Science.gov

Sample records for aprotic ionic liquids

  1. Parallel Developments in Aprotic and Protic Ionic Liquids

    E-print Network

    Angell, C. Austen

    Parallel Developments in Aprotic and Protic Ionic Liquids: Physical Chemistry and Applications C of energy conversion and bio- preservation. Both protic and aprotic varieties of ionic liquids are included activity in solvent-free, nominally neutral ionic liquids will be revisited in the context of protic ionic

  2. Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids

    SciTech Connect

    Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md. Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2013-11-07

    The stabilization energies for the formation (E{sub form}) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G{sup **} level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E{sub form} for the [dema][CF{sub 3}SO{sub 3}] and [dmpa][CF{sub 3}SO{sub 3}] complexes (?95.6 and ?96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF{sub 3}SO{sub 3}] complex (?81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl{sup ?}, BF{sub 4}{sup ?}, TFSA{sup ?} anions. The anion has contact with the N–H bond of the dema{sup +} or dmpa{sup +} cations in the most stable geometries of the dema{sup +} and dmpa{sup +} complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0–18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E{sub form} for the less stable geometries for the dema{sup +} and dmpa{sup +} complexes are close to those for the most stable etma{sup +} complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N–H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA{sup ?} anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF{sub 3}SO{sub 3}] ionic liquid.

  3. Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md. Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2013-11-01

    The stabilization energies for the formation (Eform) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G** level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The Eform for the [dema][CF3SO3] and [dmpa][CF3SO3] complexes (-95.6 and -96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF3SO3] complex (-81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl-, BF4-, TFSA- anions. The anion has contact with the N-H bond of the dema+ or dmpa+ cations in the most stable geometries of the dema+ and dmpa+ complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0-18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The Eform for the less stable geometries for the dema+ and dmpa+ complexes are close to those for the most stable etma+ complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N-H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA- anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF3SO3] ionic liquid.

  4. Interactions in ion pairs of protic ionic liquids: comparison with aprotic ionic liquids.

    PubMed

    Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2013-11-01

    The stabilization energies for the formation (E(form)) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G** level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E(form) for the [dema][CF3SO3] and [dmpa][CF3SO3] complexes (-95.6 and -96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF3SO3] complex (-81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl(-), BF4(-), TFSA(-) anions. The anion has contact with the N-H bond of the dema(+) or dmpa(+) cations in the most stable geometries of the dema(+) and dmpa(+) complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0-18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E(form) for the less stable geometries for the dema(+) and dmpa(+) complexes are close to those for the most stable etma(+) complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N-H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA(-) anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF3SO3] ionic liquid. PMID:24206313

  5. Non-ionogenic amphiphiles in aprotic ionic liquids

    NASA Astrophysics Data System (ADS)

    Zherenkova, L. V.; Komarov, P. V.

    2015-04-01

    Structural properties of the imidazolium ionic liquid-non-ionogenic amphiphile system are studied on the basis of the integral equation theory. The effect of the alkyl substituent lengths of cations and solvent selectivity on the features of amphiphile self-assembly is studied. The need to allow for solvent structure in constructing a theory of phase behavior of amphiphile in ionic liquid is demonstrated. The characteristic scales of structural inhomogeneities of a mixture at the stage of the self-assembly of amphiphile molecules are analyzed. Aggregation characteristics of mixture, particularly medium-field spinodal temperature are calculated, depending on amphiphile concentration.

  6. A comparative study of the terrestrial ecotoxicity of selected protic and aprotic ionic liquids.

    PubMed

    Peric, Brezana; Sierra, Jordi; Martí, Esther; Cruañas, Robert; Garau, Maria Antonia

    2014-08-01

    Ionic liquids (ILs) are a fairly new and very promising group of compounds with a vast variety of possible structures and uses. They are considered to be potentially "green", but their impact on the environment tends to be neglected or not studied enough, especially when it comes to terrestrial ecotoxicity, where there are very few studies performed to date. This work presents a comparative study of the terrestrial ecotoxicity of selected representatives of two ILs groups: a new family of protic ILs (derived from aliphatic amines and organic acids) and some frequently used aprotic ILs (substituted imidazolium and piridinium chlorides). Toxicity of the ILs towards three terrestrial plant species (Allium cepa, Lolium perenne and Raphanus sativus) and soil microorganisms involved in carbon and nitrogen transformation was analyzed. Protic ILs have shown no toxic effect in most of the tests performed. The EC50 values for aprotic ILs are various orders of magnitude lower than the ones for protic ILs in all of the tests. The most toxic ILs are the most complex ones in both of the analyzed groups. Protic ILs seem to have a potential for biodegradation in soil, while aprotic ILs exhibit inhibitory effects towards the carbon transforming microbiota. These findings indicate that protic ILs can be considered as less toxic and safer for the terrestrial environment than the aprotic ILs. PMID:24630250

  7. Water-in-ionic liquid microemulsion formation in solvent mixture of aprotic and protic imidazolium-based ionic liquids.

    PubMed

    Kusano, Takumi; Fujii, Kenta; Hashimoto, Kei; Shibayama, Mitsuhiro

    2014-10-14

    We report that water-in-ionic liquid microemulsions (MEs) are stably formed in an organic solvent-free system, i.e., a mixture of aprotic (aIL) and protic (pIL) imidazolium-based ionic liquids (ILs) containing the anionic surfactant dioctyl sulfosuccinate sodium salt (AOT). Structural investigations using dynamic light, small-angle X-ray, and small-angle neutron scatterings were performed for MEs formed in mixtures of aprotic 1-octyl-3-methylimidazolium ([C8mIm(+)]) and protic 1-alkylimidazolium ([CnImH(+)], n = 4 or 8) IL with a common anion, bis(trifluoromethanesulfonyl)amide ([TFSA(-)]). It was found that the ME structure strongly depends on the mixing composition of the aIL/pIL in the medium. The ME size appreciably increases with increasing pIL content in both [C8mIm(+)][TFSA(-)]/[C8ImH(+)][TFSA(-)] and [C8mIm(+)][TFSA(-)]/[C4ImH(+)][TFSA(-)] mixtures. The size is larger for the n = 8 system than that for the n = 4 system. These results indicate that the shell part of MEs is composed of both AOT and pIL cation, and the ME size can be tuned by pIL content in the aIL/pIL mixtures. PMID:25226398

  8. Physical Absorption Of CO2 in Protic and Aprotic Ionic Liquids: An Interaction Perspective.

    PubMed

    Izgorodina, Ekaterina I; Hodgson, Jennifer L; Weis, Derick C; Pas, Steven J; MacFarlane, Douglas R

    2015-09-01

    The physical absorption of CO2 by protic and aprotic ionic liquids such as 1-ethyl-3-methyl-imidazolium tetrafluoroborate was examined at the molecular level using symmetry adapted perturbation theory (SAPT) and density functional techniques through comparison of interaction energies of noncovalently bound complexes between the CO2 molecule and a series of ionic liquid ions and ion pairs. These energies were contrasted with those for complexes with model amines such as methylamine, dimethylamine, and trimethylamine. Detailed analysis of the five fundamental forces that are responsible for stabilization of the complexes is discussed. It was confirmed that the nature of the anion had a greater effect upon the physical interaction energy in non functionalized ionic liquids, with dispersion forces playing an important role in CO2 solubility. Hydrogen bonding with protic cations was shown to impart additional stability to the noncovalently bound CO2···IL complex through inductive forces. Two solvation models, the conductor-like polarizable continuum model (CPCM) and the universal solvation model (SMD), were used to estimate the impact of solvent effects on the CO2 binding. Both solvent models reduced interaction energies for all types of ions. These interaction energies appeared to favor imidazolium cations and carboxylic and sulfonic groups as well as bulky groups (e.g., NTf2) in anions for the physical absorption of CO2. The structure-reactivity relationships determined in this study may help in the optimization of the physical absorption process by means of ionic liquids. PMID:26267781

  9. Triphilic Ionic-Liquid Mixtures: Fluorinated and Non-fluorinated Aprotic Ionic-Liquid Mixtures.

    PubMed

    Hollóczki, Oldamur; Macchiagodena, Marina; Weber, Henry; Thomas, Martin; Brehm, Martin; Stark, Annegret; Russina, Olga; Triolo, Alessandro; Kirchner, Barbara

    2015-10-01

    We present here the possibility of forming triphilic mixtures from alkyl- and fluoroalkylimidazolium ionic liquids, thus, macroscopically homogeneous mixtures for which instead of the often observed two domains-polar and nonpolar-three stable microphases are present: polar, lipophilic, and fluorous ones. The fluorinated side chains of the cations indeed self-associate and form domains that are segregated from those of the polar and alkyl domains. To enable miscibility, despite the generally preferred macroscopic separation between fluorous and alkyl moieties, the importance of strong hydrogen bonding is shown. As the long-range structure in the alkyl and fluoroalkyl domains is dependent on the composition of the liquid, we propose that the heterogeneous, triphilic structure can be easily tuned by the molar ratio of the components. We believe that further development may allow the design of switchable, smart liquids that change their properties in a predictable way according to their composition or even their environment. PMID:26305804

  10. Triphilic Ionic-Liquid Mixtures: Fluorinated and Non-fluorinated Aprotic Ionic-Liquid Mixtures

    PubMed Central

    Hollóczki, Oldamur; Macchiagodena, Marina; Weber, Henry; Thomas, Martin; Brehm, Martin; Stark, Annegret; Russina, Olga; Triolo, Alessandro; Kirchner, Barbara

    2015-01-01

    We present here the possibility of forming triphilic mixtures from alkyl- and fluoroalkylimidazolium ionic liquids, thus, macroscopically homogeneous mixtures for which instead of the often observed two domains—polar and nonpolar—three stable microphases are present: polar, lipophilic, and fluorous ones. The fluorinated side chains of the cations indeed self-associate and form domains that are segregated from those of the polar and alkyl domains. To enable miscibility, despite the generally preferred macroscopic separation between fluorous and alkyl moieties, the importance of strong hydrogen bonding is shown. As the long-range structure in the alkyl and fluoroalkyl domains is dependent on the composition of the liquid, we propose that the heterogeneous, triphilic structure can be easily tuned by the molar ratio of the components. We believe that further development may allow the design of switchable, smart liquids that change their properties in a predictable way according to their composition or even their environment. PMID:26305804

  11. Comparison of aggregation behaviors of a phytosterol ethoxylate surfactant in protic and aprotic ionic liquids.

    PubMed

    Yue, Xiu; Chen, Xiao; Li, Qintang

    2012-08-01

    Two different room-temperature ionic liquids (ILs), the protic ethylammonium nitrate (EAN) and the aprotic 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF(4)), have been employed to investigate the solvent protonation effect on aggregation behaviors of a phytosterol ethoxylate surfactant (BPS-10). The calculated thermodynamic parameters based on surface tension measurements present a stronger solvophobic interaction in EAN than that in [Bmim]BF(4) and disclose different driving forces for micelle formation. In addition, the polarized optical microscopy and small-angle X-ray scattering techniques are used to characterize the phase structures formed in both systems at 25 °C. Due to the H-bonding networks in protic EAN, BPS-10 exhibits a lyotropic liquid-crystalline behavior different from that in [Bmim]BF(4). Results obtained from the rheological measurements reflect a more viscoelastic nature of lyotropic liquid-crystalline phases in EAN. The obtained results indicate that the protic EAN behaves more effective than [Bmim]BF(4) to promote the nonionic BPS-10 aggregation. PMID:22793994

  12. Elucidating Interactions and Conductivity of Newly Synthesised Low Bandgap Polymer with Protic and Aprotic Ionic Liquids

    PubMed Central

    Attri, Pankaj; Lee, Seung-Hyun; Hwang, Sun Woo; Kim, Joong I. L.; Lee, Sang Woo; Kwon, Gi-Chung; Choi, Eun Ha; Kim, In Tae

    2013-01-01

    In this paper, we have examined the conductivity and interaction studies of ammonium and imidazolium based ionic liquids (ILs) with the newly synthesised low bandgap polymer (Poly(2-heptadecyl-4-vinylthieno[3,4-d]thiazole) (PHVTT)). Use of low bandgap polymers is the most suitable way to harvest a broader spectrum of solar radiations for solar cells. But, still there is lack of most efficient low bandgap polymer. In order to solve this problem, we have synthesised a new low bandgap polymer and investigated its interaction with the ILs to enhance its conductivity. ILs may undergo almost unlimited structural variations; these structural variations have attracted extensive attention in polymer studies. The aim of present work is to illustrate the state of art progress of implementing the interaction of ILs (protic and aprotic ILs) with newly synthesised low bandgap polymer. In addition to this, our UV-Vis spectroscopy, confocal Raman spectroscopy and FT-IR spectroscopy results have revealed that all studied ILs (tributylmethylammonium methyl sulfate ([N1444][MeSO4] from ammonium family) and 1-methylimidazolium chloride ([Mim]Cl, and 1-butyl-3-methylimidazolium chloride ([Bmim]Cl from imidazolium family) have potential to interact with polymer. Our semi empirical calculation with help of Hyperchem 7 shows that protic IL ([Mim]Cl) interacts strongly with the low bandgap polymer through the H-bonding. Further, protic ILs shows enhanced conductivity than aprotic ILs in association with low bandgap polymer. This study provides the combined effect of low bandgap polymer and ILs that may generate many theoretical and experimental opportunities. PMID:23874829

  13. Surface interactions, corrosion processes and lubricating performance of protic and aprotic ionic liquids with OFHC copper

    NASA Astrophysics Data System (ADS)

    Espinosa, Tulia; Sanes, José; Jiménez, Ana-Eva; Bermúdez, María-Dolores

    2013-05-01

    In order to select possible candidates for use as lubricants or as precursors of surface coatings, the corrosion and surface interactions of oxygen-free high conductivity (OFHC) copper with two new protic (PIL) and four aprotic (APIL) room-temperature ionic liquids have been studied. The PILs, with no heteroatoms in their composition, are the triprotic di[(2-hydroxyethyl)ammonium] succinate (MSu) and the diprotic di[bis-(2-hydroxyethyl)ammonium] adipate (DAd). The four APILs contain imidazolium cations with short or long alkyl chain substituents and reactive anions: 1-ethyl-3-methylimidazolium phosphonate ([EMIM]EtPO3H); 1-ethyl-3-methylimidazolium octylsulfate ([EMIM]C8H17SO4); 1-hexyl-3-methylimidazolium tetrafluoroborate ([HMIM]BF4) and 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM]PF6). Contact angles between the ionic liquids and OFHC copper surface were measured. Mass and roughness changes of OFHC copper after 168 h in contact with the ionic liquids have been determined. Copper surfaces were studied by XRD, SEM-EDX and XPS surface analysis. FTIR spectra of the liquid phases recovered after being in contact with the copper surface were compared with that of the neat ionic liquids. The lowest corrosion rate is observed for the diprotic ammonium adipate PIL (DAd), which gives low mass and surface roughness changes and forms adsorbed layers on copper, while the triprotic ammonium succinate salt (MSu) produces a severe corrosive attack by reaction with copper to form a blue crystalline solid, which has been characterized by FTIR and thermal analysis (TGA). All imidazolium APILs react with copper, with different results as a function of the anion. As expected, [EMIM]C8H17SO4 reacts with copper to form the corresponding copper sulphate salt. [EMIM]EtPO3H produces severe corrosion to form a phosphonate-copper soluble phase. [HMIM]BF4 gives rise to the highest roughness increase of the copper surface. [HMIM]PF6 shows the lowest mass and roughness changes of the four imidazolium ionic liquids due to the formation of a solid layer containing phosphorus and fluorine. The results described in the present study are in agreement with the outstanding good tribological performance of the diprotic ammonium adipate (DAd) ionic liquid for the copper-copper contact, in pin-on-disc tests, preventing wear and giving a very low friction coefficient of 0.01. Under the same conditions, [HMIM]PF6 gives a friction value of 0.03, while the reactivity of MSu towards copper produces maximum friction peaks of 0.05. In contrast with the absence of surface damage on copper, an abrasive wear mechanism is observed for MSu and [HMIM]PF6. The results confirm a better lubricating performance for a lower corrosion rate.

  14. Aprotic Heterocyclic Anion Triazolide Ionic Liquids - A New Class of Ionic Liquid Anion Accessed by the Huisgen Cycloaddition Reaction

    SciTech Connect

    Thompson, Robert L.; Damodaran, Krishnan; Luebke, David; Nulwala, Hunaid

    2013-06-01

    The triazole core is a highly versatile heterocyclic ring which can be accessed easily with the Cu(I)-catalyzed Huisgen cycloaddition reaction. Herein we present the preparation of ionic liquids that incorporate a 1,2,3-triazolide anion. These ionic liquids were prepared by a facile procedure utilizing a base-labile pivaloylmethyl group at the 1-position, which can act as precursors to 1H- 4-substituted 1,2,3-triazole. These triazoles were then subsequently converted into ionic liquids after deprotonation using an appropriate ionic liquid cation hydroxide. The densities and thermal decompositions of these ionic liquids were measured. These novel ionic liquids have potential applications in gas separations and in metal-free catalysis.

  15. Physical Properties and CO2 Reaction Pathway of 1-Ethyl-3-Methylimidazolium Ionic Liquids with Aprotic Heterocyclic Anions

    SciTech Connect

    Seo, S; DeSilva, MA; Brennecke, JF

    2014-12-25

    Ionic liquids (ILs) with aprotic heterocyclic anions (AHA) are attractive candidates for CO2 capture technologies. In this study, a series of AHA ILs with 1-ethyl-3-methylimidazolium ([emim](+)) cations were synthesized, and their physical properties (density, viscosity, and ionic conductivity) were measured. In addition, CO2 solubility in each IL was determined at room temperature using a volumetric method at pressures between 0 and 1 bar. The AHAs are basic anions that are capable of reacting stoichiometrically with CO2 to form carbamate species. An interesting CO2 uptake isotherm behavior was observed, and this may be attributed to a parallel, equilibrium proton exchange process between the imidazolium cation and the basic AHA in the presence of CO2, followed by the formation of "transient" carbene species that react rapidly with CO2. The presence of the imidazolium-carboxylate species and carbamate anion species was verified using H-1 and C-13 NMR spectroscopy. While the reaction between CO2 and the proposed transient carbene resulted in cation-CO2 binding that is stronger than the anion-CO2 reaction, the reactions of the imidazolium AHA ILs were fully reversible upon regeneration at 80 degrees C with nitrogen purging. The presence of water decreased the CO2 uptake due to the inhibiting effect of the neutral species (protonated form of AHA) that is formed.

  16. Gelation mechanism of tetra-armed poly(ethylene glycol) in aprotic ionic liquid containing nonvolatile proton source, protic ionic liquid.

    PubMed

    Hashimoto, Kei; Fujii, Kenta; Nishi, Kengo; Sakai, Takamasa; Yoshimoto, Nobuko; Morita, Masayuki; Shibayama, Mitsuhiro

    2015-04-01

    We report the gelation mechanism of tetra-armed prepolymer chains in typical aprotic ionic liquid (aIL), i.e., A-B type cross-end coupling reaction of tetra-armed poly(ethylene glycol)s with amine and activated ester terminals (TetraPEG-NH2 and TetraPEG-NHS, respectively) in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C2mIm][TFSA]). In the ion gel system, we focused on the pH (or H(+) concentration) dependence of the gelation reaction. We thus applied the protic ionic liquid (pIL), 1-ethylimidazolium TFSA ([C2ImH][TFSA]), as a nonvolatile H(+) source, and added it into the solvent aIL. It was found that the gelation time of TetraPEG ion gel can be successfully controlled from 1 min to 3 h depending on the concentration of pIL (cpIL = 0-3 mM). This suggests that the acid-base properties of TetraPEG-NH2 showing acid-base equilibrium (-NH2 + H(+) ? -NH3(+)) in the solutions play a key role in the gelation process. The acid dissociation constants, pKa's of TetraPEG-NH3(+) and C2ImH(+) (cation of pIL) in aIL were directly determined by potentiometric titration to be 16.4 and 13.7, respectively. This indicates that most of the H(+) ions bind to TetraPEG-NH2 and then C2ImH(+) exists as neutral C2Im. The reaction efficiency of amide bond (cross-linked point) systematically decreased with increasing cpIL, which was reflected to the mechanical strength of the ion gels. From these results, we discuss the gelation mechanism of TetraPEG in aIL to point out the relationship between polymer network structure and [H(+)] in the solutions. PMID:25768427

  17. Study of a Li-air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid

    NASA Astrophysics Data System (ADS)

    Cecchetto, Laura; Salomon, Mark; Scrosati, Bruno; Croce, Fausto

    2012-09-01

    Recent studies have clearly demonstrated that cyclic and linear carbonates are unstable when used in rechargeable Li-air batteries employing aprotic solvents mostly due to the cathodic formation of superoxide during the oxygen reduction reaction. In particular, it has been ascertained that nucleophilic attack by superoxide anion radical, O2-rad , at O-alkyl carbon is a common mechanism of decomposition of organic carbonates. Moreover, theoretical calculations showed that ether chemical functionalities are stable against nucleophilic substitution induced by superoxide. Aim of this study is to report on a new electrolyte solution for Li-air battery formed by a mixture of an ether-based aprotic solvent with an ionic liquid (IL). The IL-based electrolyte was obtained by mixing the pure ionic liquid N-methyl-(n-butyl) pyrrolidinium bis(trifluoromethane sulfonyl) imide (here denoted as PYR14TFSI) to a 0.91 M solution of lithium triflate (LiCF3SO3) in tetra ethylene glycol dimethyl etcher (TEGDME). We observed that the presence of IL beneficially affects the kinetics and the reversibility of the oxygen reactions involved at the cathode. The most significant result being a lower overvoltage for the charge reaction, compared to a Li/air cell containing the same electrolyte solution without IL.

  18. A wave-function based approach for polarizable charge model: Systematic comparison of polarization effects on protic, aprotic, and ionic liquids

    NASA Astrophysics Data System (ADS)

    Nakano, Hiroshi; Yamamoto, Takeshi; Kato, Shigeki

    2010-01-01

    We first describe a wave-function based formalism of polarizable charge model by starting from the Hartree product ansatz for the total wave function and making the second-order expansion of individual molecular energies with the use of partial charge operators. The resulting model is shown to be formally equivalent to the charge response kernel model that starts from the linear-response approximation to partial charges, and also closely related to a family of fluctuating charge models that are based on the electronegativity equalization principle. We then apply the above model to a systematic comparison of polarization effects on qualitatively different liquids, namely, protic solvents (water and methanol), an aprotic polar solvent (acetonitrile), and imidazolium-based ionic liquids. Electronic polarization is known to decelerate molecular motions in conventional solvents while it accelerates them in ionic liquids. To obtain more insights into these phenomena, we consider an effective decomposition of total polarization energy into molecular contributions, and show that their statistical distribution is well-correlated with the acceleration/deceleration of molecular motions. In addition, we perform effective nonpolarizable simulations based on mean polarized charges, and compare them with fully polarizable simulations. The result shows that the former can reproduce structural properties of conventional solvents rather accurately, while they fail qualitatively to reproduce acceleration of molecular motions in ionic liquids.

  19. Are alkyl sulfate-based protic and aprotic ionic liquids stable with water and alcohols? A thermodynamic approach.

    PubMed

    Jacquemin, Johan; Goodrich, Peter; Jiang, Wei; Rooney, David W; Hardacre, Christopher

    2013-02-14

    The knowledge of the chemical stability as a function of the temperature of ionic liquids (ILs) in the presence of other molecules such as water is crucial prior to developing any industrial application and process involving these novel materials. Fluid phase equilibria and density over a large range of temperature and composition can give basic information on IL purity and chemical stability. The IL scientific community requires accurate measurements accessed from reference data. In this work, the stability of different alkyl sulfate-based ILs in the presence of water and various alcohols (methanol, ethanol, 1-butanol, and 1-octanol) was investigated to understand their stability as a function of temperature up to 423.15 K over the hydrolysis and transesterification reactions, respectively. From this investigation, it was clear that methyl sulfate- and ethyl sulfate-based ILs are not stable in the presence of water, since hydrolysis of the methyl sulfate or ethyl sulfate anions to methanol or ethanol and hydrogenate anion is undoubtedly observed. Such observations could help to explain the differences observed for the physical properties published in the literature by various groups. Furthermore, it appears that a thermodynamic equilibrium process drives these hydrolysis reactions. In other words, these hydrolysis reactions are in fact reversible, providing the possibility to re-form the desired alkyl sulfate anions by a simple transesterification reaction between hydrogen sulfate-based ILs and the corresponding alcohol (methanol or ethanol). Additionally, butyl sulfate- and octyl sulfate-based ILs appear to follow this pattern but under more drastic conditions. In these systems, hydrolysis is observed in both cases after several months for temperatures up to 423 K in the presence of water. Therein, the partial miscibility of hydrogen sulfate-based ILs with long chain alcohols (1-butanol and 1-octanol) can help to explain the enhanced hydrolytic stability of the butyl sulfate- and octyl sulfate-based ILs compared with the methyl or ethyl sulfate systems. Additionally, rapid transesterification reactions are observed during liquid-liquid equilibrium studies as a function of temperature for binary systems of (hydrogen sulfate-based ionic liquids + 1-butanol) and of (hydrogen sulfate-based ionic liquids + 1-octanol). Finally, this atom-efficient catalyst-free transesterification reaction between hydrogen sulfate-based ILs and alcohol was then tested to provide a novel way to synthesize new ILs with various anion structures containing the alkyl sulfate group. PMID:23320846

  20. Effect of Structure on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient) of Aprotic Heterocyclic Anion (AHA) Room-Temperature Ionic Liquids. 1. Variation of Anionic Species.

    PubMed

    Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F

    2015-12-01

    A series of room temperature ionic liquids (RTILs) based on 1-ethyl-3-methylimidazolium ([emim](+)) with different aprotic heterocyclic anions (AHAs) were synthesized and characterized as potential electrolyte candidates for lithium ion batteries. The density and transport properties of these ILs were measured over the temperature range between 283.15 and 343.15 K at ambient pressure. The temperature dependence of the transport properties (viscosity, ionic conductivity, self-diffusion coefficient, and molar conductivity) is fit well by the Vogel-Fulcher-Tamman (VFT) equation. The best-fit VFT parameters, as well as linear fits to the density, are reported. The ionicity of these ILs was quantified by the ratio of the molar conductivity obtained from the ionic conductivity and molar concentration to that calculated from the self-diffusion coefficients using the Nernst-Einstein equation. The results of this study, which is based on ILs composed of both a planar cation and planar anions, show that many of the [emim][AHA] ILs exhibit very good conductivity for their viscosities and provide insight into the design of ILs with enhanced dynamics that may be suitable for electrolyte applications. PMID:26505641

  1. Decoupling of charge transport from structural dynamics in protic ionic liquids

    NASA Astrophysics Data System (ADS)

    Sangoro, Joshua; Sokolov, Alexei; Kremer, Friedrich; Paluch, Marian

    2013-03-01

    Broadband dielectric spectroscopy, differential scanning calorimetry and rheology are employed to investigate charge transport and dynamics in protic and aprotic ionic liquids. While the structural ?-relaxation rates and the characteristic charge diffusion rates coincide for aprotic ionic liquids, the latter is found to be more than 100 times for the protic ionic liquids studied. Moreover, the analysis of protic ionic liquids revealed a decoupling of temperature dependence of ionic transport from that of structural relaxation with the degree of decoupling increasing with fragility of the liquid. The potential technological impact of these results will be discussed.

  2. The synthesis and electrochemical characterization of bis(fluorosulfonyl)imide-based protic ionic liquids.

    PubMed

    Menne, S; Vogl, T; Balducci, A

    2015-02-28

    A protic ionic liquid containing the FSI anion has been synthesized for the first time and used as an electrolyte in an electrochemical storage device. This PIL-based electrolyte outperforms commonly used aprotic ionic liquids, maintaining the advantages and safety of ionic liquid-based electrolytes. PMID:25645883

  3. Ionic Liquids Database- (ILThermo)

    National Institute of Standards and Technology Data Gateway

    SRD 147 Ionic Liquids Database- (ILThermo) (Web, free access)   IUPAC Ionic Liquids Database, ILThermo, is a free web research tool that allows users worldwide to access an up-to-date data collection from the publications on experimental investigations of thermodynamic, and transport properties of ionic liquids as well as binary and ternary mixtures containing ionic liquids.

  4. Applications of ionic liquids.

    PubMed

    Patel, Divia Dinesh; Lee, Jong-Min

    2012-06-01

    Ionic liquids have recently gained popularity in the scientific community owing to their special properties and characteristics. One of the reasons why ionic liquids have been termed "green solvents" is due to their negligible vapour pressure. Their use in electrochemical, biological and metal extraction applications is discussed. Wide research has been carried out for their use in batteries, solar panels, fuel cells, drug deliveries and biomass pretreatments. This work aims to consolidate the various findings from previous works in these areas. PMID:22711528

  5. Synthesis of ionic liquids

    DOEpatents

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2008-09-09

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  6. Synthesis of ionic liquids

    SciTech Connect

    Dai, Sheng; Luo, Huimin

    2011-11-01

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  7. Dissociation of equimolar mixtures of aqueous carboxylic acids in ionic liquids: role of specific interactions.

    PubMed

    Shukla, Shashi Kant; Kumar, Anil

    2015-04-30

    Hammett acidity function observes the effect of protonation/deprotonation on the optical density/absorbance of spectrophotometric indicator. In this work, the Hammett acidity, H0, of equimolar mixtures of aqueous HCOOH, CH3COOH, and CH3CH2COOH was measured in 1-methylimidazolium-, 1-methylpyrrolidinium-, and 1-methylpiperidinium-based protic ionic liquids (PILs) and 1-butyl-3-methylimidazolium-based aprotic ionic liquid (AIL) with formate (HCOO(-)) anion. Higher H0 values were observed for the equimolar mixtures of aqueous carboxylic acids in protic ionic liquids compared with those of the aprotic ionic liquid because of the involvement of the stronger specific interactions between the conjugate acid of ionic liquid and conjugate base of carboxylic acids as suggested by the hard-soft acid base (HSAB) theory. The different H0 values for the equimolar mixtures of aqueous carboxylic acids in protic and aprotic ionic liquids were noted to depend on the activation energy of proton transfer (Ea,H(+)). The higher activation energy of proton transfer was obtained in AIL, indicating lower ability to form specific interactions with solute than that of PILs. Thermodynamic parameters determined by the "indicator overlapping method" further confirmed the involvement of the secondary interactions in the dissociation of carboxylic acids. On the basis of the thermodynamic parameter values, the potential of different ionic liquids in the dissociation of carboxylic acids was observed to depend on the hydrogen bond donor acidity (?) and hydrogen bond acceptor basicity (?), characteristics of specific interactions. PMID:25839210

  8. Void-Assisted Ion-Paired Proton Transfer at Water–Ionic Liquid Interfaces

    PubMed Central

    de Eulate, Eva Alvarez; Silvester, Debbie S; Arrigan, Damien W M

    2015-01-01

    At the water–trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate ([P14,6,6,6][FAP]) ionic liquid interface, the unusual electrochemical transfer behavior of protons (H+) and deuterium ions (D+) was identified. Alkali metal cations (such as Li+, Na+, K+) did not undergo this transfer. H+/D+ transfers were assisted by the hydrophobic counter anion of the ionic liquid, [FAP]?, resulting in the formation of a mixed capacitive layer from the filling of the latent voids within the anisotropic ionic liquid structure. This phenomenon could impact areas such as proton-coupled electron transfers, fuel cells, and hydrogen storage where ionic liquids are used as aprotic solvents. PMID:26489692

  9. Ionic liquids in chemical engineering.

    PubMed

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced. PMID:22432579

  10. 3-Methylpiperidinium ionic liquids.

    PubMed

    Belhocine, Tayeb; Forsyth, Stewart A; Gunaratne, H Q Nimal; Nieuwenhuyzen, Mark; Nockemann, Peter; Puga, Alberto V; Seddon, Kenneth R; Srinivasan, Geetha; Whiston, Keith

    2015-04-28

    A wide range of room temperature ionic liquids based on the 3-methylpiperdinium cation core were produced from 3-methylpiperidine, which is a derivative of DYTEK® A amine. First, reaction with 1-bromoalkanes or 1-bromoalkoxyalkanes generated the corresponding tertiary amines (Rm?pip, R = alkyl or alkoxyalkyl); further quaternisation reactions with the appropriate methylating agents yielded the quaternary [Rmm?pip]X salts (X(-) = I(-), [CF3CO2](-) or [OTf](-); Tf = -SO2CF3), and [Rmm?pip][NTf2] were prepared by anion metathesis from the corresponding iodides. All [NTf2](-) salts are liquids at room temperature. [Rmm?pip]X (X(-) = I(-), [CF3CO2](-) or [OTf](-)) are low-melting solids when R = alkyl, but room temperature liquids upon introduction of ether functionalities on R. Neither of the 3-methylpiperdinium ionic liquids showed any signs of crystallisation, even well below 0 °C. Some related non-C-substituted piperidinium and pyrrolidinium analogues were prepared and studied for comparison. Crystal structures of 1-hexyl-1,3-dimethylpiperidinium tetraphenylborate, 1-butyl-3-methylpiperidinium bromide, 1-(2-methoxyethyl)-1-methylpiperidinium chloride and 1-(2-methoxyethyl)-1-methylpyrrolidinium bromide are reported. Extensive structural and physical data are collected and compared to literature data, with special emphasis on the systematic study of the cation ring size and/or asymmetry effects on density, viscosity and ionic conductivity, allowing general trends to be outlined. Cyclic voltammetry shows that 3-methylpiperidinium ionic liquids, similarly to azepanium, piperidinium or pyrrolidinium counterparts, are extremely electrochemically stable; the portfolio of useful alternatives for safe and high-performing electrolytes is thus greatly extended. PMID:25669485

  11. Electrowetting of ionic liquids.

    PubMed

    Millefiorini, Stefano; Tkaczyk, Alan H; Sedev, Rossen; Efthimiadis, Jim; Ralston, John

    2006-03-01

    We have successfully demonstrated that imidazolium- and pyrrolidinium-based commercial room-temperature ionic liquids can electrowet (with a dc voltage) a smooth fluoropolymer (Teflon AF1600) surface. Qualitatively, the process is analogous to the electrowetting of aqueous electrolyte solutions: the contact angle versus voltage curve has a parabolic shape which saturates at larger voltages (positive or negative). On the other hand we observed several peculiarities: (i) the efficiency is significantly lower (by about an order of magnitude); (ii) the influence of the bulky cation is larger and the importance of the smaller anion is lesser, especially with respect to electrowetting saturation; (iii) there is an asymmetry in the saturation contact angles found for positive and negative voltages. The asymmetry may be correlated with the cation-anion asymmetry of the ionic liquids. The low efficiency may be caused by the presence of water and other impurities in these commercial materials. PMID:16506791

  12. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    DOEpatents

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  13. A New Class of Ionic Liquids: Anion Amphiprotic Ionic Liquids.

    PubMed

    Treskow, Marcel; Pitawala, Jagath; Arenz, Sven; Matic, Aleksandar; Johansson, Patrik

    2012-08-16

    We here present a new class of protic ionic liquids, anion amphiprotic ionic liquids (AAILs). These materials are protonation equilibrium free protic ionic liquids and interesting in their own right by not following the classical Brønsted acid-base neutralization concept. Due to the very simple synthesis route applied and their stable basic chemistry, we believe in a potential use for manifold applications. This is supported by the combination of practical material properties, foremost, a general intrinsic stability versus reversal of the formation reaction toward neutral species, broad liquidus ranges, long-term thermal stabilities, high conductivities, protic characteristics, and a general stability versus water. PMID:26295756

  14. Particle self-assembly at ionic liquid-based interfaces.

    PubMed

    Frost, Denzil S; Nofen, Elizabeth M; Dai, Lenore L

    2014-04-01

    This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid-water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid-water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water-ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil or water is incorporated. PMID:24230971

  15. Ionic Liquid Epoxy Resin Monomers

    NASA Technical Reports Server (NTRS)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  16. Hydrophobic ionic liquids

    DOEpatents

    Koch, V.R.; Nanjundiah, C.; Carlin, R.T.

    1998-10-27

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas shown in a diagram wherein R{sub 1}, R{sub 2}, R{sub 3}, R{sub 4}, R{sub 5}, and R{sub 6} are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F-, Cl-, CF{sub 3}-, SF{sub 5}-, CF{sub 3}S-, (CF{sub 3}){sub 2}CHS- or (CF{sub 3}){sub 3}CS-; and X{sup {minus}} is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 {angstrom}{sup 3}. 4 figs.

  17. Hydrophobic ionic liquids

    DOEpatents

    Koch, Victor R. (Lincoln, MA); Nanjundiah, Chenniah (Lynn, MA); Carlin, Richard T. (Nashua, NH)

    1998-01-01

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

  18. Anion pairs in room temperature ionic liquids predicted by molecular dynamics simulation, verified by spectroscopic characterization

    SciTech Connect

    Schwenzer, Birgit; Kerisit, Sebastien N.; Vijayakumar, M.

    2014-01-01

    Molecular-level spectroscopic analyses of an aprotic and a protic room-temperature ionic liquid, BMIM OTf and BMIM HSO4, respectively, have been carried out with the aim of verifying molecular dynamics simulations that predict anion pair formation in these fluid structures. Fourier-transform infrared spectroscopy, Raman spectroscopy and nuclear magnetic resonance spectroscopy of various nuclei support the theoretically-determined average molecular arrangements.

  19. Elucidation of ionic interactions in the protic ionic liquid solutions by isothermal titration calorimetry.

    PubMed

    Rai, Gitanjali; Kumar, Anil

    2014-04-17

    The strong hydrogen-bonded network noted in protic ionic liquids (PILs) may lead to stronger interactions of the ionic entities of PILs with solvents (water, methanol, ethylene glycol, dimethylsulfoxide (DMSO), N,N'-dimethylformamide (DMF)) as compared with those of aprotic ionic liquids (APILs). The PILs used in this work are 1-methylimidazolium tetrafluoroborate, 2-methylpyridinium tetrafluoroborate, and N-methylpyrrolodinium tetrafluoroborate in comparison to 1-butyl-3-methylimidazolium tetrafluoroborate, which is classified as an APIL. In this work, the excess partial molar enthalpy, H(E)IL obtained from isothermal calorimetric titrations at 298.15 K is used to probe the nature of interactions of the PIL cations with solvent molecules against those present in APIL-solvent systems. This work also reports interesting flip-flopping in the thermal behavior of these PIL-solvent systems depending upon the structure of the cationic ring of a PIL. In some cases, these flip-flops are the specific fingerprints for specific PILs in a common solvent environment. The excess partial molar enthalpy at infinite dilution, H(E,?)IL, of these PILs bears a critical dependence on the solvent properties. An analysis of relative apparent molar enthalpies, ?L, of the PIL solutions by the ion interaction model of Pitzer yields important information on ionic interactions of these systems. PMID:24650134

  20. Aqueous Brønsted-Lowry Chemistry of Ionic Liquid Ions.

    PubMed

    Driver, Gordon W

    2015-08-01

    Ionic liquids have become commonplace materials found in research laboratories the world over, and are increasingly utilised in studies featuring water as co-solvent. It is reported herein that proton activities, aH (+) , originating from auto-protolysis of H2O molecules, are significantly altered in mixtures with common ionic liquids comprised of Cl(-), [HSO4 ](-), [CH3SO4 ](-), [CH3COO](-), [BF4](-), relative to pure water. paH (+) values, recorded in partially aqueous media as -log(aH (+)), are observed over a wide range (?0-13) as a result of hydrolysis (or acid dissociation) of liquid salt ions to their associated parent molecules (or conjugate bases). Brønsted-Lowry acid-base character of ionic liquid ions observed is rooted in equilibria known to govern the highly developed aqueous chemistry of classical organic and inorganic salts, as their well-known aqueous pKs dictate. Classical salt behaviour observed for both protic and aprotic ions in the presence of water suggests appropriate attention need be given to relevant chemical systems in order to exploit, or avoid, the nature of the medium formed. PMID:26097128

  1. Ionic Liquids, Superionic glasses, Quasi-Ionic Liquids, Quasi-Liquid Ionics, all with High Conductivities but some with Little Fluidity. Where does the Paradigm End?

    E-print Network

    Angell, C. Austen

    end if the liquid has vitrified5 . The protic ionic liquids are prepared by proton transfer fromIonic Liquids, Superionic glasses, Quasi-Ionic Liquids, Quasi-Liquid Ionics, all with High liquids from the viewpoint of the electrochemist, considering the different classes of ionic liquids

  2. Ion pairing in ionic liquids

    NASA Astrophysics Data System (ADS)

    Kirchner, Barbara; Malberg, Friedrich; Firaha, Dzmitry S.; Hollóczki, Oldamur

    2015-11-01

    In the present article we briefly review the extensive discussion in literature about the presence or absence of ion pair-like aggregates in ionic liquids. While some experimental studies point towards the presence of neutral subunits in ionic liquids, many other experiments cannot confirm or even contradict their existence. Ion pairs can be detected directly in the gas phase, but no direct method is available to observe such association behavior in the liquid, and the corresponding indirect experimental proofs are based on such assumptions as unity charges at the ions. However, we have shown by calculating ionic liquid clusters of different sizes that assuming unity charges for ILs is erroneous, because a substantial charge transfer is taking place between the ionic liquid ions that reduce their total charge. Considering these effects might establish a bridge between the contradicting experimental results on this matter. Beside these results, according to molecular dynamics simulations the lifetimes of ion–ion contacts and their joint motions are far too short to verify the existence of neutral units in these materials.

  3. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOEpatents

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  4. PEROXIDASE ACTIVITY IN IONIC LIQUIDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Only a few enzymes have been examined in ionic liquids (ILs) to date. Initial results suggest that at least some enzymes tolerate ILs at least as well as conventional molecular solvents. Our work further explores the possibility that ILs provide a suitable (i.e., non-denaturing, non-inhibitory) en...

  5. Application of ionic liquids in hydrometallurgy.

    PubMed

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  6. Application of Ionic Liquids in Hydrometallurgy

    PubMed Central

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  7. Ionic Liquids in Biomass Processing

    NASA Astrophysics Data System (ADS)

    Tan, Suzie Su Yin; Macfarlane, Douglas R.

    Ionic liquids have been studied for their special solvent properties in a wide range of processes, including reactions involving carbohydrates such as cellulose and glucose. Biomass is a widely available and renewable resource that is likely to become an economically viable source of starting materials for chemical and fuel production, especially with the price of petroleum set to increase as supplies are diminished. Biopolymers such as cellulose, hemicellulose and lignin may be converted to useful products, either by direct functionalisation of the polymers or depolymerisation to monomers, followed by microbial or chemical conversion to useful chemicals. Major barriers to the effective conversion of biomass currently include the high crystallinity of cellulose, high reactivity of carbohydrates and lignin, insolubility of cellulose in conventional solvents, as well as heterogeneity in the native lignocellulosic materials and in lignin itself. This combination of factors often results in highly heterogeneous depolymerisation products, which make efficient separation difficult. Thus the extraction, depolymerisation and conversion of biopolymers will require novel reaction systems in order to be both economically attractive and environmentally benign. The solubility of biopolymers in ionic liquids is a major advantage of their use, allowing homogeneous reaction conditions, and this has stimulated a growing research effort in this field. This review examines current research involving the use of ionic liquids in biomass reactions, with perspectives on how it relates to green chemistry, economic viability, and conventional biomass processes.

  8. Ionic liquids in biomass processing.

    PubMed

    Tan, Suzie Su Yin; Macfarlane, Douglas R

    2010-01-01

    Ionic liquids have been studied for their special solvent properties in a wide range of processes, including reactions involving carbohydrates such as cellulose and glucose. Biomass is a widely available and renewable resource that is likely to become an economically viable source of starting materials for chemical and fuel production, especially with the price of petroleum set to increase as supplies are diminished. Biopolymers such as cellulose, hemicellulose and lignin may be converted to useful products, either by direct functionalisation of the polymers or depolymerisation to monomers, followed by microbial or chemical conversion to useful chemicals. Major barriers to the effective conversion of biomass currently include the high crystallinity of cellulose, high reactivity of carbohydrates and lignin, insolubility of cellulose in conventional solvents, as well as heterogeneity in the native lignocellulosic materials and in lignin itself. This combination of factors often results in highly heterogeneous depolymerisation products, which make efficient separation difficult. Thus the extraction, depolymerisation and conversion of biopolymers will require novel reaction systems in order to be both economically attractive and environmentally benign. The solubility of biopolymers in ionic liquids is a major advantage of their use, allowing homogeneous reaction conditions, and this has stimulated a growing research effort in this field. This review examines current research involving the use of ionic liquids in biomass reactions, with perspectives on how it relates to green chemistry, economic viability, and conventional biomass processes. PMID:21107802

  9. Ionic Liquids to Replace Hydrazine

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

    2011-01-01

    A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

  10. Membrane separation of ionic liquid solutions

    DOEpatents

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  11. Actinide chemistry in ionic liquids.

    PubMed

    Takao, Koichiro; Bell, Thomas James; Ikeda, Yasuhisa

    2013-04-01

    This Forum Article provides an overview of the reported studies on the actinide chemistry in ionic liquids (ILs) with a particular focus on several fundamental chemical aspects: (i) complex formation, (ii) electrochemistry, and (iii) extraction behavior. The majority of investigations have been dedicated to uranium, especially for the 6+ oxidation state (UO2(2+)), because the chemistry of uranium in ordinary solvents has been well investigated and uranium is the most abundant element in the actual nuclear fuel cycles. Other actinides such as thorium, neptunium, plutonium, americium, and curiumm, although less studied, are also of importance in fully understanding the nuclear fuel engineering process and the safe geological disposal of radioactive wastes. PMID:22873132

  12. Lipid Biomembrane in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Yoo, Brian; Jing, Benxin; Shah, Jindal; Maginn, Ed; Zhu, Y. Elaine; Department of Chemical and Biomolecular Engineering Team

    2014-03-01

    Ionic liquids (ILs) have been recently explored as new ``green'' chemicals in several chemical and biomedical processes. In our pursuit of understanding their toxicities towards aquatic and terrestrial organisms, we have examined the IL interaction with lipid bilayers as model cell membranes. Experimentally by fluorescence microscopy, we have directly observed the disruption of lipid bilayer by added ILs. Depending on the concentration, alkyl chain length, and anion hydrophobicity of ILs, the interaction of ILs with lipid bilayers leads to the formation of micelles, fibrils, and multi-lamellar vesicles for IL-lipid complexes. By MD computer simulations, we have confirmed the insertion of ILs into lipid bilayers to modify the spatial organization of lipids in the membrane. The combined experimental and simulation results correlate well with the bioassay results of IL-induced suppression in bacteria growth, thereby suggesting a possible mechanism behind the IL toxicity. National Science Foundation, Center for Research Computing at Notre Dame.

  13. Mixtures of protic ionic liquids and propylene carbonate as advanced electrolytes for lithium-ion batteries.

    PubMed

    Vogl, T; Menne, S; Balducci, A

    2014-12-01

    In this study we investigated the chemical-physical properties of mixtures containing the protic ionic liquid (PIL) N-butyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYRH4TFSI), propylene carbonate (PC) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in view of their use as electrolytes for lithium-ion batteries (LIBs). We showed that these electrolytic solutions might display conductivity and viscosity comparable to those of conventional electrolytes. Depending on the amount of PIL present inside the mixtures, such mixtures might also display the ability to suppress the anodic dissolution of Al. Furthermore, we showed that the coordination of lithium ions by TFSI in PIL-PC mixtures appears to be different than the one observed for mixtures of PC and aprotic ionic liquids (AILs). When used in combination with a battery electrode, e.g. lithium iron phosphate (LFP), these mixtures allow the achievement of high performance also at a very high C-rate. PMID:25328075

  14. Modeling Liquid-Liquid Equilibrium of Ionic Liquid Systems with NRTL, Electrolyte-NRTL, and UNIQUAC

    E-print Network

    Stadtherr, Mark A.

    temperature ionic liquids (ILs). ILs are generally defined as organic salts with melting temperatures belowModeling Liquid-Liquid Equilibrium of Ionic Liquid Systems with NRTL, Electrolyte-NRTL, and UNIQUAC: markst@nd.edu #12;Abstract Characterization of liquid-liquid equilibrium (LLE) in system containing ionic

  15. Ionic liquids for rechargeable lithium batteries

    SciTech Connect

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz,John; Newman, John

    2005-09-29

    We have investigated possible anticipated advantages of ionic-liquid electrolytes for use in lithium-ion batteries. Thermal stabilities and phase behavior were studied by thermal gravimetric analysis and differential scanning calorimetry. The ionic liquids studied include various imidazoliumTFSI systems, pyrrolidiniumTFSI, BMIMPF{sub 6}, BMIMBF{sub 4}, and BMIMTf. Thermal stabilities were measured for neat ionic liquids and for BMIMBF{sub 4}-LiBF{sub 4}, BMIMTf-LiTf, BMIMTFSI-LiTFSI mixtures. Conductivities have been measured for various ionic-liquid lithium-salt systems. We show the development of interfacial impedance in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell and we report results from cycling experiments for a Li|BMIMBF{sub 4} + 1 mol/kg LIBF{sub 4}|C cell. The interfacial resistance increases with time and the ionic liquid reacts with the lithium electrode. As expected, imidazolium-based ionic liquids react with lithium electrodes. We seek new ionic liquids that have better chemical stabilities.

  16. A quantitative ionicity scale for liquid chloride salts.

    PubMed

    Ingman, Petri; Driver, Gordon W

    2012-10-01

    Knowledge of ionicity is requisite for successful identification of those salt qualities required to design and couple the most appropriate fluid for performance of an intended chemical function. We report on utilisation of (35)Cl(-) quadrupolar coupling constants (C(Q)) to quantitatively assess the ionicities of given chloride salts, by exploiting the electronic response of the quadrupolar chlorine atom as a function of its immediate chemical environment. We find that protic salts in particular, like their aprotic analogues, are highly ionised, while at the same time being highly associated, in stark contrast to literature reports claiming in general that they are of sub-ionic origin. PMID:22886109

  17. Thermodynamics and micro heterogeneity of ionic liquids.

    PubMed

    Gomes, Margarida F Costa; Lopes, J N Canongia; Padua, A A H

    2010-01-01

    The high degree of organisation in the fluid phase of room-temperature ionic liquids has major consequences on their macroscopic properties, namely on their behaviour as solvents. This nanoscale self-organisation is the result of an interplay between two types of interaction in the liquid phase - Coulomb and van der Waals - that eventually leads to the formation of medium-range structures and the recognition of some ionic liquids as composed of a high-charge density, cohesive network permeated by low-charge density regions.In this chapter, the structure of the ionic liquids will be explored and some of their consequences to the properties of ionic liquids analyzed. PMID:21107797

  18. Recent development of ionic liquid stationary phases for liquid chromatography.

    PubMed

    Shi, Xianzhe; Qiao, Lizhen; Xu, Guowang

    2015-11-13

    Based on their particular physicochemical characteristics, ionic liquids have been widely applied in many fields of analytical chemistry. Many types of ionic liquids were immobilized on a support like silica or monolith as stationary phases for liquid chromatography. Moreover, different approaches were developed to bond covalently ionic liquids onto the supporting materials. The obtained ionic liquid stationary phases show multi-mode mechanism including hydrophobic, hydrophilic, hydrogen bond, anion exchange, ?-?, and dipole-dipole interactions. Therefore, they could be used in different chromatographic modes including ion-exchange, RPLC, NPLC and HILIC to separate various classes of compounds. This review mainly summarizes the immobilized patterns and types of ionic liquid stationary phases, their retention mechanisms and applications in the recent five years. PMID:26463427

  19. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    PubMed Central

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  20. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    NASA Astrophysics Data System (ADS)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  1. Are Room Temperature Ionic Liquids Dilute Electrolytes?

    E-print Network

    Alpha A Lee; Dominic Vella; Susan Perkin; Alain Goriely

    2014-12-26

    An important question in understanding the structure of ionic liquids is whether ions are truly "free" and mobile which would correspond to a concentrated ionic melt, or are rather "bound" in ion pairs, that is a liquid of ion pairs with a small concentration of free ions. Recent surface force balance experiments from different groups have given conflicting answers to this question. We propose a simple model for the thermodynamics and kinetics of ion pairing in ionic liquids. Our model takes into account screened ion-ion, dipole-dipole and dipole-ion interactions in the mean field limit. The results of this model suggest that almost two thirds of the ions are free at any instant, and ion pairs have a short lifetime comparable to the characteristic timescale for diffusion. These results suggest that there is no particular thermodynamic or kinetic preference for ions residing in pairs. We therefore conclude that ionic liquids are concentrated, rather than dilute, electrolytes.

  2. IMPROVED SYNTHESIS OF ROOM TEMPERATURE IONIC LIQUIDS

    EPA Science Inventory

    Room temperature ionic liquids (RTILs), molten salts comprised of N-alkylimidazolium cations and various anions, have received significant attention due to their commercial potential in a variety of chemical applications especially as substitutes for conventional volatile organic...

  3. Ionic liquid polyoxometalates as light emitting materials

    SciTech Connect

    Ortiz-acosta, Denisse; Del Sesto, Rico E; Scott, Brian; Bennett, Bryan L; Purdy, Geraldine M; Muenchausen, Ross E; Mc Kigney, Edward; Gilbertson, Robert

    2008-01-01

    The low melting point, negligible vapor pressure, good solubility, and thermal and chemical stability make ionic liquids useful materials for a wide variety of applications. Polyoxometalates are early transition metal oxygen clusters that can be synthesized in many different sizes and with a variety of heterometals. The most attractive feature of POMs is that their physical properties, in particular electrical, magnetic, and optical properties, can be easily modified following known procedures. It has been shown that POMs can exhibit cooperative properties, as superconductivity and energy transfer. POM ionic liquids can be obtained by selecting the appropliate cation. Different alkyl ammonium and alkyl phosphonium salts are being used to produce new POM ionic liquids together with organic or inorganic luminescent centers to design light emitting materials. Ammonium and phosphonium cations with activated, polymerizable groups are being used to further polymerize the ionic liquid into transparent, solid materials with high metal density.

  4. Phosphonium-based ionic liquids and uses

    DOEpatents

    Del Sesto, Rico E; Koppisch, Andrew T; Lovejoy, Katherine S; Purdy, Geraldine M

    2014-12-30

    Phosphonium-based room temperature ionic liquids ("RTILs") were prepared. They were used as matrices for Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry and also for preparing samples of dyes for analysis.

