Science.gov

Sample records for applied optics warsaw

  1. Optical and microphysical properties of mineral dust and biomass burning aerosol observed over Warsaw on 10th July 2013

    NASA Astrophysics Data System (ADS)

    Janicka, Lucja; Stachlewska, Iwona; Veselovskii, Igor; Baars, Holger

    2016-04-01

    Biomass burning aerosol originating from Canadian forest fires was widely observed over Europe in July 2013. Favorable weather conditions caused long-term westward flow of smoke from Canada to Western and Central Europe. During this period, PollyXT lidar of the University of Warsaw took wavelength dependent measurements in Warsaw. On July 10th short event of simultaneous advection of Canadian smoke and Saharan dust was observed at different altitudes over Warsaw. Different origination of both air masses was indicated by backward trajectories from HYSPLIT model. Lidar measurements performed with various wavelength (1064, 532, 355 nm), using also Raman and depolarization channels for VIS and UV allowed for distinguishing physical differences of this two types of aerosols. Optical properties acted as input for retrieval of microphysical properties. Comparisons of microphysical and optical properties of biomass burning aerosols and mineral dust observed will be presented.

  2. Sport and Other Motor Activities of Warsaw Students

    ERIC Educational Resources Information Center

    Biernat, Elzbieta

    2011-01-01

    Study aim: To assess the engagement of students of Warsaw university schools in sports and in recreational motor activities. Material and methods: A cohort (n = 1100) of students attending B.S. or M.S. courses at 6 university schools in Warsaw were studied by applying questionnaire techniques. The questions pertained to participation in…

  3. NATO-Warsaw Pact

    SciTech Connect

    Not Available

    1990-04-01

    If proposals to reduce conventional forces and equipment in Europe are adopted, how much of a peace dividend will the United States and its NATO allies reap This report discussed how GAO looked at the savings associated with a conventional forces reduction treaty and found that only a limited NATO peace dividend will result directly from the treaty proposals. Further, this dividend will not be shared equally by all NATO allies. Under the treaty, only the United States and the Soviet Union are required to make troop cuts. U.S. savings would result from the DOD decision to reduce the total number of its forces rather than simply relocate personnel from Europe. Implementing a Conventional Armed Forces in Europe treaty will be a complex task that will result in all NATO allies incurring certain costs. For example, verifying compliance with the treaty may require extensive NATO inspection and monitoring of Warsaw Pact force levels and treaty-limited equipment. NATO will incur additional costs in complying with treaty provisions that require the destruction of many conventional weapons.

  4. Hermann Mooser, Typhus, Warsaw 1941.

    PubMed

    Lindenmann, Jean

    2002-01-01

    Hermann Mooser (1891-1971), a Swiss rickettsiologist, sent his friend Peyton Rous (1879-1970) of the Rockefeller Institute (New York) a telegram on November 3, 1941, asking for financial help for the manufacture of typhus vaccine in Zurich for the Warsaw Ghetto. His explanatory letter from November 4 reached Rous too late to have any influence on the negative decision (by the Rockefeller Foundation and the American Red Cross) in this matter. Contrary to Weindling's affirmation Mooser was neither in Warsaw in 1941, nor was he a member of the Swiss Sanitary Missions to the eastern front. PMID:12149893

  5. Applied optics in the automotive industry.

    PubMed

    Preston, B W

    1969-09-01

    A general discussion of the interrelated subjects of vision, illumination, marking systems, signaling devices, materials, and components as found in the automotive industry is included in this article. Optics as applied in supporting industries, such as the lighting, metal, glass, paint, plastics, and fabrics industries are also discussed. A few examples of optics in these industries as applied to product development and productioncontrol are presented and illustrated. PMID:20072517

  6. Velocity filtering applied to optical flow calculations

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1990-01-01

    Optical flow is a method by which a stream of two-dimensional images obtained from a forward-looking passive sensor is used to map the three-dimensional volume in front of a moving vehicle. Passive ranging via optical flow is applied here to the helicopter obstacle-avoidance problem. Velocity filtering is used as a field-based method to determine range to all pixels in the initial image. The theoretical understanding and performance analysis of velocity filtering as applied to optical flow is expanded and experimental results are presented.

  7. Applications of optical holography to applied mechanics.

    NASA Technical Reports Server (NTRS)

    Aprahamian, R.

    1972-01-01

    This paper provides a brief summary of applications of optical holography and holographic interferometry to applied solid mechanics. Basic equations commonly used in fringe interpretation are described and used to reduce the data contained on holographic interferograms. A comparison of data obtained holographically with analytical prediction is given wherever possible. Applications contained herein include front surface physics, study of bomb breakup, transverse wave propagation, study of mode shapes of panels at elevated temperatures, nondestructive testing, and vibration analysis.

  8. NATO-Warsaw Pact. Force mobilization

    SciTech Connect

    Simon, J.

    1988-01-01

    Recent demographic and economic trends present mobilization problems for both the North Atlantic Treaty Organization and the Warsaw Pact. When the United States and the Soviet Union agreed to rid Europe of intermediate-range nuclear weapons, their agreement increased the emphasis on conventional force balances-thus creating anew strains within and between the alliances. These developments make the time ripe for a comprehensive study of NATO and Warsaw Pact capabilities to mobilize their conventional forces. This book draws upon essays prepared for the NATO-Warsaw Pact conference. In these essays, Us and European specialists discuss developments and vulnerabilities in the blocs. They address four issues: (1) mobilization and reinforcement, (2) developments in front-line states, (3) communications and transportation problems, and (4) difficulties on the flanks. These individual studies and the book as a whole represent the most current and thorough examination of NATO-Warsaw Pact capabilities available today.

  9. Dielectric barrier discharges applied for optical spectrometry

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Schütz, A.; Klute, F. D.; Kratzer, J.; Franzke, J.

    2016-09-01

    The present review reflects the importance of dielectric barrier discharges for optical spectrometric detection in analytical chemistry. In contrast to usual discharges with a direct current the electrodes are separated by at least one dielectric barrier. There are two main features of the dielectric barrier discharges: they can serve as dissociation and excitation devices as well as ionization sources, respectively. This article portrays various application fields of dielectric barrier discharges in analytical chemistry used for elemental and molecular detection with optical spectrometry.

  10. Superresolution technology applied to optical discs

    NASA Astrophysics Data System (ADS)

    Zhou, Changhe; Luo, Hongxin

    2005-09-01

    Smaller focal points are essential for the development of the next-generation optical disc. The size of focal point depends on the diffraction effect that is dependant on the numerical aperture of a lens and the wavelength of light. However, increase of the numerical aperture and decrease of the light wavelength will be ultimately limited due to the technical difficulty of fabricating a too-high NA lens and the too-short wavelength laser. In this paper, we report another approach of using the superresolution technology to compress the size of the so-called Airy spot for the next-generation optical disc, which is independent on the wavelength of laser. The superresolution phase plates are designed and fabricated with a microoptics technique. When such a phase plate is inserted into the optical system, the central spot at the focal plane of a lens is decreased to be 0.8 times of the Airy pattern, implying the possibility of reading higher storage density of optical discs. The most attractive feature is that the phase plate can be mass-produced at a very low cost, compared with the high cost of the high-numerical lens and/or the short wavelength laser. The disadvantages are that the inserted phase plate will induce the slight circular sidelobes around the central sport, so that it consumes a little more laser energy. The shortcoming could be overcome with suitable amendment. We have fabricated the phase plates with the surface-relief profile on a normal glass for phase modulation. Experimental results of superresolution effect with a low numerical aperture (NA=0.1) and a high-numerical lens (NA=0.8) are reported, which are in good agreement with the theoretical prediction. Superresolution technique should be highly interesting as a novel technique of the next-generation pickup head for reading the high storage of the optical discs.

  11. (Optical characterization techniques applied to ceramic oxides)

    SciTech Connect

    Abraham, M.M.

    1990-10-15

    The traveler collaborated with M.J.M. Leask, J.M. Baker, B. Bleaney, and others at the Clarendon Laboratory, Oxford University, Oxford, UK, to Study Tetragonal rare-earth phosphates and vanadates by optical and magnetic spectroscopy. This work is related to similar studies that have been performed at ORNL by the Synthesis and Properties of Novel Materials Group in the Solid State Division.

  12. Optical correlator techniques applied to robotic vision

    NASA Technical Reports Server (NTRS)

    Hine, Butler P., III; Reid, Max B.; Downie, John D.

    1991-01-01

    Vision processing is one of the most computationally intensive tasks required of an autonomous robot. The data flow from a single typical imaging sensor is roughly 60 Mbits/sec, which can easily overload current on-board processors. Optical correlator-based processing can be used to perform many of the functions required of a general robotic vision system, such as object recognition, tracking, and orientation determination, and can perform these functions fast enough to keep pace with the incoming sensor data. We describe a hybrid digital electronic/analog optical robotic vision processing system developed at Ames Research Center to test concepts and algorithms for autonomous construction, inspection, and maintenance of space-based habitats. We discuss the system architecture design and implementation, its performance characteristics, and our future plans. In particular, we compare the performance of the system to a more conventional all digital electronic system developed concurrently. The hybrid system consistently outperforms the digital electronic one in both speed and robustness.

  13. How optics and photonics is simply applied in agriculture?

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun

    2013-06-01

    This paper highlights based on author's experience how optics and photonics is applied in Thai agriculture. These include spectral imaging based systems and mobile applications that have been implemented in the last 5 years for rice, fishery, and sericulture. Brief review of optics and photonics in agriculture will also be introduced.

  14. Teaching applied optics at the Univ. of Minho

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F. M.

    1995-10-01

    In this communication we make a brief presentation of the branch of Applied Optics of the University of Mihno's undergraduate course of Applied Physics. The course of Applied Physics began in the year 1988/89. Previously we had just a course devoted to the formation of future physics and chemistry teachers at high school level. The Applied Physics course specialized in Optics appeared due to the growth of the physics department and due to request from the industry. The Applied Physics course has two specialization's on the field of applied optics: Optometry; and Optics and Lasers. The topics covered in the two first years of the course ar common to the two branches. On the second semester of the third year the students must choose between either one. The number of students on the Optometry branch was usually almost four times the number of Applied Optics and Lasers students. Nevertheless this tendency is rapidly changing. A short analysis of the result obtained will be presented focusing on last couple of years' advances. Presented will also be the results of an inquest made on students's opinions about the quality of the course, and their own performance and expectations.

  15. Trends in optical coherence tomography applied to medical imaging

    NASA Astrophysics Data System (ADS)

    Podoleanu, Adrian G.

    2014-01-01

    The number of publications on optical coherence tomography (OCT) continues to double every three years. Traditionally applied to imaging the eye, OCT is now being extended to fields outside ophthalmology and optometry. Widening its applicability, progress in the core engine of the technology, and impact on development of novel optical sources, make OCT a very active and rapidly evolving field. Trends in the developments of different specific devices, such as optical sources, optical configurations and signal processing will be presented. Encompassing studies on both the configurations as well as on signal processing themes, current research in Kent looks at combining spectral domain with time domain imaging for long axial range and simultaneous imaging at several depths. Results of the collaborative work of the Applied Optics Group in Kent with organisers of this conference will be presented, with reference to 3D monitoring of abfraction.

  16. Optical methods of stress analysis applied to cracked components

    NASA Technical Reports Server (NTRS)

    Smith, C. W.

    1991-01-01

    After briefly describing the principles of frozen stress photoelastic and moire interferometric analyses, and the corresponding algorithms for converting optical data from each method into stress intensity factors (SIF), the methods are applied to the determination of crack shapes, SIF determination, crack closure displacement fields, and pre-crack damage mechanisms in typical aircraft component configurations.

  17. Applied study of optical interconnection link in computer cluster

    NASA Astrophysics Data System (ADS)

    Zhou, Ge; Tian, Jindong; Zhang, Nan; Jing, Wencai; Li, Haifeng

    2000-10-01

    In this paper, some study results to apply fiber link to a computer cluster are presented. The research is based on a ring network topology for a cluster system, which is connected by gigabit/s virtual parallel optical fiber link (VPOFLink) and its driver is for Linux Operating System, the transmission protocol of VPOFLink is compliant with Ethernet standard. We have studied the effect of different types of motherboard on transmission rate of the VPOFLink, and have analyzed the influence of optical interconnection network topology and computer networks protocol on the performance of this optical interconnection computer cluster. The round-trip transmission bandwidth of the VPOFLink have been tested, and the factors that limit transmission bandwidth, such as modes of forwarding data packets in the optical interconnection ring networks, and the size of the link buffer etc., are investigated.

  18. Applying of digital signal processing to optical equisignal zone system

    NASA Astrophysics Data System (ADS)

    Maraev, Anton A.; Timofeev, Aleksandr N.; Gusarov, Vadim F.

    2015-05-01

    In this work we are trying to assess the application of array detectors and digital information processing to the system with the optical equisignal zone as a new method of evaluating of optical equisignal zone position. Peculiarities of optical equisignal zone formation are described. The algorithm of evaluation of optical equisignal zone position is applied to processing on the array detector. This algorithm enables to evaluate as lateral displacement as turning angles of the receiver relative to the projector. Interrelation of parameters of the projector and the receiver is considered. According to described principles an experimental set was made and then characterized. The accuracy of position evaluation of the equisignal zone is shown dependent of the size of the equivalent entrance pupil at processing.

  19. Applying simulation to optimize plastic molded optical parts

    NASA Astrophysics Data System (ADS)

    Jaworski, Matthew; Bakharev, Alexander; Costa, Franco; Friedl, Chris

    2012-10-01

    Optical injection molded parts are used in many different industries including electronics, consumer, medical and automotive due to their cost and performance advantages compared to alternative materials such as glass. The injection molding process, however, induces elastic (residual stress) and viscoelastic (flow orientation stress) deformation into the molded article which alters the material's refractive index to be anisotropic in different directions. Being able to predict and correct optical performance issues associated with birefringence early in the design phase is a huge competitive advantage. This paper reviews how to apply simulation analysis of the entire molding process to optimize manufacturability and part performance.

  20. Autofocus by Bayes Spectral Entropy Applied to Optical Microscopy.

    PubMed

    Podlech, Steffen

    2016-02-01

    This study introduces a passive autofocus method based on image analysis calculating the Bayes spectral entropy (BSE). The method is applied to optical microscopy and together with the specific construction of the opto-mechanical unit, it allows the analysis of large samples with complicated surfaces without subsampling. This paper will provide a short overview of the relevant theory of calculating the normalized discrete cosine transform when analyzing obtained images, in order to find the BSE measure. Furthermore, it will be shown that the BSE measure is a strong indicator, helping to determine the focal position of the optical microscope. To demonstrate the strength and robustness of the microscope system, tests have been performed using a 1951 USAF test pattern resolution chart determining the in focus position of the microscope. Finally, this method and the optical microscope system is applied to analyze an optical grating (100 lines/mm) demonstrating the detection of the focal position. The paper concludes with an outlook of potential applications of the presented system within quality control and surface analysis. PMID:26758956

  1. Polarization-sensitive optical coherence tomography applied to intervertebral disk

    NASA Astrophysics Data System (ADS)

    Matcher, Stephen J.; Winlove, Peter; Gangnus, Sergei V.

    2003-07-01

    Polarization-sensitive optical coherence tomography (PSOCT) is a powerful new optical imaging modality that is sensitive to the birefringence properties of tissues. It thus has potential applications in studying the large-scale ordering of collagen fibers within connective tisues and changes related to pathology. As a tissue for study by PSOCT, intervertebral disk respresents an interesting system as the collagen organization is believed to show pronounced variations with depth, on a spatial scale of about 100 μm. We have used a polarization-sensitive optical coherence tomography system to measure the birefringence properties of bovine caudal intervertebral disk and compared this with equine flexor tendon. The result for equine tendon, δ = (3.0 +/- 0.5)x10-3 at 1.3 μm, is in broad agreement with values reported for bovine tendon, while bovine intervertebral disk displays a birefringence of about half this, δ = 1.2 x 10-3 at 1.3 μm. While tendon appears to show a uniform fast-axis over 0.8 mm depth, intervertebral disk shows image contrast at all orientations relative to a linearly polarized input beam, suggesting a variation in fast-axis orientation with depth. These initial results suggest that PSOCT could be a useful tool to study collagen organization within this tissue and its variation with applied load and disease.

  2. Lidar Measurements of Canadian Forest Fire Smoke Episode Observed in July 2013 over Warsaw, Poland

    NASA Astrophysics Data System (ADS)

    Janicka, Lucja; Stachlewska, Iwona S.; Markowicz, Krzysztof M.; Baars, Holger; Engelmann, Ronny; Heese, Birgit

    2016-06-01

    This paper presents a preliminary study of aerosol optical properties of air-mass advected on 10th July 2013 from Canada above Warsaw, Poland, during the forest fire event that occurred in Quebec at the beginning of July 2013. The observations were conducted with use of the modern version of 8-channel PollyXT lidar capable of measuring at 3β+2α+2δ+VW and interpreted with available information from the MACC model, the CALIPSO and MODIS satellite sensors, the AERONET data products and the data gathered within the Poland-AOD network.

  3. MERTIS: geometrical calibration of thermal infrared optical system by applying diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Bauer, M.; Baumbach, D.; Buder, M.; Börner, A.; Grießbach, D.; Peter, G.; Santier, E.; Säuberlich, T.; Schischmanow, A.; Schrader, S.; Walter, I.

    2015-09-01

    Geometrical sensor calibration is essential for space applications based on high accuracy optical measurements, in this case for the thermal infrared push-broom imaging spectrometer MERTIS. The goal is the determination of the interior sensor orientation. A conventional method is to measure the line of sight for a subset of pixels by single pixel illumination with collimated light. To adjust angles, which define the line of sight of a pixel, a manipulator construction is used. A new method for geometrical sensor calibration is using Diffractive Optical Elements (DOE) in connection with laser beam equipment. Diffractive optical elements (DOE) are optical microstructures, which are used to split an incoming laser beam with a dedicated wavelength into a number of beams with well-known propagation directions. As the virtual sources of the diffracted beams are points at infinity, the resulting image is invariant against translation. This particular characteristic allows a complete geometrical sensor calibration with only one taken image avoiding complex adjustment procedures, resulting in a significant reduction of calibration effort. We present a new method for geometrical calibration of a thermal infrared optical system, including an thermal infrared test optics and the MERTIS spectrometer bolometer detector. The fundamentals of this new approach for geometrical infrared optical systems calibration by applying diffractive optical elements and the test equipment are shown.

  4. Optical Trapping Techniques Applied to the Study of Cell Membranes

    NASA Astrophysics Data System (ADS)

    Morss, Andrew J.

    Optical tweezers allow for manipulating micron-sized objects using pN level optical forces. In this work, we use an optical trapping setup to aid in three separate experiments, all related to the physics of the cellular membrane. In the first experiment, in conjunction with Brian Henslee, we use optical tweezers to allow for precise positioning and control of cells in suspension to evaluate the cell size dependence of electroporation. Theory predicts that all cells porate at a transmembrane potential VTMof roughly 1 V. The Schwann equation predicts that the transmembrane potential depends linearly on the cell radius r, thus predicting that cells should porate at threshold electric fields that go as 1/r. The threshold field required to induce poration is determined by applying a low voltage pulse to the cell and then applying additional pulses of greater and greater magnitude, checking for poration at each step using propidium iodide dye. We find that, contrary to expectations, cells do not porate at a constant value of the transmembrane potential but at a constant value of the electric field which we find to be 692 V/cm for K562 cells. Delivering precise dosages of nanoparticles into cells is of importance for assessing toxicity of nanoparticles or for genetic research. In the second experiment, we conduct nano-electroporation—a novel method of applying precise doses of transfection agents to cells—by using optical tweezers in conjunction with a confocal microscope to manipulate cells into contact with 100 nm wide nanochannels. This work was done in collaboration with Pouyan Boukany of Dr. Lee's group. The small cross sectional area of these nano channels means that the electric field within them is extremely large, 60 MV/m, which allows them to electrophoretically drive transfection agents into the cell. We find that nano electroporation results in excellent dose control (to within 10% in our experiments) compared to bulk electroporation. We also find that

  5. Turbulence profiling methods applied to ESO's adaptive optics facility

    NASA Astrophysics Data System (ADS)

    Valenzuela, Javier; Béchet, Clémentine; Garcia-Rissmann, Aurea; Gonté, Frédéric; Kolb, Johann; Le Louarn, Miska; Neichel, Benoît; Madec, Pierre-Yves; Guesalaga, Andrés.

    2014-07-01

    Two algorithms were recently studied for C2n profiling from wide-field Adaptive Optics (AO) measurements on GeMS (Gemini Multi-Conjugate AO system). They both rely on the Slope Detection and Ranging (SLODAR) approach, using spatial covariances of the measurements issued from various wavefront sensors. The first algorithm estimates the C2n profile by applying the truncated least-squares inverse of a matrix modeling the response of slopes covariances to various turbulent layer heights. In the second method, the profile is estimated by deconvolution of these spatial cross-covariances of slopes. We compare these methods in the new configuration of ESO Adaptive Optics Facility (AOF), a high-order multiple laser system under integration. For this, we use measurements simulated by the AO cluster of ESO. The impact of the measurement noise and of the outer scale of the atmospheric turbulence is analyzed. The important influence of the outer scale on the results leads to the development of a new step for outer scale fitting included in each algorithm. This increases the reliability and robustness of the turbulence strength and profile estimations.

  6. Non-Harmonic Analysis Applied to Optical Coherence Tomography Imaging

    NASA Astrophysics Data System (ADS)

    Cao, Xu; Uchida, Tetsuya; Hirobayashi, Shigeki; Chong, Changho; Morosawa, Atsushi; Totsuka, Koki; Suzuki, Takuya

    2012-02-01

    A new processing technique called non-harmonic analysis (NHA) is proposed for optical coherence tomography (OCT) imaging. Conventional Fourier-domain OCT employs the discrete Fourier transform (DFT), which depends on the window function and length. The axial resolution of the OCT image, calculated by using DFT, is inversely proportional to the full width at half maximum (FWHM) of the wavelength range. The FWHM of wavelength range is limited by the sweeping range of the source in swept-source OCT and it is limited by the number of CCD pixels in spectral-domain OCT. However, the NHA process does not have such constraints; NHA can resolve high frequencies irrespective of the window function and the frame length of the sampled data. In this study, the NHA process is described and it is applied to OCT imaging. It is compared with OCT images based on the DFT. To demonstrate the benefits of using NHA for OCT, we perform OCT imaging with NHA of an onion skin. The results reveal that NHA can achieve an image resolution equivalent that of a 100-nm sweep range using a significantly reduced wavelength range. They also reveal the potential of using this technique to achieve high-resolution imaging without using a broadband source. However, the long calculation times required for NHA must be addressed if it is to be used in clinical applications.

  7. Center for Applied Optics Studies: an investment in Indiana's future

    NASA Astrophysics Data System (ADS)

    Schuh, Delbert J., II; Khorana, Brij M.

    1992-05-01

    To understand the involvement of the State of Indiana with the Center for Applied Optics at Rose-Hulman Institute of Technology, it is best to start with an explanation of the Indiana Corporation for Science and Technology (CST), its basic charter and its programs. Established in 1982 as a private not-for-profit corporation, CST was formed to promote economic development within the State of Indiana. Two programs that were initially a part of CST's charter and supported with state dollars were a seed capital investment program, aimed at developing new products and processes, and the establishment of university centers of technology development. The former was conceived to create jobs and new, technologically advanced industries in Indiana. The latter was an attempt to encourage technology transfer from the research laboratories of the state universities to the production lines of Indiana industry. Recently, CST has undergone a name change to the Indiana Business Modernization and Technology Corporation (BMT) and adopted an added responsibility of proactive assistance to small- and medium-sized businesses in order to enhance the state's industrial competitiveness.

  8. Flood Frequency Analysis using different flood descriptors - the Warsaw reach of the river Vistula case study

    NASA Astrophysics Data System (ADS)

    Karamuz, Emilia; Kochanek, Krzysztof; Romanowicz, Renata

    2014-05-01

    Flood frequency analysis (FFA) is customarily performed using annual maximum flows. However, there is a number of different flood descriptors that could be used. Among them are water levels, peaks over the threshold, flood-wave duration, flood volume, etc. In this study we compare different approaches to FFA for their suitability for flood risk assessment. The main goal is to obtain the FFA curve with the smallest possible uncertainty limits, in particular for the distribution tail. The extrapolation of FFA curves is crucial in future flood risk assessment in a changing climate. We compare the FFA curves together with their uncertainty limits obtained using flows, water levels, flood inundation area and volumes for the Warsaw reach of the river Vistula. Moreover, we derive the FFA curves obtained using simulated flows. The results are used to derive the error distribution for the maximum simulated and observed values under different modelling techniques and assess its influence on flood risk predictions for ungauged catchments. MIKE11, HEC-RAS and transfer function model are applied in average and extreme conditions to model flow propagation in the Warsaw Vistula reach. The additional questions we want to answer are what is the range of application of different modelling tools under various flow conditions and how can the uncertainty of flood risk assessment be decreased. This work was partly supported by the projects "Stochastic flood forecasting system (The River Vistula reach from Zawichost to Warsaw)" and "Modern statistical models for analysis of flood frequency and features of flood waves", carried by the Institute of Geophysics, Polish Academy of Sciences on the order of the National Science Centre (contracts Nos. 2011/01/B/ST10/06866 and 2012/05/B/ST10/00482, respectively). The water level and flow data were provided by the Institute of Meteorology and Water Management (IMGW), Poland.

  9. Optical fiber smart structures applied to secure containers

    SciTech Connect

    Sliva, P.; Gordon, N.R.; Stahl, K.A.; Simmon, K.L.; Anheier, N.C.

    1994-07-01

    A prototype secure container was prepared that uses continually monitored optical fiber as the smart structure. A small ({approx}7.6 cm {times} 10.2 cm {times} 12.7 cm), matchbox-shaped container consisting of an inner drawer within an outer shell was fabricated from polymer resin. The optical fiber was sandwiched between additional non-optical, strength-promoting fibers and embedded into the polymer. The additional non-optical fiber provides strength to the container, protects the optical fiber from damage, hides the fiber and acts as a decoy. The optical fiber was wound with a winding density such that a high probability of fiber damage would be expected if the container was penetrated.

  10. Fast frequency hopping codes applied to SAC optical CDMA network

    NASA Astrophysics Data System (ADS)

    Tseng, Shin-Pin

    2015-06-01

    This study designed a fast frequency hopping (FFH) code family suitable for application in spectral-amplitude-coding (SAC) optical code-division multiple-access (CDMA) networks. The FFH code family can effectively suppress the effects of multiuser interference and had its origin in the frequency hopping code family. Additional codes were developed as secure codewords for enhancing the security of the network. In considering the system cost and flexibility, simple optical encoders/decoders using fiber Bragg gratings (FBGs) and a set of optical securers using two arrayed-waveguide grating (AWG) demultiplexers (DeMUXs) were also constructed. Based on a Gaussian approximation, expressions for evaluating the bit error rate (BER) and spectral efficiency (SE) of SAC optical CDMA networks are presented. The results indicated that the proposed SAC optical CDMA network exhibited favorable performance.

  11. Optical design of low glare luminaire applied for tunnel light

    NASA Astrophysics Data System (ADS)

    Tsai, M. S.; Lee, X. H.; Lo, Y. C.; Sun, C. C.

    2014-09-01

    In this study, a low glare and high-efficient tunnel lighting design which consists of a cluster light-emitting diode and a free-form lens is presented. Most of the energy emitted from the proposed luminaire is transmitted onto the surface of the road in front of drivers, and the probability that the energy is emitted directly into drivers' eyes is low. Compared with traditional fluorescent lamps, the proposed luminaire, of which the optical utilization factor, optical efficiency, and uniformity are, respectively, 44%, 92.5%, and 0.72, performs favorably in traffic safety, energy saving, and glare reduction.

  12. Geometric and Applied Optics, Science (Experimental): 5318.04.

    ERIC Educational Resources Information Center

    Sanderson, Robert C.

    This unit of instruction presents a laboratory-oriented course which relates the sources and behaviors of light to man's control and uses of light. Successful completion of Algebra I and Plane Geometry is strongly recommended as indicators of success. The course is recommended if the student plans further studies in science, optical technology, or…

  13. Applied nonlinear optics in the journal 'Quantum Electronics'

    SciTech Connect

    Grechin, Sergei G; Dmitriev, Valentin G; Chirkin, Anatolii S

    2011-12-31

    A brief historical review of the experimental and theoretical works on nonlinear optical frequency conversion (generation of harmonics, up- and down-conversion, parametric oscillation), which have been published in the journal 'Quantum Electronics' for the last 40 years, is presented.

  14. Investigation of mechanical stress applied to the optical modular cables at low temperatures

    NASA Astrophysics Data System (ADS)

    Burdin, Vladimir A.; Voronkov, Andrey A.; Alekhin, Ivan N.

    2015-03-01

    This paper presents the investigate of mechanical loadings applied to the optical cables module structure at low temperatures. Mechanical loads experienced by the optical cable in the process of construction of fiber-optic communication lines, and in the course of their operation, are major factors affecting the reliability and service life optical cable. Over the past few years, optical cable modular design greatly supplanted other modifications, so in this article addresses the evaluation of mechanical loads applied to the modular design cables at low temperatures.

  15. Methodologies used by Warsaw Pact countries (except USSR) in obtaining US technologies. Student report

    SciTech Connect

    Cheeseman, R.J.

    1987-04-01

    The Warsaw Pact countries obtain U.S. technologies by legal and illegal means. Methods of collection include espionage, overt collection, acquisition by scientific and educational exchange participants, and illegal trade activities. Examples of methods used by the Warsaw Pact countries (except the USSR) are provided. The US faces barriers to preventing loss of its technologies. Among these are resistance from US business interests, insufficient cooperation between US government agencies and overseas allies, lack of US counterintelligence personnel, and the openess of American society. The study concludes that the Warsaw Pact's countries have narrowed NATO's qualitative lead in weaponry as a result of the Warsaw Pact's acquisition effort.

  16. Applying fiber optical methods for toxicological testing in vitro

    NASA Astrophysics Data System (ADS)

    Maerz, Holger K.; Buchholz, Rainer; Emmrich, Frank; Fink, Frank; Geddes, Clive L.; Pfeifer, Lutz; Raabe, Ferdinand; Scheper, Thomas-Helmut; Ulrich, Elizabeth; Marx, Uwe

    1999-04-01

    The new medical developments, e.g. immune therapy, patient oriented chemotherapy or even gene therapy, create a questionable doubt to the further requirement of animal test. Instead the call for humanitarian reproductive in vitro models becomes increasingly louder. Pharmaceutical usage of in vitro has a long proven history. In cancer research and therapy, the effect of chemostatica in vitro in the so-called oncobiogram is being tested; but the assays do not always correlate with in vivo-like drug resistance and sensitivity. We developed a drug test system in vitro, feasible for therapeutic drug monitoring by the combination of tissue cultivation in hollow fiber bioreactors and fiber optic sensors for monitoring the pharmaceutical effect. Using two fiber optic sensors - an optical oxygen sensor and a metabolism detecting Laserfluoroscope, we were able to successfully monitor the biological status of tissue culture and the drug or toxic effects of in vitro pharmaceutical testing. Furthermore, we developed and patented a system for monitoring the effect of minor toxic compounds which can induce Sick Building Syndrome.

  17. Photogrammetry at the Warsaw University of Technology - Past and Present

    NASA Astrophysics Data System (ADS)

    Zawieska, Dorota; Kurczyński, Zdzisław

    2016-06-01

    The Department of Photogrammetry, Remote Sensing and Geographic Information Systems at the Warsaw University of Technology is one of six organizational units of the Faculty of Geodesy and Cartography. The photogrammetry has been under interest of scientists in Faculty for over 90 years. The last decades has been characterized by the incredible development of photogrammetric technologies, mainly towards wide automation and popularization of derivative products for processing data acquired at satellite, aerial, and terrestrial levels. The paper presents achievements of scientists employed in Photogrammetric Research Group during last decades related to projects that were carried out in this department.

  18. Intra-metropolitan migration in the Warsaw agglomeration.

    PubMed

    Rykiel, Z

    1984-01-01

    "Two questions of intra-metropolitan migration are analyzed in the paper, intra-metropolitan hierarchy and intra-metropolitan spatial barriers. The former embraces four detailed questions: ranking of centers; spatial pattern of hierarchical subordination; degree of unequivocalness of the subordinations, or degree of dominance; and degree of hierarchicality of interrelationships. Two specialties of the Warsaw [Poland] agglomeration are discussed, the influence of the present crisis, and the administrative restrictions to migration to the city, or the spatial barriers. Social connotations of the latter are also presented." PMID:12312885

  19. Validation and qualification of surface-applied fibre optic strain sensors using application-independent optical techniques

    NASA Astrophysics Data System (ADS)

    Schukar, Vivien G.; Kadoke, Daniel; Kusche, Nadine; Münzenberger, Sven; Gründer, Klaus-Peter; Habel, Wolfgang R.

    2012-08-01

    Surface-applied fibre optic strain sensors were investigated using a unique validation facility equipped with application-independent optical reference systems. First, different adhesives for the sensor's application were analysed regarding their material properties. Measurements resulting from conventional measurement techniques, such as thermo-mechanical analysis and dynamic mechanical analysis, were compared with measurements resulting from digital image correlation, which has the advantage of being a non-contact technique. Second, fibre optic strain sensors were applied to test specimens with the selected adhesives. Their strain-transfer mechanism was analysed in comparison with conventional strain gauges. Relative movements between the applied sensor and the test specimen were visualized easily using optical reference methods, digital image correlation and electronic speckle pattern interferometry. Conventional strain gauges showed limited opportunities for an objective strain-transfer analysis because they are also affected by application conditions.

