more severe vanadium dissolution for the more irregularly shaped Li 1.1V 3O 8 materials with less LiPON coverage. Thus, this study highlights the specific benefits and limitations of LiPON coatings for stabilizing a moderate voltage Li 1.1V 3O 8 cathode material under extended cycling in liquid electrolyte, and describes a generally applicable approach for comprehensive characterization of a composite electroactive material which can be used to understand interfacial transport properties in other functional systems.« less

  20. Lithium Vanadium Oxide (Li 1.1V 3O 8) Coated with Amorphous Lithium Phosphorous Oxynitride (LiPON): Role of Material Morphology and Interfacial Structure on Resulting Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qing; Kercher, Andrew K.; Veith, Gabriel M.

    In the present work, lithium vanadium oxide (Li 1.1V 3O 8) particles synthesized at two different temperatures were coated with an amorphous lithium phosphorous oxynitride (LiPON) film for the first time, and the effects of the LiPON coating on the electrochemistry of the Li 1.1V 3O 8 materials with different morphologies were systematically investigated by comparing uncoated Li 1.1V 3O 8 and Li 1.1V 3O 8 coated with LiPON of various thicknesses. Galvanostatic discharge-charge cycling revealed increased functional capacity for the LiPON-coated materials. Post-cycling electrochemical impedance spectroscopy showed that LiPON-coated Li 1.1V 3O 8 materials developed less interfacial resistance withmore » extended cycling, rationalized by vanadium migration into the LiPON coating seen by electron energy loss spectra. Post-mortem quantitative analysis of the anodes revealed more severe vanadium dissolution for the more irregularly shaped Li 1.1V 3O 8 materials with less LiPON coverage. Thus, this study highlights the specific benefits and limitations of LiPON coatings for stabilizing a moderate voltage Li 1.1V 3O 8 cathode material under extended cycling in liquid electrolyte, and describes a generally applicable approach for comprehensive characterization of a composite electroactive material which can be used to understand interfacial transport properties in other functional systems.« less

  1. Polarization controlled kinetics and composition of trivalent chromium coatings on aluminum.

    PubMed

    Dardona, Sameh; Chen, Lei; Kryzman, Michael; Goberman, Daniel; Jaworowski, Mark

    2011-08-15

    Combined in situ spectroscopic ellipsometry and electrochemistry have been employed to monitor, in real-time, the formation of trivalent Cr conversion coatings on polished Al substrates at applied sample potentials. It is found that the formation kinetics and chemical composition of the film can be controlled by adjusting the anodic and cathodic reactions. The growth kinetics are accelerated at more positive anodic potentials or more negative cathodic potentials. At more negative potentials, the percentage of chromium in the coating is found to increase, while the zirconium percentage decreases.

  2. Effect of the structure of imidazolium cations in [BF4](-)-type ionic liquids on direct electrochemistry and electrocatalysis of horseradish peroxidase in Nafion films.

    PubMed

    Lu, Lu; Huang, Xirong; Qu, Yinbo

    2011-10-01

    The direct electrochemistry and bioelectrocatalysis of horseradish peroxidase (HRP) in Nafion films at glassy carbon electrode (GCE) was investigated in three [BF(4)](-)-type room-temperature ionic liquids (ILs) to understand the structural effect of imidazolium cations. The three ILs are 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim][BF(4)]), 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]) and 1-hexyl-3-methylimidazolium tetrafluoroborate ([Hmim][BF(4)]). A small amount of water in the three ILs is indispensable for maintaining the electrochemical activity of HRP in Nafion films, and the optimum water contents decrease with the increase of alkyl chain length on imidazole ring. Analysis shows that the optimum water contents are primarily determined by the hydrophilicity of ILs used. In contrast to aqueous medium, ILs media facilitate the direct electron transfer of HRP, and the electrochemical parameters obtained in different ILs are obviously related to the nature of ILs. The direct electron transfer between HRP and GCE is a surface-confined quasi-reversible single electron transfer process. The apparent heterogeneous electron transfer rate constant decreases gradually with the increase of alkyl chain length on imidazole ring, but the changing extent is relatively small. The electrocatalytic reduction current of H(2)O(2) at the present electrode decreases obviously with the increase of alkyl chain length, and the mass transfer of H(2)O(2) via diffusion in ILs should be responsible for the change. In addition, the modified electrode has good stability and reproducibility; the ability to tolerate high levels of F(-) has been greatly enhanced due to the use of Nafion film. When an appropriate mediator is included in the sensing layer, a sensitive nonaqueous biosensor could be fabricated. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. New Organic-Inorganic Nanocomposite Materials for Energy Storage Applications

    DTIC Science & Technology

    1998-06-29

    electrochemistry. The electrochemical experiments comprised charging (oxidation) and discharging (reduction) of the material, with the bulk of the...be expelled from the V205 interlayer region, leading to an evolution of the electrochemical response back to that of the original V205 material...composite material is characterized by uv-visible spectroelectrochemistry, x-ray diffraction, FTIR and electrochemistry. The electrochemical experiments

  4. Applied Technology Proficiency of High School Students in Applied and Traditional Courses

    ERIC Educational Resources Information Center

    Field, Dennis W.

    2003-01-01

    This investigation compares applied technology skill levels of high school students enrolled in various applied and comparable traditional courses, particularly Principles of Technology and physics courses respectively. Outcomes from ACT's Applied Technology Work Keys[R] assessment test were used as a measure of applied technology skill levels.…

  5. Successful Performance of Laboratory Investigations with Blood Glucose Meters Employing a Dynamic Electrochemistry-Based Correction Algorithm Is Dependent on Careful Sample Handling.

    PubMed

    Demircik, Filiz; Klonoff, David; Musholt, Petra B; Ramljak, Sanja; Pfützner, Andreas

    2016-10-01

    Devices employing electrochemistry-based correction algorithms (EBCAs) are optimized for patient use and require special handling procedures when tested in the laboratory. This study investigated the impact of sample handling on the results of an accuracy and hematocrit interference test performed with BG*Star, iBG*Star; OneTouch Verio Pro and Accu-Chek Aviva versus YSI Stat 2300. Venous heparinized whole blood was manipulated to contain three different blood glucose concentrations (64-74, 147-163, and 313-335 mg/dL) and three different hematocrit levels (30%, 45%, and 60%). Sample preparation was done by either a very EBCA-experienced laboratory testing team (A), a group experienced with other meters but not EBCAs (B), or a team inexperienced with meter testing (C). Team A ensured physiological pO 2 and specific sample handling requirements, whereas teams B and C did not consider pO 2 . Each sample was tested four times with each device. In a separate experiment, a different group similar to group B performed the experiment before (D1) and after (D2) appropriate sample handling training. Mean absolute deviation from YSI was calculated as a metrix for all groups and devices. Mean absolute relative difference was 4.3% with team A (B: 9.2%, C: 5.2%). Team B had much higher readings and team C produced 100% of "sample composition" errors with high hematocrit levels. In a separate experiment, group D showed a result similar to group B before the training and improved significantly when considering the sample handling requirements (D1: 9.4%, D2: 4.5%, P < 0.05). Laboratory performance testing of EBCA devices should only be performed by trained staff considering specific sample handling requirements. The results suggest that healthcare centers should evaluate EBCA-based devices with capillary blood from patients in accordance with the instructions for use to achieve reliable results.

  6. Atomic-scale electrochemistry on the surface of a manganite

    DOE PAGES

    Vasudevan, Rama K.; Tselev, Alexander; Baddorf, Arthur P.; ...

    2015-04-09

    The doped manganese oxides (manganites) have been widely studied for their colossal magnetoresistive effects, for potential applications in oxide spintronics, electroforming in resistive switching devices, and are materials of choice as cathodes in modern solid oxide fuel cells. However, little experimental knowledge of the dynamics of the surfaces of perovskite manganites at the atomic scale exists. Here, through in-situ scanning tunnelling microscopy (STM), we demonstrate atomic resolution on samples of La 0.625Ca 0.375MnO 3 grown on (001) SrTiO 3 by pulsed laser deposition (PLD). Furthermore, by applying triangular DC waveforms of increasing amplitude to the STM tip, and measuring themore » tunnelling current, we demonstrate the ability to both perform and monitor surface electrochemical processes at the atomic level, including, for the first time in a manganite, formation of single and multiple oxygen vacancies, disruption of the overlying manganite layers, and removal and deposition of individual atomic units or clusters. Our work paves the way for better understanding of surface oxygen reactions in these systems.« less

  7. Direct and mediated electrochemistry of peroxidase and its electrocatalysis on a variety of screen-printed carbon electrodes: amperometric hydrogen peroxide and phenols biosensor.

    PubMed

    Chekin, Fereshteh; Gorton, Lo; Tapsobea, Issa

    2015-01-01

    This study compares the behaviour of direct and mediated electrochemistry of horseradish peroxidase (HRP) immobilised on screen-printed carbon electrodes (SPCEs), screen-printed carbon electrodes modified with carboxyl-functionalised multi-wall carbon nanotubes (MWCNT-SPCEs) and screen-printed carbon electrodes modified with carboxyl-functionalised single-wall carbon nanotubes (SWCNT-SPCEs). The techniques of cyclic voltammetry and amperometry in the flow mode were used to characterise the properties of the HRP immobilised on screen-printed electrodes. From measurements of the mediated and mediatorless currents of hydrogen peroxide reduction at the HRP-modified electrodes, it was concluded that the fraction of enzyme molecules in direct electron transfer (DET) contact with the electrode varies substantially for the different electrodes. It was observed that the screen-printed carbon electrodes modified with carbon nanotubes (MWCNT-SPCEs and SWCNT-SPCEs) demonstrated a substantially higher percentage (≈100 %) of HRP molecules in DET contact than the screen-printed carbon electrodes (≈60 %). The HRP-modified electrodes were used for determination of hydrogen peroxide in mediatorless mode. The SWCNT-SPCE gave the lowest detection limit (0.40 ± 0.09 μM) followed by MWCNT-SPCE (0.48 ± 0.07 μM) and SPCE (0.98 ± 0.2 μM). These modified electrodes were additionally developed for amperometric determination of phenolic compounds. It was found that the SWCNT-SPCE gave a detection limit for catechol of 110.2 ± 3.6 nM, dopamine of 640.2 ± 9.2 nM, octopamine of 3341 ± 15 nM, pyrogallol of 50.10 ± 2.9 nM and 3,4-dihydroxy-L-phenylalanine of 980.7 ± 8.7 nM using 50 μM H2O2 in the flow carrier.

  8. Proceedings ICASS 2017

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Schaaf, Peter

    2018-07-01

    This special issue of the high impact international peer reviewed journal Applied Surface Science represents the proceedings of the 2nd International Conference on Applied Surface Science ICASS held 12-16 June 2017 in Dalian China. The conference provided a forum for researchers in all areas of applied surface science to present their work. The main topics of the conference are in line with the most popular areas of research reported in Applied Surface Science. Thus, this issue includes current research on the role and use of surfaces in chemical and physical processes, related to catalysis, electrochemistry, surface engineering and functionalization, biointerfaces, semiconductors, 2D-layered materials, surface nanotechnology, energy, new/functional materials and nanotechnology. Also the various techniques and characterization methods will be discussed. Hence, scientific research on the atomic and molecular level of material properties investigated with specific surface analytical techniques and/or computational methods is essential for any further progress in these fields.

  9. The electrode/ionic liquid interface: electric double layer and metal electrodeposition.

    PubMed

    Su, Yu-Zhuan; Fu, Yong-Chun; Wei, Yi-Min; Yan, Jia-Wei; Mao, Bing-Wei

    2010-09-10

    The last decade has witnessed remarkable advances in interfacial electrochemistry in room-temperature ionic liquids. Although the wide electrochemical window of ionic liquids is of primary concern in this new type of solvent for electrochemistry, the unusual bulk and interfacial properties brought about by the intrinsic strong interactions in the ionic liquid system also substantially influence the structure and processes at electrode/ionic liquid interfaces. Theoretical modeling and experimental characterizations have been indispensable in reaching a microscopic understanding of electrode/ionic liquid interfaces and in elucidating the physics behind new phenomena in ionic liquids. This Minireview describes the status of some aspects of interfacial electrochemistry in ionic liquids. Emphasis is placed on high-resolution and molecular-level characterization by scanning tunneling microscopy and vibrational spectroscopies of interfacial structures, and the initial stage of metal electrodeposition with application in surface nanostructuring.

  10. Papers in Applied Linguistics. The Edinburgh Course in Applied Linguistics, Vol. 2.

    ERIC Educational Resources Information Center

    Allen, J.P.B., Ed.; Corder, S. Pit, Ed.

    This volume is a collection of articles on various aspects of applied linguistics as it relates to language teaching. Chapter 1, by S. Pit Corder, entitled "Applied Linguistics and Language Teaching," gives a short, general survey of applied linguistics in language teaching. Chapters 2-5 give an account of the main concepts in what is now called…

  11. Teaching Physiology and the World Wide Web: Electrochemistry and Electrophysiology on the Internet.

    ERIC Educational Resources Information Center

    Dwyer, Terry M.; Fleming, John; Randall, James E.; Coleman, Thomas G.

    1997-01-01

    Presents two examples of laboratory exercises using the World Wide Web for first-year medical students. The first example introduces the physical laws that apply to osmotic, chemical, and electrical gradients and a simulation of the ability of the sodium-potassium pump to establish chemical gradients and maintain cell volume. The second module…

  12. Porous Electrodes I: Numerical Simulation Using Random Network and Single Pore Models.

    DTIC Science & Technology

    1984-01-31

    characteristic of Zn and ZnO ) and scaling them down to the magnitude of a unit pore size- approximately 10i in diameter. We define a characteristic...supported by the Office of Naval Research under contract N00014-81-K-0339. 11 - 15 - REFERENCES 1. R. de Levis in Advances in Electrochemistry and...P. 3. Hendra Dr. C. E. Mueller Department of Chemistry The Electrochemistry Branch University of Southampton Naval Surface Weapons Center

  13. [Applying Ethics, Placating Ethics, or Applying ourselves to Ethics? A Critical View of Environmental Ethics as Applied Ethics].