  5. Supramolecular Ionic-Liquid Gels with High Ionic Conductivity.

    PubMed

    Maršavelski, Aleksandra; Smre?ki, Vilko; Vianello, Robert; Žini?, Mladen; Moguš-Milankovi?, Andrea; Šanti?, Ana

    2015-08-17

    Supramolecular ionogels were prepared by the gelation of room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4 ]) with (S,S)-bis(leucinol)oxalamide. Remarkably, the ionic conductivity of solutions and ionogels with low gelator concentrations is higher than that of neat [BMIm][BF4 ]. On the basis of molecular dynamics simulations and quantum mechanical calculations, the origin of this phenomenon is attributed to the higher affinity of gelator molecules towards [BF4 ](-) ions, which reduces the electrostatic attraction between [BMIm](+) and [BF4 ](-) and thus increases their mobility. With increasing gelator concentration, the ionic conductivity decreases due to the formation of a denser gelator matrix, which hinders the pathways for ionic transport. However, even for very dense ionogels, this decrease is less than one order of magnitude relative to neat [BMIm][BF4 ], and thus they can be classified as highly conductive materials with strong potential for application as functional electrolytes. PMID:26178864

  6. Superbase-derived protic ionic liquids

    DOEpatents

    Dai, Sheng; Luo, Huimin; Baker, Gary A.

    2013-09-03

    Protic ionic liquids having a composition of formula (A.sup.-)(BH.sup.+) wherein A.sup.- is a conjugate base of an acid HA, and BH.sup.+ is a conjugate acid of a superbase B. In particular embodiments, BH.sup.+ is selected from phosphazenium species and guanidinium species encompassed, respectively, by the general formulas: ##STR00001## The invention is also directed to films and membranes containing these protic ionic liquids, with particular application as proton exchange membranes for fuel cells.

  7. Catalytic reactions in ionic liquids.

    PubMed

    Sheldon, R

    2001-12-01

    The chemical industry is under considerable pressure to replace many of the volatile organic compounds (VOCs) that are currently used as solvents in organic synthesis. The toxic and/or hazardous properties of many solvents, notably chlorinated hydrocarbons, combined with serious environmental issues, such as atmospheric emissions and contamination of aqueous effluents is making their use prohibitive. This is an important driving force in the quest for novel reaction media. Curzons and coworkers, for example, recently noted that rigorous management of solvent use is likely to result in the greatest improvement towards greener processes for the manufacture of pharmaceutical intermediates. The current emphasis on novel reaction media is also motivated by the need for efficient methods for recycling homogeneous catalysts. The key to waste minimisation in chemicals manufacture is the widespread substitution of classical 'stoichiometric' syntheses by atom efficient, catalytic alternatives. In the context of homogeneous catalysis, efficient recycling of the catalyst is a conditio sine qua non for economically and environmentally attractive processes. Motivated by one or both of the above issues much attention has been devoted to homogeneous catalysis in aqueous biphasic and fluorous biphasic systems as well as in supercritical carbon dioxide. Similarly, the use of ionic liquids as novel reaction media may offer a convenient solution to both the solvent emission and the catalyst recycling problem. PMID:12239988

  8. Halogenation Thermodynamics of Pyrrolidinium-Based Ionic Liquids

    E-print Network

    Chaban, Vitaly

    2015-01-01

    Room-temperature ionic liquids (RTILs) exhibit large difference between melting and boiling points. They are highly tunable thanks to numerous accessible combinations of the cation and the anion. On top of that, cations can be functionalized using methods of organic chemistry. This paper reports gas-phase thermodynamics (enthalpy, entropy, Gibbs free energy) of the halogenation reactions (fluorination, chlorination, bromination) involving protonated pyrrolidine C4H10N+, protic N-ethylpyrrolidinium C4H9N(C2H5)+, and aprotic N-ethyl-N-methylpyrrolidinium C4H8N(CH3)(C2H5)+ cations. Substitution of all symmetrically non-equivalent hydrogen atoms was compared based of the thermodynamic favorability. Fluorination of all sites is much more favorable than chlorination, whereas chlorination is somewhat more favorable than bromination. This is not trivial, since electronegative fluorine and chlorine have to compete for the already insufficient number of electrons with other atoms belonging to the pyrrolidinium-based ca...

  9. "Independent tuning of acidity and ionicity in protic ionic liquids and their polymers. Comparing Li+

    E-print Network

    Angell, C. Austen

    "Independent tuning of acidity and ionicity in protic ionic liquids and their polymers. Comparing University Protic ionic liquids (PILs) form an interesting and versatile subclass of the low temperature ionic liquid field, the exponential expansion of which, in recent times, is well known. PILs are formed

  10. Adsorbed and near surface structure of ionic liquids at a solid interface.

    PubMed

    Segura, Juan José; Elbourne, Aaron; Wanless, Erica J; Warr, Gregory G; Voïtchovsky, Kislon; Atkin, Rob

    2013-03-01

    The structure of solid-ionic liquid (IL) interfaces has been characterised with unprecedented clarity by employing a range of atomic force microscopy (AFM) imaging techniques and tip pressures appropriate for the system under study. Soft contact and amplitude-modulation (AM) AFM imaging have been used to elucidate the lateral structure of ILs adsorbed onto mica, and in the near surface ion layers. Data is presented for ethylammonium nitrate (EAN) and 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)imide (EMIm TFSI). Whereas EAN is a protic IL that forms a nanostructured sponge phase in the bulk, EMIm TFSI is aprotic and has weak (or absent) bulk association structure. Comparison of results obtained for the two liquids elucidates how the strength of bulk liquid morphology effects lateral organisation at the surface, and any effect of IL class, i.e. protic versus aprotic. Imaging reveals EAN self assembles at the solid surface in a worm-like morphology, whereas EMIm cations adsorb in a more isolated fashion, but still in rows templated by the mica surface. To the authors' knowledge, the wormlike structures present at the EAN-mica interface are the smallest self-assembled aggregates ever imaged on a solid surface. PMID:23361257

  11. Ionic liquids behave as dilute electrolyte solutions.

    PubMed

    Gebbie, Matthew A; Valtiner, Markus; Banquy, Xavier; Fox, Eric T; Henderson, Wesley A; Israelachvili, Jacob N

    2013-06-11

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force-distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin-Landau-Verwey-Overbeek theory with an additive repulsive steric (entropic) ion-surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high-free-ion density ionic liquids and ionic liquid blends. PMID:23716690

  12. Water Contaminant Mitigation in Ionic Liquid Propellant

    NASA Technical Reports Server (NTRS)

    Conroy, David; Ziemer, John

    2009-01-01

    Appropriate system and operational requirements are needed in order to ensure mission success without unnecessary cost. Purity requirements applied to thruster propellants may flow down to materials and operations as well as the propellant preparation itself. Colloid electrospray thrusters function by applying a large potential to a room temperature liquid propellant (such as an ionic liquid), inducing formation of a Taylor cone. Ions and droplets are ejected from the Taylor cone and accelerated through a strong electric field. Electrospray thrusters are highly efficient, precise, scaleable, and demonstrate low thrust noise. Ionic liquid propellants have excellent properties for use as electrospray propellants, but can be hampered by impurities, owing to their solvent capabilities. Of foremost concern is the water content, which can result from exposure to atmosphere. Even hydrophobic ionic liquids have been shown to absorb water from the air. In order to mitigate the risks of bubble formation in feed systems caused by water content of the ionic liquid propellant, physical properties of the ionic liquid EMI-Im are analyzed. The effects of surface tension, material wetting, physisorption, and geometric details of the flow manifold and electrospray emitters are explored. Results are compared to laboratory test data.

  13. Mixtures of protic ionic liquids and molecular cosolvents: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Docampo-Álvarez, Borja; Gómez-González, Víctor; Méndez-Morales, Trinidad; Carrete, Jesús; Rodríguez, Julio R.; Cabeza, Óscar; Gallego, Luis J.; Varela, Luis M.

    2014-06-01

    In this work, the effect of molecular cosolvents (water, ethanol, and methanol) on the structure of mixtures of these compounds with a protic ionic liquid (ethylammonium nitrate) is analyzed by means of classical molecular dynamics simulations. Included are as-yet-unreported measurements of the densities of these mixtures, used to test our parameterized potential. The evolution of the structure of the mixtures throughout the concentration range is reported by means of the calculation of coordination numbers and the fraction of hydrogen bonds in the system, together with radial and spatial distribution functions for the various molecular species and molecular ions in the mixture. The overall picture indicates a homogeneous mixing process of added cosolvent molecules, which progressively accommodate themselves in the network of hydrogen bonds of the protic ionic liquid, contrarily to what has been reported for their aprotic counterparts. Moreover, no water clustering similar to that in aprotic mixtures is detected in protic aqueous mixtures, but a somehow abrupt replacing of [NO3]- anions in the first hydration shell of the polar heads of the ionic liquid cations is registered around 60% water molar concentration. The spatial distribution functions of water and alcohols differ in the coordination type, since water coordinates with [NO3]- in a bidentate fashion in the equatorial plane of the anion, while alcohols do it in a monodentate fashion, competing for the oxygen atoms of the anion. Finally, the collision times of the different cosolvent molecules are also reported by calculating their velocity autocorrelation functions, and a caging effect is observed for water molecules but not in alcohol mixtures.

  14. Mixtures of protic ionic liquids and molecular cosolvents: a molecular dynamics simulation.

    PubMed

    Docampo-Álvarez, Borja; Gómez-González, Víctor; Méndez-Morales, Trinidad; Carrete, Jesús; Rodríguez, Julio R; Cabeza, Óscar; Gallego, Luis J; Varela, Luis M

    2014-06-01

    In this work, the effect of molecular cosolvents (water, ethanol, and methanol) on the structure of mixtures of these compounds with a protic ionic liquid (ethylammonium nitrate) is analyzed by means of classical molecular dynamics simulations. Included are as-yet-unreported measurements of the densities of these mixtures, used to test our parameterized potential. The evolution of the structure of the mixtures throughout the concentration range is reported by means of the calculation of coordination numbers and the fraction of hydrogen bonds in the system, together with radial and spatial distribution functions for the various molecular species and molecular ions in the mixture. The overall picture indicates a homogeneous mixing process of added cosolvent molecules, which progressively accommodate themselves in the network of hydrogen bonds of the protic ionic liquid, contrarily to what has been reported for their aprotic counterparts. Moreover, no water clustering similar to that in aprotic mixtures is detected in protic aqueous mixtures, but a somehow abrupt replacing of [NO3](-) anions in the first hydration shell of the polar heads of the ionic liquid cations is registered around 60% water molar concentration. The spatial distribution functions of water and alcohols differ in the coordination type, since water coordinates with [NO3](-) in a bidentate fashion in the equatorial plane of the anion, while alcohols do it in a monodentate fashion, competing for the oxygen atoms of the anion. Finally, the collision times of the different cosolvent molecules are also reported by calculating their velocity autocorrelation functions, and a caging effect is observed for water molecules but not in alcohol mixtures. PMID:24908021

  15. ELECTROCHEMICAL STUDIES OF HEMIN IN IONIC LIQUIDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ionic liquids (ILs), room temperature liquid organic salts, have gained prominence as alternative media for volatile organic solvents. Recent studies have shown that some enzymes tolerate ILs and have catalytic activities comparable to those obtained in molecular organic solvents. We have investig...

  16. Ionic Liquid Extractions of Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Patti, Antonio; Macfarlane, Douglas; Clarke, Michael

    2010-05-01

    A large range of ionic liquids with the ability to dissolve different classes of natural biopolymers (e.g. cellulose, lignin, protein) have been reported in the literature. These have the potential to isolate different fractions of soil organic matter, thus yielding novel information that is not available through other extraction procedures. The ionic liquids dimethylammonium dimethylcarbamate (DIMCARB), alkylbenzenesulfonate and 1-butyl-3methylimidazolium chloride (Bmim Cl) can solubilise selected components of soil organic matter. Soil extractions with these materials showed that the organic matter recovered showed chemical properties that were consistent with humic substances. These extracts had a slightly different organic composition than the humic acids extracted using the traditional International Humic Substances Society (IHSS) method. The ionic liquids also solubilised some inorganic matter from the soil. Humic acids recovered with alkali were also partially soluble in the ionic liquids. DIMCARB appeared to chemically interfere with organic extract, increasing the level of nitrogen in the sample. It was concluded that the ionic liquid Bmim Cl may function as a useful solvent for SOM, and may be used to recover organic matter of a different character to that obtained with alkali

  17. Enzyme activity in dialkyl phosphate ionic liquids

    SciTech Connect

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  18. TETRAALKYLPHOSPHONIUM POLYOXOMETALATES AS NOVEL IONIC LIQUIDS.

    SciTech Connect

    DIETZ,M.L.; RICKERT, P.G.; ANTONIO, M.R.; FIRESTONE, M.A.; WISHART, J.F.; SZREDER, T.

    2007-11-30

    The pairing of a Lindqvist or Keggin polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation, [R{sub 3}R{prime}P]{sup +}, has been shown to yield an original family of ionic liquids (POM-ILs), among them salts liquid at or near ambient temperature. The physicochemical properties of several such 'inorganic liquids', in particular their thermal properties, suggests the possible application of these compounds as robust, thermally-stable solvents for liquid-liquid extraction. A preliminary evaluation of the potential of POM-ILs in this application is presented.

  19. Dynamics of Ion Transport in Ionic Liquids

    E-print Network

    Alpha A. Lee; Svyatoslav Kondrat; Dominic Vella; Alain Goriely

    2015-08-11

    A gap in understanding the link between continuum theories of ion transport in ionic liquids and the underlying microscopic dynamics has hindered the development of frameworks for transport phenomena in these concentrated electrolytes. Here, we construct a continuum theory for ion transport in ionic liquids by coarse graining a simple exclusion process of interacting particles on a lattice. The resulting dynamical equations can be written as a gradient flow with a mobility matrix that vanishes at high densities. This form of the mobility matrix gives rise to a charging behaviour that is different to the one known for electrolytic solutions, but which agrees qualitatively with the phenomenology observed in experiments and simulations.

  20. EXPEDITIOUS SYNTHESIS OF IONIC LIQUIDS USING ULTRASOUND AND MICROWAVE IRRADIATION

    EPA Science Inventory

    Environmentally friendlier preparations of ionic liquids have been developed that proceed expeditiously under the influence of microwave or ultrasound irradiation conditions using neat reactants, alkylimidazoles and alkyl halides. A number of useful ionic liquids have been prepar...

  1. VOC and HAP recovery using ionic liquids

    SciTech Connect

    Michael R. Milota : Kaichang Li

    2007-05-29

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy(trihexyl)phosphonium dicyanamide as the RTIL. It was determined that it has good absorption properties for methanol and ?-pinene, is thermally stable, and is relatively easy to synthesize. It has a density of 0.89 g/mL at 20°C and a molecular weight of 549.9 g/mol. Trials were conducted with a small absorption system and a larger absorption system. Methanol, formaldehyde, and other HAPs were absorbed well, nearly 100%. Acetaldehyde was difficult to capture. Total VOC capture, while satisfactory on methanol and ?-pinene in a lab system, was less than expected in the field, 60-80%. The inability to capture the broad spectrum of total organics is likely due to difficulties in cleaning them from the ionic liquid rather than the ability of the ionic liquid to absorb. It’s likely that a commercial system could be constructed to remove 90 to 100% of the gas contaminates. Selecting the correct ionic liquid would be key to this. Absorption may not be the main selection criterion, but rather how easily the ionic liquid can be cleaned is very important. The ionic liquid absorption system might work very well in a system with a limited spectrum of pollutants, such as a paint spray line, where there are not very high molecular weight, non volatile, compounds in the exhaust.

  2. A room temperature spin crossover ionic liquid.

    PubMed

    Fitzpatrick, Anthony J; O'Connor, Helen M; Morgan, Grace G

    2015-12-28

    Two new paramagnetic ionic liquids (ILs) comprising a mononuclear iron(iii) or manganese(iii) complex cation, charge balanced by a dicyanamide anion are reported which show a range of spin states. Both are liquids at room temperature and the Fe(iii) based IL exhibits a spin crossover close to 300 K. The spin crossover profile is independent of the solvation, and is both air and moisture stable. PMID:26599842

  3. Simulations of ionic liquids near charged walls

    E-print Network

    Lynden-Bell, Ruth

    2011-09-09

    temperatures and moving molecules. Why: To understand molecular scale properties and processes. In the method of Molecular Dynamics we follow the motion of molecules using Newton’s Laws of motion with interatomic forces. The temperature is determined from... direction these infinite slabs were separated by 7.5nm of vacuum and periodically repeated. 44. Ionic Liquids near charged walls -simulations Long simulations are needed as the motion of the liquid is sluggish. We also studied systems with additional probe...

  4. Reactions of Starch in Ionic Liquids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We found that starches are found to be soluble at 80 ºC in ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-butyl-3-methylimidazolium dicyanamide (BMIMdca) in concentration up to 10% (w/w). Higher concentrations of biopolymers in these novel solvents resulted in solutions w...

  5. Catalytic Alkene Metathesis in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Fischmeister, Cédric

    Olefin metathesis has found a tremendous number of application in the past 25 years. Immobilisation of olefin metathesis (pre)catalysts in room temperature ionic liquids (RTILs) offers the opportunity to recover and reuse the catalyst and also to reduce the level of ruthenium (Ru) contaminants in the products.

  6. BIOELECTROCATALYTIC REACTIONS IN ROOM TEMPERATURE IONIC LIQUIDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The direct electrochemical reduction of hemin, protopophyrin(IX) iron(III) chloride, ligated with strong or weak heterocyclic bases, was investigated in the ionic liquids (ILs), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][...

  7. 1,2,3-triazolium ionic liquids

    DOEpatents

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2014-12-09

    The present invention relates to compositions of matter that are ionic liquids, the compositions comprising substituted 1,2,3-triazolium cations combined with any anion. Compositions of the invention should be useful in the separation of gases and, perhaps, as catalysts for many reactions.

  8. Solvation and Reaction in Ionic Liquids

    SciTech Connect

    Maroncelli, Mark

    2015-01-15

    The long-range goal of our DOE-sponsored research is to obtain a fundamental understanding of solvation effects on photo-induced charge transfer and related processes. Much of the focus during the past funding period has been on studies of ionic liquids and on characterizing various reactions with which to probe the nature of this interesting new solvent medium.

  9. Synthesis of electroactive ionic liquids for flow battery applications

    SciTech Connect

    Anderson, Travis Mark; Ingersoll, David; Staiger, Chad; Pratt, Harry

    2015-09-01

    The present disclosure is directed to synthesizing metal ionic liquids with transition metal coordination cations, where such metal ionic liquids can be used in a flow battery. A cation of a metal ionic liquid includes a transition metal and a ligand coordinated to the transition metal.

  10. Nanostructure-thermal conductivity relationships in protic ionic liquids.

    PubMed

    Murphy, Thomas; Varela, Luis M; Webber, Grant B; Warr, Gregory G; Atkin, Rob

    2014-10-16

    The thermal conductivities of nine protic ionic liquids (ILs) have been investigated between 293 and 340 K. Within this range, the thermal conductivities are between 0.18 and 0.30 W · m(-1) · K(-1). These values are higher than those typically associated with oils and aprotic ILs, but lower than those of strongly hydrogen bonding solvents like water. Weak linear decreases in thermal conductivity with temperature are noted, with the exception of ethanolammonium nitrate (EtAN) where the thermal conductivity increases with temperature. The dependence of thermal conductivity on IL type is analyzed with use of the Bahe-Varela pseudolattice theory. This theory treats the bulk IL as an array of ordered domains with intervening domains of uncorrelated structure which enable and provide barriers to heat propagation (respectively) via allowed vibrational modes. For the protic ILs investigated, thermal conductivity depends strongly on the IL cation alkyl chain length. This is because the cation alkyl chain controls the dimensions of the IL bulk nanostructure, which consists of charged (ordered domains) and uncharged regions (disordered domains). As the cation alkyl chain controls the dimensions of the disordered domains, it thus limits the thermal conductivity. To test the generality of this interpretation, the thermal conductivities of propylammonium nitrate (PAN) and PAN-octanol mixtures were examined; water selectively swells the PAN charged domain, while octanol swells the uncharged regions. Up to a certain concentration, adding water increases thermal conduction and octanol decreases it, as expected. However, at high solute concentrations the IL nanostructure is broken. When additional solvent is added above this concentration the rate of change in thermal conductivity is greatly reduced. This is because, in the absence of nanostructure, the added solvent only serves to dilute the salt solution. PMID:25229992

  11. Structural and Aggregation Study of Protic Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Mattedi, S.; Martin-Pastor, M.; Iglesias, M.

    2011-12-01

    In this work there were studied structural and agreggation aspects of ionic liquids formed by the reaction between ethanolamines with low chain organic acids using NMR techniques. Three ionic liquids composed of pentanoic acid and (mono-, di- and tri-) ethanol amine were studied by 1H, and 13C solution NMR methods. NMR assisted the chemical and quantitative characterization of these three ionic liquids and provided insight in their structural arrangement of their components in the ionic liquid medium. The obtained results could be used to understand the structure and aggregation pattern of these ionic liquids and helps in the development of possible industrial applications.

  12. Phase behavior of ionic liquid crystals

    NASA Astrophysics Data System (ADS)

    Kondrat, S.; Bier, M.; Harnau, L.

    2010-05-01

    Bulk properties of ionic liquid crystals are investigated using density functional theory. The liquid crystal molecules are represented by ellipsoidal particles with charges located in their center or at their tails. Attractive interactions are taken into account in terms of the Gay-Berne pair potential. Rich phase diagrams involving vapor, isotropic and nematic liquid, as well as smectic phases are found. The dependence of the phase behavior on various parameters such as the length of the particles and the location of charges on the particles is studied.

  13. Phase behavior of ionic liquid crystals

    E-print Network

    S. Kondrat; M. Bier; L. Harnau

    2010-04-15

    Bulk properties of ionic liquid crystals are investigated using density functional theory. The liquid crystal molecules are represented by ellipsoidal particles with charges located in their center or at their tails. Attractive interactions are taken into account in terms of the Gay-Berne pair potential. Rich phase diagrams involving vapor, isotropic and nematic liquid, as well as smectic phases are found. The dependence of the phase behavior on various parameters such as the length of the particles and the location of charges on the particles is studied.

  14. Ionic Liquid Membranes for Carbon Dioxide Separation

    SciTech Connect

    Myers, C.R.; Ilconich, J.B.; Luebke, D.R.; Pennline, H.W.

    2008-07-12

    Recent scientific studies are rapidly advancing novel technological improvements and engineering developments that demonstrate the ability to minimize, eliminate, or facilitate the removal of various contaminants and green house gas emissions in power generation. The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide mitigation not only because of its higher efficiency as compared to conventional coal firing plants, but also due to a higher driving force in the form of high partial pressure. One of the novel technological concepts currently being developed and investigated is membranes for carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or pressures. Our earlier research studies examined the use of ionic liquids on various supports for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our initial studies with the following supports: polysulfone (PSF), poly(ether sulfone) (PES), and cross-linked nylon. The PSF and PES supports had similar performance at room temperature, but increasing temperature caused the supported membranes to fail. The ionic liquid with the PES support greatly affected the glass transition temperature, while with the PSF, the glass transition temperature was only slightly depressed. The cross-linked nylon support maintained performance without degradation over the temperature range 37-300°C with respect to its permeability and selectivity. However, while the cross-linked nylon support was able to withstand temperatures, the permeability continued to increase and the selectivity decreased with increasing temperature. Our studies indicated that further testing should examine the use of other ionic liquids, including those that form chemical complexes with CO2 based on amine interactions. The hypothesis is that the performance at the elevated temperatures could be improved by allowing a facilitated transport mechanism to become dominant. Several amine-based ionic liquids were tested on the cross-linked nylon support. It was found that using the amine-based ionic liquid did improve selectivity and permeability at higher temperature. The hypothesis was confirmed, and it was determined that the type of amine used also played a role in facilitated transport. Given the appropriate aminated ionic liquid with the cross-linked nylon support, it is possible to have a membrane capable of separating CO2 at IGCC conditions. With this being the case, the research has expanded to include separation of other constituents besides CO2 (CO, H2S, etc.) and if they play a role in membrane poisoning or degradation. This communication will discuss the operation of the recently fabricated ionic liquid membranes and the impact of gaseous components other than CO2 on their performance and stability.

  15. Structural Transitions at Ionic Liquid Interfaces.

    PubMed

    Rotenberg, Benjamin; Salanne, Mathieu

    2015-12-17

    Recent advances in experimental and computational techniques have allowed for an accurate description of the adsorption of ionic liquids on metallic electrodes. It is now well-established that they adopt a multilayered structure and that the composition of the layers changes with the potential of the electrode. In some cases, potential-driven ordering transitions in the first adsorbed layer have been observed in experiments probing the interface on the molecular scale or by molecular simulations. This perspective gives an overview of the current understanding of such transitions and of their potential impact on the physical and (electro)chemical processes at the interface. In particular, peaks in the differential capacitance, slow dynamics at the interface, and changes in the reactivity have been reported in electrochemical studies. Interfaces between ionic liquids and metallic electrodes are also highly relevant for their friction properties, the voltage-dependence of which opens the way to exciting applications. PMID:26722704

  16. Oxidative depolymerization of lignin in ionic liquids.

    PubMed

    Stärk, Kerstin; Taccardi, Nicola; Bösmann, Andreas; Wasserscheid, Peter

    2010-06-21

    Beech lignin was oxidatively cleaved in ionic liquids to give phenols, unsaturated propylaromatics, and aromatic aldehydes. A multiparallel batch reactor system was used to screen different ionic liquids and metal catalysts. Mn(NO(3))(2) in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate [EMIM][CF(3)SO(3)] proved to be the most effective reaction system. A larger scale batch reaction with this system in a 300 mL autoclave (11 g lignin starting material) resulted in a maximum conversion of 66.3 % (24 h at 100 degrees C, 84x10(5) Pa air). By adjusting the reaction conditions and catalyst loading, the selectivity of the process could be shifted from syringaldehyde as the predominant product to 2,6-dimethoxy-1,4-benzoquinone (DMBQ). Surprisingly, the latter could be isolated as a pure substance in 11.5 wt % overall yield by a simple extraction/crystallization process. PMID:20480494

  17. A new proton conductive liquid with no ions: pseudo-protic ionic liquids.

    PubMed

    Doi, Hiroyuki; Song, Xuedan; Minofar, Babak; Kanzaki, Ryo; Takamuku, Toshiyuki; Umebayashi, Yasuhiro

    2013-08-26

    Liquids with no ions! Raman analysis and quantum calculations suggest that electrically neutral molecular species predominantly exist in an N-methylimidazole and acetic acid equimolar mixture, and that ionic species are rather minor. Nevertheless, the mixture has significant ionic conductivity, and shows "good ionic" or "superionic" behavior (see figure). It may be suitable to call such liquids "pseudo-ionic liquids" rather than "ionic liquids". PMID:23873834

  18. Mirrorless dye doped ionic liquid lasers.

    PubMed

    Barna, Valentin; De Cola, Luisa

    2015-05-01

    The study of electromagnetic waves propagation in periodically structured dielectrics and the linear and nonlinear optical phenomena in disordered systems doped with gain media represent one of the most challenging and exciting scientific areas of the past decade. Lasing and Random Lasers (RL) are fascinating examples of topics that synergize multiple scattering of light and optical amplification and lately have been the subject of intense theoretical and experimental studies. In this manuscript we demonstrate laser action in a new category of materials, namely dye doped ionic liquids. Ionic liquids prove to be perfect candidates for building, as shown, a series of exotic boundaryless or confined compact laser systems. Lasing is presented in standard wedge cells, freely suspended ionic liquid films and droplets. The optical emission properties are investigated in terms of spectral analysis, below and above lasing energy threshold behavior, emission efficiency, far field spatial laser modes intensity profiling, temporal emission behavior etc. As demonstrated, these materials can be employed as optimal near future replacements of conventional flammable solvents in already available dye laser instruments. PMID:25969283

  19. Ionic liquids based on azolate anions.

    PubMed

    Smiglak, Marcin; Hines, C Corey; Wilson, Timothy B; Singh, Shailendra; Vincek, Adam S; Kirichenko, Kostyantyn; Katritzky, Alan R; Rogers, Robin D

    2010-02-01

    Compartmentalized molecular level design of new energetic materials based on energetic azolate anions allows for the examination of the effects of both cation and anion on the physiochemical properties of ionic liquids. Thirty one novel salts were synthesized by pairing diverse cations (tetraphenylphosphonium, ethyltriphenylphosphonium, N-phenyl pyridinium, 1-butyl-3-methylimidazolium, tetramethyl-, tetraethyl-, and tetrabutylammonium) with azolate anions (5-nitrobenzimidazolate, 5-nitrobenzotriazolate, 3,5-dinitro-1,2,4-triazolate, 2,4-dinitroimidazolate, 4-nitro-1,2,3-triazolate, 4,5-dinitroimidazolate, 4,5-dicyanoimidazolate, 4-nitroimidazolate, and tetrazolate). These salts have been characterized by DSC, TGA, and single crystal X-ray crystallography. The azolates in general are surprisingly stable in the systems explored. Ionic liquids were obtained with all combinations of the 1-butyl-3-methylimidazolium cation and the heterocyclic azolate anions studied, and with several combinations of tetraethyl- or tetrabutylammonium cations and the azolate anions. Favorable structure-property relationships were most often achieved when changing from 4- and 4,5-disubstituted anions to 3,5- and 2,4-disubstituted anions. The most promising anion for use in energetic ionic liquids of those studied here, was 3,5-dinitro-1,2,4-triazolate, based on its contributions to the entire set of target properties. PMID:20039339

  20. Scanning tunneling spectroscopy in an ionic liquid.

    PubMed

    Albrecht, Tim; Moth-Poulsen, Kasper; Christensen, Jørn B; Hjelm, Johan; Bjørnholm, Thomas; Ulstrup, Jens

    2006-05-24

    Molecular redox levels can be used to modulate tunneling currents through single or small numbers of molecules and induce molecular electronic device function. While most of these devices require cryogenic conditions, room temperature operation has been demonstrated by using electrochemical gating in aqueous environments. The latter have, however, serious shortcomings with a view on their relatively high volatility and narrow stability ranges in terms of potential. Here we report the first-time use of an ionic liquid, 1-butyl-3-methylimidazoliumhexafluorophosphate (BMI), as an electrochemical gate in a Scanning Tunneling Microscope (STM) configuration. Ionic liquids are known to have a very low vapor pressure, and accessible potential ranges are in principle large, up to 6 V. In a proof-of-principle experiment, we show how a heteroleptic redox-active Os bisterpyridine complex (Ossac) can be brought to exhibit both transistor and diode function in this novel environment at room temperature. This renders ionic liquids an attractive gating medium for configurations where back-gating is difficult to implement (e.g., break-junction techniques) or experimental conditions prohibit the use of aqueous or organic electrolyte media (vacuum or high temperatures). From an applied perspective, they represent a step toward solid-state molecular electronics with electrochemical gating. PMID:16704254

  1. Structural modifications of nucleosides in ionic liquids

    PubMed Central

    Kumar, Vineet; Parmar, Virinder S.; Malhotra, Sanjay V.

    2011-01-01

    Nucleoside chemistry represents an important research area for drug discovery, as many nucleoside analogs are prominent drugs and have been widely applied for cancer and viral chemotherapy. However, the synthesis of modified nucleosides presents a major challenge, which is further aggravated by poor solubility of these compounds in common organic solvents. Most of the currently available methods for nucleoside modification employ toxic high boiling solvents; require long reaction time and tedious workup methods. As such, there is constant effort to develop process chemistry in alternative medium to limit the use of organic solvents that are hazardous to the environment and can be deleterious to human health. One such approach is to use ionic liquids, which are ‘designer materials’ with unique and tunable physico-chemical properties. Studies have shown that methodologies using ionic liquids are highly efficient and convenient for the synthesis of nucleoside analogs, as demonstrated by the preparation of pharmaceutically important anti-viral drugs. This article summarizes recent efforts on nucleoside modification using ionic liquids. PMID:20178825

  2. Anharmonicity and Fragility of Protic Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Kim, Jenny; Angell, Austen; Ueno, Kazuhide; Tyagi, Madhu; Soles, Christopher; Masser, Kevin

    2013-03-01

    Supercooled liquids are often characterized by their fragility which is associated with physicochemical properties. However, the origin of fragility is still controversial. Superfragile liquid, decahydroisoquinoline (DHiQ) is chosen as a parent molecule to systematically investigate the relationship between anharmonicity and fragility of supercooled liquids. Earlier study by Ueno et al. (J. Phys. Chem. B 2012, 116) demonstrated that the protonation of DHiQ by different Bronsted acids results in the loss of superfragility. To understand the nature of fragile liquids, we conducted inelastic/quasielastic (IE/QE) neutron scattering measurements to examine low frequency vibrational dynamics (boson peak) and the relaxation behavior of DHiQ (high fragility) and DHiQ-based ionic liquids with intermediate (formate, Fm) and low (trifluoromethansulfonimide, TFSI) fragilities. With the protonation, molecular acids will be hydrogen-deficient and the scattering will be dominated by cation, [DHiQ+]. This strategy simplifies our interpretation in terms of understanding the fitting result from IENS/QENS spectra. By protonating DHiQ with stronger acids, large shift in low frequency vibrational modes and smaller mean square displacements were examined at temperatures higher than Tg. We illustrate how the degree of protonation and ionicity plays a role in the loss in superfragility of DHiQ.

  3. Insight into the cosolvent effect of cellulose dissolution in imidazolium-based ionic liquid systems.

    PubMed

    Zhao, Yuling; Liu, Xiaomin; Wang, Jianji; Zhang, Suojiang

    2013-08-01

    Recently, it has been reported that addition of a cosolvent significantly influences solubility of cellulose in ionic liquids (ILs), but little is known about the influence mechanism of the cosolvent on the molecular level. In this work, four kinds of typical molecular solvents (dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), CH?OH, and H?O) were used to investigate the effect of cosolvents on cellulose dissolution in [C?mim][CH?COO] by molecular dynamics simulations and quantum chemistry calculations. It was found that dissolution of cellulose in IL/cosolvent systems is mainly determined by the hydrogen bond interactions between [CH?COO](-) anions and the hydroxyl protons of cellulose. The effect of cosolvents on the solubility of cellulose is indirectly achieved by influencing such hydrogen bond interactions. The strong preferential solvation of [CH?COO](-) by the protic solvents (CH?OH and H?O) can compete with the cellulose-[CH?COO](-) interaction in the dissolution process, resulting in decreased cellulose solubility. On the other hand, the aprotic solvents (DMSO and DMF) can partially break down the ionic association of [C?mim][CH?COO] by solvation of the cation and anion, but no preferential solvation was observed. The dissociated [CH?COO](-) would readily interact with cellulose to improve the dissolution of cellulose. Furthermore, the effect of the aprotic solvent-to-IL molar ratio on the dissolution of cellulose in [C?mim][CH?COO]/DMSO systems was investigated, and a possible mechanism is proposed. These simulation results provide insight into how a cosolvent affects the dissolution of cellulose in ILs and may motivate further experimental studies in related fields. PMID:23829272

  4. Use of ionic liquids as coordination ligands for organometallic catalysts

    DOEpatents

    Li, Zaiwei (Moreno Valley, CA); Tang, Yongchun (Walnut, CA); Cheng; Jihong (Arcadia, CA)

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  5. Ionic liquid based multifunctional double network gel

    NASA Astrophysics Data System (ADS)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  6. Liquid-liquid phase separation in solutions of ionic liquids: phase diagrams, corresponding state analysis and comparison with simulations of the primitive model

    NASA Astrophysics Data System (ADS)

    Schröer, W.; Vale, V. R.

    2009-10-01

    Phase diagrams of ionic solutions of the ionic liquid C18mim+NTF2- (1-n-octadecyl-3-methyl imidazolium bistrifluormethylsulfonylimide) in decalin, cyclohexane and methylcyclohexane are reported and compared with that of solutions of other imidazolium ionic liquids with the anions NTF2-, Cl- and BF4- in arenes, CCl4, alcohols and water. The phase diagrams are analysed presuming Ising criticality and taking into account the asymmetry of the phase diagrams. The resulting parameters are compared with simulation results for equal-sized charged hard spheres in a dielectric continuum, the restricted primitive model (RPM) and the primitive model (PM) that allows for ions of different size. In the RPM temperature scale the critical temperatures vary almost linearly with the dielectric permittivity of the solvent. The RPM critical temperatures of the solutions in non-polar solvents are very similar, somewhat below the RPM value. Correlations with the boiling temperatures of the solvents and a dependence on the length of the side chain of the imidazolium cations show that dispersion interactions modify the phase transition, which is mainly determined by Coulomb forces. Critical concentrations, widths of the phase diagrams and the slopes of the diameter are different for the solutions in protic and aprotic solvents. The phase diagrams of the solutions in alcohols and water get a lower critical solution point when represented in RPM variables.

  7. Application of ionic liquids in photopolymerizable holographic materials

    NASA Astrophysics Data System (ADS)

    Lin, Hechun; de Oliveira, Peter W.; Veith, Michael

    2011-04-01

    The influence of ionic liquids in photopolymerizable holographic materials was investigated extensively. The structures of ionic liquids have important effect on the properties of the materials. Although not all tested ionic liquids can improve the properties of the materials, the ionic liquids based on imidazolium, pyridium, or phosphonium with appropriate counter anions can be used as additives to increase the sensitivity, the diffraction efficiency, and the resolution of the materials in the thin hologram. Polymerizable ionic liquids have also been used as additives. Higher sensitivity, higher diffraction efficiency and higher resolution were obtained as well. These ionic liquids can carry out the photopolymerization during exposure to UV light to recording the hologram. They may assist to form a more stable hologram.

  8. Ionic liquids for soft functional materials with carbon nanotubes.

    PubMed

    Fukushima, Takanori; Aida, Takuzo

    2007-01-01

    A serendipitous finding that ionic liquids gel with carbon nanotubes has opened a new possibility of ionic liquids as modifiers for carbon nanotubes. Upon being ground into ionic liquids, carbon nanotube bundles are untangled, and the resultant fine bundles form a network structure. This is due to the possible specific interaction between the imidazolium ion component and the pi-electronic nanotube surface. The resultant gelatinous materials, consisting of highly electroconductive nanowires and fluid electrolytes, can be utilized for a wide variety of electrochemical applications, such as sensors, capacitors, and actuators. Ionic liquids allow for noncovalent and covalent modifications of carbon nanotubes and fabrication of polymer composites with enhanced physical properties. The processing of carbon nanotubes with ionic liquids is not accompanied by the disruption of the pi-conjugated nanotube structure and does not require solvents; therefore it can readily be scaled up. This article focuses on new aspects of ionic liquids for designer soft materials based on carbon nanotubes. PMID:17516613

  9. Electrochemical Generation of Superoxide in Room-Temperature Ionic Liquids

    E-print Network

    Weidner, John W.

    and chlorides.2,3,6 Room-temperature ionic liquids RTILs are stable mixtures of an organic cation/anion salt liquids is reported. Blanchard and Brennecke20 showed that halogen-carbon compounds are soluble in RTILs. These findings offer promise that electrochemical oxidation of chlorinated compounds in ionic liquid media may

  10. Importance of liquid fragility for energy applications of ionic liquids

    PubMed Central

    Sippel, P.; Lunkenheimer, P.; Krohns, S.; Thoms, E.; Loidl, A.

    2015-01-01

    Ionic liquids (ILs) are salts that are liquid close to room temperature. Their possible applications are numerous, e.g., as solvents for green chemistry, in various electrochemical devices, and even for such “exotic” purposes as spinning-liquid mirrors for lunar telescopes. Here we concentrate on their use for new advancements in energy-storage and -conversion devices: Batteries, supercapacitors or fuel cells using ILs as electrolytes could be important building blocks for the sustainable energy supply of tomorrow. Interestingly, ILs show glassy freezing and the universal, but until now only poorly understood dynamic properties of glassy matter, dominate many of their physical properties. We show that the conductivity of ILs, an essential figure of merit for any electrochemical application, depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility. PMID:26355037

  11. Importance of liquid fragility for energy applications of ionic liquids.

    PubMed

    Sippel, P; Lunkenheimer, P; Krohns, S; Thoms, E; Loidl, A

    2015-01-01

    Ionic liquids (ILs) are salts that are liquid close to room temperature. Their possible applications are numerous, e.g., as solvents for green chemistry, in various electrochemical devices, and even for such "exotic" purposes as spinning-liquid mirrors for lunar telescopes. Here we concentrate on their use for new advancements in energy-storage and -conversion devices: Batteries, supercapacitors or fuel cells using ILs as electrolytes could be important building blocks for the sustainable energy supply of tomorrow. Interestingly, ILs show glassy freezing and the universal, but until now only poorly understood dynamic properties of glassy matter, dominate many of their physical properties. We show that the conductivity of ILs, an essential figure of merit for any electrochemical application, depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility. PMID:26355037

  12. Importance of liquid fragility for energy applications of ionic liquids

    NASA Astrophysics Data System (ADS)

    Sippel, P.; Lunkenheimer, P.; Krohns, S.; Thoms, E.; Loidl, A.

    2015-09-01

    Ionic liquids (ILs) are salts that are liquid close to room temperature. Their possible applications are numerous, e.g., as solvents for green chemistry, in various electrochemical devices, and even for such “exotic” purposes as spinning-liquid mirrors for lunar telescopes. Here we concentrate on their use for new advancements in energy-storage and -conversion devices: Batteries, supercapacitors or fuel cells using ILs as electrolytes could be important building blocks for the sustainable energy supply of tomorrow. Interestingly, ILs show glassy freezing and the universal, but until now only poorly understood dynamic properties of glassy matter, dominate many of their physical properties. We show that the conductivity of ILs, an essential figure of merit for any electrochemical application, depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility.

  13. Ionic Liquid assisted Synthesis of Zeolite-TON

    PubMed Central

    Tian, Yuyang; McPherson, Matthew J; Wheatley, Paul S; Morris, Russell E

    2014-01-01

    An ionic liquid assisted strategy for the synthesis of zeolitic material is reported. This strategy is a solid state synthetic method and the ionic liquid is employed as structure directing agent. A TON-type zeolite, which contains one-dimensional 10-member-ring, is successfully synthesized with the assistance of the ionic liquid, 1-ethyl-3-methylimidazolium bromide. This finding improves our understanding about the challenge of ionothermally synthesizing siliceous and aluminosilicate zeolites. PMID:26213423

  14. Tribological Properties of Ionic Liquids Lubricants Containing Nanoparticles 

    E-print Network

    Lu, Wei

    2014-05-14

    sliding pairs at room temperature. These ionic liquids contain the same long side- 11 chain substituted cations and different anions. Results showed that they could effectively reduce the friction and wear compared to the base oil without additives... with ionic liquid anions and cations. The anions in ionic liquids bond to the surface, and subsequent cations are attracted to this layer, forming an electrical double layer. Carper et al. [20] proposed an adsorption model based on a semi...

  15. Lipid extraction from microalgae using a single ionic liquid

    DOEpatents

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2013-05-28

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

  16. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Agrawal, Anoop (Tucson, AZ); Cronin, John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM)

    2005-11-01

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF3SO3-), bis(trifluoromethylsulfonyl)imide ((CF3SO2)2N-), bis(perfluoroethylsulfonyl)imide ((CF3CF2SO2)2N-) and tris(trifluoromethylsulfonyl)methide ((CF3SO2)3C-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  17. Properties of Water Confined in Ionic Liquids

    PubMed Central

    Saihara, Koji; Yoshimura, Yukihiro; Ohta, Soichi; Shimizu, Akio

    2015-01-01

    The varying states of water confined in the nano-domain structures of typical room temperature ionic liquids (ILs) were investigated by 1H NMR and by measurements of self-diffusion coefficients while systematically varying the IL cations and anions. The NMR peaks for water in BF4-based ILs were clearly split, indicating the presence of two discrete states of confined water (H2O and HOD). Proton and/or deuterium exchange rate among the water molecules was very slowly in the water-pocket. Notably, no significant changes were observed in the chemical shifts of the ILs. Self-diffusion coefficient results showed that water molecules exhibit a similar degree of mobility, although their diffusion rate is one order of magnitude faster than that of the IL cations and anions. These findings provide information on a completely new type of confinement, that of liquid water in soft matter. PMID:26024339

  18. IONIC LIQUID?IONIC LIQUID? Benign solvents to replace Volatile Organic Compounds (VOCs) Organic salts with melting point lower than 100C, no measurable

    E-print Network

    Dalang, Robert C.

    in a layer of ionic liquid (IL), which is confined on the surface of the solid support. This approach material to the concept of supported ionic liquid catalysis (SILPc) for a continuous gas phase processIONIC LIQUID?IONIC LIQUID? Benign solvents to replace Volatile Organic Compounds (VOCs) Organic

  19. Anion exchange in ionic liquid mixtures.

    PubMed

    Cha, Seoncheol; Kim, Doseok

    2015-11-28

    Advantage of ionic liquids as designer solvents can be maximized by mixing different ionic liquids (ILs) for a possibility of continuous tunability of material properties. The property of these mixed ILs would be determined by their microscopic conformation between cations and anions. The mixtures of two ILs having 1-butyl-3-methylimidaolium cations and different anions were investigated by IR and NMR spectroscopy, utilizing that the vibrational frequencies of the C-H stretching and bending modes of the most acidic proton in the imidazolium ring of the cation and the NMR chemical shift for the corresponding proton were clearly distinct between the ILs having different anions. The IR absorption spectra of the IL mixtures at different concentrations were well-matched to weighted sums of the two spectra of the pure ILs. In contrast, the two distinct peaks in the NMR spectra of the pure ILs coalesced into a single peak, which shifted continuously following the relative portion of two different ILs in the mixture. IR spectroscopy in the optical frequency range seems to take the instantaneous snapshot of the cation-anion interaction, while NMR spectroscopy in the radio-frequency (?500 MHz) range samples over a much longer timescale, enough for the cation to interact with different anion species in the mixture. PMID:26487276

  20. Oxygen Extraction from Regolith Using Ionic Liquids

    NASA Technical Reports Server (NTRS)

    Barrios, Elizabeth A.; Curreri, Peter A.; Karr, Laurel J.

    2011-01-01

    An important concern with long-duration manned space travel is the need to furnish enough materials to the vehicle, as well as the crew, for the duration of the mission. By extracting oxygen from the oxides present in regolith, propellant and life support could be supplied to the vehicle and the crew while in space, thereby limiting the amount of supplies needed prior to lift-off. Using a class of compounds known as ionic liquids, we have been able to lower the electrolysis operating temperature from 1600 C (molten oxide electrolysis) to less than 200 C, making this process much more feasible in terms of energy consumption and materials handling. To make this process ready for deployment into space, we have investigated what steps of the process would be affected by the low-gravity environment in space. In the lab, the solubilization of lunar regolith simulant in ionic liquid produces water vapor that is normally distilled out of solution and subsequently electrolyzed for oxygen production. This distillation is not possible in space, so we have tested a method known as pervaporation and have suggested a way this technique could be incorporated into a reactor design.

  1. Ionic liquid ion source emitter arrays fabricated on bulk porous substrates for spacecraft propulsion

    E-print Network

    Courtney, Daniel George

    2011-01-01

    Ionic Liquid Ion Sources (ILIS) are a subset of electrospray capable of producing bipolar beams of pure ions from ionic liquids. Ionic liquids are room temperature molten salts, characterized by negligible vapor pressures, ...

  2. The Hildebrand Solubility Parameters of Ionic Liquids—Part 2

    PubMed Central

    Marciniak, Andrzej

    2011-01-01

    The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods. PMID:21747694

  3. Ionic Liquids and Green Chemistry: A Lab Experiment

    ERIC Educational Resources Information Center

    Stark, Annegret; Ott, Denise; Kralisch, Dana; Kreisel, Guenter; Ondruschka, Bernd

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few investigations have actually assessed the degree of…

  4. Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids

    NASA Astrophysics Data System (ADS)

    Fadeeva, Tatiana A.; Husson, Pascale; DeVine, Jessalyn A.; Costa Gomes, Margarida F.; Greenbaum, Steven G.; Castner, Edward W.

    2015-08-01

    We report experimental results on the diffusivity of water in two ionic liquids obtained using the pulsed-gradient spin-echo NMR method. Both ionic liquids have the same cation, 1-butyl-1-methylpyrrolidinium, but different trifluoromethyl-containing anions. One has a strongly hydrophobic anion, bis(trifluoromethylsulfonyl)amide, while the second has a hydrophilic anion, trifluoromethylsulfonate. Transport of water in these ionic liquids is much faster than would be predicted from hydrodynamic laws, indicating that the neutral water molecules experience a very different friction than the anions and cations at the molecular level. Temperature-dependent viscosities, conductivities, and densities are reported as a function of water concentration to further analyze the properties of the ionic liquid-water mixtures. These results on the properties of water in ionic liquids should be of interest to researchers in diverse areas ranging from separations, solubilizing biomass and energy technologies.

  5. Volatile times for the very first ionic liquid: understanding the vapor pressures and enthalpies of vaporization of ethylammonium nitrate.

    PubMed

    Emel'yanenko, Vladimir N; Boeck, Gisela; Verevkin, Sergey P; Ludwig, Ralf

    2014-09-01

    A hundred years ago, Paul Walden studied ethyl ammonium nitrate (EAN), which became the first widely known ionic liquid. Although EAN has been investigated extensively, some important issues still have not been addressed; they are now tackled in this communication. By combining experimental thermogravimetric analysis with time of flight mass spectrometry (TGA-ToF-MS) and transpiration method with theoretical methods, we clarify the volatilisation of EAN from ambient to elevated temperatures. It was observed that up to 419?K, EAN evaporates as contact-ion pairs leading to very low vapour pressures of a few Pascal. Starting from 419?K, the decomposition to nitric acid and ethylamine becomes more thermodynamically favourable than proton transfer. This finding was supported by DFT calculations, which provide the free energies of all possible gas-phase species, and show that neutral molecules dominate over ion pairs above 500?K, an observation that is in nearly prefect agreement with the experimental boiling point of 513?K. This result is crucial for the ongoing practical applications of protic ionic liquids such as electrolytes for batteries and fuel cells because, in contrast to high-boiling conventional solvents, EAN exhibits no significant vapour pressure below 419?K and this property fulfils the requirements for the thermal behaviour of safe electrolytes. Overall, EAN shows the same barely measurable vapour pressures as typical aprotic ionic liquids at temperatures only 70?K lower. PMID:25077820

  6. Polymersomes with ionic liquid interiors dispersed in water.

    PubMed

    Bai, Zhifeng; Lodge, Timothy P

    2010-11-17

    We describe polymersomes with ionic liquid interiors dispersed in water. The vesicles are prepared via a simple and spontaneous migration of poly(butadiene-b-ethylene oxide) (PB-PEO) block copolymer vesicles from a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]), to water at room temperature. As PB is insoluble in both water and [EMIM][TFSI] and PEO is well solvated in both media, the vesicles feature a PB membrane with PEO brushes forming both interior and exterior coronas. The robust and stable PB-PEO vesicles migrate across the liquid-liquid interface with their ionic liquid interiors intact and form a stabilized aqueous dispersion of vesicles enclosing microscopic ionic liquid pools. The nanostructure of the vesicles with ionic liquid interiors dispersed in water is characterized by direct visualization using cryogenic transmission electron microscopy. Upon heating, the vesicles can be quantitatively transferred back to [EMIM][TFSI], thus enabling facile recovery. The reversible transport capability of the shuttle system is demonstrated by the use of distinct hydrophobic dyes, which are selectively and simultaneously loaded in the vesicle membrane and interior. Furthermore, the fluorescence of the loaded dyes in the vesicles enables probing of the microenvironment of the vesicular ionic liquid interior through solvatochromism and direct imaging of the vesicles using laser scanning confocal microscopy. This vesicle system is of particular interest as a nanocarrier or nanoreactor for reactions, catalysis, and separations using ionic liquids. PMID:20964305

  7. Homogeneous Liquid-Liquid Extraction of Metal Ions with a Functionalized Ionic Liquid.

    PubMed

    Hoogerstraete, Tom Vander; Onghena, Bieke; Binnemans, Koen

    2013-05-16

    Binary mixtures of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water show an upper critical solution temperature. This solvent system has been used to extract metal ions by phase-transition extraction, using zwitterionic betaine as extractant. The system is efficient for the extraction of trivalent rare-earth, indium and gallium ions. This new type of metal extraction system avoids problems associated with the use of viscous ionic liquids, namely, the difficulty of intense mixing of the aqueous and ionic liquid phases by stirring. PMID:26282975

  8. Carbon Dioxide and Ionic Liquid Refrigerants: Compact, Efficient Air Conditioning with Ionic Liquid-Based Refrigerants

    SciTech Connect

    2010-10-01

    BEETIT Project: Notre Dame is developing an air-conditioning system with a new ionic liquid and CO2 as the working fluid. Synthetic refrigerants used in air conditioning and refrigeration systems are potent GHGs and can trap 1,000 times more heat in the atmosphere than CO2 alone—making CO2 an attractive alternative for synthetic refrigerants in cooling systems. However, operating cooling systems with pure CO2 requires prohibitively high pressures and expensive hardware. Notre Dame is creating a new fluid made of CO2 and ionic liquid that enables the use of CO2 at low pressures and requires minimal changes to existing hardware and production lines. This new fluid also produces no harmful emissions and can improve the efficiency of air conditioning systems— enabling new use of CO2 as a refrigerant in cooling systems.