  20. Apply lightweight recognition algorithms in optical music recognition

    NASA Astrophysics Data System (ADS)

    Pham, Viet-Khoi; Nguyen, Hai-Dang; Nguyen-Khac, Tung-Anh; Tran, Minh-Triet

    2015-02-01

    The problems of digitalization and transformation of musical scores into machine-readable format are necessary to be solved since they help people to enjoy music, to learn music, to conserve music sheets, and even to assist music composers. However, the results of existing methods still require improvements for higher accuracy. Therefore, the authors propose lightweight algorithms for Optical Music Recognition to help people to recognize and automatically play musical scores. In our proposal, after removing staff lines and extracting symbols, each music symbol is represented as a grid of identical M ∗ N cells, and the features are extracted and classified with multiple lightweight SVM classifiers. Through experiments, the authors find that the size of 10 ∗ 12 cells yields the highest precision value. Experimental results on the dataset consisting of 4929 music symbols taken from 18 modern music sheets in the Synthetic Score Database show that our proposed method is able to classify printed musical scores with accuracy up to 99.56%.

  1. 75 FR 27613 - Culturally Significant Objects Imported for Exhibition Determinations: “The Holocaust (Warsaw...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Culturally Significant Objects Imported for Exhibition Determinations: ``The Holocaust (Warsaw Ghetto... that the documents to be included in the exhibition ``The Holocaust (Warsaw Ghetto),'' imported from... exhibition or display of the documents at the U.S. Holocaust Memorial Museum, Washington, DC, from on...

  2. Great figures of Polish Nephrology - Participants of the Warsaw Uprising 1944.

    PubMed

    Muszytowski, M; Ostrowski, J; Rutkowski, B

    2016-02-01

    In 1944, during the World War II, many doctors and many medical students participated in the Warsaw Uprising. This group also comprised future nephrologists, professors of medicine, founders of Polish nephrology, dialysis and transplantology centers. We presented 3 of great polish nephrologists who participated in medical services in the Warsaw Uprising: Zygmunt Hanicki, Andrzej Manitius and Tadeusz Orłowski. PMID:26913890

  3. The Lvov-Warsaw School: The forgotten tradition of historical psychology.

    PubMed

    Citlak, Amadeusz

    2016-05-01

    This article is an attempt to reconstruct the psychological achievements of the representatives of the Lvov-Warsaw School of historical psychology, virtually forgotten and unknown in the world's psychological literature. Kazimierz Twardowski (1866-1938), founder of the school, developed a philosophical and psychological program on the basis of (among other things) the theory of actions and products, including the research program that is now included in the thread of historical psychology. His student, Wladyslaw Witwicki (1878-1948), developed the cratism theory (the theory of power) on the basis Twardowski's assumptions, providing an alternative to Alfred Adler's theory of striving for superiority while also declaring it a few years before Adler. The consequence of Witwicki's theory and the methodological assumptions was the creation of psychobiography: the first nonpsychoanalytical psychobiography of Socrates (Witwicki, 1909, 1922) and the psychobiography of Jesus Christ (Witwicki, 1958). The school's activities weakened for political reasons, particularly the outbreak of the First World War. The members of the school dispersed after 1918, and they lost international connections with the world of science. Their significant achievements in the field of psychology remained unknown to psychologists for nearly a century. In this article, I would like to present the school's unique but unfinished program of reconstructing mental life through the psychological interpretation of cultural products (literature, arts, diaries), and its value for the practice of research in historical psychology. This program required additional development, but because of the war this never happened. Some of the school's theoretical findings and the first attempts to apply them have still significant value and show us the originality of Lvov-Warsaw School psychology. PMID:27100926

  4. Cocaine self-administration in Warsaw alcohol high-preferring (WHP) and Warsaw alcohol low-preferring (WLP) rats.

    PubMed

    Acewicz, Albert; Mierzejewski, Pawel; Dyr, Wanda; Jastrzebska, Agata; Korkosz, Izabela; Wyszogrodzka, Edyta; Nauman, Pawel; Samochowiec, Jerzy; Kostowski, Wojciech; Bienkowski, Przemyslaw

    2012-01-15

    Individuals prone to drug self-administration may be vulnerable not only to a single drug reinforcer but to a variety of drug reinforcers. It has been shown that two thirds of alcoholics regularly use drugs other than ethanol (alcohol). Up to 30% of alcohol-dependent patients report concurrent misuse of cocaine. The aim of the present study was to investigate intravenous cocaine self-administration in selectively bred, alcohol-preferring WHP (Warsaw high-preferring) and non-preferring WLP (Warsaw low-preferring) rats. It was hypothesized that WHPs could be more prone to cocaine self-administration in comparison to WLPs. Rats from both lines were allowed to nose-poke for cocaine infusions (0.33 mg/kg/infusion) under the FR-1, FR-2, and FR-3 schedule of reinforcement. Dose-response curves were assessed with increasing doses of cocaine (0.03, 0.1, 0.33, 1.0mg/kg/infusion). The WHP and WLP rats did not differ in cocaine self-administration. Both groups quickly acquired nose-poke responding for cocaine, presented a similar response profile when the schedule of reinforcement was increased from FR-1 to FR-3, and similar sensitivity to cocaine in the dose-response test. The present results may indicate that the selective breeding of alcohol-preferring WHP and alcohol non-preferring WLP rats did not lead to differences in cocaine's rewarding effects as assessed in the self-administration procedure. PMID:22101231

  5. Experimental scrambling and noise reduction applied to the optical encryption of QR codes.

    PubMed

    Barrera, John Fredy; Vélez, Alejandro; Torroba, Roberto

    2014-08-25

    In this contribution, we implement two techniques to reinforce optical encryption, which we restrict in particular to the QR codes, but could be applied in a general encoding situation. To our knowledge, we present the first experimental-positional optical scrambling merged with an optical encryption procedure. The inclusion of an experimental scrambling technique in an optical encryption protocol, in particular dealing with a QR code "container", adds more protection to the encoding proposal. Additionally, a nonlinear normalization technique is applied to reduce the noise over the recovered images besides increasing the security against attacks. The opto-digital techniques employ an interferometric arrangement and a joint transform correlator encrypting architecture. The experimental results demonstrate the capability of the methods to accomplish the task. PMID:25321236

  6. Experiment definition phase shuttle laboratory LDRL-10.6 experiment. [applying optical communication

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The 10.6 microns laser data relay link (LDRL 10.6) program was directed to applying optical communications to NASA's wideband data transmission requirements through the 1980's. The LDRL consists of a transmitter on one or more low earth orbit satellites with an elliptical orbit satellite receivers. Topics discussed include: update of the LDRL design control table to detail the transmitter optical chain losses and to incorporate the change to a reflective beam pre-expander; continued examination of the link establishment sequence, including its dependence upon spacecraft stability; design of the transmitter pointing and tracking control system; and finalization of the transmitter brassboard optical and mechanical design.

  7. Education in applied and instrumental optics at the University of Helsinki

    NASA Astrophysics Data System (ADS)

    Stenman, Folke

    1997-12-01

    The teaching of applied and instrumental optics at the University of Helsinki Department of Physics originally grew out of the needs of the research group of molecular physics as a basis for the experimental work in the group. The training program starts with a one-year course for senior undergraduates and graduates comprising geometrical optics, eikonal theory, image forming components, matrix methods, optical instruments, the optics of laser beams, radiometry and photometry, ray tracing methods, optics of anisotropic media, diffraction theory, general image formation theory and Fourier optics. The course starts from fundamentals, but the mathematical level is kept adequate for serious work. Further applications are treated in courses on molecular spectroscopy, where ruled and holographic diffraction gratings (both plane and spherical), interferometric spectroscopy and imaging properties of spectral equipment are treated. Aspects of image analysis, information in optics, signal-to-noise ratio, etc. are treated in separate courses on Fourier method and digital spectral analysis. The applicability of optical techniques to various fields of physics and engineering and the analogies with them are especially brought out. Experimental and calculational and skills are stressed throughout. Computer programming is introduced as an indispensable tool for the optics practitioner, and the students are required to write programs of their own. The students gain practical experience, e.g., by working in the molecular physics group. Close cooperation is maintained with other research groups in laser physics, ultrasonics and physical chemistry. The training in optics has proved very useful, with students frequently ending up working in the industry on optics and spectroscopy problems. Parts of these courses have also been given at other universities and to engineers and scientists working in the industry.

  8. Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress

    SciTech Connect

    P.E. Klingsporn

    2011-08-01

    Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.

  9. Field Test of Fiber-Optic Voltage and Current Sensors Applied to Gas Insulated Substation

    NASA Astrophysics Data System (ADS)

    Kuroda, Y.; Abe, Y.; Kuwahara, H.; Yoshinaga, K.

    1986-08-01

    The fiber-optic voltage and current sensors applied for 84kV three phase type gas insulated substation (GIS) were tested in order to see the advantages of these sensors practically in adverse field condition. The application technologies and field endurance test results of the sensors are described in this paper.

  10. A complete digital optics applied to digital holographic microscopy: application to chromatic aberration compensation

    NASA Astrophysics Data System (ADS)

    Colomb, Tristan; Charrière, Florian; Kühn, Jonas; Montfort, Frédéric; Depeursinge, Christian

    2007-06-01

    In optics, optical elements are used to transform, to filter or to process physical wavefronts in order to magnify images, compensate for aberration or to suppress unwanted diffracted order for example. Because digital holography provides numerical wavefronts, we developed a digital optics, involving numerical elements such as numerical lenses and pinholes, to mimic numerically what is usually done physically, with the advantage to be able to define any shape for these elements and to place them everywhere without obstruction problems. We demonstrate that automatic and non-automatic procedures allow diffracted order or parasitic interferences filtering, compensation for aberration and image distortion, and control of position and magnification of reconstructed wavefront. We apply this digital optics to compensate for chromatic aberration in multi-wavelength holography in order to have perfect superposition between wavefronts reconstructed from digital hologram recorded with different wavelengths. This has a great importance for synthetic wavelength digital holography or tomographic digital holography that use multiple wavelengths.

  11. Burden of disease caused by local transport in Warsaw, Poland

    PubMed Central

    Tainio, Marko

    2015-01-01

    Transport is a major source of air pollution, noise, injuries and physical activity in the urban environment. The quantification of the health risks and benefits arising from these factors would provide useful information for the planning of cost-effective mitigation actions. In this study we quantified the burden of disease caused by local transport in the city of Warsaw, Poland. The disability-adjusted life-years (DALYs) were estimated for transport related air pollution (particulate matter (PM), nitrogen oxides (NOx), sulfur dioxide (SO2), benzo[a]pyrene (BaP), cadmium, lead and nickel), noise, injuries and physical activity. Exposure to these factors was based on local and international data, and the exposure-response functions (ERFs) were based on published reviews and recommendations. The uncertainties were quantified and propagated with the Monte Carlo method. Local transport generated air pollution, noise and injuries were estimated to cause approximately 58,000 DALYs in the study area. From this burden 44% was due to air pollution and 46% due to noise. Transport related physical activity was estimated to cause a health benefit of 17,000 DALYs. Main quantified uncertainties were related to disability weight for the annoyance (due to noise) and to the ERFs for fine particulate matter (PM2.5) air pollution and walking. The results indicate that the health burden of transport could be mitigated by reducing motorized transport, which causes air pollution and noise, and by encouraging walking and cycling in the study area. PMID:26516622

  12. Feasibility studies and pre-design simulation of Warsaw's new wastewater treatment plant.

    PubMed

    Oleszkiewicz, J A; Kalinowska, E; Dold, P; Barnard, J L; Bieniowski, M; Ferenc, Z; Jones, R; Rypina, A; Sudol, J

    2004-12-01

    The proposed transfer of wastewater from the western part of Warsaw, across the Wisla (Vistula) River for joint treatment at the existing eastern side "Czajka" wastewater treatment plant (WWTP) will result in combined winter flows of approx. 580,000 m3 d(-1). One-year of pilot-scale studies defined the COD characteristics and kinetics of nitrogen removal and VFA production from primary sludge. BioWin simulation was used to size and price the optional processes and pointed to the Westbank process as the most cost-effective. The process consists of a sequence of a RAS pre-denitrification zone followed by an anaerobic, anoxic and aerobic zone. Some 100-150 t d(-1) of 10% methanol would be needed to remove 2-4 mg l(-1) of NO3-N above the recommended effluent level TN = 10 mg l(-1). Applying the principle of annual average 80% TN removal, and allowing for use of daily composite samples (rather than grab) could annually save the municipality over 1.5 million Euro on external carbon source. PMID:15691201

  13. Warsaw set of emotional facial expression pictures: a validation study of facial display photographs

    PubMed Central

    Olszanowski, Michal; Pochwatko, Grzegorz; Kuklinski, Krzysztof; Scibor-Rylski, Michal; Lewinski, Peter; Ohme, Rafal K.

    2015-01-01

    Emotional facial expressions play a critical role in theories of emotion and figure prominently in research on almost every aspect of emotion. This article provides a background for a new database of basic emotional expressions. The goal in creating this set was to provide high quality photographs of genuine facial expressions. Thus, after proper training, participants were inclined to express “felt” emotions. The novel approach taken in this study was also used to establish whether a given expression was perceived as intended by untrained judges. The judgment task for perceivers was designed to be sensitive to subtle changes in meaning caused by the way an emotional display was evoked and expressed. Consequently, this allowed us to measure the purity and intensity of emotional displays, which are parameters that validation methods used by other researchers do not capture. The final set is comprised of those pictures that received the highest recognition marks (e.g., accuracy with intended display) from independent judges, totaling 210 high quality photographs of 30 individuals. Descriptions of the accuracy, intensity, and purity of displayed emotion as well as FACS AU's codes are provided for each picture. Given the unique methodology applied to gathering and validating this set of pictures, it may be a useful tool for research using face stimuli. The Warsaw Set of Emotional Facial Expression Pictures (WSEFEP) is freely accessible to the scientific community for non-commercial use by request at http://www.emotional-face.org. PMID:25601846

  14. Nighttime lidar water vapor mixing ratio profiling over Warsaw - impact of the relative humidity profile on cloud formation

    NASA Astrophysics Data System (ADS)

    Costa Surós, Montserrat; Stachlewska, Iwona S.

    2016-04-01

    A long-term study, assessing ground-based remote Raman lidar versus in-situ radiosounding has been conducted with the aim of improving the knowledge on the water content vertical profile through the atmosphere, and thus the conditions for cloud formation processes. Water vapor mixing ratio (WVMR) and relative humidity (RH) profiles were retrieved from ADR Lidar (PollyXT-type, EARLINET site in Warsaw). So far, more than 100 nighttime profiles averaged over 1h around midnight from July 2013 to December 2015 have been investigated. Data were evaluated with molecular extinctions calculated using two approximations: the US62 standard atmosphere and the radiosounding launched in Legionowo (12374). The calibration factor CH2O for lidar retrievals was obtained for each profile using the regression method and the profile method to determine the best calibration factor approximation to be used in the final WVMR and RH calculation. Thus, statistically representative results for comparisons between lidar WVMR median profiles obtained by calibrating using radiosounding profiles and using atmospheric synthetic profiles, all of them with the best calibration factor, will be presented. Finally, in order to constrain the conditions of cloud formation in function of the RH profile, the COS14 algorithm, capable of deriving cloud bases and tops by applying thresholds to the RH profiles, was applied to find the cloud vertical structure (CVS). The algorithm was former applied to radiosounding profiles at SGP-ARM site and tested against the CVS obtained from the Active Remote Sensing of Clouds (ARSCL) data. Similarly, it was applied for lidar measurements at the Warsaw measurement site.

  15. Applying LED in full-field optical coherence tomography for gastrointestinal endoscopy

    NASA Astrophysics Data System (ADS)

    Yang, Bor-Wen; Wang, Yu-Yen; Juan, Yu-Shan; Hsu, Sheng-Jie

    2015-08-01

    Optical coherence tomography (OCT) has become an important medical imaging technology due to its non-invasiveness and high resolution. Full-field optical coherence tomography (FF-OCT) is a scanning scheme especially suitable for en face imaging as it employs a CMOS/CCD device for parallel pixels processing. FF-OCT can also be applied to high-speed endoscopic imaging. Applying cylindrical scanning and a right-angle prism, we successfully obtained a 360° tomography of the inner wall of an intestinal cavity through an FF-OCT system with an LED source. The 10-μm scale resolution enables the early detection of gastrointestinal lesions, which can increase detection rates for esophageal, stomach, or vaginal cancer. All devices used in this system can be integrated by MOEMS technology to contribute to the studies of gastrointestinal medicine and advanced endoscopy technology.

  16. Two-dimensional null subspace algorithm applied for blind optical images deconvolution

    NASA Astrophysics Data System (ADS)

    Berezovskiy, Andrey; Goriachkin, Oleg

    2016-03-01

    The article deals with the image blind identification algorithm applied for optical images restoration. The proposed solution is based on the polynomial transform of the signals and allows to reduce multichannel blind image identification to the linear equation solving with the number of equations, equal to the number of the unknown PSF samples. The outcome of the simulation for different SNR is examined during the simulation; the real images, restored by the proposed algorithm are shown.

  17. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-Tao; Zhang, Xiao-Hui; Ge, Wei-Long

    2011-11-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  18. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  19. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging.

    PubMed

    Abrahamsson, Sara; Ilic, Rob; Wisniewski, Jan; Mehl, Brian; Yu, Liya; Chen, Lei; Davanco, Marcelo; Oudjedi, Laura; Fiche, Jean-Bernard; Hajj, Bassam; Jin, Xin; Pulupa, Joan; Cho, Christine; Mir, Mustafa; El Beheiry, Mohamed; Darzacq, Xavier; Nollmann, Marcelo; Dahan, Maxime; Wu, Carl; Lionnet, Timothée; Liddle, J Alexander; Bargmann, Cornelia I

    2016-03-01

    Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a "precise color" MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans. PMID:27231594

  20. Threshold thickness for applying diffusion equation in thin tissue optical imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong

    2014-08-01

    We investigated the suitability of the semi-infinite model of the diffusion equation when using diffuse optical imaging (DOI) to image thin tissues with double boundaries. Both diffuse approximation and Monte Carlo methods were applied to simulate light propagation in the thin tissue model with variable optical parameters and tissue thicknesses. A threshold value of the tissue thickness was defined as the minimum thickness in which the semi-infinite model exhibits the same reflected intensity as that from the double-boundary model and was generated as the final result. In contrast to our initial hypothesis that all optical properties would affect the threshold thickness, our results show that only absorption coefficient is the dominant parameter and the others are negligible. The threshold thickness decreases from 1 cm to 4 mm as the absorption coefficient grows from 0.01 mm-1 to 0.2 mm-1. A look-up curve was derived to guide the selection of the appropriate model during the optical diagnosis of thin tissue cancers. These results are useful in guiding the development of the endoscopic DOI for esophageal, cervical and colorectal cancers, among others.

  1. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging

    PubMed Central

    Abrahamsson, Sara; Ilic, Rob; Wisniewski, Jan; Mehl, Brian; Yu, Liya; Chen, Lei; Davanco, Marcelo; Oudjedi, Laura; Fiche, Jean-Bernard; Hajj, Bassam; Jin, Xin; Pulupa, Joan; Cho, Christine; Mir, Mustafa; El Beheiry, Mohamed; Darzacq, Xavier; Nollmann, Marcelo; Dahan, Maxime; Wu, Carl; Lionnet, Timothée; Liddle, J. Alexander; Bargmann, Cornelia I.

    2016-01-01

    Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a “precise color” MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans. PMID:27231594

  2. Temperature and pressure fiber-optic sensors applied to minimally invasive diagnostics and therapies

    NASA Astrophysics Data System (ADS)

    Hamel, Caroline; Pinet, Éric

    2006-02-01

    We present how fiber-optic temperature or pressure sensors could be applied to minimally invasive diagnostics and therapies. For instance a miniature pressure sensor based on micro-optical mechanical systems (MOMS) could solve most of the problems associated with fluidic pressure transduction presently used for triggering purposes. These include intra-aortic balloon pumping (IABP) therapy and other applications requiring detection of fast and/or subtle fluid pressure variations such as for intracranial pressure monitoring or for urology diagnostics. As well, miniature temperature sensors permit minimally invasive direct temperature measurement in diagnostics or therapies requiring energy transfer to living tissues. The extremely small size of fiber-optic sensors that we have developed allows quick and precise in situ measurements exactly where the physical parameters need to be known. Furthermore, their intrinsic immunity to electromagnetic interference (EMI) allows for the safe use of EMI-generating therapeutic or diagnostic equipments without compromising the signal quality. With the trend of ambulatory health care and the increasing EMI noise found in modern hospitals, the use of multi-parameter fiber-optic sensors will improve constant patient monitoring without any concern about the effects of EMI disturbances. The advantages of miniature fiberoptic sensors will offer clinicians new monitoring tools that open the way for improved diagnostic accuracy and new therapeutic technologies.

  3. The last 50 years of general relativity and gravitation: from GR3 to GR20 Warsaw conferences

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay

    2014-05-01

    This article has a dual purpose: i) to provide a flavor of the scientific highlights of the landmark conference, GR3, held in July 1962 at Jablonna, near Warsaw; and, ii) to present a bird's eye view of the tremendous advances that have occurred over the half century that separates GR3 and GR20, which was again held in Warsaw in July 2013.

  4. Applied electro-optics educational and training program with multiple entrance and exit pathways

    NASA Astrophysics Data System (ADS)

    Scott, Patricia; Zhou, Feng; Zilic, Dorothy

    2007-06-01

    This paper presents an innovative hands-on training program designed to create a pipeline of highly-skilled technical workers for today's workforce economy. The 2+2+2 Pennsylvania Integrated Workforce Leadership Program in Electro-Optics prepares students for a career in this new high-tech field. With seamless transition from high school into college, the program offers the versatility of multiple entrance and exit pathways. After completion of each educational level, students can exit the program with various skill levels, including certificates, an associate's degree, or a bachelor's degree. Launched by Indiana University of Pennsylvania (IUP) in partnership with Lenape Vocational School (Lenape), the 2+2+2 educational pathway program was implemented to promote early training of high-school students. During the first level, students in their junior and/or senior year enroll in four Electro-Optics courses at Lenape. Upon completion of these courses and an Advanced Placement Equivalency course with an appropriate exam score, students can earn a certificate from Lenape for the 15+ credits, which also can be articulated into IUP's associate degree program in Electro-Optics. During the second level, students can earn an associate's degree in Electro-Optics, offered only at the IUP Northpointe Campus. After completion of the Associate in Applied Science (A.A.S.), students are prepared to enter the workforce as senior technicians. During the third level, students who have completed the Associate of Science (A.S.) in Electro-Optics have the opportunity to matriculate at IUP's Indiana Campus to earn a Bachelor of Science (B.S.) degree in Applied Physics with a track in Electro-Optics. Hence, the name 2+2+2 refers to getting started in high school, continuing the educational experience with an associate's degree program, and optionally moving on to a bachelor's degree. Consequently, students move from one educational level to the next with advanced credits toward the next

  5. Applying UV cameras for SO2 detection to distant or optically thick volcanic plumes

    USGS Publications Warehouse

    Kern, Christoph; Werner, Cynthia; Elias, Tamar; Sutton, A. Jeff; Lübcke, Peter

    2013-01-01

    Ultraviolet (UV) camera systems represent an exciting new technology for measuring two dimensional sulfur dioxide (SO2) distributions in volcanic plumes. The high frame rate of the cameras allows the retrieval of SO2 emission rates at time scales of 1 Hz or higher, thus allowing the investigation of high-frequency signals and making integrated and comparative studies with other high-data-rate volcano monitoring techniques possible. One drawback of the technique, however, is the limited spectral information recorded by the imaging systems. Here, a framework for simulating the sensitivity of UV cameras to various SO2 distributions is introduced. Both the wavelength-dependent transmittance of the optical imaging system and the radiative transfer in the atmosphere are modeled. The framework is then applied to study the behavior of different optical setups and used to simulate the response of these instruments to volcanic plumes containing varying SO2 and aerosol abundances located at various distances from the sensor. Results show that UV radiative transfer in and around distant and/or optically thick plumes typically leads to a lower sensitivity to SO2 than expected when assuming a standard Beer–Lambert absorption model. Furthermore, camera response is often non-linear in SO2 and dependent on distance to the plume and plume aerosol optical thickness and single scatter albedo. The model results are compared with camera measurements made at Kilauea Volcano (Hawaii) and a method for integrating moderate resolution differential optical absorption spectroscopy data with UV imagery to retrieve improved SO2 column densities is discussed.

  6. Multiconjugate adaptive optics applied to an anatomically accurate human eye model.

    PubMed

    Bedggood, P A; Ashman, R; Smith, G; Metha, A B

    2006-09-01

    Aberrations of both astronomical telescopes and the human eye can be successfully corrected with conventional adaptive optics. This produces diffraction-limited imagery over a limited field of view called the isoplanatic patch. A new technique, known as multiconjugate adaptive optics, has been developed recently in astronomy to increase the size of this patch. The key is to model atmospheric turbulence as several flat, discrete layers. A human eye, however, has several curved, aspheric surfaces and a gradient index lens, complicating the task of correcting aberrations over a wide field of view. Here we utilize a computer model to determine the degree to which this technology may be applied to generate high resolution, wide-field retinal images, and discuss the considerations necessary for optimal use with the eye. The Liou and Brennan schematic eye simulates the aspheric surfaces and gradient index lens of real human eyes. We show that the size of the isoplanatic patch of the human eye is significantly increased through multiconjugate adaptive optics. PMID:19529172

  7. "Not Bread Alone": Clandestine Schooling and Resistance in the Warsaw Ghetto during the Holocaust.

    ERIC Educational Resources Information Center

    Kardos, Susan M.

    2002-01-01

    In the Warsaw Ghetto during the Holocaust, clandestine schooling became a form of resistance to Nazi attempts to eradicate Jewish culture. A variety of community groups provided schooling that attempted to give a sense of normalcy as well as hope. (Contains 144 endnotes.) (SK)

  8. Multi-spectral optical simulation system applied in hardware-in-the-loop

    NASA Astrophysics Data System (ADS)

    Yu, Hong; Lei, Jie; Gao, Yang; Liu, Yang

    2009-07-01

    The Multi-spectral simulation system has been constructed at Beijing Simulation Center (BSC) for hardware-in-the-loop (HWIL) testing of optical and infrared seekers, in single-band and dual-band, or even multi-band. This multi-spectral simulation facility consists primarily of several projectors and a wide-angular simulation mechanism, the projector technologies utilized at BSC include a broadband point source collimator, a laser echo simulator and a visible scene projection system. These projectors can be used individually with the wide-angular simulation mechanism, or any combination of both or all of three can be used according to different needs. The configuration and performance of each technology are reviewed in the paper. Future plans include two IR imaging projectors which run at high frame frequency. The multi-spectral optical simulation system has been successfully applied for visible and IR imaging seekers testing in HWIL simulation. The laser echo simulator hardware will be applied soon.

  9. Optical scatterometry with analytic approaches applied to periodic nano-arrays including anisotropic layers

    NASA Astrophysics Data System (ADS)

    Abdulhalim, I.

    2007-06-01

    Optical scatterometry is being used as a powerful technique for measurement of sub-wavelength periodic structures. It is based on measuring the scattered signal and solving the inverse scattering problem. For periodic nano-arrays with feature size less than 100nm, it is possible to simplify the electromagnetic simulations using the Rytov near quasi-static approximation valid for feature periods only few times less than the wavelength. This is shown to be adequate for the determination of the structure parameters from the zero order reflected or transmitted waves and their polarization or ellipsometric properties. The validity of this approach is applied to lamellar nano-scale grating photo-resist lines on Si substrate. Formulation for structures containing anisotropic multilayers is presented using the 4x4 matrix approach.

  10. Applying an optical space-time coding method to enhance light scattering signals in microfluidic devices.

    PubMed

    Mei, Zhe; Wu, Tsung-Feng; Pion-Tonachini, Luca; Qiao, Wen; Zhao, Chao; Liu, Zhiwen; Lo, Yu-Hwa

    2011-09-01

    An "optical space-time coding method" was applied to microfluidic devices to detect the forward and large angle light scattering signals for unlabelled bead and cell detection. Because of the enhanced sensitivity by this method, silicon pin photoreceivers can be used to detect both forward scattering (FS) and large angle (45-60°) scattering (LAS) signals, the latter of which has been traditionally detected by a photomultiplier tube. This method yields significant improvements in coefficients of variation (CV), producing CVs of 3.95% to 10.05% for FS and 7.97% to 26.12% for LAS with 15 μm, 10 μm, and 5 μm beads. These are among the best values ever demonstrated with microfluidic devices. The optical space-time coding method also enables us to measure the speed and position of each particle, producing valuable information for the design and assessment of microfluidic lab-on-a-chip devices such as flow cytometers and complete blood count devices. PMID:21915241

  11. Optical Image Analysis Applied to Pore Network Quantification of Sandstones Under Experimental CO2 Injection

    NASA Astrophysics Data System (ADS)

    Berrezueta, E.; González, L.; Ordóñez, B.; Luquot, L.; Quintana, L.; Gallastegui, G.; Martínez, R.; Olaya, P.; Breitner, D.

    2015-12-01

    This research aims to propose a protocol for pore network quantification in sandstones applying the Optical Image Analysis (OIA) procedure, which guarantees the measurement reproducibility and its reliability. Two geological formations of sandstone, located in Spain and potentially suitable for CO2 sequestration, were selected for this study: a) the Cretaceous Utrillas unit, at the base of the Cenozoic Duero Basin and b) a Triassic unit at the base of the Cenozoic Guadalquivir Basin. Sandstone samples were studied before and after the CO2 experimental injection using Optical and scanning electronic microscopy (SEM), while the quantification of petrographic changes was done with OIA. The first phase of the rersearch consisted on a detailed mineralogical and petrographic study of the sandstones (before and after CO2-injection), for which we observed thin sections. Later, the methodological and experimental processes of the investigation were focused on i) adjustment and calibration of OIA tools; ii) data acquisition protocol based on image capture with different polarization conditions (synchronized movement of polarizers), using 7 images of the same mineral scene (6 in crossed polarizer and 1 in parallel polarizer); and iii) automated identification and segmentation of pore in 2D mineral images, generating applications by executable macros. Finally, once the procedure protocols had been, the compiled data was interpreted through an automated approach and the qualitative petrography was carried out. The quantification of changes in the pore network through OIA (porosity increase ≈ 2.5%) has allowed corroborate the descriptions obtained by SEM and microscopic techniques, which consisted in an increase in the porosity when CO2 treatment occurs. Automated-image identification and quantification of minerals, pores and textures together with petrographic analysis can be applied to improve pore system characterization in sedimentary rocks. This research offers numerical

  12. A 10-year global gridded Aerosol Optical Thickness Reanalysis for climate and applied applications

    NASA Astrophysics Data System (ADS)

    Lynch, P.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Campbell, J. R.; Curtis, C. A.; Hegg, D.; Hyer, E. J.; Sessions, W.; Shi, Y.; Turk, J.

    2013-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need of a best-available fused product on a regular grid for numerous climate and applied applications. Remote sensing and modeling technologies have now advanced to a point where aerosol data assimilation is an operational reality at numerous centers. It is inevitable that, like meteorological reanalyses, aerosol reanalyses will see heavy use in the near future. A first long term, 2003-2012 global 1x1 degree and 6-hourly aerosol optical thickness (AOT) reanalysis product has been generated. The goal of this effort is not only for climate applications, but to generate a dataset that can be used by the US Navy to understand operationally hindering aerosol events, aerosol impacts on numerical weather prediction, and application of electro-optical technologies. The reanalysis utilizes Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled collection 5 Moderate Resolution Imaging Spectroradiometer (MODIS) AOD with minor corrections from Multi-angle Imaging SpectroRaditometer (MISR). A subset of this product includes Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar assimilation since its launch in mid-2006. Surface aerosol sources, including dust and smoke, in the aerosol model have been regionally tuned so that fine and coarse mode AOTs best match those resolve by ground-based Aerosol Robotic Network (AERONET). The AOT difference between the model and satellite AOT is then used to adjust other aerosol processes, eg., sources, dry deposition, etc. Aerosol wet deposition is constrained with satellite-retrieved precipitation. The final AOT reanalysis is shown to exhibit good agreement with AERONET. Here we review the development of the reanalysis and consider issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses. Considerations are also made for extending such work

  13. Maximising the usefulness of flood risk assessment for the River Vistula in Warsaw

    NASA Astrophysics Data System (ADS)

    Kiczko, A.; Romanowicz, R. J.; Osuch, M.; Karamuz, E.

    2013-12-01

    extent and flow values to be derived, thus giving a cumulative assessment of flood risk. The methods are illustrated using the Warsaw reach of the River Vistula as a case study. The results indicate that deterministic and stochastic flood inundation maps cannot be quantitatively compared. We show that the proposed simplified approach to flood risk assessment can be applied even when breaching of the embankment occurs, with the condition that the flooded area is small enough to be filled rapidly.

  14. Applying new data-entropy and data-scatter methods for optical digital signal analysis

    NASA Astrophysics Data System (ADS)

    McMillan, N. D.; Egan, J.; Denieffe, D.; Riedel, S.; Tiernan, K.; McGowan, G.; Farrell, G.

    2005-06-01

    This paper introduces for the first time a numerical example of the data-entropy 'quality-budget' method. The paper builds on an earlier theoretical investigation into the application of this information theory approach for opto-electronic system engineering. Currently the most widely used way of analysing such a system is with the power budget. This established method cannot however integrate noise of different generic types. The traditional power budget approach is not capable of allowing analysis of a system with different noise types and specifically providing a measure of signal quality. The data-entropy budget first introduced by McMillan and Reidel on the other hand is able to handle diverse forms of noise. This is achieved by applying the dimensionless 'bit measure' in a quality-budget to integrate the analysis of all types of losses. This new approach therefore facilitates the assessment of both signal quality and power issues in a unified way. The software implementation of data-entropy has been utilised for testing on a fiber optic network. The results of various new quantitative data-entropy measures on the digital system are given and their utility discussed. A new data mining technique known as data-scatter also introduced by McMillan and Reidel provides a useful visualisation of the relationships between data sets and is discussed. The paper ends by giving some perspective on future work in which the data-entropy technique, providing the objective difference measure on the signals, and data-scatter technique, providing qualitative information on the signals, are integrated together for optical communication applications.