    PubMed

    Serani Merlo, Alejandro

    2016-01-01

    There is actually a pervasive tendency to consider environmental ethics and bioethics as specific cases pertaining to a supposed kind of ″applied ethics″. Application can be understood in two different meanings: a concrete sense, as in technical applications, and a psychological meaning, as when we mentally apply ourselves to a task. Ethics has been always thought as a practical knowledge, in a ″praxical″ sense and not in a ″poietic″ one. Ethics has to do with ″ends″ not with ″means″; in this sense ethics is ″useless″. Since ethics has to do with the ultimate meaning of things, ethical choices give meaning to all practical activities. In that sense ethics instead of being useless must be considered as ″over-useful″ (Maritain). Nowadays politics tend to instrumentalize ethics in order to political objectives. The consequence has been the reconceptualization of specific ethics as applied ethics. Environmental ethics and bioethics are then submitted to politics following the logic of technical applications. Environmental ethics and bioethics considered as applied ethics are at risk to becoming not only useless, but also meaningless.

  14. Applied Nanotoxicology.

    PubMed

    Hobson, David W; Roberts, Stephen M; Shvedova, Anna A; Warheit, David B; Hinkley, Georgia K; Guy, Robin C

    2016-01-01

    Nanomaterials, including nanoparticles and nanoobjects, are being incorporated into everyday products at an increasing rate. These products include consumer products of interest to toxicologists such as pharmaceuticals, cosmetics, food, food packaging, household products, and so on. The manufacturing of products containing or utilizing nanomaterials in their composition may also present potential toxicologic concerns in the workplace. The molecular complexity and composition of these nanomaterials are ever increasing, and the means and methods being applied to characterize and perform useful toxicologic assessments are rapidly advancing. This article includes presentations by experienced toxicologists in the nanotoxicology community who are focused on the applied aspect of the discipline toward supporting state of the art toxicologic assessments for food products and packaging, pharmaceuticals and medical devices, inhaled nanoparticle and gastrointestinal exposures, and addressing occupational safety and health issues and concerns. This symposium overview article summarizes 5 talks that were presented at the 35th Annual meeting of the American College of Toxicology on the subject of "Applied Nanotechnology." © The Author(s) 2016.

  15. Applied Nanotoxicology

    PubMed Central

    Hobson, David W.; Roberts, Stephen M.; Shvedova, Anna A.; Warheit, David B.; Hinkley, Georgia K.; Guy, Robin C.

    2016-01-01

    Nanomaterials, including nanoparticles and nanoobjects, are being incorporated into everyday products at an increasing rate. These products include consumer products of interest to toxicologists such as pharmaceuticals, cosmetics, food, food packaging, household products, and so on. The manufacturing of products containing or utilizing nanomaterials in their composition may also present potential toxicologic concerns in the workplace. The molecular complexity and composition of these nanomaterials are ever increasing, and the means and methods being applied to characterize and perform useful toxicologic assessments are rapidly advancing. This article includes presentations by experienced toxicologists in the nanotoxicology community who are focused on the applied aspect of the discipline toward supporting state of the art toxicologic assessments for food products and packaging, pharmaceuticals and medical devices, inhaled nanoparticle and gastrointestinal exposures, and addressing occupational safety and health issues and concerns. This symposium overview article summarizes 5 talks that were presented at the 35th Annual meeting of the American College of Toxicology on the subject of “Applied Nanotechnology.” PMID:26957538

  16. Apply

    Science.gov Websites

    linkedin facebook Twitter YouTube Twitter Content Apply now » Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Alamos National Laboratory Delivering Capabilities Deploying Innovation Technology Opportunities Innovation in New Mexico Los Alamos Collaboration

  17. Na-Ion Battery Anodes: Materials and Electrochemistry.

    PubMed

    Luo, Wei; Shen, Fei; Bommier, Clement; Zhu, Hongli; Ji, Xiulei; Hu, Liangbing

    2016-02-16

    also outlined, where graphene oxide was employed as dehydration agent and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) was used to unzip wood fiber. Furthermore, surface modification by atomic layer deposition technology is introduced, where we discover that a thin layer of Al2O3 can function to encapsulate Sn nanoparticles, leading to a much enhanced cycling performance. We also highlight recent work about the phosphorene/graphene anode, which outperformed other anodes in terms of capacity. The aromatic organic anode is also studied as anode with very high initial sodiation capacity. Furthermore, electrochemical intercalation of Na ions into reduced graphene oxide is applied for fabricating transparent conductors, demonstrating the great feasibility of Na ion intercalation for optical applications.

  18. A Fundamental Electrochemical Investigation of Bromoaluminate and Mixed Chloro-Bromoaluminate Room Temperature Molten Salt Systems

    DTIC Science & Technology

    1989-03-01

    Non-Aqueous Bromide Research In the late 1950s, Alexander I. Popov and David H. Geske , published a series of papers dealing with the electrochemistry... Geske has also helped to illuminate the electrochemistry occurring in the Zinc-Bromine battery systems. In 1987 Adanuvor et al. studied the effects of the...oxidation waves present in the basic bromide melt system are due to some form of the bromide anion. While Popov and Geske 7 have attributed the first of

  19. What are applied ethics?

    PubMed

    Allhoff, Fritz

    2011-03-01

    This paper explores the relationships that various applied ethics bear to each other, both in particular disciplines and more generally. The introductory section lays out the challenge of coming up with such an account and, drawing a parallel with the philosophy of science, offers that applied ethics may either be unified or disunified. The second section develops one simple account through which applied ethics are unified, vis-à-vis ethical theory. However, this is not taken to be a satisfying answer, for reasons explained. In the third section, specific applied ethics are explored: biomedical ethics; business ethics; environmental ethics; and neuroethics. These are chosen not to be comprehensive, but rather for their traditions or other illustrative purposes. The final section draws together the results of the preceding analysis and defends a disunity conception of applied ethics.

  20. Integrating anammox with the autotrophic denitrification process via electrochemistry technology.

    PubMed

    Qiao, Sen; Yin, Xin; Zhou, Jiti; Wei, Li'e; Zhong, Jiayou

    2018-03-01

    In this study, an autotrophic denitrification process was successfully coupled with anammox to remove the nitrate by-product via electrochemical technology. When the voltage applied to the combined electrode reactor was 1.5 V, the electrode reaction removed nitrate by using the autotrophic denitrification biomass without affecting the anammox biomass. The nitrogen removal efficiency of the combined electrode reactor reached 99.1% without detectable nitrate at an influent NO 2 - -N/NH 4 + -N ratio of 1.5. On day 223, using the model calculations based on reaction equations, 19.7% of total nitrogen was removed via the autotrophic denitrification process, while the majority of nitrogen removal (approximately 79.4%) was attributed to the anammox reaction. Small variations of the population numbers and community structure of artificial bacteria according to electron microscopy predicted that the anammox and autotrophic denitrifying biomasses could coexist in the electrode reactor. Then, 16S rRNA analysis determined that the anammox biomass group was always dominant in mixed flora during continuous cultivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Electrochemistry serving people and nature: high-energy ecocapacitors based on redox-active electrolytes.

    PubMed

    Frackowiak, Elzbieta; Fic, Krzysztof; Meller, Mikolaj; Lota, Grzegorz

    2012-07-01

    Positive Poles: A new type of electrochemical capacitor with two different aqueous solutions, separated by a Nafion membrane is described. High capacitance values as well as excellent energy/power characteristics are reported and discussed. The neutral character of the applied electrolytes makes this capacitor an environmentally friendly, easy to assemble, and cost-effective device for energy storage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Development of Nanostructure Materials and Architecture for High Performance Li-rechargeable Batteries with Ultrafast Charge Rate

    DTIC Science & Technology

    2011-04-22

    overcome these difficulties extensive work has been done. Surface coatings with ZnO , SiO2, and Bi2O3 have been proposed to enhance stability of electrodes...Liu, G. Q.; Wen, L.; Liu, Y. M. Journal of Solid State Electrochemistry 2010, 14, 2191. (23) Myung, S. T.; Komaba, S.; Kumagai, N.; Yashiro, H.; Chung...Y. R.; Shu, J.; Zhu, R. S. Journal of Solid State Electrochemistry 2009, 13, 913. (29) Aklalouch, M.; Amarilla, J. M.; Rojas, R. M.; Saadoune, I

  3. Luminescent Photoelectrochemical Cells. 4. Electroluminescent Properties of Undoped and Tellurium-Doped Cadmium Sulfide Electrodes.

    DTIC Science & Technology

    1980-12-03

    and/or Dist Special UnclassifiLed 26CURITY CLAIICATION OrY,.g PAWEWO 000 Ss~w" Introduction Anunderstanding of electrochemistry at semiconductor...studies: Electrolyte species capable of hole injection into the valence bands of n-type, semiconducting T102 SrTi’ 3 , CdS ,GaP ’ ZnO ,and GaAs...the denominator of (4) by using the total current as a measure of holes injected. If equations (1) and (2) truly describe the electrochemistry at the

  4. Applied Physics. Course Materials: Physics 111, 112, 113. Seattle Tech Prep Applied Academics Project.

    ERIC Educational Resources Information Center

    South Seattle Community Coll., Washington.

    This publication contains materials for three courses in Applied Physics in the Applied Academics program at South Seattle Community College. It begins with the article, "Community College Applied Academics: The State of the Art?" (George B. Neff), which describes the characteristics, model, courses, and coordination activity that make…

  5. Applied Math. Course Materials: Math 111, 112, 113. Seattle Tech Prep Applied Academics Project.

    ERIC Educational Resources Information Center

    South Seattle Community Coll., Washington.

    This publication contains materials for three courses in Applied Math in the Applied Academics program at South Seattle Community College. It begins with the article, "Community College Applied Academics: The State of the Art?" (George B. Neff), which describes the characteristics, model, courses, and coordination activity that make up…

  6. Studies on the preparation of Caro’s acid by ultrasonic enhanced electrochemistry

    NASA Astrophysics Data System (ADS)

    Li, Linbo; Yu, Zeli; Hong, Tao; Fang, Zhao; Peng, Jishi; Yang, Zhao

    2017-06-01

    Ultrasonic cavitation effects can generate hydroxyl radicals and high energy, which is widely applied in the field of oxidation currently. Ultrasound-enhanced electrochemical is used to prepare Caro’s acid, which improves the generate rate of Caro’s acid. In this article, the influences of ultrasonic frequency and ultrasonic power on the electrolysis voltage, electrolyte temperature, electrolyte concentration and the concentration of additive in the process of electrochemical preparation of Caro’s acid was studied. And the optimal production conditions were determined. The research results showed that ultrasonic can significantly improve the production of Caro’s acid and the product can increase by about 20 g/L under the best condition.

  7. The Routledge Applied Linguistics Reader

    ERIC Educational Resources Information Center

    Wei, Li, Ed.

    2011-01-01

    "The Routledge Applied Linguistics Reader" is an essential collection of readings for students of Applied Linguistics. Divided into five sections: Language Teaching and Learning, Second Language Acquisition, Applied Linguistics, Identity and Power and Language Use in Professional Contexts, the "Reader" takes a broad…

  8. Energy Conversion and Storage Program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  9. Material science and Condensed matter Physics. 8th International Conference. Abstracts.

    NASA Astrophysics Data System (ADS)

    Kulyuk, L. L.; Paladi, Florentin; Canter, Valeriu; Nikorich, Valentina; Filippova, Irina

    2016-08-01

    The book includes the abstracts of the communications presented at the 8th International Conference on Materials Science and Condensed Matter Physics (MSCMP 2016), a traditional biennial meeting organized by the Institute of Applied Physics of the Academy of Sciences of Moldova (IAP).A total of 346 abstracts has been included in the book. The Conference programm included plenary lectures, topical keynote lectures, contributed oral and poster presentations distributed into 7 sections: * Condensed Matter Theory; * Advanced Bulk Materials; * Design and Structural Characterization of Materials; * Solid State Nanophysics and Nanotechnology; * Energy Conversion and Storage. Solid State Devices; * Surface Engineering and Applied Electrochemistry; * Digital and Optical holography: Materials and Methods. The abstracts are arranged according to the sections mentioned above. The Abstracts book includes a table of matters at the beginning of the book and an index of authors at the finish of the book.

  10. Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations.

    PubMed

    Kilic, Mustafa Sabri; Bazant, Martin Z; Ajdari, Armand

    2007-02-01

    In situations involving large potentials or surface charges, the Poisson-Boltzman (PB) equation has shortcomings because it neglects ion-ion interactions and steric effects. This has been widely recognized by the electrochemistry community, leading to the development of various alternative models resulting in different sets "modified PB equations," which have had at least qualitative success in predicting equilibrium ion distributions. On the other hand, the literature is scarce in terms of descriptions of concentration dynamics in these regimes. Here, adapting strategies developed to modify the PB equation, we propose a simple modification of the widely used Poisson-Nernst-Planck (PNP) equations for ionic transport, which at least qualitatively accounts for steric effects. We analyze numerical solutions of these modified PNP equations on the model problem of the charging of a simple electrolyte cell, and compare the outcome to that of the standard PNP equations. Finally, we repeat the asymptotic analysis of Bazant, Thornton, and Ajdari [Phys. Rev. E 70, 021506 (2004)] for this new system of equations to further document the interest and limits of validity of the simpler equivalent electrical circuit models introduced in Part I [Kilic, Bazant, and Ajdari, Phys. Rev. E 75, 021502 (2007)] for such problems.

  11. Applying Sociology to the Teaching of Applied Sociology.

    ERIC Educational Resources Information Center

    Wallace, Richard Cheever

    A college-level applied sociology course in which students use sociological theory or research methodology to solve social problems is described. Guidelines for determining appropriate projects are: (1) the student must feel there is a substantial need for the project; (2) the project must be approachable through recognized sociological…

  12. What Is Applied Linguistics?

    ERIC Educational Resources Information Center

    James, Carl

    1993-01-01

    Ostensive and expository definitions of applied linguistics are assessed. It is suggested that the key to a meaningful definition lies in the dual articulation of applied linguistics: it is an interface between linguistics and practicality. Its role as an "expert system" is suggested. (45 references) (Author/LB)

  13. Student Perceptions about Applied Mathematics.

    ERIC Educational Resources Information Center

    Keif, Malcolm G.; Stewart, Bob R.