  9. Metsulfuron-methyl-based herbicidal ionic liquids.

    PubMed

    Pernak, Juliusz; Niemczak, Micha?; Shamshina, Julia L; Gurau, Gabriela; G?owacki, Grzegorz; Praczyk, Tadeusz; Marcinkowska, Katarzyna; Rogers, Robin D

    2015-04-01

    Ten sulfonylurea-based herbicidal ionic liquids (HILs) were prepared by combining the metsulfuron-methyl anion with various cation types including quaternary ammonium ([bis(2-hydroxyethyl)methyloleylammonium](+), [2-hydroxyethyltrimethylammonium](+)), pyridinium ([1-dodecylpyridinium](+)), piperidinium ([1-methyl-1-propylpiperidinium](+)), imidazolium ([1-allyl-3-methylimidazolium](+), [1-butyl-3-methylimidazolium](+)), pyrrolidinium ([1-butyl-1-methylpyrrolidinium](+)), morpholinium ([4-decyl-4-methylmorpholinium](+)), and phosphonium ([trihexyltetradecylphosphonium](+) and [tetrabutylphosphonium](+)). Their herbicidal efficacy was studied in both greenhouse tests and field trials. Preliminary results for the greenhouse tests showed at least twice the activity for all HILs when compared to the activity of commercial Galmet 20 SG, with HILs with phosphonium cations being the most effective. The results of two-year field studies showed significantly less enhancement of activity than observed in the greenhouse; nonetheless, it was found that the herbicidal efficacy was higher than that of the commercial analog, and efficacy varied depending on the plant species. PMID:25734891

  10. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Burrell, Anthony K. (Los Alamos, NM); Agrawal, Anoop (Tucson, AZ); Cronin, John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

    2009-12-15

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  11. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM)

    2006-10-10

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  12. New triazolium based ionic liquid crystals

    SciTech Connect

    Stappert, Kathrin; Unal, Derya; Mallick, Bert; Mudring, Anja-Verena

    2014-01-01

    A set of novel 1,2,3-triazolium based ionic liquid crystals was synthesized and their mesomorphic behaviour studied by DSC (differential scanning calorimetry), POM (polarizing optical microscopy) and SAXS (small angle X-ray scattering). Beside the variation of the chain length (C10, C12 and C14) at the 1,2,3-triazolium cation also the anion has been varied (Br?, I?, I3?, BF4?, SbF6?, N(CN)2?, Tf2N?) to study the influence of ion size, symmetry and H-bonding capability on the mesophase formation. Interestingly, for the 1,3-didodecyl-1,2,3-triazolium cation two totally different conformations were found in the crystal structure of the bromide (U-shaped) and the triiodide (rod shaped).

  13. Durable Electrooptic Devices Comprising Ionic Liquids

    DOEpatents

    Burrell, Anthony K. (Los Alamos, NM); Agrawal, Anoop (Tucson, AZ); Cronin, John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

    2008-11-11

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  14. Graphene terahertz modulators by ionic liquid gating

    E-print Network

    Wu, Yang; Qiu, Xuepeng; Liu, Jingbo; Deorani, Praveen; Banerjee, Karan; Son, Jaesung; Chen, Yuanfu; Chia, Elbert E M; Yang, Hyunsoo

    2015-01-01

    Graphene based THz modulators are promising due to the conical band structure and high carrier mobility of graphene. Here, we tune the Fermi level of graphene via electrical gating with the help of ionic liquid to control the THz transmittance. It is found that, in the THz range, both the absorbance and reflectance of the device increase proportionately to the available density of states due to intraband transitions. Compact, stable, and repeatable THz transmittance modulation up to 93% (or 99%) for a single (or stacked) device has been demonstrated in a broad frequency range from 0.1 to 2.5 THz, with an applied voltage of only 3 V at room temperature.

  15. Halogenation of Imidazolium Ionic Liquids. Thermodynamics Perspective

    E-print Network

    Chaban, Vitaly V

    2015-01-01

    Imidazolium cations are promising for anion exchange membranes, and electrochemical applications and gas capture. They can be chemically modified in many ways including halogenation. Halogenation possibilities of the imidazole ring constitute a particular interest. This work investigates fluorination and chlorination reactions of all symmetrically non-equivalent sites of the imidazolium cation. Halogenation of all carbon atoms is thermodynamically permitted. Out of these, the most favorable site is the first methylene group of the alkyl chain. In turn, the least favorable site is carbon of the imidazole ring. Temperature dependence of enthalpy, entropy, and Gibbs free energy at 1 bar is discussed. The reported results provide an important guidance in functionalization of ionic liquids in search of task-specific compounds.

  16. Morita-Baylis-Hillman reaction: ESI-MS(/MS) investigation with charge tags and ionic liquid effect origin revealed by DFT calculations.

    PubMed

    Rodrigues, Thyago S; Silva, Valter H C; Lalli, Priscila M; de Oliveira, Heibbe C B; da Silva, Wender A; Coelho, Fernando; Eberlin, Marcos N; Neto, Brenno A D

    2014-06-01

    The use of a charge-tagged acrylate derivative bearing an imidazolium tag to study the Morita-Baylis-Hillman reaction via ESI-MS(/MS) monitoring and the effect of such tag (imidazolium cations and ion pairs) over TSs is described. The ionic nature of the substrate was meant to facilitate ESI transfer to the gas phase for direct mass spectrometric analysis. The detection and characterization of charged intermediates has suggested major reaction pathways. DFT calculations considering the effect of a polar and protic solvent (methanol), of a polar and aprotic solvent (acetonitrile), and of no solvent (gas phase) were used to predict possible TSs through a common accepted intermediate. The controversial proton transfer step, which may proceed via Aggarwal's or McQuade's proposals, was evaluated. Calculations predicted the formation of electrostatic intermediate complexes with both the cation and anion when charge-tagged reagents are used. These complexes contribute to the positive ionic liquid effect, and based on the formation of these unique complexes, a rationale for the ionic liquid effect is proposed. These complexes also pointed to a plausible explanation for the positive ionic liquid effect observed in several reactions that are difficult to be carried out in organic solvents but have shown a beneficial effect when performed in ionic liquids. PMID:24815995

  17. Comparative study of bending characteristics of ionic polymer actuators containing ionic liquids for modeling actuation

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kunitomo; Sakamoto, Takumi; Tsuchitani, Shigeki; Asaka, Kinji

    2011-04-01

    Ionic polymer metal composites (IPMCs) that can operate in air have recently been developed by incorporating an ionic liquid in ionic polymers. To understand transduction in these composites, it is important to determine the role of the ionic liquid in the ionic polymer (Nafion®), to identify the counter cation, and to investigate the interaction of IPMCs with water vapor in the air. We used Fourier-transform infrared spectroscopy to analyze three Nafion® membranes, which were soaked in mixtures of water and an ionic liquid (1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIBF4), 1-buthyl-3-methyl-imidazolium tetrafluoroborate (BMIBF4), and 1-buthyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6)). The results demonstrate that only cations (EMI+ and BMI+) in the ionic liquids are taken into the Nafion® membranes as counter ions and that the water content of the membranes in air is less than ˜4% that of Nafion® swollen with water. Based on the experimental results, a transduction model is proposed for an IPMC with an ionic liquid. In this model, bending is caused by local swelling due to the volume effect of the bulky counter cations. This model can explain 30-50% of the experimentally observed bending curvature.

  18. Adsorption Kinetics at Silica Gel/Ionic Liquid Solution Interface.

    PubMed

    Flieger, Jolanta; Tatarczak-Michalewska, Ma?gorzata; Groszek, Anna; Blicharska, Eliza; Kocjan, Ryszard

    2015-01-01

    A series of imidazolium and pyridinium ionic liquids with different anions (Cl(-), Br(-), BF?(-), PF?(-)) has been evaluated for their adsorption activity on silica gel. Quantification of the ionic liquids has been performed by the use of RP-HPLC with organic-aqueous eluents containing an acidic buffer and a chaotropic salt. Pseudo-second order kinetic models were applied to the experimental data in order to investigate the kinetics of the adsorption process. The experimental data showed good fitting with this model, confirmed by considerably high correlation coefficients. The adsorption kinetic parameters were determined and analyzed. The relative error between the calculated and experimental amount of ionic liquid adsorbed at equilibrium was within 7%. The effect of various factors such as initial ionic liquid concentration, temperature, kind of solvent, kind of ionic liquid anion and cation on adsorption efficiency were all examined in a lab-scale study. Consequently, silica gel showed better adsorptive characteristics for imidazolium-based ionic liquids with chaotropic anions from aqueous solutions in comparison to pyridinium ionic liquids. The adsorption was found to decrease with the addition of organic solvents (methanol, acetonitrile) but it was not sensitive to the change of temperature in the range of 5-40 °C. PMID:26690392

  19. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

    2012-03-16

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  20. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Institute of Chemistry, Hebrew University; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-07-19

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  1. Liquid-liquid extraction of neodymium(III) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation.

    PubMed

    Rout, Alok; Kotlarska, Justyna; Dehaen, Wim; Binnemans, Koen

    2013-10-21

    The ionic liquids 1-hexyl-3-methylimidazolium bis(2-ethylhexyl)phosphate, [C6mim][DEHP], 1-hexyl-1-methylpyrrolidinium bis(2-ethylhexyl)phosphate, [C6mpyr][DEHP], and tetrabutylammonium bis(2-ethylhexyl)phosphate, [N4444][DEHP], were prepared and characterized using (1)H and (13)C NMR spectroscopy. The extraction behavior of neodymium(iii) from nitrate medium by these ionic liquids, diluted with the room temperature ionic liquids 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][NTf2], 1-hexyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C6mpyr][NTf2], and tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N1444][NTf2], was studied. The distribution ratio of neodymium(iii) was measured as a function of various parameters, such as pH, concentration of the ionic liquid extractant, nature of diluents, concentration of ionic liquid cations and nitrate anions in the aqueous phase. The extraction behavior was compared with that obtained for a solution of the molecular extractant bis(2-ethylhexyl)phosphoric acid (DEHPA) in an ionic liquid diluent. The extraction of neodymium(iii) in the ionic liquids [C6mim][DEHP] and [C6mpyr][DEHP] showed markedly different extraction properties in comparison with that of the quaternary ammonium analogue [N4444][DEHP], especially concerning the pH dependence of the extraction process. These results show that the extraction process can be tuned by the selection of the ionic liquid cation. The extraction experiments also included the trivalent rare-earth ions lanthanum(iii), cerium(iii), praseodymium(iii), ytterbium(iii) and yttrium(iii). Studies of the stripping behavior and the reusability of the ionic liquids were carried out, which indicate that the ionic liquids can be reused with no loss in activity. PMID:23949284

  2. Chelating ionic liquids for reversible zinc electrochemistry.

    PubMed

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions. PMID:23558696

  3. Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces.

    PubMed

    Fumino, Koichi; Reimann, Sebastian; Ludwig, Ralf

    2014-10-28

    Ionic liquids are defined as salts composed solely of ions with melting points below 100 °C. These remarkable liquids have unique and fascinating properties and offer new opportunities for science and technology. New combinations of ions provide changing physical properties and thus novel potential applications for this class of liquid materials. To a large extent, the structure and properties of ionic liquids are determined by the intermolecular interaction between anions and cations. In this perspective we show that far infrared and terahertz spectroscopy are suitable methods for studying the cation-anion interaction in these Coulomb fluids. The interpretation of the measured low frequency spectra is supported by density functional theory calculations and molecular dynamics simulations. We present results for selected aprotic and protic ionic liquids and their mixtures with molecular solvents. In particular, we focus on the strength and type of intermolecular interaction and how both parameters are influenced by the character of the ions and their combinations. We show that the total interaction between cations and anions is a result of a subtle balance between Coulomb forces, hydrogen bonds and dispersion forces. For protic ionic liquids we could measure distinct vibrational modes in the low frequency spectra indicating clearly the cation-anion interaction characterized by linear and medium to strong hydrogen bonds. Using isotopic substitution we have been able to dissect frequency shifts related to pure interaction strength between cations and anions and to different reduced masses only. In this context we also show how these different types of interaction may influence the physical properties of ionic liquids such as the melting point, viscosity or enthalpy of vaporization. Furthermore we demonstrate that low frequency spectroscopy can also be used for studying ion speciation. Low vibrational features can be assigned to contact ion pairs and solvent separated ion pairs. In conclusion we showed how detailed knowledge of the low frequency spectra can be used to understand the change in interaction strength and structure by variation of temperature, solvent polarity and solvent concentration in ionic liquids and their mixtures with molecular solvents. In principle the used combination of methods is suitable for studying intermolecular interaction in pure molecular liquids and their solutions including additive materials such as nanoparticles. PMID:24898478

  4. Applications of Ionic Liquids as Electrolyte for Energy Devices

    NASA Astrophysics Data System (ADS)

    Yasuda, Tomohiro; Watanabe, Masayoshi

    In this paper, our studies to apply ionic liquids (ILs) as electrolyte in energy devices such as lithium ion batteries (LIB) and H2/O2 fuel cells (FC) are reviewed. Typical ionic liquids are non-volatile and thermally stable with high ionic conductivity without any molecular solvents and thus can be expected as next generation electrolyte. It is anticipated that safety of LIB can be improved by using Li+-conducting ILs and that FC can be operated under non-humidifying conditions by using H+-conducting ILs. By our studies, we could find important characteristics of ionic liquids for applying to energy devices. For LIB application, we revealed that glyme-Li salt complexes exhibit acceptable ionic conductivity with high Li+ transference number, while for PEFC application, we found that protic ILs exhibit high electrochemical activities for fuel cell reactions. The performances of LIB and non-humidifying FC using ILs were promising for the future developments.

  5. The magic of aqueous solutions of ionic liquids: ionic liquids as a powerful class of catanionic hydrotropes†

    PubMed Central

    Cláudio, Ana Filipa M.; Neves, Márcia C.; Shimizu, Karina; Canongia Lopes, José N.; Freire, Mara G.; Coutinho, João A. P.

    2015-01-01

    Hydrotropes are compounds able to enhance the solubility of hydrophobic substances in aqueous media and therefore are widely used in the formulation of drugs, cleaning and personal care products. In this work, it is shown that ionic liquids are a new class of powerful catanionic hydrotropes where both the cation and the anion synergistically contribute to increase the solubility of biomolecules in water. The effects of the ionic liquid chemical structures, their concentration and the temperature on the solubility of two model biomolecules, vanillin and gallic acid were evaluated and compared with the performance of conventional hydrotropes. The solubility of these two biomolecules was studied in the entire composition range, from pure water to pure ionic liquids, and an increase in the solubility of up to 40-fold was observed, confirming the potential of ionic liquids to act as hydrotropes. Using dynamic light scattering, NMR and molecular dynamics simulations, it was possible to infer that the enhanced solubility of the biomolecule in the IL aqueous solutions is related to the formation of ionic-liquid–biomolecules aggregates. Finally, it was demonstrated that hydrotropy induced by ionic liquids can be used to recover solutes from aqueous media by precipitation, simply by using water as an anti-solvent. The results reported here have a significant impact on the understanding of the role of ionic liquid aqueous solutions in the extraction of value-added compounds from biomass as well as in the design of novel processes for their recovery from aqueous media. PMID:26379471

  6. Development of Practical Supported Ionic Liquid Membranes: A Systematic Approach

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-11-01

    Supported liquid membranes (SLMs) are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties to optimize membrane performance. These membranes also have the advantage of liquid phase diffusivities, which are higher than those observed in polymers and grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which may possess high CO2 solubility relative to light gases such as H2, are excellent candidates for this type of membrane since they are stable at elevated temperatures and have negligible vapor pressure. A study has been conducted evaluating the use of a variety of ionic liquids in supported ionic liquid membranes for the capture of CO2 from streams containing H2. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated membrane performance for the resulting materials. Several steps have been taken in the development of practical supported ionic liquid membranes. Proof-of-concept was established by showing that ionic liquids could be used as the transport media in SLMs. Results showed that ionic liquids are suitable media for gas transport, but the preferred polymeric supports were not stable at temperatures above 135oC. The use of cross-linked nylon66 supports was found to produce membranes mechanically stable at temperatures exceeding 300oC but CO2/H2 selectivity was poor. An ionic liquid whose selectivity does not decrease with increasing temperature was needed, and a functionalized ionic liquid that complexes with CO2 was used. An increase in CO2/H2 selectivity with increasing temperature over the range of 37 to 85oC was observed and the dominance of a facilitated transport mechanism established. The presentation will detail membrane development, the effect of increasing transmembrane pressure, and preliminary results dealing with other gas pairs and contaminants.

  7. Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: the evolution of an aprotic Li-O2 battery.

    PubMed

    Feng, Ningning; He, Ping; Zhou, Haoshen

    2015-02-01

    We show that by using a suitable soluble redox mediator, the charging overpotential can be reduced and the round-trip efficiency can be improved in an aprotic Li-O2 battery. Not only do we explore a new redox couple, 10-methyl-10H-phenothiazine, as a soluble catalyst that improves the electrochemical performance, but we also propose possible challenges that need to be overcome for the future improvement of aprotic Li-O2 batteries. PMID:25641874

  8. Phase-Changing Ionic Liquids: CO2 Capture with Ionic Liquids Involving Phase Change

    SciTech Connect

    2010-07-01

    IMPACCT Project: Notre Dame is developing a new CO2 capture process that uses special ionic liquids (ILs) to remove CO2 from the gas exhaust of coal-fired power plants. ILs are salts that are normally liquid at room temperature, but Notre Dame has discovered a new class of ILs that are solid at room temperature and change to liquid when they bind to CO2. Upon heating, the CO2 is released for storage, and the ILs re-solidify and donate some of the heat generated in the process to facilitate further CO2 release. These new ILs can reduce the energy required to capture CO2 from the exhaust stream of a coal-fired power plant when compared to state-ofthe- art technology.

  9. Long-range electrostatic screening in ionic liquids.

    PubMed

    Gebbie, Matthew A; Dobbs, Howard A; Valtiner, Markus; Israelachvili, Jacob N

    2015-06-16

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  10. Long-range electrostatic screening in ionic liquids

    PubMed Central

    Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.

    2015-01-01

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  11. Shear and Extensional Rheology of Cellulose/Ionic Liquid Solutions

    E-print Network

    Haward, Simon J.

    In this study, we characterize the shear and extensional rheology of dilute to semidilute solutions of cellulose in the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIAc). In steady shear flow, the semidilute solutions ...

  12. The radiation chemistry of ionic liquids: A review

    SciTech Connect

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquid radiation chemistry literature as it affects separations, with these considerations in mind.

  13. Enzymatic synthesis of poly(hydroxyalkanoates) in ionic liquids.

    PubMed

    Gorke, Johnathan T; Okrasa, Krzysztof; Louwagie, Andrew; Kazlauskas, Romas J; Srienc, Friedrich

    2007-11-01

    Ring-opening polymerization of five lactones catalyzed by Candida antarctica lipase B in ionic liquids yielded poly(hydroxyalkanoates) of moderate molecular weights up to Mn=13,000. In the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethane)-sulfonimide and with a low weight ratio of enzyme to lactone (1:100) we obtained polymers from beta-propiolactone, delta-valerolactone, and epsilon-caprolactone with degrees of polymerization as high as 170, 25, and 85, respectively; oligomers from beta-butyrolactone and gamma-butyrolactone with degrees of polymerization of 5; and a copolymer of beta-propiolactone and beta-butyrolactone with a degree of polymerization of 180. Water-immiscible ionic liquids were superior to water-miscible ionic liquids. Reducing the water content of the enzyme improved the degree of polymerization by as much as 50% for beta-propiolactone and epsilon-caprolactone. PMID:17543408

  14. DIRECT FORMATION OF TETRAHYDROPYRANOLS VIA CATALYSIS IN IONIC LIQUID

    EPA Science Inventory

    Utilizing a simple homoallyl alcohol and an aldehyde in the presence of a catalytic amount of cerium triflate, the direct formation of tetrahydropyranol derivatives in ionic liquid is reported.

  15. Electrospray from an Ionic Liquid Ferrofluid utilizing the Rosensweig Instability

    E-print Network

    King, Lyon B.

    magnetic nanoparticles in an ionic liquid carrier solution so that the resulting fluid is superparamagnetic and porous nickel planar arrays.12-15 Regularly spaced peaks are etched into porous tungsten and nickel

  16. Membrane contactor assisted extraction/reaction process employing ionic liquids

    DOEpatents

    Lin, Yupo J. (Naperville, IL); Snyder, Seth W. (Lincolnwood, IL)

    2012-02-07

    The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.

  17. Density and surface tension of ionic liquids.

    PubMed

    Kolbeck, C; Lehmann, J; Lovelock, K R J; Cremer, T; Paape, N; Wasserscheid, P; Fröba, A P; Maier, F; Steinrück, H-P

    2010-12-30

    We measured the density and surface tension of 9 bis[(trifluoromethyl)sulfonyl]imide ([Tf(2)N](-))-based and 12 1-methyl-3-octylimidazolium ([C(8)C(1)Im](+))-based ionic liquids (ILs) with the vibrating tube and the pendant drop method, respectively. This comprehensive set of ILs was chosen to probe the influence of the cations and anions on density and surface tension. When the alkyl chain length in the [C(n)C(1)Im][Tf(2)N] series (n = 1, 2, 4, 6, 8, 10, 12) is increased, a decrease in density is observed. The surface tension initially also decreases but reaches a plateau for alkyl chain lengths greater than n = 8. Functionalizing the alkyl chains with ethylene glycol groups results in a higher density as well as a higher surface tension. For the dependence of density and surface tension on the chemical nature of the anion, relations are only found for subgroups of the studied ILs. Density and surface tension values are discussed with respect to intermolecular interactions and surface composition as determined by angle-resolved X-ray photoelectron spectroscopy (ARXPS). The absence of nonvolatile surface-active contaminants was proven by ARXPS. PMID:21141903

  18. Biocompatible Ionic Liquid-Derived Conducting Polymers

    NASA Astrophysics Data System (ADS)

    Firestone, Millicent; Burns, Christopher; Lee, Sungwon

    2009-03-01

    A significant and frequently encountered challenge when making an electrical connection to a protein is that its electron-transfer sites are buried within the polypeptide matrix and thus, are not readily accessible to bulk metal electrodes. A further complicating factor is that inorganic (i.e., metallic) electrodes are often incompatible with biological samples. These obstacles might be overcome by the use of conducting oligomers and / or polymers, which are flexible, offering a means to access remote redox centers. These oligomers can be readily modified to include chemical moieties that can connect covalently to sites near redox centers. In addition, conducting polymers can be made to be environmentally responsive (dynamic), processable (conformal coating, soluble) and mechanically durable, thus enabling them to function as an electrical conduit (wire or electrode) to biomolecules. In this work, we describe the design, synthesis and electrochemical properties of thiophene-based ionic liquid monomers and their bulk polymerization by chemical oxidation to yield cationic, aqueous-soluble polymers. Preliminary studies evaluating the electropolymerization of these monomers into nanostructured thin films will also be presented.

  19. Diphosphonium Ionic Liquids as Broad Spectrum Antimicrobial Agents

    PubMed Central

    O’Toole, George A.; Wathier, Michel; Zegans, Michael E.; Shanks, Robert M.Q.; Kowalski, Regis; Grinstaff, Mark W.

    2011-01-01

    Purpose One of the most disturbing trends in recent years is the growth of resistant strains of bacteria with the simultaneous dearth of new antimicrobial agents. Thus, new antimicrobial agents for use on the ocular surface are needed. Methods We synthesized a variety of ionic liquid compounds, which possess two positively charged phosphonium groups separated by ten methylene units in a “bola” type configuration. We tested these compounds for antimicrobial activity versus a variety of ocular pathogens, as well as their cytoxicity in vitro in a corneal cell line and in vivo in mice. Results The ionic liquid Di-Hex C10 demonstrated broad in vitro antimicrobial activity at the low micromolar concentrations versus Gram-negative and Gram-positive organisms, including methicillin-resistant Staphylococcus aureus strains, as well as ocular fungal pathogens. Treatment with Di-Hex C10 resulted in bacterial killing in as little as 15 minutes in vitro. Di-Hex C10 showed little cytotoxicity at 1 ?M versus a corneal epithelial cell line or at 10 ?M in a mouse corneal wound model. We also show that this bis-phosphonium ionic liquid structure is key, as a comparable mono phosphonium ionic liquid is cytotoxic to both bacteria and corneal epithelial cells. Conclusions Here we report the first use of dicationic bis-phosphonium ionic liquids as antimicrobial agents. Our data suggest that diphosphonium ionic liquids may represent a new class of broad-spectrum antimicrobial agents for use on the ocular surface. PMID:22236790

  20. Nonionic surfactant mixtures in an imidazolium-type room-temperature ionic liquid.

    PubMed

    Sakai, Hideki; Saitoh, Takanori; Misono, Takeshi; Tsuchiya, Koji; Sakai, Kenichi; Abe, Masahiko

    2011-01-01

    The physicochemical properties of nonionic surfactant mixtures in an aprotic, imidazolium-type room-temperature ionic liquid (RT-IL) have been studied using a combination of static surface tensiometry, dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryo-TEM). The surfactants used in this study are phytosterol ethoxylates (BPS-n, where n is an oxyethylene chain length of either 5 or 30) and the selected RT-IL is 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF(6)). The shorter chain oxyethylene surfactant (BPS-5) exhibits greater surface activity in BmimPF(6) than BPS-30; hence, BPS-5 is a major component in driving the interfacial adsorption and molecular aggregation of the mixed system. The surface tension data demonstrate that an increased mole fraction of BPS-5 results in a decreased critical aggregation concentration (cac) and negatively increased Gibbs free energies estimated for molecular aggregation (?G(0)(agg)) and interfacial adsorption (?G(0)(ads)). Indeed, the compositions of the monolayer adsorbed at the air/solution interface and the molecular aggregate formed in the bulk solution are enriched with BPS-5. The combination of the DLS and cryo-TEM results demonstrates the spontaneous formation of multi-lamellar vesicles resulting from the BPS-5-rich composition of the molecular aggregates. PMID:22027021

  1. Ionic structure in liquids confined by dielectric interfaces.

    PubMed

    Jing, Yufei; Jadhao, Vikram; Zwanikken, Jos W; Olvera de la Cruz, Monica

    2015-11-21

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as in the design of double-layer supercapacitors for energy storage and in the extraction of metal ions from wastewater. In this article, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics simulations and liquid state theory. We explore the effects of high electrolyte concentrations, multivalent ions, dielectric contrasts, and external electric field on the ionic distributions. We observe the presence of non-monotonic ionic density profiles leading to a layered structure in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of the dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of the effective interaction between the two interfaces. PMID:26590543

  2. Ionic structure in liquids confined by dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Jing, Yufei; Jadhao, Vikram; Zwanikken, Jos W.; Olvera de la Cruz, Monica

    2015-11-01

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as in the design of double-layer supercapacitors for energy storage and in the extraction of metal ions from wastewater. In this article, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics simulations and liquid state theory. We explore the effects of high electrolyte concentrations, multivalent ions, dielectric contrasts, and external electric field on the ionic distributions. We observe the presence of non-monotonic ionic density profiles leading to a layered structure in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of the dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of the effective interaction between the two interfaces.

  3. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    DOEpatents

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  4. The radiation chemistry of ionic liquids: A review

    DOE PAGESBeta

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquidmore »radiation chemistry literature as it affects separations, with these considerations in mind.« less

  5. On the stability of complex ions in ionic liquid Ion sources

    E-print Network

    Miller, Catherine Elizabeth

    2015-01-01

    Ionic liquids are molten salts at room temperature that consist of positive and negative ions. These liquids can be used in electrosprays to produce ion beams. Ionic liquid ion source (ILIS) beams typically consist of ...

  6. Direct determination of ionic transference numbers in ionic liquids by electrophoretic NMR.

    PubMed

    Gouverneur, Martin; Kopp, Jakob; van Wüllen, Leo; Schönhoff, Monika

    2015-11-11

    Charge transport in ionic liquids is a phenomenon of utmost interest for electrochemical (e.g. battery) applications, but also of high complexity, involving transport of ion pairs, charged clusters and single ions. Molecular understanding is limited due to unknown contributions of cations, anions and clusters to the conductivity. Here, we perform electrophoretic NMR to determine electrophoretic mobilities of cations and anions in seven different ionic liquids. For the first time, mobilities in the range down to 10(-10) m(2) V(-1) s(-1) are determined. The ionic transference number, i.e. the fractional contribution of an ionic species to overall conductivity, strongly depends on cation and anion structure and its values show that structurally very similar ionic liquids can have cation- or anion-dominated conductivity. Transference numbers of cations, for example, vary from 40% to 58%. The results further prove the relevance of asymmetric clusters like [CationXAnionY](X-Y), X ? Y, for charge transport in ionic liquids. PMID:26523918

  7. Photon-Upconverting Ionic Liquids: Effective Triplet Energy Migration in Contiguous Ionic Chromophore Arrays.

    PubMed

    Hisamitsu, Shota; Yanai, Nobuhiro; Kimizuka, Nobuo

    2015-09-21

    Inspired by the bicontinuous ionic-network structure of ionic liquids (ILs), we developed a new family of photofunctional ILs which show efficient triplet energy migration among contiguously arrayed ionic chromophores. A novel fluorescent IL, comprising an aromatic 9,10-diphenylanthracene 2-sulfonate anion and an alkylated phosphonium cation, showed pronounced interactions between chromophores, as revealed by its spectral properties. Upon dissolving a triplet sensitizer, the IL demonstrated photon upconversion based on triplet-triplet annihilation (TTA-UC). Interestingly, the TTA-UC process in the chromophoric IL was optimized at a much lower excitation intensity compared to the previous nonionic liquid TTA-UC system. The superior TTA-UC in this IL system is characterized by a relatively high triplet diffusion constant (1.63×10(-6)?cm(2)?s(-1)) which is ascribed to the presence of ionic chromophore networks in the IL. PMID:26288261

  8. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Pennline, H.W.; Myers, C.R.

    2007-05-01

    A practical form of CO2 capture at water-gas shift conditions in the IGCC process could serve the dual function of producing a pure CO2 stream for sequestration and forcing the equilibrium-limited shift reaction to completion enriching the stream in H2. The shift temperatures, ranging from the low temperature shift condition of 260°C to the gasification condition of 900°C, limit capture options by diminishing associative interactions which favor removal of CO2 from the gas stream. Certain sorption interactions, such as carbonate formation, remain available but generally involve exceptionally high sorbent regeneration energies that contribute heavily to parasitic power losses. Carbon dioxide selective membranes need only establish an equilibrium between the gas phase and sorption states in order to transport CO2, giving them a potential energetic advantage over other technologies. Supported liquid membranes take advantage of high, liquid phase diffusivities and a solution diffusion mechanism similar to that observed in polymeric membranes to achieve superior permeabilities and selectivites. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high CO2 solubility relative to light gases such as H2, are excellent candidates for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of ionic liquids including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide in supported ionic liquid membranes for the capture of CO2 from streams containing H2. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Improvements to the ionic liquid and support have allowed testing of these supported ionic liquid membranes at temperatures up to 300°C without loss of support mechanical stability or degradation of the ionic liquid. Substantial improvements in selectivity have also been observed at elevated temperature with the best membrane currently achieving optimum performance at 75°C.

  9. Molecular solutes in ionic liquids: a structural perspective.

    PubMed

    Pádua, Agílio A H; Costa Gomes, Margarida F; Canongia Lopes, José N A

    2007-11-01

    Understanding physicochemical properties of ionic liquids is important for their rational use in extractions, reactions, and other applications. Ionic liquids are not simple fluids: their ions are generally asymetric, flexible, with delocalized electrostatic charges, and available in a wide variety. It is difficult to capture their subtle properties with models that are too simplistic. Molecular simulation using atomistic force fields, which describe structures and interactions in detail, is an excellent tool to gain insights into their liquid-state organization, how they solvate different compounds, and what molecular factors determine their properties. The identification of certain ionic liquids as self-organized phases, with aggregated nonpolar and charged domains, provides a new way to interpret the solvation and structure of their mixtures. Many advances are the result of a successful interplay between experiment and modeling, possible in this field where none of the two methodologies had a previous advance. PMID:17661440

  10. Structure-morphology-property relationships in polymerized ionic liquids

    NASA Astrophysics Data System (ADS)

    Sangoro, Joshua; Heres, Maximilian; Minutolo, Joseph; Shamblin, Jacob; Lang, Maik; Berdzinski, Stefan; Strehmel, Veronika; Paddison, Stephen

    2015-03-01

    Charge transport and structural dynamics in systematic series of polymerized ammonium- and imidazolium- based ionic liquids are investigated by broadband dielectric spectroscopy, temperature-modulated differential scanning calorimetry, and x-ray as well neutron scattering techniques. Detailed analysis reveal strong decoupling of these processes in the polymerized ionic liquids, implying failure of the classical theories in describing charge transport and molecular dynamics in these systems. In addition, a strong correlation is observed between the ionic conductivity at the respective calorimetric glass transition temperatures and the morphologies revealed by the scattering experiments. In this talk, a physical explanation of the origin of the observed decoupling of ionic conductivity from structural dynamics will be proposed.

  11. Task-specific ionic liquid for solubilizing metal oxides.

    PubMed

    Nockemann, Peter; Thijs, Ben; Pittois, Stijn; Thoen, Jan; Glorieux, Christ; Van Hecke, Kristof; Van Meervelt, Luc; Kirchner, Barbara; Binnemans, Koen

    2006-10-26

    Protonated betaine bis(trifluoromethylsulfonyl)imide is an ionic liquid with the ability to dissolve large quantities of metal oxides. This metal-solubilizing power is selective. Soluble are oxides of the trivalent rare earths, uranium(VI) oxide, zinc(II) oxide, cadmium(II) oxide, mercury(II) oxide, nickel(II) oxide, copper(II) oxide, palladium(II) oxide, lead(II) oxide, manganese(II) oxide, and silver(I) oxide. Insoluble or very poorly soluble are iron(III), manganese(IV), and cobalt oxides, as well as aluminum oxide and silicon dioxide. The metals can be stripped from the ionic liquid by treatment of the ionic liquid with an acidic aqueous solution. After transfer of the metal ions to the aqueous phase, the ionic liquid can be recycled for reuse. Betainium bis(trifluoromethylsulfonyl)imide forms one phase with water at high temperatures, whereas phase separation occurs below 55.5 degrees C (temperature switch behavior). The mixtures of the ionic liquid with water also show a pH-dependent phase behavior: two phases occur at low pH, whereas one phase is present under neutral or alkaline conditions. The structures, the energetics, and the charge distribution of the betaine cation and the bis(trifluoromethylsulfonyl)imide anion, as well as the cation-anion pairs, were studied by density functional theory calculations. PMID:17048916

  12. Physicochemical properties and toxicities of hydrophobicpiperidinium and pyrrolidinium ionic liquids

    SciTech Connect

    Salminen, Justin; Papaiconomou, Nicolas; Kumar, R. Anand; Lee,Jong-Min; Kerr, John; Newman, John; Prausnitz, John M.

    2007-06-25

    Some properties are reported for hydrophobic ionic liquids (IL) containing 1-methyl-1-propyl pyrrolidinium [MPPyrro]{sup +}, 1-methyl-1-butyl pyrrolidinium [MBPyrro]{sup +}, 1-methyl-1-propyl piperidinium [MPPip]{sup +}, 1-methyl-1-butyl piperidinium [MBPip]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPyrro]{sup +} and 1-methyl-1-octylpiperidinium [MOPip]{sup +} cations. These liquids provide new alternatives to pyridinium and imidazolium ILs. High thermal stability of an ionic liquid increases safety in applications like rechargeable lithium-ion batteries and other electrochemical devices. Thermal properties, ionic conductivities, viscosities, and mutual solubilities with water are reported. In addition, toxicities of selected ionic liquids have been measured using a human cancer cell-line. The ILs studied here are sparingly soluble in water but hygroscopic. We show some structure-property relationships that may help to design green solvents for specific applications. While ionic liquids are claimed to be environmentally-benign solvents, as yet few data have been published to support these claims.

  13. Recyclability of an ionic liquid for biomass pretreatment.

    PubMed

    Weerachanchai, Piyarat; Lee, Jong-Min

    2014-10-01

    This study investigated the possibility of reusing an ionic liquid for the pretreatment of biomass. The effects of lignin and water content in a pretreatment solvent on pretreatment products were examined, along with the recyclability of an ionic liquid for pretreatment. It was discovered that the presence of lignin and water within a pretreatment solvent resulted in a far less effective pretreatment process. 1-Ethyl-3-methylimidazolium acetate/ethanolamine (60/40 vol%) presents more promising properties than EMIM-AC, providing a small decrease in sugar conversion and also a small increase of lignin deposition with an increasing lignin amount in the pretreatment solvent. Deteriorations of the ionic liquid were observed from considerably low sugar conversions and lignin extraction after using the 5th and 7th batch, respectively. Furthermore, the changes of ionic liquid properties and lignin accumulation in ionic liquid were determined by analyzing their thermal decomposition behavior (TGA) and chemical functional groups (FTIR and (1)H NMR). PMID:25063976

  14. Ionic conductivity of imidazole-functionalized liquid crystal mesogens

    NASA Astrophysics Data System (ADS)

    Roddecha, Supacharee; Anthamatten, Mitchell

    2012-02-01

    Imidazole has been investigated as a novel anhydrous proton conducting functional group that could enable higher temperature operation (> 120 ^oC) of polymer electrolyte fuel cells. Its amphoteric behavior can support Grotthuss-like proton transport; however molecular mobility and a high concentration of imidazole groups are needed to achieve high ionic conductivity. Our hypothesis is that liquid crystal ordering, particularly in layered smectic phase, can facilitate formation of 2D proton transport and promote proton conductivity. We have designed and synthesized two imidazole-terminated liquid crystal mesogens, and the ionic conductivities in the liquid crystalline and isotropic states have been measured. Here we report on synthesis and characterization of diacylhydrazine liquid crystals bearing imidazole terminal groups. The proton conductivity of products is compared to pure liquid imidazole and to liquid crystal mesogens without imidazole groups.

  15. Morphology and charge transport in ammonium based polymerized ionic liquids

    NASA Astrophysics Data System (ADS)

    Heres, Maximilian; Minutolo, Joseph; Shamblin, Jacob; Long, Maik; Berdzinski, Stefan; Stremel, Veronika; Sangoro, Joshua

    2015-03-01

    Ionic conduction, structural dynamics and morphology in a series of ammonium based polymerized ionic liquids are investigated using broadband dielectric spectroscopy, temperature-modulated differential scanning calorimetry, and neutron as well as x-ray scattering techniques. The dielectric spectra are dominated on the low frequency regime by electrode polarization while hopping conduction is the underlying mechanism at higher frequencies. At their respective calorimetric glass transition temperatures, a strong correlation between the morphology and ionic conductivity is found. These results are discussed within the recent approaches proposed to explain the decoupling of charge transport from structural dynamics. UT/ORNL Science Alliance.

  16. Insights into the surface composition and enrichment effects of ionic liquids and ionic liquid mixtures.

    PubMed

    Maier, F; Cremer, T; Kolbeck, C; Lovelock, K R J; Paape, N; Schulz, P S; Wasserscheid, P; Steinrück, H-P

    2010-02-28

    A systematic study of ionic liquid surfaces by angle resolved X-ray photoelectron spectroscopy (ARXPS) is presented. By reviewing recent and presenting new results for imidazolium-based ionic liquids (ILs), we discuss the impact of chemical differences on surface composition and on surface enrichment effects. (1) For the hydrophilic ethylene glycol (EG) functionalised ILs [Me(EG)MIm][Tf(2)N], [Et(EG)(2)MIm][Tf(2)N] and [Me(EG)(3)MIm][Tf(2)N], which vary in the number of ethylene glycol units (from 1 to 3), we find that the surface composition of the near-surface region is in excellent agreement with the bulk composition, which is attributed to attractive interactions between the oxygen atoms on the cation to the hydrogen atoms on the imidazolium ring. (2) For [C(n)C(1)Im][Tf(2)N] (where n = 1-16), i.e. ILs with an alkyl chain of increasing length, an enrichment of the aliphatic carbons is observed for longer chains (n > 2), at the expense of the polar cation head groups and the anions in the first molecular layer, both of which are located approximately at the same distance from the outer surface. (3) To study the influence of the anion on the surface enrichment, we investigated ten ILs [C(8)C(1)Im][X] with the same cation, but very different anions [X](-). In all cases, surface enrichment of the cation alkyl chains is found, with the degree of enrichment decreasing with increasing size of the anion, i.e., it is most pronounced for the smallest anions and least pronounced for the largest anions. (4) For the IL mixture [C(2)C(1)Im][Tf(2)N] and [C(12)C(1)Im][Tf(2)N] we find a homogeneous distribution in the outermost surface region with no specific enrichment of the [C(12)C(1)Im](+) cation. PMID:20145858

  17. Dynamics and structure of room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Fayer, Michael D.

    2014-11-01

    Room temperature ionic liquids (RTIL) are intrinsically interesting because they simultaneously have properties that are similar to organic liquids and liquid salts. In addition, RTILs are increasingly being considered for and used in technological applications. RTILs are usually composed of an organic cation and an inorganic anion. The organic cation, such as imidazolium, has alkyl chains of various lengths. The disorder in the liquid produced by the presence of the alkyl groups lowers the temperature for crystallization below room temperature and can also result in supercooling and glass formation rather than crystallization. The presence of the alkyl moieties also results in a segregation of the liquid into ionic and organic regions. In this article, experiments are presented that address the relationship between RTIL dynamics and structure. Time resolved fluorescence anisotropy measurements were employed to study the local environments in the organic and ionic regions of RTILs using a nonpolar chromophore that locates in the organic regions and an ionic chromophore that locates in the ionic regions. In the alkyl regions, the in plane and out of plane orientational friction coefficients change in different manners as the alkyl chains get longer. Both friction coefficients converge toward those of a long chain length hydrocarbon as the RTIL chains increase in length, which demonstrates that for sufficiently long alkyl chains the RTIL organic regions have properties similar to a hydrocarbon. However, putting Li+ in the ionic regions changes the friction coefficients in the alkyl regions, which demonstrates that changes of the ion structural organization influences the organization of the alkyl chains. Optical heterodyne detected optical Kerr effect (OHD-OKE) experiments were used to examine the orientational relaxation dynamics of RTILs over times scales of a hundred femtoseconds to a hundred nanoseconds. Detailed temperature dependent studies in the liquid and supercooled state and analysis using schematic mode coupling theory (MCT) show that RTILs have bulk liquid orientational relaxation dynamics that are indistinguishable in their nature from common nonpolar organic liquids that supercool. This behavior of the RTILs occurs in spite of the segregation into ionic and organic regions. However, when small amounts of water are added to RTILs at room temperature, novel dynamics are observed for the RTILs with long alkyl chains that have not been observed in OHD-OKE experiments on organic liquids. The results are interpreted as water induced structure in the ionic regions that causes the long alkyl chains to organize and 'lock up.' The dynamical measurements indicate that this lock up is involved in the formation of RTIL gels that occur over a narrow range of water concentrations.

  18. Chiral Ionic Liquids in Chromatographic Separation and Spectroscopic Discrimination

    NASA Astrophysics Data System (ADS)

    Li, Min; Bwambok, David K.; Fakayode, Sayo O.; Warner, Isiah M.

    Chiral ionic liquids (CILs) are a subclass of ionic liquids (ILs) in which the cation, anion, or both may be chiral. The chirality can be central, axial, or planar. CILs possess a number of unique advantageous properties which are inherited from ionic liquids including negligible vapor pressure, wide liquidus temperature range, high thermal stability, and high tunability. Due to their dual functionalities as chiral selectors and chiral solvents simultaneously, CILs recently have been widely used both in enantiomeric chromatographic separation and in chiral spectroscopic discrimination. In this chapter, the various applications of CILs in chiral chromatographic separations such as GC, HPLC, CE, and MEKC are reviewed. The applications of CILs in enantiomeric spectroscopic discrimination using techniques such as NMR, fluorescence, and NIR are described. In addition, chiral recognition and separation mechanism using the CILs as chiral selectors or chiral solvents is also discussed.

  19. Methods for separating medical isotopes using ionic liquids

    DOEpatents

    Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

    2014-10-21

    A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

  20. Thermophysical properties of phosphonium-based ionic liquids

    PubMed Central

    Bhattacharjee, Arijit; Lopes-da-Silva, José A.; Freire, Mara G.; Coutinho, João A. P.; Carvalho, Pedro J.

    2015-01-01

    Experimental data for density, viscosity, refractive index and surface tension of four phosphonium-based ionic liquids were measured in the temperature range between (288.15 and 353.15) K and at atmospheric pressure. The ionic liquids considered include tri(isobutyl) methylphosphonium tosylate, [Pi(444)1][Tos], tri(butyl)methylphosphonium methylsulfate, [P4441][CH3SO4], tri(butyl)ethylphosphonium diethylphosphate, [P4442][(C2H5O)2PO2], and tetraoctylphosphonium bromide, [P8888][Br]. Additionally, derivative properties, such as the isobaric thermal expansion coefficient, the surface thermodynamic properties and the critical temperatures for the investigated ionic liquids were also estimated and are presented and discussed. Group contribution methods were evaluated and fitted to the density, viscosity and refractive index experimental data. PMID:26435574

  1. Determination of sulfonamides in butter samples by ionic liquid magnetic bar liquid-phase microextraction high-performance liquid chromatography.

    PubMed

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-01-01

    A novel, simple, and environmentally friendly pretreatment method, ionic liquid magnetic bar liquid-phase microextraction, was developed for the determination of sulfonamides in butter samples by high-performance liquid chromatography. The ionic liquid magnetic bar was prepared by inserting a stainless steel wire into the hollow of a hollow fiber and immobilizing ionic liquid in the micropores of the hollow fiber. In the extraction process, the ionic liquid magnetic bars were used to stir the mixture of sample and extraction solvent and enrich the sulfonamides in the mixture. After extraction, the analyte-adsorbed ionic liquid magnetic bars were readily isolated with a magnet from the extraction system. It is notable that the present method was environmentally friendly since water and only several microliters of ionic liquid were used in the whole extraction process. Several parameters affecting the extraction efficiency were investigated and optimized, including the type of ionic liquid, sample-to-extraction solvent ratio, the number of ionic liquid magnetic bars, extraction temperature, extraction time, salt concentration, stirring speed, pH of the extraction solvent, and desorption conditions. The recoveries were in the range of 73.25-103.85 % and the relative standard deviations were lower than 6.84 %. The experiment results indicated that the present method was effective for the extraction of sulfonamides in high-fat content samples. PMID:25384336

  2. Alkyltrioctylphosphonium chloride ionic liquids: synthesis and physicochemical properties.

    PubMed

    Adamová, Gabriela; Gardas, Ramesh L; Rebelo, Luís Paulo N; Robertson, Allan J; Seddon, Kenneth R

    2011-12-21

    A series of alkyltrioctylphosphonium chloride ionic liquids, prepared from trioctylphosphine, and the respective 1-chloroalkane (C(n)H(2n+1)Cl), where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 or 14, is presented. The cynosure of this work is the manner in which the variable chain length impacts the physical properties, such as melting points/glass transitions, thermal stability, density and viscosity. Experimental density and viscosity data were interpreted using QPSR correlations and group contribution methods. We present the first example of an empirical alternation effect for ionic liquids. PMID:21996935

  3. Tuning the ionic conductivity in protic polymerized ionic liquid homo, random, and block copolymers

    NASA Astrophysics Data System (ADS)

    Evans, Christopher; Segalman, Rachel; UCSB Team

    2015-03-01

    Proton conducting membranes are of interest for a number of energy applications including use in fuel cells and artificial photosynthesis systems. We have synthesized a new class of protic polymerized ionic liquids (PILs) based on imidazolium cations which exhibit high conductivities in the solid state. In contrast to previous imidazolium based PILs, the ionic liquid moiety is attached via a carbon on the imidazole thus leaving the two nitrogens available to act as a proton donor/acceptor. The conductivies of these protic PILs, measured by dielectric spectroscopy, are orders of magnitude higher than the analogous non-protic PILs at a given distance above (Tg). These high conductivities are the result of a strong contribution from proton motion. A series of random and block copolymers containing the polymerized ionic liquid monomer and a non-ionic comonomer were also investigated to determine the role of comonomer on the conductivity of these materials. It was found that methyl acrylate, which has a low glass transition temperature and high dielectric constant, can result in improvements of ionic conductivity. Studies using solid state NMR are underway to understand the role of protons and mobile anions in controlling the overall conductivity of these materials.

  4. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    SciTech Connect

    Dr. R. G. Reddy

    2007-09-01

    The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient (0.40). Nucleation phenomena involved in aluminum deposition on copper in AlCl3-BMIMCl electrolyte was found to be instantaneous followed by diffusion controlled three-dimensional growth of nuclei. Diffusion coefficient (Do) of the electroactive species Al2Cl7¯ ion was in the range from 6.5 to 3.9×10–7 cm2?s–1 at a temperature of 30°C. Relatively little research efforts have been made toward the fundamental understanding and modeling of the species transport and transformation information involved in ionic liquid mixtures, which eventually could lead to quantification of electrochemical properties. Except that experimental work in this aspect usually is time consuming and expensive, certain characteristics of ionic liquids also made barriers for such analyses. Low vapor pressure and high viscosity make them not suitable for atomic absorption spectroscopic measurement. In addition, aluminum electrodeposition in ionic liquid electrolytes are considered to be governed by multi-component mass, heat and charge transport in laminar and turbulent flows that are often multi-phase due to the gas evolution at the electrodes. The kinetics of the electrochemical reactions is in general complex. Furthermore, the mass transfer boundary layer is about one order of magnitude smaller than the thermal and hydrodynamic boundary layer (Re=10,000). Other phenomena that frequently occur are side reactions and temperature or concentration driven natural convection. As a result of this complexity, quantitative knowledge of the local parameters (current densities, ion concentrations, electrical potential, temperature, etc.) is very difficult to obtain. This situation is a serious obstacle for improving the quality of products, efficiency of manufacturing and energy consumption. The gap between laboratory/batch scale processing with global process control and nanoscale deposit surface and materials specifications needs to be bridged. A breakthrough can only be realized if on each scale the occurring phenomena are understood and quantified. Multiscale numerical modeling nevertheless can help t

  5. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    SciTech Connect

    Dr. Ramana G. Reddy

    2009-01-31

    EXECUTIVE SUMMARY The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient  = 0.40. Nucleation phenomena involved in aluminum deposition on copper in AlCl3-BMIMCl electrolyte was found to be instantaneous followed by diffusion controlled three-dimensional growth of nuclei. Diffusion coefficient (Do) of the electroactive species Al2Cl7¯ ion was in the range from 6.5 to 3.9Ã?10â??7 cm2â??sâ??1 at a temperature of 30°C. Relatively little research efforts have been made toward the fundamental understanding and modeling of the species transport and transformation information involved in ionic liquid mixtures, which eventually could lead to quantification of electrochemical properties. Except that experimental work in this aspect usually is time consuming and expensive, certain characteristics of ionic liquids also made barriers for such analyses. Low vapor pressure and high viscosity make them not suitable for atomic absorption spectroscopic measurement. In addition, aluminum electrodeposition in ionic liquid electrolytes are considered to be governed by multi-component mass, heat and charge transport in laminar and turbulent flows that are often multi-phase due to the gas evolution at the electrodes. The kinetics of the electrochemical reactions is in general complex. Furthermore, the mass transfer boundary layer is about one order of magnitude smaller than the thermal and hydrodynamic boundary layer (ReLâ??10,000). Other phenomena that frequently occur are side reactions and temperature or concentration driven natural convection. As a result of this complexity, quantitative knowledge of the local parameters (current densities, ion concentrations, electrical potential, temperature, etc.) is very difficult to obtain. This situation is a serious obstacle for improving the quality of products, efficiency of manufacturing and energy consumption. The gap between laboratory/batch scale processing with global process control and nanoscale deposit surface and materials specifications needs to be bridged. A breakthrough can only be realized if on each scale the occurring phenom

  6. Energy Efficient Electrochromic Windows Incorporating Ionic Liquids

    SciTech Connect

    Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

    2008-11-30

    One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to recover to a bleached state upon exposure to heat and solar radiation while being cycled over time from the bleached to the dark state. Most likely the polymers are undergoing degradation reactions which are accelerated by heat and solar exposure while in either the reduced or oxidized states and the performance of the polymers is greatly reduced over time. For this technology to succeed in an exterior window application, there needs to be more work done to understand the degradation of the polymers under real-life application conditions such as elevated temperatures and solar exposure so that recommendations for improvements in to the overall system can be made. This will be the key to utilizing this type of technology in any future real-life applications.

  7. Dynamics in Organic Ionic Liquids in Distinct Regions Using Charged and Uncharged Orientational Relaxation Probes

    E-print Network

    Fayer, Michael D.

    Dynamics in Organic Ionic Liquids in Distinct Regions Using Charged and Uncharged Orientational probe molecules display markedly different rotational dynamics when analyzed using Stokes increasingly subslip as the length of ionic liquid alkyl chain is increased. The dynamics approach those

  8. NMR study of ion dynamics and charge storage in ionic liquid supercapacitors

    E-print Network

    Forse, Alexander C.; Griffin, John M.; Merlet, Celine; Bayley, Paul M.; Wang, Hao; Simon, Patrice; Grey, Clare P.

    2015-05-14

    and dynamics of ionic liquids confined in porous carbon electrodes. The measurements reveal that ionic liquids spontaneously wet the carbon micropores in the absence of any applied potential and that on application of a potential supercapacitor charging takes...

  9. Characterization of an iodine-based ionic liquid ion source and studies on ion fragmentation

    E-print Network

    Fedkiw, Timothy Peter

    2010-01-01

    Electrosprays are a well studied source of charged droplets and ions. A specific subclass is the ionic liquid ion source (ILIS), which produce ion beams from the electrostatically stressed meniscus of ionic liquids. ILIS ...

  10. Fission-Product Separation Based on Room-Temperature Ionic Liquids

    SciTech Connect

    Luo, Huimin; Hussey, Charles L.

    2005-09-30

    The objectives of this project are (a) to synthesize new ionic liquids tailored for the extractive separation of Cs + and Sr 2+; (b) to select optimum macrocyclic extractants through studies of complexation of fission products with macrocyclic extractants and transport in new extraction systems based on ionic liquids; (c) to develop efficient processes to recycle ionic liquids and crown ethers; and (d) to investigate chemical stabilities of ionic liquids under strong acid, strong base, and high-level-radiation conditions.

  11. Fission-Product Separation Based on Room-Temperature Ionic Liquids

    SciTech Connect

    Luo, Huimin

    2006-11-15

    The objectives of this project are (a) to synthesize new ionic liquids tailored for the extractive separation of Cs + and Sr 2+; (b) to select optimum macrocyclic extractants through studies of complexation of fission products with macrocyclic extractants and transport in new extraction systems based on ionic liquids; (c) to develop efficient processes to recycle ionic liquids and crown ethers; and (d) to investigate chemical stabilities of ionic liquids under strong acid, strong base, and high-level-radiation conditions.

  12. Fabrication of fiber supported ionic liquids and methods of use

    DOEpatents

    Luebke, David R; Wickramanayake, Shan

    2013-02-26

    One or more embodiments relates to the production of a fabricated fiber having an asymmetric polymer network and having an immobilized liquid such as an ionic liquid within the pores of the polymer network. The process produces the fabricated fiber in a dry-wet spinning process using a homogenous dope solution, providing significant advantage over current fabrication methods for liquid-supporting polymers. The fabricated fibers may be effectively utilized for the separation of a chemical species from a mixture based on the selection of the polymer, the liquid, and the solvent utilized in the dope.