  15. Performance evaluation of gratings applied by genetic algorithm for the real-time optical interconnection

    NASA Astrophysics Data System (ADS)

    Yoon, Jin-Seon; Kim, Nam; Suh, HoHyung; Jeon, Seok Hee

    2000-03-01

    In this paper, gratings to apply for the optical interconnection are designed using a genetic algorithm (GA) for a robust and efficient schema. The real-time optical interconnection system architecture is composed with LC-SLM, CCD array detector, IBM-PC, He-Ne laser, and Fourier transform lens. A pixelated binary phase grating is displayed on LC-SLM and could interconnect incoming beams to desired output spots freely by real-time. So as to adapt a GA for finding near globally-cost solutions, a chromosome is coded as a binary integer of length 32 X 32, the stochastic tournament method for decreasing the stochastic sampling error is performed, and a single-point crossover having 16 X 16 block size is used. The characteristics on the several parameters are analyzed in the desired grating design. Firstly, as the analysis of the effect on the probability of crossover, a designed grating when the probability of crossover is 0.75 has a 74.7[%] high diffraction efficiency and a 1.73 X 10-1 uniformity quantitatively, where the probability of mutation is 0.001 and the population size is 300. Secondly, on the probability of mutation, a designed grating when the probability of mutation is 0.001 has a 74.4[%] high efficiency and a 1.61 X 10-1 uniformity quantitatively, where the probability of crossover is 1.0 and the population size is 300. Thirdly, on the population size, a designed grating when the population size is 300 and the generation is 400 has above 74[%] diffraction efficiency, where the probability of mutation is 0.001 and the probability of crossover is 1.0.

  16. Double-fiber electric current measurements applying thermal-lens-coupled magneto-optical effect in ferrofluid

    NASA Astrophysics Data System (ADS)

    Li, Hongjie; Chen, Xiaowei; Yuan, Suihua

    1998-08-01

    The optical current transformer (OCT) reported in the past decades is mainly based on the traditional principle of Faraday rotation effect. Presented is a new type of OCT based on a new physical effect, the thermal lens coupled magneto-optical effect in ferrofluid. The use of optical array in the measuring system made the instrument complicated and expensive. This paper proposes applying double fibers to detect the current-corresponding variation of light intensity of the diffraction rings to simplify the instrumental structure. The fluctuations of the laser beam were eliminated by differential optical paths. Results obtained showed a DC measurement accuracy of 1 percent with a dynamic range of 0-500 angstrom, extendible to 2000 angstrom. All experiments were computerized. The set-up can also be applied to measure AC currents with similar qualities to the DC case.

  17. Socio-Demographic Determinants of Participation in Swimming Amongst Working Residents of Warsaw

    PubMed Central

    Biernat, Elżbieta

    2012-01-01

    The aim of research is to assess the correlation between socio-demographic factors and swimming activity among the working population of Warsaw. The questionnaire survey included 4405 randomly selected residents of Warsaw. The correlation between the swimming activity and the variables characterizing the socio-demographic structure of the respondents were assessed by log-linear modelling. The significance of the impact of factors included in the analysis was determined using the chi-square test. Thirty-five per cent of the respondents declared recreational swimming. Gender, age, BMI, education, occupation, and income were significantly related to the swimming activity. Women (33%) – compared to men (38%) – were almost 1.2 times less likely to participate in swimming; similarly, overweight people (33%, OR = 0.90) and obese people (33%, OR = 0.92). People from Warsaw from 20–29 years (43%), with higher education (40%), incomes above the national average (40%), and representing the profession of an actor (52%), swam relatively more often. The results of the study might help in developing marketing plans and market segmentation strategies, as well as in forecasting the development trends of the leisure activity. PMID:23486742

  18. Socio-demographic determinants of participation in swimming amongst working residents of warsaw.

    PubMed

    Biernat, Elżbieta

    2012-05-01

    The aim of research is to assess the correlation between socio-demographic factors and swimming activity among the working population of Warsaw. The questionnaire survey included 4405 randomly selected residents of Warsaw. The correlation between the swimming activity and the variables characterizing the socio-demographic structure of the respondents were assessed by log-linear modelling. The significance of the impact of factors included in the analysis was determined using the chi-square test. Thirty-five per cent of the respondents declared recreational swimming. Gender, age, BMI, education, occupation, and income were significantly related to the swimming activity. Women (33%) - compared to men (38%) - were almost 1.2 times less likely to participate in swimming; similarly, overweight people (33%, OR = 0.90) and obese people (33%, OR = 0.92). People from Warsaw from 20-29 years (43%), with higher education (40%), incomes above the national average (40%), and representing the profession of an actor (52%), swam relatively more often. The results of the study might help in developing marketing plans and market segmentation strategies, as well as in forecasting the development trends of the leisure activity. PMID:23486742

  19. Activity of RWC Warsaw in the contest of next Solar Maximum

    NASA Astrophysics Data System (ADS)

    Stanislawska, Iwona; Stanislawska, Iwona; Klos, Zbigniew

    RWC Warsaw is operating as the Heliogeophysical Prediction Service of Space Research Centre Polish Academy of Sciences is involved in current collection of large portion of data received directly from various international observatories and Polish operated geophysical stations. The monitoring of radio wave propagation conditions over Poland is continuously carried out with the ionosonde in Warsaw. On the basis of continuous flow of data daily expected influence of heliogeofisical activity on monthly forecasts of communication conditions trough-out the world is prepared for Governmental and commercial customers. The SRC-developed software package for data processing and system of prediction of HF communication was continuously modified. Look forward the future the RWC‘s Warsaw team is involved in European space weather common programs and programs like COST and those related to Framework programs of UE. Our focus is on space weather as "a space weather services" with well defined service products - demand oriented and recognized as Space Weather Service Provider for communication, navigation and aviation to support the operational phase of selected needs. The associated disturbances in Earth's magnetic field produced large gradients in the total electron content (TEC) in the mid-latitudes crucial for GNSS signal in space application for different field of science are example of our interest.

  20. A psychochemical weapon considered by the Warsaw Pact: a research note.

    PubMed

    Rózsa, Lajos

    2009-01-01

    Contrary to widespread rumours during the Cold War era, little, if any, evidence existed in the scientific literature to support the view that the Soviet Union or its Warsaw Pact allies considered the use of psychochemical weapons militarily. The Hungarian State Archives have recently opened up declassified records of Hungary's State Defence Council meetings held between 1962 and 1978. Materials submitted to the Council include reports about the coordinative meetings of the Warsaw Pact military medical services. Research into possible countermeasures against psychotropic drugs is listed as a research priority assigned to Hungary in 1962. Hungary rejected this task in 1963, but joined the ongoing project again in 1965. Methylamphetamine was produced in Budapest for use as an experimental model of such weapons. Within the context of contemporary western research, this drug was considered to be an effective interrogation tool. Similarly to the CIA, Hungary also failed to develop an antidote against it and the project was terminated, fruitlessly, in 1972. These documents serve as evidence that a Warsaw Pact forum had, in fact, been considering a psychochemical weapon as a "warfare agent." PMID:19142819

  1. Maximizing the usefulness of flood risk assessment for the River Vistula in Warsaw

    NASA Astrophysics Data System (ADS)

    Kiczko, A.; Romanowicz, R. J.; Osuch, M.; Karamuz, E.

    2013-06-01

    The derivation of flood risk maps requires an estimation of maximum inundation extent for a flood with a given return period, e.g. 100 or 500 yr. The results of numerical simulations of flood wave propagation are used to overcome the lack of relevant observations. In practice, deterministic 1-D models are used for flow routing, giving a simplified image of flood wave propagation. The solution of a 1-D model depends on the initial and boundary conditions and estimates of model parameters which are usually identified using the inverse problem based on the available noisy observations. Therefore, there is a large uncertainty involved in the derivation of flood risk maps. Bayesian conditioning based on multiple model simulations can be used to quantify this uncertainty; however, it is too computer-time demanding to be applied in flood risk assessment in practice, without further flow routing model simplifications. In order to speed up the computation times the assumption of a gradually varied flow and the application of a steady state flow routing model may be introduced. The aim of this work is an analysis of the influence of those simplifying model assumptions and uncertainty of observations and modelling errors on flood inundation mapping and a quantitative comparison with deterministic flood extent maps. Apart from the uncertainty related to the model structure and its parameters, the uncertainty of the estimated flood wave with a specified probability of return period (so-called 1-in-10 yr, or 1-in-100 yr flood) is also taken into account. In order to derive the uncertainty of inundation extent conditioned on the design flood wave, the probabilities related to the design wave and flow model uncertainties are integrated. In the present paper we take into account the dependence of roughness coefficients on discharge. The roughness is parameterised based on the available observed historical flood waves. The approach presented allows for the relationship between flood

  2. Intense laser effects on the optical properties of asymmetric GaAs double quantum dots under applied electric field

    NASA Astrophysics Data System (ADS)

    Bejan, Doina; Niculescu, Ecaterina Cornelia

    2016-06-01

    We investigated the combined effects of a non-resonant intense laser field and a static electric field on the electronic structure and the nonlinear optical properties (absorption, optical rectification) of a GaAs asymmetric double quantum dot under a strong probe field excitation. The calculations were performed within the compact density-matrix formalism under steady state conditions using the effective mass approximation. Our results show that: (i) the electronic structure and optical properties are sensitive to the dressed potential; (ii) under applied electric fields, an increase of the laser intensity induces a redshift of the optical absorption and rectification spectra; (iii) the augment of the electric field strength leads to a blueshift of the spectra; (iv) for high electric fields the optical spectra show a shoulder-like feature, related with the occurrence of an anti-crossing between the two first excited levels.

  3. Accelerated Optical Projection Tomography Applied to In Vivo Imaging of Zebrafish

    PubMed Central

    Correia, Teresa; Yin, Jun; Ramel, Marie-Christine; Andrews, Natalie; Katan, Matilda; Bugeon, Laurence; Dallman, Margaret J.; McGinty, James; Frankel, Paul; French, Paul M. W.; Arridge, Simon

    2015-01-01

    Optical projection tomography (OPT) provides a non-invasive 3-D imaging modality that can be applied to longitudinal studies of live disease models, including in zebrafish. Current limitations include the requirement of a minimum number of angular projections for reconstruction of reasonable OPT images using filtered back projection (FBP), which is typically several hundred, leading to acquisition times of several minutes. It is highly desirable to decrease the number of required angular projections to decrease both the total acquisition time and the light dose to the sample. This is particularly important to enable longitudinal studies, which involve measurements of the same fish at different time points. In this work, we demonstrate that the use of an iterative algorithm to reconstruct sparsely sampled OPT data sets can provide useful 3-D images with 50 or fewer projections, thereby significantly decreasing the minimum acquisition time and light dose while maintaining image quality. A transgenic zebrafish embryo with fluorescent labelling of the vasculature was imaged to acquire densely sampled (800 projections) and under-sampled data sets of transmitted and fluorescence projection images. The under-sampled OPT data sets were reconstructed using an iterative total variation-based image reconstruction algorithm and compared against FBP reconstructions of the densely sampled data sets. To illustrate the potential for quantitative analysis following rapid OPT data acquisition, a Hessian-based method was applied to automatically segment the reconstructed images to select the vasculature network. Results showed that 3-D images of the zebrafish embryo and its vasculature of sufficient visual quality for quantitative analysis can be reconstructed using the iterative algorithm from only 32 projections—achieving up to 28 times improvement in imaging speed and leading to total acquisition times of a few seconds. PMID:26308086

  4. Accelerated Optical Projection Tomography Applied to In Vivo Imaging of Zebrafish.

    PubMed

    Correia, Teresa; Lockwood, Nicola; Kumar, Sunil; Yin, Jun; Ramel, Marie-Christine; Andrews, Natalie; Katan, Matilda; Bugeon, Laurence; Dallman, Margaret J; McGinty, James; Frankel, Paul; French, Paul M W; Arridge, Simon

    2015-01-01

    Optical projection tomography (OPT) provides a non-invasive 3-D imaging modality that can be applied to longitudinal studies of live disease models, including in zebrafish. Current limitations include the requirement of a minimum number of angular projections for reconstruction of reasonable OPT images using filtered back projection (FBP), which is typically several hundred, leading to acquisition times of several minutes. It is highly desirable to decrease the number of required angular projections to decrease both the total acquisition time and the light dose to the sample. This is particularly important to enable longitudinal studies, which involve measurements of the same fish at different time points. In this work, we demonstrate that the use of an iterative algorithm to reconstruct sparsely sampled OPT data sets can provide useful 3-D images with 50 or fewer projections, thereby significantly decreasing the minimum acquisition time and light dose while maintaining image quality. A transgenic zebrafish embryo with fluorescent labelling of the vasculature was imaged to acquire densely sampled (800 projections) and under-sampled data sets of transmitted and fluorescence projection images. The under-sampled OPT data sets were reconstructed using an iterative total variation-based image reconstruction algorithm and compared against FBP reconstructions of the densely sampled data sets. To illustrate the potential for quantitative analysis following rapid OPT data acquisition, a Hessian-based method was applied to automatically segment the reconstructed images to select the vasculature network. Results showed that 3-D images of the zebrafish embryo and its vasculature of sufficient visual quality for quantitative analysis can be reconstructed using the iterative algorithm from only 32 projections-achieving up to 28 times improvement in imaging speed and leading to total acquisition times of a few seconds. PMID:26308086

  5. Was the drought of 2015 on the River Vistula in Warsaw the lowest ever observed?

    NASA Astrophysics Data System (ADS)

    Kowalski, Hubert; Magnuszewski, Artur; Romanowicz, Renata

    2016-04-01

    The River Vistula has a hydrological regime controlled by rainfall and snowmelt. The flood of 22 V 2010 r. had the highest discharge ever measured in Warsaw (Q=5898 m3/s). After this flood extreme low flows occurred in 12 IX 2012 (Q=172 m3/s) and in 28 VIII 2015 (157 m3/s). The low flow of 2015 set the lowest stage record (H=42 cm). The conditions during the low flow were favourable for archaeologists working on the River Vistula channel and banks. A group of archaeologists from the University of Warsaw discovered in the middle of the channel at 517 km a treasury of 17 century marbles and other finds. In 1656 Poland was in the state of war with Sweden. Marble sculptures were stolen and evacuated by the Swedish army from Warsaw to Gdansk harbor down the River Vistula. The barge transporting marbles sunk, leaving the treasure in the channel of the River Vistula. Since that time until now, the water levels in the river were too high to discover the treasures. The question is whether the drought of 2015 was the lowest in history and to what extent the lowest ever observed stage is related to the process of channel erosion in a regulated reach of the river. The specific conditions at the archaeological site have been studied using both long term hydrological data and hydrodynamic the 2D model CCHE2D, to the estimate erosion rate and velocities. The results show that the bottom erosion is quite strong and has caused lowering of the river bottom by 205 cm since 1919 (first rating curve published). The River Vistula reach in Warsaw forms a narrowing, called a "corset" which is controlled by the geological structures (river over flood terraces and glacial sills). Additionally the channel has been regulated by hydrotechnical structures and dredging work. The sequence of the 2010 year flood that increased the erosion rate in the reach and two deep low flows in 2012 and 2015 were favourable for archaeologists working in Warsaw on the River Vistula. The hydraulic conditions

  6. Statistical Track-Before-Detect Methods Applied to Faint Optical Observations of Resident Space Objects

    NASA Astrophysics Data System (ADS)

    Fujimoto, K.; Yanagisawa, T.; Uetsuhara, M.

    Automated detection and tracking of faint objects in optical, or bearing-only, sensor imagery is a topic of immense interest in space surveillance. Robust methods in this realm will lead to better space situational awareness (SSA) while reducing the cost of sensors and optics. They are especially relevant in the search for high area-to-mass ratio (HAMR) objects, as their apparent brightness can change significantly over time. A track-before-detect (TBD) approach has been shown to be suitable for faint, low signal-to-noise ratio (SNR) images of resident space objects (RSOs). TBD does not rely upon the extraction of feature points within the image based on some thresholding criteria, but rather directly takes as input the intensity information from the image file. Not only is all of the available information from the image used, TBD avoids the computational intractability of the conventional feature-based line detection (i.e., "string of pearls") approach to track detection for low SNR data. Implementation of TBD rooted in finite set statistics (FISST) theory has been proposed recently by Vo, et al. Compared to other TBD methods applied so far to SSA, such as the stacking method or multi-pass multi-period denoising, the FISST approach is statistically rigorous and has been shown to be more computationally efficient, thus paving the path toward on-line processing. In this paper, we intend to apply a multi-Bernoulli filter to actual CCD imagery of RSOs. The multi-Bernoulli filter can explicitly account for the birth and death of multiple targets in a measurement arc. TBD is achieved via a sequential Monte Carlo implementation. Preliminary results with simulated single-target data indicate that a Bernoulli filter can successfully track and detect objects with measurement SNR as low as 2.4. Although the advent of fast-cadence scientific CMOS sensors have made the automation of faint object detection a realistic goal, it is nonetheless a difficult goal, as measurements

  7. Copper and cadmium in bottom sediments dredged from Wyścigi Pond, Warsaw, Poland--contamination and bioaccumulation study.

    PubMed

    Wojtkowska, Małgorzata; Karwowska, Ewa; Chmielewska, Iwona; Bekenova, Kundyz; Wanot, Ewa

    2015-12-01

    This research covered an evaluation of the copper and cadmium concentrations in bottom sediments dredged from one of the ponds in Warsaw. The samples of sediments, soil, and plants were analyzed in terms of Cu and Cd content. The research concerned the heap of dredged bottom sediments from Wyścigi Pond, Warsaw, Poland. Two boreholes were made to obtain sediment cores with depths of A 162.5 cm and B 190.0 cm. The cores were divided into 10 sub-samples with a thickness of about 15-20 cm. A control sample of soil was taken from the horse racecourse several hundred meters away from the heap. The vegetation was sampled directly from the heap. The predominating plants were tested: Urtica dioica, Glechoma hederacea, Euonymus verrucosus, and Drepanocladus aduncus. A control sample of U. dioica taken outside of the heap was also tested. The commercial PHYTOTOXKIT microbiotest was applied to evaluate the influence of heavy metal-contaminated sediments (used as soil) on germination and growth of the chosen test plants. The analyses of cadmium and copper concentrations revealed that the metal concentration in sediments was diverse at different depths of sampling, probably reflecting their concentration in stored layers of sediments. Moreover, the metal content in core A was four to five times lower than that in core B, which reveals heterogeneity of the sediments in the tested heap. In core A, the copper concentration ranged from 4.7 to 13.4 mg/kg d.w. (average 8.06 ± 0.71 mg/kg d.w.), while in core B, it ranged from 9.2 to 82.1 mg/kg d.w. (average 38.56 ± 2.6 mg/kg d.w.). One of the results of the heavy metal presence in soils is their bioaccumulation in plants. Comparing plant growth, more intensive growth of roots was observed in the case of plants growing on the control (reference) soil than those growing on sediments. The intensive development of both primary and lateral roots was noticed. During this early growth, metal accumulation in plants occurred

  8. Wavelet image processing applied to optical and digital holography: past achievements and future challenges

    NASA Astrophysics Data System (ADS)

    Jones, Katharine J.

    2005-08-01

    The link between wavelets and optics goes back to the work of Dennis Gabor who both invented holography and developed Gabor decompositions. Holography involves 3-D images. Gabor decompositions involves 1-D signals. Gabor decompositions are the predecessors of wavelets. Wavelet image processing of holography, both optical holography and digital holography, will be examined with respect to past achievements and future challenges.

  9. Aberration modeling of thermo-optical effects applied to wavefront fine-tuning and thermal compensation of Sodern UV and LWIR optical systems

    NASA Astrophysics Data System (ADS)

    Battarel, D.; Fuss, P.; Durieux, A.; Martaud, E.

    2015-09-01

    As a manufacturer of optical systems for space applications, Sodern is faced with the necessity to design optical systems which image quality remains stable while the environment temperature changes. Two functions can be implemented: either a wavefront control or the athermalization of the optical system. In both cases, the mechanical deformations and thermal gradients are calculated by finite-element modeling with the IDEAS NX7 software. The data is then used in CODE V models for wavefront and image quality evaluation purposes. Two cases are presented: one is a UV beam expander in which a wavefront control is implemented and the other is an athermalized IR camera. The beam expander has a wavefront-tuning capability by thermal control. In order to perform the thermo-optical analysis in parallel with the opto-mechanical development, the thermo-optical modeling is done step by step in order to start before the mechanical design is completed. Each step then includes a new modeling stage leading to progressive improvements in accuracy. The IR camera athermalization is achieved through interaction between the mechanical CAD software and the optical design software to simulate the axial thermal gradients, radial gradients and all other thermal variations. The purpose of this paper is to present the steps that have led to the final STOP (Structural, Thermal Optical) analysis. Using incremental accuracy in modeling the thermo-optical effects enables to take them into account very early in the development process to devise all adjustment and test procedures to apply when assembling and testing the optical system.

  10. Spatial distribution and conservation of speckled hind and warsaw grouper in the Atlantic Ocean off the southeastern U.S.

    PubMed

    Farmer, Nicholas A; Karnauskas, Mandy

    2013-01-01

    There is broad interest in the development of efficient marine protected areas (MPAs) to reduce bycatch and end overfishing of speckled hind (Epinephelus drummondhayi) and warsaw grouper (Hyporthodus nigritus) in the Atlantic Ocean off the southeastern U.S. We assimilated decades of data from many fishery-dependent, fishery-independent, and anecdotal sources to describe the spatial distribution of these data limited stocks. A spatial classification model was developed to categorize depth-grids based on the distribution of speckled hind and warsaw grouper point observations and identified benthic habitats. Logistic regression analysis was used to develop a quantitative model to predict the spatial distribution of speckled hind and warsaw grouper as a function of depth, latitude, and habitat. Models, controlling for sampling gear effects, were selected based on AIC and 10-fold cross validation. The best-fitting model for warsaw grouper included latitude and depth to explain 10.8% of the variability in probability of detection, with a false prediction rate of 28-33%. The best-fitting model for speckled hind, per cross-validation, included latitude and depth to explain 36.8% of the variability in probability of detection, with a false prediction rate of 25-27%. The best-fitting speckled hind model, per AIC, also included habitat, but had false prediction rates up to 36%. Speckled hind and warsaw grouper habitats followed a shelf-edge hardbottom ridge from North Carolina to southeast Florida, with speckled hind more common to the north and warsaw grouper more common to the south. The proportion of habitat classifications and model-estimated stock contained within established and proposed MPAs was computed. Existing MPAs covered 10% of probable shelf-edge habitats for speckled hind and warsaw grouper, protecting 3-8% of speckled hind and 8% of warsaw grouper stocks. Proposed MPAs could add 24% more probable shelf-edge habitat, and protect an additional 14-29% of speckled

  11. Spatial Distribution and Conservation of Speckled Hind and Warsaw Grouper in the Atlantic Ocean off the Southeastern U.S.

    PubMed Central

    Farmer, Nicholas A.; Karnauskas, Mandy

    2013-01-01

    There is broad interest in the development of efficient marine protected areas (MPAs) to reduce bycatch and end overfishing of speckled hind (Epinephelus drummondhayi) and warsaw grouper (Hyporthodus nigritus) in the Atlantic Ocean off the southeastern U.S. We assimilated decades of data from many fishery-dependent, fishery-independent, and anecdotal sources to describe the spatial distribution of these data limited stocks. A spatial classification model was developed to categorize depth-grids based on the distribution of speckled hind and warsaw grouper point observations and identified benthic habitats. Logistic regression analysis was used to develop a quantitative model to predict the spatial distribution of speckled hind and warsaw grouper as a function of depth, latitude, and habitat. Models, controlling for sampling gear effects, were selected based on AIC and 10-fold cross validation. The best-fitting model for warsaw grouper included latitude and depth to explain 10.8% of the variability in probability of detection, with a false prediction rate of 28–33%. The best-fitting model for speckled hind, per cross-validation, included latitude and depth to explain 36.8% of the variability in probability of detection, with a false prediction rate of 25–27%. The best-fitting speckled hind model, per AIC, also included habitat, but had false prediction rates up to 36%. Speckled hind and warsaw grouper habitats followed a shelf-edge hardbottom ridge from North Carolina to southeast Florida, with speckled hind more common to the north and warsaw grouper more common to the south. The proportion of habitat classifications and model-estimated stock contained within established and proposed MPAs was computed. Existing MPAs covered 10% of probable shelf-edge habitats for speckled hind and warsaw grouper, protecting 3–8% of speckled hind and 8% of warsaw grouper stocks. Proposed MPAs could add 24% more probable shelf-edge habitat, and protect an additional 14–29% of

  12. Optical properties of thin gold films applied to Schottky barrier solar cells

    NASA Technical Reports Server (NTRS)

    YEH Y. M.

    1974-01-01

    The Schottky barrier solar cell is considered a possible candidate for converting solar to electrical energy both for space and terrestrial applications. Knowledge of the optical constants of the ultrathin metal film used in the cell is essential for analyzing and designing higher efficiency Schottky barrier cells. The optical constants of 7.5 -nm (75-A) gold films on gallium arsenide have been obtained. In addition, the absolute collection efficiency of Schottky barrier solar cells has been determined from measured spectral response and optical constants of the gold film.

  13. Comparing geometrical and wave-optical algorithms of a novel propagation code applied to the VLTI

    NASA Astrophysics Data System (ADS)

    Wilhelm, Rainer

    2001-12-01

    Time-dependent modeling of controlled opto-mechanical systems (e.g. astronomical telescopes) is part of the VLTI system engineering work at ESO. For creation of optical models to be integrated within a dynamic Matlab/ Simulink simulation, a novel optical modeling tool has been developed. It offers a versatile set of geometrical and wave optical propagation algorithms each with its specific strengths. The article describes the algorithms -both from a theoretical and practical point of view. The VLTI as a "real world" application example is presented.

  14. Photographic-Based Optical Evaluation of Tissues and Biomaterials Used for Corneal Surface Repair: A New Easy-Applied Method

    PubMed Central

    Gonzalez-Andrades, Miguel; Cardona, Juan de la Cruz; Ionescu, Ana Maria; Mosse, Charles A.; Brown, Robert A.

    2015-01-01

    Purpose Tissues and biomaterials used for corneal surface repair require fulfilling specific optical standards prior to implantation in the patient. However, there is not a feasible evaluation method to be applied in clinical or Good Manufacturing Practice settings. In this study, we describe and assess an innovative easy-applied photographic-based method (PBM) for measuring functional optical blurring and transparency in corneal surface grafts. Methods Plastic compressed collagen scaffolds (PCCS) and multilayered amniotic membranes (AM) samples were optically and histologically evaluated. Transparency and image blurring measures were obtained by PBM, analyzing photographic images of a standardized band pattern taken through the samples. These measures were compared and correlated to those obtained applying the Inverse Adding-Doubling (IAD) technique, which is the gold standard method. Results All the samples used for optical evaluation by PBM or IAD were histological suitable. PCCS samples presented transmittance values higher than 60%, values that increased with increasing wavelength as determined by IAD. The PBM indicated that PCCS had a transparency ratio (TR) value of 80.3±2.8%, with a blurring index (BI) of 50.6±4.2%. TR and BI obtained from the PBM showed a high correlation (ρ>|0.6|) with the diffuse transmittance and the diffuse reflectance, both determined using the IAD (p<0.005). The AM optical properties showed that there was a largely linear relationship between the blurring and the number of amnion layers, with more layers producing greater blurring. Conclusions This innovative proposed method represents an easy-applied technique for evaluating transparency and blurriness of tissues and biomaterials used for corneal surface repair. PMID:26566050

  15. Image processing techniques applied to the detection of optic disk: a comparison

    NASA Astrophysics Data System (ADS)

    Kumari, Vijaya V.; Narayanan, Suriya N.

    2010-02-01

    In retinal image analysis, the detection of optic disk is of paramount importance. It facilitates the tracking of various anatomical features and also in the extraction of exudates, drusens etc., present in the retina of human eye. The health of retina crumbles with age in some people during the presence of exudates causing Diabetic Retinopathy. The existence of exudates increases the risk for age related macular Degeneration (AMRD) and it is the leading cause for blindness in people above the age of 50.A prompt diagnosis when the disease is at the early stage can help to prevent irreversible damages to the diabetic eye. Screening to detect diabetic retinopathy helps to prevent the visual loss. The optic disk detection is the rudimentary requirement for the screening. In this paper few methods for optic disk detection were compared which uses both the properties of optic disk and model based approaches. They are uniquely used to give accurate results in the retinal images.

  16. Gerchberg-Saxton algorithm applied to a translational-variant optical setup.

    PubMed

    Amézquita-Orozco, Ricardo; Mejía-Barbosa, Yobani

    2013-08-12

    The standard Gerchberg-Saxton (GS) algorithm is normally used to find the phase (measured on two different parallel planes) of a propagating optical field (usually far-field propagation), given that the irradiance information on those planes is known. This is mostly used to calculate the modulation function of a phase mask so that when illuminated by a plane wave, it produces a known far-field irradiance distribution, or the equivalent, to calculate the phase mask to be used in a Fourier optical system so the desired pattern is obtained on the image plane. There are some extensions of the GS algorithm that can be used when the transformations that describe the optical setup are non-unitary, for example the Yang-Gu algorithm, but these are usually demonstrated using nonunitary translational-invariant optical systems. In this work a practical approach to use the GS algorithm is presented, where raytracing together with the Huygens-Fresnel principle are used to obtain the transformations that describe the optical system, so the calculation can be made when the field is propagated through a translational-variant optical system (TVOS) of arbitrary complexity. Some numerical results are shown for a system where a microscope objective composed by 5 lenses is used. PMID:23938827

  17. Doppler optical coherence microscopy and tomography applied to inner ear mechanics

    NASA Astrophysics Data System (ADS)

    Page, Scott; Ghaffari, Roozbeh; Freeman, Dennis M.

    2015-12-01

    While it is clear that cochlear traveling waves underlie the extraordinary sensitivity, frequency selectivity, and dynamic range of mammalian hearing, the underlying micromechanical mechanisms remain unresolved. Recent advances in low coherence measurement techniques show promise over traditional laser Doppler vibrometry and video microscopy, which are limited by low reflectivities of cochlear structures and restricted optical access. Doppler optical coherence tomography (DOCT) and Doppler optical coherence microscopy (DOCM) both utilize a broadband source to limit constructive interference of scattered light to a small axial depth called a coherence gate. The coherence gate can be swept axially to image and measure sub-nanometer motions of cochlear structures throughout the cochlear partition. The coherence gate of DOCT is generally narrower than the confocal gate of the focusing optics, enabling increased axial resolution (typically 15 μm) within optical sections of the cochlear partition. DOCM, frequently implemented in the time domain, centers the coherence gate on the focal plane, achieving enhanced lateral and axial resolution when the confocal gate is narrower than the coherence gate. We compare these two complementary systems and demonstrate their utility in studying cellular and micromechanical mechanisms involved in mammalian hearing.

  18. Doppler optical coherence microscopy and tomography applied to inner ear mechanics

    SciTech Connect

    Page, Scott; Freeman, Dennis M.; Ghaffari, Roozbeh

    2015-12-31

    While it is clear that cochlear traveling waves underlie the extraordinary sensitivity, frequency selectivity, and dynamic range of mammalian hearing, the underlying micromechanical mechanisms remain unresolved. Recent advances in low coherence measurement techniques show promise over traditional laser Doppler vibrometry and video microscopy, which are limited by low reflectivities of cochlear structures and restricted optical access. Doppler optical coherence tomography (DOCT) and Doppler optical coherence microscopy (DOCM) both utilize a broadband source to limit constructive interference of scattered light to a small axial depth called a coherence gate. The coherence gate can be swept axially to image and measure sub-nanometer motions of cochlear structures throughout the cochlear partition. The coherence gate of DOCT is generally narrower than the confocal gate of the focusing optics, enabling increased axial resolution (typically 15 μm) within optical sections of the cochlear partition. DOCM, frequently implemented in the time domain, centers the coherence gate on the focal plane, achieving enhanced lateral and axial resolution when the confocal gate is narrower than the coherence gate. We compare these two complementary systems and demonstrate their utility in studying cellular and micromechanical mechanisms involved in mammalian hearing.

  19. Vistula River bed erosion processes and their influence on Warsaw's flood safety

    NASA Astrophysics Data System (ADS)

    Magnuszewski, A.; Moran, S.

    2015-03-01

    Large cities have historically been well protected against floods as a function of their importance to society. In Warsaw, Poland, located on a narrow passage of the Vistula River valley, urban flood disasters were not unusual. Beginning at the end of the 19th century, the construction of river embankment and training works caused the narrowing of the flood passage path in the downtown reach of the river. The process of bed erosion lowered the elevation of the river bed by 205 cm over the 20th century, and the consequences of bed lowering are reflected by the rating curve change. Conditions of the flood passage have been analysed by the CCHE2D hydrodynamic model both in retro-modelling and scenario simulation modelling. The high water mark of the 1844 flood and iterative calculations in retro-modelling made possible estimation of the discharge, Q = 8250 m3 s-1. This highest observed historical flood in a natural river has been compared to recent conditions of the Vistula River in Warsaw by scenario modelling. The result shows dramatic changes in water surface elevation, velocities, and shear stress. The vertical velocity in the proximity of Port Praski gauge at km 513 can reach 3.5 m s-1, a very high value for a lowland river. The average flow conveyance is improving due to channel erosion but also declining in the case of extreme floods due to high resistance from vegetation on the flood plains.