    Background information on the history and rationale for Tech Prep introduces the description of a study that examines the perceptions of students enrolled in Applied Mathematics 1 and Applied Mathematics 2 courses which are based on the Center for Occupational Research and Development's (CORD) applied mathematics curriculum. The primary goal is to…

  14. Bioconjugation of zirconium uridine monophosphate: application to myoglobin direct electrochemistry.

    PubMed

    Qiao, Yuanbiao; Jian, Fangfang; Bai, Qian

    2008-03-14

    Porous nano-granule of zirconium uridine monophosphate, Zr(UMP)2.H2O is, for the first time, synthesized under mild experimental conditions and applied to the bioconjugation of myoglobin (Mb) to realize its direct electron transfer. UV-vis and resonance Raman spectroscopies prove that Mb in the Zr(UMP)2.H2O film maintains its secondary structure similar to the native state. The conjugation film of the Mb-Zr(UMP)2.H2O on the glassy carbon (GC) electrode gives a well-defined and quasi-reversible cyclic voltammogram, which reflects the direct electron transfer of the heme Fe III/Fe II couple of Mb. On the basis of the satisfying bioelectrocatalysis of the nano-conjugation of Mb and genetic substrate, a kind of mediator-free biosensor for H2O2 is developed. The linear range for H2O2 detection is estimated to be 3.92-180.14 microM. The apparent Michaelis-Menten constant (Km) and the detection limit based on the signal-to-noise ratio of 3 are found to be 196.1 microM and 1.52 microM, respectively. Both the apparent Michaelis-Menten constant and the detection limit herein are much lower than currently reported values from other Mb films. This kind of sensor possesses excellent stability, long-term life (more than 20 days) and good reproducibility.

  15. Surface Electrochemistry of Metals

    DTIC Science & Technology

    1993-04-30

    maxima along the 12 directions of open channels .vhich are also the interatomic directions). Elastic scattering angular distributions always contain... scatterer geometric relationships for such samples. Distributions from ordered atomic bilayers reveal that the Auger signal from the underlayer is attenuated...are developing a theoretical model and computational code which include both elastic scattering and inhomogeneous inelastic scattering . We seek

  16. Electrochemistry of Metal Surfaces

    DTIC Science & Technology

    1990-06-30

    i) 3-pyridine carboxylic acid ( nicotinic acid, NA) binds to Pt surfaces through both the nitrogen atom and an oxygen atom of the carboxylate group...formed from aqueous electrolytes at Pt(1l1) electrode surfaces have been compared with the IR and Raman spectra of the unadsorbed compounds in order...vibrational absorptivities between EELS spectra of adsorbed species and IR and Raman spectra of the corresponding unadsorbed compounds (146). Of

  17. Electrochemistry of Interhalogen Cathodes

    DTIC Science & Technology

    sources. Chlorine trifluoride , with a theoretical 2120 whr/lb in combination with lithium, is also known to support substantial current densities when... chlorine trifluoride as a power source cathode material. A half-cell study was made on dilute ClF3 solutions at 5C in 1 M NaF-HF by the cyclic

  18. Electrochemistry in diabetes management.

    PubMed

    Heller, Adam; Feldman, Ben

    2010-07-20

    Diabetes devastates lives and burdens society. Hypoglycemic (low glucose) episodes cause blackouts, and severe ones are life-threatening. Periods of hyperglycemia (high glucose) cause circulatory disease, stroke, amputations, blindness, kidney failure and nerve degeneration. In this Account, we describe the founding of TheraSense, now a major part of Abbott Diabetes Care, and the development of two products that have improved the lives of people with diabetes. The first, a virtually painless microcoulometer (300 nL volume), the FreeStyle blood glucose monitoring system, was approved by the FDA and became available in 2000. In 2009, this system was used in more than one billion blood assays. The second, the enzyme-wiring based, subcutaneously-implanted FreeStyle Navigator continuous glucose monitoring system, was approved by the FDA and became available in the United States in 2008. The strips of the FreeStyle blood glucose monitoring system comprise a printed parallel plate coulometer, with a 50 microm gap between two facing printed electrodes, a carbon electrode and a Ag/AgCl electrode. The volume of blood between the facing plates is accurately controlled. The glucose is electrooxidized through catalysis by a glucose dehydrogenase (GDH) and an Os(2+/3+) redox mediator, which is reduced by the glucose-reduced enzyme and is electrooxidized on the carbon electrode. Initially the system used pyrroloquinoline quinone (PQQ)-dependent GDH but now uses flavin adenine dinucleotide (FAD)-dependent GDH. Because the facing electrodes are separated by such a small distance, shuttling of electrons by the redox couple could interfere with the coulometric assay. However, the Os(2+/3+) redox mediator is selected to have a substantially negative formal potential, between 0.0 and -0.2 V, versus that of the facing Ag/AgCl electrode. This makes the flow of a shuttling current between the two electrodes virtually impossible because the oxidized Os(3+) complex cannot be appreciably reduced at the more positively poised Ag/AgCl electrode. The FreeStyle Navigator continuous glucose monitoring system uses a subcutaneously implanted miniature plastic sensor connected to a transmitter to measure glycemia amperometrically and sends the information to a PDA-like device every minute. The sensor consists of a narrow (0.6 mm wide) plastic substrate on which carbon-working, Ag/AgCl reference, and carbon counter electrodes are printed in a stacked geometry. The active wired enzyme sensing layer covers only about 0.1 mm(2) of the working electrode and is overlaid by a flux-limiting membrane. It resides at about 5 mm depth in the subcutaneous adipose tissue and monitors glucose concentrations over the range 20-500 mg/dL. Its core component, a miniature, disposable, amperometric glucose sensor, has an electrooxidation catalyst made from a crosslinked adduct of glucose oxidase (GOx) and a GOx wiring redox hydrogel containing a polymer-bound Os(2+/3+) complex. Because of the selectivity of the catalyst for glucose, very little current flows in the absence of glucose. That feature, either alone or in combination with other features of the sensor, facilitates the one-point calibration of the system. The sensor is implanted subcutaneously and replaced by the patient after 5 days use with minimal pain. The wearer does not feel its presence under the skin.

  19. ELECTROCHEMISTRY OF FUSED SALTS.

    DTIC Science & Technology

    Chronopotentiometric and electrolysis data indicate the formation of Li2O.2V2O4V2O5 during the first reduction process of V2O5 in molten LiCl-KCl...The results were obtained with a pyrographite cathode. Also discussed is the spectra of CO(2+) and Ni(2+) in molten and solid sulfate media. (Author)

  20. Electrochemistry of lunar rocks

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. J.; Haskin, L. A.

    1979-01-01

    Electrolysis of silicate melts has been shown to be an effective means of producing metals from common silicate materials. No fluxing agents need be added to the melts. From solution in melts of diopside (CaMgSi2O6) composition, the elements Si, Ti, Ni, and Fe have been reduced to their metallic states. Platinum is a satisfactory anode material, but other cathode materials are needed. Electrolysis of compositional analogs of lunar rocks initially produces iron metal at the cathode and oxygen gas at the anode. Utilizing mainly heat and electricity which are readily available from sunlight, direct electrolysis is capable of producing useful metals from common feedstocks without the need for expendable chemicals. This simple process and the products obtained from it deserve further study for use in materials processing in space.

  1. Electrochemistry for Energy Conversion

    NASA Astrophysics Data System (ADS)

    O'Hayre, Ryan

    2010-10-01

    Imagine a laptop computer that runs for 30 hours on a single charge. Imagine a world where you plug your house into your car and power lines are a distant memory. These dreams motivate today's fuel cell research. While some dreams (like powering your home with your fuel cell car) may be distant, others (like a 30-hour fuel cell laptop) may be closer than you think. If you are curious about fuel cells---how they work, when you might start seeing them in your daily life--- this talk is for you. Learn about the state-of-the art in fuel cells, and where the technology is likely to be headed in the next 20 years. You'll also be treated to several ``behind-the scenes'' glimpses of cutting-edge research projects under development in the Renewable Energy Materials Center at the Colorado School of Mines--- projects like an ``ionic transistor'' that works with protons instead of electrons, and a special ceramic membrane material that enables the ``uphill'' diffusion of steam. Associate Professor Ryan O'Hayre's laboratory at the Colorado School of Mines develops new materials and devices to enable alternative energy technologies including fuel cells and solar cells. Prof. O'Hayre and his students collaborate with the Colorado Fuel Cell Center, the Colorado Center for Advanced Ceramics, the Renewable Energy Materials Science and Engineering Center, and the National Renewable Energy Laboratory.[4pt] In collaboration with Ann Deml, Jianhua Tong, Svitlana Pylypenko, Archana Subramaniyan, Micahael Sanders, Jason Fish, Annette Bunge, Colorado School of Mines.

  2. [Applied ecology: retrospect and prospect].

    PubMed

    He, Xingyuan; Zeng, Dehui

    2004-10-01

    Applied ecology is evolved into a principal part of modern ecology that rapidly develops. The major stimulus for the development of applied ecology roots in seeking the solutions for the problems of human populations, resources and environments. Through four decades, the science of applied ecology has been becoming a huge group of disciplines. The future for the applied ecology should concern more with human-influenced and managed ecosystems, and acknowledge humans as the components of ecosystems. Nowadays and in future, the top-priorities in applied ecology should include following fields: sustainable ecosystems and biosphere, ecosystem services and ecological design, ecological assessment of genetically modified organisms, ecology of biological invasions, epidemical ecology, ecological forecasting, ecological process and its control. The authors believe that the comprehensive and active research hotspots coupled some new traits would occur around these fields in foreseeable future.

  3. Applied Developmental Science: An Advanced Textbook. The SAGE Program on Applied Developmental Science

    ERIC Educational Resources Information Center

    Lerner, Richard M., Ed.; Jacobs, Fraincine, Ed.; Wertlieb, Donald, Ed.

    2005-01-01

    This course textbook has been adapted from the four-volume "Handbook of Applied Developmental Science" (SAGE 2003), a work that offers a detailed roadmap for action and research in ensuring positive child, youth, and family development. In 20 chapters, "Applied Developmental Science: An Advanced Textbook" brings together theory and application…

  4. Applied Enzymology.

    ERIC Educational Resources Information Center

    Manoharan, Asha; Dreisbach, Joseph H.

    1988-01-01

    Describes some examples of chemical and industrial applications of enzymes. Includes a background, a discussion of structure and reactivity, enzymes as therapeutic agents, enzyme replacement, enzymes used in diagnosis, industrial applications of enzymes, and immobilizing enzymes. Concludes that applied enzymology is an important factor in…

  5. Electrochemistry and Spectroelectrochemistry of Polynuclear Zinc Phthalocyanines: Formation of Mixed Valence Cation Radical Species.

    DTIC Science & Technology

    1988-02-25

    No. No. Copies Cpe Office of Naval Research 2 Dr. David You.)g Attn: Code 1113 Code 334 800 N. Quinc’ Street NORDA Arlington, Virginia 22217-5000 NSTL...Naval Surface Weapons Center Chapel Hill, North Carolina 27514 Silver Spring, Maryland 20910 Or. R. A. Marcus Dr. Michael J. Weaver Department of...Microprocessor model 340 spectrometer. Cyclic and dif, rential pulse voltammetry were performed with a Princeton Applied Research (PARC) model 174A

  6. Applied science. Introduction.

    PubMed

    Bud, Robert

    2012-09-01

    Such categories as applied science and pure science can be thought of as "ideological." They have been contested in the public sphere, exposing long-term intellectual commitments, assumptions, balances of power, and material interests. This group of essays explores the contest over applied science in Britain and the United States during the nineteenth century. The essays look at the concept in the context of a variety of neighbors, including pure science, technology, and art. They are closely related and connected to contemporary historiographic debate. Jennifer Alexander links the issues raised to a recent paper by Paul Forman. Paul Lucier and Graeme Gooday deal with the debates in the last quarter of the century in the United States and Britain, respectively. Robert Bud deals with the earlier part of the nineteenth century, with an eye specifically on the variety of concepts hybridized under the heading of "applied science." Eric Schatzberg looks at the erosion of the earlier concept of art. As a whole, the essays illuminate both long-term changes and nuanced debate and are themselves intended to provoke further reflection on science in the public sphere.

  7. Electrochemistry and electrogenerated chemiluminescence of dithienylbenzothiadiazole derivative. Differential reactivity of donor and acceptor groups and simulations of radical cation-anion and dication-radical anion annihilations.

    PubMed

    Shen, Mei; Rodríguez-López, Joaquín; Huang, Ju; Liu, Quan; Zhu, Xu-Hui; Bard, Allen J

    2010-09-29

    We report here the electrochemistry and electrogenerated chemiluminescence (ECL) of a red-emitting dithienylbenzothiadiazole-based molecular fluorophore (4,7-bis(4-(4-sec-butoxyphenyl)-5-(3,5-di(1-naphthyl)phenyl)thiophen-2-yl)-2,1,3-benzothiadiazole, 1b). 1b contains two substituted thiophene groups as strong electron donors at the ends connected directly to a strong electron acceptor, 2,1,3-benzothiadiazole, in the center. Each thiophene moiety is substituted in position 2 by 3,5-di(1-naphthyl)phenyl and in position 3 by 4-sec-butoxyphenyl. Cyclic voltammetry of 1b, with scan rate ranging from 0.05 to 0.75 V/s, shows a single one-electron reduction wave (E°(red) = -1.18 V vs SCE) and two nernstian one-electron oxidation waves (E°(1,ox) = 1.01 V, E°(2,ox) = 1.24 V vs SCE). Reduction of the unsubstituted 2,1,3-benzothiadiazole center shows nernstian behavior with E°(red) = -1.56 V vs SCE. By comparison to a digital simulation, the heterogeneous electron-transfer rate constant for reduction, k(r)° = 1.5 × 10(-3) cm/s, is significantly smaller than those for the oxidations, k(o)° > 0.1 cm/s, possibly indicating that the two substituted end groups have a blocking effect on the reduction of the benzothiadiazole center. The ECL spectrum, produced by electron-transfer annihilation of the reduced and oxidized forms, consists of a single peak with maximum emission at about 635 nm, consistent with the fluorescence of the parent molecule. Relative ECL intensities with respect to 9,10-diphenylanthracene are 330% and 470% for the radical anion-cation and radical anion-dication annihilation, respectively. Radical anion (A(-•))-cation (A(+•)) annihilation produced by potential steps shows symmetric ECL transients during anodic and cathodic pulses, while for anion (A(-•))-dication (A(2+•)) annihilation, transient ECL shows asymmetry in which the anodic pulse is narrower than the cathodic pulse. Digital simulation of the transient ECL experiments showed that the

  8. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry.

    PubMed

    Sundararaman, Ravishankar; Goddard, William A; Arias, Tomas A

    2017-03-21

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.