  13. EVALUATING THE GREENNESS OF IONIC LIQUIDS VIA LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    Ionic Liquids have been suggested as "greener" replacements to traditional solvents. However, the environmental impacts of the life cycle phases have not been studied. Such a "cradle to gate" Life Cycle Assessment (LCA) for comparing the environmental impact of various solvents...

  14. Lunar Oxygen Production and Metals Extraction Using Ionic Liquids

    NASA Technical Reports Server (NTRS)

    Marone, Matthew; Paley, Mark Steven; Donovan, David N.; Karr, Laurel J.

    2009-01-01

    Initial results indicate that ionic liquids are promising media for the extraction of oxygen from lunar regolith. IL acid systems can solubilize regolith and produce water with high efficiency. IL electrolytes are effective for water electrolysis, and the spent IL acid media are capable of regeneration.

  15. High performance batteries with carbon nanomaterials and ionic liquids

    DOEpatents

    Lu, Wen (Littleton, CO)

    2012-08-07

    The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

  16. Ionic liquid-facilitated preparation of lignocellulosic composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulosic composites (LCs) were prepared by partially dissolving cotton along with steam exploded Aspen wood and burlap fabric reinforcements utilizing an ionic liquid (IL) solvent. Two methods of preparation were employed. In the first method, a controlled amount of IL was added to preassembl...

  17. SOLVENT-FREE SONOCHEMICAL PREPARATION OF IONIC LIQUIDS

    EPA Science Inventory

    An ultrasound-assisted preparation of a series of ambient temperature ionic liquids, 1-alkyl-3-methylimidazolium (AMIM) halides, that proceeds via efficient reaction of 1-methyl imidazole with alkyl halides/terminal dihalides under solvent-free conditions, is described.

  18. EXPEDITIOUS SOLVENT-FREE PREPARATION OF IONIC LIQUIDS USING MICROWAVES

    EPA Science Inventory

    Ambient temperature ionic liquids comprising 1,3-dialkylimidazolium cations have shown great promise as alternative solvents in view of their negligible vapor pressure, ease of handling and potential for recycling. An efficient solventless protocol for the preparation of a wide v...

  19. Sulfonium-based Ionic Liquids Incorporating the Allyl Functionality

    PubMed Central

    Zhao, Dongbin; Fei, Zhaofu; Ang, Wee Han; Dyson, Paul J.

    2007-01-01

    A series of sulfonium halides bearing allyl groups have been prepared and characterized. Anion metathesis with Li[Tf2N] and Ag[N(CN)2] resulted in sulfonium-based ionic liquids which exhibit low viscosities at room temperature. The solid state structure of one of the halide salts was determined by single crystal X-ray diffraction.

  20. High performance ultracapacitors with carbon nanomaterials and ionic liquids

    DOEpatents

    Lu, Wen; Henry, Kent Douglas

    2012-10-09

    The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

  1. Room-Temperature Ionic Liquids for Electrochemical Capacitors

    NASA Technical Reports Server (NTRS)

    Fireman, Heather; Yowell, Leonard; Moloney, Padraig G.; Arepalli, Sivaram; Nikolaev, P.; Huffman, C.; Ready, Jud; Higgins, C.D.; Turano, S. P.; Kohl, P.A.; Kim, K.

    2009-01-01

    A document discusses room-temperature ionic liquids (RTILs) used as electrolytes in carbon-nanotube-based, electrochemical, double-layer capacitors. Unlike the previous electrolyte (EtNB4 in acetonitrile), the RTIL used here does not produce cyanide upon thermal decomposition and does not have a moisture sensitivity.

  2. IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE

    EPA Science Inventory

    A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...

  3. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    DOEpatents

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  4. Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids.

    PubMed

    Potdar, Mahesh K; Kelso, Geoffrey F; Schwarz, Lachlan; Zhang, Chunfang; Hearn, Milton T W

    2015-01-01

    Over the past decade, a variety of ionic liquids have emerged as greener solvents for use in the chemical manufacturing industries. Their unique properties have attracted the interest of chemists worldwide to employ them as replacement for conventional solvents in a diverse range of chemical transformations including biotransformations. Biocatalysts are often regarded as green catalysts compared to conventional chemical catalysts in organic synthesis owing to their properties of low toxicity, biodegradability, excellent selectivity and good catalytic performance under mild reaction conditions. Similarly, a selected number of specific ionic liquids can be considered as greener solvents superior to organic solvents owing to their negligible vapor pressure, low flammability, low toxicity and ability to dissolve a wide range of organic and biological substances, including proteins. A combination of biocatalysts and ionic liquids thus appears to be a logical and promising opportunity for industrial use as an alternative to conventional organic chemistry processes employing organic solvents. This article provides an overview of recent developments in this field with special emphasis on the application of more sustainable enzyme-catalyzed reactions and separation processes employing ionic liquids, driven by advances in fundamental knowledge, process optimization and industrial deployment. PMID:26389873

  5. Solvent extraction of rare-earth ions based on functionalized ionic liquids

    SciTech Connect

    Sun, Xiaoqi; Dai, Sheng; Luo, Huimin

    2012-01-01

    We herein report the achievement of enhanced extractabilities and selectivities for separation of rare earth elements based on functionalized ionic liquids. This work highlights the potential of developing a comprehensive ionic liquid-based extraction strategy for rare earth elements using ionic liquids as both extractant and diluent.

  6. A NEW CLASS OF SOLVENTS FOR TRU DISSOLUTION AND SEPARATION: IONIC LIQUIDS

    EPA Science Inventory

    This report focuses on the progress of a study of a New Class of Solvents for TRU Dissolution and Separation: Ionic Liquids. Key research issues are: (1) examining Cs, Sr, Tc, and TRU partitioning in Ionic Liquid/aqueous systems; (2) developing new Ionic Liquids for TRU separat...

  7. Protein Unfolding, and the "Tuning In" of Reversible Intermediate States, in Protic Ionic Liquid Media

    E-print Network

    Angell, C. Austen

    Protein Unfolding, and the "Tuning In" of Reversible Intermediate States, in Protic Ionic Liquid February 2008 Protic ionic liquids (PILs) are currently being shown to be as interesting and valuable mole fraction of a protic ionic liquid (PIL).7 Thus, where previous studies have been obliged to report

  8. Hydrogen Redox in Protic Ionic Liquids and a Direct Measurement of Proton Thermodynamics

    E-print Network

    Angell, C. Austen

    Hydrogen Redox in Protic Ionic Liquids and a Direct Measurement of Proton Thermodynamics J. A, protic ionic liquids (PILs), are formed by proton transfer from a Brønsted acid to a Brønsted base Alternatively, room temperature protic ionic liquids (PILs) are being considered as candidates for fuel cell

  9. Thermoelectric Potential of Polymer-Scaffolded Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Datta, R. S.; Said, S. M.; Sahamir, S. R.; Karim, M. R.; Sabri, M. F. M.; Nakajo, T.; Kubouchi, M.; Hayashi, K.; Miyazaki, Y.

    2014-06-01

    Organic thin films have been viewed as potential thermoelectric (TE) materials, given their ease of fabrication, flexibility, cost effectiveness, and low thermal conductivity. However, their intrinsically low electrical conductivity is a main drawback which results in a relatively lower TE figure of merit for polymer-based TE materials than for inorganic materials. In this paper, a technique to enhance the ion transport properties of polymers through the introduction of ionic liquids is presented. The polymer is in the form of a nanofiber scaffold produced using the electrospinning technique. These fibers were then soaked in different ionic liquids based on substituted imidazolium such as 1-ethyl-3-methylimidazolium chloride or 1-butyl-3-methylimidazolium bromide. This method was applied to electrospun polyacrylonitrile and a mixture of polyvinyl alcohol and chitosan polymers. The ion transport properties of the membranes have been observed to increase with increasing concentration of ionic liquid, with maximum electrical conductivity of 1.20 × 10-1 S/cm measured at room temperature. Interestingly, the maximum electrical conductivity value surpassed the value of pure ionic liquids. These results indicate that it is possible to significantly improve the electrical conductivity of a polymer membrane through a simple and cost-effective method. This may in turn boost the TE figures of merit of polymer materials, which are well known to be considerably lower than those of inorganic materials. Results in terms of the Seebeck coefficient of the membranes are also presented in this paper to provide an overall representation of the TE potential of the polymer-scaffolded ionic liquid membranes.

  10. Static and dynamic wetting behaviour of ionic liquids.

    PubMed

    Delcheva, Iliana; Ralston, John; Beattie, David A; Krasowska, Marta

    2015-08-01

    Ionic liquids (ILs) are a unique family of molecular liquids ('molten salts') that consist of a combination of bulky organic cations coupled to inorganic or organic anions. The net result of steric hindrance and strong hydrogen bonding between components results in a material that is liquid at room temperature. One can alter the properties of ionic liquids through chemical modification of anion and cation, thus tailoring the IL for a given application. One such property that can be controlled or selected is the wettability of an IL on a particular solid substrate. However, the study of wetting of ionic liquids is complicated by the care required for accurate and reproducible measurement, due to both the susceptibility of the IL properties to water content, as well as to the sensitivity of wettability measurements to the state of the solid surface. This review deals with wetting studies of ILs to date, including both static and dynamic wetting, as well as issues concerning line tension and the formation of precursor and wetting films. PMID:25103860

  11. Importance of glassy fragility for energy applications of ionic liquids

    E-print Network

    P. Sippel; P. Lunkenheimer; S. Krohns; E. Thoms; A. Loidl

    2015-02-24

    Ionic liquids (ILs) are salts that are liquid close to room temperature. Their possible applications are numerous, e.g., as solvents for green chemistry in various electrochemical devices, and even for such "exotic" purposes as spinning-liquid mirrors for lunar telescopes. Here we concentrate on their use for new advancements in energy-storage and -conversion devices: Batteries, supercapacitors or fuel cells using ILs as electrolytes could be important building blocks for the sustainable energy supply of tomorrow. Interestingly, ILs show glassy freezing and the universal, but until now only poorly understood dynamic properties of glassy matter, dominate many of their physical properties. We show that the conductivity of ILs, an essential figure of merit for any electrochemical application, depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility.

  12. Force microscopy of layering and friction in an ionic liquid.

    PubMed

    Hoth, Judith; Hausen, Florian; Müser, Martin H; Bennewitz, Roland

    2014-07-16

    The mechanical properties of the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4][FAP]) in confinement between a SiOx and a Au(1 1 1) surface are investigated by means of atomic force microscopy (AFM) under electrochemical control. Up to 12 layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular shape of the force versus distance curve is explained by a model for the interaction between tip, gold surface and ionic liquid, which assumes an exponentially decaying oscillatory force originating from bulk liquid density correlations. Jumps in the tip-sample distance upon approach correspond to jumps of the compliant force sensor between branches of the oscillatory force curve. Frictional force between the laterally moving tip and the surface is detected only after partial penetration of the last double layer between tip and surface. PMID:24919549

  13. Effects of Extrinsic and Intrinsic Proton Activity on The Mechanism of Oxygen Reduction in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Zeller, Robert August

    Mechanisms for oxygen reduction are proposed for three distinct cases covering two ionic liquids of fundamentally different archetypes and almost thirty orders of magnitude of proton activity. Proton activity is treated both extrinsically by varying the concentration and intrinsically by selecting proton donors with a wide range of aqueous pKa values. The mechanism of oxygen reduction in ionic liquids is introduced by way of the protic ionic liquid (pIL) triethylammonium triflate (TEATf) which shares some similarities with aqueous acid solutions. Oxygen reduction in TEATf begins as the one electron rate limited step to form superoxide, O2 *-, which is then rapidly protonated by the pIL cation forming the perhydroxyl radical, HO2*. The perhydroxyl radical is further reduced to peroxidate (HO2-) and hydrogen peroxide in proportions in accordance with their pKa. The reaction does not proceed beyond this point due to the adsorption of the conjugate base triethylammine interfering with the disproportionation of hydrogen peroxide. This work demonstrates that this mechanism is consistent across Pt, Au, Pd, and Ag electrodes. Two related sets of experiments were performed in the inherently aprotic ionic liquid 1-butyl-2,3-dimethylimidazolium triflate (C4dMImTf). The first involved the titration of acidic species of varying aqueous pKa into the IL while monitoring the extent of oxygen reduction as a function of pKa and potential on Pt and glassy carbon (GC) electrodes. These experiments confirmed the greater propensity of Pt to reduce oxygen by its immediate and abrupt transition from one electron reduction to four electron reduction, while oxygen reduction on GC gradually approaches four electron reduction as the potentials were driven more cathodic. The potential at which oxygen reduction initiates shows general agreement with the Nernst equation and the acid's tabulated aqueous pKa value, however at the extremely acidic end, a small deviation is observed. The second set of experiments in C4dMImTf solicited water as the proton donor for oxygen reduction in an approximation of the aqueous alkaline case. The water content was varied between extremely dry (<0.1 mol% H2O) and saturated (approximately 15.8 mol% H2O). As the water content increased so too did the extent of oxygen reduction eventually approach two electrons on both Pt and GC. However, additional water led to a linear increase in the Tafel slope under enhanced mass transport conditions up to the point of 10 mol% water. This inhibition of oxygen adsorption is the result of the interaction between superoxide and water and more specifically is proposed to be associated with decomposition of theC4dMIm + cation by hydroxide at the elevated temperatures required for the experiment. Oxygen reduction on both Pt and GC follows Nernstian behavior as the water content is increased. Separate mechanisms for oxygen reduction on Pt and GC are proposed based on the nature of the Nernstian response in these systems.

  14. Recent progress on dielectric properties of protic ionic liquids

    NASA Astrophysics Data System (ADS)

    Wojnarowska, Zaneta; Paluch, Marian

    2015-02-01

    Protic ionic liquids (PILs) are key materials for a wide range of emerging technologies. In particular, these systems have long been envisioned as promising candidates for fuel cells. Therefore, in recent years special attention has been devoted to thorough studies of these compounds. Amongst others, dielectric properties of PILs at ambient and elevated pressure have become the subject of intense research. The reason for this lies in the role of broadband dielectric spectroscopy in recognizing the conductivity mechanism in protic ionic systems. In this paper, we summarize the dielectric results of various PILs reflecting recent advances in this field.

  15. Recent progress on dielectric properties of protic ionic liquids.

    PubMed

    Wojnarowska, Zaneta; Paluch, Marian

    2015-02-25

    Protic ionic liquids (PILs) are key materials for a wide range of emerging technologies. In particular, these systems have long been envisioned as promising candidates for fuel cells. Therefore, in recent years special attention has been devoted to thorough studies of these compounds. Amongst others, dielectric properties of PILs at ambient and elevated pressure have become the subject of intense research. The reason for this lies in the role of broadband dielectric spectroscopy in recognizing the conductivity mechanism in protic ionic systems. In this paper, we summarize the dielectric results of various PILs reflecting recent advances in this field. PMID:25634823

  16. Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids

    NASA Astrophysics Data System (ADS)

    Iacob, Ciprian; Sangoro, Joshua; Runt, James; Kremer, Friedrich

    2014-03-01

    Charge transport and structural dynamics in low molecular weight and polymerized 1-vinyl-3-pentylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids (ILs) are investigated by a combination of broadband dielectric spectroscopy, dynamic mechanical spectroscopy and differential scanning calorimetry. While the dc conductivity and fluidity exhibit practically identical temperature dependence for the non-polymerized IL, a significant decoupling of ionic conduction from structural dynamics is observed for the polymerized IL. In addition, the dc conductivity of the polymerized IL is found exceed that of its molecular counterpart by four orders of magnitude at their respective calorimetric glass transition temperatures. This is attributed to the unusually high mobility of the anions even at lower temperatures when the structural dynamics is significantly slowed down. A simple physical explanation of the possible origin of the remarkable decoupling of ionic conductivity from structural dynamics is proposed.

  17. Can Ionic Liquids Be Used As Templating Agents For Controlled Design of Uranium-Containing Nanomaterials?

    SciTech Connect

    Visser, A.; Bridges, N.; Tosten, M.

    2013-04-09

    Nanostructured uranium oxides have been prepared in ionic liquids as templating agents. Using the ionic liquids as reaction media for inorganic nanomaterials takes advantage of the pre-organized structure of the ionic liquids which in turn controls the morphology of the inorganic nanomaterials. Variation of ionic liquid cation structure was investigated to determine the impact on the uranium oxide morphologies. For two ionic liquid cations, increasing the alkyl chain length increases the aspect ratio of the resulting nanostructured oxides. Understanding the resulting metal oxide morphologies could enhance fuel stability and design.

  18. Separation of cobalt and nickel using a thermomorphic ionic-liquid-based aqueous biphasic system.

    PubMed

    Onghena, Bieke; Opsomer, Tomas; Binnemans, Koen

    2015-11-14

    A [P44414][Cl]-NaCl-H2O ionic liquid-based aqueous biphasic system shows promising results for the separation of cobalt(ii) and nickel(ii) by homogeneous liquid-liquid extraction. The extracting phase consists of a hydrophilic ionic liquid that is salted-out by sodium chloride, indicating that there is no need for using hydrophobic ionic liquids. PMID:26377483

  19. SPECTROSCOPIC STUDIES OF STRUCTURE, DYNAMICS AND REACTIVITY IN IONIC LIQUIDS.

    SciTech Connect

    WISHART,J.F.

    2007-11-30

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Picosecond pulse radiolysis studies at BNL's Laser-Electron Accelerator Facility (LEAF) [1] are used to identify reactive species in ionic liquids and measure their solvation and reaction rates. IL solvation and rotational dynamics are measured by TCSPC in the laboratory of E. W. Castner at Rutgers Univ. Investigations of radical species in irradiated ILs are carried out at ANL by I. Shkrob and S. Chemerisov using EPR spectroscopy.

  20. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode. Successful extraction of metal from metal oxide dissolved in Urea/ChCl (2:1) was accomplished. The current efficiencies were relatively high in both the metal deposition processes with current efficiency greater than 86% for lead and 95% for zinc. This technology will advance the metal oxide reduction process by increasing the process efficiency and also eliminate the production of CO2 which makes this an environmentally benign technology for metal extraction.

  1. Polymer--Ionic liquid Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Ketabi, Sanaz

    Polymer electrolyte, comprised of ionic conductors, polymer matrix, and additives, is one of the key components that control the performance of solid flexible electrochemical capacitors (ECs). Ionic liquids (ILs) are highly promising ionic conductors for next generation polymer electrolytes due to their excellent electrochemical and thermal stability. Fluorinated ILs are the most commonly applied in polymer-IL electrolytes. Although possessing high conductivity, these ILs have low environmental favorability. The aim of this work was to develop environmentally benign polymer-ILs for both electrochemical double layer capacitors (EDLCs) and pseudocapacitors, and to provide insights into the influence of constituent materials on the ion conduction mechanism and the structural stability of the polymer-IL electrolytes. Solid polymer electrolytes composed of poly(ethylene oxide) (PEO) and 1-ethyl-3-methylimidazolium hydrogen sulfate (EMIHSO4) were investigated for ECs. The material system was optimized to achieve the two criteria for high performance polymer-ILs: high ionic conductivity and highly amorphous structure. Thermal and structural analyses revealed that EMIHSO4 acted as an ionic conductor and a plasticizer that substantially decreased the crystallinity of PEO. Two types of inorganic nanofillers were incorporated into these polymer electrolytes. The effects of SiO2 and TiO2 nanofillers on ionic conductivity, crystallinity, and dielectric properties of PEO-EMIHSO 4 were studied over a temperature range from -10 °C and 80 °C. Using an electrochemical capacitor model, impedance (complex capacitance) and dielectric analyses were performed to understand the ionic conduction process with and without fillers in both semi crystalline and amorphous states of the polymer electrolytes. Despite their different nanostructures, both SiO2 and TiO2 promoted an amorphous structure in PEO-EMIHSO 4 and increased the ionic conductivity 2-fold. While in the amorphous state, the dielectric constant characteristic of the fillers contributed to the increased conductivity and cell capacitance. Leveraging the fillers, the ionic conductivity of the environmentally friendly polymer-ILs approached the level of the polymer-fluorinated IL at room temperature, and exceeded the latter at high temperature. Another approach to improve the performance of polymer electrolytes was undertaken through the development of protic ILs (PILs) and polymer-PIL electrolytes for pseudocapacitors. Binary eutectic systems of PILs were investigated, and the proton conduction of the eutectic systems was characterized in both liquid and polymer states. Devices enabled by PEO-EMIHSO4 and PEO-binary PILs demonstrated a comparable energy density to that with polymer-fluorinated ILs.

  2. Separation of fission products based on ionic liquids: Task-specific ionic liquids containing an aza-crown ether fragment

    SciTech Connect

    Luo, Huimin; Dai, Sheng; Bonnesen, Peter V; Buchanan III, A C

    2005-01-01

    A new class of task-specific ionic liquids (TSILs) based on the covalent attachment of imidazolium cations to a monoaza-crown ether fragment has been synthesized and characterized. The efficacy of these TSILs for the biphasic extraction of Cs(+) and Sr(2+) from aqueous solutions has been evaluated. The extraction properties of these TSILs can be influenced by the structures of the covalently attached imidazolium cations, which highlight the possibilities to enhance or tune the selectivities of crown ethers toward target ionic species through the covalent coupling with the imidazolium cations. (c) 2005 Elsevier B.V. All rights reserved.

  3. Direct Observation of Ion Distributions near Electrodes in Ionic Polymer Actuators Containing Ionic Liquids

    PubMed Central

    Liu, Yang; Lu, Caiyan; Twigg, Stephen; Ghaffari, Mehdi; Lin, Junhong; Winograd, Nicholas; Zhang, Q. M.

    2013-01-01

    The recent boom of energy storage and conversion devices, exploiting ionic liquids (ILs) to enhance the performance, requires an in-depth understanding of this new class of electrolytes in device operation conditions. One central question critical to device performance is how the mobile ions accumulate near charged electrodes. Here, we present the excess ion depth profiles of ILs in ionomer membrane actuators (Aquivion/1-butyl-2,3-dimethylimidazolium chloride (BMMI-Cl), 27??m thick), characterized directly by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) at liquid nitrogen temperature. Experimental results reveal that for the IL studied, cations and anions are accumulated at both electrodes. The large difference in the total volume occupied by the excess ions between the two electrodes cause the observed large bending actuation of the actuator. Hence we demonstrate that ToF-SIMS experiment provides great insights on the physics nature of ionic devices. PMID:23512124

  4. Using Caenorhabditis elegans to probe toxicity of 1-alkyl-3-methylimidazolium chloride based ionic liquids

    E-print Network

    Caldwell, Guy

    Using Caenorhabditis elegans to probe toxicity of 1-alkyl-3-methylimidazolium chloride based ionic toxicological effects of 1-alkyl-3-methyli- midazolium chloride ionic liquids. Ionic liquids are quickly gaining to a range of concentrations of 1-butyl-3-methylimidazolium chloride (C4mimCl), 1-methyl-3-octylimidazolium

  5. Carbon films produced from ionic liquid carbon precursors

    DOEpatents

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  6. Ionic liquids for separation of olefin-paraffin mixtures

    DOEpatents

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2013-09-17

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  7. Ionic liquids for separation of olefin-paraffin mixtures

    DOEpatents

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2014-07-15

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  8. IONIC LIQUIDS: RADIATION CHEMISTRY, SOLVATION DYNAMICS AND REACTIVITY PATTERNS.

    SciTech Connect

    WISHART,J.F.

    2007-10-01

    energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Methods. Picosecond pulse radiolysis studies at BNL's Laser-Electron Accelerator Facility (LEAF) are used to identify reactive species in ionic liquids and measure their solvation and reaction rates. We and our collaborators (R. Engel (Queens College, CUNY) and S. Lall-Ramnarine, (Queensborough CC, CUNY)) develop and characterize new ionic liquids specifically designed for our radiolysis and solvation dynamics studies. IL solvation and rotational dynamics are measured by TCSPC and fluorescence upconversion measurements in the laboratory of E. W. Castner at Rutgers Univ. Investigations of radical species in irradiated ILs are carried out at ANL by I. Shkrob and S. Chemerisov using EPR spectroscopy. Diffusion rates are obtained by PGSE NMR in S. Greenbaum's lab at Hunter College, CUNY and S. Chung's lab at William Patterson U. Professor Mark Kobrak of CUNY Brooklyn College performs molecular dynamics simulations of solvation processes. A collaboration with M. Dietz and coworkers at ANL is centered around the properties and radiolytic behavior of ionic liquids for nuclear separations. Collaborations with C. Reed (UC Riverside), D. Gabel (U. Bremen) and J. Davis (U. South Alabama) are aimed at characterizing the radiolytic and other properties of borated ionic liquids, which could be used to make fissile material separations processes inherently safe from criticality accidents.

  9. Keggin-type polyoxometalate-based ionic liquid gels.

    PubMed

    Huang, Tianpei; Tian, Naiqin; Wu, Qingyin; Yan, Wenfu

    2015-06-14

    A series of reversible phase transformation ammonium- and phosphonium-based polyoxometalate ionic liquid (POM-IL) gels were synthesized and studied with a focus on the correlation between their physicochemical properties and their chemical structure. The products were successfully characterized by IR, UV, XRD and TG-DTA, and their ionic conductivities were measured. The Keggin-type heteropolyanion clusters decorated with long alkyl chains demonstrated a tendency to exhibit a gel state at room temperature, while all the gels transformed into liquids after heating and then recovered after cooling. With a decrease in the alkyl chain length, a significant improvement in the thermal stability and conductivity of the ammonium-based POM-IL gels can be achieved. Moreover, compared with the corresponding ammonium compound, phosphonium-based POM-IL gel was found to be more stable at high temperature and exhibited better conductivity. PMID:25947074

  10. Hopping conduction via ionic liquid induced silicon surface states

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Reich, K. V.; Sammon, M.; Shklovskii, B. I.; Goldman, A. M.

    2015-08-01

    In order to clarify the physics of the gating of solids by ionic liquids (ILs) we have gated lightly doped p -Si, which is so well studied that it can be called the "hydrogen atom of solid state physics" and can be used as a test bed for ionic liquids. We explore the case where the concentration of induced holes at the Si surface is below 1012cm-2 , hundreds of times smaller than record values. We find that in this case an excess negative ion binds a hole on the interface between the IL and Si becoming a surface acceptor. We study the surface conductance of holes hopping between such nearest neighbor acceptors. Analyzing the acceptor concentration dependence of this conductivity, we find that the localization length of a hole is in reasonable agreement with our direct variational calculation of its binding energy. The observed hopping conductivity resembles that of well studied Na+ implanted Si MOSFETs.

  11. Extraordinarily Efficient Conduction in a Redox-Active Ionic Liquid

    E-print Network

    Verner K. Thorsmølle; Guido Rothenberger; Daniel Topgaard; Jan C. Brauer; Dai-Bin Kuang; Shaik M. Zakeeruddin; Björn Lindman; Michael Grätzel; Jacques-E. Moser

    2010-11-09

    Iodine added to iodide-based ionic liquids leads to extraordinarily efficient charge transport, vastly exceeding that expected for such viscous systems. Using terahertz time-domain spectroscopy, in conjunction with dc conductivity, diffusivity and viscosity measurements we unravel the conductivity pathways in 1-methyl-3-propylimidazolium iodide melts. This study presents evidence of the Grotthuss mechanism as a significant contributor to the conductivity, and provides new insights into ion pairing processes as well as the formation of polyiodides. The terahertz and transport results are reunited in a model providing a quantitative description of the conduction by physical diffusion and the Grotthuss bond-exchange process. These novel results are important for the fundamental understanding of conduction in molten salts and for applications where ionic liquids are used as charge-transporting media such as in batteries and dye-sensitized solar cells.

  12. Sparingly soluble pesticide dissolved in ionic liquid aqueous.

    PubMed

    Fan, Tengfei; Wu, Xuemin; Peng, Qingrong

    2014-10-01

    Ionic liquids may be considered as "environment-friendly solvents" for sparingly soluble pesticides. In this study, a series of aqueous ionic liquids (ILs) with different cations and different anions was used as environment-friendly alternative to harmful organic solvents sparingly dissolved in soluble pesticides (metolachlor, acetochlor, clethodim, thiamethoxam, and prochloraz). The aggregation behavior of aqueous ILs was investigated through surface tension measurement. Minimum area per IL molecule (Amin) values from the surface tension measurement showed that alkyl chain length and the halide anions strongly affect the aggregation behavior of ILs and the solubilization of pesticides. The solubility of metolachlor, acetochlor, clethodim, thiamethoxam, nitenpyram, and prochloraz in aqueous ILs increased. More importantly, the solubility of prochloraz in [C10mim][I] became 5771-fold higher than that in pure water. The substantially enhanced solubility of the above pesticides proved that aqueous ILs are promising environment-friendly solvents for pesticides that are commercially processed in emulsifiable concentrate (EC) formulation. PMID:25222470

  13. Ionic liquid-induced synthesis of selenium nanoparticles

    SciTech Connect

    Langi, Bhushan; Shah, Chetan; Singh, Krishankant; Chaskar, Atul; Kumar, Manmohan; Bajaj, Parma N.

    2010-06-15

    A simple wet chemical method has been used to synthesize selenium nanoparticles by the reaction of ionic liquid with sodium selenosulphate, a selenium precursor, in the presence of polyvinyl alcohol stabilizer, in aqueous medium. The method is capable of producing spherical selenium nanoparticles in the size range of 76-150 nm under ambient conditions. This is a first report on the production of nano-selenium assisted by an ionic liquid. The synthesized nanoparticles can be separated easily from the aqueous sol by a high-speed centrifuge machine, and can be re-dispersed in an aqueous medium. The synthesized selenium nanoparticles have been characterized by X-ray diffraction, energy dispersive X-ray analysis, differential scanning calorimetry and transmission electron microscopy techniques.

  14. Distinctive Nanoscale Organization of Dicationic versus Monocationic Ionic Liquids

    SciTech Connect

    Li, Song; Feng, Guang; Banuelos, Jose Leo; Rother, Gernot; Fulvio, Pasquale F; Dai, Sheng; Cummings, Peter T

    2013-01-01

    The distinctive structural organization of dicationic ionic liquids (DILs) with varying alkyl linkage chain lengths is systematically investigated using classical molecular dynamics (MD) simulations. In comparison with their counterparts, monocationic ionic liquids (MILs) with free alkyl chain, the DILs with short linkage chains exhibit almost identical structural features regardless of anion types, whereas the long-chain DILs display a relatively insignificant prepeak and low heterogeneity order parameter (HOP), which is accompanied by the less evident structural heterogeneity. Moreover, the predominant role of anion type in the structure of DILs was verified, similar to what is observed in MILs. Finally, the different nanoscale organizations in DILs and MILs are rationalized by the relatively unfavorable straight and folded chain models proposed for the nanoaggregates in DILs and the favorable micelle-like arrangement for those in MILs.

  15. Pressure-responsive mesoscopic structures in room temperature ionic liquids.

    PubMed

    Russina, Olga; Celso, Fabrizio Lo; Triolo, Alessandro

    2015-11-28

    Among the most spectacular peculiarities of room temperature ionic liquids, their mesoscopically segregated structural organization keeps on attracting attention, due to its major consequences for the bulk macroscopic properties. Herein we use molecular dynamics simulations to explore the nm-scale architecture in 1-octyl-3-methylimidazolium tetrafluoroborate, as a function of pressure. This study reveals an intriguing new feature: the mesoscopic segregation in ionic liquids is characterized by a high level of pressure-responsiveness, which progressively vanishes upon application of high enough pressure. These results are in agreement with recent X-ray scattering data and are interpreted in terms of the microscopic organization. This new feature might lead to new methods of developing designer solvents for enhanced solvation capabilities and selectivity. PMID:26498176

  16. Shear relaxation of ammonium- and phosphonium-based ionic liquids with oxyethylene chain

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tsuyoshi; Mikawa, Ken-ichi; Koda, Shinobu; Fukazawa, Hiroki; Shirota, Hideaki

    2012-01-01

    Frequency-dependent shear viscosities of ammonium- and phosphonium-based ionic liquids with an oxyethylene chain were determined between 5 and 205 MHz, and compared with those of corresponding ionic liquids with an alkyl chain. The shear relaxation spectra show that the substitution of the alkyl chain with the oxyethylene one lowers shear viscosity through the reduction of relaxation time, which is attributed to the higher flexibility of the latter. Comparing the relaxation spectra of ionic liquids with those of non-ionic ones, higher shear viscosities of ionic liquids are ascribed to the larger high-frequency shear modulus due to the interionic Coulombic interaction.

  17. Straightforward synthesis of the Brønsted acid hfipOSO3H and its application for the synthesis of protic ionic liquids.

    PubMed

    Beichel, Witali; Panzer, Johann M U; Hätty, Julian; Ye, Xiaowei; Himmel, Daniel; Krossing, Ingo

    2014-06-23

    The easily accessible hexafluoroisopropoxysulfuric acid (1, hfipOSO3H; hfip = C(H)(CF3)2) was synthesized by the reaction of hexafluoroisopropanol and chlorosulfonic acid on the kilogram scale and isolated in 98?% yield. The calculated gas-phase acidity (GA) value of 1 is 58?kJ?mol(-1) lower in ?G° than that of sulfuric acid (GA value determined by a CCSD(T)-MP2 compound method). Considering the gas-phase dissociation constant as a measure for the intrinsic molecular acid strength, a hfipOSO3H molecule is more than ten orders of magnitude more acidic than a H2SO4 molecule. The acid is a liquid at room temperature, distillable at reduced pressure, stable for more than one year in a closed vessel, reactive towards common solvents, and decomposes above 180?°C. It is a versatile compound for further applications, such as the synthesis of ammonium- and imidazolium-based air- and moisture-stable protic ionic liquids (pILs). Among the six synthesized ionic compounds, five are pILs with melting points below 100?°C and three of them are liquids at nearly room temperature. The conductivities and viscosities of two representative ILs were investigated in terms of Walden plots, and the pILs were found to be little associated ILs, comparable to conventional aprotic ILs. PMID:24862292

  18. Photochemical oxidation of water and reduction of polyoxometalate anions at interfaces of water with ionic liquids or diethylether.

    PubMed

    Bernardini, Gianluca; Wedd, Anthony G; Zhao, Chuan; Bond, Alan M

    2012-07-17

    Photoreduction of [P(2)W(18)O(62)](6-), [S(2)Mo(18)O(62)](4-), and [S(2)W(18)O(62)](4-) polyoxometalate anions (POMs) and oxidation of water occurs when water-ionic liquid and water-diethylether interfaces are irradiated with white light (275-750 nm) or sunlight. The ionic liquids (ILs) employed were aprotic ([Bmim]X; Bmim = (1-butyl-3-methylimidazolium, X = BF(4), PF(6)) and protic (DEAS = diethanolamine hydrogen sulphate; DEAP = diethanolamine hydrogen phosphate). Photochemical formation of reduced POMs at both thermodynamically stable and unstable water-IL interfaces led to their initial diffusion into the aqueous phase and subsequent extraction into the IL phase. The mass transport was monitored visually by color change and by steady-state voltammetry at microelectrodes placed near the interface and in the bulk solution phases. However, no diffusion into the organic phase was observed when [P(2)W(18)O(62)](6-) was photo-reduced at the water-diethylether interface. In all cases, water acted as the electron donor to give the overall process: 4POM + 2H(2)O + h? ? 4POM(-) + 4H(+) + O(2). However, more highly reduced POM species are likely to be generated as intermediates. The rate of diffusion of photo-generated POM(-) was dependent on the initial concentration of oxidized POM and the viscosity of the IL (or mixed phase system produced in cases in which the interface is thermodynamically unstable). In the water-DEAS system, the evolution of dioxygen was monitored in situ in the aqueous phase by using a Clark-type oxygen sensor. Differences in the structures of bulk and interfacial water are implicated in the activation of water. An analogous series of reactions occurred upon irradiation of solid POM salts in the presence of water vapor. PMID:22753501

  19. Supported ionic liquid phase catalysis with supercritical flow.

    PubMed

    Hintermair, Ulrich; Zhao, Guoying; Santini, Catherine C; Muldoon, Mark J; Cole-Hamilton, David J

    2007-04-14

    Rapid hydroformylation of 1-octene (rates up to 800 h(-1)) with the catalyst remaining stable for at least 40 h and with very low rhodium leaching levels (0.5 ppm) is demonstrated when using a system involving flowing the substrate, reacting gases and products dissolved in supercritical CO(2) (scCO(2)) over a fixed bed supported ionic liquid phase catalyst. PMID:17389993

  20. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    SciTech Connect

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  1. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids.

    PubMed

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Cabeza, Oscar; Fedorov, Maxim; Lynden-Bell, Ruth M; Gallego, Luis J; Varela, Luis M

    2015-09-28

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF6]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15?K and 1?atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO3](-) and [PF6](-) anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca(2+) cations. No qualitative difference with monovalent cations was found in what solvation is concerned, which suggests that no enhanced reduction of the mobility of these cations and their complexes in ILs respective to those of monovalent cations is to be expected. PMID:26429024

  2. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    NASA Astrophysics Data System (ADS)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Cabeza, Oscar; Fedorov, Maxim; Lynden-Bell, Ruth M.; Gallego, Luis J.; Varela, Luis M.

    2015-09-01

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF6]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO3]- and [PF6]- anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca2+ cations. No qualitative difference with monovalent cations was found in what solvation is concerned, which suggests that no enhanced reduction of the mobility of these cations and their complexes in ILs respective to those of monovalent cations is to be expected.

  3. The solvation structures of cellulose microfibrils in ionic liquids

    SciTech Connect

    Mostofian, Barmak; Smith, Jeremy C; Cheng, Xiaolin

    2011-01-01

    The use of ionic liquids for non-derivatized cellulose dissolution promises an alternative method for the thermochemical pretreatment of biomass that may be more efficient and environmentally acceptable than more conventional techniques in aqueous solution. Here, we performed equilibrium MD simulations of a cellulose microfibril in the ionic liquid 1-butyl-3-methylimidazolium chloride (BmimCl) and compared the solute structure and the solute-solvent interactions at the interface with those from corresponding simulations in water. The results indicate a higher occurrence of solvent-exposed orientations of cellulose surface hydroxymethyl groups in BmimCl than in water. Moreover, spatial and radial distribution functions indicate that hydrophilic surfaces are a preferred site of interaction between cellulose and the ionic liquid. In particular, hydroxymethyl groups on the hydrophilic fiber surface adopt a different conformation from their counterparts oriented towards the fiber s core. Furthermore, the glucose units with these solvent-oriented hydroxymethyls are surrounded by the heterocyclic organic cation in a preferred parallel orientation, suggesting a direct and distinct interaction scheme between cellulose and BmimCl.

  4. Ionic liquid crosslinkers for chiral imprinted nanoGUMBOS.

    PubMed

    Hamdan, Suzana; Moore, Leonard; Lejeune, Jason; Hasan, Farhana; Carlisle, Trevor K; Bara, Jason E; Gin, D L; LaFrate, Andrew L; Noble, R D; Spivak, David A; Warner, Isiah M

    2016-02-01

    Molecularly imprinted polymers (MIPs) are an important class of selective materials for molecular specific sensors and separations. Molecular imprinting using non-covalent interactions in aqueous conditions still remains a difficult challenge due to interruption of hydrogen-bonding or electrostatic interactions water. Newly developed crosslinking ionic liquids are demonstrated herein to overcome problems of synthesizing aqueous MIPs, adding to previous examples of ionic liquids used as monomers in non-aqueous conditions or used as MIP solvents. Vinylimidazole ionic liquid crosslinkers were synthesized and subsequently explored as matrix supports for fabrication of molecularly imprinted polymeric nanoGUMBOS (nanoparticles derived from a group of uniform materials based on organic salts). Each of the four crosslinkers incorporated a unique functional spacer between the vinylimidazole groups, and the performance of the corresponding molecularly imprinted polymers was evaluated using chiral recognition as the diagnostic. High uptake values for l-tryptophan were found in the 13-87?mol/g range; and chiral recognition was determined via binding ratios of l-tryptophan over d-tryptophan that ranged from 5:1 to 13:1 for polymers made using different crosslinkers. Not only are these materials good for chiral recognition, but the results highlight the utility of these materials for imprinting aqueous templates such as biological targets for theranostic agents. PMID:26513734

  5. Glass transition of ionic liquids under high pressure

    NASA Astrophysics Data System (ADS)

    Ribeiro, Mauro C. C.; Pádua, Agílio A. H.; Gomes, Margarida F. Costa

    2014-06-01

    The glass transition pressure at room temperature, pg, of six ionic liquids based on 1-alkyl-3-methylimidazolium cations and the anions [BF4]-, [PF6]-, and bis(trifluromethanesulfonyl)imide, [NTf2]-, has been obtained from the pressure dependence of the bandwidth of the ruby fluorescence line in diamond anvil cells. Molar volume, Vm(pg), has been estimated by a group contribution model (GCM) developed for the ionic liquids. A density scaling relation, TV?, has been considered for the states Vm(pg, 295 K) and Vm(Tg, 0.1 MPa) using the simplifying condition that the viscosity at the glass transition is the same at pg at room temperature and at atmospheric pressure at Tg. Assuming a constant ? over this range of density, a reasonable agreement has been found for the ? determined herein and that of a previous density scaling analysis of ionic liquids viscosities under moderate conditions. Further support for the appropriateness of extrapolating the GCM equation of state to the GPa pressure range is provided by comparing the GCM and an equation of state previously derived in the power law density-scaling regime.

  6. Understanding the impact of ionic liquid pretreatment on eucalyptus

    SciTech Connect

    Centikol, Ozgul; Dibble, Dean; Cheng, Gang; Kent, Michael S; Knierim, Manfred; Melnichenko, Yuri B

    2010-01-01

    The development of cost-competitive biofuels necessitates the realization of advanced biomass pretreatment technologies. Ionic liquids provide a basis for one of the most promising pretreatment technologies and are known to allow effective processing of cellulose and some biomass species. Here, we demonstrate that the ionic liquid 1-ethyl-3-methyl imidazolium acetate, [C2mim][OAc], induces structural changes at the molecular level in the cell wall of Eucalyptus globulus. Deacetylation of xylan, acetylation of the lignin units, selective removal of guaiacyl units (increasing the syringyl:guaiacyl ratio) and decreased {beta}-ether content were the most prominent changes observed. Scanning electron microscopy images of the plant cell wall sections reveal extensive swelling during [C2mim][OAc] pretreatment. X-ray diffraction measurements indicate a change in cellulose crystal structure from cellulose I to cellulose II after [C2mim][OAc] pretreatment. Enzymatic saccharification of the pretreated material produced increased sugar yields and improved hydrolysis kinetics after [C2mim][OAc] pretreatment. These results provide new insight into the mechanism of ionic liquid pretreatment and reaffirm that this approach may be promising for the production of cellulosic biofuels from woody biomass.

  7. A roadmap to uranium ionic liquids: anti-crystal engineering.

    PubMed

    Yaprak, Damla; Spielberg, Eike T; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja-Verena

    2014-05-19

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO2(2+) unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure-property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery. PMID:24737451

  8. Influence of the Electrolyte Film Thickness on Charge Dynamics of Ionic Liquids in Ionic Electroactive Devices.

    PubMed

    Lin, Junhong; Liu, Yang; Zhang, Q M

    2012-02-10

    Developing advanced ionic electroactive devices such as ionic actuators and supercapacitors requires the understanding of ionic diffusion and drifting processes, which depend on the distances over which the ions travel, in these systems. The charge dynamics of [C(4)mim][PF(6)] ionic liquid films and Aquivion membranes with 40 wt% [C(2)mim][TfO] were investigated over a broad film thickness (d) range. It was found that the double layer charging time ?(DL) follows the classic model ?(DL) = ?(D)d/(2D) very well, where D is the diffusion coefficient and ?(D) the Debye length. In the longer time regimes (t ? ?(DL)) where diffusion dominates, the charge dynamics become voltage dependent. For low applied voltage, the later stage charge process seems to follow the d(2) dependence. However, at high voltages (> 0.5 V) in which significant device responses occur, the charging process does not show d(2) dependence so that ?(diff) = d(2)/(4D), corresponding to the ion diffusion from the bulk region, was not observed. PMID:22423148

  9. Unusual solvatochromic absorbance probe behaviour within mixtures of poly(ethylene glycol)-400+ionic liquid, [bmim][Tf2N].

    PubMed

    Ali, Anwar; Ali, Maroof; Malik, Nisar Ahmad; Uzair, Sahar

    2014-01-01

    The potentially green solvents made up of ionic liquids (ILs) and poly(ethylene glycols) may have wide range of the applications in many chemical and biochemical fields. In the present work, solvatochromic absorbance probe behaviour is used to assess the physicochemical properties of the mixtures composed of PEG-400+IL, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [bmim][Tf2N]. Lowest energy intramolecular charge-transfer absorbance maxima of a betaine dye, i.e., E(T)(N), indicates the dipolarity/polarizability and/or hydrogen-bond donating (HBD) acidity of the [bmim][Tf2N]+PEG-400 mixtures to be even higher than that of neat [bmim][Tf2N], the solution component with higher dipolarity/polarizability and/or HBD acidity. Dipolarity/polarizability (?(?)) obtained separately from the electronic absorbance response of probe N,N-diethyl-4-nitroaniline, and the HBD acidity (?) of PEG-400+[bmim][Tf2N] mixtures are also observed to be anomalously high. A comparative study of the PEG+IL mixtures has also been done with PEG-400+molecular organic solvents (protic polar [methanol], aprotic polar [N,N-dimethylformamide], and non polar, [benzene]) mixtures, but these mixtures do not show this type of unusual behaviour. A four-parameter simplified combined nearly ideal binary solvent/Redlich-Kister (CNIBS/R-K) equation is shown to satisfactorily predict the solvatochromic parameters within PEG-400+different solvent mixtures. PMID:24280298

  10. Synthesis and characterization of new class of ionic liquids containing phenolate anion

    SciTech Connect

    Lethesh, Kallidanthiyil Chellappan; Wilfred, Cecilia Devi; Taha, M. F.; Thanabalan, M.

    2014-10-24

    In these manuscript novel ionic liquids containing a new class of 'phenolate' anions was synthesized and characterized. 1-methylmidazole with different alkyl chains such as butyl, hexyl and octyl groups was used as the cationic part. All the ionic liquids were obtained as liquids at room temperature. The synthesized ionic liquids were characterized using {sup 1}H NMR and {sup 13}C NMR spectroscopy. The thermal stability of the ionic liquids was studied using thermo gravimetric analysis (TGA). The effect of temperature on the density and viscosity of the ionic liquids were studied over a temperature range from 293.15 K to 373.15K at atmospheric pressure. From the experimental values of density, the molecular volume, standard molar entropy and the lattice energy of the ionic liquids were calculated.

  11. Solvent Extraction of Sr2+ and Cs+ Based on Hydrophobic Protic Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Luo, Huimin; Yu, Miao; Dai, Sheng

    2007-06-01

    A series of new hydrophobic and protic alkylammonium ionic liquids with bis(trifluoromethylsulfonyl) imide or bis(perfluoroethylsulfonyl)imide as conjugated anions was synthesized in a one-pot reaction with a high yield. In essence our synthesis method involves the combination of neutralization and metathesis reactions. Some of these hydrophobic and protic ionic liquids were liquids at room temperature and therefore investigated as new extraction media for separation of Sr2+ and Cs+ from aqueous solutions. An excellent extraction efficiency was found for some of these ionic liquids using dicyclohexano-18-crown-6 and calix[4]arene-bis(tert-octylbenzo-crown-6) as extractants. The observed enhancement in the extraction efficiency can be attributed to the greater hydrophilicity of the cations of the protic ionic liquids. The application of the protic ionic liquids as new solvent systems for solvent extraction opens up a new avenue in searching for simple and efficient ionic liquids for tailored separation processes.

  12. The use of ionic liquid ion sources (ILIS) in FIB applications

    E-print Network

    Zorzos, Anthony Nicholas

    2009-01-01

    A new monoenergetic, high-brightness ion source can be constructed using an arrangement similar to liquid metal ion sources (LMIS) by substituting the liquid metal with an ionic liquid, or room temperature molten salt. Ion ...

  13. Ionic liquid of a gold nanocluster: a versatile matrix for electrochemical biosensors.

    PubMed

    Kwak, Kyuju; Kumar, S Senthil; Pyo, Kyunglim; Lee, Dongil

    2014-01-28

    Ionic liquids are room-temperature molten salts that are increasingly used in electrochemical devices, such as batteries, fuel cells, and sensors, where their intrinsic ionic conductivity is exploited. Here we demonstrate that combining anionic, redox-active Au25 clusters with imidazolium cations leads to a stable ionic liquid possessing both ionic and electronic conductivity. The Au25 ionic liquid was found to act as a versatile matrix for amperometric enzyme biosensors toward the detection of glucose. Enzyme electrodes prepared by incorporating glucose oxidase in the Au25 ionic liquid show high electrocatalytic activity and substrate affinity. Au25 clusters in the electrode were found to act as effective redox mediators as well as electronic conductors determining the detection sensitivity. With the unique electrochemical properties and almost unlimited structural tunability, the ionic liquids of quantum-sized gold clusters may serve as versatile matrices for a variety of electrochemical biosensors. PMID:24350837

  14. Partition coefficients of organic compounds in new imidazolium based ionic liquids using inverse gas chromatography.

    PubMed

    Revelli, Anne-Laure; Mutelet, Fabrice; Jaubert, Jean-Noël

    2009-06-01

    Partition coefficients of organic compounds in four ionic liquids: 1-ethanol-3-methylimidazolium tetrafluoroborate, 1-ethanol-3-methylimidazolium hexafluorophosphate, 1,3-dimethylimidazolium dimethylphosphate and 1-ethyl-3-methylimidazolium diethylphosphate were measured using inverse gas chromatography from 303.3 to 332.55K. The influence of gas-liquid and gas-solid interfacial adsorption of different solutes on ionic liquids was also studied. Most of the polar solutes were retained largely by partition while light hydrocarbons were retained predominantly by interfacial adsorption on the ionic liquids studied in this work. The solvation characteristics of the ionic liquids were evaluated using the Abraham solvation parameter model. PMID:19414174

  15. Homogeneous liquid-liquid extraction of rare earths with the betaine-betainium bis(trifluoromethylsulfonyl)imide ionic liquid system.