  20. Fiber-optic technologies for advanced thermo-therapy applied ex vivo to liver tumors

    NASA Astrophysics Data System (ADS)

    Tosi, D.; Perrone, G.; Vallan, A.; Braglia, A.; Liu, Y.; Macchi, E. G.; Braschi, G.; Gallati, M.; Cigada, A.; Poeggel, S.; Duraibabu, D. B.; Leen, G.; Lewis, E.

    2015-07-01

    Thermal ablation, using radiofrequency, microwave, and laser sources, is a common treatment for hepatic tumors. Sensors allow monitoring, at the point of treatment, the evolution of thermal ablation procedures. We present optical fiber sensors that allow advanced capabilities for recording the biophysical phenomena occurring in the tissue in real time. Distributed or quasi-distributed thermal sensors allow recording temperature with spatial resolution ranging from 0.1 mm to 5 mm. In addition, a thermally insensitive pressure sensor allows recording pressure rise, supporting advanced treatment of encapsulated tumors. Our investigation is focused on two case studies: (1) radiofrequency ablation of hepatic tissue, performed on a phantom with a stem-shaped applicator; (2) laser ablation of a liver phantom, performed with a fiber laser. The main measurement results are discussed, comparing the technologies used for the investigation, and drawing the potential for using optical fiber sensors for "smart"-ablation.

  1. Proven high-reliability assembly methods applied to avionics fiber-optics high-speed transceivers

    NASA Astrophysics Data System (ADS)

    Lauzon, Jocelyn; Leduc, Lorrain; Bessette, Daniel; Bélanger, Nicolas; Larose, Robert; Dion, Bruno

    2012-06-01

    Harsh environment avionics applications require operating temperature ranges that can extend to, and exceed -50 to 115°C. For obvious maintenance, management and cost arguments, product lifetimes as long as 20 years are also sought. This leads to mandatory long-term hermeticity that cannot be obtained with epoxy or silicone sealing; but only with glass seal or metal solder or brazing. A hermetic design can indirectly result in the required RF shielding of the component. For fiber-optics products, these specifications need to be compatible with the smallest possible size, weight and power consumption. The products also need to offer the best possible high-speed performances added to the known EMI immunity in the transmission lines. Fiber-optics transceivers with data rates per fiber channel up to 10Gbps are now starting to be offered on the market for avionics applications. Some of them are being developed by companies involved in the "normal environment" telecommunications market that are trying to ruggedize their products packaging in order to diversify their customer base. Another approach, for which we will present detailed results, is to go back to the drawing boards and design a new product that is adapted to proven MIL-PRF-38534 high-reliability packaging assembly methods. These methods will lead to the introduction of additional requirements at the components level; such as long-term high-temperature resistance for the fiber-optic cables. We will compare both approaches and demonstrate the latter, associated with the redesign, is the preferable one. The performance of the fiber-optic transceiver we have developed, in terms of qualification tests such as temperature cycling, constant acceleration, hermeticity, residual gaz analysis, operation under random vibration and mechanical shocks and accelerated lifetime tests will be presented. The tests are still under way, but so far, we have observed no performance degradation of such a product after more than

  2. Optical polarimetry applied to the development of a noninvasive in-vivo glucose monitor

    NASA Astrophysics Data System (ADS)

    Cameron, Brent D.; Baba, Justin S.; Cote, Gerard L.

    2000-05-01

    The application of optical polarimetry, using the anterior chamber of the eye as the sensing site, is being investigated as a potential method to develop a noninvasive physiological glucose monitor. First, we present results characterizing the optical rotatory dispersion of the main optically active analytes found within the aqueous humor of the eye including, glucose, albumin, and ascorbic acid. This information is used in conjunction with multiple linear regression to demonstrate how multispectral polarimetry can be used to minimize glucose prediction error in samples containing varying physiological concentrations of glucose and albumin. For this multispectral study, a novel dual wavelength (532 nm and 635 nm) polarimeter was designed and constructed. This sensor is novel in that it provides simultaneous measurements using a 532 nm laser in an open- loop configuration and a 635 nm laser in a closed-loop configuration. In addition, we present in vivo results using New Zealand White rabbits that indicate the time delay between blood and aqueous human glucose levels is below ten minutes. Lastly, we provide preliminary in vivo polarimetric results and discuss the main issues currently hindering the measurement of glucose.

  3. Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication

    NASA Astrophysics Data System (ADS)

    Cai, D. K.; Neyer, A.; Kuckuk, R.; Heise, H. M.

    2008-03-01

    The optical properties of transparent PDMS polymer materials, which can be integrated into general printed circuit board (PCB) for data communication, are of great interest due to the substantial market expectations for the near future. For the present paper, it was found that the absorption loss in polydimethylsiloxane (PDMS) is mainly caused by the vibrational overtone and combination bands of the CH 3-groups of the polymer in the spectral datacom region of 600-900 nm. Based on observed positions of fundamental, overtone and combination bands of the methyl-group, as recorded within the mid- and near-infrared spectra, anharmonicity constants and normal vibration frequencies were determined. Thus, an empirical equation for estimating the wavelengths with the most significant intrinsic absorption loss due to the corresponding band positions was formulated, which was found to agree well with the experimental data. In addition, PDMS multimode waveguides were fabricated and the respective optical insertion loss was measured at 850 nm, which is commercially used for optical datacom transmission and finally the thermal stability of PDMS multimode waveguides was verified as well.

  4. Mustiscaling Analysis applied to field Water Content through Distributed Fiber Optic Temperature sensing measurements

    NASA Astrophysics Data System (ADS)

    Benitez Buelga, Javier; Rodriguez-Sinobas, Leonor; Sanchez, Raul; Gil, Maria; Tarquis, Ana M.

    2014-05-01

    signal variation, or to see at which scales signals are most correlated. This can give us an insight into the dominant processes An alternative to both of the above methods has been described recently. Relative entropy and increments in relative entropy has been applied in soil images (Bird et al., 2006) and in soil transect data (Tarquis et al., 2008) to study scale effects localized in scale and provide the information that is complementary to the information about scale dependencies found across a range of scales. We will use them in this work to describe the spatial scaling properties of a set of field water content data measured in an extension of a corn field, in a plot of 500 m2 and an spatial resolution of 25 cm. These measurements are based on an optics cable (BruggSteal) buried on a ziz-zag deployment at 30cm depth. References Bird, N., M.C. Díaz, A. Saa, and A.M. Tarquis. 2006. A review of fractal and multifractal analysis of soil pore-scale images. J. Hydrol. 322:211-219. Kravchenko, A.N., R. Omonode, G.A. Bollero, and D.G. Bullock. 2002. Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity. Soil Sci. Soc. Am. J. 66:235-243. Lark, R.M., A.E. Milne, T.M. Addiscott, K.W.T. Goulding, C.P. Webster, and S. O'Flaherty. 2004. Scale- and location-dependent correlation of nitrous oxide emissions with soil properties: An analysis using wavelets. Eur. J. Soil Sci. 55:611-627. Lark, R.M., S.R. Kaffka, and D.L. Corwin. 2003. Multiresolution analysis of data on electrical conductivity of soil using wavelets. J. Hydrol. 272:276-290. Lark, R. M. and Webster, R. 1999. Analysis and elucidation of soil variation using wavelets. European J. of Soil Science, 50(2): 185-206. Mandelbrot, B.B. 1982. The fractal geometry of nature. W.H. Freeman, New York. Percival, D.B., and A.T. Walden. 2000. Wavelet methods for time series analysis. Cambridge Univ. Press, Cambridge, UK. Tarquis, A.M., N.R. Bird, A.P. Whitmore, M.C. Cartagena, and

  5. Mustiscaling Analysis applied to field Water Content through Distributed Fiber Optic Temperature sensing measurements

    NASA Astrophysics Data System (ADS)

    Benitez Buelga, Javier; Rodriguez-Sinobas, Leonor; Sanchez, Raul; Gil, Maria; Tarquis, Ana M.

    2014-05-01

    signal variation, or to see at which scales signals are most correlated. This can give us an insight into the dominant processes An alternative to both of the above methods has been described recently. Relative entropy and increments in relative entropy has been applied in soil images (Bird et al., 2006) and in soil transect data (Tarquis et al., 2008) to study scale effects localized in scale and provide the information that is complementary to the information about scale dependencies found across a range of scales. We will use them in this work to describe the spatial scaling properties of a set of field water content data measured in an extension of a corn field, in a plot of 500 m2 and an spatial resolution of 25 cm. These measurements are based on an optics cable (BruggSteal) buried on a ziz-zag deployment at 30cm depth. References Bird, N., M.C. Díaz, A. Saa, and A.M. Tarquis. 2006. A review of fractal and multifractal analysis of soil pore-scale images. J. Hydrol. 322:211-219. Kravchenko, A.N., R. Omonode, G.A. Bollero, and D.G. Bullock. 2002. Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity. Soil Sci. Soc. Am. J. 66:235-243. Lark, R.M., A.E. Milne, T.M. Addiscott, K.W.T. Goulding, C.P. Webster, and S. O'Flaherty. 2004. Scale- and location-dependent correlation of nitrous oxide emissions with soil properties: An analysis using wavelets. Eur. J. Soil Sci. 55:611-627. Lark, R.M., S.R. Kaffka, and D.L. Corwin. 2003. Multiresolution analysis of data on electrical conductivity of soil using wavelets. J. Hydrol. 272:276-290. Lark, R. M. and Webster, R. 1999. Analysis and elucidation of soil variation using wavelets. European J. of Soil Science, 50(2): 185-206. Mandelbrot, B.B. 1982. The fractal geometry of nature. W.H. Freeman, New York. Percival, D.B., and A.T. Walden. 2000. Wavelet methods for time series analysis. Cambridge Univ. Press, Cambridge, UK. Tarquis, A.M., N.R. Bird, A.P. Whitmore, M.C. Cartagena, and

  6. Measuring the effects of topically applied skin optical clearing agents and modeling the effects and consequences for laser therapies

    NASA Astrophysics Data System (ADS)

    Verkruysse, Wim; Khan, Misbah; Choi, Bernard; Svaasand, Lars O.; Nelson, J. Stuart

    2005-04-01

    Human skin prepared with an optical clearing agent manifests reduced scattering as a result of de-hydration and refractive index matching. This has potentially large effects for laser therapies of several skin lesions such as port wine stain, hair removal and tattoo removal. With most topically applied clearing agents the clearing effect is limited because they penetrate poorly through the intact superficial skin layer (stratum corneum). Agent application modi other than topical are impractical and have limited the success of optical clearing in laser dermatology. In recent reports, however, a mixture of lipofylic and hydrofylic agents was shown to successfully penetrate through the intact stratum corneum layer which has raised new interest in this field. Immediately after application, the optical clearing effect is superficial and, as the agent diffuses through the skin, reduced scattering is manifested in deeper skin layers. For practical purposes as well as to maximize therapeutic success, it is important to quantify the reduced scattering as well as the trans-cutaneous transport dynamics of the agent. We determined the time and tissue depth resolved effects of optically cleared skin by inserting a microscopic reflector array in the skin. Depth dependent light intensity was measured by quantifying the signal of the reflector array with optical coherence tomography. A 1-dimensional mass diffusion model was used to estimate a trans-cutaneous transport diffusion constant for the clearing agent mixture. The results are used in Monte Carlo modeling to determine the optimal time of laser treatment after topical application of the optical clearing agent.

  7. Applying hafnia mixtures to enhance the laser-induced damage threshold of coatings for third-harmonic generation optics

    NASA Astrophysics Data System (ADS)

    Mende, Mathias; Jensen, Lars O.; Ehlers, Henrik; Bruns, Stefan; Vergöhl, Michael; Burdack, Peer; Ristau, Detlev

    2012-11-01

    The generation of third harmonic radiation (THG) is required for many pulsed solid-state laser applications in industry and science. In this contribution, the coatings for two necessary optical components, dichroic mirrors and nonlinear optical (NLO) crystals are in the focus of investigation. Because of the high bulk damage threshold lithium triborate (LBO) crystals are applied for this study. HfO2/SiO2 mixtures are employed as high refractive index material to improve the power handling capability of the multilayers. All coatings are produced by ion beam sputtering (IBS) using a zone target assembly for the deposition of material mixtures. The atomic composition and the oxidation ratio of different HfO2/SiO2 mixtures are analyzed by X-ray photoelectron spectroscopy (XPS). The influence of different deposition temperatures and post annealing on the optical properties and the amorphous micro structure of the films is investigated by UV/Vis/NIR spectroscopy and X-ray diffraction (XRD). The laser induced damage thresholds at 355 nm wavelength for nanosecond pulse durations are measured in a 10,000on1 experiment according with the standard ISO21254. Furthermore, the optical components are tested under real application conditions.

  8. 14 CFR 221.105 - Special notice of limited liability for death or injury under the Warsaw Convention.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... information please consult your airline or insurance company representative. (2) Provided, however, That when... airline liability for death or personal injury and loss or damage to baggage may be limited by the Warsaw Convention and tariff provisions. See the notice with your ticket or contact your airline ticket office...

  9. Short Communications Prepared for the Second Congress of the International Association for the Scientific Study of Mental Deficiency (Warsaw, 1970).

    ERIC Educational Resources Information Center

    Academy of Pedagogical Sciences of the USSR, Moscow. Inst. of Defectology.

    Presented are 24 brief papers prepared by members of the Institute of Defectology in the Soviet Union for a congress on the scientific study of mental deficiency held in Warsaw in 1970. Major papers have the following titles: "Principal Directions of the Study of Anomalous Children in the U.S.S.R.", "Etiopathogenesis and Classification of…

  10. 75 FR 59690 - Endangered and Threatened Wildlife; Notice of 90-Day Finding on a Petition To List Warsaw Grouper...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ...' extinction risk. For example, our 2007 status review for the Atlantic white marlin (73 FR 843, January 4... list on April 15, 2004 (69 FR 19975). Warsaw grouper had previously been included on our ESA candidate species list since 1999 (64 FR 33466, June 23, 1999). A species of concern is one about which we have...

  11. Secondary Students' Understanding of NATO and the Warsaw Pact: The Educational Implications of Research Conducted in Three NATO Nations.

    ERIC Educational Resources Information Center

    Galfo, Armand J.

    Three research projects were conducted over a three year period among secondary school students in the United Kingdom, the United States (Virginia), and West Germany in order to determine students' understanding the 40-year confrontation between the North Atlantic Treaty Organization (NATO) and the Warsaw Pact. These studies included 1991 students…

  12. 14 CFR 221.105 - Special notice of limited liability for death or injury under the Warsaw Convention.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Special notice of limited liability for death or injury under the Warsaw Convention. 221.105 Section 221.105 Aeronautics and Space OFFICE OF THE... International Passengers on Limitations of Liability Passengers embarking upon a journey involving an...

  13. 14 CFR 221.105 - Special notice of limited liability for death or injury under the Warsaw Convention.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Special notice of limited liability for death or injury under the Warsaw Convention. 221.105 Section 221.105 Aeronautics and Space OFFICE OF THE... International Passengers on Limitations of Liability Passengers embarking upon a journey involving an...

  14. Anisotropic optical distribution of powder phosphor materials applied in medical imaging instrumentation

    NASA Astrophysics Data System (ADS)

    Liaparinos, P. F.

    2016-02-01

    Image quality for medical purposes is related to the useful diagnostic information that can be extracted from an image. The performance of indirect X-ray detectors, which in turn affects the quality of the medical image, can be significantly influenced by the characteristics of the phosphor, employed to convert incident radiation into emitted light. Given the technological and medical importance of phosphor materials, understanding the fundamental effects of optical anisotropy is crucial. The purpose of the present paper was to examine the influence of optical anisotropy in optical diffusion within the powder phosphor-based X-ray detectors. The present investigation was based on Mie scattering theory and Monte Carlo simulation techniques. The variation of the anisotropy factor was examined for: (1) light wavelengths in the range 400-700 nm, (2) particle refractive index between 1.5 and 2 and (3) three regions of particle sizes: nanoscale (from 10 up to 100 nm), submicron scale (from 100 nm up to 1 μm), and microscale (from 1 up to 10 μm). In addition, optical diffusion performance was carried out considering: (a) anisotropy factor values 0.2, 0.5, 0.8 which represent different aspects of light propagation after scattering and (b) phosphors of different layer thickness, 100 (thin layer) and 300 μm (thick layer), respectively. Results showed that the highest variation on the anisotropy factor was observed in the submicron scale, and, in particular, for grain diameters between 100 and 600 nm (increase from 0.1 up to 0.8). In addition, Monte Carlo simulations showed that the spread of light photons decreases (i.e., high spatial resolution) with the decrease in the anisotropy factor. In particular, the FWHM was found to decrease with the anisotropy factor: (1) 11.4 % at 100 μm and 4.2 %, at 300 μm layer thickness, for light extinction coefficient 0.217 μm-1 and (2) 1.9 % at 100 μm and 2.0 %, at 300 μm layer thickness, for light extinction coefficient 3 μm-1

  15. Optical fiber imaging for high speed plasma motion diagnostics: applied to low voltage circuit breakers.

    PubMed

    McBride, J W; Balestrero, A; Ghezzi, L; Tribulato, G; Cross, K J

    2010-05-01

    An integrated portable measurement system is described for the study of high speed and high temperature unsteady plasma flows such as those found in the vicinity of high current switching arcs. An array of optical fibers allows the formation of low spatial resolution images, with a maximum capture rate of 1 x 10(6) images per second (1 MHz), with 8 bit intensity resolution. Novel software techniques are reported to allow imaging of the arc; and to measure arc trajectories. Results are presented on high current (2 kA) discharge events in a model test fixture and on the application to a commercial low voltage circuit breaker. PMID:20515174

  16. A statistical model for road surface friction forecasting applying optical road weather measurements

    NASA Astrophysics Data System (ADS)

    Hippi, M.; Juga, I.; Nurmi, P.

    2009-09-01

    Road surface friction is defined as the grip between car tyre and underlying surface. Poor friction often plays a crucial role in wintertime car accidents. Friction can decrease dramatically during snowfall or when wet road surface temperature falls below zero. Even a thin layer of ice or snow can decrease friction substantially increasing the risk of accidents. Many studies have shown that road surface temperature, road conditions and friction can fluctuate dramatically within short distances under specific weather situations. Friction or grip can be improved with road maintenance activities like salting and gritting. Salting will melt the ice or snow layer, whereas gritting will improve the grip. Salting is effective only above -5C temperatures. Light snowfall together with low temperatures can result in very slippery driving conditions. Finnish Road Administration's observing network covers c. 500 road weather stations in Finland. Almost 100 of them are equipped with optical sensors (in winter 2008-2009). The number of optical sensors has increased remarkably during past few years. The optical measuring devices are Vaisala DSC111 sensors which measure the depth of water, snow and ice on the road surface and also produce an estimate of the state of road and prevailing friction. Observation data from road weather stations with optical sensors were collected from winter 2007/08, and a couple of representative (from a weather perspective) stations were selected for detailed statistical analysis. The purpose of the study was to find a statistical relationship between the observed values and, especially, the correlation between friction and other road weather parameters. Consequently, a model based on linear regression was developed. With the model friction being the dependent variable, the independent variables having highest correlations were the composite of ice and snow (water content) on the road, and the road surface temperature. In the case of a wet road

  17. Etendue-preserving mixing and projection optics for high-luminance LEDs, applied to automotive headlamps.

    PubMed

    Cvetkovic, Aleksandra; Dross, Oliver; Chaves, Julio; Benitez, Pablo; Miñano, Juan C; Mohedano, Rubén

    2006-12-25

    By having a single optical element combine the light of several high luminance LEDs, a high luminance light source can be formed, with shape and emission characteristics adaptable to nearly all illumination problems. The illuminance distribution of this virtual source facilitates the generation of the desired intensity pattern via its imaging-stye projection into the far field. This projection is achieved by one refractive and one reflective freeform surface, both calculated simultaneously by the 3D SMS method, which is herein demonstrated for an LED automotive headlamp. PMID:19532196

  18. The early-stage diagnosis of albinic embryos by applying optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yang, Bor-Wen; Wang, Shih-Yuan; Wang, Yu-Yen; Cai, Jyun-Jhang; Chang, Chung-Hao

    2013-09-01

    Albinism is a kind of congenital disease of abnormal metabolism. Poecilia reticulata (guppy fish) is chosen as the model to study the development of albinic embryos as it is albinic, ovoviviparous and with short life period. This study proposed an imaging method for penetrative embryo investigation using optical coherence tomography. By imaging through guppy mother’s reproduction purse, we found the embryo’s eyes were the early-developed albinism features. As human’s ocular albinism typically appear at about four weeks old, it is the time to determine if an embryo will grow into an albino.

  19. From hyperons to applied optics: {open_quotes}Winston Cones{close_quotes} during and after ZGS era

    SciTech Connect

    Swallow, E.C. |

    1994-12-31

    This paper discusses developments in light collection which had their origin in efforts to construct high performance gas Cerenkov detectors for precision studies of hyperon beta decays at the ZGS. The resulting devices, know generally as {open_quotes}compound parabolic concentrators,{close_quotes} have found applications ranging from nuclear and particle physics experiments to solar energy concentration, instrument illumination, and understanding the optics of visual receptors. Interest in these devices and the ideas underlying them stimulated the development of a substantial new subfield of physics: nonimaging optics. This progression provides an excellent example of some ways in which unanticipated - and often unanticipatable - applied science and {open_quotes}practical{close_quotes} devices naturally emerge from first-rate basic science. The characteristics of this process suggest that the term {open_quotes}spinoff{close_quotes} commonly used to denote it is misleading and in need of replacement.

  20. Calibration of laser tomography as a new optical diagnostic tool applied to dosimetric polymer gels

    NASA Astrophysics Data System (ADS)

    Alwan, R.; Guermeur, F.; Bailly, Y.; Simonin, L.; Svoboda, J.; Makovicka, L.; Martin, E.

    2008-03-01

    Numerous medical applications, as radiotherapy for example, require accurate and reproducible three-dimensional dose measurements with high spatial resolution. A solution of great interest and which has been exploited for many years is the use of dosimetric gels based on different physico-chemical principles, as Fricke's gels or polymer gels. Fricke's gels take advantage of the oxidation of ferrous ions in ferric while polymer gels are the result of the synthesis of polyacrylamide hydrogel from monomer and cross-linking agent. Fricke's gels have particular limitations not encountered with polymer gel dosimeters: the time delay between irradiation and measurement must be reduced in order to limit the diffusion of ferric ions which may remove the spatial dose information. That's why, during the past decade, many compositions of polymer gels have been studied (PAG, MAGIC, …), elaborated and even commercialized (BANG gels). However the gel composition remains of great interest regarding its physical properties. In this work, the authors propose a new optical diagnostic tool more flexible and less expensive in comparison with existing techniques like magnetic resonance imaging (MRI) and Optical-CT. This technique is based on light scattering behaviour occurring in an irradiated polymer gel (note that light scattering in Fricke's gels is very feeble, the latter being essentially absorbant).

  1. Determination of Hurst exponent by optical signal processing applied on surface roughness measurements

    NASA Astrophysics Data System (ADS)

    Marbán Salgado, José Antonio; Sarmiento Martínez, Oscar; Mayorga Cruz, Darwin; Uruchurtu Chavarín, Jorge

    2009-09-01

    In this work a surface roughness measurement performed by Hurst exponent determination, calculated at the same time from data processing of an optical reflected signal is presented. An industrial plate roller rod covered with a polymeric coating is illuminated using a laser source. A lens is used for casting the scattered light reflected from several sectors of the plate roller, and also to focus it into a power meter connected to a computer where corresponding data series are stored. Information related to specific points of the considered object is contained into the optical reflected signal and post-processing of related data signal series allows calculation of the Hurst exponent, also known as roughness exponent. A wear analysis on considered surface sectors of the roller is performed and as a result a relation between Hurst exponent and the coating thickness for each surface sector is clearly established. The simplicity of the opto-mechanical setup among other evident advantages may suggest the application of this non-destructive technique on surface metrology.

  2. APPLYING OPEN-PATH OPTICAL SPECTROSCOPY TO HEAVY-DUTY DIESEL EMISSIONS

    EPA Science Inventory

    Non-dispersive infrared absorption has been used to measure gaseous emissions for both stationary and mobile sources. Fourier transform infrared spectroscopy has been used for stationary sources as both extractive and open-path methods. We have applied the open-path method for bo...

  3. 2004 on Warsaw Stock Exchange via Zipf Analysis, Scatter and Lag Plots

    NASA Astrophysics Data System (ADS)

    Bachnik, W.; Chomiuk, P.; Faltynowicz, Sz.; Gawin, M.; Gorajek, W.; Kedzierski, J.; Kosk, K.; Kucharczyk, A.; Leszczynski, P.; Podsiadlo, R.; Makowiec, D.

    2005-08-01

    This paper presents the last year on Warsaw Stock Exchange (WSE) and world stock exchanges by graphical analysis: Scatter Plot, Zipf Analysis and Lag Plot of selected Polish (WIG, WIG20, WIG-BANKI, TECHWIG) and foreign (NIKKEI, DOW JONES Industrial Average) indices, and also selected companies listed on WSE. Zipf analysis proves that although, generally, holding securities was the best way to earn money in the last year, however, Zipf based strategy also could be profitable. Scatter Plots show no similarities between Polish and foreign indices, however, behaviour of Polish ones is similar. The volatility of indices and most companies was highest on Monday and lowest on Friday. Distribution of returns in continuous trading is neither Gaussian nor uniform.

  4. Historic Buildings of the Warsaw University of Technology - Selected Issues of Renovation, Modernisation and Adaptation

    NASA Astrophysics Data System (ADS)

    Wagner, Anna Agata

    2016-06-01

    The historic buildings of the Warsaw University of Technology display not only outstanding architectural values, but are also representative of the trends in preservation, restoration, and adaptation that were prevalent at the time of their modernization. The post-war rebuilding of the WUT was more akin to modernization than reconstruction. But the freedom to shape modern architectural forms in the 1960s and '70s brought with it a lack of respect for their historic environment. A change in the approach to historic buildings and their integration with modern architecture came in the late 1970s. The most recent modernization of the WUT's historic buildings, especially after Poland's accession to the EU, resulted in many good examples of proper, harmonious integration between the `modern' and the `traditional'.

  5. Experimental investigation of ionisation track structure of carbon ions at HIL Warsaw.

    PubMed

    Bantsar, A; Hilgers, G; Pszona, S; Rabus, H; Szeflinski, Z

    2015-09-01

    In view of the upcoming radiation therapy with carbon ions, the ionisation structure of the carbon ion track at the nanometre scale is of particular interest. Two different nanodosimeters capable of measuring track structure of ionising particles in a gas target equivalent to a nanometric site in condensed matter were involved in the presented experimental investigation, namely the NCBJ Jet Counter and the PTB Ion Counter. At the accelerator facility of the HIL in Warsaw, simulated nanometric volumes were irradiated with carbon ions of 45 and 76 MeV of kinetic energy, corresponding to a range in the tissue of ∼85 µm and ∼190 µm, respectively. The filling gas of both nanodosimeters' ionisation volume was molecular nitrogen N2, and the ionisation cluster size distributions, i.e. the statistical distribution of the number of ionizations produced by one single primary carbon ion in the filling gas, were measured for the two primary particle energies. PMID:25897141

  6. Dosimetry in radiobiological studies with the heavy ion beam of the Warsaw cyclotron

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, U.; Banaś, D.; Braziewicz, J.; Czub, J.; Jaskóła, M.; Korman, A.; Kruszewski, M.; Lankoff, A.; Lisowska, H.; Malinowska, A.; Stępkowski, T.; Szefliński, Z.; Wojewódzka, M.

    2015-12-01

    The aim of this study was to verify various dosimetry methods in the irradiation of biological materials with a 12C ion beam at the Heavy Ion Laboratory of the University of Warsaw. To this end the number of ions hitting the cell nucleus, calculated on the basis of the Si-detector system used in the set-up, was compared with the number of ion tracks counted in irradiated Solid State Nuclear Track Detectors and with the number of ion tracks detected in irradiated Chinese Hamster Ovary cells processed for the γ-H2AX assay. Tests results were self-consistent and confirmed that the system serves its dosimetric purpose.

  7. New light-trapping concept by means of several optical components applied to compact holographic 3D concentration solar module

    NASA Astrophysics Data System (ADS)

    Villamarín Villegas, Ayalid M.; Pérez López, Francisco J.; Calo López, Antonio; Rodríguez San Segundo, Hugo-José

    2014-05-01

    A new light-trapping concept is presented, which joins broad bandwidth volume phase reflection holograms (VPRH) working together with three other optical components: specifically designed three-dimensional (3D) cavities, Total Internal Reflection (TIR) within an optical medium, and specular reflection by means of a highly reflective surface. This concept is applied to the design and development of both low concentration photovoltaic (LCPV) and solar thermal modules reaching a concentration factor of up to 3X. Higher concentrations are feasible for use in concentrated solar power (CSP) devices. The whole system is entirely made of polymeric materials (except for the solar cells or fluid carrying pipes), thus reducing cost by up to 40%. The module concentrates solar light onto solar cells - or fluid carrying pipes - with no need for active tracking of the sun, covering the whole seasonal and daily incident angle spectrum while it also minimizes optical losses. In this work we analyze the first experimentally measured optical characteristics and performance of VPRH in dichromated gelatin film (DCG) in our concept. The VPRH can reach high diffraction efficiencies (˜98%, ignoring Fresnel reflection losses). Thanks to specifically designed raw material, coating and developing process specifications, also very broad selective spectral (higher than 300 nm) and angular bandwidths (˜+20º) per grating are achieved. The VPRH was optimized to use silicon solar cells, but designs for other semiconductor devices or for fluid heating are feasible. The 3D shape, the hologram's and reflective surface's optical quality, the TIR effect and the correct coupling of all the components are key to high performance of the concentration solar module.

  8. Wigner distribution function applied to twisted Gaussian light propagating in first-order optical systems.

    PubMed

    Bastiaans, M J

    2000-12-01

    A measure for the twist of Gaussian light is expressed in terms of the second-order moments of the Wigner distribution function. The propagation law for these second-order moments between the input plane and the output plane of a first-order optical system is used to express the twist in one plane in terms of moments in the other plane. Although in general the twist in one plane is determined not only by the twist in the other plane but also by other combinations of the moments, several special cases exist for which a direct relationship between the twists can be formulated. Three such cases, for which zero twist is preserved, are considered: (i) propagation between conjugate planes, (ii) adaptation of the signal to the system, and (iii) the case of symplectic Gaussian light. PMID:11140506

  9. CORDIC algorithm based digital detection technique applied in resonator fiber optic gyroscope

    NASA Astrophysics Data System (ADS)

    Yang, Zhihuai; Jin, Xiaojun; Ma, Huilian; Jin, Zhonghe

    2009-06-01

    A digital detection technique based on the coordinate rotation digital computer (CORDIC) algorithm is proposed for a resonator fiber optic gyroscope (R-FOG). It makes the generation of modulation signal, synchronous demodulation and signal processing in R-FOG to be realized in a single field programmable gate array (FPGA). The frequency synthesis and synchronous detection techniques based on the CORDIC algorithm have been analyzed and designed firstly. The experimental results indicate that the precision of the detection circuit satisfies the requirements for the closed-loop feedback in R-FOG system. The frequency of the laser is locked to the resonance frequency of the fiber ring resonator stably and the open-loop gyro output signal is observed successfully. The dynamic range and the bias drift of the R-FOG are ±1.91 rad/s and 0.005 rad/s over 10 s, respectively.

  10. Ultrafast Rotation of Light Fields Applied to Highly Non-Linear Optics

    NASA Astrophysics Data System (ADS)

    Quéré, Fabien

    2014-05-01

    Femtosecond laser beams can exhibit spatio-temporal couplings (STC), i.e. a temporal dependence of their spatial properties, or vice versa. Although these couplings have long been considered as detrimental for high-intensity and ultrafast experiments, moderate and controlled STC provide a powerful means of controlling high-intensity laser-matter interactions. This talk will first explain the basics of a particular STC, where the propagation direction of laser light rotates in time on the femtosecond time scale. Laser pulses with such ultrafast wavefront rotation can be used to generate attosecond pulses of light through non-linear optical processes. We show that these pulses, periodically generated in each laser cycle, can then be emitted in spatially separated beamlets. This effects provides a new type of light sources called attosecond lighthouses, and can be exploited for ultrafast measurements with femtosecond resolution, in a scheme called photonic streaking.

  11. Optical fiber direct-sensing biosensor applied in detecting biolayer thickness of nanometer grade

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Li, Mingming; Zhao, Hong; Yang, Yu Xiao; Zhang, Lu

    2006-02-01

    An optical fiber biosensor is introduced herein, which could directly detect biological interaction such as immunoreactions of antigens and antibodies without destroy the biolayer. The test is based on the theory of multilayer-reflection principle in white-light interferometry. When immunoreactions occur, the reflected spectrum phase shifts. Immunoreactions could be detected by means of reflected spectrum phase shifting, or by biolayer thickness changing. Continuously detecting of thickness changing on a fractional nanometer scale with subsecond repetition times is allowed in this system. The detecting system has high sensitivity, high precision, high speed, cost effective and working on a high reliability. The bioprobe is easy integrated as a BlAcore. The system and the experimental results on the reaction of rabbit-IgG with anti-rabbit-IgG are described in this paper. A sandwich method was adopted in the experiments.

  12. Laser-electron beam interaction applied to optical amplifiers and oscillators

    NASA Technical Reports Server (NTRS)

    Pantell, R. H.; Piestrup, M. A.