  9. Task force on applied mathematics

    NASA Technical Reports Server (NTRS)

    Prieto, A.

    1979-01-01

    Tomas Garza relates how the Research Center for Applied Mathematics Systems and Services in Mexico became the Research Institute for Applied Mathematics and Systems and what the type of work performed is.

  10. Opto-electrochemical In Situ Monitoring of the Cathodic Formation of Single Cobalt Nanoparticles.

    PubMed

    Brasiliense, Vitor; Clausmeyer, Jan; Dauphin, Alice L; Noël, Jean-Marc; Berto, Pascal; Tessier, Gilles; Schuhmann, Wolfgang; Kanoufi, Fréderic

    2017-08-21

    Single-particle electrochemistry at a nanoelectrode is explored by dark-field optical microscopy. The analysis of the scattered light allows in situ dynamic monitoring of the electrodeposition of single cobalt nanoparticles down to a radius of 65 nm. Larger sub-micrometer particles are directly sized optically by super-localization of the edges and the scattered light contains complementary information concerning the particle redox chemistry. This opto-electrochemical approach is used to derive mechanistic insights about electrocatalysis that are not accessible from single-particle electrochemistry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. 34 CFR 403.3 - What regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF EDUCATION STATE VOCATIONAL AND APPLIED TECHNOLOGY EDUCATION PROGRAM General § 403.3 What regulations apply? The following regulations apply to the State Vocational and Applied Technology Education... 34 Education 3 2010-07-01 2010-07-01 false What regulations apply? 403.3 Section 403.3 Education...

  12. Conversation Analysis and Applied Linguistics.

    ERIC Educational Resources Information Center

    Schegloff, Emanuel A.; Koshik, Irene; Jacoby, Sally; Olsher, David

    2002-01-01

    Offers biographical guidance on several major areas of conversation-analytic work--turn-taking, repair, and word selection--and indicates past or potential points of contact with applied linguistics. Also discusses areas of applied linguistic work. (Author/VWL)

  13. Electrochemistry and analytical determination of lysergic acid diethylamide (LSD) via adsorptive stripping voltammetry.

    PubMed

    Merli, Daniele; Zamboni, Daniele; Protti, Stefano; Pesavento, Maria; Profumo, Antonella

    2014-12-01

    Lysergic acid diethylamide (LSD) is hardly detectable and quantifiable in biological samples because of its low active dose. Although several analytical tests are available, routine analysis of this drug is rarely performed. In this article, we report a simple and accurate method for the determination of LSD, based on adsorptive stripping voltammetry in DMF/tetrabutylammonium perchlorate, with a linear range of 1-90 ng L(-1) for deposition times of 50s. LOD of 1.4 ng L(-1) and LOQ of 4.3 ng L(-1) were found. The method can be also applied to biological samples after a simple extraction with 1-chlorobutane. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Applied oceanography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, J.M.

    This book combines oceanography principles and applications such as marine pollution, resources, and transportation. It is divided into two main parts treating the basic principles of physical oceanography, and presenting a unique systems framework showing how physical oceanography, marine ecology, economics, and government policy may be combined to define the newly developing field of applied oceanography.

  15. Writing, Literacy, and Applied Linguistics.

    ERIC Educational Resources Information Center

    Leki, Ilona

    2000-01-01

    Discusses writing and literacy in the domain of applied linguistics. Focus is on needs analysis for literacy acquisition; second language learner identity; longitudinal studies as extensions of identity work; and applied linguistics contributions to second language literacy research. (Author/VWL)

  16. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less

  17. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry

    DOE PAGES

    Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.

    2017-03-16

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less

  18. Applied Counterfactual Reasoning

    NASA Astrophysics Data System (ADS)

    Hendrickson, Noel

    This chapter addresses two goals: The development of a structured method to aid intelligence and security analysts in assessing counterfactuals, and forming a structured method to educate (future) analysts in counterfactual reasoning. In order to pursue these objectives, I offer here an analysis of the purposes, problems, parts, and principles of applied counterfactual reasoning. In particular, the ways in which antecedent scenarios are selected and the ways in which scenarios are developed constitute essential (albeit often neglected) aspects of counterfactual reasoning. Both must be addressed to apply counterfactual reasoning effectively. Naturally, further issues remain, but these should serve as a useful point of departure. They are the beginning of a path to more rigorous and relevant counterfactual reasoning in intelligence analysis and counterterrorism.

  19. An Option in Applied Microbiology.

    ERIC Educational Resources Information Center

    Lee, William E., III

    1988-01-01

    Describes a program option for undergraduate chemical engineering students interested in biotechnology. Discusses how this program is deployed at the University of Southern Florida. Lists courses which apply to this program. Discusses the goals of teaching applied microbiology to engineering majors. (CW)

  20. The Degree of Applying E-Learning in English Departments at Al-Balqa Applied University from Instructors' Perspectives

    ERIC Educational Resources Information Center

    Alzu'bi, Mohammad Akram Mohammad

    2018-01-01

    The study aimed at identifying the degree of applying e-learning in Al-Balqa Applied University from instructors' perspectives so the researcher designed a questionnaire of 20 items which is applied on a sample of 48 lecturers. The study showed that the percentage of (64.0%) out of 48 participants apply e-learning in English departments at…

  1. Applied Biology and Chemistry. Course Materials: Chemistry 111, 112, 113, 114. Seattle Tech Prep Applied Academics Project.

    ERIC Educational Resources Information Center

    South Seattle Community Coll., Washington.

    This publication contains materials for four courses in Applied Biology/Chemistry in the Applied Academics program at South Seattle Community College. It begins with the article, "Community College Applied Academics: The State of the Art?" (George B. Neff), which describes the characteristics, model, courses, and coordination activity…

  2. Electrochemistry of raloxifene on glassy carbon electrode and its determination in pharmaceutical formulations and human plasma.

    PubMed

    Bagheri, Akbar; Hosseini, Hadi

    2012-12-01

    The electrochemical behavior of raloxifene (RLX) on the surface of a glassy carbon electrode (GCE) has been studied by cyclic voltammetry (CV). The CV studies were performed in various supporting electrolytes, wide range of potential scan rates, and pHs. The results showed an adsorption-controlled and quasi-reversible process for the electrochemical reaction of RLX, and a probable redox mechanism was suggested. Under the optimum conditions, differential pulse voltammetry (DPV) was applied for quantitative determination of the RLX in pharmaceutical formulations. The DPV measurements showed that the anodic peak current of the RLX was linear to its concentration in the range of 0.2-50.0μM with a detection limit of 0.0750μM, relative standard deviation (RSD %) below 3.0%, and a good sensitivity. The proposed method was successfully applied for determination of the RLX in pharmaceutical and human plasma samples with a good selectivity and suitable recovery. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. 42 CFR 137.373 - Do Federal real property laws, regulations and procedures that apply to the Secretary also apply...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., regulations and procedures that apply to the Secretary also apply to Self-Governance Tribes that purchase real... 42 Public Health 1 2010-10-01 2010-10-01 false Do Federal real property laws, regulations and procedures that apply to the Secretary also apply to Self-Governance Tribes that purchase real property with...

  4. The Rise of Applied Geography.

    ERIC Educational Resources Information Center

    Philpponneau, Michel

    1981-01-01

    Presents an historical overview of the use of the science of geography for practical purposes. Topics discussed include British schools of geography during the 19th century, contributions of many of the founders of applied geography, forms in which geographical work can be used for practical purposes, and the status of applied geography in various…

  5. Anisotropic Metal Deposition on TiO2 Particles by Electric-Field-Induced Charge Separation.

    PubMed

    Tiewcharoen, Supakit; Warakulwit, Chompunuch; Lapeyre, Veronique; Garrigue, Patrick; Fourier, Lucas; Elissalde, Catherine; Buffière, Sonia; Legros, Philippe; Gayot, Marion; Limtrakul, Jumras; Kuhn, Alexander

    2017-09-11

    Deposition of metals on TiO 2 semiconductor particles (M-TiO 2 ) results in hybrid Janus objects combining the properties of both materials. One of the techniques proposed to generate Janus particles is bipolar electrochemistry (BPE). The concept can be applied in a straightforward way for the site-selective modification of conducting particles, but is much less obvious to use for semiconductors. Herein we report the bulk synthesis of anisotropic M-TiO 2 particles based on the synergy of BPE and photochemistry, allowing the intrinsic limitations, when they are used separately, to be overcome. When applying electric fields during irradiation, electrons and holes can be efficiently separated, thus breaking the symmetry of particles by modifying them selectively and in a wireless way on one side with either gold or platinum. Such hybrid materials are an important first step towards high-performance designer catalyst particles, for example for photosplitting of water. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Embracing uncertainty in applied ecology.

    PubMed

    Milner-Gulland, E J; Shea, K

    2017-12-01

    Applied ecologists often face uncertainty that hinders effective decision-making.Common traps that may catch the unwary are: ignoring uncertainty, acknowledging uncertainty but ploughing on, focussing on trivial uncertainties, believing your models, and unclear objectives.We integrate research insights and examples from a wide range of applied ecological fields to illustrate advances that are generally underused, but could facilitate ecologists' ability to plan and execute research to support management.Recommended approaches to avoid uncertainty traps are: embracing models, using decision theory, using models more effectively, thinking experimentally, and being realistic about uncertainty. Synthesis and applications . Applied ecologists can become more effective at informing management by using approaches that explicitly take account of uncertainty.

  7. RESEARCH ACTIVITIES IN THE FIELD OF MATERIALS SCIENCE.

    DTIC Science & Technology

    MAGNETIC RESONANCE, COMPLEX COMPOUNDS, CRYSTAL STRUCTURE, ELECTROCHEMISTRY, CHEMILUMINESCENCE, PHOTOCHEMICAL REACTIONS, PHOSPHORUS HETEROCYCLIC COMPOUNDS...RADIATION CHEMISTRY, POLYMERS, ROCK, SUPERCONDUCTORS, POSITRONS , DAMAGE, RADIATION EFFECTS, HALIDES

  8. Lessons from NASA Applied Sciences Program: Success Factors in Applying Earth Science in Decision Making

    NASA Astrophysics Data System (ADS)

    Friedl, L. A.; Cox, L.

    2008-12-01

    The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.

  9. History and theory in "applied ethics".

    PubMed

    Beauchamp, Tom L

    2007-03-01

    Robert Baker and Laurence McCullough argue that the "applied ethics model" is deficient and in need of a replacement model. However, they supply no clear meaning to "applied ethics" and miss most of what is important in the literature on methodology that treats this question. The Baker-McCullough account of medical and applied ethics is a straw man that has had no influence in these fields or in philosophical ethics. The authors are also on shaky historical grounds in dealing with two problems: (1) the historical source of the notion of "practical ethics" and (2) the historical source of and the assimilation of the term "autonomy" into applied philosophy and professional ethics. They mistakenly hold (1) that the expression "practical ethics" was first used in a publication by Thomas Percival and (2) that Kant is the primary historical source of the notion of autonomy as that notion is used in contemporary applied ethics.

  10. APPLIED MERCURY CAPTURE

    EPA Science Inventory

    The first purpose of this project is to complete bench and pilot scale testing of promising mercury sorbents. This work would apply findings from fundamental, mechanistic efforts over the past three years that have developed sorbents which show improved capture of elemental and ...

  11. 34 CFR 1100.5 - What definitions apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applied research, planning, surveys, assessments, evaluations, investigations, experiments, development... 34 Education 3 2010-07-01 2010-07-01 false What definitions apply? 1100.5 Section 1100.5 Education... INSTITUTE FOR LITERACY: LITERACY LEADER FELLOWSHIP PROGRAM § 1100.5 What definitions apply? (a) The...

  12. On applying cognitive psychology.

    PubMed

    Baddeley, Alan

    2013-11-01

    Recent attempts to assess the practical impact of scientific research prompted my own reflections on over 40 years worth of combining basic and applied cognitive psychology. Examples are drawn principally from the study of memory disorders, but also include applications to the assessment of attention, reading, and intelligence. The most striking conclusion concerns the many years it typically takes to go from an initial study, to the final practical outcome. Although the complexity and sheer timescale involved make external evaluation problematic, the combination of practical satisfaction and theoretical stimulation make the attempt to combine basic and applied research very rewarding. © 2013 The British Psychological Society.

  13. 34 CFR 400.3 - What other regulations apply to the Vocational and Applied Technology Education Programs?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What other regulations apply to the Vocational and Applied Technology Education Programs? 400.3 Section 400.3 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION...

  14. 34 CFR 410.4 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What regulations apply? 410.4 Section 410.4 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... What regulations apply? The following regulations apply to the Tribally Controlled Postsecondary...

  15. 34 CFR 410.4 - What regulations apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What regulations apply? 410.4 Section 410.4 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... What regulations apply? The following regulations apply to the Tribally Controlled Postsecondary...

  16. The Electrochemistry of Organophosphorus Compounds.

    DTIC Science & Technology

    1988-01-20

    of hydrogen on the electrode surface. Mechanistkc views are further developed with the addition of water resulting in the formation of...the exclusive vlide product. Furthermore, carbonvl compounds were added to the electrolyses to react with the electrochemically-generated ylides via...the Wittig reaction. The resulting olefins were found to catalytically isomerize from the Z isomer to the E isomer upon reduction. The role of water

  17. Principles for system level electrochemistry

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1986-01-01

    The higher power and higher voltage levels anticipated for future space missions have required a careful review of the techniques currently in use to preclude battery problems that are related to the dispersion characteristics of the individual cells. Not only are the out-of-balance problems accentuated in these larger systems, but the thermal management considerations also require a greater degree of accurate design. Newer concepts which employ active cooling techniques are being developed which permit higher rates of discharge and tighter packing densities for the electrochemical components. This paper will put forward six semi-independent principles relating to battery systems. These principles will progressively address cell, battery and finally system related aspects of large electrochemical storage systems.

  18. Electrochemistry at Nanometer-Scaled Electrodes

    ERIC Educational Resources Information Center

    Watkins, John J.; Bo Zhang; White, Henry S.

    2005-01-01

    Electrochemical studies using nanometer-scaled electrodes are leading to better insights into electrochemical kinetics, interfacial structure, and chemical analysis. Various methods of preparing electrodes of nanometer dimensions are discussed and a few examples of their behavior and applications in relatively simple electrochemical experiments…

  19. Electrochemistry and Storage Panel Report

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.; Halpert, G.