    PubMed

    Vander Hoogerstraete, Tom; Onghena, Bieke; Binnemans, Koen

    2013-01-01

    Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature. PMID:24169434

  16. Homogeneous Liquid–Liquid Extraction of Rare Earths with the Betaine—Betainium Bis(trifluoromethylsulfonyl)imide Ionic Liquid System

    PubMed Central

    Hoogerstraete, Tom Vander; Onghena, Bieke; Binnemans, Koen

    2013-01-01

    Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature. PMID:24169434

  17. Pesticide extraction from table grapes and plums using ionic liquid based dispersive liquid-liquid microextraction.

    PubMed

    Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Herrera-Herrera, Antonio V; Rodríguez-Delgado, Miguel Angel

    2009-12-01

    Room temperature ionic liquids (RTILs) have been used as extraction solvents in dispersive liquid-liquid microextraction (DLLME) for the determination of eight multi-class pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox, and fenazaquin) in table grapes and plums. The developed method involves the combination of DLLME and high-performance liquid chromatography with diode array detection. Samples were first homogenized and extracted with acetonitrile. After evaporation and reconstitution of the extract in water containing sodium chloride, a quick DLLME procedure that used the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) and methanol was developed. The RTIL dissolved in a very small volume of acetonitrile was directed injected in the chromatographic system. The comparison between the calibration curves obtained from standards and from spiked sample extracts (matrix-matched calibration) showed the existence of a strong matrix effect for most of the analyzed pesticides. A recovery study was also developed with five consecutive extractions of the two types of fruits spiked at three concentration levels. Mean recovery values were in the range of 72-100% for table grapes and 66-105% for plum samples (except for thiophanate-methyl and carbofuran, which were 64-75% and 58-66%, respectively). Limits of detection (LODs) were in the range 0.651-5.44 microg/kg for table grapes and 0.902-6.33 microg/kg for plums, representing LODs below the maximum residue limits (MRLs) established by the European Union in these fruits. The potential of the method was demonstrated by analyzing 12 commercial fruit samples (six of each type). PMID:19779926

  18. Ionic liquid based dispersive liquid-liquid microextraction for the extraction of pesticides from bananas.

    PubMed

    Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Asensio-Ramos, María; Rodríguez-Delgado, Miguel Angel

    2009-10-23

    This paper describes a dispersive liquid-liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled to high-performance liquid chromatography with diode array detection capable of quantifying trace amounts of eight pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox and fenazaquin) in bananas. Fruit samples were first homogenized and extracted (1g) with acetonitrile and after suitable evaporation and reconstitution of the extract in 10 mL of water, a DLLME procedure using 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) as extraction solvent was used. Experimental conditions affecting the DLLME procedure (sample pH, sodium chloride percentage, ionic liquid amount and volume of disperser solvent) were optimized by means of an experimental design. In order to determine the presence of a matrix effect, calibration curves for standards and fortified banana extracts (matrix matched calibration) were studied. Mean recovery values of the extraction of the pesticides from banana samples were in the range of 69-97% (except for thiophanate-methyl and carbofuran, which were 53-63%) with a relative standard deviation lower than 8.7% in all cases. Limits of detection achieved (0.320-4.66 microg/kg) were below the harmonized maximum residue limits established by the European Union (EU). The proposed method, was also applied to the analysis of this group of pesticides in nine banana samples taken from the local markets of the Canary Islands (Spain). To the best of our knowledge, this is the first application of RTILs as extraction solvents for DLLME of pesticides from samples different than water. PMID:19700165

  19. Nanostructure of an ionic liquid-glycerol mixture.

    PubMed

    Murphy, Thomas; Hayes, Robert; Imberti, Silvia; Warr, Gregory G; Atkin, Rob

    2014-07-14

    The nanostructure of a 50?:?50 vol% mixture of glycerol and ethylammonium formate (EAF), a protic ionic liquid (IL), has been investigated using neutron diffraction and empirical potential structure refinement (EPSR) fits. EPSR fits reveal that the mixture is nanostructured. Electrostatic interactions between IL charge groups leads to the formation of ionic regions. These solvophobically repel cation alkyl groups which cluster together to form apolar domains. The polar glycerol molecules are preferentially incorporated into the charged domains, and form hydrogen bonds with EAF groups rather than with other glycerol molecules. However, radial distribution functions reveal that glycerol molecules pack around each other in a fashion similar to that found in pure glycerol. This suggests that a glycerol channel runs through the ionic domain of EAF. The absence of significant glycerol-glycerol hydrogen bonding indicates that glycerol molecules are able to span the polar domain, bridging EAF charge groups. Glycerol can adopt six distinct conformations. The distribution of conformers in the EAF mixture is very different to that found in the pure liquid because hydrogen bonds form with EAF rather than with other glycerol molecules, which imparts different packing constraints. PMID:24871824

  20. Dynamic electrowetting and dewetting of ionic liquids at a hydrophobic solid-liquid interface.

    PubMed

    Li, Hua; Paneru, Mani; Sedev, Rossen; Ralston, John

    2013-02-26

    The dynamic electrowetting and dewetting of ionic liquids are investigated with high-speed video microscopy. Five imidazolium-based ionic liquids ([BMIM]BF(4), [BMIM]PF(6), [BMIM]NTf(2), [HMIM]NTf(2), and [OMIM]BF(4)) are used as probe liquids. Droplets of ionic liquids are first spread on an insulated electrode by applying an external voltage (electrowetting) and then allowed to retract (dewetting) when the voltage is switched off. The base area of the droplet varies exponentially during both the electrowetting and retraction processes. The characteristic time increases with the viscosity of the ionic liquid. The electrowetting and retraction kinetics (dynamic contact angle vs contact line speed) can be described by the hydrodynamic or the molecular-kinetic model. Energy dissipation occurs by viscous and molecular routes with a larger proportion of energy dissipated at the three-phase contact line when the liquid meniscus retracts from the solid surface. The outcomes from this research have implications for the design and control of electro-optical imaging systems, microfluidics, and fuel cells. PMID:23362860

  1. Ion-pair evaporation from ionic liquid clusters.

    PubMed

    Hogan, Christopher J; Fernandez de la Mora, Juan

    2010-08-01

    A differential mobility analyzer (DMA) is used in atmospheric pressure N(2) to select a narrow range of electrical mobilities from a complex mix of cluster ions of composition (CA)(n)(C(+))(z). The clusters are introduced into the N(2) gas by electrospraying concentrated (approximately 20 mM) acetonitrile solutions of ionic liquids (molten salts) of composition CA (C(+) = cation, A(-) = anion). Mass analysis of these mobility-selected ions reveals the occurrence of individual neutral ion-pair evaporation events from the smallest singly charged clusters: (CA)(n)C(+)-->(CA)(n-1)C(+)+CA. Although bulk ionic liquids are effectively involatile at room temperature, up to six sequential evaporation events are observed. Because this requires far more internal energy than available in the original clusters, substantial heating (approximately 10 eV) must take place in the ion guides leading to the mass analyzer. The observed increase in IL evaporation rate with decreasing size is drastic, in qualitative agreement with the exponential vapor pressure dependence predicted by Kelvin's formula. A single evaporation event is barely detectable at n = 13, while two or more are prominent for n < or = 9. Magic number clusters (CA)(4)C(+) with singularly low volatilities are found in three of the four ionic liquids studied. Like their recently reported liquid phase prenucleation cluster analogs, these magic number clusters could play a key role as gas-phase nucleation seeds. All the singularly involatile clusters seen are cations, which may help understand commonly observed sign effects in ion-induced nucleation. No other charge-sign asymmetry is seen on cluster evaporation. PMID:20447834

  2. High-throughput screening for ionic liquids dissolving (ligno-)cellulose.

    PubMed

    Zavrel, Michael; Bross, Daniela; Funke, Matthias; Büchs, Jochen; Spiess, Antje C

    2009-05-01

    The recalcitrance of lignocellulosic biomass poses a major challenge for its sustainable and cost-effective utilization. Therefore, an efficient pretreatment is decisive for processes based on lignocellulose. A green and energy-efficient pretreatment could be the dissolution of lignocellulose in ionic liquids. Several ionic liquids were identified earlier which are capable to dissolve (ligno-)cellulose. However, due to their multitude and high costs, a high-throughput screening on small scale is essential for the determination of the most efficient ionic liquid. In this contribution two high-throughput systems are presented based on extinction or scattered light measurements. Quasi-continuous dissolution profiles allow a direct comparison of up to 96 ionic liquids per experiment in terms of their dissolution kinetics. The screening results indicate that among the ionic liquids tested EMIM Ac is the most efficient for dissolving cellulose. Moreover, it was observed that AMIM Cl is the most effective ionic liquid for dissolving wood chips. PMID:19157872

  3. Can ionic liquids be used as templating agents for controlled design of uranium-containing nanomaterials?

    SciTech Connect

    Visser, Ann E. Bridges, Nicholas J.; Tosten, Michael H.

    2013-09-01

    Graphical abstract: - Highlights: • Uranium oxides nanoparticles prepared using ionic liquids. • IL cation alkyl length impacts oxide morphology. • Low temperature UO{sub 2} synthesis. - Abstract: Nanostructured uranium oxides have been prepared in ionic liquids as templating agents. Using the ionic liquids as reaction media for inorganic nanomaterials takes advantage of the pre-organized structure of the ionic liquids which in turn controls the morphology of the inorganic nanomaterials. Variation of ionic liquid cation structure was investigated to determine the impact on the uranium oxide morphologies. For two ionic liquid cations, increasing the alkyl chain length increases the aspect ratio of the resulting nanostructured oxides. Understanding the resulting metal oxide morphologies could enhance fuel stability and design.

  4. Ion shape effect on dynamics of ionic liquids

    NASA Astrophysics Data System (ADS)

    Liu, Hongjun; Maginn, Edward

    2012-02-01

    Ionic liquids (ILs) are a group of salts composing of an organic cation and organic or inorganic anion with melting points below 100 ^oC and have many suitable properties, such as negligible vapor pressure, low flammability, high ionic conductivity and high thermal stability for various applications. Moreover, a great number of ILs with a variety of physical and chemical properties can be synthesized from a combination of different cations (most differently substituted imidazolium, pyridinium, and quaternary ammonium or phosphonium ions) and anions. One can judiciously select from a multitude of ILs to suit a specific application, where the concept of designer solvent comes from. To expedite the development process of target ILs, it is crucial to understand the relationship between ion shape and dynamics of ILs. We studied a wide range of ILs with different ion shape pairings and found the planar-planar paired ILs have a better dynamics as a whole.

  5. Structural transitions of CTAB micelles in a protic ionic liquid.

    PubMed

    López-Barrón, Carlos R; Wagner, Norman J

    2012-09-01

    Micellar solutions of hexadecyltrimethylammonium bromide (CTAB) in a protic ionic liquid, ethylammonium nitrate (EAN), are studied by shear rheology, polarizing optical microscopy (POM), conductivity measurements, and small angle neutron scattering (SANS). Three concentration regimes are examined: A dilute regime (with concentrations [CTAB] < 5 wt %) consisting of noninteracting spherical micelles, a semidilute regime (5 wt % ? [CTAB] ? 45 wt %) where micelles interact via electrostatic repulsions, and a concentrated regime (45 wt % < [CTAB] ? 62 wt %) where a reversible, temperature-dependent isotropic (L(1)) to hexatic (Hex) phase transition is observed. The L(1)-Hex transition, which has been predicted but not previously observed, is characterized by (1) a sharp increase in the shear viscosity, (2) the formation of focal conical birefringence textures (observed by POM), and (3) enhancement of the crystalline order, evidenced by the appearance of Bragg reflections in the SANS profiles. Ionic conductivity is not sensitive to the L(1)-Hex transition, which corroborates the absence of topological transitions. PMID:22877559

  6. Graphene/Ionic Liquid Composite Films and Ion Exchange

    PubMed Central

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-01-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602

  7. Liquid-liquid equilibrium of cholinium-derived bistriflimide ionic liquids with water and octanol.

    PubMed

    Costa, Anabela J L; Soromenho, Mário R C; Shimizu, Karina; Marrucho, Isabel M; Esperança, José M S S; Canongia Lopes, J N; Rebelo, Luís Paulo N

    2012-08-01

    The liquid-liquid equilibria of mixtures of cholinum-based ionic liquids (N-alkyl-N,N-dimethylhydroxyethylammonium bis(trifluoromethane)sulfonylimide, [N(11n2OH)][Ntf(2)], n = 1, 2, 3, 4, and 5) plus water or 1-octanol were investigated at atmospheric pressure over the entire composition range. The experiments were conducted between 265 and 385 K using the cloud-point method. The systems exhibit phase diagrams consistent with the existence of upper critical solution temperatures. The solubility of [N(1 1 n 2OH)][Ntf(2)] in water is lower for cations with longer alkyl side chains (larger n values). The corresponding trend in the octanol mixtures is reversed. The ([N(1 1 1 2OH)][Ntf(2)] + water + octanol) ternary system shows triple liquid-liquid immiscibility at room temperature and atmospheric pressure. A combined analytic/synthetic method was used to estimate the corresponding phase diagram under those conditions. Auxiliary molecular dynamics simulation data were used to interpret the experimental results at a molecular level. PMID:22770438

  8. Hydrogenation of CO2 to formic acid promoted by a diamine-functionalized ionic liquid.

    PubMed

    Zhang, Zhaofu; Hu, Suqin; Song, Jinliang; Li, Wenjing; Yang, Guanying; Han, Buxing

    2009-01-01

    Amines to an end: The basic diamine-functionalized ionic liquid 1,3-di(N,N-dimethylaminoethyl)-2-methylimidazolium trifluoromethanesulfonate was prepared and used in the hydrogenation of CO(2) to formic acid. One mole of the ionic liquid coordinates two moles of formic acid to promote the reaction. Both the ionic liquid and catalyst can be reused directly after their separation from the formic acid produced. PMID:19266516

  9. Coordinating Chiral Ionic Liquids: Design, Synthesis, and Application in Asymmetric Transfer Hydrogenation under Aqueous Conditions

    PubMed Central

    Vasiloiu, Maria; Gaertner, Peter; Zirbs, Ronald; Bica, Katharina

    2015-01-01

    Hydrophilic coordinating chiral ionic liquids with an amino alcohol substructure were developed and efficiently applied to the asymmetric reduction of ketones. Their careful design and adaptability to the desired reaction conditions allow for these chiral ionic liquids to be used as the sole source of chirality in a ruthenium-catalyzed transfer hydrogenation reaction of aromatic ketones. When used in this reaction system, these chiral ionic liquids afforded excellent yields and high enantioselectivities. PMID:26279638

  10. Low-melting mixtures based on choline ionic liquids.

    PubMed

    Rengstl, Doris; Fischer, Veronika; Kunz, Werner

    2014-11-01

    In this article a strategy is proposed for the design of low toxic, room temperature liquid low-melting mixtures (LMMs) which are entirely composed of natural materials. From literature it is well known that, in general, deep eutectic solvents based on choline chloride and dicarboxylic acids are LMMs, but not liquids at room temperature, with one exception: a 1?:?1 molar mixture of malonic acid and choline chloride. Therefore, the starting point of this study was the decrease of the melting point of one of the components, namely the dicarboxylic acid, which is succinic, glutaric or adipic acid. For this purpose, one of the two protons of the acidic group was exchanged by a bulky unsymmetrical choline cation. The resulting ionic liquids (ILs) were still solid at room temperature, but have a reduced melting temperature compared to the corresponding acids. In the second step, mixtures of these ILs with choline chloride were prepared. It turned out that choline glutarate-choline chloride mixtures are liquids at room temperature at compositions containing 95-98 wt% of choline glutarate. Finally, urea was added as another hydrogen bond donor. Density, conductivity and viscosity measurements were performed for all obtained mixtures. Moreover, a Walden plot was drawn which indicates that all mixtures are liquids with fully dissociated ions moving independently. Therefore, they are considered as "good" ionic liquids and, thus, for example they can be used to exchange more toxic or less biodegradable ILs in application processes. A brief outlook containing application possibilities is given. It is demonstrated that choline dodecylsulfate is readily soluble in these mixtures, forming aggregates in the LMM at temperatures exceeding 55 °C. PMID:25242504

  11. A novel ionic liquid-tolerant Fusarium oxysporum BN secreting ionic liquid-stable cellulase: consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid.

    PubMed

    Xu, Jiaxing; Wang, Xinfeng; Hu, Lei; Xia, Jun; Wu, Zhen; Xu, Ning; Dai, Benlin; Wu, Bin

    2015-04-01

    In this study, microbial communities from chemicals polluted microhabitats were cultured with the addition of imidazolium-based ionic liquid (IL) to enrich for IL-tolerant microbes. A strain of Fusarium oxysporum BN producing cellulase from these enrichments was capable of growing in 10% (w/v) 1-ethyl-3-methylimidazolium phosphinate, much higher than the normal IL concentrations in the lignocellulose regenerated from ILs. Cellulase secreted by the strain showed high resistance to ILs based on phosphate and sulfate radicals, evidencing of a high conformational stability in relevant media. Gratifyingly, F. oxysporum BN can directly convert IL-pretreated rice straw to bioethanol via consolidated bioprocessing (I-CBP). At optimum fermentation condition, a maximum ethanol yield of 0.125 g ethanol g(-1) of rice straw was finally obtained, corresponding to 64.2% of the theoretical yield. PMID:25625459

  12. Influence of the ionic liquid cation on the solvent extraction of trivalent rare-earth ions by mixtures of Cyanex 923 and ionic liquids.

    PubMed

    Rout, Alok; Binnemans, Koen

    2015-01-21

    Trivalent rare-earth ions were extracted from nitric acid medium by the neutral phosphine oxide extractant Cyanex 923 into ionic liquid phases containing the bis(trifluoromethylsulfonyl)imide anion. Five different cations were considered: 1-butyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, methyltributylammonium, methyltrioctylammonium and trihexyl(tetradecyl)phosphonium. The extraction behavior of neodymium(iii) was investigated as a function of various parameters: pH, extractant concentration, concentration of the neodymium(iii) ion in the aqueous feed and concentration of the salting-out agent. The loading capacity of the ionic liquid phase was studied. The extraction efficiency increased with increasing pH of the aqueous feed solution. The extraction occurred for all ionic liquids via an ion-exchange mechanism and the extraction efficiency could be related to the solubility of the ionic liquid cation in the aqueous phase: high distribution ratios for hydrophilic cations and low ones for hydrophobic cations. Addition of nitrate ions to the aqueous phase resulted in an increase in extraction efficiency for ionic liquids with hydrophobic cations due to extraction of neutral complexes. Neodymium(iii) could be stripped from the ionic liquid phase by 0.5-1.0 M nitric acid solutions and the extracting phase could be reused. The extractability of other rare earths present in the mixture was compared for the five ionic liquids. PMID:25423581

  13. Design and Evaluation of Ionic Liquids as Novel CO2 Absorbents

    SciTech Connect

    Edward Maginn

    2007-07-15

    This is the final report for project DE-FG26-04NT42122 'Design and Evaluation of Ionic Liquids as Novel CO{sub 2} Absorbents'. The objective of this 'breakthrough concepts' project was to investigate the feasibility of using ionic liquids for post-combustion CO{sub 2} capture and obtain a fundamental understanding of the solubility of CO{sub 2} and other components present in flue gas in ionic liquids. Our plan was to obtain information on how composition and structure of ionic liquid molecules affected solubility and other important physical properties via two major efforts: synthesis and experimental measurements and molecular simulation. We also planned to perform preliminary systems modeling study to assess the economic viability of a process based on ionic liquids. We accomplished all the milestones and tasks specified in the original proposal. Specifically, we carried out extensive quantum and classical atomistic-level simulations of a range of ionic liquids. These calculations provided detailed information on how the chemical composition of ionic liquids affects physical properties. We also learned important factors that govern CO{sub 2} solubility. Using this information, we synthesized or acquired 33 new ionic liquids. Many of these had never been made before. We carried out preliminary tests on all of these compounds, and more extensive tests on those that looked most promising for CO{sub 2} capture. We measured CO{sub 2} solubility in ten of these ionic liquids. Through our efforts, we developed an ionic liquid that has a CO{sub 2} solubility 2.6 times greater than the 'best' ionic liquid available to us at the start of the project. Moreover, we demonstrated that SO{sub 2} is also extremely soluble in ionic liquids, opening up the possibility of using ionic liquids to remove both SO{sub 2} and CO{sub 2} from flue gas. In collaboration with Trimeric Inc., a preliminary systems analysis was conducted and the results used to help identify physical properties that must be optimized to enable ionic liquids to be cost-competitive for CO{sub 2} capture. It was found that increasing the capacity of the ionic liquids for CO{sub 2} would be important, and that doing so could potentially make ionic liquids more effective than conventional amine solvents.

  14. Methods of using ionic liquids having a fluoride anion as solvents

    DOEpatents

    Pagoria, Philip (Livermore, CA); Maiti, Amitesh (San Ramon, CA); Gash, Alexander (Brentwood, CA); Han, Thomas Yong (Pleasanton, CA); Orme, Christine (Oakland, CA); Fried, Laurence (Livermore, CA)

    2011-12-06

    A method in one embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having a fluoride anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of about 90.degree. C. or less during the contacting. A method in another embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having an acetate or formate anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of less than about 90.degree. C. during the contacting.

  15. Ionic liquids as heat transfer fluids: comparison with known systems, possible applications, advantages and disadvantages

    NASA Astrophysics Data System (ADS)

    Chernikova, E. A.; Glukhov, L. M.; Krasovskiy, V. G.; Kustov, L. M.; Vorobyeva, M. G.; Koroteev, A. A.

    2015-08-01

    The practical aspects and prospects of application of ionic liquids as heat transfer fluids are discussed. The physicochemical properties of ionic liquids (heat capacity, thermal conductivity, thermal and radiation stability, viscosity, density, saturated vapour pressure and corrosion activity) are compared with the properties of some commercial heat transfer fluids. The issues of toxicity of ionic liquids are considered. Much attention is paid to known organosilicon heat transfer fluids, which are considered to have much in common with ionic liquids in the set of properties and are used in the review as reference materials. The bibliography includes 132 references.

  16. Acidic Ionic Liquids as Composite Forming Additives for Ion-conducting Materials

    NASA Astrophysics Data System (ADS)

    Lasmane, L.; Ausekle, E.; Vaivars, G.; Priksane, A.

    2013-12-01

    This paper represents the material conductivity investigation of several AILs (Acidic Ionic Liquids) containing an alkane sulfonic acid group covalently bonded to pyridine and N-alkylimidazole cations. Three different anions (HSO4-, H2PO4- and TsO-) have been introduced in the structure of ionic liquids to evaluate the impact of this factor on material conductivity. Ion conductivity values in all studied ionic liquids obtained from impedance measurements in temperature range from 20 to 120 °C. Values of electroconductivity depending on ionic liquid's structure vary in rage from 1.34·10-5 to 1.05·10-2 S/cm at 25 °C.

  17. Electrochemical transistors with ionic liquids for enzymatic sensing

    NASA Astrophysics Data System (ADS)

    Fraser, Kevin J.; Yang, Sang Yoon; Cicoira, Fabio; Curto, Vincenzo F.; Byrne, Robert; Benito-Lopez, Fernando; Khodagholy, Dion; Owens, Róisín M.; Malliaras, George G.; Diamond, Dermot

    2011-10-01

    Over the past decade conducting polymer electrodes have played an important role in bio-sensing and actuation. Recent developments in the field of organic electronics have made available a variety of devices that bring unique capabilities at the interface with biology. One example is organic electrochemical transistors (OECTs) that are being developed for a variety of bio-sensing applications, including the detection of ions, and metabolites, such as glucose and lactate. Room temperature ionic liquids (RTILs) are organic salts, which are liquid at ambient temperature. Their nonvolatile character and thermal stability makes them an attractive alternative to conventional organic solvents. Here we report an enzymatic sensor based on an organic electro-chemical transistor with RTIL's as an integral part of its structure and as an immobilization medium for the enzyme and the mediator. Further investigation shows that these platforms can be incorporated into flexible materials such as carbon cloth and can be utilized for bio-sensing. The aim is to incorporate the overall platform in a wearable sensor to improve athlete performance with regards to training. In this manuscript an introduction to ionic liquids (ILs), IL - enzyme mixtures and a combination of these novel materials being used on OECTs are presented.

  18. Nanostructure of the Ionic Liquid-Graphite Stern Layer.

    PubMed

    Elbourne, Aaron; McDonald, Samila; Voïchovsky, Kislon; Endres, Frank; Warr, Gregory G; Atkin, Rob

    2015-07-28

    Ionic liquids (ILs) are attractive solvents for devices such as lithium ion batteries and capacitors, but their uptake is limited, partially because their Stern layer nanostructure is poorly understood compared to molecular solvents. Here, in situ amplitude-modulated atomic force microscopy has been used to reveal the Stern layer nanostructure of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIm TFSI)-HOPG (highly ordered pyrolytic graphite) interface with molecular resolution. The effect of applied surface potential and added 0.1 wt/wt % Li TFSI or EMIm Cl on ion arrangements is probed between ±1 V. For pure EMIm TFSI at open-circuit potential, well-defined rows are present on the surface formed by an anion-cation-cation-anion (A-C-C-A) unit cell adsorbed with like ions adjacent. As the surface potential is changed, the relative concentrations of cations and anions in the Stern layer respond, and markedly different lateral ion arrangements ensue. The changes in Stern layer structure at positive and negative potentials are not symmetrical due to the different surface affinities and packing constraints of cations and anions. For potentials outside ±0.4 V, images are featureless because the compositional variation within the layer is too small for the AFM tip to detect. This suggests that the Stern layer is highly enriched in either cations or anions (depending on the potential) oriented upright to the surface plane. When Li(+) or Cl(-) is present, some Stern layer ionic liquid cations or anions (respectively) are displaced, producing starkly different structures. The Stern layer structures elucidated here significantly enhance our understanding of the ionic liquid electrical double layer. PMID:26051040

  19. Li(+) solvation in glyme-Li salt solvate ionic liquids.

    PubMed

    Ueno, Kazuhide; Tatara, Ryoichi; Tsuzuki, Seiji; Saito, Soshi; Doi, Hiroyuki; Yoshida, Kazuki; Mandai, Toshihiko; Matsugami, Masaru; Umebayashi, Yasuhiro; Dokko, Kaoru; Watanabe, Masayoshi

    2015-03-28

    Certain molten complexes of Li salts and solvents can be regarded as ionic liquids. In this study, the local structure of Li(+) ions in equimolar mixtures ([Li(glyme)]X) of glymes (G3: triglyme and G4: tetraglyme) and Li salts (LiX: lithium bis(trifluoromethanesulfonyl)amide (Li[TFSA]), lithium bis(pentafluoroethanesulfonyl)amide (Li[BETI]), lithium trifluoromethanesulfonate (Li[OTf]), LiBF4, LiClO4, LiNO3, and lithium trifluoroacetate (Li[TFA])) was investigated to discriminate between solvate ionic liquids and concentrated solutions. Raman spectra and ab initio molecular orbital calculations have shown that the glyme molecules adopt a crown-ether like conformation to form a monomeric [Li(glyme)](+) in the molten state. Further, Raman spectroscopic analysis allowed us to estimate the fraction of the free glyme in [Li(glyme)]X. The amount of free glyme was estimated to be a few percent in [Li(glyme)]X with perfluorosulfonylamide type anions, and thereby could be regarded as solvate ionic liquids. Other equimolar mixtures of [Li(glyme)]X were found to contain a considerable amount of free glyme, and they were categorized as traditional concentrated solutions. The activity of Li(+) in the glyme-Li salt mixtures was also evaluated by measuring the electrode potential of Li/Li(+) as a function of concentration, by using concentration cells against a reference electrode. At a higher concentration of Li salt, the amount of free glyme diminishes and affects the electrode reaction, leading to a drastic increase in the electrode potential. Unlike conventional electrolytes (dilute and concentrated solutions), the significantly high electrode potential found in the solvate ILs indicates that the solvation of Li(+) by the glyme forms stable and discrete solvate ions ([Li(glyme)](+)) in the molten state. This anomalous Li(+) solvation may have a great impact on the electrode reactions in Li batteries. PMID:25733406

  20. Imidazolium-based ionic liquids grafted on solid surfaces.

    PubMed

    Xin, Bingwei; Hao, Jingcheng

    2014-01-01

    Supported ionic liquids (SILs), which refer to ionic liquids (ILs) immobilized on supports, are among the most important derivatives of ILs. The immobilization process of ILs can transfer their desired properties to substrates. Combination of the advantages of ILs with those of support materials will derive novel performances while retaining properties of both moieties. SILs have been widely applied in almost all of fields involving ILs, and have brought about drastic expansion of the ionic liquid area. As green media in organic catalytic reactions, based on utilizing the ability of ILs to stabilize the catalysts, they have many advantages over free ILs, including avoiding the leaching of ILs, reducing their amount, and improving the recoverability and reusability of both themselves and catalysts. This has critical significance from both environmental and economical points of view. As novel functional materials in surface science and material chemistry, SILs are ideal surface modifying agents. They can modify and improve the properties of solids, such as wettability, lubricating property, separation efficiency and electrochemical response. With the achievements in the field of ILs, using magnetic nanoparticles (MNPs) to SILs has drawn increasing attention in catalytic reactions and separation technologies, and achieved substantial progress. The combination of MNPs and ILs renders magnetic SILs, which exhibit the unique properties of ILs as well as facile separation by an external magnetic field. In this article, we focus on imidazolium-based ILs covalently grafted to non-porous and porous inorganic materials. The excellent stability and durability of this kind of SILs offer a great advantage compared with free ILs and IL films physically adsorbed on substrates without covalent bonds. Including examples from our own research, we overview mainly the applications and achievements of covalent-linked SILs in catalytic reactions, surface modification, separation technologies and electrochemistry. PMID:25000475

  1. Fast Measurement of Methanol Concentration in Ionic Liquids by Potential Step Method

    PubMed Central

    Hainstock, Michael L.; Tang, Yijun

    2015-01-01

    The development of direct methanol fuel cells required the attention to the electrolyte. A good electrolyte should not only be ionic conductive but also be crossover resistant. Ionic liquids could be a promising electrolyte for fuel cells. Monitoring methanol was critical in several locations in a direct methanol fuel cell. Conductivity could be used to monitor the methanol content in ionic liquids. The conductivity of 1-butyl-3-methylimidazolium tetrafluoroborate had a linear relationship with the methanol concentration. However, the conductivity was significantly affected by the moisture or water content in the ionic liquid. On the contrary, potential step could be used in sensing methanol in ionic liquids. This method was not affected by the water content. The sampling current at a properly selected sampling time was proportional to the concentration of methanol in 1-butyl-3-methylimidazolium tetrafluoroborate. The linearity still stood even when there was 2.4?M water present in the ionic liquid. PMID:25802522

  2. Microslips to "Avalanches" in Confined, Molecular Layers of Ionic Liquids.

    PubMed

    Espinosa-Marzal, R M; Arcifa, A; Rossi, A; Spencer, N D

    2014-01-01

    We have measured forces between mica surfaces across two hydrophobic ionic liquids with a surface forces apparatus. Both surface-adsorbed water and alkyl-chain length on the imidazolium cation influence the structure of the nanoconfined film and the dynamics of film-thickness transitions. Friction shows accumulative microslips as precursors to collective "avalanches" that abruptly reduce friction momentarily. This behavior is interpreted as a consequence of interlayer ion correlations within the 1 to 2 nm thick film; we identify this to be analogous to the friction response of crackling noise systems over a broad range of sizes. PMID:26276199

  3. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis

    SciTech Connect

    Zhao, Hua; Jones, Cecil L; Baker, Gary A; Xia, Shuqian; Olubajo, Olarongbe; Person, Vernecia

    2009-01-01

    The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs)were found capable of dissolving more than 10 wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904 910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432 2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137 140, 407 421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and nonvolatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. 70 C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58 75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result, regenerated Avicel cellulose, filter paper and cottonwere hydrolyzed 2 10 times faster than the respective untreated celluloses. A complete hydrolysis of Avicel cellulose could be achieved in 6 h given the Trichoderma reesei cellulase/substrate ratio (w/w) of 3:20 at 50 C. In addition,we observed that cellulase is more thermally stable (up to 60 C) in the presence of regenerated cellulose. Furthermore, our systematic studies suggest that the presence of various ILs during the hydrolysis induced different degrees of cellulase inactivation. Therefore, a thorough removal of IL residues after cellulose regeneration is highly recommended, and a systematic investigation on this subject is much needed.

  4. Fluorescence of fullerene C 70 in ionic liquids

    NASA Astrophysics Data System (ADS)

    Martins, Sofia; Fedorov, Aleksander; Afonso, Carlos A. M.; Baleizão, Carlos; Berberan-Santos, Mário N.

    2010-09-01

    It is shown that pristine fullerene C 70 can be solubilised in imidazolium, ammonium and phosphonium based ionic liquids (ILs) bearing long alkyl chains (C 8 or higher). The absorption and fluorescence properties are similar to those displayed in conventional polar solvents except in ILs containing chloride as the counter ion, which completely quench the fluorescence of C 70. Fluorescence decay analysis using a sum of Becquerel functions to account for the complex decay of background emission allows the successful recovery of the solute's lifetime.

  5. Heterogeneous dynamics of ionic liquids from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Habasaki, J.; Ngai, K. L.

    2008-11-01

    Molecular dynamics simulations have been performed to study the complex and heterogeneous dynamics of ions in ionic liquids. The dynamics of cations and anions in 1-ethyl-3-methyl imidazolium nitrate (EMIM-NO3) are characterized by van Hove functions and the corresponding intermediate scattering functions Fs(k,t) and elucidated by the trajectories augmented by the use of singular spectrum analysis (SSA). Several time regions are found in the mean squared displacement of the ions. Change in the slope in a plot of the diffusion coefficient against temperature is found at around 410K in the simulation. Heterogeneous dynamics with the presence of both localized ions and fast ions capable of successive jumps were observed at long time scales in the self-part of the van Hove functions and in the trajectories. Non-Gaussian dynamics are evidenced by the self-part of the van Hove functions and wave number dependence of Fs(k,t) and characterized as Lévy flights. Successive motion of some ions can continue even after several nanoseconds at 370K, which is longer than the onset time of diffusive motion, tdif. Structure of the long time dynamics of fast ions is clarified by the phase space plot of the successive motion using the denoised data by SSA. The continual dynamics are shown to have a long term memory, and therefore local structure is not enough to explain the heterogeneity. The motion connecting localized regions at about 370K is jumplike, but there is no typical one due to local structural changes during jump motion. With the local motion, mutual diffusion between cation and anion occurs. On decreasing temperature, mutual diffusion is suppressed, which results in slowing down of the dynamics. This "mixing effect of cation and anion" is compared with the "mixed alkali effect" found in the ionics in the ionically conducting glasses, where the interception of paths by different alkali metal ions causes the large reduction in the dynamics [J. Habasaki and K. L. Ngai, Phys. Chem. Chem. Phys. 9, 4673 (2007), and references herein]. Although a similar mechanism of the slowing down is observed, strong coupling of the motion of cation and anion prevents complete interception unless deeply supercooled, and this explains the wide temperature region of the existence of the liquid and supercooled liquid states in the ionic liquid.

  6. Weighing the surface charge of an ionic liquid

    NASA Astrophysics Data System (ADS)

    Hjalmarsson, Nicklas; Wallinder, Daniel; Glavatskih, Sergei; Atkin, Rob; Aastrup, Teodor; Rutland, Mark W.

    2015-09-01

    Electrochemical quartz crystal microbalance has been used to measure changes in the composition of the capacitive electrical double layer for 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate, an ionic liquid, in contact with a gold electrode surface as a function of potential. The mass difference between the cation and anion means that the technique can effectively ``weigh'' the surface charge accurately with high temporal resolution. This reveals quantitatively how changing the potential alters the ratio of cations and anions associated with the electrode surface, and thus the charge per unit area, as well as the kinetics associated with these interfacial processes. The measurements reveal that it is diffusion of co-ions into the interfacial region rather than expulsion of counterions that controls the relaxation. The measured potential dependent double layer capacitance experimentally validates recent theoretical predictions for counterion overscreening (low potentials) and crowding (high potentials) at electrode surfaces. This new capacity to quantitatively measure ion composition is critical for ionic liquid applications ranging from batteries, capacitors and electrodeposition through to boundary layer structure in tribology, and more broadly provides new insight into interfacial processes in concentrated electrolyte solutions.Electrochemical quartz crystal microbalance has been used to measure changes in the composition of the capacitive electrical double layer for 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate, an ionic liquid, in contact with a gold electrode surface as a function of potential. The mass difference between the cation and anion means that the technique can effectively ``weigh'' the surface charge accurately with high temporal resolution. This reveals quantitatively how changing the potential alters the ratio of cations and anions associated with the electrode surface, and thus the charge per unit area, as well as the kinetics associated with these interfacial processes. The measurements reveal that it is diffusion of co-ions into the interfacial region rather than expulsion of counterions that controls the relaxation. The measured potential dependent double layer capacitance experimentally validates recent theoretical predictions for counterion overscreening (low potentials) and crowding (high potentials) at electrode surfaces. This new capacity to quantitatively measure ion composition is critical for ionic liquid applications ranging from batteries, capacitors and electrodeposition through to boundary layer structure in tribology, and more broadly provides new insight into interfacial processes in concentrated electrolyte solutions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03965g

  7. Hydrogen fluoride capture by imidazolium acetate ionic liquid

    NASA Astrophysics Data System (ADS)

    Chaban, Vitaly

    2015-04-01

    Extraction of hydrofluoric acid (HF) from oils is a drastically important problem in petroleum industry, since HF causes quick corrosion of pipe lines and brings severe health problems to humanity. Some ionic liquids (ILs) constitute promising scavenger agents thanks to strong binding to polar compounds and tunability. PM7-MD simulations and hybrid density functional theory are employed here to consider HF capture ability of ILs. Discussing the effects and impacts of the cation and the anion separately and together, we evaluate performance of imidazolium acetate and outline systematic search guidelines for efficient adsorption and extraction of HF.

  8. Hydrogen Fluoride Capture by Imidazolium Acetate Ionic Liquid

    E-print Network

    Chaban, Vitaly

    2015-01-01

    Extraction of hydrofluoric acid (HF) from oils is a drastically important problem in petroleum industry, since HF causes quick corrosion of pipe lines and brings severe health problems to humanity. Some ionic liquids (ILs) constitute promising scavenger agents thanks to strong binding to polar compounds and tunability. PM7-MD simulations and hybrid density functional theory are employed here to consider HF capture ability of ILs. Discussing the effects and impacts of the cation and the anion separately and together, I will evaluate performance of imidazolium acetate and outline systematic search guidelines for efficient adsorption and extraction of HF.

  9. The role of ionic liquids in hydrogen storage.

    PubMed

    Sahler, Sebastian; Sturm, Sebastian; Kessler, Michael T; Prechtl, Martin H G

    2014-07-14

    Ionic liquid (IL) based H2 storage for H2 generation from NH3BH3 derivatives is shown. These systems promote H2 generation at low temperature, with good reaction rates and high total H2 yields. The effects of ILs and the H2 yield in correlation with the basicity, the cations of the ILs, and the role of carbenes are discussed. Furthermore, mechanistic findings on the dehydrogenation are described. IL material blends are competitive with conventional H2 storage materials with experimental efficiencies of at least 6.5?wt?% H2. PMID:24954029

  10. Synthesis and characterization of ionic polymer networks in a room-temperature ionic liquid.

    PubMed

    Stanzione, Joseph F; Jensen, Robert E; Costanzo, Philip J; Palmese, Giuseppe R

    2012-11-01

    Ionic liquid gels (ILGs) for potential use in ion transport and separation applications were generated via a free radical copolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and N,N'-methylene(bis)acrylamide (MBA) using 1-ethyl-3-methylimidazolium ethylsulfate (IL) as a room temperature ionic liquid solvent medium. The AMPS and MBA monomer solubility window in the IL in the temperature range of 25 to 65 °C was determined. In situ ATR-FTIR showed near complete conversion of monomers to a cross-linked polymer network. ILGs with glass transition temperatures (T(g)s) near -50 °C were generated with T(g) decreasing with increasing IL content. The elastic moduli in compression (200 to 6600 kPa) decreased with increasing IL content and increasing AMPS content while the conductivities (0.35 to 2.14 mS cm?¹) increased with increasing IL content and decreasing MBA content. The polymer-IL interaction parameter (?) (0.48 to 0.55) was determined via a modified version of the Bray and Merrill equation. PMID:23088450

  11. Dipolar motions and ionic conduction in an ibuprofen derived ionic liquid.

    PubMed

    Viciosa, M T; Santos, G; Costa, A; Danède, F; Branco, L C; Jordão, N; Correia, N T; Dionísio, M

    2015-10-01

    It was demonstrated that the combination of the almost water insoluble active pharmaceutical ingredient (API) ibuprofen with the biocompatible 1-ethanol-3-methylimidazolium [C2OHMIM] cation of an ionic liquid (IL) leads to a highly water miscible IL-API with a solubility increased by around 5 orders of magnitude. Its phase transformations, as crystallization and glass transition, are highly sensitive to the water content, the latter shifting to higher temperatures upon dehydration. By dielectric relaxation spectroscopy the dynamical behavior of anhydrous [C2OHMIM][Ibu] and with 18.5 and 3% of water content (w/w) was probed from well below the calorimetric glass transition (Tg) up to the liquid state. Multiple reorientational dipolar processes were detected which become strongly affected by conductivity and electrode polarization near above Tg. Therefore [C2OHMIM][Ibu] exhibits mixed behavior of a conventional molecular glass former and an ionic conductor being analysed in this work through conductivity, electrical modulus and complex permittivity. The dominant process, ??-process, originates by a coupling between both charge transport and dipolar mechanisms. The structural relaxation times were derived from permittivity analysis and confirmed by temperature modulated differential scanning calorimetry. The temperature dependence of the ?-secondary relaxation is coherent with a Johari-Goldstein (?JG) process as detected in conventional glass formers. PMID:26315452

  12. Covalent-to-ionic transition in liquid zinc dichloride

    NASA Astrophysics Data System (ADS)

    Ruberto, R.; Pastore, G.; Tosi, M. P.

    2009-03-01

    We report molecular-dynamics simulations of self-diffusion and structure in a pseudoclassical model of liquid and crystalline ZnCl 2 over a wide region of the pressure-temperature plane. The model parameters are adjusted to reproduce a liquid structure of corner-sharing ZnCl 4 tetrahedra at the standard freezing point and the measured diffusion coefficients as functions of temperature on the sfp isobar. We find that compression first weakens the intermediate-range order of the melt near freezing into a fourfold-coordinated crystal structure, and then drives at higher temperatures a novel liquid-liquid transition consisting of two broad steps: (i) a transition in which the Zn atoms start to leave their tetrahedral cages, followed by (ii) a structural transition from a covalent network of Cl atoms to a dissociated ionic liquid which then freezes into a sixfold-coordinated crystal. Good agreement is found with data from X-ray diffraction experiments under pressure.

  13. On the formation of a protic ionic liquid in nature.

    PubMed

    Chen, Li; Mullen, Genevieve E; Le Roch, Myriam; Cassity, Cody G; Gouault, Nicolas; Fadamiro, Henry Y; Barletta, Robert E; O'Brien, Richard A; Sykora, Richard E; Stenson, Alexandra C; West, Kevin N; Horne, Howard E; Hendrich, Jeffrey M; Xiang, Kang Rui; Davis, James H

    2014-10-27

    The practical utility of ionic liquids (ILs) makes the absence (heretofore) of reported examples from nature quite puzzling, given the facility with which nature produces many other types of exotic but utilitarian substances. In that vein, we report here the identification and characterization of a naturally occurring protic IL. It can be formed during confrontations between the ants S.?invicta and N.?fulva. After being sprayed with alkaloid-based S.?invicta venom, N.?fulva detoxifies by grooming with its own venom, formic acid. The mixture is a viscous liquid manifestly different from either of the constituents. Further, we find that the change results as a consequence of formic acid protonation of the N centers of the S.?invicta venom alkaloids. The resulting mixed-cation ammonium formate milieu has properties consistent with its classification as a protic IL. PMID:25045040

  14. Selective extraction of copper, mercury, silver and palladium ionsfrom water using hydrophobic ionic liquids.

    SciTech Connect

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; VonStosch, Moritz; Prausnitz, John M.

    2007-06-25

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPYRRO]{sup +} or 1-methyl-1-octylpiperidinium [MOPIP]{sup +}, and anions tetrafluoroborate [BF{sub 4}]{sup +}, trifluoromethyl sulfonate [TfO]{sup +} or nonafluorobutyl sulfonate [NfO]{sup +}. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium.

  15. Photochromic imidazolium based ionic liquids based on spiropyran.

    PubMed

    Coleman, Simon; Byrne, Robert; Alhashimy, Nameer; Fraser, Kevin J; Macfarlane, Douglas R; Diamond, Dermot

    2010-07-14

    We investigate the physicochemical properties of a novel imidazolium benzospiropyran derivative, SP(Im), in imidazolium based ionic liquids (ILs). SP(Im) was prepared through alkylation of an imidazole to the photoswitchable compound and this derivative was characterised in imidazolium based ILs with increasing chain length to examine the stability of its merocyanine (MC) and spiropyran (SP) forms and compared to standard spiropyran, BSP. The rate of thermal relaxation of the new derivative is found to be about ten times faster than that of BSP as reflected in rates of 13.9 x 10(-3) s(-1) and 1.0 x 10(-3) s(-1) for SP(Im) and BSP, respectively, in [C(6)mIm][NTf(2)]. Since ILs are believed to form nano-structured domains it is proposed that the covalent attachment of the imidazolium side group of SP(Im) fully integrates the photoswitchable moiety into the non-polar region through side-chain association. In contrast, unbound BSP is relatively free to migrate between both polar and non-polar regions and the MC form is more readily stabilised by the IL charge via through space interactions and spontaneous movement to charged nano-domains leading to enhancement of the MC lifetime. At higher concentrations, rheological and transport properties were investigated to determine the impact of covalent attachment of the BSP fragment to an imidazolium cation on the ionic liquid structure. Ionic conductivity was found to decrease by up to 23% for SP(Im) with effects increasing with cation side-chain length. Unlike BSP, the photoswitching of the SP(Im) did not affect conductivity or viscosity values. This may indicate that the mobility of the photoswitchable compound and the resulting disruption of such movement may be critical to the control of this physical property. PMID:20467657

  16. Development of an Ionic-Liquid Absorption Heat Pump

    SciTech Connect

    Holcomb, Don

    2011-03-29

    Solar Fueled Products (SFP) is developing an innovative ionic-liquid absorption heat pump (ILAHP). The development of an ILAHP is extremely significant, as it could result in annual savings of more than 190 billion kW h of electrical energy and $19 billion. This absorption cooler uses about 75 percent less electricity than conventional cooling and heating units. The ILAHP also has significant environmental sustainability benefits, due to reduced CO2 emissions. Phase I established the feasibility and showed the economic viability of an ILAHP with these key accomplishments: • Used the breakthrough capabilities provided by ionic liquids which overcome the key difficulties of the common absorption coolers. • Showed that the theoretical thermodynamic performance of an ILAHP is similar to existing absorption-cooling systems. • Established that the half-effect absorption cycle reduces the peak generator temperature, improving collector efficiency and reducing collector area. • Component testing demonstrated that the most critical components, absorber and generator, operate well with conventional heat exchangers. • Showed the economic viability of an ILAHP. The significant energy savings, sustainability benefits, and economic viability are compelling reasons to continue the ILAHP development.

  17. Transformation of acidic poorly water soluble drugs into ionic liquids.

    PubMed

    Balk, Anja; Wiest, Johannes; Widmer, Toni; Galli, Bruno; Holzgrabe, Ulrike; Meinel, Lorenz

    2015-08-01

    Poor water solubility of active pharmaceutical ingredients (API) is a major challenge in drug development impairing bioavailability and therapeutic benefit. This study is addressing the possibility to tailor pharmaceutical and physical properties of APIs by transforming these into tetrabutylphosphonium (TBP) salts, including the generation of ionic liquids (IL). Therefore, poorly water soluble acidic APIs (Diclofenac, Ibuprofen, Ketoprofen, Naproxen, Sulfadiazine, Sulfamethoxazole, and Tolbutamide) were converted into TBP ILs or low melting salts and compared to the corresponding sodium salts. Free acids and TBP salts were characterized by NMR and IR spectroscopy, DSC and XRPD, DVS and dissolution rate measurements, release profiles, and saturation concentration measurements. TBP salts had lower melting points and glass transition temperatures and dissolution rates were improved up to a factor of 1000 as compared to the corresponding free acid. An increase in dissolution rates was at the expense of increased hygroscopicity. In conclusion, the creation of TBP ionic liquids or solid salts from APIs is a valuable concept addressing dissolution and solubility challenges of poorly water soluble acidic compounds. The data suggested that tailor-made counterions may substantially expand the formulation scientist's armamentarium to meet challenges of poorly water soluble drugs. PMID:25976317

  18. Polarizability effects on the structure and dynamics of ionic liquids

    SciTech Connect

    Cavalcante, Ary de Oliveira; Ribeiro, Mauro C. C.; Skaf, Munir S.

    2014-04-14

    Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup ?} and PF{sub 6}{sup ?}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (?) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibrium structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.

  19. Ionic liquid biodegradability depends on specific wastewater microbial consortia.

    PubMed

    Docherty, Kathryn M; Aiello, Steven W; Buehler, Barbara K; Jones, Stuart E; Szymczyna, Blair R; Walker, Katherine A

    2015-10-01

    Complete biodegradation of a newly-synthesized chemical in a wastewater treatment plant (WWTP) eliminates the potential for novel environmental pollutants. However, differences within- and between-WWTP microbial communities may alter expectations for biodegradation. WWTP communities can also serve as a source of unique consortia that, when enriched, can metabolize chemicals that tend to resist degradation, but are otherwise promising green alternatives. We tested the biodegradability of three ionic liquids (ILs): 1-octyl-3-methylpyridinium bromide (OMP), 1-butyl-3-methylpyridinium bromide (BMP) and 1-butyl-3-methylimidazolium chloride (BMIM). We performed tests using communities from two WWTPs at three time points. Site-specific and temporal variation both influenced community composition, which impacted the success of OMP biodegradability. Neither BMP nor BMIM degraded in any test, suggesting that these ILs are unlikely to be removed by traditional treatment. Following standard biodegradation assays, we enriched for three consortia that were capable of quickly degrading OMP, BMP and BMIM. Our results indicate WWTPs are not functionally redundant with regard to biodegradation of specific ionic liquids. However, consortia can be enriched to degrade chemicals that fail biodegradability assays. This information can be used to prepare pre-treatment procedures and prevent environmental release of novel pollutants. PMID:25985304

  20. Antitumor Activity of Ionic Liquids Based on Ampicillin.

    PubMed

    Ferraz, Ricardo; Costa-Rodrigues, João; Fernandes, Maria H; Santos, Miguel M; Marrucho, Isabel M; Rebelo, Luís Paulo N; Prudêncio, Cristina; Noronha, João Paulo; Petrovski, Željko; Branco, Luís C

    2015-09-01

    Significant antiproliferative effects against various tumor cell lines were observed with novel ampicillin salts as ionic liquids. The combination of anionic ampicillin with appropriate ammonium, imidazolium, phosphonium, and pyridinium cations yielded active pharmaceutical ingredient ionic liquids (API-ILs) that show potent antiproliferative activities against five different human cancer cell lines: T47D (breast), PC3 (prostate), HepG2 (liver), MG63 (osteosarcoma), and RKO (colon). Some API-ILs showed IC50 values between 5 and 42?nM, activities that stand in dramatic contrast to the negligible cytotoxic activity level shown by the ampicillin sodium salt. Moreover, very low cytotoxicity against two primary cell lines-skin (SF) and gingival fibroblasts (GF)-indicates that the majority of these API-ILs are nontoxic to normal human cell lines. The most promising combination of antitumor activity and low toxicity toward healthy cells was observed for the 1-hydroxyethyl-3-methylimidazolium-ampicillin pair ([C2 OHMIM][Amp]), making this the most suitable lead API-IL for future studies. PMID:26190053

  1. Two phosphonium ionic liquids with high Li(+) transport number.

    PubMed

    Martins, Vitor L; Sanchez-Ramirez, Nédher; Ribeiro, Mauro C C; Torresi, Roberto M

    2015-09-21

    This work presents the physicochemical characterization of two ionic liquids (ILs) with small phosphonium cations, triethylpenthylphosphonium bis(trifluoromethanesulfonyl)imide ([P2225][Tf2N]) and (2-methoxyethyl)trimethylphosphonium bis(trifluoromethanesulfonyl)imide ([P222(201)][Tf2N]), and their mixtures with Li(+). Properties such as the electrochemical window, density, viscosity and ionic conductivity are presented. The diffusion coefficient was obtained using two different techniques, PGSE-NMR and Li electrodeposition with microelectrodes. In addition, the Li(+) transport number was calculated using the PGSE-NMR technique and an electrochemical approach. The use of these three techniques showed that the PGSE-NMR technique underestimates the diffusion coefficient for charged species. The Li(+) transport number was found to be as high as 0.54. Raman spectroscopy and molecular dynamics simulations were used to evaluate the short-range structure of the liquids. These experiments suggested that the interaction between the Li(+) and the Tf2N(-) anion is similar to that seen with other ILs containing the same anion. However, the MD simulations also showed that the Li(+) ions interact differently with the cation containing an alkyl ether chain. The results found in this work suggest that these Li(+) mixtures have promising potential to be applied as electrolytes in batteries. PMID:26272339

  2. Weighing the surface charge of an ionic liquid.

    PubMed

    Hjalmarsson, Nicklas; Wallinder, Daniel; Glavatskih, Sergei; Atkin, Rob; Aastrup, Teodor; Rutland, Mark W

    2015-10-14

    Electrochemical quartz crystal microbalance has been used to measure changes in the composition of the capacitive electrical double layer for 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate, an ionic liquid, in contact with a gold electrode surface as a function of potential. The mass difference between the cation and anion means that the technique can effectively "weigh" the surface charge accurately with high temporal resolution. This reveals quantitatively how changing the potential alters the ratio of cations and anions associated with the electrode surface, and thus the charge per unit area, as well as the kinetics associated with these interfacial processes. The measurements reveal that it is diffusion of co-ions into the interfacial region rather than expulsion of counterions that controls the relaxation. The measured potential dependent double layer capacitance experimentally validates recent theoretical predictions for counterion overscreening (low potentials) and crowding (high potentials) at electrode surfaces. This new capacity to quantitatively measure ion composition is critical for ionic liquid applications ranging from batteries, capacitors and electrodeposition through to boundary layer structure in tribology, and more broadly provides new insight into interfacial processes in concentrated electrolyte solutions. PMID:26370450

  3. Surface confined ionic liquid as a stationary phase for HPLC

    SciTech Connect

    Wang, Qian; Baker, Gary A; Baker, Sheila N; Colon, Luis

    2006-01-01

    Trimethoxysilane ionosilane derivatives of room temperature ionic liquids based on alkylimidazolium bromides were synthesized for attachment to silica support material. The derivatives 1-methyl-3-(trimethoxysilylpropyl)imidazolium bromide and 1-butyl-3-(trimethoxysilylpropyl)imidazolium bromide were used to modify the surface of 3 {micro}m diameter silica particles to act as the stationary phase for HPLC. The modified particles were characterized by thermogravimetric analysis (TGA) and {sup 13}C and {sup 29}Si NMR spectroscopies. The surface modification procedure rendered particles with a surface coverage of 0.84 {micro}mol m{sup -2} for the alkylimidazolium bromide. The ionic liquid moiety was predominantly attached to the silica surface through two siloxane bonds of the ionosilane derivative (63%). Columns packed with the modified silica material were tested under HPLC conditions. Preliminary evaluation of the stationary phase for HPLC was performed using aromatic carboxylic acids as model compounds. The separation mechanism appears to involve multiple interactions including ion exchange, hydrophobic interaction, and other electrostatic interactions.

  4. Interactions of Ionic Liquids with Uranium and its Bioreduction

    SciTech Connect

    Zhang, C.; Francis, A.

    2012-09-18

    We investigated the influence of ionic liquids (ILs) 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM]{sup +}[PF{sub 6}]{sup -}, N-ethylpyridinium trifluoroacetate [EtPy]{sup +}[CF{sub 3}COO]{sup -} and N-ethylpyridinium tetrafluoroborate [Et-Py]{sup +}[BF{sub 4}]{sup -} on uranium reduction by Clostridium sp. under anaerobic conditions. Potentiometric titration, UV-vis spectrophotometry, LC-MS and EXAFS analyses showed monodentate complexation between uranyl and BF{sub 4}{sup -} PF{sub 6}{sup -}; and bidentate complexation with CF{sub 3}COO{sup -}. Ionic liquids affected the growth of Clostridium sp. as evidenced by decrease in optical density, changes in pH, gas production, and the extent of U(VI) reduction and precipitation of U(IV) from solution. Reduction of U(VI) to U(IV) was observed in the presence of [EtPy][BF{sub 4}] and [BMIM][PF{sub 6}] but not with [EtPy][CF{sub 3}COO].

  5. Using Ionic Liquids in Selective Hydrocarbon Conversion Processes

    SciTech Connect

    Tang, Yongchun; Periana, Roy; Chen, Weiqun; van Duin, Adri; Nielsen, Robert; Shuler, Patrick; Ma, Qisheng; Blanco, Mario; Li, Zaiwei; Oxgaard, Jonas; Cheng, Jihong; Cheung, Sam; Pudar, Sanja

    2009-09-28

    This is the Final Report of the five-year project Using Ionic Liquids in Selective Hydrocarbon Conversion Processes (DE-FC36-04GO14276, July 1, 2004- June 30, 2009), in which we present our major accomplishments with detailed descriptions of our experimental and theoretical efforts. Upon the successful conduction of this project, we have followed our proposed breakdown work structure completing most of the technical tasks. Finally, we have developed and demonstrated several optimized homogenously catalytic methane conversion systems involving applications of novel ionic liquids, which present much more superior performance than the Catalytica system (the best-to-date system) in terms of three times higher reaction rates and longer catalysts lifetime and much stronger resistance to water deactivation. We have developed in-depth mechanistic understandings on the complicated chemistry involved in homogenously catalytic methane oxidation as well as developed the unique yet effective experimental protocols (reactors, analytical tools and screening methodologies) for achieving a highly efficient yet economically feasible and environmentally friendly catalytic methane conversion system. The most important findings have been published, patented as well as reported to DOE in this Final Report and our 20 Quarterly Reports.