    1976-01-01

    Momentum modulation of a relativistic electron beam by a Nd:YAG laser is demonstrated. The electrons, at 100 MeV energy, interact with the laser light in helium gas at standard temperature and pressure. At an angle of 6.55 mrad between the two wavevectors, corresponding to the Cerenkov angle, a given electron remains in a field of constant phase as it passes through the light beam. The experimental arrangement is illustrated showing the trajectories of the electron and light. The particle momentum is measured by a mass spectrometer, and the angle between the wavevectors is controlled by a rotatable mirror. Experimental results indicate that momentum modulation of an electron beam may be used for amplification. A possible configuration for an optical klystron is illustrated.

  13. Monochromatic aberrations in resonant optical elements applied to a focusing multilevel reflectarray.

    PubMed

    Ginn, James; Alda, Javier; Gómez-Pedrero, José Antonio; Boreman, Glenn

    2010-05-24

    The monochromatic aberrations produced by the phase distribution reflected by resonant sub-wavelength metallic structures are studied both analytically and numerically. Even for normal incidence, the angular dependence of the re-radiated wavefront disturbs the overall performance of the reflectarray. This effect is modelled as combination of a linear and a cubic dependence. A complete numerical simulation of a multilevel focusing reflectarray is performed using computational-electromagnetic and physical-optics-propagation methods. A modified Strehl ratio is defined to show the dependence of the focused spot behavior on aperture. The irradiance distribution is dependent on the polarization state. A small-aperture focusing reflectarray has been designed, fabricated, and tested. The irradiance distribution at the focusing plane is compared with the simulated one, showing a good agreement when residual wavefront aberrations are included. PMID:20588948

  14. Social Science at the Center for Adaptive Optics: Synergistic Systems of Program Evaluation, Applied Research, Educational Assessment, and Pedagogy

    NASA Astrophysics Data System (ADS)

    Goza, B. K.; Hunter, L.; Shaw, J. M.; Metevier, A. J.; Raschke, L.; Espinoza, E.; Geaney, E. R.; Reyes, G.; Rothman, D. L.

    2010-12-01

    This paper describes the interaction of four elements of social science as they have evolved in concert with the Center for Adaptive Optics Professional Development Program (CfAO PDP). We hope these examples persuade early-career scientists and engineers to include social science activities as they develop grant proposals and carry out their research. To frame our discussion we use a metaphor from astronomy. At the University of California Santa Cruz (UCSC), the CfAO PDP and the Educational Partnership Center (EPC) are two young stars in the process of forming a solar system. Together, they are surrounded by a disk of gas and dust made up of program evaluation, applied research, educational assessment, and pedagogy. An idea from the 2001 PDP intensive workshops program evaluation developed into the Assessing Scientific Inquiry and Leadership Skills (AScILS) applied research project. In iterative cycles, AScILS researchers participated in subsequent PDP intensive workshops, teaching social science while piloting AScILS measurement strategies. Subsequent "orbits" of the PDP program evaluation gathered ideas from the applied research and pedagogy. The denser regions of this disk of social science are in the process of forming new protoplanets as tools for research and teaching are developed. These tools include problem-solving exercises or simulations of adaptive optics explanations and scientific reasoning; rubrics to evaluate the scientific reasoning simulation responses, knowledge regarding inclusive science education, and student explanations of science/engineering inquiry investigations; and a scientific reasoning curriculum. Another applied research project is forming with the design of a study regarding how to assess engineering explanations. To illustrate the mutual shaping of the cross-disciplinary, intergenerational group of educational researchers and their projects, the paper ends with a description of the professional trajectories of some of the

  15. Acquisition, simulation, and test replication of weapon firing shock applied to optical sights

    NASA Astrophysics Data System (ADS)

    Ball, Kenneth D.; Gardner, Dave

    2011-09-01

    With the ever increasing desire for range and delivery capabilities of ballistic defence equipment, weapons and sight systems are constantly evolving in complexity. As a result current systems now incorporate more sophisticated technology than ever before. This paper describes the non-intrusive mechanical field data acquisition and subsequent analysis and test integration techniques performed on complex opto-mechanical weapon mounted systems. As a result of physical acquisition, innovative techniques have been developed to enable the synthesis of the transient recordings for the purpose of finite element analysis. Further investigations have revealed new possibilities in applying more accurately controlled 'in house' loads, for low cost representative test purposes.

  16. Optical Flow Applied to Time-Lapse Image Series to Estimate Glacier Motion in the Southern Patagonia Ice Field

    NASA Astrophysics Data System (ADS)

    Lannutti, E.; Lenzano, M. G.; Toth, C.; Lenzano, L.; Rivera, A.

    2016-06-01

    In this work, we assessed the feasibility of using optical flow to obtain the motion estimation of a glacier. In general, former investigations used to detect glacier changes involve solutions that require repeated observations which are many times based on extensive field work. Taking into account glaciers are usually located in geographically complex and hard to access areas, deploying time-lapse imaging sensors, optical flow may provide an efficient solution at good spatial and temporal resolution to describe mass motion. Several studies in computer vision and image processing community have used this method to detect large displacements. Therefore, we carried out a test of the proposed Large Displacement Optical Flow method at the Viedma Glacier, located at South Patagonia Icefield, Argentina. We collected monoscopic terrestrial time-lapse imagery, acquired by a calibrated camera at every 24 hour from April 2014 until April 2015. A filter based on temporal correlation and RGB color discretization between the images was applied to minimize errors related to changes in lighting, shadows, clouds and snow. This selection allowed discarding images that do not follow a sequence of similarity. Our results show a flow field in the direction of the glacier movement with acceleration in the terminus. We analyzed the errors between image pairs, and the matching generally appears to be adequate, although some areas show random gross errors related to the presence of changes in lighting. The proposed technique allowed the determination of glacier motion during one year, providing accurate and reliable motion data for subsequent analysis.

  17. Structural, Optical, and Electrical Properties of Applied Amorphized and Polycrystalline Sb2S3 Thin Films

    NASA Astrophysics Data System (ADS)

    Janošević, Valentina; Mitrić, Miodrag; Savić, Jasmina; Validžić, Ivana Lj

    2016-03-01

    One of the intermediate steps in the organo-colloidal synthesis of crystalline Sb2S3 is a synthesis of spherical amorphous Sb2S3. In order to prove that the synthesized semiconductor can be considered an absorbing material for a solar device, the electronic and photovoltage properties of the amorphized and polycrystalline Sb2S3 thin films deposited by synthesized amorphous nanoparticles were studied. Optical studies revealed that the direct band gap energy was 1.65 eV and, two direct allowed transition of 1.57 and 1.91 eV for polycrystalline and amorphized thin films, respectively. The PL spectra of Sb2S3 showed an emission peak at 1.65 eV for both films. In order to obtain current-voltage ( I- V) characteristics, two cells based on the Sb2S3 thin films as both an absorbing material and an electrolyte were designed and made. The observed Sb2S3 thin films, with a thickness of around 10 μm, are of p-type. The exponential growth of the I- V curves reveals that the cells can work as a generator of electricity.

  18. Low resolution optical remote sensing applied to the monitoring of seasonal glacier mass balance.

    NASA Astrophysics Data System (ADS)

    Drolon, Vanessa; Maisongrande, Philippe; Berthier, Etienne; Swinnen, Else

    2015-04-01

    Mass balance is a key variable to describe the state of health of glaciers, their contribution to sea level rise and, in a few dry regions, their role in water resource. We explore here a new method to retrieve seasonal glacier mass balances from low resolution optical remote sensing. We derive winter and summer snow maps for each year during 1998-2014, using the Normalized Difference Snow Index (NDSI) computed from visible and SWIR channels available with SPOT/VEGETATION. The NDSI dynamic is directly linked to the area percentage of snow in the VGT kilometric pixel. The combination of 15 years of 10-daily NDSI maps with the SRTM DEM allows us to calculate the altitude of the transition between bare soil and snow. Then, we compare the interannual dynamic of this altitude with in situ measurements of mass balance available for 60 alpine glaciers (Huss et al., 2010; Zemp et al., 2009, 2013) and find promising relationships for winter mass balance. We also explore the possibility of a real-time monitoring of winter mass balance for a selection of alpine glaciers. Finally, we discuss the robustness and genericity of these relationships for their future application in regions where in situ glaciers mass balances are scarce or not available.

  19. Optical coherence tomography applied to the evaluation of wear of composite resin for posterior teeth

    NASA Astrophysics Data System (ADS)

    Mota, Cláudia C. B. O.; Guerra, Bruna A.; Machado, Brena S. A.; Cabral, Adolfo J.; Gomes, Anderson S. L.

    2015-06-01

    Resin composites are widely used as restorative materials due to their excellent aesthetical and mechanical properties. Posterior teeth are constantly submitted to occlusal stress and upon restoration require more resistant resins. The aim of this study was to analyze in vitro the wear suffered over time by restorations in resin composite in posterior teeth, by Optical Coherence Tomography (OCT). 30 molars had occlusal cavities prepared and were randomly divided into three groups (n=10) and restored with resin composite: G1: Filtek P90 (3M/ESPE), G2: Tetric N-Ceram (Ivoclar Vivadent); G3: Filtek P60 (3M/ESPE). Specimens were subjected to initial analysis by OCT (OCP930SR, Thorlabs, axial resolution 6.2 μm) and stereoscopic microscope. Specimens were submitted to thermocycling (500 cycles, 5-55 °C) and subjected to simulated wear through a machine chewing movements (Wear Machine WM001), projecting four years of use. After mechanical cycles, the specimens were submitted to a second evaluation by the OCT and stereoscopic microscopy. As a result, it was observed that 90% of the restorations of both groups had fractures and/or points of stress concentration, considered niches for early dissemination of new fracture lines. It was also found that G1 and G2 had more points of stress concentration, whereas G3 had a higher incidence of fracture lines already propagated. It was concluded that the G3 showed more brittle behavior at the masticatory wear when compared to G1 and G2.

  20. Quantification of the inhomogeneous distribution of topically applied substances by optical spectroscopy: definition of a factor of inhomogeneity.

    PubMed

    Weigmann, H-J; Schanzer, S; Vergou, T; Antoniou, C; Sterry, W; Lademann, J

    2012-01-01

    The inhomogeneous distribution of topically applied substances due to decisive differences in the skin structure (furrows and wrinkles) affects the efficacy of cosmetic products, in particular sunscreens. The combination of tape stripping and optical spectroscopy results in absorption data, which reflect ex vivo the inhomogeneity of the in vivo distribution of topically applied substances. Based on these data, a factor of inhomogeneity is defined describing the individual distribution of formulations on the skin surface of volunteers. Thus, the influence of different skin surface structures and the influence of different formulations on the distribution of the topically applied substances can be determined. Analyzing the inhomogeneity data on 6 volunteers (5 sunscreens per volunteer), it was found that the influence on the distribution of sunscreens caused by the formulation was higher than the inhomogeneity originating from the differences in the skin surface structure of the volunteers. The method is well suited to characterize, for example, sunscreens and antiaging creams in the process of development, as well as for the evaluation of the final products. PMID:22343548

  1. Pain associated with the musculoskeletal system in children from Warsaw schools

    PubMed Central

    Słowińska, Iwona; Kwiatkowska, Małgorzata; Jednacz, Ewa; Mańczak, Małgorzata; Raciborski, Filip

    2015-01-01

    Objective To assess the prevalence of pain in the musculoskeletal system and possible reasons for these complaints among early age children from Warsaw schools. Material and methods The study was conducted in 34 randomly selected primary schools in Warsaw in 2011. 2748 survey-questionnaires were given to parents or legal guardians by children. Of these, 1509 surveys were subject to a final analysis. The survey included 66 questions regarding, among other things, pain in the musculoskeletal system in children. Additionally, there were questions about possibly occurring diseases, any postural defects, significant obesity, as well as effects of these complaints on the child's physical activity. Survey data regarded 6–7-year-old children. Results In the group of 1509 respondents, 242 children (16%) complained about pain in the musculoskeletal system. Pain was located most frequently in the knee joints, and more rarely in the spine and joints in the upper extremities. In the group of children who complained about pain, moderate physical activity was statistically significantly limited. According to parents, physicians did not diagnose any medical conditions in 106 children. Joint disease was diagnosed in 33 children. Postural defects were diagnosed in 589 children. In 123 children complaining about pain at least one postural defect was diagnosed. Such defects were diagnosed statistically significantly more rarely (p = 0.011) in 1234 children who did not complain about pain (460 children). Platypodia or other foot deformation was observed in 25% of these children, spinal curvature in 12%, abnormal knee joint position in 11% and uneven hip position in 2% children. Of note, 17% of all children were significantly overweight. In overweight children the prevalence of pain, especially in the knee joints and feet, was significantly higher. Conclusions This study aims to underline the problem of musculoskeletal pain in early-age children which limits their physical activity

  2. The design of the CMOS wireless bar code scanner applying optical system based on ZigBee

    NASA Astrophysics Data System (ADS)

    Chen, Yuelin; Peng, Jian

    2008-03-01

    The traditional bar code scanner is influenced by the length of data line, but the farthest distance of the wireless bar code scanner of wireless communication is generally between 30m and 100m on the market. By rebuilding the traditional CCD optical bar code scanner, a CMOS code scanner is designed based on the ZigBee to meet the demands of market. The scan system consists of the CMOS image sensor and embedded chip S3C2401X, when the two dimensional bar code is read, the results show the inaccurate and wrong code bar, resulted from image defile, disturber, reads image condition badness, signal interference, unstable system voltage. So we put forward the method which uses the matrix evaluation and Read-Solomon arithmetic to solve them. In order to construct the whole wireless optics of bar code system and to ensure its ability of transmitting bar code image signals digitally with long distances, ZigBee is used to transmit data to the base station, and this module is designed based on image acquisition system, and at last the wireless transmitting/receiving CC2430 module circuit linking chart is established. And by transplanting the embedded RTOS system LINUX to the MCU, an applying wireless CMOS optics bar code scanner and multi-task system is constructed. Finally, performance of communication is tested by evaluation software Smart RF. In broad space, every ZIGBEE node can realize 50m transmission with high reliability. When adding more ZigBee nodes, the transmission distance can be several thousands of meters long.

  3. Development studies towards an 11-year global gridded aerosol optical thickness reanalysis for climate and applied applications

    NASA Astrophysics Data System (ADS)

    Lynch, P.; Reid, J. S.; Westphal, D. L.; Zhang, J.; Hogan, T. F.; Hyer, E. J.; Curtis, C. A.; Hegg, D. A.; Shi, Y.; Campbell, J. R.; Rubin, J. I.; Sessions, W. R.; Turk, F. J.; Walker, A. L.

    2015-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need in numerous climate and applied applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003-2013 global 1° × 1° and 6 hourly modal aerosol optical thickness (AOT) reanalysis product. This dataset can be applied to basic and applied earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine and coarse mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite retrieved precipitation, rather than the model field. The final reanalyzed fine and coarse mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine and coarse mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how the

  4. [Activity of sanitary surveillances/offices in Warsaw at the time of the second republic of Poland].

    PubMed

    Berner, Włodzimierz

    2006-01-01

    At the time of the Second Republic of Poland, Warsaw, the capital of the rebirth country, was a neglected town as regards sanitary conditions. The genesis of this situation dates back to the period of the national bondage by the Russian partitioner, and since 1915 by the German invader who did not care about the problems associated with public health. The sanitary and hygienic conditions worsened significantly in 1916, after incorporating into Warsaw large out-of-town regions whose housing was of the rural character with numerous wooden cottages, field roads, without any sanitary sewage system. Poor municipal sanitary-maintenance conditions and infectious diseases spreading in Warsaw made the Town Authorities implement preventive action and entrust sanitary surveillances with this difficult task. These surveillances were set up at the time of the First World War, and after 1920 were changed into sanitary offices. Their duties included control of acute infectious diseases, sanitary inspection of living quarters, sites of production and selling of food articles, plants, service outlets, shops of a different character, as well as surveillance of food purchased by the inhabitants. In each sanitary office a doctor was employed who supervised the work of one, two or three sanitary inspectors. PMID:17682766

  5. Diagnostic Overlap between Fanconi Anemia and the Cohesinopathies: Roberts Syndrome and Warsaw Breakage Syndrome

    PubMed Central

    van der Lelij, Petra; Oostra, Anneke B.; Rooimans, Martin A.; Joenje, Hans; de Winter, Johan P.

    2010-01-01

    Fanconi anemia (FA) is a recessively inherited disease characterized by multiple symptoms including growth retardation, skeletal abnormalities, and bone marrow failure. The FA diagnosis is complicated due to the fact that the clinical manifestations are both diverse and variable. A chromosomal breakage test using a DNA cross-linking agent, in which cells from an FA patient typically exhibit an extraordinarily sensitive response, has been considered the gold standard for the ultimate diagnosis of FA. In the majority of FA patients the test results are unambiguous, although in some cases the presence of hematopoietic mosaicism may complicate interpretation of the data. However, some diagnostic overlap with other syndromes has previously been noted in cases with Nijmegen breakage syndrome. Here we present results showing that misdiagnosis may also occur with patients suffering from two of the three currently known cohesinopathies, that is, Roberts syndrome (RBS) and Warsaw breakage syndrome (WABS). This complication may be avoided by scoring metaphase chromosomes—in addition to chromosomal breakage—for spontaneously occurring premature centromere division, which is characteristic for RBS and WABS, but not for FA. PMID:21490908

  6. Interstellar Neutral Helium in the Heliosphere from IBEX Observations. II. The Warsaw Test Particle Model (WTPM)

    NASA Astrophysics Data System (ADS)

    Sokół, J. M.; Kubiak, M. A.; Bzowski, M.; Swaczyna, P.

    2015-10-01

    We have developed a refined and optimized version of the Warsaw Test Particle Model of interstellar neutral gas in the heliosphere, specially tailored for analysis of IBEX-Lo observations. The former version of the model was used in the analysis of neutral He observed by IBEX that resulted in an unexpected conclusion that the interstellar neutral He flow vector was different than previously thought and that a new population of neutral He, dubbed the Warm Breeze, exists in the heliosphere. It was also used in the reanalysis of Ulysses observations that confirmed the original findings on the flow vector, but suggested a significantly higher temperature. The present version of the model has two strains targeted for different applications, based on an identical paradigm, but differing in the implementation and in the treatment of ionization losses. We present the model in detail and discuss numerous effects related to the measurement process that potentially modify the resulting flux of ISN He observed by IBEX, and identify those of them that should not be omitted in the simulations to avoid biasing the results. This paper is part of a coordinated series of papers presenting the current state of analysis of IBEX-Lo observations of ISN He. Details of the analysis method are presented by Swaczyna et al. and results of the analysis are presented by Bzowski et al.

  7. Parasitic infections detected by FLOTAC in zoo mammals from Warsaw, Poland.

    PubMed

    Maesano, Gianpaolo; Capasso, Michele; Ianniello, Davide; Cringoli, Giuseppe; Rinaldi, Laura

    2014-06-01

    The aim of this study was to estimate the occurrence of intestinal parasites in groups of mammals kept in the Warsaw zoological garden (Poland). 71 pools of fecal samples were analyzed using the FLOTAC techniques. 48% of animals were positive and 47% of positivities showed multiple infections. Toxocara cati (71.4%) was found in felines; marsupials were infected with Coccidia (90%). Giardia spp. (24.0%), Blastocystis spp. (12.3%), Iodamoeba spp. (10.0%), Enterobius vermicularis (6.0%) and Entamoeba coli (3.3%) were found in primates. Gastrointestinal strongyles (60.5%) were prevalent in ruminants which resulted positive also to Coccidia (Eimeria spp. = 50.0%), Trichuris spp. (25.0%) and Nematodirus (14.0%). Strongyles (34.0%) were the most frequent parasites in monogastric herbivores, followed by Parascaris equorum (17.0%). None of the animals showed any symptom associated with gastrointestinal parasitic infections. According to our results the need to prevent, diagnose, control, and treat intestinal parasitism trough specific control programs is mandatory for animal welfare in order to limit the spread of parasitic infections in animals and humans. PMID:24827109

  8. Bulgarian military neurosurgery: from Warsaw Pact to the North Atlantic Treaty Organization.

    PubMed

    Enchev, Yavor; Eftimov, Tihomir

    2010-05-01

    After 45 years as a closest ally of the Soviet Union in the Warsaw Pact, founded mainly against the US and the Western Europe countries, and 15 years of democratic changes, since 2004 Bulgaria has been a full member of NATO and an equal and trusted partner of its former enemies. The unprecedented transformation has affected all aspects of the Bulgarian society. As a function of the Bulgarian Armed Forces, Bulgarian military medicine and in particular Bulgarian military neurosurgery is indivisibly connected with their development. The history of Bulgarian military neurosurgery is the history of the transition from the Union of Soviet Socialist Republics military system and military medicine to NATO standards in every aspect. The career of the military neurosurgeon in Bulgaria is in many ways similar to that of the civilian neurosurgeon, but there are also many peculiarities. The purpose of this study was to outline the background and the history of Bulgarian military neurosurgery as well as its future trends in the conditions of world globalization. PMID:20568931

  9. Characterization of low-pressure microwave and radio frequency discharges in oxygen applying optical emission spectroscopy and multipole resonance probe

    NASA Astrophysics Data System (ADS)

    Steves, Simon; Styrnoll, Tim; Mitschker, Felix; Bienholz, Stefan; Nikita, Bibinov; Awakowicz, Peter

    2013-11-01

    Optical emission spectroscopy (OES) and multipole resonance probe (MRP) are adopted to characterize low-pressure microwave (MW) and radio frequency (RF) discharges in oxygen. In this context, both discharges are usually applied for the deposition of permeation barrier SiOx films on plastic foils or the inner surface of plastic bottles. For technological reasons the MW excitation is modulated and a continuous wave (cw) RF bias is used. The RF voltage produces a stationary low-density plasma, whereas the high-density MW discharge is pulsed. For the optimization of deposition process and the quality of the deposited barrier films, plasma conditions are characterized using OES and MRP. To simplify the comparison of applied diagnostics, both MW and RF discharges are studied separately in cw mode. The OES and MRP diagnostic methods complement each other and provide reliable information about electron density and electron temperature. In the MW case, electron density amounts to ne = (1.25 ± 0.26) × 1017 m-3, and kTe to 1.93 ± 0.20 eV, in the RF case ne = (6.8 ± 1.8)×1015 m-3 and kTe = 2.6 ± 0.35 eV. The corresponding gas temperatures are 760±40 K and 440±20 K.

  10. Synthesis and evaluation of sensitizer drug photorelease chemistry: Micro-optic method applied to singlet oxygen generation and drug delivery

    NASA Astrophysics Data System (ADS)

    Ghosh, Goutam

    This thesis summarizes a new micro-optic method for singlet oxygen generation and sensitizer drug delivery, which include i) synthesis and evaluation of a first generation device for drug delivery from native and fluorinated silica probe tips, ii) synthesis of PEG conjugated sensitizers to study phototoxicity in ovarian cancer cells, and iii) synthesis and evaluation of tris-PEGylated chlorin conjugated fluorinated silica for its future integration into the device to use as a 2nd generation device. A first generation micro-optic device was developed that works by sparging O2 gas and light generating cytotoxic singlet oxygen that cleaves the covalently attached drug (sensitizer) from the probe tip at the distal end of the fiber. The aim is to develop a 1st and 2nd generation device for site specific delivery of photosensitizer and singlet oxygen to overcome the challenges involved in systemic administration of the sensitizer. Synthesis and evaluation of drug (pheophorbide-a) delivery applying micro-optic method from native and fluorinated silica probe tip was achieved. The amount of sensitizer photocleavage depends on the loading level of sensitizer onto the probe tips. We also found that photorelease efficiency depends on the nature of the solvents where sensitizer is photocleaved. For example, no photorelease was observed in an aqueous solvent where sensitizer remained adsorbed to the native silica probe-tip. But, 90% photocleavage was obtained in octanol. A significant amount of photosensitizer (formate ester of pyropheophorbide- a) diffused into the liposome when photocleavage study was carried out in liposome. Substantial increase of photorelease was observed in organic solvent when pyropheophorbide-a (PPa) sensitizer was attached to the partially fluorinated porous Vycor glass. We also explored sensitizer photorelease from the fluorinated silica surface at various temperatures and we found that autocatalytic photorelease happened at room temperature and above

  11. Blood infections in patients treated at transplantation wards of a clinical hospital in Warsaw.

    PubMed

    Kierzkowska, M; Majewska, A; Dobrzaniecka, K; Sawicka-Grzelak, A; Mlynarczyk, A; Chmura, A; Durlik, M; Deborska-Materkowska, D; Paczek, L; Mlynarczyk, G

    2014-10-01

    Establishment of the etiology in blood infection is always advisable. The purpose of this study was to evaluate the proportion of different bacterial species, including aerobic and anaerobic bacteria in blood cultures of patients hospitalized in transplantation wards of a large clinical hospital between 2010 and 2012. A total of 1994 blood samples from patients who were treated at one of two transplantation wards of a large hospital in Warsaw were analyzed using an automated blood culture system, BacT/ALERT (bioMerieux, France). The 306 bacterial strains were obtained from the examined samples. The highest proportion were bacteria from the family Enterobacteriaceae (112 strains; 36.6%) with Escherichia coli (61 strains), Klebsiella pneumoniae (30 strains), and Enterobacter cloacae (10 strains) most commonly isolated. The non-fermenting bacilli constituted 21.6% (66 strains), with most common Stenotrophomonas maltophilia (31 strains), Pseudomonas aeruginosa (14 strains), Achromobacter spp. (12 strains), and Acinetobacter baumannii (3 strains). Most frequent Gram-positive bacteria were staphylococci (25.2%). Of 77 staphylococcal strains, 56 were coagulase-negative staphylococci and 21 Staphylococcus aureus. Other Gram-positive bacteria included enterococci (14 strains) and Streptococcus pneumoniae (1 strain). Obligatory anaerobic bacteria were represented by 19 strains (6.2% of total isolates). Among all Enterobacteriaceae, 49 isolates (43.7%) produced extended-spectrum ß-lactamases (ESBLs). Resistance to methicillin was detected in 62% of S aureus isolates and in 46% of coagulase-negative staphylococci. Of 14 enterococci cultured from blood samples, 2 strains (14.3%) were resistant to vancomycin. Both were Enterococcus faecium. Resistant strains of Gram-negative and Gram-positive bacteria are significant problems for patients in the transplantation ward. PMID:25380873

  12. Effects of visitor pressure on understory vegetation in Warsaw forested parks (Poland).

    PubMed

    Sikorski, Piotr; Szumacher, Iwona; Sikorska, Daria; Kozak, Marcin; Wierzba, Marek

    2013-07-01

    Visitor's access to understorey vegetation in park forest stands results in the impoverishment of plant species composition and a reduction in habitat quality. The phenomenon of biotic homogenisation is typical in urban landscapes, but it can proceed differently depending on the scale, a detail that has not been observed in previous studies. This research was carried out in seven Warsaw parks (both public and restricted access). Thirty-four forested areas were randomly selected, some subjected to strong visitors' pressure and some within restricted access areas, free of such impacts. The latter category included woodlands growing in old forest and secondary habitats. Public access to the study areas contributed to the disappearance of some forest species and their replacement by cosmopolitan non-forest species, leading to loss of floristic biodiversity in areas of high ecological importance at the city scale. Some human-induced factors, including soil compaction and changes in soil pH, moisture and capillary volume, were found to cause habitat changes that favoured native non-forest plants. Despite changes in species composition, the taxonomic similarity of understorey vegetation in both categories--public access and restricted access--was comparable. In a distance gradient of measurements taken around selected individual trees, there was found to be significant variation (in light, soil pH and compaction) affecting the quality and quantity of understorey vegetation (including rare species). In conclusion, the protection of rare forest species could be achieved by limiting access to forested areas, particularly in old forest fragments, and we highly recommend its consideration in the proposal of future park restoration plans. PMID:23142878

  13. Diurnal and seasonal variability of surface urban heat island phenomena in Warsaw (Poland)

    NASA Astrophysics Data System (ADS)

    Gawuć, Lech; Struzewska, Joanna

    2014-05-01

    The phenomenon of urbanization is an important environmental and social issue that modern society has to face. According to current estimates half of world's population lives in urban areas. It is expected that urban population will grow in the future. Urbanization and subsequent release of anthropogenic heat pollution lead to formation of an urban heat island (UHI). Development of UHI is a highly non-linear process (Kato et al., 2007) that depends on a number of factors such as magnitude of the anthropogenic heat flux, the texture of the city, local geophysical conditions and mesoscale meteorology (Sailor and Lu, 2004 after Narumi et al., 2003). We will present analyses of the magnitude and spatial extend of Surface Urban Heat Island (SUHI) in the capital of Poland, Warsaw. SUHI characteristics will be identified based on the Land Surface Temperature (LST) product derived for MODIS observations, which will be collected for time-series for April 2009 (34 acquisitions) and November 2011 (33 acquisitions). We will present maps of SUHI for morning, evening and night hours, for April and November separately. Several locations representing different types of land cover will be selected in order to analyze the temporal variability and amplitude of surface temperature in various parts of the city. In addition, air temperature from six automatic stations, maintained by Voivodeship Inspectorate of Environmental Protection, for periods coincident with satellite observations will be collected. Air and land temperature comparisons will be performed in order to investigate correspondence between surface UHI and air UHI. Impact of the synoptic conditions will be also discussed, with a particular caution for those terms when effect of UHI will be the strongest.

  14. Grain-size dependence of the magnetic properties of street dusts from Warsaw, Poland

    NASA Astrophysics Data System (ADS)

    Dytłow, Sylwia; Winkler, Aldo; Sagnotti, Leonardo

    2015-04-01

    In recent years, in connection with a substantial development of transportation in urban areas, vehicular traffic increased its importance as source of pollution and consequent cause of health problems in urban environments. In fact, it is well established that the concentration and size of pollution related particulate matter (PM) are important factors affecting human health. The aim of this study is to identify the variations of the magnetic properties and of the chemical composition of different granulometric fractions from street dusts collected at four locations in Warsaw: the city center, a suburb, a tramline and a big crossroad. Dust samples were mechanically sieved and classified using the laboratory shaker with a standard sieve set (0.5 mm, 0.25 mm, 0.1 mm and 0.071 mm). Data show a distribution of magnetic susceptibility (χ) in the wide range of 80-370 × 10-8 m3kg-1. Comparison of magnetic parameters shows that the street dust contains the pollution characteristics for air and soil. The samples were characterized by uniform magnetic mineralogy, typical for fine-grained magnetite, in a grain size range between pseudo-single-domain and fine multi-domain, with a small contribution from ultrafine superparamagnetic particles (~2-3.5 %). The street dust contains, as usual for the urban areas, spherical magnetic particles produced by fossil fuel combustion processes and mixture of irregular angular iron-oxides grains containing other elements. The magnetic susceptibility and hysteresis properties of the dusts have been analyzed in detail; the temperature variation of the saturation of remanent magnetization and of the magnetic susceptibility revealed that the main magnetic mineral, for all the fractions, is almost stoichiometric magnetite, with the finest fractions (d=0.1 mm, 0.071 mm and d

  15. Simplification approach to detect urban areas vulnerable to flash floods using GIS: a case study Warsaw

    NASA Astrophysics Data System (ADS)

    Wicht, Marzena; Osińska-Skotak, Katarzyna

    2016-04-01

    The aim of this study is to develop a consistent methodology to determine urban areas that are particularly vulnerable to the effects of torrential rains. They are, as a result of climate change, more and more prevalent in the temperate climate, usually spring - summer from mid-May to late August - and involve the risk of flash floods. In recent years, the increase in the incidence of such phenomena is noticeable throughout the whole Europe. It is assumed that through the analysis of environmental and infrastructural conditions, using the developed methodology, it is possible to determine areas vulnerable to flooding due to torrential rains. This may lead to a better management, quicker response in case of a phenomenon, and even to take measures to prevent the occurrence of adverse effects of torrential rains (for instance modernization of the urban drainage system and development of methods to get rid of rapidly collected water). Designation of areas particularly vulnerable to the effects of heavy rains can be achieved by adapting hydrological models, but they require an appropriate adjustment and highly accurate input data: (based on spot or radar measurements of precipitation, land cover, soil type, humidity, wind speed, vegetation species in a given area, growing season, the roughness and porosity of the cover and soil moisture) but such detailed data are generally hard to obtain or not available for less developed areas. It could also be achieved by performing spatial analysis in GIS, which is a more simplified form of modelling, but it gives results more quickly and the methodology can be adapted to the commonly available data. A case study of Warsaw's district Powiśle has been undertaken for three epochs - from 2008 to 2010 and areas, that are particularly vulnerable to the effects of flash floods and heavy rains, have been designated.

  16. Micro-optics for simultaneous multi-spectral imaging applied to chemical/biological and IED detection

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    2012-06-01

    Using diffractive micro-lenses configured in an array and placed in close proximity to the focal plane array will enable a small compact simultaneous multispectral imaging camera. This approach can be applied to spectral regions from the ultraviolet (UV) to the long-wave infrared (LWIR). The number of simultaneously imaged spectral bands is determined by the number of individually configured diffractive optical micro-lenses (lenslet) in the array. Each lenslet images at a different wavelength determined by the blaze and set at the time of manufacturing based on application. In addition, modulation of the focal length of the lenslet array with piezoelectric or electro-static actuation will enable spectral band fill-in allowing hyperspectral imaging. Using the lenslet array with dual-band detectors will increase the number of simultaneous spectral images by a factor of two when utilizing multiple diffraction orders. Configurations and concept designs will be presented for detection application for biological/chemical agents, buried IED's and reconnaissance. The simultaneous detection of multiple spectral images in a single frame of data enhances the image processing capability by eliminating temporal differences between colors and enabling a handheld instrument that is insensitive to motion.

  17. [Witold Jodko-Narkiewicz (1834-1898)--the first Head of the Ophthalmic Institute in Warsaw, Poland].