    1984-01-01

    Design and performance requirements for electrochemical power storage systems are discussed and some of the approaches towards satisfying these constraints are described. Geosynchronous and low Earth orbit applications, radar type load constraints, and high voltage systems requirements are addressed. In addition, flywheel energy storage is discussed.

  20. Electrochemistry at Very Small Electrodes.

    DTIC Science & Technology

    1985-09-01

    Reticulated Vitreous Carbon ", N. Sleazynaki, J. G. Osterycung end -’ M. Carter, October, 1983. *15’ * "Increased Electrochemical Window in Ambient...and R.A. Osteryoung, J. Electrochem. Soc., 130, 1965 (1983). 15. "Arrays of Very Small Electrodes Based on Reticulated Vitreous Carbon ", N. Sleszynski

  1. 34 CFR 350.5 - What definitions apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... classified on a continuum from basic to applied: (1) Basic research is research in which the investigator is... immediate application or utility. (2) Applied research is research in which the investigator is primarily... rehabilitation problem or need. Applied research builds on selected findings from basic research. (Authority: Sec...

  2. 34 CFR 643.6 - What regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What regulations apply? 643.6 Section 643.6 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION TALENT SEARCH General § 643.6 What regulations apply? The following regulations apply...

  3. 34 CFR 643.6 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What regulations apply? 643.6 Section 643.6 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION TALENT SEARCH General § 643.6 What regulations apply? The following regulations apply...

  4. 34 CFR 608.3 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What regulations apply? 608.3 Section 608.3 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION... What regulations apply? The following regulations apply to this part: (a) The Department of Education...

  5. 34 CFR 388.5 - What regulations apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false What regulations apply? 388.5 Section 388.5 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND... § 388.5 What regulations apply? The following regulations apply to the State Vocational Rehabilitation...

  6. 34 CFR 415.4 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What regulations apply? 415.4 Section 415.4 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... What regulations apply? The following regulations apply to the Demonstration Centers for the Training...

  7. 34 CFR 386.3 - What regulations apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false What regulations apply? 386.3 Section 386.3 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND... General § 386.3 What regulations apply? The following regulations apply to the Rehabilitation Training...

  8. 34 CFR 8.2 - What definitions apply?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 1 2014-07-01 2014-07-01 false What definitions apply? 8.2 Section 8.2 Education Office of the Secretary, Department of Education DEMANDS FOR TESTIMONY OR RECORDS IN LEGAL PROCEEDINGS § 8.2 What definitions apply? The following definitions apply to this part: Adjudicative authority...

  9. 34 CFR 386.3 - What regulations apply?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false What regulations apply? 386.3 Section 386.3 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND... General § 386.3 What regulations apply? The following regulations apply to the Rehabilitation Training...

  10. 34 CFR 415.4 - What regulations apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What regulations apply? 415.4 Section 415.4 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... What regulations apply? The following regulations apply to the Demonstration Centers for the Training...

  11. Applied aerodynamics: Challenges and expectations

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Smith, Charles A.

    1993-01-01

    Aerospace is the leading positive contributor to this country's balance of trade, derived largely from the sale of U.S. commercial aircraft around the world. This powerfully favorable economic situation is being threatened in two ways: (1) the U.S. portion of the commercial transport market is decreasing, even though the worldwide market is projected to increase substantially; and (2) expenditures are decreasing for military aircraft, which often serve as proving grounds for advanced aircraft technology. To retain a major share of the world market for commercial aircraft and continue to provide military aircraft with unsurpassed performance, the U.S. aerospace industry faces many technological challenges. The field of applied aerodynamics is necessarily a major contributor to efforts aimed at meeting these technological challenges. A number of emerging research results that will provide new opportunities for applied aerodynamicists are discussed. Some of these have great potential for maintaining the high value of contributions from applied aerodynamics in the relatively near future. Over time, however, the value of these contributions will diminish greatly unless substantial investments continue to be made in basic and applied research efforts. The focus: to increase understanding of fluid dynamic phenomena, identify new aerodynamic concepts, and provide validated advanced technology for future aircraft.

  12. From art to applied science.

    PubMed

    Schatzberg, Eric

    2012-09-01

    Before "applied science" and "technology" became keywords, the concept of art was central to discourse about material culture and its connections to natural knowledge. By the late nineteenth century, a new discourse of applied science had replaced the older discourse of art. This older discourse of art, especially as presented in Enlightenment encyclopedias, addressed the relationship between art and science in depth. But during the nineteenth century the concept of fine art gradually displaced the broader meanings of "art," thus undermining the utility of the term for discourse on the relationship between knowledge and practice. This narrowed meaning of "art" obscured key aspects of the industrial world. In effect, middle-class agents of industrialism, including "men of science," used the rhetoric of "applied science" and, later, "technology" to cement the exclusion of artisanal knowledge from the discourse of industrial modernity.

  13. 34 CFR 421.5 - What definitions apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF EDUCATION BUSINESS AND EDUCATION STANDARDS PROGRAM General § 421.5 What definitions apply? The definitions in 34 CFR 400.4 apply to this part. (Authority: 20 U.S.C. 2416) ... 34 Education 3 2010-07-01 2010-07-01 false What definitions apply? 421.5 Section 421.5 Education...

  14. Western Perspectives in Applied Linguistics in Africa

    ERIC Educational Resources Information Center

    Makoni, Sinfree; Meinhof, Ulrike H.

    2004-01-01

    The aim of this article is to analyze the nature of the historical and contemporary social contexts within which applied linguistics in Africa emerged, and is currently practiced. The article examines the challenges "local" applied Linguistics in Africa is confronted with as it tries to amplify applied linguistic programs emanating from…

  15. 34 CFR 8.2 - What definitions apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false What definitions apply? 8.2 Section 8.2 Education... § 8.2 What definitions apply? The following definitions apply to this part: Adjudicative authority... subcommittee of Congress, to the extent of matter within the committee's or subcommittee's jurisdiction; or (3...

  16. 34 CFR 8.2 - What definitions apply?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 1 2013-07-01 2013-07-01 false What definitions apply? 8.2 Section 8.2 Education... § 8.2 What definitions apply? The following definitions apply to this part: Adjudicative authority... subcommittee of Congress, to the extent of matter within the committee's or subcommittee's jurisdiction; or (3...

  17. 34 CFR 608.4 - What definitions apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What definitions apply? 608.4 Section 608.4 Education... What definitions apply? (a) Definitions in EDGAR. The following terms used in this part are defined in... Project period Public Secretary (b) Other definitions. The following definitions also apply to this part...

  18. 34 CFR 386.4 - What definitions apply?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false What definitions apply? 386.4 Section 386.4 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND... General § 386.4 What definitions apply? The following definitions apply to this program: (a) Definitions...

  19. 34 CFR 425.4 - What regulations apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What regulations apply? 425.4 Section 425.4 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... PROGRAM General § 425.4 What regulations apply? The following regulations apply to the Demonstration...

  20. 34 CFR 412.5 - What regulations apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What regulations apply? 412.5 Section 412.5 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... General § 412.5 What regulations apply? The following regulations apply to the National Network for...

  1. 34 CFR 425.4 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What regulations apply? 425.4 Section 425.4 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... PROGRAM General § 425.4 What regulations apply? The following regulations apply to the Demonstration...

  2. 34 CFR 386.4 - What definitions apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false What definitions apply? 386.4 Section 386.4 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND... General § 386.4 What definitions apply? The following definitions apply to this program: (a) Definitions...

  3. 34 CFR 110.3 - What definitions apply?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 1 2014-07-01 2014-07-01 false What definitions apply? 110.3 Section 110.3 Education Regulations of the Offices of the Department of Education OFFICE FOR CIVIL RIGHTS, DEPARTMENT OF EDUCATION....3 What definitions apply? The following definitions apply to these regulations: Act means the Age...

  4. 34 CFR 412.5 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What regulations apply? 412.5 Section 412.5 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... General § 412.5 What regulations apply? The following regulations apply to the National Network for...

  5. Applied Behavior Analysis

    ERIC Educational Resources Information Center

    Szapacs, Cindy

    2006-01-01

    Teaching strategies that work for typically developing children often do not work for those diagnosed with an autism spectrum disorder. However, teaching strategies that work for children with autism do work for typically developing children. In this article, the author explains how the principles and concepts of Applied Behavior Analysis can be…

  6. Critical and Alternative Directions in Applied Linguistics

    ERIC Educational Resources Information Center

    Pennycook, Alastair

    2010-01-01

    Critical directions in applied linguistics can be understood in various ways. The term "critical" as it has been used in "critical applied linguistics," "critical discourse analysis," "critical literacy" and so forth, is now embedded as part of applied linguistic work, adding an overt focus on questions of power and inequality to discourse…

  7. 25 CFR 580.1 - What definitions apply?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false What definitions apply? 580.1 Section 580.1 Indians... RULES OF GENERAL APPLICATION IN APPEAL PROCEEDINGS BEFORE THE COMMISSION § 580.1 What definitions apply? The following definitions apply to this subchapter: Day: A calendar day. De novo review: A standard of...

  8. 25 CFR 580.1 - What definitions apply?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 2 2014-04-01 2014-04-01 false What definitions apply? 580.1 Section 580.1 Indians... RULES OF GENERAL APPLICATION IN APPEAL PROCEEDINGS BEFORE THE COMMISSION § 580.1 What definitions apply? The following definitions apply to this subchapter: Day: A calendar day. De novo review: A standard of...

  9. 34 CFR 535.4 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What regulations apply? 535.4 Section 535.4 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF BILINGUAL EDUCATION AND... General § 535.4 What regulations apply? The following regulations apply to this program: (a) 34 CFR 75.51...

  10. 34 CFR 410.5 - What definitions apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What definitions apply? 410.5 Section 410.5 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... What definitions apply? (a) The definitions in 34 CFR 400.4 apply to this part, except for the...

  11. 34 CFR 410.5 - What definitions apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What definitions apply? 410.5 Section 410.5 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... What definitions apply? (a) The definitions in 34 CFR 400.4 apply to this part, except for the...

  12. 34 CFR 388.6 - What definitions apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false What definitions apply? 388.6 Section 388.6 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND... § 388.6 What definitions apply? The definitions in 34 CFR part 385 apply to this program. (Authority: 29...

  13. Applied Mathematics Should Be Taught Mixed.

    ERIC Educational Resources Information Center

    Brown, Gary I.

    1994-01-01

    Discusses the differences between applied and pure mathematics and provides extensive history of mixed mathematics. Argues that applied mathematics should be taught allowing for speculative mathematics, which involves breaking down a given problem into simpler parts until one arrives at first principles. (ASK)

  14. 34 CFR 415.5 - What definitions apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What definitions apply? 415.5 Section 415.5 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... What definitions apply? The definitions in 34 CFR 400.4 apply to this part. (Authority: 20 U.S.C. 2413) ...

  15. 34 CFR 425.5 - What definitions apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What definitions apply? 425.5 Section 425.5 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... PROGRAM General § 425.5 What definitions apply? The definitions in 34 CFR 400.4 apply to this part...

  16. 34 CFR 415.5 - What definitions apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What definitions apply? 415.5 Section 415.5 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... What definitions apply? The definitions in 34 CFR 400.4 apply to this part. (Authority: 20 U.S.C. 2413) ...

  17. 34 CFR 412.6 - What definitions apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What definitions apply? 412.6 Section 412.6 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... General § 412.6 What definitions apply? The definitions in 34 CFR 400.4 apply to this part. (Authority: 20...

  18. 34 CFR 425.5 - What definitions apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What definitions apply? 425.5 Section 425.5 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... PROGRAM General § 425.5 What definitions apply? The definitions in 34 CFR 400.4 apply to this part...

  19. 34 CFR 412.6 - What definitions apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What definitions apply? 412.6 Section 412.6 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION... General § 412.6 What definitions apply? The definitions in 34 CFR 400.4 apply to this part. (Authority: 20...

  20. Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges.

    PubMed

    Güell, Aleix G; Cuharuc, Anatolii S; Kim, Yang-Rae; Zhang, Guohui; Tan, Sze-yin; Ebejer, Neil; Unwin, Patrick R

    2015-04-28

    The electrochemical (EC) behavior of mechanically exfoliated graphene and highly oriented pyrolytic graphite (HOPG) is studied at high spatial resolution in aqueous solutions using Ru(NH3)6(3+/2+) as a redox probe whose standard potential sits close to the intrinsic Fermi level of graphene and graphite. When scanning electrochemical cell microscopy (SECCM) data are coupled with that from complementary techniques (AFM, micro-Raman) applied to the same sample area, different time-dependent EC activity between the basal planes and step edges is revealed. In contrast, other redox couples (ferrocene derivatives) whose potential is further removed from the intrinsic Fermi level of graphene and graphite show uniform and high activity (close to diffusion-control). Macroscopic voltammetric measurements in different environments reveal that the time-dependent behavior after HOPG cleavage, peculiar to Ru(NH3)6(3+/2+), is not associated particularly with any surface contaminants but is reasonably attributed to the spontaneous delamination of the HOPG with time to create partially coupled graphene layers, further supported by conductive AFM measurements. This process has a major impact on the density of states of graphene and graphite edges, particularly at the intrinsic Fermi level to which Ru(NH3)6(3+/2+) is most sensitive. Through the use of an improved voltammetric mode of SECCM, we produce movies of potential-resolved and spatially resolved HOPG activity, revealing how enhanced activity at step edges is a subtle effect for Ru(NH3)6(3+/2+). These latter studies allow us to propose a microscopic model to interpret the EC response of graphene (basal plane and edges) and aged HOPG considering the nontrivial electronic band structure.

  1. Part I: Virtual laboratory versus traditional laboratory: Which is more effective for teaching electrochemistry? Part II: The green synthesis of aurones using a deep eutectic solvent

    NASA Astrophysics Data System (ADS)

    Hawkins, Ian C.