  6. The Use of Ionic Liquid Ion Sources (ILIS) in FIB Applications

    E-print Network

    using an arrangement similar to liquid metal ion sources (LMIS) by substituting the liquid metal . . . . . . . . . . . . . . . . . . . 14 1.2 Focused Ion Beam History and Development . . . . . . . . . . 16 2 LIQUID METAL ION SOURCES VS. IONIC LIQUID ION SOURCES 18 2.1 Liquid Metal Ion Sources . . . . . . . . . . . . . . . . . . . . . 18 2

  7. Exploring gas-phase ionic liquid aggregates by mass spectrometry and computational chemistry 

    E-print Network

    Gray, Andrew Peter

    2012-06-22

    Ionic liquids (IL) are salts which are liquid at low temperatures, typically with melting points under 100 °C. In recent years ILs have been treated as novel solvents and used in a wide variety of applications such as ...

  8. Lithium ion conductive behavior of TiO2 nanotube/ionic liquid matrices

    PubMed Central

    2014-01-01

    A series of TiO2 nanotube (TNT)/ionic liquid matrices were prepared, and their lithium ion conductive properties were studied. SEM images implied that ionic liquid was dispersed on the whole surface of TNT. Addition of TNT to ionic liquid (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (BMImTFSA)) resulted in significant increase of ionic conductivity. Furthermore, lithium transference number was also largely enhanced due to the interaction of anion with TNT. Vogel-Fulcher-Tammann parameter showed higher carrier ion number for TNT/BMImTFSA in comparison with BMImTFSA. PMID:25313300

  9. Enhanced electrical transport in ionic liquid dispersed TMAI-PEO solid polymer electrolyte

    SciTech Connect

    Gupta, Neha; Rathore, Munesh Dalvi, Anshuman; Kumar, Anil

    2014-04-24

    A polymer composite is prepared by dispersing ionic liquid [Bmim][BF{sub 4}] in Polyethylene oxide-tetra methyl ammonium iodide composite and subsequent microwave treatment. X-ray diffraction patterns confirm the composite nature. To explore possibility of proton conductivity in these films, electrical transport is studied by impedance spectroscopy and DC polarization. It is revealed that addition of ionic liquid in host TMAI-PEO solid polymer electrolyte enhances the conductivity by ? 2 orders of magnitude. Polarization measurements suggest that composites are essentially ion conducting in nature. The maximum ionic conductivity is found to be ?2 × 10{sup ?5} for 10 wt % ionic liquid.

  10. NafionxAE-based polymer actuators with ionic liquids as solvent incorporated at room temperature

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kunitomo; Tsuchitani, Shigeki

    2009-09-01

    Nafion®-based ionic polymer-metal composites (IPMCs), with ionic liquids as solvent, were fabricated by exchanging counterions to ionic liquids at room temperature. Ion exchange is performed by only immersing IPMC in a mixture of de-ionized water and ionic liquids at room temperature for 48 h. The fabricated IPMCs exhibited a bending curvature the same as or larger than that of conventional IPMCs with ionic liquids, formed by ion exchange to ionic liquids at an elevated temperature up to about 100 °C, and also had long-term stability in operation in air, with a fluctuation smaller than 21% in bending curvature during a 180 min operation. The effective ion exchange to ionic liquids in the present method is probably due to an increase in diffusion speed of ionic liquids into IPMC by adsorption of water in a Nafion® membrane. It is a surprise that among IPMCs with ionic liquids 1-ethyl-3-methyl-imidazolium tetrafluoroborate, 1-buthyl-3-methyl-imidazolium tetrafluoroborate (BMIBF4), and 1-buthyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6), IPMC with water-insoluble BMIPF6 exhibited a larger bending curvature than that IPMC with water-miscible BMIBF4. This might be due to effective incorporation of BMIPF6 into IPMC, since BMIPF6 has a higher affinity with IPMC than with water in the mixture of water and BMIPF6. From measurements of complex impedance and step voltage response of the driving current of IPMCs with ionic liquid, they are expressed by an equivalent circuit of a parallel combination of a serial circuit of membrane resistance of Nafion® and electric double layer capacitance at metal electrodes, with membrane capacitance of Nafion®, in a frequency range higher than about 0.1 Hz. The difference in magnitude of bending curvature in three kinds of IPMCs with ionic liquids is mainly due to the difference in bending response speed coming from the difference in the membrane resistance.

  11. Ionic Liquids and New Proton Exchange Membranes for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Belieres, Jean-Philippe

    2004-01-01

    There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research Center during this summer is to develop and characterize proton exchange membranes doped with ionic liquids. The main techniques used to characterize these materials are: Impedance Spectroscopy, NMR, DSC, TGA, DMA, IR, and SEM ...

  12. Concentration-dependent apparent partition coefficients of ionic liquids possessing ethyl- and bi-sulphate anions.

    PubMed

    Jain, Preeti; Kumar, Anil

    2015-12-23

    This study deals with the concentration dependent apparent partition coefficients log?P of the ethyl and bisulfate-based ionic liquids. It is observed that the bisulfate-based ionic liquids show different behaviour with respect to concentration as compared to ethyl sulphate-based ionic liquids. It is significant and useful analysis for the further implementation of alkyl sulfate based ionic liquids as solvents in extraction processes. The log?P values of the ethyl sulphate-based ionic liquids were noted to vary linearly with the concentration of the ionic liquid, whereas a flip-flop trend with the concentration for the log?P values of the bisulphate-based ionic liquids was observed due to the difference in hydrogen bond accepting basicity and possibility of aggregate formation of these anions. The ?-? interactions between the imidazolium and pyridinium rings were seen to affect the log?P values. The alkyl chain length of anions was also observed to influence the log?P values. The hydrophobicity of ionic liquid changes with the alkyl chain in the anion in the order; [HSO4](-) < [EtSO4](-) < [BuSO4](-). PMID:26660452

  13. Method of purifying a gas stream using 1,2,3-triazolium ionic liquids

    DOEpatents

    Luebke, David; Nulwala, Hunald; Tang, Chau

    2014-12-09

    A method for separating a target gas from a gaseous mixture using 1,2,3-triazolium ionic liquids is presented. Industrial effluent streams may be cleaned by removing carbon dioxide from the stream by contacting the effluent stream with a 1,2,3-triazolium ionic liquid compound.

  14. Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive

    DOEpatents

    Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

    2014-08-19

    An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

  15. Comparison of Dilute Acid and Ionic Liquid Pretreatment of Switchgrass: Biomass Recalcitrance, Delignification and Enzymatic Saccharification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficiency of two biomass pretreatment technologies, dilute acid hydrolysis and dissolution in an ionic liquid, are compared in terms of delignification, saccharification efficiency and saccharide yields with switchgrass serving as a model bioenergy crop. When subject to ionic liquid pretreatme...

  16. Ionic Liquid as a Solvent and Catalyst for Acylation of Maltodextrin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Catalyst-free esterification of maltodextrin was carried out in ionic liquid. Stearate esters of maltodextrin were obtained in various degree of substitution (DS) when vinyl stearate or stearic acid was heated with maltodextrin in ionic liquid, 1-butyl-3-methylimidazolium cyanamide (bmim[dca]). Re...

  17. Direct UV-spectroscopic measurement of selected ionic-liquid vapors

    SciTech Connect

    Dai, Sheng; Luo, Huimin; Wang, Congmin; Li, Haoran

    2010-01-01

    The hallmark of ionic liquids lies in their negligible vapor pressure. This ultralow vapor pressure makes it difficult to conduct the direct spectroscopic measurement of ionic-liquid vapors. In fact, there have been no electronic spectroscopic data currently available for ionic-liquid vapors. This deficiency significantly hampers the fundamental understanding of the unique molecular structures of ionic liquids. Herein, the UV absorption spectra of eight ionic liquids, such as 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Bmim{sup +}] [Tf{sub 2}N{sup -}]) and 1-ethyl-3-methylimidazolium bis(perfluoroethylsulfonyl)imide ([Emim{sup +}][beti{sup -}]) in the vapor phase in a distillation-like environment, were measured through a high-temperature spectroscopic technique to fill this knowledge gap. Two strong absorption peaks of the [Bmim{sup +}][Tf{sub 2}N{sup -}] vapor lie at 202 and 211 nm, slightly different from those of the neat [Bmim{sup +}][Tf{sub 2}N{sup -}] thin film and its solution in water. Based on the quantitative determination of the vapor absorption spectra as a function of temperature, the vaporization enthalpies of these ionic liquids vapors were measured and found to be in good agreement with the corresponding literature values. This in situ method opens up a new avenue to study the nature of ionic-liquid vapors and to determine the vaporization enthalpies of ionic liquids.

  18. Suspension Array of Ionic Liquid or Ionic Liquid-Quantum Dots Conjugates for the Discrimination of Proteins and Bacteria.

    PubMed

    Chen, Shuai; Wei, Ling; Chen, Xu-Wei; Wang, Jian-Hua

    2015-11-01

    It is of great importance to develop novel and sensitive sensing materials for the detection of proteins and microorganisms to fulfill the demand of disease diagnosis. As the selectivity and sensitivity of sensing systems are highly dependent on the receptor, the fluorescent sensor array with imidazolium ionic liquids (ILs) and ionic liquid-quantum dots conjugates as semiselective receptors is developed for protein/bacteria differential sensing or discrimination. The IL sensing system formed by 1,3-dibutylimidazolium chloride (BBimCl), 1,3-diethylimidazolium bromine (EEimBr), 1,3-dibutylimidazolium bromine (BBimBr), 1,3-dihexylimidazolium bromine (HHimBr), and 1,3-dioctylimidazolium bromine (OOimBr) and the IL@QDs/QDs sensing system formed by CdTe, BBimCl@CdTe, EEimBr@CdTe, BBimBr@CdTe, and HHimBr@CdTe are tested, by transferring the interaction binding difference between receptors and proteins to the fluorescent response pattern. The IL sensing system is applied to the identification of 48 samples (8 proteins at 500 nM) with an accuracy of 91.7%. For the IL@QDs/QDs sensing system, 8 proteins are completely distinguished with 100% accuracy at a very low concentration level of 10 nM. Remarkably, 36 training cases (6 strains of bacteria from 3 different species) are discriminated with 100% (OD600 of 0.1). PMID:26424154

  19. Lyotropic liquid crystal phases of phytantriol in a protic ionic liquid with fluorous anion.

    PubMed

    Shen, Yan; Greaves, Tamar L; Kennedy, Danielle F; Weerawardena, Asoka; Kirby, Nigel; Song, Gonghua; Drummond, Calum J

    2014-10-21

    The phase behaviour of phytantriol in the protic ionic liquid (PIL) 1-methylimidazolium pentadecafluorooctanoate (MImOF) and four different MImOF-water compositions was investigated by small- and wide-angle X-ray scattering (SAXS/WAXS), cross polarised optical microscopy (CPOM) and infrared spectroscopy (IR). MImOF is a distinct protic ionic liquid in that it contains a fluorocarbon anion and a hydrocarbon cation. This leads to MImOF having an unusual liquid nanostructure, such that it contains fluorocarbon, hydrocarbon and polar domains. No lyotropic liquid crystal phases were observed for phytantriol in neat MImOF. However, on addition of water, lamellar, cubic Ia3¯d and micellar phases were observed for specific MImOF-phytantriol-water compositions at room temperature, and up to 60 °C. The phase behaviour for phytantriol in the solvent mixture of 25 wt%-MImOF-75 wt%-water was the most similar to the phytantriol-water phase diagram. Only this MImOF-water composition supported the Ia3¯d cubic phase, which had a lattice parameter between 100-140 Å compared to 86-100 Å in deionised water, indicating significant swelling due to the MImOF. IR spectroscopy showed that a percentage of the water molecules were hydrogen bonded to the N-H of the MIm cation, and this water decreased the hydrogen bonding present between the cation and anion of the ionic liquid. This investigation furthers our understanding of the interaction of ionic liquids with solutes, and the important role that the different IL nanostructures can have on influencing these interactions. PMID:25177837

  20. The configuration exchanging theory for transport properties and glass formation temperature of ionic liquids.

    PubMed

    Hu, Yu-Feng; Zhang, Xian-Ming; Qi, Jian-Guang; Yin, Liu-Yi

    2015-11-28

    Understanding molecular motion in terms of molecular structure is an important issue for microscopic understanding of the nature of transport properties and glass transition, and for design of structured materials to meet specific demands in various applications. Herein, a novel molecular mechanism is proposed to connect macroscopic motion in ionic liquids with molecular structure via conformational conversions of the constituent ions or of the cation-anion pairs. New equations for description of relaxation time, diffusion coefficient, molar conductivity, and viscosity of ionic liquids are established. The equation parameters, which were determined from the temperature dependent heat capacities, self-diffusion coefficients, molar conductivities, and viscosities of typical ionic liquids, were used to produce predictions for the corresponding properties of other ionic liquids and for the glass transition temperatures of representative ionic liquids. All predictions are in nice agreements with the experimental results. PMID:26627962

  1. The configuration exchanging theory for transport properties and glass formation temperature of ionic liquids

    NASA Astrophysics Data System (ADS)

    Hu, Yu-Feng; Zhang, Xian-Ming; Qi, Jian-Guang; Yin, Liu-Yi

    2015-11-01

    Understanding molecular motion in terms of molecular structure is an important issue for microscopic understanding of the nature of transport properties and glass transition, and for design of structured materials to meet specific demands in various applications. Herein, a novel molecular mechanism is proposed to connect macroscopic motion in ionic liquids with molecular structure via conformational conversions of the constituent ions or of the cation-anion pairs. New equations for description of relaxation time, diffusion coefficient, molar conductivity, and viscosity of ionic liquids are established. The equation parameters, which were determined from the temperature dependent heat capacities, self-diffusion coefficients, molar conductivities, and viscosities of typical ionic liquids, were used to produce predictions for the corresponding properties of other ionic liquids and for the glass transition temperatures of representative ionic liquids. All predictions are in nice agreements with the experimental results.

  2. A classical density functional theory for interfacial layering of ionic liquids

    SciTech Connect

    Wu, Jianzhong; Jiang, Tao; Jiang, Deen; Jin, Zhehui; Henderson, Douglous

    2011-01-01

    Ionic liquids have attracted much recent theoretical interest for broad applications as environmentally-friendly solvents in separation and electrochemical processes. Because of the intrinsic complexity of organic ions and strong electrostatic correlations, the electrochemical properties of ionic liquids often defy the descriptions of conventional mean-field methods including the venerable, and over-used, Gouy-Chapman-Stern (GCS) theory. Classical density functional theory (DFT) has proven to be useful in previous studies of the electrostatic properties of aqueous electrolytes but until recently it has not been applied to ionic liquids. Here we report predictions from the DFT on the interfacial properties of ionic liquids near neutral or charged surfaces. By considering the molecular size, topology, and electrostatic correlations, we have examined major factors responsible for the unique features of electric-double layers of ionic-liquid including formation of long-range and alternating structures of cations and anions at charged surfaces.

  3. Properties of a composite material based on multi-walled carbon nanotubes and an ionic liquid

    NASA Astrophysics Data System (ADS)

    Bazhenov, A. V.; Fursova, T. N.; Turanov, A. N.; Aronin, A. S.; Karandashev, V. K.

    2014-03-01

    A solid-phase composite material based on multi-walled carbon nanotubes and an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) has been synthesized. It has been found using infrared spectroscopy that vibrational modes of the ionic liquid are shifted by 4-12 cm-1 toward lower energies with respect to those observed in the initial fluid due to the interaction of ionic liquid molecules with the nanotubes. Electron microscopy has revealed that, in the composite, the ionic liquid is present on the surface of nanotubes and partially inside them. It has been shown that the degree of extraction of lanthanides from aqueous solutions with the use of the synthesized composite increases with increasing content of the ionic liquid in it.

  4. Shape selectivity using ionic liquids for the preparation of silver and silver sulphide nanomaterials.

    PubMed

    Patil, Amol B; Bhanage, Bhalchandra M

    2014-02-21

    Electrodeposition of silver and silver sulphide was carried out from two protic ionic liquids. A change of the anion moiety of ionic liquid was found to bring about significant changes in the morphology of the nanocrystalline silver and silver sulphide deposits obtained. Effects of various parameters like deposition overpotential, change of the substrate, deposition time, etc. on the particle size and shape were studied. It was found that a change of anions of the ionic liquid from acetate to nitrate results in a wide difference in the morphology of the deposits obtained. Acetate containing ionic liquids result in globular nanocrystalline deposits whereas nitrate containing ionic liquids result in flat plates or sheets of silver deposits. Similar results were obtained for silver sulphide nanocrystals. PMID:24394372

  5. Influence of oxygen functionalities on the environmental impact of imidazolium based ionic liquids.

    PubMed

    Deng, Yun; Besse-Hoggan, Pascale; Sancelme, Martine; Delort, Anne-Marie; Husson, Pascale; Gomes, Margarida F Costa

    2011-12-30

    Several physico-chemical properties relevant to determine the environmental impact of ionic liquids - aqueous solubility, octanol-water partition coefficient and diffusion coefficients in water at infinite dilution - together with toxicity and biodegradability of ionic liquids based on 1-alkyl-3-methylimidazolium cations with or without different oxygenated functional groups (hydroxyl, ester and ether) are studied in this work. The presence of oxygen groups on the imidazolium cation reduces the toxicity of ionic liquids 1-alkyl-3-methylimidazolium with bis(trifluoromethylsulfonyl)imide or octylsulfate anions and simultaneously decreases the value of their octanol-water partition coefficient. The presence of ester functions renders the ionic liquids more easily biodegradable, especially for long alkyl side-chains in the cation but leads to hydrolysis with the formation of reaction products that accumulate. The imidazolium ring is resistant to biodegradability and to abiotic degradation. The oxygen functionalised ionic liquids are more soluble in water and, diffuse more slowly in this medium. PMID:22071261

  6. High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites

    SciTech Connect

    Doyle, M.; Choi, S.K.; Proulx, G.

    2000-01-01

    Composite membranes that exhibit fast proton transport at elevated temperatures are needed for proton-exchange-membrane fuel cells and other electrochemical devices operating in the 100 to 200 C range. Traditional water-swollen proton conducting membranes such as the Nafion membrane suffer from the volatility of water in this temperature range leading to a subsequent drop in conductivity. Here the authors demonstrate that perfluorinated ionomer membranes such as the Nafion membrane can be swollen with ionic liquids giving composite free-standing membranes with excellent stability and proton conductivity in this temperature range while retaining the low volatility of the ionic liquid. Ionic conductivities in excess of 0.1 S/cm at 180 C have been demonstrated using the ionic liquid 1-butyl, 3-methyl imidazolium trifluoromethane sulfonate. Comparisons between the ionic-liquid-swollen membrane and the neat liquid itself indicate substantial proton mobility in these composites.

  7. Morphology, Modulus, and Ionic Conductivity of a Triblock Terpolymer/Ionic Liquid Electrolyte Membrane

    NASA Astrophysics Data System (ADS)

    McIntosh, Lucas D.; Lodge, Timothy P.

    2013-03-01

    A key challenge in designing solid polymer electrolytes is increasing bulk mechanical properties such as stiffness, without sacrificing ionic conductivity. Previous work has focused on diblock copolymers, where one block is a stiff, glassy insulator and the other is a flexible ion conductor. Disadvantages of these systems include difficulty in achieving network morphologies, which minimize dead-ends for ion transport, and the necessity to operate below both the Tg of the glassy block and the order-disorder temperature. We have investigated the triblock terpolymer poly[isoprene-b-(styrene-co-norbornenylethyl styrene)-b-ethylene oxide] because it self-assembles into a triply-continuous network structure. SAXS and TEM revealed the bulk morphology of INSO to be disordered but strongly correlated after solvent casting from dichloromethane. This apparent disordered network structure was retained after chemical crosslinking and addition of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide. Impedance spectroscopy confirmed the expected conductivity for ions confined to continuous PEO channels. The mechanical response before and after crosslinking showed an increase in the material modulus.

  8. Ionic Clusters vs. Shear Viscosity in Aqueous Amino Acid Ionic Liquids

    E-print Network

    Chaban, Vitaly V

    2014-01-01

    Aqueous solutions of amino acid ionic liquids (AAILs) are of high importance for applications in protein synthesis and solubilization, enzymatic reactions, templates for synthetic study, etc. This work employs molecular dynamics simulations using our own force field to investigate shear viscosity and cluster compositions of three 1-ethyl-3-methylimidazolium (emim) amino acid salts: [emim][ala], [emim][met], and [emim][trp] solutions (2, 5, 10, 20, 30 mol%) in water at 310 K. We, for the first time, establish simple correlations between cluster composition, on one side, and viscosity, on another side. We argue that knowledge about any of these properties alone is enough to derive insights regarding the missed properties, using the reported correlations. The numerical observations and qualitative correlations are discussed in the context of chemical structure of the amino acid anions, [ala], [met], and [trp]. The reported results will enhance progress in the efficient design and applications of AAILs and their ...

  9. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect

    Wishart, J.F.

    2011-06-12

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs generally have low volatilities and are combustion-resistant, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of primary radiation chemistry, charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of reactions and product distributions. We study these issues by characterization of primary radiolysis products and measurements of their yields and reactivity, quantification of electron solvation dynamics and scavenging of electrons in different states of solvation. From this knowledge we wish to learn how to predict radiolytic mechanisms and control them or mitigate their effects on the properties of materials used in nuclear fuel processing, for example, and to apply IL radiation chemistry to answer questions about general chemical reactivity in ionic liquids that will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that the slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increase the importance of pre-solvated electron reactivity and consequently alter product distributions and subsequent chemistry. This difference from conventional solvents has profound effects on predicting and controlling radiolytic yields, which need to be quantified for the successful use under radiolytic conditions. Electron solvation dynamics in ILs are measured directly when possible and estimated using proxies (e.g. coumarin-153 dynamic emission Stokes shifts or benzophenone anion solvation) in other cases. Electron reactivity is measured using ultrafast kinetics techniques for comparison with the solvation process.

  10. Contracting cardiomyocytes in hydrophobic room-temperature ionic liquid

    SciTech Connect

    Hoshino, Takayuki; Department of Bio-Application and System Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 ; Fujita, Kyoko; Higashi, Ayako; Sakiyama, Keiko; Ohno, Hiroyuki; Morishima, Keisuke; Department of Bio-Application and System Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Biocompatible room-temperature ionic liquid was applied on beating cardiomyocyte. Black-Right-Pointing-Pointer The lifetime of beating cardiomyocytes was depended on anion functional group. Black-Right-Pointing-Pointer A longer lifetime was recorded for no functional group on alkyl chain on their anion. Black-Right-Pointing-Pointer Amino group on alkyl chain and fluorine in anion induced fatal condition changes. Black-Right-Pointing-Pointer We reported liquid electrolyte interface to stimulate cardiomyocytes. -- Abstract: Room-temperature ionic liquids (RTILs) are drawing attention as a new class of nonaqueous solvents to replace organic and aqueous solvents for chemical processes in the liquid phase at room temperature. The RTILs are notable for their characteristics of nonvolatility, extremely low vapor pressure, electric conductivity, and incombustibility. These distinguished properties of RTILs have brought attention to them in applications with biological cells and tissue in vacuum environment for scanning electron microscopy, and in microfluidic devices for micro-total analysis system (micro-TAS). Habitable RTILs could increase capability of nonaqueous micro-TAS for living cells. Some RTILs seemed to have the capability to replace water in biological applications. However, these RTILs had been applied to just supplemental additives for biocompatible test, to fixed cells as a substitute for an aqueous solution, and to simple molecules. None of RTILs in which directly soaks a living cell culture. Therefore, we demonstrated the design of RTILs for a living cell culture and a liquid electrolyte to stimulate contracting cardiomyocytes using the RTILs. We assessed the effect of RTILs on the cardiomyocytes using the beating lifetime to compare the applicability of RTILs for biological applications. Frequent spontaneous contractions of cardiomyocytes were confirmed in amino acid anion RTILs [P{sub 8,8,8,8}][Leu] and [P{sub 8,8,8,8}][Ala], phosphoric acid derivatives [P{sub 8,8,8,8}][MeO(H)PO{sub 2}], and [P{sub 8,8,8,8}][C{sub 7}CO{sub 2}]. The anion type of RTILs had influence on applicable characteristics for the contracting cardiomyocyte. This result suggested the possibility for biocompatible design of hydrophobic group RTILs to achieve biological applications with living cells.

  11. Selective Single-Step Separation of a Mixture of Three Metal Ions by a Triphasic Ionic-Liquid-Water-Ionic-Liquid Solvent Extraction System.

    PubMed

    Vander Hoogerstraete, Tom; Blockx, Jonas; De Coster, Hendrik; Binnemans, Koen

    2015-08-10

    In a conventional solvent extraction system, metal ions are distributed between two immiscible phases, typically an aqueous and an organic phase. In this paper, the proof-of-principle is given for the distribution of metal ions between three immiscible phases, two ionic liquid phases with an aqueous phase in between them. Three-liquid-phase solvent extraction allows separation of a mixture of three metal ions in a single step, whereas at least two steps are required to separate three metals in the case of two-liquid-phase solvent extraction. In the triphasic system, the lower organic phase is comprised of the ionic liquid betainium- or choline bis(trifluoromethylsulfonyl)imide, whereas the upper organic phase is comprised of the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide. The triphasic system was used for the separation of a mixture of tin(II), yttrium(III), and scandium(III) ions. PMID:26178665

  12. Theoretical studies on the electronic states and liquid structures of ferrocenium-based ionic liquids.

    PubMed

    Nakano, Hiroshi; Noguchi, Junki; Mochida, Tomoyuki; Sato, Hirofumi

    2015-05-28

    The solvation effects on the electronic structures and magnetic properties were computed for a series of ferrocenium cations in the ferrocenium-based ionic liquids using RISM-SCF-SEDD calculations coupled with CASSCF. The spin-orbit coupling was calculated to get insight into the spin anisotropy. The values were on the order of 100 cm(-1), exhibiting strong spin anisotropy parallel to the angular momentum. The computed results show that the magnetic properties of the ferrocenium cations are similar both in the isolated state and in ionic liquids. We also carried out molecular dynamics and RISM calculations to investigate the liquid structures. The radial and spatial distribution functions around the cations indicate that the cations are surrounded by about seven TFSA anions above and below the cyclopentadienyl rings and from the side of the ferrocenium cations. The nearest-neighbor cations exist in the oblique directions. The introduction of a butyl group to the ring disturbs the solvation structures, and butyl groups in different cations tend to attract each other like those observed in alkylimidazolium ionic liquids. PMID:25517686

  13. "Control of protein folding and misfolding in ionic liquid media, and a conjecture on early earth biology".

    E-print Network

    Angell, C. Austen

    ) in hydrated (10-20 wt % water) protic ionic liquid solutions (PILs) in which the water activity is only protic ionic liquids, ammonium nitrate and ammonium acetate, PILs whose component acid and base members"Control of protein folding and misfolding in ionic liquid media, and a conjecture on early earth

  14. STRUCTURE AND PROPERTIES OF CORN, RICE, WHEAT AND POTATO STARCH DISPERSED IN THE IONIC LIQUID, 1-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ionic liquid has gained industry attention, especially in environmentally friendly green chemistry. Researchers have utilized ionic liquid for dispersing cellulose, but no report using ionic liquid for other polysaccharides. In this study, corn, rice, wheat and potato starches were dispersed in ho...

  15. Concentrated assemblies of magnetic nanoparticles in ionic liquids.

    PubMed

    Mamusa, Marianna; Sirieix-Plénet, Juliette; Perzynski, Régine; Cousin, Fabrice; Dubois, Emmanuelle; Peyre, Véronique

    2015-01-01

    Maghemite (?-Fe2O3) nanoparticles (NPs) can be successfully dispersed in a protic ionic liquid, ethylammonium nitrate (EAN), by transfer from aqueous dispersions into EAN. As the aqueous systems are well controlled, several parameters can be tuned. Their crucial role towards the interparticle potential and the structure of the dispersions is evidenced: (i) the size of the NPs tunes the interparticle attraction monitoring dispersions to be either monophasic or gas-liquid-like phase separated; (ii) the nature of the initial counterion in water (here sodium, lithium or ethylammonium) and the amount of added water (<20 vol%) modulate the interparticle repulsion. Very concentrated dispersions with a volume fraction of around 25% are obtained thanks to the gas-liquid-like phase separations. Such conclusions are derived from a fine structural and dynamical study of the dispersions on a large range of spatial scales by coupling several techniques: chemical analyses, optical microscopy, dynamic light scattering, magneto-optic birefringence and small angle scattering. PMID:25962152

  16. Amphiphilic self-assembly of alkanols in protic ionic liquids.

    PubMed

    Jiang, Haihui Joy; FitzGerald, Paul A; Dolan, Andrew; Atkin, Rob; Warr, Gregory G

    2014-08-21

    Strong cohesive forces in protic ionic liquids (PILs) can induce a liquid nanostructure consisting of segregated polar and apolar domains. Small-angle X-ray scattering has shown that these forces can also induce medium chain length n-alkanols to self-assemble into micelle- and microemulsion-like structures in ethylammonium (EA(+)) and propylammonium (PA(+)) PILs, in contrast to their immiscibility with both water and ethanolammonium (EtA(+)) PILs. These binary mixtures are structured on two distinct length scales: one associated with the self-assembled n-alkanol aggregates and the other with the underlying liquid nanostructure. This suggests that EA(+) and PA(+) enable n-alkanol aggregation by acting as cosurfactants, which EtA(+) cannot do because its terminating hydroxyl renders the cation nonamphiphilic. The primary determining factor for miscibility and self-assembly is the ratio of alkyl chain lengths of the alkanol and PIL cation, modulated by the anion type. These results show how ILs can support the self-assembly of nontraditional amphiphiles and enable the creation of new forms of soft matter. PMID:25068766

  17. Theory of phase separation and polarization for dissociated ionic liquids

    E-print Network

    Gavish, Nir

    2015-01-01

    Room temperature ionic liquids are attractive to numerous applications and particularly, to renewable energy devices. As solvent free electrolytes, they demonstrate a paramount connection between the material morphology and Coulombic interactions: unlike dilute electrolytes, the electrode/RTIL interface is a product of both electrode polarization and spatiotemporal bulk properties. Yet, theoretical studies have dealt almost exclusively with independent models of morphology and electrokinetics. In this work, we develop a novel Cahn-Hilliard-Poisson type mean-field framework that couples morphological evolution with electrokinetic phenomena. Linear analysis of the model shows that spatially periodic patterns form via a finite wavenumber instability, a property that cannot arise in the currently used Fermi-Poisson-Nernst-Planck equations. Numerical simulations in above one-space dimension, demonstrate that while labyrinthine type patterns develop in the bulk, stripe patterns emerge near charged surfaces. The res...

  18. Nanotribology of nanooxide materials in ionic liquids on silicon wafers

    NASA Astrophysics Data System (ADS)

    Hamidunsani, Ahmad Termizi; Radiman, Shahidan; Hassan, Masjuki Haji; Rahman, Irman Abdul

    2015-09-01

    Nanotribological properties have a significant impact on daily life. Ionic liquids (ILs) are becoming new favourable lubricants currently in researches. Addition of nanooxide materials in lubricants provide improvements to new technology. In this study, we determine nanotribological properties of BMIM+BF4- IL addition of different amount of ZnO nanomaterial on single crystals silicon wafer (Si110). The viscosity changes of IL samples against temperature increase were determined by rheological method. Nanotribological properties were determined by changes in friction coefficient and wear rate on silicon substrate surfaces using a reciprocating friction and wear monitor in 1 hour duration time. Aluminium cylinders acted as pins used to rub Si (110) substrate sample surfaces. Thus, on range between 0 mg to 3.5 mg of ZnO nanooxide material dispersed in 10ml BMIM+BF4- showed a good friction coefficient, wear and surface roughness reduction.

  19. Tunable wavelength soft photoionization of ionic liquid vapors

    SciTech Connect

    Strasser, Daniel; Goulay, Fabien; Belau, Leonid; Kostko, Oleg; Koh, Christine; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Ahmed, Musahid; Leone, Stephen R.

    2009-11-11

    Combined data of photoelectron spectra and photoionization efficiency curves in the near threshold ionization region of isolated ion-pairs from [emim][Tf2N], [emim][Pf2N]and [dmpim][Tf2N]ionic liquid vapors reveal small shifts in the ionization energies of ion-pair systems due to cation and anion substitutions. Shifts towards higher binding energy following anion substitution are attributed to increased electronegativity of the anion itself, while shifts towards lower binding energies following cation substitution are attributed to an increase in the cation-anion distance that causes a lower Coulombic binding potential. The predominant ionization mechanism in the near threshold photon energy region is identified as dissociative ionization, involving dissociation of the ion-pair and the production of intact cations as the positively charged products.

  20. Ionic liquid-based green processes for energy production.

    PubMed

    Zhang, Suojiang; Sun, Jian; Zhang, Xiaochun; Xin, Jiayu; Miao, Qingqing; Wang, Jianji

    2014-11-21

    To mitigate the growing pressure on resource depletion and environment degradation, the development of green processes for the production of renewable energy is highly required. As a class of novel and promising media, ionic liquids (ILs) have shown infusive potential applications in energy production. Aiming to offer a critical overview regarding the new challenges and opportunities of ILs for developing green processes of renewable energy, this article emphasises the role of ILs as catalysts, solvents, or electrolytes in three broadly interesting energy production processes from renewable resources, such as CO2 conversion to fuels and fuel additives, biomass pretreatment and conversion to biofuels, as well as solar energy and energy storage. It is expected that this article will stimulate a generation of new ideas and new technologies in IL-based renewable energy production. PMID:24553494

  1. New models for predicting thermophysical properties of ionic liquid mixtures.

    PubMed

    Huang, Ying; Zhang, Xiangping; Zhao, Yongsheng; Zeng, Shaojuan; Dong, Haifeng; Zhang, Suojiang

    2015-10-28

    Potential applications of ILs require the knowledge of the physicochemical properties of ionic liquid (IL) mixtures. In this work, a series of semi-empirical models were developed to predict the density, surface tension, heat capacity and thermal conductivity of IL mixtures. Each semi-empirical model only contains one new characteristic parameter, which can be determined using one experimental data point. In addition, as another effective tool, artificial neural network (ANN) models were also established. The two kinds of models were verified by a total of 2304 experimental data points for binary mixtures of ILs and molecular compounds. The overall average absolute deviations (AARDs) of both the semi-empirical and ANN models are less than 2%. Compared to previously reported models, these new semi-empirical models require fewer adjustable parameters and can be applied in a wider range of applications. PMID:26399303

  2. Cyanoborohydride-based ionic liquids as green aerospace bipropellant fuels.

    PubMed

    Zhang, Qinghua; Yin, Ping; Zhang, Jiaheng; Shreeve, Jean'ne M

    2014-06-01

    In propellant systems, the most common bipropellants are composed of two chemicals, a fuel (or reducer) and an oxidizer. Currently, the choices for propellant fuels rely mainly on hydrazine and its methylated derivatives, even though they are extremely toxic, highly volatile, sensitive to adiabatic compression (risk of detonation), and, therefore, difficult to handle. With this background, the search for alternative green propellant fuels has been an urgent goal of space science. In this study, a new family of cyanoborohydride-based ionic liquids (ILs) with properties and performances comparable to hydrazine derivatives were designed and synthesized. These new ILs as bipropellant fuels, have some unique advantages including negligible vapor pressure, ultra-short ignition delay (ID) time, and reduced synthetic and storage costs, thereby showing great application potential as environmentally friendly fuels in bipropellant formulations. PMID:24737218

  3. Thermophysical properties of two ammonium-based protic ionic liquids

    PubMed Central

    Bhattacharjee, Arijit; Coutinho, João A. P.; Freire, Mara G.; Carvalho, Pedro J.

    2015-01-01

    Experimental data for density, viscosity, refractive index and surface tension are reported, for the first time, in the temperature range between 288.15 K and 353.15 K and at atmospheric pressure for two protic ionic liquids, namely 2-(dimethylamino)-N,N-dimethylethan-1-ammonium acetate, [N11{2(N11)}H][CH3CO2], and N-ethyl-N,N-dimethylammonium phenylacetate, [N112H][C7H7CO2]. The effect of the anion aromaticity and the cation’s aliphatic tails on the studied properties is discussed. From the measured properties temperature dependency the derived properties, such as the isobaric thermal expansion coefficient, the surface entropy and enthalpy, and the critical temperature, were estimated. PMID:26435554

  4. Stable prenucleation mineral clusters are liquid-like ionic polymers

    PubMed Central

    Demichelis, Raffaella; Raiteri, Paolo; Gale, Julian D.; Quigley, David; Gebauer, Denis

    2011-01-01

    Calcium carbonate is an abundant substance that can be created in several mineral forms by the reaction of dissolved carbon dioxide in water with calcium ions. Through biomineralization, organisms can harness and control this process to form various functional materials that can act as anything from shells through to lenses. The early stages of calcium carbonate formation have recently attracted attention as stable prenucleation clusters have been observed, contrary to classical models. Here we show, using computer simulations combined with the analysis of experimental data, that these mineral clusters are made of an ionic polymer, composed of alternating calcium and carbonate ions, with a dynamic topology consisting of chains, branches and rings. The existence of a disordered, flexible and strongly hydrated precursor provides a basis for explaining the formation of other liquid-like amorphous states of calcium carbonate, in addition to the non-classical behaviour during growth of amorphous calcium carbonate. PMID:22186886

  5. Studies on the dissolution of glucose in ionic liquids and extraction using the antisolvent method.

    PubMed

    Hassan, El-Sayed R E; Mutelet, Fabrice; Pontvianne, Steve; Moïse, Jean-Charles

    2013-03-19

    Biomass, the fibrous material derived from plant cell walls, is a potentially clean and renewable nonfood feedstock for liquid fuel and chemical production in future biorefineries. The capability of ionic liquids to act as selective solvents and catalysts for biomass processing has already been proven. Thus, they are considered as an alternative to conventional solvents. Nevertheless, phase equilibria with biomass derived compounds is still lacking in the literature. To overcome the lack of experimental data on phase equilibria of biomass carbohydrates in ionic liquids, the solubility of d-glucose in four ionic liquids was measured within a temperature range from 283 to 373 K. Solubility data were successfully correlated with local composition thermodynamic models such as NRTL and UNIQUAC. In this work, the possibility of extracting glucose from these ionic liquids using the antisolvent method has been also evaluated. The parameters affecting the extraction process are the ionic liquid type, ethanol/ionic liquid ratio, temperature, water content, and time. Results indicate that ethanol can be successfully used as an antisolvent to separate glucose from ionic liquids. PMID:23398175

  6. Prominent roles of impurities in ionic liquid for catalytic conversion of carbohydrates

    SciTech Connect

    Zhao, Haibo; Brown, Heather M.; Holladay, Johnathan E.; Zhang, Z. Conrad

    2012-02-07

    In the last two decades, ionic liquids have emerged as new and versatile solvents, and many of them are also catalysts for a broad range of catalytic reactions. Certain ionic liquids have been found to possess the unique capability of dissolving cellulosic biomass. The potential of such ionic liquids as solvent to enable catalytic conversion of cellulosic polymers was first explored and demonstrated by Zhao et al. This field of research has since experienced a rapid growth. Most ionic liquids have negligible vapor pressure and excellent thermal stability over a wide temperature range. For example, ionic liquids composed of 1-ethyl-3-methylimidazolium (EMIM+) cation and Cl- anion was reported to be stable up to 285 C, while salts of the same cation with other anions such as BF4- and PF6- are thermally stable above 380 C under inert atmosphere. It is well known that presence of impurities in ionic liquids typically causes changes in physical properties, e.g. decreasing in melting point and viscosity. Addition of Lewis acidic metal chlorides, e.g. AlCl3 to 1-alkyl-3-methylimidazolium chloride, [AMIM]Cl, is an exothermic reaction and considerably reduces the melting point by forming [AMIM]AlCl4 or [AMIM]Al2Cl7 that are also ionic liquids but have much lower melting point than the parent [AMIM]Cl. While most early research on catalysis of ionic liquids involving metallohalide anions were typically conducted from stoichiometric ratio of such anions to organic cations, e.g. [AMIM]+, the use of pure ionic liquids only as a solvent to carry out catalysis by a catalytic amount of a metal halide as catalyst truly displayed the solvent property of such ionic liquids.4 In such reaction systems, catalytic amounts of metal halides were used to catalyze the conversion of glucose and cellulose.4,11,12 The metal chloride catalyst concentration was in the order of 10-3 M. The presence of another metal chloride in the ionic liquids, even in the order of 10-5 M concentration was found to bring a dramatic synergistic effect. Therefore, the catalytic performance of the metal halide catalyst for the conversion of carbohydrates in the ionic liquid systems is highly sensitive to the presence of impurities. This work presents findings on the role of impurities that were present in some commercially available ionic liquids used for the conversion of the cellulose.

  7. Testing Fundamental Properties of Ionic Liquids for Colloid Microthruster Applications

    NASA Technical Reports Server (NTRS)

    Anderson, John R.; Plett, Gary; Anderson, Mark; Ziemer, John

    2006-01-01

    NASA's New Millennium Program is scheduled to test a Disturbance Reduction System (DRS) on Space Technology 7 (ST7) as part of the European Space Agency's (ESA's) LISA Pathfinder Mission in late 2009. Colloid Micronewton Thrusters (CMNTs) will be used to counteract forces, mainly solar photon pressure, that could disturb gravitational reference sensors as part of the DRS. The micronewton thrusters use an ionic liquid, a room temperature molten salt, as propellant. The ionic liquid has a number of unusual properties that have a direct impact on thruster design. One of the most important issues is bubble formation before and during operation, especially during rapid pressure transitions from atmospheric to vacuum conditions. Bubbles have been observed in the feed system causing variations in propellant flow rate that can adversely affect thruster control. Bubbles in the feed system can also increase the likelihood that propellant will spray onto surfaces that can eventually lead to shorting high voltage electrodes. Two approaches, reducing the probability of bubble formation and removing bubbles with a new bubble eliminator device in the flow system, were investigated at Busek Co., Inc. and the Jet Propulsion Laboratory (JPL) to determine the effectiveness of both approaches. Results show that bubble formation is mainly caused by operation at low pressure and volatile contaminants in the propellant coming out of solution. A specification for the maximum tolerable level of contamination has been developed, and procedures for providing system cleanliness have been tested and implemented. The bubble eliminator device has also been tested successfully and has been implemented in recent thruster designs at Busek. This paper focuses on the propellant testing work at JPL, including testing of a breadboard level bubble eliminator device.

  8. Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass

    PubMed Central

    2014-01-01

    Background Lignocellulosic biomass is highly recalcitrant and various pretreatment techniques are needed to facilitate its effective enzymatic hydrolysis to produce sugars for further conversion to bio-based chemicals. Ionic liquids (ILs) are of interest in pretreatment because of their potential to dissolve lignocellulosic materials including crystalline cellulose. Results Four imidazolium-based ionic liquids (ILs) ([C=C2C1im][MeCO2], [C4C1im][MeCO2], [C4C1im][Cl], and [C4C1im][HSO4]) well known for their capability to dissolve lignocellulosic species were synthesized and then used for pretreatment of substrates prior to enzymatic hydrolysis. In order to achieve a broad evaluation, seven cellulosic, hemicellulosic and lignocellulosic substrates, crystalline as well as amorphous, were selected. The lignocellulosic substrates included hybrid aspen and Norway spruce. The monosaccharides in the enzymatic hydrolysate were determined using high-performance anion-exchange chromatography. The best results, as judged by the saccharification efficiency, were achieved with [C4C1im][Cl] for cellulosic substrates and with the acetate-based ILs for hybrid aspen and Norway spruce. After pretreatment with acetate-based ILs, the conversion to glucose of glucan in recalcitrant softwood lignocellulose reached similar levels as obtained with pure crystalline and amorphous cellulosic substrates. IL pretreatment of lignocellulose resulted in sugar yields comparable with that obtained with acidic pretreatment. Heterogeneous dissolution with [C4C1im][HSO4] gave promising results with aspen, the less recalcitrant of the two types of lignocellulose included in the investigation. Conclusions The ability of ILs to dissolve lignocellulosic biomass under gentle conditions and with little or no by-product formation contributes to making them highly interesting alternatives for pretreatment in processes where high product yields are of critical importance. PMID:24779378

  9. Ion transport and softening in a polymerized ionic liquid

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; Tselev, Alexander; Kravchenko, Ivan I.; Berdzinski, Stefan; Strehmel, Veronika; Ovchinnikova, Olga S.; Minutolo, Joseph A.; Sangoro, Joshua R.; Agapov, Alexander L.; Sokolov, Alexei P.; Kalinin, Sergei V.; Sumpter, Bobby G.

    2014-12-01

    Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this work, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current-voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as the Wien effect). Onsager's theory of the Wien effect coupled with the Poisson-Nernst-Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. The observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field.Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this work, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current-voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as the Wien effect). Onsager's theory of the Wien effect coupled with the Poisson-Nernst-Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. The observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field. Electronic supplementary information (ESI) available: Details of the COMSOL modeling focusing on temperature distribution in polymer film under biased AFM tip, estimated of ionic conductivity using SPM and BDS measurements, Poisson-Nernst-Planck-Wien-Onsager model and thermodynamic description of the depression in melting due to the presence of ``free'' ions can be found in the ESI. See DOI: 10.1039/c4nr05491a

  10. Hydrogen-Bond Dynamics in a Protic Ionic Liquid: Evidence of Large-Angle Jumps.

    PubMed

    Hunger, Johannes; Sonnleitner, Thomas; Liu, Liyuan; Buchner, Richard; Bonn, Mischa; Bakker, Huib J

    2012-10-18

    We study the molecular rotation of the protic room-temperature ionic liquid ethylammonium nitrate with dielectric relaxation spectroscopy and femtosecond-infrared spectroscopy (fs-IR) of the ammonium N-H vibrations. The results suggest that the rotation of ethylammonium ion takes place via large angular jumps. Such nondiffusive reorientational dynamics is unique to strongly hydrogen-bonded liquids such as water and indicates that the intermolecular interaction is highly directional in this class of ionic liquids. PMID:26292245

  11. Determination of the enthalpy of vaporization and prediction of surface tension for ionic liquid 1-alkyl-3-methylimidazolium propionate [C(n)mim][Pro](n = 4, 5, 6).

    PubMed

    Tong, Jing; Yang, Hong-Xu; Liu, Ru-Jing; Li, Chi; Xia, Li-Xin; Yang, Jia-Zhen

    2014-11-13

    With the use of isothermogravimetrical analysis, the enthalpies of vaporization, ?(g)lH(o)m(T(av)), at the average temperature, T(av) = 445.65 K, for the ionic liquids (ILs) 1-alkyl-3-methylimidazolium propionate [C(n)mim][Pro](n = 4, 5, 6) were determined. Using Verevkin's method, the difference of heat capacities between the vapor phase and the liquid phase, ?(g)lC(p)(o)m, for [C(n)mim][Pro](n = 2, 3, 4, 5, 6), were calculated based on the statistical thermodynamics. Therefore, with the use of ?(g)lC(p)(o)m, the values of ?(g)lH(o)m(T(av)) were transformed into ?(g)lH(o)m(298), 126.8, 130.3, and 136.5 for [C(n)mim][Pro](n = 4, 5, 6), respectively. In terms of the new scale of polarity for ILs, the order of the polarity of [C(n)mim][Pro](n = 2, 3, 4, 5, 6) was predicted, that is, the polarity decreases with increasing methylene. A new model of the relationship between the surface tension and the enthalpy of vaporization for aprotic ILs was put forward and used to predict the surface tension for [C(n)mim][Pro](n = 2, 3, 4, 5, 6) and others. The predicted surface tension for the ILs is in good agreement with the experimental one. PMID:25350322

  12. Ionic liquid effects on a multistep process. Increased product formation due to enhancement of all steps.

    PubMed

    Keaveney, Sinead T; Haines, Ronald S; Harper, Jason B

    2015-09-01

    The reaction of a series of substituted benzaldehydes with hexylamine was examined in acetonitrile and an ionic liquid. In acetonitrile, as the electron withdrawing nature of the substituent increases, the overall addition-elimination process becomes faster as does the build-up of the aminol intermediate. Under equivalent conditions in an ionic liquid, less intermediate build up is observed, and the effect on the rate on varying the substituent is different to that in acetonitrile. Extensive kinetic analysis shows that the ionic liquid solvent increases the rate constant of all steps of the reaction, resulting in faster product formation relative to acetonitrile; these effects increase with the proportion of ionic liquid in the reaction mixture. Differences in the equilibrium position of the addition step in the ionic liquid were found to account for both the decrease in intermediate build up relative to acetonitrile, as well as the differing trend in the overall rate of product formation as the substituent was changed. The microscopic origins of these ionic liquid effects were probed through temperature dependent analyses, highlighting the subtle balance of interactions between the ionic liquid and species along the reaction coordinate, particularly the importance of charge development in the transition state. PMID:26214746

  13. Direct Capture of Organic Acids From Fermentation Media Using Ionic Liquids

    SciTech Connect

    Klasson, K.T.

    2004-11-03

    Several ionic liquids have been investigated for the extraction of organic acids from fermentation broth. Partitioning of representative organic acids (lactic, acetic, and succinic) between aqueous solution and nine hydrophobic ionic liquids was measured. The extraction efficiencies were strongly dependent on pH of the aqueous phase. Distribution coefficient was very good (approximately 60) at low succinic acid concentrations for one of the ionic liquids (trihexyltetradecylphosphonium methanesulfonate) at neutral pH. However, this ionic liquid had to be diluted with nonanol due to its high viscosity in order to be useful. A diluent (trioctylamine) was also added to this mixture. The results suggest that an extraction system based on ionic liquids may be feasible for succinic acid recovery from fermentation broth and that two ideal extraction stages are needed to reduce the concentration from 33 g/L to 1 g/L of succinic acid. Further studies are needed to evaluate other issues related to practical applications, including ionic liquid loss in the process, toxicity effects of ionic liquids during simultaneous fermentation and extractions.

  14. Micellization of sodium laurylethoxysulfate (SLES) and short chain imidazolium ionic liquids in aqueous solution.

    PubMed

    Comelles, Francesc; Ribosa, Isabel; González, Juan José; Garcia, M Teresa

    2014-07-01

    In the present study the interactions between an anionic surfactant sodium laurylethoxysulfate (SLES) and three short chain imidazolium (1-butyl-3-methylimidazolium) based ionic liquids (bmim-octyl SO4, bmim-methyl SO4 and bmim-BF4) in aqueous solution have been investigated. Generally when a surfactant is dissolved in a hydrophilic ionic liquid aqueous solution the critical micelle concentration (cmc) obtained is attributed to the surfactant because the ionic liquid (IL) is considered to be only a cosolvent. However, some short hydrophilic ionic liquids posses surface activity in aqueous solution and behave like a surfactant. In that case mixed aggregates between surfactant and ionic liquid can be formed. The three SLES/IL systems here studied have been treated as typical binary surfactant mixtures in aqueous solution. Surface tension measurements have revealed that mixed aggregates and monolayers of surfactant and ionic liquid instead of single surfactant are responsible for the surface active properties of these aqueous solutions. From the Regular Solution Theory, negative interaction parameters (?) for mixed aggregates and monolayers have been found for all SLES/IL mole ratios indicating synergism between the anionic surfactant and the ionic liquids. PMID:24776662

  15. Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: Biomass fractionation, enzymatic digestion and ionic liquid reuse.

    PubMed

    An, Yan-Xia; Zong, Min-Hua; Wu, Hong; Li, Ning

    2015-09-01

    Pretreatment of lignocelluloses is a key step in the biorefinery for production of biofuels and valuable platform chemicals. In this work, various lignocelluloses were pretreated using cholinium ionic liquids (ILs) that are wholly composed of biomaterials, and fractionated into carbohydrate-rich materials (CRMs) and lignin-rich materials (LRMs). Cholinium ILs were found to be effective pretreatment solvents for grass lignocelluloses as well as eucalyptus, resulting in significant improvements in the glucose yields (58-75%) in subsequent enzymatic hydrolysis, while they were inefficient to make pine susceptible to biodegradation. Approximately 46% of lignin in native rice straw was fractionated as LRM after pretreatment using cholinium argininate ([Ch][Arg]). [Ch][Arg] showed excellent recyclability, and the total recovery was as high as 75% after reused for 8 cycles. Besides, rice straw pretreated by the recycled IL remained highly digestible, and good glucose yields (63-75%) were achieved after its enzymatic hydrolysis. PMID:26026293

  16. Influence of ionic association, transport properties, and solvation on the catalytic hydrogenation of 1,3-cyclohexadiene in ionic liquids.