    PubMed

    Grzybowski, Andrzej; Kazało, Tomasz

    2014-01-01

    Witold Jodko-Narkiewicz (1834-1898), a Polish ophthalmologist, the head of the Ophthalmic Institute in Warsaw. He studied medicine at the University of Dorpat. In 1860, he received the title of Doctor of Medicine and became the Associate Professor in 1862. His son Thomas (1864-1924)--a journalist and politician, was a friend of Jozef Pilsudski and Wladyslaw Sikorski. Witold Jodko-Narkiewicz was the author of more than 80 clinical and research works. They concerned surgical and diagnostic techniques, treatment of ocular injuries, neuro-ophthalmology, ophthalmic oncology and pharmacology. The translation of Wecker's Ophthalmology by Jodko-Narkiewicz and Gepner deserves particular attention. PMID:25906641

  18. Magneto-optical study of the intermediate state in type-I superconductors: Effects of sample shape and applied current

    SciTech Connect

    Hoberg, Jacob Ray

    2008-01-01

    The magnetic flux structures in the intermediate state of bulk, pinning-free Type-I superconductors are studied using a high resolution magneto-optical imaging technique. Unlike most previous studies, this work focuses on the pattern formation of the coexisting normal and superconducting phases in the intermediate state. The influence of various parameters such as sample shape, structure defects (pinning) and applied current are discussed in relation to two distinct topologies: flux tubes (closed topology) and laminar (open topology). Imaging and magnetization measurements performed on samples of different shapes (cones, hemispheres and slabs), show that contrary to previous beliefs, the tubular structure is the equilibrium topology, but it is unstable toward defects and flux motion. Moreover, the application of current into a sample with the geometric barrier can replace an established laminar structure with flux tubes. At very high currents, however, there exists a laminar 'stripe pattern.' Quantitative analysis of the mean tube diameter is shown to be in good agreement with the prediction proposed by Goren and Tinkham. This is the first time that this model has been confirmed experimentally. Further research into the flux tube phase shows a direct correlation with the current loop model proposed in the 1990's by Goldstein, Jackson and Dorsey. There also appears a range of flux tube density that results in a suprafroth structure, a well-formed polygonal mesh, which behaves according to the physics of foams, following standard statistical laws such as von Neumann and Lewis. The reaction of flux structures to a fast-ramped magnetic field was also studied. This provided an alignment of the structure not normally observed at slow ramp rates.

  19. Optical spectroscopy applied to the analysis of medieval and post-medieval plain flat glass fragments excavated in Belgium

    NASA Astrophysics Data System (ADS)

    Meulebroeck, W.; Wouters, H.; Baert, K.; Ceglia, A.; Terryn, H.; Nys, K.; Thienpont, H.

    2010-04-01

    Window glass fragments from four Belgian sites were studied and for a set of eighty-five samples the UV-VIS-NIR transmission spectra were analyzed. This collection contains historical and archaeological finds originating from religious buildings namely the Basilica of Our Lady of Hanswijk in Mechelen (17th-20thc) and the Church of Our Lady in Bruges (16th-20thc) as well as from secular buildings as a private house/Antwerp (18th-1948) and the castle of Middelburg-in-Flanders (1448-17thc). All sites contain material on the hinge point between the medieval and the industrial tradition. The variation in composition of the analyzed samples can be explained by the use of different glassmaking recipes, more specifically the use of different raw materials. The composition of window glass differs essentially in the type of flux, using a potash rich fluxing agent until the post-medieval times and industrial soda from the 19th century onwards. A second difference concerns the iron impurities in the glass. For all fragments a clear compositional classification could be made based on the iron concentration. These conclusions were based on archaeological research and drawn after submitting samples to expensive, complex, time-consuming and destructive chemical analyzing methods. Our study indicates that similar conclusions could be made applying the proposed optical based methodology for plain window glass. As a whole, the obtained results make it possible to cluster the fragments for a particular site based on three different sensing parameters: the UV absorption edge, the color and the presence of characteristic absorption bands. This information helps in identifying trends to date window glass collections and indicating the use of different raw materials, production technologies and/or provenance.

  20. Fractional Market Model and its Verification on the Warsaw STOCK Exchange

    NASA Astrophysics Data System (ADS)

    Kozłowska, Marzena; Kasprzak, Andrzej; Kutner, Ryszard

    We analyzed the rising and relaxation of the cusp-like local peaks superposed with oscillations which were well defined by the Warsaw Stock Exchange index WIG in a daily time horizon. We found that the falling paths of all index peaks were described by a generalized exponential function or the Mittag-Leffler (ML) one superposed with various types of oscillations. However, the rising paths (except the first one of WIG which rises exponentially and the most important last one which rises again according to the ML function) can be better described by bullish anti-bubbles or inverted bubbles.2-4 The ML function superposed with oscillations is a solution of the nonhomogeneous fractional relaxation equation which defines here our Fractional Market Model (FMM) of index dynamics which can be also called the Rheological Model of Market. This solution is a generalized analog of an exactly solvable fractional version of the Standard or Zener Solid Model of viscoelastic materials commonly used in modern rheology.5 For example, we found that the falling paths of the index can be considered to be a system in the intermediate state lying between two complex ones, defined by short and long-time limits of the Mittag-Leffler function; these limits are given by the Kohlrausch-Williams-Watts (KWW) law for the initial times, and the power-law or the Nutting law for asymptotic time. Some rising paths (i.e., the bullish anti-bubbles) are a kind of log-periodic oscillations of the market in the bullish state initiated by a crash. The peaks of the index can be viewed as precritical or precrash ones since: (i) the financial market changes its state too early from the bullish to bearish one before it reaches a scaling region (defined by the diverging power-law of return per unit time), and (ii) they are affected by a finite size effect. These features could be a reminiscence of a significant risk aversion of the investors and their finite number, respectively. However, this means that the

  1. [Epidemiologic studies of oral mucosa changes occurring in children, adolescents, and adults 13-24 years of age in Warsaw].

    PubMed

    Górska, R

    1997-01-01

    The aim of the study was the analysis of RAS occurrence in the population and a comparison to other oral mucosa lesions as well as an analysis of the influence of various factors on RAS occurrence: age, social status of the subject's, parents' education, CPITN index. In the school year 1994/95 a questionnaire concerning the frequency of RAS was distributed to children and adolescents (13-18y) from two Warsaw schools and a group of soldiers of the Polish Army serving in Warsaw. Additionally, all study participants were checked towards RAS by the use of the clinical methods according to WHO methodological guidelines. The periodontal state was measured with the CPITN index described by Ainamo. The following diseases were identified: RAS, leukoplakia, lichen planus, herpes simplex and tongue lesions. The most common declared diseases of oral mucosa was RAS, which usually occurred to patients of age below 18. Clinically the most often observed diseases were oral leukoplakia in soldiers' group and RAS in both students' groups. RAS occurs more often in students, whose parents have higher education compared with persons whose parents have primary education. Parental history of disease (cases of RAS among family members) predisposes to occurrence of RAS. Stress and exhaustion are the supporting factors of RAS incidence. Furthermore, clinical periodontal status and treatment needs may also cause the increase of RAS incidence. PMID:9411506

  2. Validation of an optical model applied to the beam down CSP facility at the Masdar Institute Solar Platform

    NASA Astrophysics Data System (ADS)

    Grange, Benjamin; Kumar, Vikas; Torres, Juliana Beltran; Perez, Victor G.; Armstrong, Peter R.; Slocum, Alexander; Calvet, Nicolas

    2016-05-01

    In the framework of the CSPonD Demo project, the optical characterization of the Beam Down Optical Experiment (BDOE) heliostats field is an important step to certify the required power is provided. To achieve this goal, an experiment involving a single heliostat is carried out. The results of the experiment and the comparison with simulated results are presented in this paper. Only the reflection on the heliostat is observed in order to have a better assessment of its optical performance. The heliostat reflectance is modified and the experimental and simulated concentration distribution are confronted. Results indicate that the shapes of the concentration distributions are quite similar, hence validating the optical model respects the geometry of the BDOE. Moreover these results lead to an increase of the optimized heliostat reflectance when the incident angle on the heliostat decreases. Further investigation is required to validate this method with all the individual heliostats of the BDOE solar field.

  3. In vivo skin absorption dynamics of topically applied pharmaceuticals monitored by fiber-optic diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Hong; Jheon, Sanghoon; Kim, Jong-Ki

    2007-03-01

    A simple non-invasive ultra-violet/visible (UV/vis) diffusive reflectance spectroscopy combined with fiber-optics was investigated to elicit the dynamics of skin penetration in vivo of a pharmaceutical, aminolevulinic acid polyethylene glycol cream (5-ALA-PEG cream). Temporal data of the reflectance, R( λ), were measured from a bare skin region and from a skin region treated with 5-ALA cream. The difference in apparent optical density [(ΔAOD) = Δ log[1/ R( λ)

  4. The low-lying states and optical absorption properties of a hydrogenic impurity in a parabolic quantum dot modulation by applied electric field

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-Hui; Zhang, Yan; Guo, Xinxia; Zhang, Jinjin; Mo, Hua

    2015-04-01

    Using the configuration-integration method, we investigated theoretically the low-lying states and optical absorption properties of a hydrogenic impurity in a parabolic quantum dot modulation by applied electric field. The low-lying states and optical absorption properties depend sensitively on the electric field F and the strength of the parabolic confinement ℏω0 . We discuss the linear and third-order nonlinear optical absorption coefficients of the dot (i) with the impurity ion and (ii) without the impurity ion. In the first case, the increase of the parabolic confinement ℏω0 (or the electric field F) can induce the blueshift (or redshift) of the peak of the absorption coefficient. Also the optical intensity can induce the increase of the third-order nonlinear optical absorption coefficients to weaken and even bleach the total optical absorption coefficients. Similar behavior has also been observed in the second case, but there is no redshift of the peak positions of the absorption coefficient with the increase of the electric field F. Compared with the second case, it is easily seen that there are the blueshifts of the peak of the absorption coefficients, which can be used as a technical means for detecting impurities.

  5. Evaluation of optical and electronic properties of silicon nano-agglomerates embedded in SRO: applying density functional theory

    PubMed Central

    2014-01-01

    In systems in atomic scale and nanoscale such as clusters or agglomerates constituted by particles from a few to less than 100 atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nanostructures display optical and electronic properties significantly different to those found in corresponding bulk materials. Silicon agglomerates embedded in silicon rich oxide (SRO) films have optical properties, which have been reported to be directly dependent on silicon nanocrystal size. Furthermore, the room temperature photoluminescence (PL) of SRO has repeatedly generated a huge interest due to its possible applications in optoelectronic devices. However, a plausible emission mechanism has not been widely accepted in the scientific community. In this work, we present a short review about the experimental results on silicon nanoclusters in SRO considering different techniques of growth. We focus mainly on their size, Raman spectra, and photoluminescence spectra. With this as background, we employed the density functional theory with a functional B3LYP and a basis set 6-31G* to calculate the optical and electronic properties of clusters of silicon (constituted by 15 to 20 silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism, experimentally found in thin SRO films. PMID:25276105

  6. Evaluation of optical and electronic properties of silicon nano-agglomerates embedded in SRO: applying density functional theory.

    PubMed

    Espinosa-Torres, Néstor D; la Luz, David Hernández-de; Flores-Gracia, José Francisco J; Luna-López, José A; Martínez-Juárez, Javier; Vázquez-Valerdi, Diana E

    2014-01-01

    In systems in atomic scale and nanoscale such as clusters or agglomerates constituted by particles from a few to less than 100 atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nanostructures display optical and electronic properties significantly different to those found in corresponding bulk materials. Silicon agglomerates embedded in silicon rich oxide (SRO) films have optical properties, which have been reported to be directly dependent on silicon nanocrystal size. Furthermore, the room temperature photoluminescence (PL) of SRO has repeatedly generated a huge interest due to its possible applications in optoelectronic devices. However, a plausible emission mechanism has not been widely accepted in the scientific community. In this work, we present a short review about the experimental results on silicon nanoclusters in SRO considering different techniques of growth. We focus mainly on their size, Raman spectra, and photoluminescence spectra. With this as background, we employed the density functional theory with a functional B3LYP and a basis set 6-31G* to calculate the optical and electronic properties of clusters of silicon (constituted by 15 to 20 silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism, experimentally found in thin SRO films. PMID:25276105

  7. A 45° saw-dicing process applied to a glass substrate for wafer-level optical splitter fabrication for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Maciel, M. J.; Costa, C. G.; Silva, M. F.; Gonçalves, S. B.; Peixoto, A. C.; Ribeiro, A. Fernando; Wolffenbuttel, R. F.; Correia, J. H.

    2016-08-01

    This paper reports on the development of a technology for the wafer-level fabrication of an optical Michelson interferometer, which is an essential component in a micro opto-electromechanical system (MOEMS) for a miniaturized optical coherence tomography (OCT) system. The MOEMS consists on a titanium dioxide/silicon dioxide dielectric beam splitter and chromium/gold micro-mirrors. These optical components are deposited on 45° tilted surfaces to allow the horizontal/vertical separation of the incident beam in the final micro-integrated system. The fabrication process consists of 45° saw dicing of a glass substrate and the subsequent deposition of dielectric multilayers and metal layers. The 45° saw dicing is fully characterized in this paper, which also includes an analysis of the roughness. The optimum process results in surfaces with a roughness of 19.76 nm (rms). The actual saw dicing process for a high-quality final surface results as a compromise between the dicing blade’s grit size (#1200) and the cutting speed (0.3 mm s‑1). The proposed wafer-level fabrication allows rapid and low-cost processing, high compactness and the possibility of wafer-level alignment/assembly with other optical micro components for OCT integrated imaging.

  8. SITHON: A Wireless Network of in Situ Optical Cameras Applied to the Early Detection-Notification-Monitoring of Forest Fires

    PubMed Central

    Tsiourlis, Georgios; Andreadakis, Stamatis; Konstantinidis, Pavlos

    2009-01-01

    The SITHON system, a fully wireless optical imaging system, integrating a network of in-situ optical cameras linking to a multi-layer GIS database operated by Control Operating Centres, has been developed in response to the need for early detection, notification and monitoring of forest fires. This article presents in detail the architecture and the components of SITHON, and demonstrates the first encouraging results of an experimental test with small controlled fires over Sithonia Peninsula in Northern Greece. The system has already been scheduled to be installed in some fire prone areas of Greece. PMID:22408536

  9. The use of copula functions for modeling the risk of investment in shares traded on the Warsaw Stock Exchange

    NASA Astrophysics Data System (ADS)

    Domino, Krzysztof; Błachowicz, Tomasz

    2014-11-01

    In our work copula functions and the Hurst exponent calculated using the local Detrended Fluctuation Analysis (DFA) were used to investigate the risk of investment made in shares traded on the Warsaw Stock Exchange. The combination of copula functions and the Hurst exponent calculated using local DFA is a new approach. For copula function analysis bivariate variables composed of shares prices of the PEKAO bank (a big bank with high capitalization) and other banks (PKOBP, BZ WBK, MBANK and HANDLOWY in decreasing capitalization order) and companies from other branches (KGHM-mining industry, PKNORLEN-petrol industry as well as ASSECO-software industry) were used. Hurst exponents were calculated for daily shares prices and used to predict high drops of those prices. It appeared to be a valuable indicator in the copula selection procedure, since Hurst exponent’s low values were pointing on heavily tailed copulas e.g. the Clayton one.

  10. Be Healthy as a Fish Educational Program at the International Institute of Molecular and Cell Biology in Warsaw, Poland.

    PubMed

    Goś, Daria; Szymańska, Ewelina; Białek-Wyrzykowska, Urszula; Wiweger, Małgorzata; Kuźnicki, Jacek

    2016-08-01

    The purpose of the Be Healthy as a Fish educational program that is organized by the International Institute of Molecular and Cell Biology (IIMCB) in Warsaw, Poland, is to educate children about the ways in which zebrafish can be used as a model organism to help scientists understand the way the human body works. We introduce Be Healthy as a Fish workshops to children in fourth to sixth grades of primary school (9-11 years old), together with two kinds of materials under the same title: a book and a movie. We focus on the field of biology in a way that complements the children's classroom curriculum and encourages them to broaden their interests in biology in the future. The Be Healthy as a Fish educational program was inaugurated in 2014 at the Warsaw Science Festival. As of October 31, 2015, 526 primary school students participated in 27 workshops. Approximately 2000 people have received the book and nearly 1700 people have watched the movie. Be Healthy as a Fish: Origin of the Title There is a popular saying in Poland that someone is "healthy as a fish" meaning that one enjoys good health. Does this imply that fish are really that healthy? Obviously, some fish may not be healthy. Just like other animals and humans, they can and do get sick. However, this common and deceptive impression of "healthy fish" results from the fact that people hardly ever have an opportunity to observe a fish that is sick. Why does our educational program have such a possibly misleading title that may not always be true? We took advantage of this provocative title and commonly known expression and assigned to it a completely new meaning: fish can get sick, but they are important for human health. Notably, this catchy sentence intrinsically combines two keywords-health and fish-which, in our opinion, makes it a good title for a successful educational program. PMID:27028803

  11. Be Healthy as a Fish Educational Program at the International Institute of Molecular and Cell Biology in Warsaw, Poland

    PubMed Central

    Szymańska, Ewelina; Białek-Wyrzykowska, Urszula; Wiweger, Małgorzata; Kuźnicki, Jacek

    2016-01-01

    Abstract The purpose of the Be Healthy as a Fish educational program that is organized by the International Institute of Molecular and Cell Biology (IIMCB) in Warsaw, Poland, is to educate children about the ways in which zebrafish can be used as a model organism to help scientists understand the way the human body works. We introduce Be Healthy as a Fish workshops to children in fourth to sixth grades of primary school (9–11 years old), together with two kinds of materials under the same title: a book and a movie. We focus on the field of biology in a way that complements the children's classroom curriculum and encourages them to broaden their interests in biology in the future. The Be Healthy as a Fish educational program was inaugurated in 2014 at the Warsaw Science Festival. As of October 31, 2015, 526 primary school students participated in 27 workshops. Approximately 2000 people have received the book and nearly 1700 people have watched the movie. Be Healthy as a Fish: Origin of the Title There is a popular saying in Poland that someone is “healthy as a fish” meaning that one enjoys good health. Does this imply that fish are really that healthy? Obviously, some fish may not be healthy. Just like other animals and humans, they can and do get sick. However, this common and deceptive impression of “healthy fish” results from the fact that people hardly ever have an opportunity to observe a fish that is sick. Why does our educational program have such a possibly misleading title that may not always be true? We took advantage of this provocative title and commonly known expression and assigned to it a completely new meaning: fish can get sick, but they are important for human health. Notably, this catchy sentence intrinsically combines two keywords—health and fish—which, in our opinion, makes it a good title for a successful educational program. PMID:27028803

  12. Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters

    NASA Astrophysics Data System (ADS)

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei; Wang, Ruikang K.

    2013-08-01

    Lymphatic vessels are a part of the circulatory system that collect plasma and other substances that have leaked from the capillaries into interstitial fluid (lymph) and transport lymph back to the circulatory system. Since lymph is transparent, lymphatic vessels appear as dark hallow vessel-like regions in optical coherence tomography (OCT) cross sectional images. We propose an automatic method to segment lymphatic vessel lumen from OCT structural cross sections using eigenvalues of Hessian filters. Compared to the existing method based on intensity threshold, Hessian filters are more selective on vessel shape and less sensitive to intensity variations and noise. Using this segmentation technique along with optical micro-angiography allows label-free noninvasive simultaneous visualization of blood and lymphatic vessels in vivo. Lymphatic vessels play an important role in cancer, immune system response, inflammatory disease, wound healing and tissue regeneration. Development of imaging techniques and visualization tools for lymphatic vessels is valuable in understanding the mechanisms and studying therapeutic methods in related disease and tissue response.

  13. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure

    PubMed Central

    2012-01-01

    The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  14. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure.

    PubMed

    Barseghyan, Manuk G; Restrepo, Ricardo L; Mora-Ramos, Miguel E; Kirakosyan, Albert A; Duque, Carlos A

    2012-01-01

    : The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  15. Development of feature extraction analysis for a multi-functional optical profiling device applied to field engineering applications

    NASA Astrophysics Data System (ADS)

    Han, Xu; Xie, Guangping; Laflen, Brandon; Jia, Ming; Song, Guiju; Harding, Kevin G.

    2015-05-01

    In the real application environment of field engineering, a large variety of metrology tools are required by the technician to inspect part profile features. However, some of these tools are burdensome and only address a sole application or measurement. In other cases, standard tools lack the capability of accessing irregular profile features. Customers of field engineering want the next generation metrology devices to have the ability to replace the many current tools with one single device. This paper will describe a method based on the ring optical gage concept to the measurement of numerous kinds of profile features useful for the field technician. The ring optical system is composed of a collimated laser, a conical mirror and a CCD camera. To be useful for a wide range of applications, the ring optical system requires profile feature extraction algorithms and data manipulation directed toward real world applications in field operation. The paper will discuss such practical applications as measuring the non-ideal round hole with both off-centered and oblique axes. The algorithms needed to analyze other features such as measuring the width of gaps, radius of transition fillets, fall of step surfaces, and surface parallelism will also be discussed in this paper. With the assistance of image processing and geometric algorithms, these features can be extracted with a reasonable performance. Tailoring the feature extraction analysis to this specific gage offers the potential for a wider application base beyond simple inner diameter measurements. The paper will present experimental results that are compared with standard gages to prove the performance and feasibility of the analysis in real world field engineering. Potential accuracy improvement methods, a new dual ring design and future work will be discussed at the end of this paper.

  16. Poled Silica/DR1 Films with Thermally Stability and Large Electro-Optic Coefficient Applying in External Probe Tip

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Fei; Hou, A.-Lin; Liu, Yun-Tao; Zhang, Da-Ming; Chuai, Xiao-Hong; Yi, Mao-Bin; Sun, Wei

    2006-06-01

    Sol-gel-processed silica films doped with Disperse Red 1(DR1) were prepared at 80°C aging temperature and 120°C baking temperature with corona poling to obtain stable and large electro-optic (EO) coefficient and film strength. A large EO coefficient of γ33 = 56 pm/V was measured for the film of 0.5-μm thickness at the wavelength of 1300 nm, and the value was unvaried at room temperature. Moreover, an external EO probe tip using the film was fabricated for the first time, and a signal voltage level corresponding to the EO signal was calibrated successfully.

  17. Influence of applied electric fields on the electron-related second and third-order nonlinear optical responses in two dimensional elliptic quantum dots

    NASA Astrophysics Data System (ADS)

    Giraldo-Tobón, Eugenio; Ospina, Walter; Miranda-Pedraza, Guillermo L.; Mora-Ramos, Miguel E.

    2015-07-01

    The coefficients of the second-order nonlinear optical rectification and the generation of second and third harmonics, related to electron energy transitions in a two-dimensional elliptical quantum dot are calculated. The conduction band states are obtained using the finite element method to numerically solve the effective mass Schrödinger differential equation in the parabolic approximation, including the influence of an externally applied static electric field. It comes about that the geometry of the ellipse has a strong influence on the optical response, being the large eccentricity case the more favorable one. Furthermore, it is shown that the application of an electric field is of most importance for achieving well-resolved higher harmonics signals.

  18. Langley method applied in study of aerosol optical depth in the Brazilian semiarid region using 500, 670 and 870 nm bands for sun photometer calibration

    NASA Astrophysics Data System (ADS)

    Cerqueira, J. G.; Fernandez, J. H.; Hoelzemann, J. J.; Leme, N. M. P.; Sousa, C. T.

    2014-10-01

    Due to the high costs of commercial monitoring instruments, a portable sun photometer was developed at INPE/CRN laboratories, operating in four bands, with two bands in the visible spectrum and two in near infrared. The instrument calibration process is performed by applying the classical Langley method. Application of the Langley’s methodology requires a site with high optical stability during the measurements, which is usually found in high altitudes. However, far from being an ideal site, Harrison et al. (1994) report success with applying the Langley method to some data for a site in Boulder, Colorado. Recently, Liu et al. (2011) show that low elevation sites, far away from urban and industrial centers can provide a stable optical depth, similar to high altitudes. In this study we investigated the feasibility of applying the methodology in the semiarid region of northeastern Brazil, far away from pollution areas with low altitudes, for sun photometer calibration. We investigated optical depth stability using two periods of measurements in the year during dry season in austral summer. The first one was in December when the native vegetation naturally dries, losing all its leaves and the second one was in September in the middle of the dry season when the vegetation is still with leaves. The data were distributed during four days in December 2012 and four days in September 2013 totaling eleven half days of collections between mornings and afternoons and by means of fitted line to the data V0 values were found. Despite the high correlation between the collected data and the fitted line, the study showed a variation between the values of V0 greater than allowed for sun photometer calibration. The lowest V0 variation reached in this experiment with values lower than 3% for the bands 500, 670 and 870 nm are displayed in tables. The results indicate that the site needs to be better characterized with studies in more favorable periods, soon after the rainy season.

  19. The influence of applied magnetic fields on the optical properties of zero- and one-dimensional CdSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Blumling, Daniel E.; McGill, Stephen; Knappenberger, Kenneth L.

    2013-09-01

    Shape-dependent exciton relaxation dynamics of CdSe 0-D nanocrystals and 1-D nanorods were studied using low-temperature (4.2 K), time-resolved and intensity-integrated magneto-photoluminscence (MPL) spectroscopy. Analysis of the average MPL rate constants from several different nanocrystal quantum dots and rods excited by 400 nm light in applied magnetic fields up to 17.5 T revealed size-dependent energy gaps separating bright and dark exciton fine-structure states. For 1-D nanorods under strong cross-sectional confinement and large length-to-diameter aspect ratios, efficient mixing of bright and dark exciton states was achieved using relatively low applied field strengths (<=4 T). The effect was attributed, in part, to decreased confinement of CdSe hole states associated with the long axis of the nanorod, which resulted in reduction of the energy gaps separating the bright and dark states. Increased control over the angle formed between the applied field vectors and the nanocrystal c-axis led to more efficient and uniform mixing of nanorod exciton states than for quantum dots. The findings suggest 1-D nanostructures are advantageous over 0-D ones for field-responsive applications.Shape-dependent exciton relaxation dynamics of CdSe 0-D nanocrystals and 1-D nanorods were studied using low-temperature (4.2 K), time-resolved and intensity-integrated magneto-photoluminscence (MPL) spectroscopy. Analysis of the average MPL rate constants from several different nanocrystal quantum dots and rods excited by 400 nm light in applied magnetic fields up to 17.5 T revealed size-dependent energy gaps separating bright and dark exciton fine-structure states. For 1-D nanorods under strong cross-sectional confinement and large length-to-diameter aspect ratios, efficient mixing of bright and dark exciton states was achieved using relatively low applied field strengths (<=4 T). The effect was attributed, in part, to decreased confinement of CdSe hole states associated with the long

  20. A Comprehensive Dust Model Applied to the Resolved Beta Pictoris Debris Disk from Optical to Radio Wavelengths

    NASA Astrophysics Data System (ADS)

    Ballering, Nicholas P.; Su, Kate Y. L.; Rieke, George H.; Gáspár, András

    2016-06-01

    We investigate whether varying the dust composition (described by the optical constants) can solve a persistent problem in debris disk modeling—the inability to fit the thermal emission without overpredicting the scattered light. We model five images of the β Pictoris disk: two in scattered light from the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph at 0.58 μm and HST/Wide Field Camera 3 (WFC 3) at 1.16 μm, and three in thermal emission from Spitzer/Multiband Imaging Photometer for Spitzer (MIPS) at 24 μm, Herschel/PACS at 70 μm, and Atacama Large Millimeter/submillimeter Array at 870 μm. The WFC3 and MIPS data are published here for the first time. We focus our modeling on the outer part of this disk, consisting of a parent body ring and a halo of small grains. First, we confirm that a model using astronomical silicates cannot simultaneously fit the thermal and scattered light data. Next, we use a simple generic function for the optical constants to show that varying the dust composition can improve the fit substantially. Finally, we model the dust as a mixture of the most plausible debris constituents: astronomical silicates, water ice, organic refractory material, and vacuum. We achieve a good fit to all data sets with grains composed predominantly of silicates and organics, while ice and vacuum are, at most, present in small amounts. This composition is similar to one derived from previous work on the HR 4796A disk. Our model also fits the thermal spectral energy distribution, scattered light colors, and high-resolution mid-IR data from T-ReCS for this disk. Additionally, we show that sub-blowout grains are a necessary component of the halo.

  1. Magneto-optical controlled transmittance alteration of PbS quantum dots by moderately applied magnetic fields at room temperature

    SciTech Connect

    Singh, Akhilesh K.; Barik, Puspendu; Ullrich, Bruno E-mail: bruno.ullrich@yahoo.com

    2014-12-15

    We observed changes of the transmitted monochromatic light passing through a colloidal PbS quantum dot film on glass owing to an applied moderate (smaller than 1 T) magnetic field under ambient conditions. The observed alterations show a square dependence on the magnetic field increase that cannot be achieved with bulk semiconductors. The findings point to so far not recognized application potentials of quantum dots.

  2. PLASMA-2013: International Conference on Research and Applications of Plasmas (Warsaw, Poland, 2-6 September 2013)

    NASA Astrophysics Data System (ADS)

    Sadowski, Marek J.

    2014-05-01

    The PLASMA-2013 International Conference on Research and Applications of Plasmas was held in Warsaw (Poland) from 2 to 6 September 2013. The conference was organized by the Institute of Plasma Physics and Laser Microfusion, under the auspices of the Polish Physical Society. The scope of the PLASMA conferences, which have been organized every two years since 1993, covers almost all issues of plasma physics and fusion research as well as selected problems of plasma technology. The PLASMA-2013 conference topics included: •Elementary processes and general plasma physics. •Plasmas in tokamaks and stellarators (magnetic confinement fusion). •Plasmas generated by laser beams and inertial confinement fusion. •Plasmas produced by Z-pinch and plasma-focus discharges. •Low-temperature plasma physics. •Space plasmas and laboratory astrophysics. •Plasma diagnostic methods and applications of plasmas. This conference was designed not only for plasma researchers and engineers, but also for students from all over the world, in particular for those from Central and Eastern Europe. Almost 140 participants had the opportunity to hear 9 general lectures, 11 topical talks and 26 oral presentations, as well as to see and discuss around 120 posters. From about 140 contributions, after the preparation of about 100 papers and the peer review process, only 74 papers have been accepted for publication in this topical issue. Acknowledgments Acting on behalf of the International Scientific Committee I would like to express our thanks to all the invited speakers and all the participants of the PLASMA-2013 conference for their numerous contributions. In particular, I wish to thank all of the authors of papers submitted for publication in this topical issue of Physica Scripta . Particular thanks are due to all of the reviewers for their valuable reports and comments, which helped to improve the quality of many of the papers. International Scientific Committee Marek J Sadowski, NCBJ

  3. Full-field optical deformation measurement in biomechanics: digital speckle pattern interferometry and 3D digital image correlation applied to bird beaks.

    PubMed

    Soons, Joris; Lava, Pascal; Debruyne, Dimitri; Dirckx, Joris

    2012-10-01

    In this paper two easy-to-use optical setups for the validation of biomechanical finite element (FE) models are presented. First, we show an easy-to-build Michelson digital speckle pattern interferometer (DSPI) setup, yielding the out-of-plane displacement. We also introduce three-dimensional digital image correlation (3D-DIC), a stereo photogrammetric technique. Both techniques are non-contact and full field, but they differ in nature and have different magnitudes of sensitivity. In this paper we successfully apply both techniques to validate a multi-layered FE model of a small bird beak, a strong but very light biological composite. DSPI can measure very small deformations, with potentially high signal-to-noise ratios. Its high sensitivity, however, results in high stability requirements and makes it hard to use it outside an optical laboratory and on living samples. In addition, large loads have to be divided into small incremental load steps to avoid phase unwrapping errors and speckle de-correlation. 3D-DIC needs much larger displacements, but automatically yields the strains. It is more flexible, does not have stability requirements, and can easily be used as an optical strain gage. PMID:23026697

  4. Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke

    NASA Astrophysics Data System (ADS)

    Steinkellner, Oliver; Gruber, Clemens; Wabnitz, Heidrun; Jelzow, Alexander; Steinbrink, Jens; Fiebach, Jochen B.; MacDonald, Rainer; Obrig, Hellmuth

    2010-11-01

    We present results of a clinical study on bedside perfusion monitoring of the human brain by optical bolus tracking. We measure the kinetics of the contrast agent indocyanine green using time-domain near-IR spectroscopy (tdNIRS) in 10 patients suffering from acute unilateral ischemic stroke. In all patients, a delay of the bolus over the affected when compared to the unaffected hemisphere is found (mean: 1.5 s, range: 0.2 s to 5.2 s). A portable time-domain near-IR reflectometer is optimized and approved for clinical studies. Data analysis based on statistical moments of time-of-flight distributions of diffusely reflected photons enables high sensitivity to intracerebral changes in bolus kinetics. Since the second centralized moment, variance, is preferentially sensitive to deep absorption changes, it provides a suitable representation of the cerebral signals relevant for perfusion monitoring in stroke. We show that variance-based bolus tracking is also less susceptible to motion artifacts, which often occur in severely affected patients. We present data that clearly manifest the applicability of the tdNIRS approach to assess cerebral perfusion in acute stroke patients at the bedside. This may be of high relevance to its introduction as a monitoring tool on stroke units.

  5. 2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci

    NASA Astrophysics Data System (ADS)

    Fontana, R.; Gambino, M. C.; Greco, M.; Marras, L.; Materazzi, M.; Pampaloni, E.; Pelagotti, A.; Pezzati, L.; Poggi, P.; Sanapo, C.