    The role of the teaching laboratory in science education has been debated over the last century. The goals and purposes of the laboratory are still debated and while most science educators consider laboratory a vital part of the education process, they differ widely on the purposes for laboratory and what methods should be used to teach laboratory. One method of instruction, virtual labs, has become popular among some as a possible way of capitalizing on the benefits of lab in a less costly and more time flexible format. The research regarding the use of virtual labs is limited and the few studies that have been done on General Chemistry labs do not use the virtual labs as a substitute for hands-on experiences, but rather as a supplement to a traditional laboratory program. This research seeks to determine the possible viability of a virtual simulation to replace a traditional hands-on electrochemistry lab in the General Chemistry II course sequence. The data indicate that for both content knowledge and the development of hands-on skills the virtual lab showed no significant difference in overall scores on the assessments, but that an individual item related to the physical set-up of a battery showed better scores for the hands-on labs over the virtual labs. Further research should be done to determine if these results are similar in other settings with the use of different virtual labs and how the virtual labs compare to other laboratories using different learning styles and learning goals. One often cited purpose of laboratory experiences in the context of preparing chemists is to simulate the experiences common in chemical research so graduate experience in a research laboratory was a necessary part of my education in the field of laboratory instruction. This research experience provided me the opportunity, to complete an organic synthesis of aurones using a deep eutectic solvent. These solvents show unique properties that make them a viable alternative to ionic

  2. 34 CFR 609.4 - What definitions apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What definitions apply? 609.4 Section 609.4 Education... definitions apply? (a) Definitions in EDGAR. The following terms used in this part are defined in 34 CFR 77.1... Secretary (b) The following definition applies to a term used in this part: Qualified graduate program means...

  3. "Applied" Aspects of the Drug Resistance Strategies Project

    ERIC Educational Resources Information Center

    Hecht, Michael L.; Miller-Day, Michelle A.

    2010-01-01

    This paper discusses the applied aspects of our Drug Resistance Strategies Project. We argue that a new definitional distinction is needed to expand the notion of "applied" from the traditional notion of utilizing theory, which we call "applied.1," in order to consider theory-grounded, theory testing and theory developing applied research. We…

  4. Applied Implications of Reinforcement History Effects

    ERIC Educational Resources Information Center

    Pipkin, Claire St. Peter; Vollmer, Timothy R.

    2009-01-01

    Although the influence of reinforcement history is a theoretical focus of behavior analysis, the specific behavioral effects of reinforcement history have received relatively little attention in applied research and practice. We examined the potential effects of reinforcement history by reviewing nonhuman, human operant, and applied research and…

  5. Applied-field MPD thruster geometry effects

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1991-01-01

    Eight MPD thruster configurations were used to study the effects of applied field strength, propellant, and facility pressure on thruster performance. Vacuum facility background pressures higher than approx. 0.12 Pa were found to greatly influence thruster performance and electrode power deposition. Thrust efficiency and specific impulse increased monotonically with increasing applied field strength. Both cathode and anode radii fundamentally influenced the efficiency specific impulse relationship, while their lengths influence only the magnitude of the applied magnetic field required to reach a given performance level. At a given specific impulse, large electrode radii result in lower efficiencies for the operating conditions studied. For all test conditions, anode power deposition was the largest efficiency loss, and represented between 50 and 80 pct. of the input power. The fraction of the input power deposited into the anode decreased with increasing applied field and anode radii. The highest performance measured, 20 pct. efficiency at 3700 seconds specific impulse, was obtained using hydrogen propellant.

  6. Science Update: Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  7. Applied Linguistics in Its Disciplinary Context

    ERIC Educational Resources Information Center

    Liddicoat, Anthony J.

    2010-01-01

    Australia's current attempt to develop a process to evaluate the quality of research (Excellence in Research for Australia--ERA) places a central emphasis on the disciplinary organisation of academic work. This disciplinary focus poses particular problems for Applied Linguistics in Australia. This paper will examine Applied Linguistics in relation…

  8. 32 CFR 37.1220 - Applied research.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Applied research. 37.1220 Section 37.1220... REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1220 Applied research... technology such as new materials, devices, methods and processes. It typically is funded in Research...

  9. 32 CFR 37.1220 - Applied research.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Applied research. 37.1220 Section 37.1220... REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1220 Applied research... technology such as new materials, devices, methods and processes. It typically is funded in Research...

  10. 32 CFR 37.1220 - Applied research.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Applied research. 37.1220 Section 37.1220... REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1220 Applied research... technology such as new materials, devices, methods and processes. It typically is funded in Research...

  11. 32 CFR 37.1220 - Applied research.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Applied research. 37.1220 Section 37.1220... REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1220 Applied research... technology such as new materials, devices, methods and processes. It typically is funded in Research...

  12. 32 CFR 37.1220 - Applied research.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Applied research. 37.1220 Section 37.1220... REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1220 Applied research... technology such as new materials, devices, methods and processes. It typically is funded in Research...

  13. Towards "open applied" Earth sciences

    NASA Astrophysics Data System (ADS)

    Ziegler, C. R.; Schildhauer, M.

    2014-12-01

    Concepts of open science -- in the context of cyber/digital technology and culture -- could greatly benefit applied and secondary Earth science efforts. However, international organizations (e.g., environmental agencies, conservation groups and sustainable development organizations) that are focused on applied science have been slow to incorporate open practices across the spectrum of scientific activities, from data to decisions. Myriad benefits include transparency, reproducibility, efficiency (timeliness and cost savings), stakeholder engagement, direct linkages between research and environmental outcomes, reduction in bias and corruption, improved simulation of Earth systems and improved availability of science in general. We map out where and how open science can play a role, providing next steps, with specific emphasis on applied science efforts and processes such as environmental assessment, synthesis and systematic reviews, meta-analyses, decision support and emerging cyber technologies. Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the organizations for which they work and/or represent.

  14. Applied Linguistics: The Challenge of Theory

    ERIC Educational Resources Information Center

    McNamara, Tim

    2015-01-01

    Language has featured prominently in contemporary social theory, but the relevance of this fact to the concerns of Applied Linguistics, with its necessary orientation to practical issues of language in context, represents an ongoing challenge. This article supports the need for a greater engagement with theory in Applied Linguistics. It considers…

  15. Overhead Projector Demonstrations.

    ERIC Educational Resources Information Center

    Kolb, Doris, Ed.

    1987-01-01

    Describes several chemistry demonstrations that use an overhead projector. Some of the demonstrations deal with electrochemistry, and another deals with the reactions of nonvolatile immiscible liquid in water. (TW)

  16. GRC-2013-C-04615

    NASA Image and Video Library

    2010-01-16

    Advanced Exploration Systems (AES) Modular Power Systems for Space Exploration (AMPS); electrochemistry, AMPS, will infuse and demonstrate batteries, fuel cells, and other power modules for exploration ground system demonstrations

  17. GRC-2013-C-04614

    NASA Image and Video Library

    2010-01-16

    Advanced Exploration Systems (AES) Modular Power Systems for Space Exploration (AMPS); electrochemistry, AMPS, will infuse and demonstrate batteries, fuel cells, and other power modules for exploration ground system demonstrations

  18. GRC-2013-C-04608

    NASA Image and Video Library

    2010-01-16

    Advanced Exploration Systems (AES) Modular Power Systems for Space Exploration (AMPS); electrochemistry, AMPS, will infuse and demonstrate batteries, fuel cells, and other power modules for exploration ground system demonstrations

  19. GRC-2013-C-04609

    NASA Image and Video Library

    2010-01-16

    Advanced Exploration Systems (AES) Modular Power Systems for Space Exploration (AMPS); electrochemistry, AMPS, will infuse and demonstrate batteries, fuel cells, and other power modules for exploration ground system demonstrations

  20. Mesothelioma Applied Research Foundation

    MedlinePlus

    ... Percentage Donations Tribute Wall Other Giving/Fundraising Opportunities Bitcoin Donation Form FAQs Action Alert: Help us get ... Percentage Donations Tribute Wall Other Giving/Fundraising Opportunities Bitcoin Donation Form FAQs © 2017 Mesothelioma Applied Research Foundation, ...

  1. Symbolic Interaction and Applied Social Research

    PubMed Central

    Kotarba, Joseph A.

    2014-01-01

    In symbolic interaction, a traditional yet unfortunate and unnecessary distinction has been made between basic and applied research. The argument has been made that basic research is intended to generate new knowledge, whereas applied research is intended to apply knowledge to the solution of practical (social and organizational) problems. I will argue that the distinction between basic and applied research in symbolic interaction is outdated and dysfunctional. The masters of symbolic interactionist thought have left us a proud legacy of shaping their scholarly thinking and inquiry in response to and in light of practical issues of the day (e.g., Znaniecki, and Blumer). Current interactionist work continues this tradition in topical areas such as social justice studies. Applied research, especially in term of evaluation and needs assessment studies, can be designed to serve both basic and applied goals. Symbolic interaction provides three great resources to do this. The first is its orientation to dynamic sensitizing concepts that direct research and ask questions instead of supplying a priori and often impractical answers. The second is its orientation to qualitative methods, and appreciation for the logic of grounded theory. The third is interactionism’s overall holistic approach to interfacing with the everyday life world. The primary illustrative case here is the qualitative component of the evaluation of an NIH-funded, translational medical research program. The qualitative component has provided interactionist-inspired insights into translational research, such as examining cultural change in medical research in terms of changes in the form and content of formal and informal discourse among scientists; delineating the impact of significant symbols such as "my lab" on the social organization of science; and appreciating the essence of the self-concept "scientist" on the increasingly bureaucratic and administrative identities of medical researchers. This

  2. Geometric effects in applied-field MPD thrusters

    NASA Technical Reports Server (NTRS)

    Myers, R. M.; Mantenieks, M.; Sovey, J.

    1990-01-01

    Three applied-field magnetoplasmadynamic (MPD) thruster geometries were tested with argon propellant to establish the influence of electrode geometry on thruster performance. The thrust increased approximately linearly with anode radius, while the discharge and electrode fall voltages increased quadratically with anode radius. All these parameters increased linearly with applied-field strength. Thrust efficiency, on the other hand, was not significantly influenced by changes in geometry over the operating range studied, though both thrust and thermal efficiencies increased monotonically with applied field strength. The best performance, 1820 sec I (sub sp) at 20 percent efficiency, was obtained with the largest radius anode at the highest discharge current (1500 amps) and applied field strength (0.4 Tesla).

  3. Geometric effects in applied-field MPD thrusters

    NASA Technical Reports Server (NTRS)

    Myers, R. M.; Mantenieks, M.; Sovey, James S.

    1990-01-01

    Three applied-field magnetoplasmadynamic (MPD) thruster geometries were tested with argon propellant to establish the influence of electrode geometry on thruster performance. The thrust increased approximately linearly with anode radius, while the discharge and electrode fall voltages increased quadratically with anode radius. All these parameters increased linearly with applied-field strength. Thrust efficiency, on the other hand, was not significantly influenced by changes in geometry over the operating range studied, though both thrust and thermal efficiencies increased monotonically with applied field strength. The best performance, 1820 sec I(sub sp) at 20 percent efficiency, was obtained with the largest radius anode at the highest discharge current (1500 amps) and applied field strength (0.4 Tesla).

  4. Applied Remote Sensing Program (ARSP)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Foster, K. E.; Mouat, D. A.; Miller, D. A.; Conn, J. S.

    1976-01-01

    The activities and accomplishments of the Applied Remote Sensing Program during FY 1975-1976 are reported. The principal objective of the Applied Remote Sensing Program continues to be designed projects having specific decision-making impacts as a principal goal. These projects are carried out in cooperation and collaboration with local, state and federal agencies whose responsibilities lie with planning, zoning and environmental monitoring and/or assessment in the application of remote sensing techniques. The end result of the projects is the use by the involved agencies of remote sensing techniques in problem solving.

  5. 34 CFR 607.6 - What regulations apply?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF EDUCATION STRENGTHENING INSTITUTIONS PROGRAM General § 607.6 What regulations apply? The following regulations apply to the Strengthening Institutions Program: (a) The Education Department General...

  6. 34 CFR 607.6 - What regulations apply?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF EDUCATION STRENGTHENING INSTITUTIONS PROGRAM General § 607.6 What regulations apply? The following regulations apply to the Strengthening Institutions Program: (a) The Education Department General...

  7. 34 CFR 607.6 - What regulations apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF EDUCATION STRENGTHENING INSTITUTIONS PROGRAM General § 607.6 What regulations apply? The following regulations apply to the Strengthening Institutions Program: (a) The Education Department General...

  8. [A critical review of applied criminology].

    PubMed

    Vollbach, Alexander

    2016-01-01

    By reporting on a recent decision of the Regional Court (LG) of Marburg (Germany) calling attention to applied criminology, a concept still insufficiently considered in the administration of criminal justice, the paper argues that professional action in the execution of the sentence represents nothing else but applied criminology. Based on this assumption, the paper discusses practical diagnosis and correctional planning. Beyond that, the paper deals with the future of criminology. In the opinion of the author an important aspect for the future of criminology will be if it will be able to remain in touch with the world in which we live, as an independent empirical science. Applied criminology and its methodology constitute the link between science and practice.

  9. On-Line Electrochemical Reduction of Disulfide Bonds: Improved FTICR-CID and -ETD Coverage of Oxytocin and Hepcidin

    NASA Astrophysics Data System (ADS)

    Nicolardi, Simone; Giera, Martin; Kooijman, Pieter; Kraj, Agnieszka; Chervet, Jean-Pierre; Deelder, André M.; van der Burgt, Yuri E. M.

    2013-12-01

    Particularly in the field of middle- and top-down peptide and protein analysis, disulfide bridges can severely hinder fragmentation and thus impede sequence analysis (coverage). Here we present an on-line/electrochemistry/ESI-FTICR-MS approach, which was applied to the analysis of the primary structure of oxytocin, containing one disulfide bridge, and of hepcidin, containing four disulfide bridges. The presented workflow provided up to 80 % (on-line) conversion of disulfide bonds in both peptides. With minimal sample preparation, such reduction resulted in a higher number of peptide backbone cleavages upon CID or ETD fragmentation, and thus yielded improved sequence coverage. The cycle times, including electrode recovery, were rapid and, therefore, might very well be coupled with liquid chromatography for protein or peptide separation, which has great potential for high-throughput analysis.