    PubMed

    Podgoršek, Ajda; Salas, Gorka; Campbell, Paul S; Santini, Catherine C; Pádua, Agílio A H; Costa Gomes, Margarida F; Fenet, Bernard; Chauvin, Yves

    2011-10-27

    The influence of the nature of two different ionic liquids, namely 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], and 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(1)C(4)Im][NTf(2)], on the catalytic hydrogenation of 1,3-cyclohexadiene with [Rh(COD)(PPh(3))(2)][NTf(2)] (COD = 1,5-cyclooctadiene) was studied. Initially, the effect of different concentrations of 1,3-cyclohexadiene on the molecular interactions and on the structure in two ionic liquids was investigated by NMR and by molecular dynamic simulations. It was found that in both ionic liquids 1,3-cyclohexadiene is solvated preferentially in the lipophilic regions. Furthermore, the higher solubility of 1,3-cyclohexadiene in [C(1)C(4)Im][NTf(2)] and the smaller positive values of the excess molar enthalpy of mixing for the 1,3-cyclohexadiene + [C(1)C(4)Im][NTf(2)] system in comparison with 1,3-cyclohexadiene + [C(1)C(1)C(4)Im][NTf(2)] indicate more favorable interactions between 1,3-cyclohexadiene and the C(1)C(4)Im(+) cation than with the C(1)C(1)C(4)Im(+) cation. Subsequently, diffusivity and conductivity measurements of the 1,3-cyclohexadiene + ionic liquid mixtures at different compositions allowed a characterization of mass and charge transport in the media and access to the ionicity of ionic liquids in the mixture. From the dependence of the ratio between molar conductivity and the conductivity inferred from NMR diffusion measurements, ?(imp)/?(NMR), on concentration of 1,3-cyclohexadiene in the ionic liquid mixture, it was found that increasing the amount of 1,3-cyclohexadiene leads to a decrease in the ionicity of the medium. Finally, the reactivity of the catalytic hydrogenation of 1,3-cyclohexadiene using [Rh(COD)(PPh(3))(2)][NTf(2)] performed in [C(1)C(4)Im][NTf(2)] at different compositions of 1,3-cyclohexadiene and in [C(1)C(1)C(4)Im][NTf(2)] at one composition was related linearly to the viscosity, hence the reaction rate is determined by the mass transport properties of the media. PMID:21910488

  17. Structure study of a microemulsion system with an ionic liquid.

    PubMed

    Kang, Tae Hui; Jeon, Yoonnam; Kim, Mahn Won

    2015-10-14

    We found that an ionic liquid (IL) with a long alkyl chain moiety, 1-tetradecyl-3-methylimidazolium chloride (C14MIM·Cl), forms a single crystal after the addition of octanol in an alkane solvent. But the solution exhibits a structural change after adding a small amount of water. An optically clear solution is found within limits, and it is stable for several months. Since the IL molecule has an amphiphilic property, it behaves as a surfactant in the microemulsion system. But the IL formed a single crystal rather than a lyotropic liquid crystalline structure, unlike a typical surfactant. Therefore, it is important to understand the structure of the microemulsion system. We used the small angle neutron scattering (SANS) technique to investigate the structure. The scattering intensity was analyzed using a spherical core-shell model with the Schultz size distribution, and a contrast matching method was used to study the internal structure. The structure of the solution is confirmed to be a water-in-oil microemulsion system, and the swelling law is obeyed in the microemulsion system. PMID:26439624

  18. Thermoelectric energy recovery at ionic-liquid/electrode interface

    NASA Astrophysics Data System (ADS)

    Bonetti, Marco; Nakamae, Sawako; Huang, Bo Tao; Salez, Thomas J.; Wiertel-Gasquet, Cécile; Roger, Michel

    2015-06-01

    A thermally chargeable capacitor containing a binary solution of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide in acetonitrile is electrically charged by applying a temperature gradient to two ideally polarisable electrodes. The corresponding thermoelectric coefficient is -1.7 mV/K for platinum foil electrodes and -0.3 mV/K for nanoporous carbon electrodes. Stored electrical energy is extracted by discharging the capacitor through a resistor. The measured capacitance of the electrode/ionic-liquid interface is 5 ?F for each platinum electrode while it becomes four orders of magnitude larger, ?36 mF, for a single nanoporous carbon electrode. Reproducibility of the effect through repeated charging-discharging cycles under a steady-state temperature gradient demonstrates the robustness of the electrical charging process at the liquid/electrode interface. The acceleration of the charging by convective flows is also observed. This offers the possibility to convert waste-heat into electric energy without exchanging electrons between ions and electrodes, in contrast to what occurs in most thermogalvanic cells.

  19. Multiscale modeling of the trihexyltetradecylphosphonium chloride ionic liquid.

    PubMed

    Wang, Yong-Lei; Sarman, Sten; Li, Bin; Laaksonen, Aatto

    2015-09-14

    A multiscale modeling protocol was sketched for the trihexyltetradecylphosphonium chloride ([P6,6,6,14]Cl) ionic liquid (IL). The optimized molecular geometries of an isolated [P6,6,6,14] cation and a tightly bound [P6,6,6,14]Cl ion pair structure were obtained from quantum chemistry ab initio calculations. A cost-effective united-atom model was proposed for the [P6,6,6,14] cation based on the corresponding atomistic model. Atomistic and coarse-grained molecular dynamics simulations were performed over a wide temperature range to validate the proposed united-atom [P6,6,6,14] model against the available experimental data. Through a systemic analysis of volumetric quantities, microscopic structures, and transport properties of the bulk [P6,6,6,14]Cl IL under varied thermodynamic conditions, it was identified that the proposed united-atom [P6,6,6,14] cationic model could essentially capture the local intermolecular structures and the nonlocal experimental thermodynamics, including liquid density, volume expansivity and isothermal compressibility, and transport properties, such as zero-shear viscosity, of the bulk [P6,6,6,14]Cl IL within a wide temperature range. PMID:26256677

  20. Thermoelectric energy recovery at ionic-liquid/electrode interface

    E-print Network

    Marco Bonetti; Sawako Nakamae; Bo Tao Huang; Thomas J. Salez; Cecile Wiertel-Gasquet; Michel Roger

    2015-06-22

    A Thermally Chargeable Capacitor containing a binary solution of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide (EMIMTFSI) in acetonitrile is electrically charged by applying a tempera- ture gradient to two ideally polarisable electrodes. The corresponding thermoelectric coefficient is -1.7 mV/K for platinum foil electrodes and -0.3 mV/K for nanoporous carbon electrodes. Stored electrical energy is extracted by discharging the capacitor through a resistor. The measured capacitance of the electrode/ionic- liquid interface is 5 micro $\\mu$F for each platinum electrode while it becomes four orders of magnitude larger $\\approx 36$ mF for a single nanoporous carbon electrode. Reproducibility of the effect through repeated charging-discharging cycles under a steady-state temperature gradient demonstrates the robustness of the electrical charging pro- cess at the liquid/electrode interface. The acceleration of the charging by convective flows is also observed. This offers the possibility to convert waste-heat into electric energy without exchanging electrons between ions and electrodes, in contrast to what occurs in most thermogalvanic cells.

  1. On the collective network of ionic liquid/water mixtures. IV. Kinetic and rotational depolarization

    NASA Astrophysics Data System (ADS)

    Schröder, Christian; Sega, Marcello; Schmollngruber, Michael; Gailberger, Elias; Braun, Daniel; Steinhauser, Othmar

    2014-05-01

    Dielectric spectroscopy is a measure of the collective Coulomb interaction in liquid systems. Adding ionic liquids to an aqueous solution results in a decrease of the static value of the generalized dielectric constant which cannot be attributed to kinetic depolarization models characterized by the static conductivity and rotational relaxation constant. However, a dipolar Poisson-Boltzmann model computing the water depolarization in the proximity of ions is not only successful for simple electrolytes but also in case of molecular ionic liquids. Moreover, our simple geometric hydration model is also capable to explain the dielectric depolarization. Both models compute the dielectric constant of water and obtain the overall dielectric constant by averaging the values of its components, water and the ionic liquid, weighted by their volume occupancies. In this sense, aqueous ionic liquid mixtures seem to behave like polar mixtures.

  2. Ionogel based on biopolymer-silica interpenetrated networks: dynamics of confined ionic liquid with lithium salt.

    PubMed

    Cerclier, Carole V; Zanotti, Jean-Marc; Bideau, Jean Le

    2015-11-28

    Obtaining solid-state electrolytes with good electrochemical performances remains challenging. Ionogels, i.e. solid host networks confining an ionic liquid, are promising as they keep the macroscopic properties of the liquid. However, confinement of an ionic liquid can imply important changes in its molecular dynamics, depending on the route of synthesis and on the confining network. We studied this effect on an imidazolium based ionic liquid with its lithium salt confined in a hybrid biopolymer-silica matrix. Dynamics of bulk and confined solution was probed by quasi-elastic neutron scattering (QENS) which revealed a weakly slowed dynamics of imidazolium-based ionic liquid inside the polymer-silica host network. PMID:26477584

  3. New ionic liquids based on complexation of dipropylsulfide and AlCl3 for electrochodeposition of aluminum

    DOE PAGESBeta

    Fang, Youxing; Jiang, Xueguang; Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new kind of ionic liquid based on complexation of dipropyl sulfide (DPS) and AlCl3 has been prepared. The equivalent concentration of AlCl3 in the ionic liquid is as high as 2.3 M. More importantly, it is highly fluidic and exhibits an ambient ionic conductivity of 1.25 x 10-4 S cm-1. This new ionic liquid can be successfully used as an electrolyte for electrodeposition of aluminum.

  4. Formation of p-n-p junction with ionic liquid gate in graphene

    SciTech Connect

    He, Xin; Tang, Ning E-mail: geweikun@mail.tsinghua.edu.cn Duan, Junxi; Zhang, Yuewei; Lu, Fangchao; Xu, Fujun; Yang, Xuelin; Gao, Li; Wang, Xinqiang; Shen, Bo E-mail: geweikun@mail.tsinghua.edu.cn; Ge, Weikun E-mail: geweikun@mail.tsinghua.edu.cn

    2014-04-07

    Ionic liquid gating is a technique which is much more efficient than solid gating to tune carrier density. To observe the electronic properties of such a highly doped graphene device, a top gate made of ionic liquid has been used. By sweeping both the top and back gate voltage, a p-n-p junction has been created. The mechanism of forming the p-n-p junction has been discussed. Tuning the carrier density by ionic liquid gate can be an efficient method to be used in flexible electronics.

  5. Synthesis, characterization and the antimicrobial activity of new eco-friendly ionic liquids.

    PubMed

    Messali, Mouslim; Moussa, Ziad; Alzahrani, Abdullah Y; El-Naggar, Moustafa Y; ElDouhaibi, Ahmad S; Judeh, Zaher M A; Hammouti, Belkheir

    2013-06-01

    A green microwave-assisted procedure for the preparation of a series of 24 new 1-alkyl-3-ethylimidazolium ionic liquids with different functional groups in the alkyl chain is described. Moreover, the synthesis of a variety of ten new geminal dicationic ionic liquids is reported. Their structures were characterized by FT-IR, (1)H NMR, (13)C NMR, (11)B, (19)F, (31)P, and mass spectrometry. Several ionic liquids were selected for antimicrobial activity studies, yielding very interesting and promising results. PMID:23357867

  6. Protic ionic liquid as additive on lipase immobilization using silica sol-gel.

    PubMed

    de Souza, Ranyere Lucena; de Faria, Emanuelle Lima Pache; Figueiredo, Renan Tavares; Freitas, Lisiane dos Santos; Iglesias, Miguel; Mattedi, Silvana; Zanin, Gisella Maria; dos Santos, Onélia Aparecida Andreo; Coutinho, João A P; Lima, Álvaro Silva; Soares, Cleide Mara Faria

    2013-03-01

    Ionic liquids (ILs) have evolved as a new type of non-aqueous solvents for biocatalysis, mainly due to their unique and tunable physical properties. A number of recent review papers have described a variety of enzymatic reactions conducted in IL solutions, on the other hand, to improve the enzyme's activity and stability in ILs; major methods being explored include the enzyme immobilization (on solid support, sol-gel, etc.), protic ionic liquids used as an additive process. The immobilization of the lipase from Burkholderia cepacia by the sol-gel technique using protic ionic liquids (PIL) as additives to protect against inactivation of the lipase due to release of alcohol and shrinkage of the gel during the sol-gel process was investigated in this study. The in?uence of various factors such as the length of the alkyl chain of protic ionic liquids (monoethanolamine-based) and a concentration range between 0.5 and 3.0% (w/v) were evaluated. The resulting hydrophobic matrices and immobilized lipases were characterised with regard to specific surface area, adsorption-desorption isotherms, pore volume (V(p)) and size (d(p)) according to nitrogen adsorption and scanning electron microscopy (SEM), physico-chemical properties (thermogravimetric - TG, differential scanning calorimetry - DSC and Fourier transform infrared spectroscopy - FTIR) and the potential for ethyl ester and emulsifier production. The total activity yields (Y(a)) for matrices of immobilized lipase employing protic ionic liquids as additives always resulted in higher values compared with the sample absent the protic ionic liquids, which represents 35-fold increase in recovery of enzymatic activity using the more hydrophobic protic ionic liquids. Compared with arrays of the immobilized biocatalyst without additive, in general, the immobilized biocatalyst in the presence of protic ionic liquids showed increased values of surface area (143-245 m(2) g(-1)) and pore size (19-38 Å). Immobilization with protic ionic liquids also favoured reduced mass loss according to TG curves (always less than 42.9%) when compared to the immobilized matrix without protic ionic liquids (45.1%), except for the sample containing 3.0% protic ionic liquids (46.5%), verified by thermogravimetric analysis. Ionic liquids containing a more hydrophobic alkyl group in the cationic moiety were beneficial for recovery of the activity of the immobilized lipase. The physico-chemical characterization confirmed the presence of the enzyme and its immobilized derivatives obtained in this study by identifying the presence of amino groups, and profiling enthalpy changes of mass loss. PMID:23410924

  7. Ionic Liquid Development for Absorption Heat Pump Applications

    SciTech Connect

    MAERZKE, Katie; MOZURKEWICH, George; Abdelaziz, Omar; Gluesenkamp, Kyle R; Schneider, William F; Morrison, Doug; Maginn, Prof. Edward

    2014-01-01

    Ionic liquids (ILs) are a unique class of solvents with many potential applications, including absorption heating/cooling. Due to the large number of possible combinations of cations and anions, it is possible to tune the IL to obtain the required properties for the application of interest. Many ILs are very hydrophilic, while even the most hydrophobic ILs often absorb significant amounts of water. The presence of water in an IL can have a large effect on the system properties. For instance, a small amount of dissolved water often leads to a dramatic reduction in the viscosity of the mixture. Dissolved water also affects the ionic conductivity of ILs and alters the solvation power of ILs for both polar and non-polar solutes. Knowledge of the phase diagram of these IL/water mixtures therefore is essential when designing absorption heating systems. Measuring isotherms often requires time consuming and/or expensive experiments, and does not necessarily lead to a deeper understanding of the molecular level interactions responsible for water-IL interactions. In contrast, molecular simulations are relatively inexpensive to perform, allowing one to screen potential ILs for a given application. Simulation also provides a detailed picture of how water and a given IL interact, thereby providing insight into ways of designing an IL to have a desired water solubility. Toward this end, atomistic-level Monte Carlo (MC) simulations have been performed to predict isotherms for a variety of IL/water mixtures. The simulations predict that exchanging some of the IL cations with a small metal cation can lead to an increase in the hydrophilicity of the IL, which impacts the capacity of the fluid and the enthalpy of mixing. Molecular dynamics simulations, which unlike Monte Carlo simulations capture timedependent properties, were also carried out to estimate the relative viscosities of the solutions.

  8. Synthesis and Applications of Ionic Liquids Derived from Natural Sugars

    NASA Astrophysics Data System (ADS)

    Chiappe, Cinzia; Marra, Alberto; Mele, Andrea

    Aiming to develop environmentally compatible chemical syntheses, the replacement of traditional organic solvents with ionic liquids (ILs) has attracted considerable attention. ILs are special molten salts with melting points below 100°C that are typically constituted of organic cations (imidazolium, pyridinium, sulfonium, phosphonium, etc.) and inorganic anions. Due to their ionic nature, they are endowed with high chemical and thermal stability, good solvent properties, and non-measurable vapor pressure. Although the recovery of unaltered ILs and recycling partly compensate their rather high cost, it is important to develop new synthetic approaches to less expensive and environmentally sustainable ILs based on renewable raw materials. In fact, most of these alternative solvents are still prepared starting from fossil feedstocks. Until now, only a limited number of ILs have been prepared from renewable sources. Surprisingly, the most available and inexpensive raw material, i.e., carbohydrates, has been hardly exploited in the synthesis of ILs. In 2003 imidazolium-based ILs were prepared from d-fructose and used as solvents in Mizoroki-Heck and Diels-Alder reactions. Later on, the first chiral ILs derived from sugars were prepared from methyl d-glucopyranoside. In the same year, a family of new chiral ILs, obtained from commercial isosorbide (dianhydro-d-glucitol), was described. A closely related approach was followed by other researchers to synthesize mono- and bis-ammonium ILs from isomannide (dianhydro-d-mannitol). Finally, a few ILs bearing a pentofuranose unit as the chiral moiety were prepared using sugar phosphates as glycosyl donors and 1-methylimidazole as the acceptor.

  9. Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends

    PubMed Central

    Ye, Hui; Huang, Jian; Xu, Jun John; Khalfan, Amish; Greenbaum, Steve G.

    2009-01-01

    Ionic liquids thermodynamically compatible with Li metal are very promising for applications to rechargeable lithium batteries. 1-methyl-3-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P13TFSI) is screened out as a particularly promising ionic liquid in this study. Dimensionally stable, elastic, flexible, nonvolatile polymer gel electrolytes (PGEs) with high electrochemical stabilities, high ionic conductivities and other desirable properties have been synthesized by dissolving Li imide salt (LiTFSI) in P13TFSI ionic liquid and then mixing the electrolyte solution with poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP) copolymer. Adding small amounts of ethylene carbonate to the polymer gel electrolytes dramatically improves the ionic conductivity, net Li ion transport concentration, and Li ion transport kinetics of these electrolytes. They are thus favorable and offer good prospects in the application to rechargeable Li batteries including open systems like Li/air batteries, as well as more “conventional” rechargeable lithium and lithium ion batteries. PMID:20354587

  10. Cation symmetry effect on the volatility of ionic liquids.

    PubMed

    Rocha, Marisa A A; Coutinho, João A P; Santos, Luís M N B F

    2012-09-01

    This work reports the first data for the vapor pressures at several temperatures of the ionic liquids, [C(N/2)C(N/2)im][NTf(2)] (N = 4, 6, 8, 10, 12) measured using a Knudsen effusion apparatus combined with a quartz crystal microbalance. The morphology and the thermodynamic parameters of vaporization derived from the vapor pressures, are compared with those for the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide series, [C(N-1)C(1)im][NTf(2)] (N = 3 - 9, 11, and 13). It was found that the volatility of [C(N/2)C(N/2)im][NTf(2)] series is significantly higher than the asymmetric cation ILs with the same total number of carbons in the alkyl side chains, [C(N-1)C(1)im][NTf(2)]. The observed higher volatility is related with the lower enthalpy of vaporization. The symmetric cation, [C(N/2)C(N/2)im][NTf(2)], presents lower entropies of vaporization compared with the asymmetric [C(N-1)C(1)im][NTf(2)], indicating an increase of the absolute liquid entropy in the symmetric cation ILs, being a reflection of a change of the ion dynamics in the IL liquid phase. Moreover both the enthalpy and entropy of vaporization of the [C(N/2)C(N/2)im][NTf(2)] ILs, present a clear odd-even effect with higher enthalpies/entropies of vaporization for the odd number of carbons in each alkyl chain ([C(3)C(3)im][NTf(2)] and [C(5)C(5)im][NTf(2)]). PMID:22873766

  11. Divergent trend in density versus viscosity of ionic liquid/water mixtures: a molecular view from guanidinium ionic liquids.

    PubMed

    Singh, Akhil Pratap; Gardas, Ramesh L; Senapati, Sanjib

    2015-09-23

    Ionic liquids (ILs) have shown great potential in the dissolution and stability of biomolecules when a low-to-moderate quantity of water is added. Hence, determining the thermophysical properties and understanding these novel mixtures at the molecular level are of both fundamental and practical importance. In this context, here we report the synthesis of two nontoxic guanidinium cation based ILs, tetramethylguanidinium benzoate [TMG][BEN] and tetramethylguanidinium salicylate [TMG][SAL], and present a detailed comparison of their thermophysical properties in the presence of water. The results show that the [TMG][SAL]/water mixtures have higher density and higher apparent molar volume, but a lower viscosity and higher compressibility than the [TNG][BEN]/water mixtures. The measured viscosity and compressibility data are explained from ab initio quantum mechanical calculations and liquid-phase molecular dynamics simulations, where salicylate anions of denser [TMG][SAL]/water were found to exist as isolated ions due to intramolecular H-bonding. On the contrary, intermolecular H-bonding among the benzoate anions and their strong tendency to form an extended H-bonding network with water made [TMG][BEN]/water solutions more viscous and less compressible. This study shows the importance of probing these emerging solvents at the molecular-to-atomic level, which could be helpful in their optimal usage for task-specific applications. PMID:26347332

  12. Bilayer membrane permeability of ionic liquid-filled block copolymer vesicles in aqueous solution.

    PubMed

    Bai, Zhifeng; Zhao, Bin; Lodge, Timothy P

    2012-07-19

    The bilayer membrane permeability of block copolymer vesicles ("polymersomes") with ionic liquid interiors dispersed in water is quantified using fluorescence quenching. Poly((1,2-butadiene)-b-ethylene oxide) (PB-PEO) block copolymer vesicles in water with their interiors filled with a common hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide, were prepared containing a hydrophobic dye, Nile Red, by intact migration of dye-encapsulated vesicles from the ionic liquid to water at room temperature. A small quencher molecule, dichloroacetamide, was added to the aqueous solution of the dye-loaded vesicles, and the permeation of the quencher passing through the membrane into the interior was determined from the fluorescence quenching kinetics. Rapid permeation of the quencher across the nanoscale membrane was observed, consistent with the high fluidity of the liquid polybutadiene membrane. Two different PB-PEO copolymers were employed, in order to vary the thickness of the solvophobic membrane. A significant increase in membrane permeability was also observed with decreasing membrane thickness, which is tentatively attributable to differences in quencher solubility in the membranes. Quantitative migration of the vesicles from the aqueous phase back to an ionic liquid phase was achieved upon heating. These microscopically heterogeneous and thermoresponsive vesicles with permeable and robust membranes have potential as recyclable nanoreactors, in which the high viscosity and capital expense of an ionic liquid reaction medium can be mitigated, while retaining the desirable features of ionic liquids as reaction media, and facile catalyst recovery. PMID:22765509

  13. Morphology and Ionic Conductivity of Block Copolymer Electrolytes Containing Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Park, Moon Jeong

    2015-03-01

    The global energy crisis and an increase in environmental pollution in the recent years have drawn the attention of the scientific community towards the development of efficient electrochemical devices. Polymers containing charged species have the potential to serve as electrolytes in next-generation devices and achieving high ion transport properties in these electrolytes is the key to improving their efficiency. Although the synthesis and characterization of a wide variety of ion-containing polymers have been extensively reported over the last decade, quantitative understanding of the factors governing the ion transport properties of these materials is in its infancy. In this talk, I will present the current understanding of the diverse factors affecting the thermodynamics, morphologies and ion transport of ion-containing polymers by focusing on the use of ionic liquids (ILs). Various strategies for accessing improved transport properties of IL-containing polymers are elucidated by focusing on the role of IL-polymer interactions. The major accomplishment of obtaining well-defined morphologies for these IL-containing polymers by the use of block copolymer is particularly emphasized as a novel means of controlling the transport properties. The application of IL-incorporated polymer electrolytes in high temperature fuel cells and electro-active actuators is also enclosed.

  14. Effect of protic ionic liquid and surfactant structure on partitioning of polyoxyethylene non-ionic surfactants.

    PubMed

    Topolnicki, Inga L; FitzGerald, Paul A; Atkin, Rob; Warr, Gregory G

    2014-08-25

    The partitioning constants and Gibbs free energies of transfer of poly(oxyethylene) n-alkyl ethers between dodecane and the protic ionic liquids (ILs) ethylammonium nitrate (EAN) and propylammonium nitrate (PAN) are determined. EAN and PAN have a sponge-like nanostructure that consists of interpenetrating charged and apolar domains. This study reveals that the ILs solvate the hydrophobic and hydrophilic parts of the amphiphiles differently. The ethoxy groups are dissolved in the polar region of both ILs by means of hydrogen bonds. The environment is remarkably water-like and, as in water, the solubility of the ethoxy groups in EAN decreases on warming, which underscores the critical role of the IL hydrogen-bond network for solubility. In contrast, amphiphile alkyl chains are not preferentially solvated by the charged or uncharged regions of the ILs. Rather, they experience an average IL composition and, as a result, partitioning from dodecane into the IL increases as the cation alkyl chain is lengthened from ethyl to propyl, because the IL apolar volume fraction increases. Together, these results show that surfactant dissolution in ILs is related to structural compatibility between the head or tail group and the IL nanostructure. Thus, these partitioning studies reveal parameters for the effective molecular design of surfactants in ILs. PMID:24862589

  15. Extraction of Biofuels and Biofeedstocks from Aqueous Solutions Using Ionic Liquids

    E-print Network

    Stadtherr, Mark A.

    , as biofeedstocks for production of other chemicals, and as bio-based solvents for various applications. For example consider the design feasibility of using ionic liquids as solvents in liquid-liquid extractions-methylimidazolium bis(trifluoromethylsulfonyl)imide shows significant promise as a solvent for extracting 1-butanol

  16. Dynamics of Isolated Water Molecules in a Sea of Ions in a Room Temperature Ionic Liquid

    E-print Network

    Fayer, Michael D.

    Dynamics of Isolated Water Molecules in a Sea of Ions in a Room Temperature Ionic Liquid Daryl B. In such studies, water interacts with ions but also with a large number of other water molecules. Room temperature that are liquids at room temperature. Because RTILs are themselves liquids, it is possible to study water

  17. Ionic Liquid Films at the Water-Air Interface: Langmuir Isotherms of Tetra-alkylphosphonium-Based Ionic Liquids.

    PubMed

    Shimizu, Karina; Canongia Lopes, José N; Gonçalves da Silva, Amélia M P S

    2015-08-01

    The behavior of ionic liquids trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide and trihexyl(tetradecyl)phosphonium dicyanamide, [P6?6?6?14][Ntf2] and [P6 6 6 14][N(CN)2], respectively, at the water-air interface was investigated using the Langmuir trough technique. The obtained surface pressure versus mean molecular area (MMA) isotherms, ?-A, and surface potential versus MMA isotherms, ?V-A, show distinct interfacial behavior between the two systems. The results were interpreted at a molecular level using molecular dynamics simulations: the different compression regimes along the [P6 6 6 14][Ntf2] isotherm correspond to the self-organization of the ions at the water surface into compact and planar monolayers that coalesce at an MMA value of ca. 1.85 nm(2)/ion pair to form an expanded liquidlike layer. Upon further compression, the monolayer collapses at around 1.2 nm(2)/ion pair to yield a progressively thicker and less organized layer. These transitions are much more subdued in the [P6 6 6 14][N(CN)2] system because of the more hydrophilic nature of the dicyanamide anion. The numerical density profiles obtained from the MD simulation trajectories are also able to emphasize the very unusual packing of the four long alkyl side chains of the cation above and below the ionic layer that forms at the water surface. Such a distribution is also different for the two studied systems during the different compression regimes. PMID:26161843

  18. Reduction of Carbon Dioxide to Formate at Low Overpotential Using a Superbase Ionic Liquid

    PubMed Central

    Hollingsworth, Nathan; Taylor, S F Rebecca; Galante, Miguel T; Jacquemin, Johan; Longo, Claudia; Holt, Katherine B; de Leeuw, Nora H; Hardacre, Christopher

    2015-01-01

    A new low-energy pathway is reported for the electrochemical reduction of CO2 to formate and syngas at low overpotentials, utilizing a reactive ionic liquid as the solvent. The superbasic tetraalkyl phosphonium ionic liquid [P66614][124Triz] is able to chemisorb CO2 through equimolar binding of CO2 with the 1,2,4-triazole anion. This chemisorbed CO2 can be reduced at silver electrodes at overpotentials as low as 0.17 V, forming formate. In contrast, physically absorbed CO2 within the same ionic liquid or in ionic liquids where chemisorption is impossible (such as [P66614][NTf2]) undergoes reduction at significantly increased overpotentials, producing only CO as the product. PMID:26403938

  19. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  20. Determination of preservatives in soft drinks by capillary electrophoresis with ionic liquids as the electrolyte additives.

    PubMed

    Sun, Bingbing; Qi, Li; Wang, Minglin

    2014-08-01

    A capillary electrophoresis method for separating preservatives with various ionic liquids as the electrolyte additives has been developed. The performances for separation of the preservatives using five ionic liquids with different anions and different substituted group numbers on imidazole ring were studied. After investigating the influence of the key parameters on the separation (the concentration of ionic liquids, pH, and the concentration of borax), it has been found that the separation efficiency could be improved obviously using the ionic liquids as the electrolyte additives and tested preservatives were baseline separated. The proposed capillary electrophoresis method exhibited favorable quantitative analysis property of the preservatives with good linearity (r(2) = 0.998), repeatability (relative standard deviations ? 3.3%) and high recovery (79.4-117.5%). Furthermore, this feasible and efficient capillary electrophoresis method was applied in detecting the preservatives in soft drinks, introducing a new way for assaying the preservatives in food products. PMID:24910409

  1. PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)

    EPA Science Inventory

    The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...

  2. Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural

    SciTech Connect

    Zhao, Haibo; Holladay, John E.; Brown, Heather M.; Zhang, Z. Conrad

    2007-06-15

    Sugars were converted to hydroxymethylfurfural (HMF) at high yield in ionic liquids without the addition of Bronsted acids. Very small amount of certain metal halides significantly reduced the fructose dehydration barrier in ionic liquids producing HMF at high yields. Most remarkably, glucose, a common sugar molecule, was selectively converted to HMF in good yield in ionic liquids containing a small amount of CrCl2. Thus CrCl2 is unique among metal chlorides tested for its effectiveness in both isomerizing glucose as well as dehydrating fructose. Only negligble amount of levulinic acid was formed in the reactions. The catalytic activity of metal chlorides for sugar conversion in ionic liquids is perhaps related to hydroxyl group of the sugar forming metal complexes with the unsaturated metal center.

  3. DESIGN AND EVALUATION OF IONIC LIQUIDS AS NOVEL CO2 ABSORBENTS

    SciTech Connect

    Edward J. Maginn

    2004-12-31

    Progress from the first quarter of activity on the project ''Design and Evaluation of Ionic Liquids as Novel CO{sub 2} Absorbents'' is provided. Major activities in three areas are reported: ''assembling equipment and a research team, compound synthesis and molecular modeling''. Nine new ionic liquid compounds have been made or acquired, and are in line for physical property testing to assess their potential for CO{sub 2} sequestration. Quantum mechanical calculations between CO{sub 2} and different ionic liquids have been conducted. The simulations have shed light on the nature of interactions between CO{sub 2} and the ionic liquids, and are providing insight that will be used to suggest new compounds to be synthesized and tested.

  4. In silico rational design of ionic liquids for the exfoliation and dispersion of boron nitride nanosheets.

    PubMed

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2015-12-23

    A requirement for exploiting most of the unique properties of boron-nitride (BN) nanosheets is their isolation from the bulk material. A rational design of task-specific ionic liquids (ILs) through DFT simulations is reported in this work. The applied computational protocol allowed the screening of large IL families, which was carried out bearing in mind the achievement of strong ?-? stacking between the anions and BN nanosheets as well as a negative charge transfer from the anion to the surface. The selected ionic liquids yielded strong interaction energies with BN nanosheets and high charge transfer values, while the main features of the ionic liquid are not affected in the presence of nanosheets. DFT simulations provided a detailed picture of the interaction mechanism and useful structure-property relationships in the search of a new ionic liquid for BN exfoliation. PMID:26658819

  5. A Microfabricated Planar Electrospray Array Ionic Liquid Ion Source With Integrated Extractor

    E-print Network

    Gassend, Blaise

    This paper reports the design, fabrication, and experimental characterization of a fully microfabricated planar array of externally fed electrospray emitters that produces heavy molecular ions from the ionic liquids ...

  6. Improved Turn-on Times of Iridium Electroluminescent Devices by Use of Ionic Liquids

    E-print Network

    Bernhard, Stefan

    Improved Turn-on Times of Iridium Electroluminescent Devices by Use of Ionic Liquids Sara T. Parker devices based on the iridium complex [Ir(ppy)2(dtb-bpy)]+(PF6 - ), where ppy is 2-phenylpyridine and dtb

  7. Theoretical Investigations on Nanoporpus Materials and Ionic Liquids for Energy Storage 

    E-print Network

    Mani Biswas, Mousumi

    2012-02-14

    by adsorption. In this regard carbon nanotube and Metal Organic Framework (MOFs) based materials are worth studying. Ionic liquids (IL) are potential electrolytes that can improve energy storage capacity and safety in Li ion batteries. Therefore it is important...

  8. Life Cycle Assessment of an Ionic LIquid versus Traditional Solvents and Their Applications

    EPA Science Inventory

    Ionic liquids (ILs) have been claimed as "greener" replacements to traditional solvents. HOwever, the environmental impacts of the life cycle phases including the making of ILs, their application, separation, etc., and comparison with alternative methods have not been studied. Su...

  9. Critical cellulase and hemicellulase activities for hydrolysis of ionic liquid pretreated biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Critical cellulase and hemicellulase activities are identified for hydrolysis of ionic liquid (IL) pretreated poplar and switchgrass; hemicellulase rich substrates with amorphous cellulose. Enzymes from Aspergillus nidulans were expressed and purified: an endoglucanase (EG) a cellobiohydrolase (CBH)...

  10. Novel Ionic Liquid with Both Lewis and Brønsted Acid Sites for Michael Addition

    PubMed Central

    Jiang, Xiaoyue; Ye, Weidong; Song, Xiaohua; Ma, Wenxin; Lao, Xuejun; Shen, Runpu

    2011-01-01

    Ionic liquid with both Lewis and Brønsted acid sites has been synthesized and its catalytic activities for Michael addition were carefully studied. The novel ionic liquid was stable to water and could be used in aqueous solution. The molar ratio of the Lewis and Brønsted acid sites could be adjusted to match different reactions. The results showed that the novel ionic liquid was very efficient for Michael addition with good to excellent yields within several min. Operational simplicity, high stability to water and air, small amount used, low cost of the catalyst used, high yields, chemoselectivity, applicability to large-scale reactions and reusability are the key features of this methodology, which indicated that this novel ionic liquid also holds great potential for environmentally friendly processes. PMID:22174608

  11. Electrochemical Windows of Room-Temperature Ionic Liquids from Molecular Dynamics and Density Functional Theory Calculations

    E-print Network

    Ong, Shyue Ping

    We investigated the cathodic and anodic limits of six room-temperature ionic liquids (ILs) formed from a combination of two common cations, 1-butyl-3-methylimidazolium (BMIM) and N,N-propylmethylpyrrolidinium (P13), and ...

  12. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    PubMed Central

    Isik, Mehmet; Sardon, Haritz; Mecerreyes, David

    2014-01-01

    Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels. PMID:25000264

  13. Exploring silver ionic liquids for reaction-based gas sensing on a quartz crystal microbalance.

    PubMed

    Li, Hsin-Yi; Hsu, Tzu-Hsuan; Chen, Chien-Yuan; Tseng, Ming-Chung; Chu, Yen-Ho

    2015-09-21

    Reaction-based, sensitive sensing of aldehyde and ketone gases in real time was effectively achieved on QCM chips thin-coated with silver ionic liquids and , respectively. The method platform developed in this work involves straightforward synthesis of functional silver ionic liquids in water, and is label-free and highly chemoselective with superior gas reactivity for and and, most significantly, totally insensitive to moisture. PMID:26280032

  14. Electrochemical activity of glucose oxidase on a poly(ionic liquid) - Au nanoparticle composite.

    SciTech Connect

    Lee, S.; Ringstrand, B. S.; Stone, D. A.; Firestone, M. A.

    2012-01-01

    Glucose oxidase (GOx) adsorbed on an ionic liquid-derived polymer containing internally organized columns of Au nanoparticles exhibits direct electron transfer and bioelectrocatalytic properties towards the oxidation of glucose. The cationic poly(ionic liquid) provides an ideal substrate for the electrostatic immobilization of GOx. The encapsulated Au nanoparticles serve to both promote the direct electron transfer with the recessed enzyme redox centers and impart electronic conduction to the composite, allowing it to function as an electrode for electrochemical detection.

  15. Synthesis and properties of dicationic ionic liquids containing a siloxane structural moiety

    NASA Astrophysics Data System (ADS)

    Glukhov, L. M.; Krasovskiy, V. G.; Chernikova, E. A.; Kapustin, G. I.; Kustov, L. M.; Koroteev, A. A.

    2015-12-01

    Five new ionic liquids formed by doubly charged cations containing a siloxane moiety and bis(trifluoromethylsulfonyl) imide anion are synthesized and characterized. Their thermal stability is studied by means of TGA; melting points (glass transition temperatures) and densities are measured. The temperature dependences of kinematic viscosity of the obtained ionic liquids are presented along with their approximations by the Vogel-Tammann-Fulcher equation.

  16. Toward a pK(a) scale of N-base amines in ionic liquids.

    PubMed

    Millán, Daniela; Rojas, Mabel; Santos, José G; Morales, Javiera; Isaacs, Mauricio; Diaz, Carlos; Pavez, Paulina

    2014-04-24

    An electrochemical technique was used to investigate pKa values of some substituted secondary alicyclic (SA) amines, pyridines (py), anilines (AN), and triethylamine (Et3N) in different ionic liquids. The method involves cyclic voltammetry at a platinized Pt electrode. The experimental data were correlated with pKa values reported previously in aqueous solution, and Hammett parameters were correlated with pKa values in ionic liquids to determine ? values in these media. PMID:24689739

  17. Elucidating graphene - Ionic Liquid interfacial region: a combined experimental and computational study

    SciTech Connect

    Vijayakumar, M.; Schwenzer, Birgit; Shutthanandan, V.; Hu, Jian Z.; Liu, Jun; Aksay, Ilhan A.

    2014-01-10

    The interfacial region between graphene and an imidazolium based ionic liquid is studied using spectroscopic analysis and computational modelling. This combined approach reveals that the molecular level structure of the interfacial region is significantly influenced by functional group defects on the graphene surface.The combined experimental and computational study reveals that the molecular structure at interfacial region between graphene and imidazolium based ionic liquid is defined by the hydroxyl functional groups on the graphene surface

  18. The aquatic impact of ionic liquids on freshwater organisms.

    PubMed

    Costa, Susana P F; Pinto, Paula C A G; Saraiva, M Lúcia M F S; Rocha, Fábio R P; Santos, Joyce R P; Monteiro, Regina T R

    2015-11-01

    Ionic liquids (ILs), also known as liquid electrolytes, are powerful solvents with a wide variety of academic and industrial applications. Bioassays with aquatic organisms constitute an effective tool for the evaluation of ILs' toxicity, as well as for the prediction and identification of possible moieties that act as toxicophores. In this work, the acute toxicity of six ILs and two commonly used organic solvents was evaluated using freshwater organisms: Daphnia magna, Raphidocelis subcapitata and Hydra attenuata. The bioassays were performed by exposing the organisms to increasing concentrations of the ILs and observing D. magna immobilization, R. subcapitata growth inhibition, and the morphological or mortality effects in H. attenuata. The results demonstrate that the tested organisms are not equally susceptible to the ILs, e.g., bmpyr [BF4] was the least toxic compound for R. subcapitata, N1,1 [N1,1,1OOH] for D. magna and emim [Tf2N] for H. attenuata. This highlights the importance of applying a battery of assays in toxicological analysis. Additionally, Hydra proved to be the most tolerant species to the tested ILs. According to their hazard rankings, the tested ILs are considered practically harmless or moderately toxic, except (Hex)3(TDec)P [Cl], which was classified as highly toxic. The ILs were revealed to be more harmful to aquatic systems than the tested organic solvents, reaffirming the need to analyze carefully the (eco)toxicological impact of these compounds. The present study provides additional data in the evaluation of the potential hazard and the impact of ILs in the environment. PMID:26151376

  19. Mechanism of bismuth telluride exfoliation in an ionic liquid solvent.

    PubMed

    Ludwig, Thomas; Guo, Lingling; McCrary, Parker; Zhang, Zhongtao; Gordon, Haley; Quan, Haiyu; Stanton, Michael; Frazier, Rachel M; Rogers, Robin D; Wang, Hung-Ta; Turner, C Heath

    2015-03-31

    Bismuth telluride (Bi2Te3) is a well-known thermoelectric material that has a layered crystal structure. Exfoliating Bi2Te3 to produce two-dimensional (2D) nanosheets is extremely important because the exfoliated nanosheets possess unique properties, which can potentially revolutionize several material technologies such as thermoelectrics, heterogeneous catalysts, and infrared detectors. In this work, ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) is used to exfoliate Bi2Te3 nanoplatelets. In both experiments and in molecular dynamics (MD) simulations, the Bi2Te3 nanoplatelets yield a stable dispersion of 2D nanosheets in the IL solvent, and our MD simulations provide molecular-level insight into the kinetics and thermodynamics of the exfoliation process. An analysis of the dynamics of Bi2Te3 during exfoliation indicates that the relative translation (sliding apart) of adjacent layers caused by IL-induced forces plays an important role in the process. Moreover, an evaluation of the MD trajectories and electrostatic interactions indicates that the [C4mim](+) cation is primarily responsible for initiating Bi2Te3 layer sliding and separation, while the Cl(-) anion is less active. Overall, our combined experimental and computational investigation highlights the effectiveness of IL-assisted exfoliation, and the underlying molecular-level insights should accelerate the development of future exfoliation techniques for producing 2D chalcogenide materials. PMID:25760309

  20. Spectroscopic Studies of Imidizolium and Pyridinium Based Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Booth, Ryan; Stearns, Jaime

    2015-03-01

    Ionic liquids (ILs) have been shown to be extremely useful in areas ranging from chemical synthesis to energetic materials. Furthermore, ILs are thought to be a potential replacement for hydrazine as satellite propellants because a subset are hypergolic with nitric acid. While ILs are useful, however, there is a lack of understanding of the microscopic origins for their macroscopic properties (e.g. viscosity). An example of this is that [emim+][tf2N-] is three times less viscous than its methylated counterpart [emmim+][tf2N-] and there is some discord regarding the reason. We have investigated the molecular properties of such IL pairs using UV and IR spectroscopy in the gas phase on both imidozolium and pyridinium-based ([pyr+]) ILs. UV data show that the photophysics of [emmim+][tf2N-] is different than [emim+][tf2N-] in that there is a lack of evidence for the existence of a charge transfer (CT) state (as was seen in [emim+][tf2N-]). Preliminary UV spectra for the [pyr+] ILs show at least two distinct peaks in the region from 208-270 nm, which are tentatively established as CT states between the anion and cation. IR spectra deliver structural information for both sets of ILs and should provide insight into the correlation between microscopic and macroscopic properties.

  1. Functionalized ionic liquids as electrolytes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pandian, Shanthi; Raju, S. G.; Hariharan, Krishnan S.; Kolake, Subramanya M.; Park, Da-Hye; Lee, Myung-Jin

    2015-07-01

    The design of potential and new electrochemically stable electrolytes for Li-ion batteries is an important task in the field of energy. Room temperature ionic liquids (RTILs) characterized by a wide electrochemical window (EW) are the commonly used electrolytes for Li battery applications. In this work, a novel quantum computational method is proposed to estimate the electrochemical stability of RTILs that accurately predicts the trends in EWs of ammonium based ILs and is computationally faster than the state-of-the-art methods. Subsequently, the EW of ILs with phosphonium and sulfonium cations are computed and compared against the well-established ammonium congeners. Based on the criterion of electrochemical stability defined with respect to Li, the increasing order of stability is found to be: sulfonium < ammonium < phosphonium based ILs. The effect of various substituents like butyl, phenyl and benzyl on the phosphonium and sulfonium based ILs is examined and a greater stability for the phenyl over other substituents is observed. The key factor influencing the reduction potential of the cations is inferred as the thermodynamic stability of the radical formed during decomposition. Based on the results, design guidelines to identify stable IL systems as electrolytes in high voltage Li-ion battery applications are provided.

  2. Stable ferrofluids of magnetite nanoparticles in hydrophobic ionic liquids

    NASA Astrophysics Data System (ADS)

    Mestrom, Luuk; Lenders, Jos J. M.; de Groot, Rick; Hooghoudt, Tonnis; Sommerdijk, Nico A. J. M.; Vilaplana Artigas, Marcel

    2015-07-01

    Ferrofluids (FFs) of metal oxide nanoparticles in ionic liquids (ILs) are a potentially useful class of magnetic materials for many applications because of their properties related to temperature/pressure stability, hydrophobicity, viscosity and recyclability. In this work, the screening of several designer surfactants for their stabilizing capabilities has resulted in the synthesis of stable FFs of superparamagnetic 7 ± 2 nm magnetite (Fe3O4) nanoparticles in the hydrophobic IL 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([CRMIM][NTf2]). The designed and synthesized 1-butyl-3-(10-carboxydecyl)-1H-imidazol-3-ium bromide (ILC10-COOH) surfactant that combines the same imidazole moiety as the IL with a long alkyl chain ensured compatibility with the IL and increased the steric repulsion between the magnetite nanoparticles sufficiently such that stable dispersions of up to 50 wt% magnetite were obtained according to stability tests in the presence of a magnetic field (0.5-1 Tesla). Cryo-transmission electron microscopy (cryo-TEM) of the IL-based FFs allowed direct visualization of the surfactant-stabilized nanoparticles in the ILs and the native, hardly aggregated state of their dispersion.

  3. Interfacial Ionic Liquids: Connecting Static and Dynamic Structures

    E-print Network

    Ahmet Uysal; Hua Zhou; Guang Feng; Sang Soo Lee; Song Li; Peter T. Cummings; Pasquale F. Fulvio; Sheng Dai; John K. McDonough; Yury Gogotsi; Paul Fenter

    2014-12-06

    It is well-known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e., with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time X-ray reflectivity (XR) to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene-RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics (MD) simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion and cation adsorbed structures separated by an energy barrier (~0.15 eV).

  4. Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids.

    PubMed

    Byers, Joshua C; Paulose Nadappuram, Binoy; Perry, David; McKelvey, Kim; Colburn, Alex W; Unwin, Patrick R

    2015-10-20

    Single molecule electrochemical detection (SMED) is an extremely challenging aspect of electroanalytical chemistry, requiring unconventional electrochemical cells and measurements. Here, SMED is reported using a "quad-probe" (four-channel probe) pipet cell, fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barreled pipet and filling the open channels with electrolyte solution, and quasi-reference counter electrodes. A meniscus forms at the end of the probe covering the two working electrodes and is brought into contact with a substrate working electrode surface. In this way, a nanogap cell is produced whereby the two carbon electrodes in the pipet can be used to promote redox cycling of an individual molecule with the substrate. Anticorrelated currents generated at the substrate and tip electrodes, at particular distances (typically tens of nanometers), are consistent with the detection of single molecules. The low background noise realized in this droplet format opens up new opportunities in single molecule electrochemistry, including the use of ionic liquids, as well as aqueous solution, and the quantitative assessment and analysis of factors influencing redox cycling currents, due to a precisely known gap size. PMID:26398675

  5. Ionic liquid nanotribology: stiction suppression and surface induced shear thinning.

    PubMed

    Asencio, Rubén Álvarez; Cranston, Emily D; Atkin, Rob; Rutland, Mark W

    2012-07-01

    The friction and adhesion between pairs of materials (silica, alumina, and polytetrafluoroethylene) have been studied and interpreted in terms of the long-ranged interactions present. In ambient laboratory air, the interactions are dominated by van der Waals attraction and strong adhesion leading to significant frictional forces. In the presence of the ionic liquid (IL) ethylammonium nitrate (EAN) the van der Waals interaction is suppressed and the attractive/adhesive interactions which lead to "stiction" are removed, resulting in an at least a 10-fold reduction in the friction force at large applied loads. The friction coefficient for each system was determined; coefficients obtained in air were significantly larger than those obtained in the presence of EAN (which ranged between 0.1 and 0.25), and variation in the friction coefficients between systems was correlated with changes in surface roughness. As the viscosity of ILs can be relatively high, which has implications for the lubricating properties, the hydrodynamic forces between the surfaces have therefore also been studied. The linear increase in repulsive force with speed, expected from hydrodynamic interactions, is clearly observed, and these forces further inhibit the potential for stiction. Remarkably, the viscosity extracted from the data is dramatically reduced compared to the bulk value, indicative of a surface ordering effect which significantly reduces viscous losses. PMID:22676253

  6. Ionic Liquid-Based Fluorescein Colorimetric pH Nanosensors

    PubMed Central

    Das, Susmita; Magut, Paul K. S.; de Rooy, Sergio L.; Hasan, Farhana; Warner, Isiah M.

    2014-01-01

    A novel pH sensitive, colorimetric ionic liquid nanosensor based on phosphonium salts of fluorescein is reported. Herein, fluorescein salts of various stoichiometries were synthesized by use of a trihexyltetradecylphosphonium cation [TTP]+ in combination with dianionic [FL]2? and monoanionic [FL]? fluorescein. Nanomaterials derived from these two compounds yielded contrasting colorimetric responses in neutral and acidic environments. Variations in fluorescence spectra as a function of pH were also observed. Examination of TEM and DLS data revealed significant expansion in the diameter of [TTP]2[FL] nanodroplets in acidic environments of variable pHs. A similar trend was also observed for [TTP][FL] nanoparticles. The pH dependent colorimetric and other optical properties of these nanomaterials are attributed to alterations in molecular orientations and stacking as suggested by measuring the absorption, fluorescence, and zeta potential. Since the pH is an important indicator for many diseases, including cancer, these nanosensors are considered to be potential candidates for biomedical applications. PMID:25264488

  7. Ultrasound response of aqueous poly(ionic liquid) solution.

    PubMed

    Li, Kai; Kobayashi, Takaomi

    2016-05-01

    Ultrasound (US) effects on aqueous poly(ionic liquid) (PIL) solution were investigated using viscosity and FT-IR spectroscopy after exposure to US of 23, 43, and 96kHz frequencies at 50W. The viscosity of the poly(1-vinyl-3-butyl-imidazolium chloride) (PIL) aqueous solution decreased during exposure to US. It then increased gradually within about 10min as US stopped. The aqueous PIL behavior was then observed using FT-IR spectroscopy. The US exposure enhanced the FT-IR band intensity of the OH stretching. The band intensity returned to its original value after the US stopped. These results responded cyclically to the US on/off. Analysis of the FT-IR spectra revealed that US influenced the breakage and reformation of hydrogen bonds in the PIL and water. Two-dimensional correlation and deconvolution were used to analyze the change of components in the region of 3000-3700cm(-1) for US exposure. Results of these analyses suggest that US exposure might break hydrogen bonds between PIL segments and water. In the absence of US, hydrogen bonds reformation was also observed between the PIL and water. PMID:26597539

  8. Direct exfoliation of graphene in ionic liquids with aromatic groups

    NASA Astrophysics Data System (ADS)

    Bari, Rozana; Tamas, George; Irin, Fahmida; Aquino, Adelia; Quitevis, Edward; Green, Micah

    2015-03-01

    The imidazolium cation of the designed and synthesized novel ionic liquids (ILs) having aromatic groups interact non-covalently with graphene. The Graphene stabilized by the IL is neither covalently functionalized nor requires the presence of additive stabilizer and such process results in dispersion of pristine graphene. This graphene dispersion is stable against centrifugation and the concentration of the resulting graphene is high as well. It was observed that the ILs are less effective in dispersing graphene if the cation does not have these aromatic groups. The interaction between the cation and the graphene surface plays an important role in the final yield of graphene. The graphene dispersion was characterized by Raman spectroscopy, X-ray Diffraction, and X-ray photoelectron spectroscopy. The experimental observations were compared with the density functional theory (DFT-D3) calculations and the comparison indicated that the experimental observations and the theoretical calculations were in good agreement. These validated theoretical calculations can further be used in future to design and synthesize the ILs in order to optimize the graphene yield without the need for additional experimentation. National Science Foundation under CRIF-MU instrumentation grant CHE-0840493, National Science Foundation under CAREER award CMMI-1253085, Air Force Office of Scientific Research Young Investigator Program (AFOSR FA9550-11-1-0027),

  9. Photoreversible gelation of a triblock copolymer in an ionic liquid.

    PubMed

    Ueki, Takeshi; Nakamura, Yutaro; Usui, Ryoji; Kitazawa, Yuzo; So, Soonyong; Lodge, Timothy P; Watanabe, Masayoshi

    2015-03-01

    The reversible micellization and sol-gel transition of block copolymer solutions in an ionic liquid (IL) triggered by a photostimulus is described. The ABA triblock copolymer employed, denoted P(AzoMA-r-NIPAm)-b-PEO-b-P(AzoMA-r-NIPAm)), has a B?block composed of an IL-soluble poly(ethylene oxide) (PEO). The A?block consists of a random copolymer including thermosensitive N-isopropylacrylamide (NIPAm) units and a methacrylate with an azobenzene chromophore in the side chain (AzoMA). A phototriggered reversible unimer-to-micelle transition of a dilute ABA triblock copolymer (1?wt%) was observed in an IL, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim]PF6), at an intermediate "bistable" temperature (50?°C). The system underwent a reversible sol-gel transition cycle at the bistable temperature (53?°C), with reversible association/fragmentation of the polymer network resulting from the phototriggered self-assembly of the ABA triblock copolymer (20?wt%) in [C4 mim]PF6. PMID:25613353

  10. Ionic liquids monolithic columns for protein separation in capillary electrochromatography.

    PubMed

    Liu, Cui-Cui; Deng, Qi-Liang; Fang, Guo-Zhen; Liu, Hui-Lin; Wu, Jian-Hua; Pan, Ming-Fei; Wang, Shuo

    2013-12-01

    A series of ionic liquids (ILs) monolithic capillary columns based on 1-vinyl-3-octylimidazolium (ViOcIm(+)) were prepared by two approaches ("one-pot" approach and "anion-exchange" approach). The effects of different anions (bromide, Br(-); tetrafluoroborate, BF4(-); hexafluorophosphate, PF6(-); and bis-trifluoromethanesulfonylimide, NTf2(-)) on chromatography performance of all the resulting columns were investigated systematically under capillary electrochromatography (CEC) mode. The results indicated that all these columns could generate a stable reversed electroosmotic flow (EOF) over a wide pH range from 2.0 to 12.0. For the columns prepared by "one-pot" approach, the EOF decreased in the order of ViOcIm(+)Br(-)>ViOcIm(+)BF4(-)>ViOcIm(+)PF6(-)>ViOcIm(+)NTf2(-) under the same CEC conditions; the ViOcIm(+)Br(-) based column exhibited highest column efficiencies for the test small molecules; the ViOcIm(+)NTf2(-) based column possessed the strongest retention for aromatic hydrocarbons; and baseline separation of four standard proteins was achieved on ViOcIm(+)NTf2(-) based column corresponding to the highest column efficiency of 479,000 N m(-1) for cytochrome c (Cyt c). These results indicated that the property of ILs based columns could be tuned successfully by changing anions, which gave these columns potential to separate both small molecules and macro biomolecules. PMID:24267098

  11. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts

    NASA Astrophysics Data System (ADS)

    Snyder, J.; Fujita, T.; Chen, M. W.; Erlebacher, J.