    2005-06-01

    3D measurement and modelling have been traditionally applied to statues, buildings, archeological sites or similar large structures, but rarely to paintings. Recently, however, 3D measurements have been performed successfully also on easel paintings, allowing to detect and document the painting's surface. We used 3D models to integrate the results of various 2D imaging techniques on a common reference frame. These applications show how the 3D shape information, complemented with 2D colour maps as well as with other types of sensory data, provide the most interesting information. The 3D data acquisition was carried out by means of two devices: a high-resolution laser micro-profilometer, composed of a commercial distance meter mounted on a scanning device, and a laser-line scanner. The 2D data acquisitions were carried out using a scanning device for simultaneous RGB colour imaging and IR reflectography, and a UV fluorescence multispectral image acquisition system. We present here the results of the techniques described, applied to the analysis of an important painting of the Italian Reinassance: `Madonna dei Fusi', attributed to Leonardo da Vinci.

  6. Development and Test of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration

    SciTech Connect

    Paulsson, Bjorn N.P.

    2015-02-28

    To address the critical site characterization and monitoring needs for CCS programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2010 a contract to design, build and test a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor pod design and most important – a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.3 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The fibers used for the seismic sensors in the system are used to record Distributed Temperature Sensor (DTS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.

  7. [THE PROFESSORS OF THE NATIONAL MUSEUM OF NATURAL HISTORY AND THE SOCIETY OF THE FRIENDS OF THE SCIENCES OF WARSAW (1800-1832)].

    PubMed

    Daszkiewicz, Piotr

    2015-01-01

    The National Museum of Natural History played a crucial role in the formation of Polish scientific elites in the 19th century. Many Polish students were attending in Paris natural history, botany, zoology, chemistry and mineralogy courses. The Warsaw Society of Friends of Learning was the largest scientific society and one of the most important scientific institutions in Poland. It had also an impact on the political and cultural life of the country, occupied and deprived of freedom at that time. Amongst its founders and members, could be found listeners to the lectures of Lamarck, Haüy, Vauquelin, Desfontaines, Jussieu. Moreover, seven professors of the National Museum of Natural History were elected foreign members of the Warsaw Society of Friends of Learning: Cuvier, Desfontaines, Haüy, Jussieu, Latreille, Mirbel, Vauquelin. The article analyses this choice and underlines the relationship between these scientists and Warsaw's scientists. The results of this research allow to confirm that the National Museum of Natural History was the most important foreign institution in the 19th century for Polish science, and more specifically natural sciences. PMID:27071294

  8. Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders

    NASA Astrophysics Data System (ADS)

    Kilicaslan, A.; Levasseur, O.; Roy-Garofano, V.; Profili, J.; Moisan, M.; Côté, C.; Sarkissian, A.; Stafford, L.

    2014-03-01

    An atmospheric-pressure plasma sustained by an electromagnetic surface wave (SW) in the microwave regime combined with a bubbler/flash evaporator for the injection of liquid precursors was used to produce organosilicon and organotitanium nanopowders. Following the addition of hexamethyldisiloxane (HMDSO) vapors in the nominally pure argon plasma, optical emission spectra revealed the apparition of strong C2 molecular bands along with Si and Balmer H emission lines. Such features were not observed in our atmospheric-pressure Ar/HMDSO discharges controlled by dielectric barriers, indicating that microwave plasmas are characterized by much higher fragmentation levels of the precursors due to much higher electron densities. Emission spectra from the Ar/HMDSO SW plasma further showed a high-intensity continuum, the intensity of which decreased with time as powders started to form on the discharge tube walls. In presence of titanium isopropoxide (TTIP) vapors in the nominally pure Ar plasma, the emission was dominated by Ar and Ti lines, with no trace of carbon and no continuum. Fourier-Transform Infrared (FTIR) Spectroscopy of the powders formed in Ar/HMDSO plasmas showed very strong Si-(CH3)x and O-Si-(CH3)x bands, which is consistent with the formation of silicon oxycarbide. Transmission Electron Microscopy (TEM) further showed tube and sheet-like nanofeatures as well as larger structures consisting of agglomerated primary clusters. On the other hand, introduction of O2 in Ar/HMDSO plasmas produced only round-like nanoparticles with strong Si-O-Si bands and no trace of carbon, consistent with the formation of SiOx. The average size of the silica nanoparticles was 50 nm. FTIR spectra of powders formed in Ar/TTIP plasmas showed strong Ti-O signals, even without the addition of O2 in the gas phase. Corresponding TEM analysis showed nano- and agglomerated features comparable to those obtained in Ar/HMDSO although the average size of the titanate nanoparticles was smaller

  9. Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders

    SciTech Connect

    Kilicaslan, A.; Levasseur, O.; Roy-Garofano, V.; Profili, J.; Moisan, M.; Stafford, L.; Côté, C.; Sarkissian, A.

    2014-03-21

    An atmospheric-pressure plasma sustained by an electromagnetic surface wave (SW) in the microwave regime combined with a bubbler/flash evaporator for the injection of liquid precursors was used to produce organosilicon and organotitanium nanopowders. Following the addition of hexamethyldisiloxane (HMDSO) vapors in the nominally pure argon plasma, optical emission spectra revealed the apparition of strong C{sub 2} molecular bands along with Si and Balmer H emission lines. Such features were not observed in our atmospheric-pressure Ar/HMDSO discharges controlled by dielectric barriers, indicating that microwave plasmas are characterized by much higher fragmentation levels of the precursors due to much higher electron densities. Emission spectra from the Ar/HMDSO SW plasma further showed a high-intensity continuum, the intensity of which decreased with time as powders started to form on the discharge tube walls. In presence of titanium isopropoxide (TTIP) vapors in the nominally pure Ar plasma, the emission was dominated by Ar and Ti lines, with no trace of carbon and no continuum. Fourier-Transform Infrared (FTIR) Spectroscopy of the powders formed in Ar/HMDSO plasmas showed very strong Si-(CH{sub 3}){sub x} and O-Si-(CH{sub 3}){sub x} bands, which is consistent with the formation of silicon oxycarbide. Transmission Electron Microscopy (TEM) further showed tube and sheet-like nanofeatures as well as larger structures consisting of agglomerated primary clusters. On the other hand, introduction of O{sub 2} in Ar/HMDSO plasmas produced only round-like nanoparticles with strong Si-O-Si bands and no trace of carbon, consistent with the formation of SiO{sub x}. The average size of the silica nanoparticles was 50 nm. FTIR spectra of powders formed in Ar/TTIP plasmas showed strong Ti-O signals, even without the addition of O{sub 2} in the gas phase. Corresponding TEM analysis showed nano- and agglomerated features comparable to those obtained in Ar/HMDSO although the

  10. Stability conditions of the Vistula Valley attained by a multivariate approach - a case study from the Warsaw Southern Ring Road

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Łukasz; Dobak, Paweł

    2015-12-01

    Localised landslide activity has been observed in the area of the plateau slope analysed, in the vicinity of the planned Warsaw Southern Ring Road. Using calculation models quantitative and qualitative evaluations of the impact of natural and anthropogenic load factors on slope stability (and hence, safety) are made. The present paper defines six stages of slope stability analysis, leading to an indication of optimum slope design in relation to the development planned. The proposed procedure produces a ranking of factors that affect slope stability. In the engineering geological conditions under consideration, the greatest factors impacting degradation and failure of slope stability are changes in soil strength due to local, periodic yielding and the presence of dynamic loads generated by intensification of road traffic. Calculation models were used to assess the impact of destabilisation factors and to obtain mutual equivalence with 3D-visualisation relations. Based on this methodology, various scenarios dedicated to specific engineering geological conditions can be developed and rapid stability evaluations of changing slope loads can be performed.

  11. Impact of selected personal factors on seasonal variability of recreationist weather perceptions and preferences in Warsaw (Poland)

    NASA Astrophysics Data System (ADS)

    Lindner-Cendrowska, Katarzyna; Błażejczyk, Krzysztof

    2016-08-01

    Weather and climate are important natural resources for tourism and recreation, although sometimes they can make outdoor leisure activities less satisfying or even impossible. The aim of this work was to determine weather perception seasonal variability of people staying outdoors in urban environment for tourism and recreation, as well as to determine if personal factors influence estimation of recreationist actual biometeorological conditions and personal expectations towards weather elements. To investigate how human thermal sensations vary upon meteorological conditions typical for temperate climate, weather perception field researches were conducted in Warsaw (Poland) in all seasons. Urban recreationists' preference for slightly warm thermal conditions, sunny, windless and cloudless weather, were identified as well as PET values considered to be optimal for sightseeing were defined between 27.3 and 31.7 °C. The results confirmed existence of phenomena called alliesthesia, which manifested in divergent thermal perception of comparable biometeorological conditions in transitional seasons. The results suggest that recreationist thermal sensations differed from other interviewees' responses and were affected not only by physiological processes but they were also conditioned by psychological factors (i.e. attitude, expectations). Significant impact of respondents' place of origin and its climate on creating thermal sensations and preferences was observed. Sex and age influence thermal preferences, whereas state of acclimatization is related with thermal sensations to some point.

  12. Analysis of Deformations of the Skylight Construction at the Main Hall of the Warsaw University of Technology

    NASA Astrophysics Data System (ADS)

    Odziemczyk, Waldemar

    2015-02-01

    The paper presents technology and results of measurements of the steel construction of the skylight of the Main Hall of the Warsaw University of Technology. The new version of the automated measuring system has been used for measurements. This system is based on Leica TCRP1201+ total station and the TCcalc1200 software application, developed by the author, which operates on a laptop computer connected with the total station by the wire. Two test measurements were performed. Each of them consisted of cyclic measurement using the polar method, from one station; points located on the skylight construction, as well as control points located on concrete, bearing poles, were successively measured. Besides geometrical values (such as Hz, V angles and the slope distance D), the changes of temperature and atmospheric pressure, were also recorded. Processed results of measurements contained information concerning the behaviour of the skylight; asymmetry of horizontal displacements with respect to the X axis have been proved. Changes of parameters of the instrument telescope and changes of the instrument orientation were also stated; they were connected with changes of the temperature. The most important results of works have been presented in the form of diagrams.

  13. Geostatistical study of spatial correlations of lead and zinc concentration in urban reservoir. Study case Czerniakowskie Lake, Warsaw, Poland

    NASA Astrophysics Data System (ADS)

    Fabijańczyk, Piotr; Zawadzki, Jarosław; Wojtkowska, Małgorzata

    2016-07-01

    The article presents detailed geostatistical analysis of spatial distribution of lead and zinc concentration in water, suspension and bottom sediments of large, urban lake exposed to intensive anthropogenic pressure within a large city. Systematic chemical measurements were performed at eleven cross-sections located along Czerniakowskie Lake, the largest lake in Warsaw, the capital of Poland. During the summer, the lake is used as a public bathing area, therefore, to better evaluate human impacts, field measurements were carried out in high-use seasons. It was found that the spatial distributions of aqueous lead and zinc differ during the summer and autumn. In summer several Pb and Zn hot-spots were observed, while during autumn spatial distributions of Pb and Zn were rather homogenous throughout the entire lake. Large seasonal differences in spatial distributions of Pb and Zn were found in bottom sediments. Autumn concentrations of both heavy metals were ten times higher in comparison with summer values. Clear cross-correlations of Pb and Zn concentrations in water, suspension and bottom sediments suggest that both Pb and Zn came to Czerniakowskie Lake from the same source.

  14. [The problems of food adulteration in the publications of a Warsaw pharmacist Alfons Bukowski (1858-1921)].

    PubMed

    Trojanowska, Anna

    2014-01-01

    In the second half of the 19th century, the economic changes, industrial development and migration of the population from rural to urban areas in Europe, there was an increasing demand for cheap foodstuffs, which contributed to the growth of mass food production, as well as to the increase in adulteration of foodstuffs. In the Kingdom of Poland, the research on this problem was conducted by a Warsaw pharmacist and chemist, Alfons Bukowski (1858-1921), the author of the first Polish textbook on bromatology Podrqcznik do badania pokarmów (1884) ("A manual for food testing"). The methods and results of his research were published in magazines, among others, in "WiadomoSci Farmaceutyczne" ("Pharmasist News"), "Zdrowie" ("The Health") and "Czasopisma Towarzystwa Aptekarskiego" ("Journals of the Pharmasist Association"). He paid attention to the social noxiousness of the adulterations, indicating that it is especially the poor people, who buy the cheapest products that are particularly vulnerable to adulteration of foodstuffs. In this paper, there have been presented selected issues related to adulteratibn of food products, issues to which Bukowski paid particular attention, and which were significantly affected by contemporary development of food chemistry, among other the development of methods of chemical and microscopic analysis and the generation of new surrogates, which replaced the natural food products. PMID:25675731

  15. Applying the data fusion method to evaluation of the performance of two control signals in monitoring polarization mode dispersion effects in fiber optic links

    NASA Astrophysics Data System (ADS)

    Dashtbani Moghari, M.; Rezaei, P.; Habibalahi, A.

    2015-02-01

    With increasing distance and bit rate in fiber optic links the effects of polarization mode dispersion (PMD) have been highlighted. Since PMD has a statistical nature, using a control signal that can provide accurate information to dynamically tune a PMD compensator is of great importance. In this paper, we apply the data fusion method with the aim of introducing a method that can be used to evaluate more accurately the performance of control signals before applying them in a PMD compensation system. Firstly, the minimum and average degree of polarization (DOP_min and DOP_ave respectively) as control signals in monitoring differential group delay (DGD) for a system including all-order PMD are calculated. Then, features including the amounts of sensitivity and ambiguity in DGD monitoring are calculated for NRZ data format as DGD to bit time (DGD/T) varies. It is shown that each of the control signals mentioned has both positive and negative features for efficient DGD monitoring. Therefore, in order to evaluate features concurrently and increase reliability, we employ data fusion to fuse features of each control signal, which makes evaluating and predicting the performance of control signals possible, before applying them in a real PMD compensation system. Finally, the reliability of the results obtained from data fusion is tested in a typical PMD compensator.

  16. Cooperative transients in inter-atomic correlation in the presence of an externally applied coherent field - Relation to intrinsic mirrorless optical bistability

    NASA Astrophysics Data System (ADS)

    Bowden, C. M.; Sung, C. C.

    1982-08-01

    The model presented earlier (Bowden and Sung, 1979), which predicts the circumstances under which intrinsic mirrorless optical bistability (OB) can occur due to atomic pair correlation in a small volume, is outlined and the results presented. These results, which predict a first-order phase transition in steady state for an externally driven collection of a large number of atoms far removed from thermodynamic equilibrium, form the motivation for a detailed microscopic examination of the dynamical behavior of atomic pair correlation in the presence of externally applied coherent radiation. A model is presented and results are discussed for the transient dynamic evolution of two two-level atoms separated from each other by a distance r in the presence of an externally applied coherent radiation field. The results predict collective radiation reaction, frequency shifts, relaxation in terms of the atomic separation r (assumed much larger than single atom dimensions), the externally applied field intensity and spacial uniformity of the field with respect to the inter-atomic volume.

  17. Investigation of magnetically smart films applied to correct the surface profile of light weight X-ray optics in two directions

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoli; Yao, Youwei; Cao, Jian; Vaynman, Semyon; Graham, Michael E.; Liu, Tianchen; Ulmer, M. P.

    2015-09-01

    Our goal is to improve initially fabricated X-ray optics figures by applying a magnetic field to drive a magnetic smart material (MSM) coating on the non-reflecting side of the mirror. The consequent deformation of the surface should be three-dimensional. Here we will report on the results of working with a glass sample of 50x50x0.2 mm that has been coated with MSMs. The coated glass can be deformed in 3 dimensions and its surface profile was measured under our Zygo NewView white light interferometer (WLI). The driving magnetic field was produced via a pseudo-magnetic write head made up of two permanent magnet posts. The magnet posts were moved about the bottom of the glass sample with a 3-d computer controlled translation stage. The system allowed four degrees of freedom of motion, i.e., up and down, side to side, back and forth, and rotation of the posts (3.175 mm diameter) about the vertical axis to allow us to change the orientation of the magnetic field in the (horizontal) plane of the sample. We established a finite element analysis (FEA) model to predict deformations and compare with the observed results in order to guide the application of the magnetically controlled MSMs to improve the future X-ray optics figures.

  18. Laser induced breakdown spectroscopy (LIBS) applied to stratigrafic elemental analysis and optical coherence tomography (OCT) to damage determination of cultural heritage Brazilian coins

    NASA Astrophysics Data System (ADS)

    M. Amaral, Marcello; Raele, Marcus P.; Z. de Freitas, Anderson; Zahn, Guilherme S.; Samad, Ricardo E.; D. Vieira, Nilson, Jr.; G. Tarelho, Luiz V.

    2009-07-01

    This work presents a compositional characterization of 1939's Thousand "Réis" and 1945's One "Cruzeiro" Brazilian coins, forged on aluminum bronze alloy. The coins were irradiated by a Q-switched Nd:YAG laser with 4 ns pulse width and energy of 25mJ emitting at 1064nm reaching 3.1010Wcm-2 (assured condition for stoichiometric ablation), forming a plasma in a small fraction of the coin. Plasma emission was collected by an optical fiber system connected to an Echelle spectrometer. The capability of LIBS to remove small fraction of material was exploited and the coins were analyzed ablating layer by layer from patina to the bulk. The experimental conditions to assure reproductivity were determined by evaluation of three plasma paramethers: ionization temperature using Saha-Boltzmann plot, excitation temperature using Boltzmann plot, plasma density using Saha-Boltzmann plot and Stark broadening. The Calibration-Free LIBS technique was applied to both coins and the analytical determination of elemental composition was employed. In order to confirm the Edict Law elemental composition the results were corroborated by Neutron Activation Analysis (NAA). In both cases the results determined by CF-LIBS agreed to with the Edict Law and NAA determination. Besides the major components for the bronze alloy some other impurities were observed. Finally, in order to determine the coin damage made by the laser, the OCT (Optical Coherence Tomography) technique was used. After tree pulses of laser 54μg of coin material were removed reaching 120μm in depth.

  19. [The scientific conference: Konstanty Janicki (1876-1932): Professor of Warsaw University, eminent zoologist and protistologist, creator of the Polish parasitological school].

    PubMed

    Moskwa, Bozena; Siński, Edward; Kazubski, Stanisław L

    2005-01-01

    The conference was organized for celebrating the memory of professor Konstanty Janicki, one of the most important Polish zoologist, protistologist and parasitologist. Professors Joanna Pijanowska, Edward Siński and Maria Doligalska were the hosts of the meeting at the Warsaw University. Four lectures were given during the conference. Professor Leszek Kuźnicki presented professor Janicki's life and followers who continued his research. Professor Stanisław Kazubski reminded the main topics of the parasitological studies conducted by professor Janicki. That lecture was illustrated by coloured diagrams taken from original papers published by Janicki. In the next lecture, professor Teresa Pojmańska reminded "the theory of the cercomer". She viewed some polemics and discussions made by the opponents of the theory. Professor Alicja Guttowa presented a paper on the history of the exploration of the D. latum life cycle and the main scientific researches carried out on each life stages of the broad tapeworm. Afterwards the lectures, professor Kazubski showed several pictures taken inside and outside of the Main School of the Warsaw University at the time when professor Janicki had been working there. The professor's students were also seen in these pictures. Next, associate professor Bozena Moskwa, the President of the Polish Parasitological Society presented the Konstanty Janicki Medal, awarded for outstanding activities for the benefit of parasitology. Up to data, 17 scientists and one school: the Warsaw Uniwersity was honored with this Medal. After the conference, participants visited the Powazki Cementary, where the renovated sepulchral monument of professor Konstanty Janicki was uncovered. PMID:16913506

  20. Multivariate optimization by exploratory analysis applied to the determination of microelements in fruit juice by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Froes, Roberta Eliane Santos; Neto, Waldomiro Borges; Silva, Nilton Oliveira Couto e.; Naveira, Rita Lopes Pereira; Nascentes, Clésia Cristina; da Silva, José Bento Borba

    2009-06-01

    A method for the direct determination (without sample pre-digestion) of microelements in fruit juice by inductively coupled plasma optical emission spectrometry has been developed. The method has been optimized by a 2 3 factorial design, which evaluated the plasma conditions (nebulization gas flow rate, applied power, and sample flow rate). A 1:1 diluted juice sample with 2% HNO 3 (Tetra Packed, peach flavor) and spiked with 0.5 mg L - 1 of Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sn, and Zn was employed in the optimization. The results of the factorial design were evaluated by exploratory analysis (Hierarchical Cluster Analysis, HCA, and Principal Component Analysis, PCA) to determine the optimum analytical conditions for all elements. Central point condition differentiation (0.75 L min - 1 , 1.3 kW, and 1.25 mL min - 1 ) was observed for both methods, Principal Component Analysis and Hierarchical Cluster Analysis, with higher analytical signal values, suggesting that these are the optimal analytical conditions. F and t-student tests were used to compare the slopes of the calibration curves for aqueous and matrix-matched standards. No significant differences were observed at 95% confidence level. The correlation coefficient was higher than 0.99 for all the elements evaluated. The limits of quantification were: Al 253, Cu 3.6, Fe 84, Mn 0.4, Zn 71, Ni 67, Cd 69, Pb 129, Sn 206, Cr 79, Co 24, and Ba 2.1 µg L - 1 . The spiking experiments with fruit juice samples resulted in recoveries between 80 and 120%, except for Co and Sn. Al, Cd, Pb, Sn and Cr could not be quantified in any of the samples investigated. The method was applied to the determination of several elements in fruit juice samples commercialized in Brazil.

  1. Testing a generalized domain model of photodegradation and self-healing using novel optical characterization techniques and the effects of an applied electric field

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin R.

    Reversible photodegradation is a relatively new phenomenon which is not well understood. Previous research into the phenomenon has focused primarily on non-linear measurements such as amplified spontaneous emission(ASE) and two-photon fluorescence(TPF). We expand on this research by considering linear optical mea- surements, such as transmittance imaging and absorption spectroscopy, of disperse orange 11(DO11) dye-doped (poly)methyl-methacralate(PMMA) thin films and find photodegradation to contain both a reversible component and irreversible component, with the irreversible component having a small nonlinear susceptibility. From absorption measurements, and the small nonlinear susceptibility of the irreversible component, we hypothesize that the reversible component corresponds to damage to the dye, and the irreversible component is due to damage to the polymer host. Also, we develop models of depth dependent photodegradation taking pump beam absorption and propagation into account. We find that pump absorption must be taken into account, and that ignoring the effect leads to an underestimation of the true decay rate and degree of damage. In addition, we find pump propagation effects occur on large length scales, such that they are negligible when compared to absorption and typical sample thicknesses. Finally, we perform electric field dependent reversible photodegradation measurements and find that the underlying mechanism of reversible photodegradation is sensitive to the dye-doped polymer's electrical properties. We develop an extension to the correlated chromophore domain model to include the effect of an applied field, and find the model to fit experimental data for varying intensity, temperature, and applied electric field with only one set of model parameters.

  2. Anomalously large electro-optic Pockels effect at the air-water interface with an electric field applied parallel to the interface

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuto; Osawa, Kengo; Yukita, Shunpei; Kobayashi, Takayoshi; Tokunaga, Eiji

    2016-05-01

    The optical Pockels effect was observed at the air-water interface by electromodulation spectroscopy. When an AC electric field of frequency f was applied parallel to a water surface between Pt electrodes, the field induced a change in the transmitted light intensity synchronized at 1f proportional to the field strength. The 1f signals dominated over 2f signals by one order of magnitude and the signal disappeared when the electrodes were completely immersed under the water surface, strongly suggesting that the observed phenomena were due to the Pockels effect at the air-water interface. The Pockels coefficient was estimated to be | r | = 1.4 × 105 pm/V, which is much larger than that at the solid-water interface. However, this is unusual because the parallel electric field does not induce the break in inversion symmetry required for the appearance of the Pockels effect. The electrowetting effect was experimentally ruled out as a mechanism for the Pockels effect, and this made the existence of a field perpendicular to the surface, although extremely weak, the most likely explanation.

  3. Applying a new computational method for biological tissue optics based on the time-dependent two-dimensional radiative transfer equation.

    PubMed

    Asllanaj, Fatmir; Fumeron, Sebastien

    2012-07-01

    Optical tomography is a medical imaging technique based on light propagation in the near infrared (NIR) part of the spectrum. We present a new way of predicting the short-pulsed NIR light propagation using a time-dependent two-dimensional-global radiative transfer equation in an absorbing and strongly anisotropically scattering medium. A cell-vertex finite-volume method is proposed for the discretization of the spatial domain. The closure relation based on the exponential scheme and linear interpolations was applied for the first time in the context of time-dependent radiative heat transfer problems. Details are given about the application of the original method on unstructured triangular meshes. The angular space (4πSr) is uniformly subdivided into discrete directions and a finite-differences discretization of the time domain is used. Numerical simulations for media with physical properties analogous to healthy and metastatic human liver subjected to a collimated short-pulsed NIR light are presented and discussed. As expected, discrepancies between the two kinds of tissues were found. In particular, the level of light flux was found to be weaker (inside the medium and at boundaries) in the healthy medium than in the metastatic one. PMID:22894479

  4. Acceptance of, inclination for, and barriers in genetic testing for gene mutations that increase the risk of breast and ovarian cancers among female residents of Warsaw

    PubMed Central

    Dera, Paulina; Religioni, Urszula; Duda-Zalewska, Aneta; Deptała, Andrzej

    2016-01-01

    Aim of the study To check the degree of acceptance of, inclination for, and barriers in genetic testing for gene mutations that increase the risk of breast and ovarian cancers among female residents of Warsaw Material and methods This study involved 562 women between 20 and 77 years of age, all of whom were patients visiting gynaecologists practising in clinics in the City of Warsaw. The studied population was divided into six age categories. The study method was a diagnostic poll conducted with the use of an original questionnaire containing 10 multiple-choice questions. Results Nearly 70% of the women showed an interest in taking a test to detect predispositions to develop breast and ovarian cancer. More than 10% did not want to take such a test, while every fifth women was undecided. No statistically significant differences between the respondents’ willingness to pay and education were found (p = 0.05). The most frequent answer given by women in all groups was that the amount to pay was too high. Such an answer was given by 52.17% of women with primary education, 65.22% of women with vocational education, 58.61% of women with secondary education, and 41.62% of women with higher education. Conclusions Women with a confirmed increased risk of developing breast and/or ovarian cancer due to inter alia the presence of BRCA1 and BRCA2 gene mutations should pay particular attention to 1st and 2nd level prophylaxis. PMID:27095945

  5. Novel Integral Equation Methods Applied to the Analysis of New Guiding and Radiating Structures and Optically-Inspired Phenomena at Microwaves

    NASA Astrophysics Data System (ADS)

    Gomez-Diaz, Juan Sebastian

    This PhD. dissertation presents a multidisciplinary work, which involves the development of different novel formulations applied to the accurate and efficient analysis of a wide variety of new structures, devices, and phenomena at themicrowave frequency region. The objectives of the present work can be divided into three main research lines: (1) The first research line is devoted to the Green's function analysis of multilayered enclosures with convex arbitrarily-shaped cross section. For this purpose, three accurate spatial-domain formulations are developed at the Green's functions level. These techniques are then efficiently incorporated into a mixed-potential integral equation framework, which allows the fast and accurate analysis of multilayered printed circuits in shielded enclosures. The study of multilayered shielded circuits has lead to the development of the novel hybridwaveguide-microstrip filter technology, which is light, compact, low-loss and presents important advantages for the space industry. (2) The second research line is related to the impulse-regime study ofmetamaterial-based composite right/left-handed (CRLH) structures and the subsequent theoretical and practical demonstration of several novel optically-inspired phenomena and applications at microwaves, in both, the guided and the radiative region. This study allows the development of new devices for ultra wide band and high data-rate communications systems. Besides, this research line also deals with the simple and accurate characterization of CRLH leaky-wave antennas using transmission line theory. (3) The third and last research line presents a novel CRLH parallel-plate waveguide leaky-wave antenna structure, and a rigorous iterative modal-based technique for its fast and complete characterization, including a systematic calculation of the antenna physical dimensions. It is important to point out that all the theoretical developments and novel structures presented in thiswork have been

  6. "Eurotrain for Training." Proceedings of a European Congress on Continuing Education and Training (4th, Berlin, Germany; Warsaw, Poland; Prague, Czechoslovakia; Budapest, Hungary; Vienna, Austria, October 5-9, 1992).

    ERIC Educational Resources Information Center

    Wisser, Ulrike, Ed.; Grootings, Peter, Ed.

    1992-01-01

    A "travelling" congress was conducted in five European cities (Berlin, Warsaw, Prague, Budapest, and Vienna) to promote a mutual exchange of views between east and west. The participants stressed the growing European Community interest in current examples of cooperation with neighbors in central and eastern Europe. In addition to promoting…

  7. Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Munchak, L. A.; Mattoo, S.; Patadia, F.; Remer, L. A.; Holz, R. E.

    2015-07-01

    To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångstrom Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March-April-May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in

  8. Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Munchak, L. A.; Mattoo, S.; Patadia, F.; Remer, L. A.; Holz, R. E.

    2015-10-01

    To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångström Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March-April-May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in

  9. Exciton-related nonlinear optical properties in cylindrical quantum dots with asymmetric axial potential: combined effects of hydrostatic pressure, intense laser field, and applied electric field.

    PubMed

    Zapata, Alejandro; Acosta, Ruben E; Mora-Ramos, Miguel E; Duque, Carlos A

    2012-01-01

    : The exciton binding energy of an asymmetrical GaAs-Ga1-xAlxAs cylindrical quantum dot is studied with the use of the effective mass approximation and a variational calculation procedure. The influence on this quantity of the application of a direct-current electric field along the growth direction of the cylinder, together with that of an intense laser field, is particularly considered. The resulting states are used to calculate the exciton-related nonlinear optical absorption and optical rectification, whose corresponding resonant peaks are reported as functions of the external probes, the quantum dot dimensions, and the aluminum molar fraction in the potential barrier regions. PMID:22971418

  10. The influence of optical properties of paints and coatings on the efficiency of infrared nondestructive testing applied to aluminum aircraft structures

    NASA Astrophysics Data System (ADS)

    Burleigh, D.; Vavilov, V. P.; Pawar, S. S.

    2016-07-01

    IR NDT (Infrared Nondestructive Testing) is a popular method for detecting defects in composite, ceramic, and metallic structures. The effectiveness of IR NDT depends on various thermal and optical properties of the material being tested. The thermal properties, including thermal conductivity, thermal diffusivity, specific heat and density are important and have been discussed extensively in many treatises on IR NDT. However the optical properties of the surface are equally important and while the thermal properties cannot be changed, sometimes the optical properties can be. Bare metal surfaces have high reflectivities and low emissivities, and as a result, they are generally not good candidates for IR NDT. Painted, coated, anodized, and oxidized metal surfaces can, in some cases, be successfully tested with IR NDT, but the effectiveness depends on the optical properties of the surface. It is well known by IR NDT practitioners that the easy solution to the testing of reflective materials is to paint the surface black. However, this is not always practical and it may not be permitted by the "owner" of the part. This paper demonstrates a process of analyzing the interaction of spectral curves that are relevant to the IR NDT process. This process can be used to evaluate the effectiveness of an IR NDT process for use on real parts with specific coatings and can help select a coating that may improve the effectiveness. This paper shows examples of optical properties for some typical paints and coatings that may be used on aluminum aircraft structures. It shows the spectrum of a generic incandescent radiant heat source and how the energy from this source is absorbed by several of these paints. Further, it shows the interaction between an IR camera detector response curve and the other curves. And finally, it shows how these three can be combined to produce an "IR NDT" efficiency rating for several examples.

  11. Effects of applied electric and magnetic fields on the nonlinear optical properties of asymmetric GaAs /Ga1-xAlx As double inverse parabolic quantum well

    NASA Astrophysics Data System (ADS)

    Al, E. B.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sökmen, I.

    2015-09-01

    The combined effects of electric and magnetic fields on the optical absorption coefficients and refractive index changes related to the intersubband transitions within the conduction band of asymmetric GaAs /Ga1-xAlxAs double inverse parabolic quantum wells are studied using the effective-mass approximation and the compact density-matrix approach. The results are presented as a function of the incident photon energy for the different values of the electromagnetic fields and the structure parameters such as quantum well width and the Al concentration at the well center. It is found that the optical absorption coefficients and the refractive index changes are strongly affected not only by the magnitudes of the electric and magnetic fields but also by the structure parameters of the system.

  12. Optical Detectors

    NASA Astrophysics Data System (ADS)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  13. A Novel Algorithm Applied to Common Thermal-Optical Transmission Data for Determining Mass Absorption Cross Sections of Atmospheric Black Carbon: Applications to the Indian Outflow

    NASA Astrophysics Data System (ADS)

    Andersson, A.; Sheesley, R. J.; Kirillova, E.; Gustafsson, O.

    2010-12-01

    High wintertime concentrations of black carbon aerosols (BCA) over South Asia and the Northern Indian Ocean are thought to have a large impact on the regional climate. Direct absorption of sunlight by BCAs causes heating of the atmosphere and cooling at the surface. To quantify such effects it is important to characterize a number of different properties of the aerosols. Here we present a novel application of the thermal-optical (OCEC) instrument in which the laser beam is used to obtain optical information about the aerosols. In particular, the novel algorithm accounts for non-carbon contributions to the light extinction. Combining these light extinction coefficients with the simultaneously constrained Elemental Carbon (EC) concentrations, the Mass Absorption Cross Section (MAC) is computed. Samples were collected during a continuous 14-month campaign Dec 2008 - Mar 2009 at Sinaghad in Western India and on Hanimaadhoo, the Northernmost Island in the Maldives. This data set suggests that the MAC of the BCAs are variable, sometimes by a factor of 3 compared to the mean. This observation adds to the complexity of calculating the radiative forcing for BCAs, reinforcing previous observations that parameters such as aerosol mixing state and sources need to be taken into account.

  14. Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Kazadzis, S.; Tsekeri, A.; Gkikas, A.; Amiridis, V.