  10. Bio-sensing applications of cerium oxide nanoparticles: Advantages and disadvantages.

    PubMed

    Charbgoo, Fahimeh; Ramezani, Mohammad; Darroudi, Majid

    2017-10-15

    Cerium oxide nanoparticles (CNPs) contain several properties such as catalytic activity, fluorescent quencher and electrochemical, high surface area, and oxygen transfer ability, which have attracted considerable attention in developing high-sensitive biosensors. CNPs can be used as a whole sensor or a part of recognition or transducer element. However, reports have shown that applying these nanoparticles in sensor design could remarkably enhance detection sensitivity. CNP's outstanding properties in biosensors which go from high catalytic activity and surface area to oxygen transfer and fluorescent quenching capabilities are also highlighted. Herein, we discuss the advantages and disadvantages of CNPs-based biosensors that function through various detection modes including colorimetric, electrochemistry, and chemoluminescent regarding the detection of small organic chemicals, metal ions and biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes

    PubMed Central

    2015-01-01

    Supercapacitors are electrochemical devices which store energy by ion adsorption on the surface of a porous carbon. They are characterized by high power delivery. The use of nanoporous carbon to increase their energy density should not hinder their fast charging. However, the mechanisms for ion transport inside electrified nanopores remain largely unknown. Here we show that the diffusion is characterized by a hierarchy of time scales arising from ion confinement, solvation, and electrosorption effects. By combining electrochemistry experiments with molecular dynamics simulations, we determine the in-pore conductivities and diffusion coefficients and their variations with the applied potential. We show that the diffusion of the ions is slower by 1 order of magnitude compared to the bulk electrolyte. The desolvation of the ions occurs on much faster time scales than electrosorption. PMID:26369420

  12. Recent Advances in Voltammetry

    PubMed Central

    Batchelor-McAuley, Christopher; Kätelhön, Enno; Barnes, Edward O; Compton, Richard G; Laborda, Eduardo; Molina, Angela

    2015-01-01

    Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler–Volmer and Marcus–Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of ‘nano-impacts’. PMID:26246984

  13. Introduction to Atomic Structure: Demonstrations and Labs.

    ERIC Educational Resources Information Center

    Ciparick, Joseph D.

    1988-01-01

    Demonstrates a variety of electrical phenomena to help explain atomic structure. Topics include: establishing electrical properties, electrochemistry, and electrostatic charges. Recommends demonstration equipment needed and an explanation of each. (MVL)

  14. An Electrochemical Experiment Using an Optically Transparent Thin Layer Electrode

    ERIC Educational Resources Information Center

    DeAngelis, Thomas P.; Heineman, William R.

    1976-01-01

    Describes a unified experiment in which an optically transparent thin layer electrode is used to illustrate the techniques of thin layer electrochemistry, cyclic voltammetry, controlled potential coulometry, and spectroelectrochemistry. (MLH)

  15. Post Program Earnings Differences between the Associate in Applied Science and Applied Baccalaureate Degrees: Companion Report to "Applied Baccalaureate Degrees: Policy and Outcomes Evaluation." Research Report 15-3

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2015

    2015-01-01

    Gainful employment and earnings to support a family living are significant policy goals of the applied baccalaureate program. Therefore, employment is an important metric to study; however, there are limitations in the data and process used in past reports that make understanding the true impact of applied baccalaureate programs on an individuals'…

  16. Surface chemistry at Swiss Universities of Applied Sciences.

    PubMed

    Brodard, Pierre; Pfeifer, Marc E; Adlhart, Christian D; Pieles, Uwe; Shahgaldian, Patrick

    2014-01-01

    In the Swiss Universities of Applied Sciences, a number of research groups are involved in surface science, with different methodological approaches and a broad range of sophisticated characterization techniques. A snapshot of the current research going on in different groups from the University of Applied Sciences and Arts Western Switzerland (HES-SO), the Zurich University of Applied Sciences (ZHAW) and the University of Applied Sciences and Arts Northwestern Switzerland (FHNW) is given.

  17. 34 CFR 656.6 - What regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF EDUCATION NATIONAL RESOURCE CENTERS PROGRAM FOR FOREIGN LANGUAGE AND AREA STUDIES OR FOREIGN LANGUAGE AND INTERNATIONAL STUDIES General § 656.6 What regulations apply? The following regulations apply...

  18. 34 CFR 656.6 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF EDUCATION NATIONAL RESOURCE CENTERS PROGRAM FOR FOREIGN LANGUAGE AND AREA STUDIES OR FOREIGN LANGUAGE AND INTERNATIONAL STUDIES General § 656.6 What regulations apply? The following regulations apply...

  19. 34 CFR 406.4 - What regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF EDUCATION STATE-ADMINISTERED TECH-PREP EDUCATION PROGRAM General § 406.4 What regulations apply? The following regulations apply to the State-Administered Tech-Prep Education Program: (a) The...

  20. Science: Pure or Applied?

    ERIC Educational Resources Information Center

    Evans, Peter

    1980-01-01

    Through a description of some of the activities which take place in his science classroom, the author makes a strong case for the inclusion of technology, or applied science, rather than pure science in the primary curriculum. (KC)

  1. Quality in applied science

    NASA Astrophysics Data System (ADS)

    Sten, T.

    1993-12-01

    Science is in many senses a special kind of craft and only skilled craftsmen are able to distinguish good work from bad. Due to the variation in approaches, methods and even philosophical basis, it is nearly impossible to derive a general set of quality criteria for scientific work outside specific research traditions. Applied science introduces a new set of quality criteria having to do with the application of results in practical situations and policy making. A scientist doing basic research relates mainly to the scientific community of which he is a member, while in applied contract research the scientist has to consider the impact of his results both for the immediate users and upon interest groups possibly being affected. Application thus raises a whole new set of requirements having to do with business ethics, policy consequences and societal ethics in general.

  2. 34 CFR 489.4 - What regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF EDUCATION FUNCTIONAL LITERACY FOR STATE AND LOCAL PRISONERS PROGRAM General § 489.4 What regulations apply? The following regulations apply to the Functional Literacy for State and Local Prisoners...

  3. 34 CFR 472.4 - What regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF EDUCATION NATIONAL WORKPLACE LITERACY PROGRAM General § 472.4 What regulations apply? The following regulations apply to the National Workplace Literacy Program: (a) The regulations in this part 472...

  4. 34 CFR 477.4 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF EDUCATION STATE PROGRAM ANALYSIS ASSISTANCE AND POLICY STUDIES PROGRAM General § 477.4 What regulations apply? The following regulations apply to the State Program Analysis Assistance and Policy Studies...

  5. 34 CFR 477.4 - What regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF EDUCATION STATE PROGRAM ANALYSIS ASSISTANCE AND POLICY STUDIES PROGRAM General § 477.4 What regulations apply? The following regulations apply to the State Program Analysis Assistance and Policy Studies...

  6. 34 CFR 464.4 - What regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF EDUCATION STATE LITERACY RESOURCE CENTERS PROGRAM General § 464.4 What regulations apply? The following regulations apply to the State Literacy Resource Centers Program: (a) The regulations in this part...

  7. High Performance Liquid Chromatography Experiments to Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Kissinger, Peter T.; And Others

    1977-01-01

    Reviews the principles of liquid chromatography with electrochemical detection (LCEC), an analytical technique that incorporates the advantages of both liquids chromatography and electrochemistry. Also suggests laboratory experiments using this technique. (MLH)

  8. To Apply or Not to Apply: FAFSA Completion and Financial Aid Gaps

    ERIC Educational Resources Information Center

    Kofoed, Michael S.

    2017-01-01

    In the United States, college students must complete the Free Application for Student Federal Aid (FAFSA) to access federal aid. However, many eligible students do not apply and consequently forgo significant amounts of financial aid. If students have perfect information about aid eligibility, we would expect that all eligible students complete…

  9. The Lived Experience of Applied Science Graduates Who Complete the Applied Baccalaureate

    ERIC Educational Resources Information Center

    Kujawa, Tricia A.

    2012-01-01

    The enrollment and transfer behaviors of college students are diverse. As a result college students travel various pathways to the baccalaureate degree. The purpose of this qualitative study was to better understand the lived experience of students who entered higher education through an associate of applied science (AAS) program and then…

  10. Joint the Center for Applied Scientific Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamblin, Todd; Bremer, Timo; Van Essen, Brian

    The Center for Applied Scientific Computing serves as Livermore Lab’s window to the broader computer science, computational physics, applied mathematics, and data science research communities. In collaboration with academic, industrial, and other government laboratory partners, we conduct world-class scientific research and development on problems critical to national security. CASC applies the power of high-performance computing and the efficiency of modern computational methods to the realms of stockpile stewardship, cyber and energy security, and knowledge discovery for intelligence applications.

  11. 34 CFR 490.3 - What regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF EDUCATION LIFE SKILLS FOR STATE AND LOCAL PRISONERS PROGRAM General § 490.3 What regulations apply? The following regulations apply to the Life Skills for State and Local Prisoners Program: (a) The...

  12. Teaching applied optics at the Univ. of Minho

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F. M.

    1995-10-01

    In this communication we make a brief presentation of the branch of Applied Optics of the University of Mihno's undergraduate course of Applied Physics. The course of Applied Physics began in the year 1988/89. Previously we had just a course devoted to the formation of future physics and chemistry teachers at high school level. The Applied Physics course specialized in Optics appeared due to the growth of the physics department and due to request from the industry. The Applied Physics course has two specialization's on the field of applied optics: Optometry; and Optics and Lasers. The topics covered in the two first years of the course ar common to the two branches. On the second semester of the third year the students must choose between either one. The number of students on the Optometry branch was usually almost four times the number of Applied Optics and Lasers students. Nevertheless this tendency is rapidly changing. A short analysis of the result obtained will be presented focusing on last couple of years' advances. Presented will also be the results of an inquest made on students's opinions about the quality of the course, and their own performance and expectations.

  13. Africa and Applied Linguistics.

    ERIC Educational Resources Information Center

    Makoni, Sinfree, Ed.; Meinhof, Ulrike H., Ed.

    2003-01-01

    This collection of articles includes: "Introducing Applied Linguistics in Africa" (Sinfree Makoni and Ulrike H. Meinhof); "Language Ideology and Politics: A Critical Appraisal of French as Second Official Language in Nigeria" (Tope Omoniyi); "The Democratisation of Indigenous Languages: The Case of Malawi" (Themba…

  14. Concept analysis of culture applied to nursing.

    PubMed

    Marzilli, Colleen

    2014-01-01

    Culture is an important concept, especially when applied to nursing. A concept analysis of culture is essential to understanding the meaning of the word. This article applies Rodgers' (2000) concept analysis template and provides a definition of the word culture as it applies to nursing practice. This article supplies examples of the concept of culture to aid the reader in understanding its application to nursing and includes a case study demonstrating components of culture that must be respected and included when providing health care.

  15. 40 CFR 1068.301 - What general provisions apply?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What general provisions apply? 1068.301 Section 1068.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... § 1068.301 What general provisions apply? (a) This subpart applies to you if you import into the United...

  16. 10 CFR 12.102 - When the EAJA applies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false When the EAJA applies. 12.102 Section 12.102 Energy NUCLEAR REGULATORY COMMISSION IMPLEMENTATION OF THE EQUAL ACCESS TO JUSTICE ACT IN AGENCY PROCEEDINGS General Provisions § 12.102 When the EAJA applies. The EAJA applies to any covered adversary adjudication...

  17. Applied technology section. Monthly report, December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckner, M.R.

    1994-01-28

    This monthly report contains abstracts of the progress made in various projects from the applied technology section at the Savannah River Plant. Research areas include engineering modeling and simulation, applied physics, experimental thermal hydraulics, and packaging and transportation.

  18. Applied Anthropology in Broadcasting

    ERIC Educational Resources Information Center

    Eiselein, E. B.

    1976-01-01

    Three different applied media anthropology projects are described. These projects stem from the broadcasters' legal need to know about the community (community ascertainment), the broadcasters' need to know about the station audience (audience profile), and the broadcasters' desire to change a community (action projects). (Author)

  19. Synthesis of graphene supported Li2SiO3 as a high performance anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Shuai; Wang, Qiufen; Miao, Juan; Zhang, Jingyang; Zhang, Dafeng; Chen, Yumei; Yang, Hong

    2018-06-01

    The Li2SiO3-graphene composite is successfully synthesized through an easy hydrothermal method. The structures and morphologies of the produced samples are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectrum, Brunauer-Emmett-Teller formalism, scanning electron microscope, transmission electron microscope, and electrochemistry methods. The result shows a well crystalline of the Li2SiO3-GE composite. The existence of graphene doesn't change the crystalline of Li2SiO3. In addition, the Li2SiO3 compound with an average diameter of 20 nm can be seen on the surface of graphene with uniform distribution. After the composite with graphene, the composite displays large surface area which ensures the well electrochemistry of the composite. Finally, the Li2SiO3-graphene composite delivers a high initial capacity of 878.3 mAh g-1 at 1C as well as a high recovery capacity of 400 mAh g-1 after 200 cycles. When charged and discharged at high rate, the Li2SiO3-doping graphene composite still exhibits a high specific capacity of 748.3 mAh g-1 (at 2C, and 576 mAh g-1 at 5C) and well cycling performance. The well synthesized composite possesses well structure and well electrochemistry performance.

  20. Leveraging e-Science infrastructure for electrochemical research.

    PubMed

    Peachey, Tom; Mashkina, Elena; Lee, Chong-Yong; Enticott, Colin; Abramson, David; Bond, Alan M; Elton, Darrell; Gavaghan, David J; Stevenson, Gareth P; Kennedy, Gareth F

    2011-08-28

    As in many scientific disciplines, modern chemistry involves a mix of experimentation and computer-supported theory. Historically, these skills have been provided by different groups, and range from traditional 'wet' laboratory science to advanced numerical simulation. Increasingly, progress is made by global collaborations, in which new theory may be developed in one part of the world and applied and tested in the laboratory elsewhere. e-Science, or cyber-infrastructure, underpins such collaborations by providing a unified platform for accessing scientific instruments, computers and data archives, and collaboration tools. In this paper we discuss the application of advanced e-Science software tools to electrochemistry research performed in three different laboratories--two at Monash University in Australia and one at the University of Oxford in the UK. We show that software tools that were originally developed for a range of application domains can be applied to electrochemical problems, in particular Fourier voltammetry. Moreover, we show that, by replacing ad-hoc manual processes with e-Science tools, we obtain more accurate solutions automatically.

  1. Efficient electron open boundaries for simulating electrochemical cells

    NASA Astrophysics Data System (ADS)

    Zauchner, Mario G.; Horsfield, Andrew P.; Todorov, Tchavdar N.

    2018-01-01

    Nonequilibrium electrochemistry raises new challenges for atomistic simulation: we need to perform molecular dynamics for the nuclear degrees of freedom with an explicit description of the electrons, which in turn must be free to enter and leave the computational cell. Here we present a limiting form for electron open boundaries that we expect to apply when the magnitude of the electric current is determined by the drift and diffusion of ions in a solution and which is sufficiently computationally efficient to be used with molecular dynamics. We present tight-binding simulations of a parallel-plate capacitor with nothing, a dimer, or an atomic wire situated in the space between the plates. These simulations demonstrate that this scheme can be used to perform molecular dynamics simulations when there is an applied bias between two metal plates with, at most, weak electronic coupling between them. This simple system captures some of the essential features of an electrochemical cell, suggesting this approach might be suitable for simulations of electrochemical cells out of equilibrium.

  2. 34 CFR 350.4 - What regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (IRB) reviews research that purposefully requires inclusion of children with disabilities or... REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM General § 350.4 What regulations apply? The following regulations apply to the Disability and...

  3. Applied technology section. Monthly report, March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckner, M.R.

    1994-04-20

    This is a monthly report giving the details on research currently being conducted at the Savannah River Technology Center. The following are areas of the research, engineering modeling and simulation, applied statistics, applied physics,experimental thermal hydraulics,and packaging and transportation.

  4. Signals: Applying Academic Analytics

    ERIC Educational Resources Information Center

    Arnold, Kimberly E.

    2010-01-01

    Academic analytics helps address the public's desire for institutional accountability with regard to student success, given the widespread concern over the cost of higher education and the difficult economic and budgetary conditions prevailing worldwide. Purdue University's Signals project applies the principles of analytics widely used in…

  5. Applied research on glucansucrases

    USDA-ARS?s Scientific Manuscript database

    Although glycansucrases have been known for over 70 years, they remain relatively unknown except to a small group of researchers. Practical, applied research on glycansucrases has been focused on certain key areas. The earliest of these was the development of blood plasma extenders from dextran, d...

  6. 15 CFR 18.3 - When the Act applies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false When the Act applies. 18.3 Section 18.3 Commerce and Foreign Trade Office of the Secretary of Commerce ATTORNEY'S FEES AND OTHER EXPENSES General Provisions § 18.3 When the Act applies. The Act applies to any adversary adjudication pending or...

  7. TUNGSTEN BRONZE RELATED NON-NOBLE ELECTROCATALYSTS.

    DTIC Science & Technology

    FUEL CELLS, *CATALYSTS), (*OXYGEN, *ELECTRODES), (* SILICIDES , ELECTRODES), (*CARBIDES, ELECTRODES), (*TUNGSTEN COMPOUNDS, *ELECTROCHEMISTRY...CATALYSTS, TITANIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, VANADIUM COMPOUNDS, NIOBIUM COMPOUNDS, TUNGSTEN COMPOUNDS, TANTALUM COMPOUNDS, MOLYBDENUM COMPOUNDS, SULFURIC ACID, CRYSTAL GROWTH, SODIUM COMPOUNDS

  8. Wet Labs, Computers, and Spreadsheets.

    ERIC Educational Resources Information Center

    Durham, Bill

    1990-01-01

    Described are some commonly encountered chemistry experiments that have been modified for computerized data acquisition. Included are exercises in radioactivity, titration, calorimetry, kinetics, and electrochemistry. Software considerations and laboratory procedures are discussed. (CW)

  9. 5 CFR 352.312 - When to apply.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS REEMPLOYMENT RIGHTS Detail and Transfer of Federal Employees to International Organizations § 352.312 When to apply. An employee may apply for reemployment, in writing, either before or after separation from the international organization...

  10. Applying to Graduate School.

    ERIC Educational Resources Information Center

    Peterson, Sharyl Bender

    This guide, which was developed by a college career center, is designed to answer some common questions about the process of applying to graduate school. The following topics are covered: graduate schools versus professional schools; differences between graduate and undergraduate school; considerations in deciding whether/when to attend graduate…

  11. 14 CFR 294.20 - Applying for registration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... PROCEEDINGS) ECONOMIC REGULATIONS CANADIAN CHARTER AIR TAXI OPERATORS Registration for Exemption § 294.20 Applying for registration. To apply for registration under this part, a Canadian charter air taxi operator... shall be certified by a responsible officer of the applicant Canadian charter air taxi operator...

  12. 14 CFR 294.20 - Applying for registration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PROCEEDINGS) ECONOMIC REGULATIONS CANADIAN CHARTER AIR TAXI OPERATORS Registration for Exemption § 294.20 Applying for registration. To apply for registration under this part, a Canadian charter air taxi operator... shall be certified by a responsible officer of the applicant Canadian charter air taxi operator...

  13. 34 CFR 1100.5 - What definitions apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the adult literacy, family literacy, adult education, or related field. Relevant experience includes... or education or education related fields: basic and applied research, planning, surveys, assessments... 34 Education 4 2012-07-01 2012-07-01 false What definitions apply? 1100.5 Section 1100.5 Education...

  14. 34 CFR 1100.5 - What definitions apply?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the adult literacy, family literacy, adult education, or related field. Relevant experience includes... or education or education related fields: basic and applied research, planning, surveys, assessments... 34 Education 4 2014-07-01 2014-07-01 false What definitions apply? 1100.5 Section 1100.5 Education...

  15. 34 CFR 1100.5 - What definitions apply?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the adult literacy, family literacy, adult education, or related field. Relevant experience includes... or education or education related fields: basic and applied research, planning, surveys, assessments... 34 Education 4 2013-07-01 2013-07-01 false What definitions apply? 1100.5 Section 1100.5 Education...

  16. Electropolymerized Conducting Polymer as Actuator and Sensor Device

    ERIC Educational Resources Information Center

    Cortes, Maria T.; Moreno, Juan C.

    2005-01-01

    A study demonstrates the potential application of conducting polymers to convert electrical energy into mechanical energy at low voltage or current. The performance of the device is explained using electrochemistry and solid-state chemistry.

  17. Modular Approach to Instrumental Analysis.

    ERIC Educational Resources Information Center

    Deming, Richard L.; And Others

    1982-01-01

    To remedy certain deficiencies, an instrument analysis course was reorganized into six one-unit modules: optical spectroscopy, magnetic resonance, separations, electrochemistry, radiochemistry, and computers and interfacing. Selected aspects of the course are discussed. (SK)

  18. Applied Optics Golden Anniversary commemorative reviews: introduction.

    PubMed

    Mait, Joseph N; Mendez, Eugenio; Peyghambarian, Nasser; Poon, T-C

    2013-01-01

    Applied Optics presents three special issues to end its retrospective of Applied Optics' 50 years. The special issues are interference, interferometry, and phase; imaging, optical processing, and telecommunications; and polarization and scattering. The issues, which contain 19 commemorative reviews from some of the journal's luminaries, are summarized.

  19. Edinburgh Working Papers in Applied Linguistics, 1996.

    ERIC Educational Resources Information Center

    Parkinson, Brian, Ed.; Mitchell, Keith

    1996-01-01

    This monograph contains papers on research work in progress at the Department of Applied Linguistics and Institute for Applied Language Studies at the University of Edinburgh (Scotland). Topics addressed include general English teaching, English for Academic Purposes teaching, Modern Language teaching, and teacher education. Papers are:…

  20. 28 CFR 33.103 - How to apply.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false How to apply. 33.103 Section 33.103 Judicial Administration DEPARTMENT OF JUSTICE BUREAU OF JUSTICE ASSISTANCE GRANT PROGRAMS Bulletproof Vest... the process to follow in applying to the program for grants of armor vests. ...

  1. 28 CFR 33.103 - How to apply.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false How to apply. 33.103 Section 33.103 Judicial Administration DEPARTMENT OF JUSTICE BUREAU OF JUSTICE ASSISTANCE GRANT PROGRAMS Bulletproof Vest... the process to follow in applying to the program for grants of armor vests. ...

  2. 28 CFR 33.103 - How to apply.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false How to apply. 33.103 Section 33.103 Judicial Administration DEPARTMENT OF JUSTICE BUREAU OF JUSTICE ASSISTANCE GRANT PROGRAMS Bulletproof Vest... the process to follow in applying to the program for grants of armor vests. ...

  3. 28 CFR 33.103 - How to apply.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false How to apply. 33.103 Section 33.103 Judicial Administration DEPARTMENT OF JUSTICE BUREAU OF JUSTICE ASSISTANCE GRANT PROGRAMS Bulletproof Vest... the process to follow in applying to the program for grants of armor vests. ...

  4. 28 CFR 33.103 - How to apply.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false How to apply. 33.103 Section 33.103 Judicial Administration DEPARTMENT OF JUSTICE BUREAU OF JUSTICE ASSISTANCE GRANT PROGRAMS Bulletproof Vest... the process to follow in applying to the program for grants of armor vests. ...

  5. 7 CFR 3431.9 - Eligibility to apply.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE VETERINARY MEDICINE LOAN REPAYMENT PROGRAM Administration of the Veterinary Medicine Loan Repayment Program § 3431.9 Eligibility to apply. (a) General. To be eligible to apply to the VMLRP an applicant must: (1) Have a degree of Doctor of Veterinary...

  6. 34 CFR 607.6 - What regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What regulations apply? 607.6 Section 607.6 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION STRENGTHENING INSTITUTIONS PROGRAM General § 607.6 What regulations apply? The...

  7. 34 CFR 607.6 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What regulations apply? 607.6 Section 607.6 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION STRENGTHENING INSTITUTIONS PROGRAM General § 607.6 What regulations apply? The...

  8. 34 CFR 644.7 - What definitions apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What definitions apply? 644.7 Section 644.7 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION EDUCATIONAL OPPORTUNITY CENTERS General § 644.7 What definitions apply? (a...

  9. An Applied Physicist Does Econometrics

    NASA Astrophysics Data System (ADS)

    Taff, L. G.

    2010-02-01

    The biggest problem those attempting to understand econometric data, via modeling, have is that economics has no F = ma. Without a theoretical underpinning, econometricians have no way to build a good model to fit observations to. Physicists do, and when F = ma failed, we knew it. Still desiring to comprehend econometric data, applied economists turn to mis-applying probability theory---especially with regard to the assumptions concerning random errors---and choosing extremely simplistic analytical formulations of inter-relationships. This introduces model bias to an unknown degree. An applied physicist, used to having to match observations to a numerical or analytical model with a firm theoretical basis, modify the model, re-perform the analysis, and then know why, and when, to delete ``outliers'', is at a considerable advantage when quantitatively analyzing econometric data. I treat two cases. One is to determine the household density distribution of total assets, annual income, age, level of education, race, and marital status. Each of these ``independent'' variables is highly correlated with every other but only current annual income and level of education follow a linear relationship. The other is to discover the functional dependence of total assets on the distribution of assets: total assets has an amazingly tight power law dependence on a quadratic function of portfolio composition. Who knew? )

  10. Applied behavior analysis: New directions from the laboratory

    PubMed Central

    Epling, W. Frank; Pierce, W. David

    1983-01-01

    Applied behavior analysis began when laboratory based principles were extended to humans inorder to change socially significant behavior. Recent laboratory findings may have applied relevance; however, the majority of basic researchers have not clearly communicated the practical implications of their work. The present paper samples some of the new findings and attempts to demonstrate their applied importance. Schedule-induced behavior which occurs as a by-product of contingencies of reinforcement is discussed. Possible difficulties in treatment and management of induced behaviors are considered. Next, the correlation-based law of effect and the implications of relative reinforcement are explored in terms of applied examples. Relative rate of reinforcement is then extended to the literature dealing with concurrent operants. Concurrent operant models may describe human behavior of applied importance, and several techniques for modification of problem behavior are suggested. As a final concern, the paper discusses several new paradigms. While the practical importance of these models is not clear at the moment, it may be that new practical advantages will soon arise. Thus, it is argued that basic research continues to be of theoretical and practical importance to applied behavior analysis. PMID:22478574

  11. 34 CFR 606.6 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF EDUCATION DEVELOPING HISPANIC-SERVING INSTITUTIONS PROGRAM General § 606.6 What regulations apply? The following regulations apply to the Developing Hispanic-Serving Institutions Program: (a) The... part 75 (Direct Grant Programs), except 34 CFR 75.128(a)(2) and 75.129(a) in the case of applications...

  12. 34 CFR 660.3 - What regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What regulations apply? 660.3 Section 660.3 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION THE INTERNATIONAL RESEARCH AND STUDIES PROGRAM General § 660.3 What regulations apply...

  13. 34 CFR 660.3 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What regulations apply? 660.3 Section 660.3 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION THE INTERNATIONAL RESEARCH AND STUDIES PROGRAM General § 660.3 What regulations apply...

  14. 34 CFR 491.4 - What regulations apply?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION ADULT EDUCATION FOR THE HOMELESS PROGRAM General § 491.4 What regulations apply? The following regulations apply to the Adult Education for the Homeless Program: (a) The Education Department...

  15. 34 CFR 491.4 - What regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION ADULT EDUCATION FOR THE HOMELESS PROGRAM General § 491.4 What regulations apply? The following regulations apply to the Adult Education for the Homeless Program: (a) The Education Department...

  16. 34 CFR 491.4 - What regulations apply?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION ADULT EDUCATION FOR THE HOMELESS PROGRAM General § 491.4 What regulations apply? The following regulations apply to the Adult Education for the Homeless Program: (a) The Education Department...

  17. 34 CFR 491.4 - What regulations apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION ADULT EDUCATION FOR THE HOMELESS PROGRAM General § 491.4 What regulations apply? The following regulations apply to the Adult Education for the Homeless Program: (a) The Education Department...

  18. 34 CFR 636.7 - What definitions apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What definitions apply? 636.7 Section 636.7 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION URBAN COMMUNITY SERVICE PROGRAM General § 636.7 What definitions apply? (a...

  19. 40 CFR 72.30 - Requirement to apply.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) PERMITS REGULATION Acid Rain Permit Applications § 72.30 Requirement to apply. (a) Duty to apply. The designated representative of any source with an affected unit shall submit a complete Acid Rain permit... permit that states its Acid Rain program requirements. (b) Deadlines—(1) Phase 1. (i) The designated...

  20. 40 CFR 72.30 - Requirement to apply.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) PERMITS REGULATION Acid Rain Permit Applications § 72.30 Requirement to apply. (a) Duty to apply. The designated representative of any source with an affected unit shall submit a complete Acid Rain permit... permit that states its Acid Rain program requirements. (b) Deadlines—(1) Phase 1. (i) The designated...