    2014-09-01

    In order to exploit the full-earth viewing potential of satellite instruments to globally characterise aerosols, new algorithms are required to deduce key microphysical parameters like the particle size distribution and optical parameters associated with scattering and absorption from space remote sensing data. Here, a methodology based on neural networks is developed to retrieve such parameters from satellite inputs and to validate them with ground-based remote sensing data. For key combinations of input variables available from the MODerate resolution Imaging Spectro-radiometer (MODIS) and the Ozone Measuring Instrument (OMI) Level 3 data sets, a grid of 100 feed-forward neural network architectures is produced, each having a different number of neurons and training proportion. The networks are trained with principal components accounting for 98% of the variance of the inputs together with principal components formed from 38 AErosol RObotic NETwork (AERONET) Level 2.0 (Version 2) retrieved parameters as outputs. Daily averaged, co-located and synchronous data drawn from a cluster of AERONET sites centred on the peak of dust extinction in Northern Africa is used for network training and validation, and the optimal network architecture for each input parameter combination is identified with reference to the lowest mean squared error. The trained networks are then fed with unseen data at the coastal dust site Dakar to test their simulation performance. A neural network (NN), trained with co-located and synchronous satellite inputs comprising three aerosol optical depth measurements at 470, 550 and 660 nm, plus the columnar water vapour (from MODIS) and the modelled absorption aerosol optical depth at 500 nm (from OMI), was able to simultaneously retrieve the daily averaged size distribution, the coarse mode volume, the imaginary part of the complex refractive index, and the spectral single scattering albedo - with moderate precision: correlation coefficients in the

  15. Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Kazadzis, S.; Tsekeri, A.; Gkikas, A.; Amiridis, V.

    2013-12-01

    In order to exploit the full-Earth viewing potential of satellite instruments to globally characterise aerosols, new algorithms are required to deduce key microphysical parameters like the particle size distribution and optical parameters associated with scattering and absorption from space remote sensing data. Here, a methodology based on neural networks is developed to retrieve such parameters from satellite inputs and to validate them with ground-based remote sensing data. For key combinations of input variables available from MODIS and OMI Level 3 datasets, a grid of 100 feed-forward neural network architectures is produced, each having a different number of neurons and training proportion. The networks are trained with principal components accounting for 98% of the variance of the inputs together with principal components formed from 38 AERONET Level 2.0 (Version 2) retrieved parameters as outputs. Daily-averaged, co-located and synchronous data drawn from a cluster of AERONET sites centred on the peak of dust extinction in Northern Africa is used for network training and validation, and the optimal network architecture for each input parameter combination is identified with reference to the lowest mean squared error. The trained networks are then fed with unseen data at the coastal dust site Dakar to test their simulation performance. A NN, trained with co-located and synchronous satellite inputs comprising three aerosol optical depth measurements at 470, 500 and 660 nm, plus the columnar water vapour (from MODIS) and the modelled absorption aerosol optical depth at 500 nm (from OMI), was able to simultaneously retrieve the daily-averaged size distribution, the coarse mode volume, the imaginary part of the complex refractive index, and the spectral single scattering albedo - with moderate precision: correlation coefficients in the range 0.368 ≤ R ≤ 0.514. The network failed to recover the spectral behaviour of the real part of the complex refractive index

  16. Warsaw adolescent alcohol use in a period of social change in Poland: cluster analyses of five consecutive surveys, 1988 to 2004.

    PubMed

    Okulicz-Kozaryn, Katarzyna; Borucka, Anna

    2008-03-01

    This study aimed to analyze changes in patterns of alcohol use from 1988 to 2004 amongst Polish (Warsaw) 15-year olds. Data were collected from 5 consecutive surveys, beginning in 1988 and conducted every four years. For each survey a comparable sampling approach, sample size (N >or =1461), procedures and instrument were used to ensure consistency of method across surveys. In 1988 a two-step cluster analysis was used to identify four distinct natural groups of drinkers "light", "heavier", "beer and wine" and "wine" drinkers. Between 1988 and 1992 the percentage of teenage infrequent drinkers decreased and the rate of heavy drinkers increased. A group of students drinking only beer appeared, whilst the group of wine drinkers disappeared. A group of students who drank alcohol to get drunk appeared in 1996. Between 2000 and 2004 drinking of various kinds of alcoholic beverages became more frequent, as did vodka abuse. Increased consumption amongst girls was also observed. The results are interpreted in the context of social change and several hypothetical causes of gender differences are discussed. PMID:18060701

  17. Tim/Timeless, a member of the replication fork protection complex, operates with the Warsaw breakage syndrome DNA helicase DDX11 in the same fork recovery pathway.

    PubMed

    Calì, Federica; Bharti, Sanjay Kumar; Perna, Roberta Di; Brosh, Robert M; Pisani, Francesca M

    2016-01-29

    We present evidence that Tim establishes a physical and functional interaction with DDX11, a super-family 2 iron-sulfur cluster DNA helicase genetically linked to the chromosomal instability disorder Warsaw breakage syndrome. Tim stimulates DDX11 unwinding activity on forked DNA substrates up to 10-fold and on bimolecular anti-parallel G-quadruplex DNA structures and three-stranded D-loop approximately 4-5-fold. Electrophoretic mobility shift assays revealed that Tim enhances DDX11 binding to DNA, suggesting that the observed stimulation derives from an improved ability of DDX11 to interact with the nucleic acid substrate. Surface plasmon resonance measurements indicate that DDX11 directly interacts with Tim. DNA fiber track assays with HeLa cells exposed to hydroxyurea demonstrated that Tim or DDX11 depletion significantly reduced replication fork progression compared to control cells; whereas no additive effect was observed by co-depletion of both proteins. Moreover, Tim and DDX11 are epistatic in promoting efficient resumption of stalled DNA replication forks in hydroxyurea-treated cells. This is consistent with the finding that association of the two endogenous proteins in the cell extract chromatin fraction is considerably increased following hydroxyurea exposure. Overall, our studies provide evidence that Tim and DDX11 physically and functionally interact and act in concert to preserve replication fork progression in perturbed conditions. PMID:26503245

  18. In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters

    PubMed Central

    Palmer, Gregory M; Fontanella, Andrew N; Shan, Siqing; Hanna, Gabi; Zhang, Guoqing; Fraser, Cassandra L; Dewhirst, Mark W

    2012-01-01

    Optical techniques for functional imaging in mice have a number of key advantages over other common imaging modalities such as magnetic resonance imaging, positron emission tomography or computed tomography, including high resolution, low cost and an extensive library of available contrast agents and reporter genes. A major challenge to such work is the limited penetration depth imposed by tissue turbidity. We describe a window chamber technique by which these limitations can be avoided. This facilitates the study of a wide range of processes, with potential endpoints including longitudinal gene expression, vascular remodeling and angiogenesis, and tumor growth and invasion. We further describe several quantitative imaging and analysis techniques for characterizing in vivo fluorescence properties and functional endpoints, including vascular morphology and oxygenation. The procedure takes ~2 h to complete, plus up to several weeks for tumor growth and treatment procedures. PMID:21886101

  19. Bending and turbulent enhancement phenomena of neutral gas flow containing an atmospheric pressure plasma by applying external electric fields measured by schlieren optical method

    NASA Astrophysics Data System (ADS)

    Yamada, Hiromasa; Yamagishi, Yusuke; Sakakita, Hajime; Tsunoda, Syuichiro; Kasahara, Jiro; Fujiwara, Masanori; Kato, Susumu; Itagaki, Hirotomo; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Yutaka; Ikehara, Yuzuru; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki

    2016-01-01

    To understand the mechanism of turbulent enhancement phenomena of a neutral gas flow containing plasma ejected from the nozzle of plasma equipment, the schlieren optical method was performed to visualize the neutral gas behavior. It was confirmed that the turbulent starting point became closer to the nozzle exit, as the amplitude of discharge voltage (electric field) increased. To study the effect of electric field on turbulent enhancement, two sets of external electrodes were arranged in parallel, and the gas from the nozzle was allowed to flow between the upper and lower electrodes. It was found that the neutral gas flow was bent, and the bending angle increased as the amplitude of the external electric field increased. The results obtained using a simple model analysis roughly coincide with experimental data. These results indicate that momentum transport from drifted ions induced by the electric field to neutral particles is an important factor that enhances turbulence.

  20. Linear and nonlinear optical properties in an asymmetric double quantum well under intense laser field: Effects of applied electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Yesilgul, U.; Al, E. B.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Ungan, F.; Kasapoglu, E.

    2016-08-01

    In the present study, the effects of electric and magnetic fields on the linear and third-order nonlinear optical absorption coefficients and relative change of the refractive index in asymmetric GaAs/GaAlAs double quantum wells under intense laser fields are theoretically investigated. The electric field is oriented along the growth direction of the heterostructure while the magnetic field is taken in-plane. The intense laser field is linear polarization along the growth direction. Our calculations are made using the effective-mass approximation and the compact density-matrix approach. Intense laser effects on the system are investigated with the use of the Floquet method with the consequent change in the confinement potential of heterostructures. Our results show that the increase of the electric and magnetic fields blue-shifts the peak positions of the total absorption coefficient and of the total refractive index while the increase of the intense laser field firstly blue-shifts the peak positions and later results in their red-shifting.

  1. Lattice Boltzmann methods applied to large-scale three-dimensional virtual cores constructed from digital optical borehole images of the karst carbonate Biscayne aquifer in southeastern Florida

    USGS Publications Warehouse

    Michael Sukop; Cunningham, Kevin J.

    2014-01-01

    Digital optical borehole images at approximately 2 mm vertical resolution and borehole caliper data were used to create three-dimensional renderings of the distribution of (1) matrix porosity and (2) vuggy megaporosity for the karst carbonate Biscayne aquifer in southeastern Florida. The renderings based on the borehole data were used as input into Lattice Boltzmann methods to obtain intrinsic permeability estimates for this extremely transmissive aquifer, where traditional aquifer test methods may fail due to very small drawdowns and non-Darcian flow that can reduce apparent hydraulic conductivity. Variogram analysis of the borehole data suggests a nearly isotropic rock structure at lag lengths up to the nominal borehole diameter. A strong correlation between the diameter of the borehole and the presence of vuggy megaporosity in the data set led to a bias in the variogram where the computed horizontal spatial autocorrelation is strong at lag distances greater than the nominal borehole size. Lattice Boltzmann simulation of flow across a 0.4 × 0.4 × 17 m (2.72 m3 volume) parallel-walled column of rendered matrix and vuggy megaporosity indicates a high hydraulic conductivity of 53 m s−1. This value is similar to previous Lattice Boltzmann calculations of hydraulic conductivity in smaller limestone samples of the Biscayne aquifer. The development of simulation methods that reproduce dual-porosity systems with higher resolution and fidelity and that consider flow through horizontally longer renderings could provide improved estimates of the hydraulic conductivity and help to address questions about the importance of scale.

  2. Lattice Boltzmann methods applied to large-scale three-dimensional virtual cores constructed from digital optical borehole images of the karst carbonate Biscayne aquifer in southeastern Florida

    NASA Astrophysics Data System (ADS)

    Sukop, Michael C.; Cunningham, Kevin J.

    2014-11-01

    Digital optical borehole images at approximately 2 mm vertical resolution and borehole caliper data were used to create three-dimensional renderings of the distribution of (1) matrix porosity and (2) vuggy megaporosity for the karst carbonate Biscayne aquifer in southeastern Florida. The renderings based on the borehole data were used as input into Lattice Boltzmann methods to obtain intrinsic permeability estimates for this extremely transmissive aquifer, where traditional aquifer test methods may fail due to very small drawdowns and non-Darcian flow that can reduce apparent hydraulic conductivity. Variogram analysis of the borehole data suggests a nearly isotropic rock structure at lag lengths up to the nominal borehole diameter. A strong correlation between the diameter of the borehole and the presence of vuggy megaporosity in the data set led to a bias in the variogram where the computed horizontal spatial autocorrelation is strong at lag distances greater than the nominal borehole size. Lattice Boltzmann simulation of flow across a 0.4 × 0.4 × 17 m (2.72 m3 volume) parallel-walled column of rendered matrix and vuggy megaporosity indicates a high hydraulic conductivity of 53 m s-1. This value is similar to previous Lattice Boltzmann calculations of hydraulic conductivity in smaller limestone samples of the Biscayne aquifer. The development of simulation methods that reproduce dual-porosity systems with higher resolution and fidelity and that consider flow through horizontally longer renderings could provide improved estimates of the hydraulic conductivity and help to address questions about the importance of scale.

  3. Applied Stratigraphy

    NASA Astrophysics Data System (ADS)

    Lucas, Spencer G.

    Stratigraphy is a cornerstone of the Earth sciences. The study of layered rocks, especially their age determination and correlation, which are integral parts of stratigraphy, are key to fields as diverse as geoarchaeology and tectonics. In the Anglophile history of geology, in the early 1800s, the untutored English surveyor William Smith was the first practical stratigrapher, constructing a geological map of England based on his own applied stratigraphy. Smith has, thus, been seen as the first “industrial stratigrapher,” and practical applications of stratigraphy have since been essential to most of the extractive industries from mining to petroleum. Indeed, gasoline is in your automobile because of a tremendous use of applied stratigraphy in oil exploration, especially during the latter half of the twentieth century. Applied stratigraphy, thus, is a subject of broad interest to Earth scientists.

  4. Analysis of the European lacquer technique and technology of polychromed wooden decoration of Chinese room in Wilanow Palace in Warsaw

    NASA Astrophysics Data System (ADS)

    Zadrozna, Irmina; Guzowska, Anna; Jezewska, Elzbieta

    2009-07-01

    A well preserved wooden paneling decoration of one of the rooms adhering to the King's Jan III bedroom in Wilanow Palace is a unique example of European lacquerwork attributed to famous 18th century craft workshop of Martin Schnell. This decorative technique is a method of applying many layers of clear or colored composition of resins available in Europe to especially prepared ground layer. The paper summarizes the results of original painting materials identification as well as original and late layers stratigraphy. Under certainly not original parts of polychromy there were other colors found. It has been discovered also that some parts of the wooden paneling was removed and replaced with copies painted in a different technique. The 3D scanner and produced orthophotoplans allowed full documentation of the state of preservation of the whole room. The paint samples of which stratigraphic cross-sections were made have been analysed with SEM-EDS technique and ultraviolet fluorescence microscopy. Application of the most advanced analysis techniques like Gas Chromatography (GC/MS) and Fourier-Transform infrared spectroscopy (FTIR) allowed the most exact identification of binding media.

  5. Applied oceanography

    SciTech Connect

    Bishop, J.M.

    1984-01-01

    This book combines oceanography principles and applications such as marine pollution, resources, and transportation. It is divided into two main parts treating the basic principles of physical oceanography, and presenting a unique systems framework showing how physical oceanography, marine ecology, economics, and government policy may be combined to define the newly developing field of applied oceanography.

  6. Numerical analysis of residual stresses in preforms of stress applying part for PANDA-type polarization maintaining optical fibers in view of technological imperfections of the doped zone geometry

    NASA Astrophysics Data System (ADS)

    Trufanov, Aleksandr N.; Trufanov, Nikolay A.; Semenov, Nikita V.

    2016-09-01

    The experimental data analysis of the stress applying rod section geometry for the PANDA-type polarization maintaining optical fiber has been performed. The dependencies of the change in the radial dimensions of the preform and the doping boundary on the angular coordinate have been obtained. The original algorithm of experimental data statistic analysis, which enables determination of the specimens' characteristic form of section, has been described. The influence of actual doped zone geometry on the residual stress fields formed during the stress rod preform fabrication has been investigated. It has been established that the deviation of the boundary between pure silica and the doped zone from the circular shape results in dissymmetry and local concentrations of the residual stress fields along the section, which can cause preforms destruction at high degrees of doping. The observed geometry deviations of up to 10% lead to the increase of the maximum stress intensity value by over 20%.

  7. Broadband optical-Internet-based modular interactive information system for research department in university environment

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Bury, Jaroslaw; Koprek, Waldemar; Orzelowski, Andrzej

    2004-07-01

    The work describes, standardized, modular and interactive, (optical) broadband Internet based, information system for a research and didactic unit active in the university environment. The logical structure of the system was designed and realized. The structure of logical interconnections between the scientific and didactic information was embedded in the database. New solutions for the broadband processing and presentations layers were proposed. The theoretical and design considerations were implemented practically for one of the research departments at the Warsaw University of Technology. Chosen examples of the system in action were quoted.

  8. Applied Nanotoxicology.

    PubMed

    Hobson, David W; Roberts, Stephen M; Shvedova, Anna A; Warheit, David B; Hinkley, Georgia K; Guy, Robin C

    2016-01-01

    Nanomaterials, including nanoparticles and nanoobjects, are being incorporated into everyday products at an increasing rate. These products include consumer products of interest to toxicologists such as pharmaceuticals, cosmetics, food, food packaging, household products, and so on. The manufacturing of products containing or utilizing nanomaterials in their composition may also present potential toxicologic concerns in the workplace. The molecular complexity and composition of these nanomaterials are ever increasing, and the means and methods being applied to characterize and perform useful toxicologic assessments are rapidly advancing. This article includes presentations by experienced toxicologists in the nanotoxicology community who are focused on the applied aspect of the discipline toward supporting state of the art toxicologic assessments for food products and packaging, pharmaceuticals and medical devices, inhaled nanoparticle and gastrointestinal exposures, and addressing occupational safety and health issues and concerns. This symposium overview article summarizes 5 talks that were presented at the 35th Annual meeting of the American College of Toxicology on the subject of "Applied Nanotechnology." PMID:26957538

  9. Applied Koopmanism.

    PubMed

    Budisić, Marko; Mohr, Ryan; Mezić, Igor

    2012-12-01

    A majority of methods from dynamical system analysis, especially those in applied settings, rely on Poincaré's geometric picture that focuses on "dynamics of states." While this picture has fueled our field for a century, it has shown difficulties in handling high-dimensional, ill-described, and uncertain systems, which are more and more common in engineered systems design and analysis of "big data" measurements. This overview article presents an alternative framework for dynamical systems, based on the "dynamics of observables" picture. The central object is the Koopman operator: an infinite-dimensional, linear operator that is nonetheless capable of capturing the full nonlinear dynamics. The first goal of this paper is to make it clear how methods that appeared in different papers and contexts all relate to each other through spectral properties of the Koopman operator. The second goal is to present these methods in a concise manner in an effort to make the framework accessible to researchers who would like to apply them, but also, expand and improve them. Finally, we aim to provide a road map through the literature where each of the topics was described in detail. We describe three main concepts: Koopman mode analysis, Koopman eigenquotients, and continuous indicators of ergodicity. For each concept, we provide a summary of theoretical concepts required to define and study them, numerical methods that have been developed for their analysis, and, when possible, applications that made use of them. The Koopman framework is showing potential for crossing over from academic and theoretical use to industrial practice. Therefore, the paper highlights its strengths in applied and numerical contexts. Additionally, we point out areas where an additional research push is needed before the approach is adopted as an off-the-shelf framework for analysis and design. PMID:23278096

  10. Applied Koopmanisma)

    NASA Astrophysics Data System (ADS)

    Budišić, Marko; Mohr, Ryan; Mezić, Igor

    2012-12-01

    A majority of methods from dynamical system analysis, especially those in applied settings, rely on Poincaré's geometric picture that focuses on "dynamics of states." While this picture has fueled our field for a century, it has shown difficulties in handling high-dimensional, ill-described, and uncertain systems, which are more and more common in engineered systems design and analysis of "big data" measurements. This overview article presents an alternative framework for dynamical systems, based on the "dynamics of observables" picture. The central object is the Koopman operator: an infinite-dimensional, linear operator that is nonetheless capable of capturing the full nonlinear dynamics. The first goal of this paper is to make it clear how methods that appeared in different papers and contexts all relate to each other through spectral properties of the Koopman operator. The second goal is to present these methods in a concise manner in an effort to make the framework accessible to researchers who would like to apply them, but also, expand and improve them. Finally, we aim to provide a road map through the literature where each of the topics was described in detail. We describe three main concepts: Koopman mode analysis, Koopman eigenquotients, and continuous indicators of ergodicity. For each concept, we provide a summary of theoretical concepts required to define and study them, numerical methods that have been developed for their analysis, and, when possible, applications that made use of them. The Koopman framework is showing potential for crossing over from academic and theoretical use to industrial practice. Therefore, the paper highlights its strengths in applied and numerical contexts. Additionally, we point out areas where an additional research push is needed before the approach is adopted as an off-the-shelf framework for analysis and design.

  11. Spatial distribution of anthropogoenic pollution acumulated on tree leaves, soil and street dust in the park area in the centre of Warsaw

    NASA Astrophysics Data System (ADS)

    Dytłow, Sylwia; Górka-Kostrubiec, Beata

    2015-04-01

    The magnetic method has been successfully used to evaluate and characterise the degree of air pollution. This method is based on investigation of properties of magnetic particles of pollution such as magnetic susceptibility, parameters of hysteresis loops and temperature-dependence of magnetic parameters etc. The motivation to undertake this study was to find the distribution of pollution emitted by traffic vehicles in a green area situated in urban environment. The investigated area is the oldest public park named Saxon Garden in the centre of Warsaw, Poland. The Saxon Garden is located between the very busy main road with tram line, two local streets (low traffic volume) and big plaza without car traffic and trees. In order to quantify the degree of pollution we measured magnetic susceptibility of pollution deposited on chestnut leaves (the most abundant tree species in the park), surface of the roads (street dust) and in soil from the park area. The highest values of magnetic susceptibility of pollution were observed on tree leaves located along the edges/borders of park area (190 [m3/kg]), directly adjacent to busy roads. The lowest values of magnetic susceptibility (20 [m3/kg]) were obtained for leave samples from the borders of park, directly adjacent to plaza and roads with low traffic volume. It was observed that the intensity of magnetic susceptibility decreases with the distance of pollution source i.e. main streets. A similar distribution of intensity of magnetic susceptibility was observed for the soil samples collected from park area. With the exception of a few samples, the magnetic susceptibility of soil samples were higher than for leave samples. Our study showed that the distribution of magnetic susceptibility of soil and leave samples correlate with the intensity of magnetic susceptibility of street dust taken from the road surfaces situated along the boundary of the park area. On the basis of the detailed research of the domain structure and

  12. Fiber optic crossbar switch for automatically patching optical signals

    NASA Astrophysics Data System (ADS)

    Bell, C. H.

    1983-05-01

    A system for automatically optically switching fiber optic data signals between a plurality of input optical fibers and selective ones of a plurality of output fibers is described. The system includes optical detectors which are connected to each of the input fibers for converting the optic data signals appearing at the respective input fibers to an RF signal. A plurality of RF to optical signal converters are arranged in rows and columns. The output of each of the optical detectors are each applied to a respective row of optical signal converted for being converters back to an optical signal when the particular optical signal converter is selectively activated by a dc voltage.

  13. Applied geodesy

    SciTech Connect

    Turner, S.

    1987-01-01

    This volume is based on the proceedings of the CERN Accelerator School's course on Applied Geodesy for Particle Accelerators held in April 1986. The purpose was to record and disseminate the knowledge gained in recent years on the geodesy of accelerators and other large systems. The latest methods for positioning equipment to sub-millimetric accuracy in deep underground tunnels several tens of kilometers long are described, as well as such sophisticated techniques as the Navstar Global Positioning System and the Terrameter. Automation of better known instruments such as the gyroscope and Distinvar is also treated along with the highly evolved treatment of components in a modern accelerator. Use of the methods described can be of great benefit in many areas of research and industrial geodesy such as surveying, nautical and aeronautical engineering, astronomical radio-interferometry, metrology of large components, deformation studies, etc.

  14. Guided Learning Applied to Optical Mineralogy

    ERIC Educational Resources Information Center

    Driver, S. C.; Hunter, W. R.

    1975-01-01

    Describes an individual programmed study method used in a second year Geology course at the University of Melbourne. Outlines the criteria that make this instructional style useful and presents the student questionnaire used to evaluate the course. (GS)

  15. Tunable Optical Filters Having Electro-optic Whispering-gallery-mode Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Tunable optical filters using whispering-gallery-mode (WGM) optical resonators are described. The WGM optical resonator in a filter exhibits an electro-optical effect and hence is tunable by applying a control electrical signal.

  16. Organic nonlinear optical materials

    NASA Technical Reports Server (NTRS)

    Umegaki, S.

    1987-01-01

    Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.

  17. Optic glioma

    MedlinePlus

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  18. Quarter Modernization of Construction Residential "New Praga" in Warsaw - Risks and Possibilities/ Modernizacja Kwartału Zabudowy Mieszkaniowej "Nowej Pragi" W Warszawie, Zagrożenia I Możliwości

    NASA Astrophysics Data System (ADS)

    Majewska, Anna; Denis, Małgorzata

    2015-06-01

    The district "New Praga" is located on the right-bank of Warsaw in North Praga which is one of the oldest districts of the city. The citizens of this district, where an analyzed building quarter is located, are people with a lower social status than the rest of Warsaw's population, who benefit from the social assistance (30%); moreover, there are a large number of crimes and high unemployment among young people in this area. These data show how difficult is to modernize this area because the improvement of a construction tissue is not enough to fully help the local community. Financial resources are needed to increase the level of education that allows finding new jobs and improves the quality of life. Afterwards, the modernization of tenements should be taken care for. Rejon "Nowa Praga" usytuowany jest na Pradze Północ, która jest jedną z najstarszych dzielnic miasta. Mieszkańcy tego rejonu, w którym usytuowany jest analizowany kwartał zabudowy, to osoby często o niższym statusie społecznym niż reszta ludności stolicy. Często są to enklawy biedy, bezrobocia i przestępczości. Teren ten jest trudny do modernizacji, ponieważ poprawa tkanki budowlanej, to nie wszystko, aby w pełni pomóc społeczności lokalnej. Potrzebne są środki finansowe również na działania społeczne, które umożliwią mieszkańcom na poprawę jakości życia. W artykule przedstawiono propozycję modernizacji wybranego kwartału zabudowy, co wymaga interdyscyplinarnego podejścia do danego zagadnienia.

  19. Grain optical properties

    NASA Technical Reports Server (NTRS)

    Hanner, Martha

    1988-01-01

    The optical properties of small grains provide the link between the infrared observations presented in Chapter 1 and the dust composition described in Chapter 3. In this session, the optical properties were discussed from the viewpoint of modeling the emission from the dust coma and the scattering in order to draw inference about the dust size distribution and composition. The optical properties are applied to the analysis of the infrared data in several ways, and these different uses should be kept in mind when judging the validity of the methods for applying optical constants to real grains.

  20. Fiber-Optic Sensing Technology

    SciTech Connect

    Milnes, M.; Baylor, L.C.; Bave, S.

    1996-10-24

    This article offers a basic review of fiber-optic sensing technology, or more specifically, fiber-optic sensing technology as applied to the qualitative or quantitative identification of a chemical sample, and how it works,

  1. Optic neuritis

    MedlinePlus

    Retro-bulbar neuritis; Multiple sclerosis - optic neuritis; Optic nerve - optic neuritis ... The exact cause of optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when ...

  2. Transparent electrode for optical switch

    DOEpatents

    Goldhar, J.; Henesian, M.A.

    1984-10-19

    The invention relates generally to optical switches and techniques for applying a voltage to an electro-optical crystal, and more particularly, to transparent electodes for an optical switch. System architectures for very large inertial confinement fusion (ICF) lasers require active optical elements with apertures on the order of one meter. Large aperture optical switches are needed for isolation of stages, switch-out from regenerative amplifier cavities and protection from target retroreflections.

  3. Space life sciences: biological research and space radiation. Proceedings of the F1.2, F1.3, F2.2 and F2.6 Symposia of COSPAR Scientific Commission F which were held during the Thirty-third COSPAR Scientific Assembly, Warsaw, Poland, July, 2000.

    PubMed

    2002-01-01

    This issue of Advances in Space Research contains a large number of manuscripts in the discipline of Space Life Sciences including papers from the following sessions of the Warsaw COSPAR Assembly: Gravity-related research with animals--past, present, future; The nervous system: space flight environmental factors effects--present results and new perspectives; Investigating space radiation effects at particle accelerators--biology and physics experiments; Perspectives on radiation risks on long space missions: deterministic and stochastic effects. PMID:12528665

  4. Rules for Optical Metrology

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Based on 30 years of optical testing experience, a lot of mistakes, a lot of learning and a lot of experience, I have defined seven guiding principles for optical testing - regardless of how small or how large the optical testing or metrology task. GUIDING PRINCIPLES 1. Fully Understand the Task 2. Develop an Error Budget 3. Continuous Metrology Coverage 4. Know where you are 5. 'Test like you fly' 6. Independent Cross-Checks 7. Understand All Anomalies. These rules have been applied with great success to the in-process optical testing and final specification compliance testing of the JWST mirrors.

  5. Rules for Optical Testing

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Based on 30 years of optical testing experience, a lot of mistakes, a lot of learning and a lot of experience, I have defined seven guiding principles for optical testing - regardless of how small or how large the optical testing or metrology task: Fully Understand the Task, Develop an Error Budget, Continuous Metrology Coverage, Know where you are, Test like you fly, Independent Cross-Checks, Understand All Anomalies. These rules have been applied with great success to the inprocess optical testing and final specification compliance testing of the JWST mirrors.

  6. Rules for Optical Metrology

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Based on 30 years of optical testing experience, a lot of mistakes, a lot of learning and a lot of experience, I have defined seven guiding principles for optical testing - regardless of how small or how large the optical testing or metrology task. GUIDING PRINCIPLES 1.Fully Understand the Task 2.Develop an Error Budget 3.Continuous Metrology Coverage 4.Know where you are 5. 'Test like you fly' 6.Independent Cross-Checks 7.Understand All Anomalies. These rules have been applied with great success to the in-process optical testing and final specification compliance testing of the JWST mirrors.

  7. The possibility of establishing causes of death on the basis of the exhumed remains of prisoners executed during the communist regime in Poland: the exhumations at Powązki Military Cemetery in Warsaw.

    PubMed

    Szleszkowski, Łukasz; Thannhäuser, Agata; Szwagrzyk, Krzysztof; Jurek, Tomasz

    2015-07-01

    This study presents the results of the analysis of forensic examinations of the remains of 194 prisoners exhumed at Powązki Military Cemetery in Warsaw. In all probability, most of those buried there were judicially sentenced to death by firing squad or hanging in connection with activities of the Polish independence underground in its struggles with the postwar communist regime. Forensic medical research focussed on determining causes of death and reconstructing the mechanisms of injury leading to death. Most probable causes of death were found in 108 of 194 cases; of these, 76 were isolated gunshot wounds to the head, mostly directed to the occipital region. In 29 of 194 cases, only extensive skull fractures were observed, making it impossible to determine the mechanism of injury. The condition of these skulls do not permit the exclusion of injuries due to gunshots, which were very likely given the historical context of the studied location. In one case, it is assumed that the cause of death could be blunt force trauma to the head. In 86 of 194 cases, it was not possible to determine the cause of death. Of these cases, 20 skeletons were in such poor condition that erosive changes could have completely obliterated even very extensive head injuries leading to death. No injuries were observed that could be associated with execution by hanging. PMID:25227925

  8. Acousto-optical/Magneto-optical Correlator Or Convolver

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Davis, Jeffrey A.

    1989-01-01

    Experimental system demonstrates optical processing of multiple channels of binary signals. One input channel contains signal that varies with time and applied to one-dimensional acousto-optical cell. Other input channel contains two-dimensional pattern that is stationary or can vary with time and applied to magneto-optical spatial light modulator. Output is time-varying correlation or convolution of first input with one of rows in second input.

  9. Transpiration purged optical probe

    DOEpatents

    VanOsdol, John; Woodruff, Steven

    2004-01-06

    An optical apparatus for clearly viewing the interior of a containment vessel by applying a transpiration fluid to a volume directly in front of the external surface of the optical element of the optical apparatus. The fluid is provided by an external source and transported by means of an annular tube to a capped end region where the inner tube is perforated. The perforation allows the fluid to stream axially towards the center of the inner tube and then axially away from an optical element which is positioned in the inner tube just prior to the porous sleeve. This arrangement draws any contaminants away from the optical element keeping it free of contaminants. In one of several embodiments, the optical element can be a lens, a viewing port or a laser, and the external source can provide a transpiration fluid having either steady properties or time varying properties.

  10. Optical technology in medicine and biology: Introduction

    NASA Astrophysics Data System (ADS)

    Burns, Stephen A.; Ediger, Marwood N.; Richards-Kortum, Rebecca R.

    1996-07-01

    This feature issue on Optical Technology in Medicine and Biology is the inaugural feature issue for a new section of Applied Optics devoted to the application of advanced optical techniques to problems in biology, medicine, and biotechnology. Although Applied Optics has always been open to research in these areas, the Optical Society's board of editors decided that the importance of this type of research merited a more prominent and focused presentation. As a result the Optical Technology division of Applied Optics was renamed the Optical Technology and Biomedical Optics division, and four new members were appointed to the Applied Optics editorial board. In addition, a call for papers was issued for an inaugural feature issue. The papers appearing in the current issue are those that were submitted in response to that call for papers and that passed the rite of peer review. The quality and breadth of the papers demonstrate the wisdom of the society's decision. We have important contributions affecting such diverse areas as biologic imaging, drug delivery, tissue optics, and laser surgery. In addition, Applied Optics has seen a sharp increase in the number of regular submissions involving biomedical optics, and the quality and breadth of these papers also bode well for the future of the publication. In addition there is already another joint Applied Optics/Journal of the Optical Society of America A Feature Issue in process, entitled Diffusing Photons in Turbid Media, scheduled for publication in January 1997. We invite you to read the papers and to participate in the future of Biomedical Optics and Optical Biotechnology by submitting manuscripts for review by your peers. We thank the OSA board of editors for this opportunity, and we encourage our colleagues to submit their papers directly to the Optical Society in the future and to share ideas and thoughts on this new area of Applied Optics.