    2010-11-01

    The improvement of catalysts for the four-electron oxygen-reduction reaction (ORR; O2+4H++4e--->2H2O) remains a critical challenge for fuel cells and other electrochemical-energy technologies. Recent attention in this area has centred on the development of metal alloys with nanostructured compositional gradients (for example, core-shell structure) that exhibit higher activity than supported Pt nanoparticles (Pt-C; refs 1,2,3,4,5,6,7). For instance, with a Pt outer surface and Ni-rich second atomic layer, Pt3Ni(111) is one of the most active surfaces for the ORR (ref. 8), owing to a shift in the d-band centre of the surface Pt atoms that results in a weakened interaction between Pt and intermediate oxide species, freeing more active sites for O2 adsorption. However, enhancements due solely to alloy structure and composition may not be sufficient to reduce the mass activity enough to satisfy the requirements for fuel-cell commercialization, especially as the high activity of particular crystal surface facets may not easily translate to polyfaceted particles. Here we show that a tailored geometric and chemical materials architecture can further improve ORR catalysis by demonstrating that a composite nanoporous Ni-Pt alloy impregnated with a hydrophobic, high-oxygen-solubility and protic ionic liquid has extremely high mass activity. The results are consistent with an engineered chemical bias within a catalytically active nanoporous framework that pushes the ORR towards completion.

  12. Polyelectrolyte and carbon nanotube multilayers made from ionic liquid solutions.

    PubMed

    Nakashima, Takuya; Zhu, Jian; Qin, Ming; Ho, Szushen; Kotov, Nicholas A

    2010-10-01

    The inevitable contact of substrates with water during the traditional practice of layer-by-layer assembly (LBL) creates problems for multiple potential applications of LBL films in electronics. To resolve this issue, we demonstrate here the possibility of a LBL process using ionic liquids (ILs), which potentially eliminates corrosion and hydration processes related to aqueous media and opens additional possibilities in structural control of LBL films. ILs are also considered to be one of the best "green" processing solvents, and hence, are advantageous in respect to traditional organic solvents. Poly(ethyleneimine) (PEI) and poly(sodium styrenesulfonate) (PSS) were dispersed in a hydrophilic IL and successfully deposited in the LBL fashion. To produce electroactive thin films with significance to electronics, a similar process was realized for PSS-modified single-walled carbon nanotubes (SWNT-PSS) and poly(vinyl alcohol) (PVA). Characterization of the coating using standard spectroscopy and microscopy techniques typical of the multilayer field indicated that there are both similarities and differences in the structure and properties of LBL films build from ILs and aqueous solutions. The films exhibited electrical conductivity of 10(2) S m(-1) with transparency as high as 98% for visible light, which is comparable to similar parameters for many carbon nanotube and graphene films prepared by both aqueous LBL and other methods. PMID:20931147

  13. Thermophysical properties of sulfonium- and ammonium-based ionic liquids

    PubMed Central

    Bhattacharjee, Arijit; Luís, Andreia; Lopes-da-Silva, José A.; Freire, Mara G.; Carvalho, Pedro J.; Coutinho, João A. P.

    2014-01-01

    Experimental data for the density, viscosity, refractive index and surface tension of four sulfonium- and ammonium-based Ionic Liquids (ILs) with the common bis(trifluoromethylsulfonyl)imide anion were measured in the temperature range between 288.15 and 353.15 K and at atmospheric pressure. The ILs considered include butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [N4111][NTf2], tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N4441][NTf2], diethylmethylsulfonium bis(trifluoromethylsulfonyl)imide, [S221][NTf2], and triethylsulfonium bis(trifluoromethylsulfonyl)imide, [S222][NTf2]. Based on the gathered results and on data taken from literature, the impact of the cation isomerism and of the size of the aliphatic tails, as well as the effect resulting from the substitution of a nitrogen by a sulfur atom as the cation central atom, on the thermophysical properties of sulfonium- and ammonium-based ILs is here discussed. Remarkably, more symmetric cations present a lower viscosity for the same, and sometimes even for higher, alkyl chain lengths at the cation. Additional derivative properties, such as the isobaric thermal expansion coefficient, the surface thermodynamic properties and the critical temperature for the investigated ILs were also estimated and are presented and discussed. PMID:25516634

  14. Thinning of reverse osmosis membranes by ionic liquids

    NASA Astrophysics Data System (ADS)

    Meng, Hong; Gong, Beibei; Geng, Tao; Li, Chunxi

    2014-02-01

    In this study, ionic liquids (ILs) were used to thin out the dense layer and, in turn, tune the surface properties and separation performance of commercial aromatic polyamide reverse osmosis membranes. It was observed that the structure of the ILs and dipping time had a strong impact on the dense layer thickness and morphology. This can be understood in terms of the dissolubility and interaction force between ILs and the organic membrane surface, such as hydrogen bonding and ?-? interactions. Among the ILs synthesized, 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) showed the most promising thinning effects. It was observed that the thickness of the dense layer on the surface decreased from 127 to 67 nm after dipping treatment with [BMIM]Cl for 24 h. The water flux was enhanced by 20% at the expense of a slight decline of salt rejection. AFM, contact angle and zeta potential analyses suggest that the surface hydrophilicity and electronegativity increased, while the roughness decreased, which improved the anti-fouling properties.

  15. Paramagnetic ionic liquids for measurements of density using magnetic levitation.

    PubMed

    Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

    2013-09-01

    Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev. PMID:23972068

  16. Conventional Study on Novel Dicationic Ionic Liquid Inclusion with ?-Cyclodextrin

    PubMed Central

    Mohamad, Sharifah; Surikumaran, Hemavathy; Raoov, Muggundha; Marimuthu, Tilagam; Chandrasekaram, Kumuthini; Subramaniam, Puvaneswary

    2011-01-01

    This study focuses on the synthesis and characterization of the inclusion complex of ?-Cyclodextrin (?-CD) with dicationic ionic liquid, 3,3?-(1,4-Phenylenebis [methylene]) bis(1-methyl-1H-imidazol-3-ium) di(bromide) (PhenmimBr). The inclusion complex was prepared at room temperature utilizing conventional kneading technique. Proton (1H) NMR and 2D (1H–1H) COSY NMR were the primary characterization tools employed to verify the formation of the inclusion complex. COSY spectra showed strong correlations between protons of imidazolium and protons of ?-CD which indicates that the imidazolium ring of PhenmimBr has entered the cavity of ?-CD. UV absorption indicated that ?-CD reacts with PhenmimBr to form a 2:1 ?-CD-PhenmimBr complex with an apparent formation constant of 2.61 × 105 mol&?2 L2. Other characterization studies such as UV, FT-IR, XRD, TGA, DSC and SEM studies were also used to further support the formation of the ?-CD-PhenmimBr inclusion complex. PMID:22016662

  17. Nitrogen-Doped Graphene for Ionic Liquid Based Supercapacitors.

    PubMed

    Tamilarasan, P; Ramaprabhu, S

    2015-02-01

    Graphene is a promising electrode material for supercapacitor applications due to its unique properties. Interaction of electrolyte ions with graphene lattice sites is a crucial factor in ionic liquid electrolyte based supercapacitors. In an effort to increase the interaction of high viscous electrolyte with electrode material, here, we here report the results of a systematic study carried out on a supercapacitor with nitrogen doped graphene as electrode material and [BMIM][TFSI] as electrolyte. In this study, nitrogen doped hydrogen exfoliated graphene (N-HEG) is prepared by radio frequency (R.F) magnetron sputtering and employed as electrode material for [BMIM][TFSI] electrolyte based high performance supercapacitor. N-HEG shows a high specific capacitance of 170.1 F/g compared to that of electrolyte modified graphene (124.5 F/g), at a specific current of 2 A/g. The improved performance of N-HEG based supercapacitor is attributed to the presence of nitrogen atoms in the graphene lattice which in turn increases the lattice-ion interaction and the electrical conductivity. In addition, the presence of wrinkles on the graphene surface provides a shortest directional path to access pores and surface. The device shows high charge storage capacity (72.37 Wh/kg) along with wide operating voltage (3.5 V) and high cyclic stability. PMID:26353626

  18. EFFECTS OF GAMMA RADIATION ON ELECTROCHEMICAL PROPERTIES OF IONIC LIQUIDS

    SciTech Connect

    Visser, A; Nicholas Bridges, N; Thad Adams, T; John Mickalonis, J; Mark02 Williamson, M

    2009-04-21

    The electrochemical properties of ionic liquids (ILs) make them attractive for possible replacement of inorganic salts in high temperature molten salt electrochemical processing of nuclear fuel. To be a feasible replacement solvent, ILs need to be stable in moderate and high doses of radiation without adverse chemical and physical effects. Here, we exposed seven different ILs to a 1.2 MGy dose of gamma radiation to investigate their physical and chemical properties as they related to radiological stability. The azolium-based ILs experienced the greatest change in appearance, but these ILs were chemically more stable to gamma radiation than some of the other classes of ILs tested, due to the presence of aromatic electrons in the azolium ring. All the ILs exhibited a decrease in their conductivity and electrochemical window (at least 1.1 V), both of which could affect the utility of ILs in electrochemical processing. The concentration of the irradiation decomposition products was less than 3 mole %, with no impurities detectable using NMR techniques.

  19. Photoinduced Bimolecular Electron Transfer from Cyano Anions in Ionic Liquids.

    PubMed

    Wu, Boning; Liang, Min; Maroncelli, Mark; Castner, Edward W

    2015-11-19

    Ionic liquids with electron-donating anions are used to investigate rates and mechanisms of photoinduced bimolecular electron transfer to the photoexcited acceptor 9,10-dicyanoanthracene (9,10-DCNA). The set of five cyano anion ILs studied comprises the 1-ethyl-3-methylimidazolium cation paired with each of these five anions: selenocyanate, thiocyanate, dicyanamide, tricyanomethanide, and tetracyanoborate. Measurements with these anions dilute in acetonitrile and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide show that the selenocyanate and tricyanomethanide anions are strong quenchers of the 9,10-DCNA fluorescence, thiocyanate is a moderately strong quencher, dicyanamide is a weak quencher, and no quenching is observed for tetracyanoborate. Quenching rates are obtained from both time-resolved fluorescence transients and time-integrated spectra. Application of a Smoluchowski diffusion-and-reaction model showed that the complex kinetics observed can be fit using only two adjustable parameters, D and V0, where D is the relative diffusion coefficient between donor and acceptor and V0 is the value of the electronic coupling at donor-acceptor contact. PMID:26501776

  20. Understanding the impact of the central atom on the ionic liquid behavior: Phosphonium vs ammonium cations

    NASA Astrophysics Data System (ADS)

    Carvalho, Pedro J.; Ventura, Sónia P. M.; Batista, Marta L. S.; Schröder, Bernd; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice; Coutinho, João A. P.

    2014-02-01

    The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.

  1. Understanding the impact of the central atom on the ionic liquid behavior: Phosphonium vs ammonium cations

    SciTech Connect

    Carvalho, Pedro J.; Ventura, Sónia P. M.; Batista, Marta L. S.; Schröder, Bernd; Coutinho, João A. P.; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice

    2014-02-14

    The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.

  2. Effect of Ammonium- and Phosphonium-Based Ionic Liquids on the Separation of Lactic Acid by Supported Ionic Liquid Membranes (SILMs)

    PubMed Central

    Matsumoto, Michiaki; Panigrahi, Abhishek; Murakami, Yuuki; Kondo, Kazuo

    2011-01-01

    Biodegradable polymers have attracted much attention from an environmental point of view. Optically pure lactic acid that can be prepared by fermentation is one of the important raw materials for biodegradable polymer. The separation and purification of lactic acid from the fermentation broth are the major portions of the production costs. We proposed the application of supported ionic liquid membranes to recovering lactic acid. In this paper, the effect of ionic liquids, such as Aliquat 336, CYPHOS IL-101, CYPHOS IL-102, CYPHOS IL-104, CYPHOS IL-109 and CYPHOS IL-111 on the lactic acid permeation have been studied. Aliquat 336, CYPHOS IL-101 and CYPHOS IL-102 were found to be the best membrane solvents as far as membrane stability and permeation of lactic acid are concerned. CYPHOS IL-109 and CYPHOS IL-111 were found to be unsuitable, as they leak out from the pores of the supported liquid membrane (SLM), thereby allowing free transport of lactic acid as well as hydrochloric acid. CYPHOS IL-102 was found to be the most adequate (Permeation rate = 60.41%) among these ionic liquids as far as the separation of lactic acid is concerned. The permeation mechanisms, by which ionic liquid-water complexes act as the carrier of lactate and hydrochloric acid, were proposed. The experimental permeation results have been obtained as opposed to the expected values from the solution-diffusion mechanism. PMID:24957613

  3. Dispenser Printed Zinc Microbattery with an Ionic Liquid Gel Electrolyte

    E-print Network

    Ho, Christine Chihfan

    2010-01-01

    electrochemical properties. The zinc salt and ionic liquidsalts at room temperatures with interesting properties suchsalt concentration in BMIM + Tf - exhibited desirable electrochemical and physical properties and

  4. Biopolymer-supported ionic-liquid-phase ruthenium catalysts for olefin metathesis.

    PubMed

    Clousier, Nathalie; Filippi, Alexandra; Borré, Etienne; Guibal, Eric; Crévisy, Christophe; Caijo, Fréderic; Mauduit, Marc; Dez, Isabelle; Gaumont, Annie-Claude

    2014-04-01

    Original ruthenium supported ionic liquid phase (SILP) catalysts based on alginates as supports were developed for olefin metathesis reactions. The marine biopolymer, which fulfills most of the requisite properties for a support such as widespread abundance, insolubility in the majority of organic solvents, a high affinity for ionic liquids, high chemical stability, biodegradability, low cost, and easy processing, was impregnated by [bmim][PF6 ] containing an ionically tagged ruthenium catalyst. These biosourced catalysts show promising performances in ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, with a high level of recyclability and reusability combined with a good reactivity. PMID:24616203

  5. Directed destabilization of lysozyme in protic ionic liquids reveals a compact, low energy, soluble, reversibly-unfolding (pre-fibril) state

    E-print Network

    Byrne, Nolene; Angell, C Austen

    2007-01-01

    Recent demonstrations of extraordinary stabilization of proteins in mobile protic [1] and aprotic [2] ionic liquid solutions at ambient temperatures have raised hopes of new biopreservation and drug transportation technologies. Here we examine the relation of folded protein stability to the state of the transferred proton [1], as determined by the N-H proton chemical shift, d(N-H). We identify a range of d(N-H) in which the unfolded lysozyme refolds 97%. Exceeding the stability range in the acid direction leads to the sudden formation and stabilization of a small, soluble, amyloid form of lysozyme which has its own stability range and which can again unfold/refold many times before an irreversible process, fibrillization, occurs. The tightly bound amyloid form of the lysozyme molecule, identified by circular dichroism spectra and dynamic light scattering, must be of very low energy since the unfolding process absorbs almost three times the enthalpy of normal lysozyme unfolding. alpha-lactalbumin shows similar...

  6. Ultrasound-assisted ionic liquid-based homogeneous liquid-liquid microextraction high-performance liquid chromatography for determination of tanshinones in Salvia miltiorrhiza Bge. root.

    PubMed

    Wang, Zhibing; Cao, Bocheng; Yu, Aimin; Zhang, Hanqi; Qiu, Fangping

    2015-02-01

    The ultrasound-assisted ionic liquid-based homogeneous liquid-liquid microextraction has been developed and applied to the extraction of four tanshinones, including dihydrotanshinone, tanshinone I, cryptotanshinone and tanshinone IIA in Salvia miltiorrhiza Bge. root. High performance liquid chromatography was applied to the separation and determination of the analytes. The ionic liquid was used as extraction solvent and target analytes were extracted with help of ultrasound. Then, ion-pairing agent was added into the sample solution, which resulted in the formation of water-insoluble ionic liquid in the solution. The phase separation was performed by centrifugation. The extraction, concentration and purification of target analytes were performed simultaneously. The experimental parameters, including type and volume of ionic liquid, sample amount, the size of sample particle, pH value of extraction medium, extraction temperature, extraction time, amount of ion-pairing agent and centrifuging time, were investigated and optimized. The calibration curves showed good linear relationship (r>0.9997). The limits of detection and quantification were in the range of 0.052-0.093 and 0.17-0.31 ?g mL(-1), respectively. The recoveries were between 70.45% and 94.23% with relative standard deviations lower than 5.31%. The present method is free of volatile organic solvents, and represents lower expenditures of sample, extraction time and solvent, compared with UAE and HRE. There was no obvious difference in the extraction yields of active constitutions obtained by the three extraction methods. PMID:25497891

  7. Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies.

    PubMed

    Krossing, Ingo; Slattery, John M; Daguenet, Corinne; Dyson, Paul J; Oleinikova, Alla; Weingärtner, Hermann

    2006-10-18

    We have developed a simple and quantitative explanation for the relatively low melting temperatures of ionic liquids (ILs). The basic concept was to assess the Gibbs free energy of fusion (Delta(fus)G) for the process IL(s) --> IL(l), which relates to the melting point of the IL. This was done using a suitable Born-Fajans-Haber cycle that was closed by the lattice (i.e., IL(s) --> IL(g)) Gibbs energy and the solvation (i.e., IL(g) --> IL(l)) Gibbs energies of the constituent ions in the molten salt. As part of this project we synthesized and determined accurate melting points (by DSC) and dielectric constants (by dielectric spectroscopy) for 14 ionic liquids based on four common anions and nine common cations. Lattice free energies (Delta(latt)G) were estimated using a combination of Volume Based Thermodynamics (VBT) and quantum chemical calculations. Free energies of solvation (Delta(solv)G) of each ion in the bulk molten salt were calculated using the COSMO solvation model and the experimental dielectric constants. Under standard ambient conditions (298.15 K and 10(5) Pa) Delta(fus)G degrees was found to be negative for all the ILs studied, as expected for liquid samples. Thus, these ILs are liquid under standard ambient conditions because the liquid state is thermodynamically favorable, due to the large size and conformational flexibility of the ions involved, which leads to small lattice enthalpies and large entropy changes that favor melting. This model can be used to predict the melting temperatures and dielectric constants of ILs with good accuracy. A comparison of the predicted vs experimental melting points for nine of the ILs (excluding those where no melting transition was observed and two outliers that were not well described by the model) gave a standard error of the estimate (s(est)) of 8 degrees C. A similar comparison for dielectric constant predictions gave s(est) as 2.5 units. Thus, from very little experimental and computational data it is possible to predict fundamental properties such as melting points and dielectric constants of ionic liquids. PMID:17031955

  8. Static and transport properties of alkyltrimethylammonium cation-based room-temperature ionic liquids.

    PubMed

    Seki, Shiro; Tsuzuki, Seiji; Hayamizu, Kikuko; Serizawa, Nobuyuki; Ono, Shimpei; Takei, Katsuhito; Doi, Hiroyuki; Umebayashi, Yasuhiro

    2014-05-01

    We have measured physicochemical properties of five alkyltrimethylammonium cation-based room-temperature ionic liquids and compared them with those obtained from computational methods. We have found that static properties (density and refractive index) and transport properties (ionic conductivity, self-diffusion coefficient, and viscosity) of these ionic liquids show close relations with the length of the alkyl chain. In particular, static properties obtained by experimental methods exhibit a trend complementary to that by computational methods (refractive index ? [polarizability/molar volume]). Moreover, the self-diffusion coefficient obtained by molecular dynamics (MD) simulation was consistent with the data obtained by the pulsed-gradient spin-echo nuclear magnetic resonance technique, which suggests that computational methods can be supplemental tools to predict physicochemical properties of room-temperature ionic liquids. PMID:24702446

  9. Pressure and temperature effects on intermolecular vibrational dynamics of ionic liquids.

    PubMed

    Penna, Tatiana C; Faria, Luiz F O; Matos, Jivaldo R; Ribeiro, Mauro C C

    2013-03-14

    Low frequency Raman spectra of ionic liquids have been obtained as a function of pressure up to ca. 4.0 GPa at room temperature and as a function of temperature along the supercooled liquid and glassy state at atmospheric pressure. Intermolecular vibrations are observed at ~20, ~70, and ~100 cm(-1) at room temperature in ionic liquids based on 1-alkyl-3-methylimidazolium cations. The component at ~100 cm(-1) is assigned to librational motion of the imidazolium ring because it is absent in non-aromatic ionic liquids. There is a correspondence between the position of intermolecular vibrational modes in the normal liquid state and the spectral features that the Raman spectra exhibit after partial crystallization of samples at low temperatures or high pressures. The pressure-induced frequency shift of the librational mode is larger than the other two components that exhibit similar frequency shifts. The lowest frequency vibration observed in a glassy state corresponds to the boson peak observed in light and neutron scattering spectra of glass-formers. The frequency of the boson peak is not dependent on the length scale of polar?non-polar heterogeneity of ionic liquids, it depends instead on the strength of anion-cation interaction. As long as the boson peak is assigned to a mixing between localized modes and transverse acoustic excitations of high wavevectors, it is proposed that the other component observed in Raman spectra of ionic liquids has a partial character of longitudinal acoustic excitations. PMID:23514505

  10. Liquid crystal self-assembly of halloysite nanotubes in ionic liquids: a novel soft nanocomposite ionogel electrolyte with high anisotropic ionic conductivity and thermal stability.

    PubMed

    Zhao, Ningning; Liu, Yulin; Zhao, Xiaomeng; Song, Hongzan

    2016-01-01

    We report a novel class of liquid crystalline (LC) nanohybrid ionogels fabricated via self-assembly of natural halloysite nanotubes (HNTs) in ionic liquids (ILs). The obtained ionogels are very stable and nonvolatile and show LC phases over a wide temperature range. Remarkably, the nanocomposite ionogels exhibit high anisotropic ionic conductivity after shear, and their room temperature ionic conductivity can reach 3.8 × 10(-3) S cm(-1) for aligned nanotubes perpendicular to the electrode even when the HNTs content increases to 40 wt%, which is 380 times higher than that obtained for aligned nanotubes parallel to the electrode, which is 1.0 × 10(-5) S cm(-1). Crucially, the obtained LC nanocomposite ionogels have very high thermal stability, which can sustain 400 °C thermal treatment. The findings will promote the development of novel nanocomposite ionogel electrolytes with faster ion transport and larger anisotropic conductivity. PMID:26681209

  11. Ionic screening effect on low-frequency drain current fluctuations in liquid-gated nanowire FETs.

    PubMed

    Lu, Ming-Pei; Vire, Eric; Montès, Laurent

    2015-12-11

    The ionic screening effect plays an important role in determining the fundamental surface properties within liquid-semiconductor interfaces. In this study, we investigated the characteristics of low-frequency drain current noise in liquid-gated nanowire (NW) field effect transistors (FETs) to obtain physical insight into the effect of ionic screening on low-frequency current fluctuation. When the NW FET was operated close to the gate voltage corresponding to the maximum transconductance, the magnitude of the low-frequency noise for the NW exposed to a low-ionic-strength buffer (0.001 M) was approximately 70% greater than that when exposed to a high-ionic-strength buffer (0.1 M). We propose a noise model, considering the charge coupling efficiency associated with the screening competition between the electrolyte buffer and the NW, to describe the ionic screening effect on the low-frequency drain current noise in liquid-gated NW FET systems. This report not only provides a physical understanding of the ionic screening effect behind the low-frequency current noise in liquid-gated FETs but also offers useful information for developing the technology of NW FETs with liquid-gated architectures for application in bioelectronics, nanosensors, and hybrid nanoelectronics. PMID:26574477

  12. Electrochemical Behaviour of Hydrogen in Low-Viscosity Phosphonium Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Matsumiya, M.; Tsunashima, K.; Kodama, S.

    2011-11-01

    The electrochemical and diffusive properties of hydrogen in low-viscosity phosphonium ionic liquids were investigated by the electrochemical methods such as cyclic voltammetry and chronoamperometry. The hydrogen redox reactions were concluded to be a quasi-reversible system in phosphonium-based ionic liquids. The diffusion coefficients of hydrogen in these ionic liquids were of the order of 10-10 m2 s-1 at 25 ° C. Additionally, the obtained activation energy of the diffusion process for hydrogen was 11.2 - 15:9 kJ mol-1 estimated from the temperature dependence of the diffusion coefficients. A new type of proton conducting medium such as triethylphosphonium bis(trifluoromethylsulfonyl) amide was synthesized by the neutralization reaction, because the trialkylphosphine-based ionic liquids with good stability at higher temperature and high conductivity were appropriate candidates. This proton conducting membrane containing the ionic liquids with trialkylphosphine-based cations and the polyvinylidenefluoride-co-hexafluoropropylene has been fabricated in the present study. The proton conducting membrane exhibits relatively high ionic conductivity along with good mechanical stability.

  13. Atomistic insight into orthoborate-based ionic liquids: force field development and evaluation.

    PubMed

    Wang, Yong-Lei; Shah, Faiz Ullah; Glavatskih, Sergei; Antzutkin, Oleg N; Laaksonen, Aatto

    2014-07-24

    We have developed an all-atomistic force field for a new class of halogen-free chelated orthoborate-phosphonium ionic liquids. The force field is based on an AMBER framework with determination of force field parameters for phosphorus and boron atoms, as well as refinement of several available parameters. The bond and angle force constants were adjusted to fit vibration frequency data derived from both experimental measurements and ab initio calculations. The force field parameters for several dihedral angles were obtained by fitting torsion energy profiles deduced from ab initio calculations. To validate the proposed force field parameters, atomistic simulations were performed for 12 ionic liquids consisting of tetraalkylphosphonium cations and chelated orthoborate anions. The predicted densities for neat ionic liquids and the [P6,6,6,14][BOB] sample, with a water content of approximately 2.3-2.5 wt %, are in excellent agreement with available experimental data. The potential energy components of 12 ionic liquids were discussed in detail. The radial distribution functions and spatial distribution functions were analyzed and visualized to probe the microscopic ionic structures of these ionic liquids. There are mainly four high-probability regions of chelated orthoborate anions distributed around tetraalkylphosphonium cations in the first solvation shell, and such probability distribution functions are strongly influenced by the size of anions. PMID:25020237

  14. Ionic screening effect on low-frequency drain current fluctuations in liquid-gated nanowire FETs

    NASA Astrophysics Data System (ADS)

    Lu, Ming-Pei; Vire, Eric; Montès, Laurent

    2015-12-01

    The ionic screening effect plays an important role in determining the fundamental surface properties within liquid–semiconductor interfaces. In this study, we investigated the characteristics of low-frequency drain current noise in liquid-gated nanowire (NW) field effect transistors (FETs) to obtain physical insight into the effect of ionic screening on low-frequency current fluctuation. When the NW FET was operated close to the gate voltage corresponding to the maximum transconductance, the magnitude of the low-frequency noise for the NW exposed to a low-ionic-strength buffer (0.001 M) was approximately 70% greater than that when exposed to a high-ionic-strength buffer (0.1 M). We propose a noise model, considering the charge coupling efficiency associated with the screening competition between the electrolyte buffer and the NW, to describe the ionic screening effect on the low-frequency drain current noise in liquid-gated NW FET systems. This report not only provides a physical understanding of the ionic screening effect behind the low-frequency current noise in liquid-gated FETs but also offers useful information for developing the technology of NW FETs with liquid-gated architectures for application in bioelectronics, nanosensors, and hybrid nanoelectronics.

  15. Liquid-liquid extraction of europium(III) and other trivalent rare-earth ions using a non-fluorinated functionalized ionic liquid.

    PubMed

    Rout, Alok; Binnemans, Koen

    2014-01-28

    A new non-fluorinated malonamide-based ionic liquid extractant was synthesized and investigated for the extraction behavior of europium(III) and other trivalent rare-earth ions from nitric acid medium. The extractant was the functionalized ionic liquid trihexyl(tetradecyl)phosphonium N,N,N',N'-tetra(2-ethylhexyl)malonate, [P66614][MA], and it was used in combination with the non-fluorinated ionic liquid trihexyl(tetradecyl)phosphonium nitrate, [P66614][NO3], as diluents. The extraction behavior of europium in this ionic liquid solution was studied as a function of various parameters such as the pH, concentration of the extractant, the type of acidic medium, temperature, concentration of the salting-out agent and the metal concentration of the aqueous feed. The extraction behavior of [P66614][MA] in [P66614][NO3] was compared with that of [P66614][MA] in the chloride-containing ionic liquid diluent trihexyl(tetradecyl)phosphonium chloride, [P66614][Cl] (Cyphos IL 101). The nitrate system was found to be superior. Marked differences in extraction behavior were observed between [P66614][MA] and the molecular malonamide extractant N,N,N',N'-tetra(2-ethylhexyl)malonamide (TEHMA), i.e. the compound from which the anion of the ionic liquid extractant was prepared. The extraction behavior of other rare earths (La, Ce, Nd, Sm, Ho, Yb) and some transition metals (Ni, Co, Zn) was investigated using this functionalized ionic liquid. A good separation of the rare earths from the transition metals could be achieved. For the rare earths, the extraction efficiency increases over the lanthanide series. The effects of thermodynamic parameters, the stripping of europium(iii) from the ionic liquid and the reusability of the functionalized ionic liquid were studied in detail. PMID:24257814

  16. Polyelectrolyte and carbon nanotube multilayers made from ionic liquid solutions

    NASA Astrophysics Data System (ADS)

    Nakashima, Takuya; Zhu, Jian; Qin, Ming; Ho, Szushen; Kotov, Nicholas A.

    2010-10-01

    The inevitable contact of substrates with water during the traditional practice of layer-by-layer assembly (LBL) creates problems for multiple potential applications of LBL films in electronics. To resolve this issue, we demonstrate here the possibility of a LBL process using ionic liquids (ILs), which potentially eliminates corrosion and hydration processes related to aqueous media and opens additional possibilities in structural control of LBL films. ILs are also considered to be one of the best ``green'' processing solvents, and hence, are advantageous in respect to traditional organic solvents. Poly(ethyleneimine) (PEI) and poly(sodium styrenesulfonate) (PSS) were dispersed in a hydrophilic IL and successfully deposited in the LBL fashion. To produce electroactive thin films with significance to electronics, a similar process was realized for PSS-modified single-walled carbon nanotubes (SWNT-PSS) and poly(vinyl alcohol) (PVA). Characterization of the coating using standard spectroscopy and microscopy techniques typical of the multilayer field indicated that there are both similarities and differences in the structure and properties of LBL films build from ILs and aqueous solutions. The films exhibited electrical conductivity of 102 S m-1 with transparency as high as 98% for visible light, which is comparable to similar parameters for many carbon nanotube and graphene films prepared by both aqueous LBL and other methods.The inevitable contact of substrates with water during the traditional practice of layer-by-layer assembly (LBL) creates problems for multiple potential applications of LBL films in electronics. To resolve this issue, we demonstrate here the possibility of a LBL process using ionic liquids (ILs), which potentially eliminates corrosion and hydration processes related to aqueous media and opens additional possibilities in structural control of LBL films. ILs are also considered to be one of the best ``green'' processing solvents, and hence, are advantageous in respect to traditional organic solvents. Poly(ethyleneimine) (PEI) and poly(sodium styrenesulfonate) (PSS) were dispersed in a hydrophilic IL and successfully deposited in the LBL fashion. To produce electroactive thin films with significance to electronics, a similar process was realized for PSS-modified single-walled carbon nanotubes (SWNT-PSS) and poly(vinyl alcohol) (PVA). Characterization of the coating using standard spectroscopy and microscopy techniques typical of the multilayer field indicated that there are both similarities and differences in the structure and properties of LBL films build from ILs and aqueous solutions. The films exhibited electrical conductivity of 102 S m-1 with transparency as high as 98% for visible light, which is comparable to similar parameters for many carbon nanotube and graphene films prepared by both aqueous LBL and other methods. Electronic supplementary information (ESI) available: Aggregation of PEI and PSS in [EMIm][EtSO4], detailed FTIR data, water-contact angle for (PEI/PSS)10 multilayers, and XPS survey spectra. See DOI: 10.1039/b9nr00333a

  17. Large-Scale, Highly Efficient, and Green Liquid-Exfoliation of Black Phosphorus in Ionic Liquids.

    PubMed

    Zhao, Wancheng; Xue, Zhimin; Wang, Jinfang; Jiang, Jingyun; Zhao, Xinhui; Mu, Tiancheng

    2015-12-23

    We developed a facile, large-scale, and environmentally friendly liquid-exfoliation method to produce stable and high-concentration dispersions of mono- to few-layer black phosphorus (BP) nanosheets from bulk BP using nine ionic liquids. The prepared suspensions can stabilize without any obvious sedimentation and aggregation in ambient air for one month. In particular, the concentration (up to 0.95 mg mL(-1)) of BP nanoflakes obtained in 1-hydroxyethyl-3-methylimidazolium trifluoromethansulfonate ([HOEMIM][TfO]) is the highest reported for BP nanosheets dispersions. This work provides new opportunities for preparing atomically thin BP nanosheets in green, large-scale, and highly concentrated processes and achieving its in situ application. PMID:26642883

  18. Comparative study on the biodegradability of morpholinium herbicidal ionic liquids.

    PubMed

    ?awniczak, ?ukasz; Materna, Katarzyna; Framski, Grzegorz; Szulc, Alicja; Syguda, Anna

    2015-07-01

    This study focused on evaluating the toxicity as well as primary and ultimate biodegradability of morpholinium herbicidal ionic liquids (HILs), which incorporated MCPA, MCPP, 2,4-D or Dicamba anions. The studied HILs were also subjected to determination of surface active properties in order to assess their influence on toxicity and biodegradability. The study was carried out with microbiota isolated from different environmental niches: sediments from river channel, garden soil, drainage trench collecting agricultural runoff stream, agricultural soil and municipal waste repository. The obtained results revealed that resistance to toxicity and biodegradation efficiency of the microbiota increased in the following order: microbiota from the waste repository > microbiota from agricultural soil ? microbiota from an agricultural runoff stream > microbiota from garden soil > microbiota from the river sludge. It was observed that the toxicity of HILs increased with the hydrophobicity of the cation, however the influence of the anion was more notable. The highest toxicity was observed when MCPA was used as the anion (EC50 values ranging from 60 to 190 mg L(-1)). The results of ultimate biodegradation tests indicated that only HILs with 2,4-D as the anion were mineralized to some extent, with slightly higher values for HILs with the 4-decyl-4-ethylmorpholinium cation (10-31 %) compared to HILs with the 4,4-didecylmorpholinium cation (9-20 %). Overall, the cations were more susceptible (41-94 %) to primary biodegradation compared to anions (0-61 %). The obtained results suggested that the surface active properties of the studied HILs may influence their toxicity and biodegradability by bacteria in different environmental niches. PMID:26099357

  19. Ionic Liquids as Novel Lubricants and /or Lubricant Additives

    SciTech Connect

    Qu, J.; Viola, M. B.

    2013-10-31

    This ORNL-GM CRADA developed ionic liquids (ILs) as novel lubricants or oil additives for engine lubrication. A new group of oil-miscible ILs have been designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Mechanistic analysis attributes the superior lubricating performance of IL additives to their physical and chemical interactions with metallic surfaces. Working with a leading lubricant formulation company, the team has successfully developed a prototype low-viscosity engine oil using a phosphonium-phosphate IL as an anti-wear additive. Tribological bench tests of the IL-additized formulated oil showed 20-33% lower friction in mixed and elastohydrodynamic lubrication and 38-92% lower wear in boundary lubrication when compared with commercial Mobil 1 and Mobil Clean 5W-30 engine oils. High-temperature, high load (HTHL) full-size engine tests confirmed the excellent anti-wear performance for the IL-additized engine oil. Sequence VID engine dynamometer tests demonstrated an improved fuel economy by >2% for this IL-additized engine oil benchmarked against the Mobil 1 5W-30 oil. In addition, accelerated catalyst aging tests suggest that the IL additive may potentially have less adverse impact on three-way catalysts compared to the conventional ZDDP. Follow-on research is needed for further development and optimization of IL chemistry and oil formulation to fully meet ILSAC GF-5 specifications and further enhance the automotive engine efficiency and durability.

  20. Metal ion adsorption at the ionic liquid-mica interface.

    PubMed

    McDonald, Samila; Elbourne, Aaron; Warr, Gregory G; Atkin, Rob

    2015-12-23

    Mica has been employed in many studies of ionic liquid (IL) interfaces on account of its atomic smoothness and well defined surface properties. However, until now it has been unclear whether ions dissolved in ILs can compete with the IL cation and adsorb to mica charge sites. In this work amplitude modulated atomic force microscopy (AM-AFM) has been used to probe metal ion adsorption at the interface of mica with propylammonium nitrate (PAN), a room temperature IL. Lithium, sodium, potassium, magnesium and calcium nitrate salts were added to PAN at a concentration of ?60 mM. Aluminum nitrate was also investigated, but only at 5 mM because its solubility in PAN is much lower. The AM-AFM images obtained when the metal ions were present are strikingly different to that of pure PAN, indicating that the ions compete effectively with the propylammonium cation and adsorb to negatively charged sites on the mica surface despite their much lower concentration. This is a consequence of electrostatic attractions between the mica charge sites and the metal ions being significantly stronger than for the propylammonium cation; compared to the metal ions the propylammonium charged group is relatively constrained sterically. A distinct honeycomb pattern is noted for the PAN + Al(3+) system, less obviously for the divalent ions and not at all for monovalent ions. This difference is attributed to the strength of electrostatic interactions between metal ions and mica charge sites increasing with the ion charge, which means that divalent and (particularly) trivalent ions are located more precisely above the charged sites of the mica lattice. The images obtained allow important distinctions between metal ion adsorption at mica-water and mica-PAN interfaces to be made. PMID:26661934

  1. Ring Opened Heterocycles: Promising Ionic Liquids for Gas Separation and Capture

    SciTech Connect

    Mahurin, Shannon Mark; Yeary, Joshua S; Baker, Sheila N; Jiang, Deen; Dai, Sheng; Baker, Gary A

    2012-01-01

    We report on a new class of highly fluid ionic liquids integrating a cation that resembles an opened imidazolium structure with two distinct anions, bis(trifluoromethylsulfonyl)imide, [Tf{sub 2}N], and a nitrile-containing anion, [C(CN)3]. These new ionic liquids show exceptional CO{sub 2} permeability values in liquid membrane gas separations with results that equal or exceed the Robeson upper bound. Moreover, these ionic liquids offer ideal CO{sub 2}/N{sub 2} selectivities competitive with the best results reported to date, exhibiting values that range from 28 to 45. The nitrile containing ionic liquid displayed the highest ideal CO{sub 2}/N{sub 2} selectivity with a value of 45 which primarily results from a reduction in the nitrogen permeability. In addition to permeability results, CO{sub 2} solubilities were also measured for the this new class of ionic liquids with values similar to the popular 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. The CO{sub 2} solubility results were compared to predicted values obtained using both a modified regular solution theory and the quantum chemical Conductor-like Screening Model for Real Solvents (COSMO-RS) method. Agreement between predicted and measured solubility values is also discussed.

  2. An ionic liquid dependent mechanism for base catalyzed ?-elimination reactions from QM/MM simulations.

    PubMed

    Allen, Caley; Sambasivarao, Somisetti V; Acevedo, Orlando

    2013-01-23

    Ionic liquids have been proposed to induce a mechanistic change in the reaction pathway for the fundamentally important base-induced ?-elimination class compared to conventional solvents. The role of the reaction medium in the elimination of 1,1,1-tribromo-2,2-bis(3,4-dimethoxyphenyl)ethane via two bases, piperidine and pyrrolidine, has been computationally investigated using methanol and the ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate [BMIM][BF(4)] and [BMIM][PF(6)], respectively. QM/MM Monte Carlo simulations utilizing free-energy perturbation theory found the ionic liquids did produce a reaction pathway change from an E1cB-like mechanism in methanol to a pure E2 route that is consistent with experimental observations. The origin of the ionic liquid effect has been found as: (1) a combination of favorable electrostatic interactions, for example, bromine-imidazolium ion, and (2) ?-? interactions that enhance the coplanarity between aromatic rings maximizing the electronic effects exerted on the reaction route. Solute-solvent interaction energies have been analyzed and show that liquid clathrate solvation of the transition state is primarily responsible for the observed mechanistic changes. This work provides the first theoretical evidence of an ionic liquid dependent mechanism and elucidates the interplay between sterics and electrostatics crucial to understanding the effect of these unique solvents upon chemical reactions. PMID:23273322

  3. Is There Any Preferential Interaction of Ions of Ionic Liquids with DMSO and H2O? A Comparative Study from MD Simulation.

    PubMed

    Zhao, Yuling; Wang, Jianji; Wang, Huiyong; Li, Zhiyong; Liu, Xiaomin; Zhang, Suojiang

    2015-06-01

    Recently, some binary ionic liquid (IL)/cosolvent systems have shown better performance than the pure ILs in fields such as CO2 absorption, catalysis, cellulose dissolution, and electrochemistry. However, interactions of ILs with cosolvents are still not well understood at the molecular level. In this work, H2O and DMSO were chosen as the representative protic and aprotic solvents to study the effect of cosolvent nature on solvation of a series of ILs by molecular dynamics simulations and quantum chemistry calculations. The concept of preferential interaction of ions was proposed to describe the interaction of cosolvent with cation and anion of the ILs. By comparing the interaction energies between IL and different cosolvents, it was found that there were significantly preferential interactions of anions of the ILs with water, but the same was not true for the interactions of cations/anions of the ILs with DMSO. Then, a detailed analysis and comparison of the interactions in IL/cosolvent systems, hydrogen bonds between cations and anions of the ILs, and the structure of the first coordination shells of the cations and the anions were performed to reveal the existing state of ions at different molar ratios of the cosolvent to a given IL. Furthermore, a systematic knowledge for the solvation of ions of the ILs in DMSO was given to understand cellulose dissolution in IL/cosolvent systems. The conclusions drawn from this study may provide new insight into the ionic solvation of ILs in cosolvents, and motivate further studies in the related applications. PMID:25970011

  4. Interaction of an ionic liquid with a supported phospholipid bilayer is lipid-dependent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Liquid salts, commonly called ionic liquids, are used as solvents to conduct transformation of vegetable oils into new products. These reactions are often catalyzed via immobilized enzymes. However, some enzymes were found to lose activity and are in need of some protection. Phospholipid bilayers...

  5. Amphiphile Meets Amphiphile: Beyond the Polar-Apolar Dualism in Ionic Liquid/Alcohol Mixtures.

    PubMed

    Russina, Olga; Sferrazza, Alessio; Caminiti, Ruggero; Triolo, Alessandro

    2014-05-15

    The mesoscopic morphology of binary mixtures of ethylammonium nitrate (EAN), the protic ionic liquid par excellence, and methanol is explored using neutron/X-ray diffraction and computational techniques. Both compounds are amphiphilic and characterized by an extended hydrogen bonding network: surprisingly, though macroscopically homogeneous, these mixtures turn out to be mesoscopically highly heterogeneous. Our study reveals that even in methanol-rich mixtures, a wide distribution of clusters exists where EAN preserves its bulk, sponge-like morphology. Accordingly methanol does not succeed in fully dissociating the ionic liquid that keeps on organizing in a bulk-like fashion. This behavior represents the premises to the more dramatic phenomenology observed with longer alcohols that eventually phase separate from EAN. These results challenge the commonly accepted polar and apolar moieties segregation in ionic liquids/molecular liquids mixtures and the current understanding of technologically relevant solvation processes. PMID:26270376

  6. Explaining ionic liquid water solubility in terms of cation and anion hydrophobicity.

    PubMed

    Ranke, Johannes; Othman, Alaa; Fan, Ping; Müller, Anja

    2009-03-01

    The water solubility of salts is ordinarily dictated by lattice energy and ion solvation. However, in the case of low melting salts also known as ionic liquids, lattice energy is immaterial and differences in hydrophobicity largely account for differences in their water solubility. In this contribution, the activity coefficients of ionic liquids in water are split into cation and anion contributions by regression against cation hydrophobicity parameters that are experimentally determined by reversed phase liquid chromatography. In this way, anion hydrophobicity parameters are derived, as well as an equation to estimate water solubilities for cation-anion combinations for which the water solubility has not been measured. Thus, a new pathway to the quantification of aqueous ion solvation is shown, making use of the relative weakness of interactions between ionic liquid ions as compared to their hydrophobicities. PMID:19399248

  7. Explaining Ionic Liquid Water Solubility in Terms of Cation and Anion Hydrophobicity

    PubMed Central

    Ranke, Johannes; Othman, Alaa; Fan, Ping; Müller, Anja

    2009-01-01

    The water solubility of salts is ordinarily dictated by lattice energy and ion solvation. However, in the case of low melting salts also known as ionic liquids, lattice energy is immaterial and differences in hydrophobicity largely account for differences in their water solubility. In this contribution, the activity coefficients of ionic liquids in water are split into cation and anion contributions by regression against cation hydrophobicity parameters that are experimentally determined by reversed phase liquid chromatography. In this way, anion hydrophobicity parameters are derived, as well as an equation to estimate water solubilities for cation-anion combinations for which the water solubility has not been measured. Thus, a new pathway to the quantification of aqueous ion solvation is shown, making use of the relative weakness of interactions between ionic liquid ions as compared to their hydrophobicities. PMID:19399248

  8. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    E-print Network

    Hoarfrost, Megan Lane

    2012-01-01

    solvent-like” and “salt-like” properties of ionic liquidsalts with low melting temperatures, or equivalently, solvents composed completely of ions, have unique propertiessalts with low melting temperatures, or equivalently, solvents composed completely of ions, have unique properties

  9. Oxygen Production from Lunar Regolith using Ionic Liquids

    NASA Technical Reports Server (NTRS)

    Paley, Mark Steven; Karr, Laurel J.; Curreri, Peter

    2009-01-01

    The objective of this work and future follow-on work is to develop a safe, efficient, and recyclable method for oxygen and/or metals extraction from lunar regolith, in support of establishing a manned lunar outpost. The approach is to solubilize the oxides that comprise lunar regolith in media consisting of ionic liquids (ILs) and/or their mixtures at temperatures at or below 300 C. Once in solution, electrolysis can either be performed in-situ to generate oxygen at the anode and hydrogen and/or metals (silicon, iron, aluminum, titanium, etc.) at the cathode. Alternatively, the water that is generated during the solubilization process can be distilled out and condensed into a separate IL and then electrolysized to produce hydrogen and oxygen. In the case of lunar regolith, this method could theoretically produce 44g oxygen per 100g of regolith. The oxygen can be used for human life support and/or as an oxidizer for rocket fuels, and the metals can be used as raw materials for construction and/or device fabrication. Moreover, the hydrogen produced can be used to re-generate the acidic medium, which can then be used to process additional regolith, thereby making the materials recyclable and limiting upmass requirements. An important advantage of IL acid systems is that they are much "greener" and safer than conventional materials used for regolith processing such as sulfuric or hydrochloric acids. They have very low vapor pressures, which means that they contain virtually no toxic and/or flammable volatile content, they are relatively non-corrosive, and they can exhibit good stability in harsh environments (extreme temperatures, hard vacuum, etc.). Furthermore, regolith processing can be achieved at lower temperatures than other processes such as molten oxide electrolysis or hydrogen reduction, thereby reducing initial power requirements. Six ILs have been synthesized and tested for their capability to dissolve lunar simulant, and for electrochemical and thermal stability. The results showed that ILs can be very efficient electrolytes; in particular IL/phosphoric-acid mixtures appear extremely promising for solubilizing lunar simulant. Results from preliminary experiments for distillation of water produced from the oxygen within the metal oxides of the simulant and the hydrogen from the acid indicates that over 75% of the oxygen from the simulant can be harvested as water at a temperature of 150 C. A method for collection of oxygen from electrolysis of the water derived from solubilizing simulant was developed by using a liquid nitrogen trap to liquefy and collect the oxygen. Although precise quantification of the liquid oxygen trapped is difficult to obtain, the amount of hydrogen and oxygen collected from electrolysis of water in this system was greater than 98%. This set-up also included a portable mass spectrometer for the identification of gases released from electrolysis cells. Regeneration of ILs through re-protonation was also demonstrated. Four sequential re-generations of an IL following solubilization of simulant showed no significant differences in amounts of simulant dissolved. Follow-on work for this project should include more studies of IL/phosphoric acid systems. Also, much more work is necessary for defining methods for electrolysis and purification of metals from regolith solubilized in ILs, and for developing a system to use the produced hydrogen to regenerate the spent IL. Finally, design and development of flight breadboard and prototype hardware is required.

  10. Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis.

    PubMed

    ?uczak, Justyna; Paszkiewicz, Marta; Krukowska, Anna; Malankowska, Anna; Zaleska-Medynska, Adriana

    2016-01-01

    Ionic liquids (ILs) are widely applied to prepare metal nanoparticles and 3D semiconductor microparticles. Generally, they serve as a structuring agent or reaction medium (solvent), however it was also demonstrated that ILs can play a role of a co-solvent, metal precursor, reducing as well as surface modifying agent. The crucial role and possible types of interactions between ILs and growing particles have been presented in the Part 1 of this review paper. Part 2 of the paper gives a comprehensive overview of recent experimental studies dealing with application of ionic liquids for preparation of metal and semiconductor based nano- and microparticles. A wide spectrum of preparation routes using ionic liquids is presented, including precipitation, sol-gel technique, hydrothermal method, nanocasting and ray-mediated methods (microwave, ultrasound, UV-radiation and ?-radiation). It was found that ionic liquids formed of a 1-butyl-3-methylimidazolium [BMIM] combined with tetrafluoroborate [BF4], hexafluorophosphate [PF6], and bis(trifluoromethanesulfonyl)imide [Tf2N] are the most often used ILs in the synthesis of nano- and microparticles, due to their low melting temperature, low viscosity and good transportation properties. Nevertheless, examples of other IL classes with intrinsic nanoparticles stabilizing abilities such as phosphonium and ammonium derivatives are also presented. Experimental data revealed that structure of ILs (both anion and cation type) affects the size and shape of formed metal particles, and in some cases may even determine possibility of particles formation. The nature of the metal precursor determines its affinity to polar or nonpolar domains of ionic liquid, and therefore, the size of the nanoparticles depends on the size of these regions. Ability of ionic liquids to form varied extended interactions with particle precursor as well as other compounds presented in the reaction media (water, organic solvents etc.) provides nano- and microstructures with different morphologies (0D nanoparticles, 1D nanowires, rods, 2D layers, sheets, and 3D features of molecules). ILs interact efficiently with microwave irradiation, thus even small amount of IL can be employed to increase the dielectric constant of nonpolar solvents used in the synthesis. Thus, combining the advantages of ionic liquids and ray-mediated methods resulted in the development of new ionic liquid-assisted synthesis routes. One of the recently proposed approaches of semiconductor particles preparation is based on the adsorption of semiconductor precursor molecules at the surface of micelles built of ionic liquid molecules playing a role of a soft template for growing microparticles. PMID:26520242

  11. An ionic electro-active actuator made with graphene film electrode, chitosan and ionic liquid

    NASA Astrophysics Data System (ADS)

    He, Qingsong; Yu, Min; Yang, Xu; Kim, Kwang Jin; Dai, Zhendong

    2015-06-01

    A newly developed ionic electro-active actuator composed of an ionic electrolyte layer sandwiched between two graphene film layers was investigated. Scanning electronic microscopy observation and x-ray diffraction analysis showed that the graphene sheets in the film stacked in a nearly face-to-face fashion but did not restack back to graphite, and the resulting graphene film with low sheet resistance (10 ? sq-1) adheres well to the electrolyte membrane. Contact angle measurement showed the surface energy (37.98 mJ m-2) of the ionic electrolyte polymer is 2.67 times higher than that (14.2 mJ m-2) of the Nafion membrane, contributing to the good adhesion between the graphene film electrode and the electrolyte membrane. An electric double-layer is formed at the interface between the graphene film electrode and the ionic electrolyte membrane under the input potential, resulting in a higher capacitance of 27.6 mF cm-2. We report that this ionic actuator exhibits adequate bending strain, ranging from 0.032 to 0.1% (305 to 945 ?m) as functions of voltage.

  12. Ionic Liquids as Novel Lubricants and Additives for Diesel Engine Applications

    SciTech Connect

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Meyer III, Harry M

    2009-01-01

    The lubricating properties of two ionic liquids with the same anion but different cations, one ammonium IL [C8H17]3NH.Tf2N and one imidazolium IL C10mim.Tf2N, were evaluated both in neat form and as oil additives. Experiments were conducted using a standardized reciprocating sliding test using a segment of a Cr-plated diesel engine piston ring against a grey cast iron flat specimen with simulated honing marks as on the engine cylinder liner. The selected ionic liquids were benchmarked against conventional hydrocarbon oils. Substantial friction and wear reductions, up to 55% and 34%, respectively, were achieved for the neat ionic liquids compared to a fully-formulated 15W40 engine oil. Adding 5 vol% ILs into mineral oil has demonstrated significant improvement in the lubricity. One blend even outperformed the 15W40 engine oil with 9% lower friction and 34% less wear. Lubrication regime modeling, worn surface morphology examination, and surface chemical analysis were conducted to help understand the lubricating mechanisms for ionic liquids. Results suggest great potential for using ionic liquids as base lubricants or lubricant additives for diesel engine applications.

  13. Hydrolysis of microcrystalline cellulose using functionalized Bronsted acidic ionic liquids - A comparative study.

    PubMed

    Parveen, Firdaus; Patra, Tanmoy; Upadhyayula, Sreedevi

    2016-01-01

    Cellulose conversion to platform chemicals is required to meet the demands of increasing population and modernization of the world. Hydrolysis of microcrystalline cellulose was studied with SO3H, COOH and OH functionalized imidazole based ionic liquid using 1-butyl-3-methylimidazolium chloride [BMIM]Cl as a solvent. The influence of temperature, time, acidity of ionic liquids and catalyst loading was studied on hydrolysis reaction. The maximum %TRS yield 85%, was obtained at 100°C and 90min with 0.2g of SO3H functionalized ionic liquid. UV-vis spectroscopy using 4-nitro aniline as an indicator was performed to find out the Hammett function of ionic liquid and acidity trends are as follows: SO3H>COOH>OH. Density functional theory (DFT) calculations were performed to optimize the ionic liquid and their conjugate bases at B3LYP 6-311G++ (d, p) level using Gaussian 09 program. Theoretical findings are in agreement with the experimental results. PMID:26453879

  14. Topological defects in electric double layers of ionic liquids at carbon interfaces

    DOE PAGESBeta

    Black, Jennifer M.; Okatan, Mahmut Baris; Feng, Guang; Cummings, Peter T.; Kalinin, Sergei V.; Balke, Nina

    2015-06-07

    The structure and properties of the electrical double layer in ionic liquids is of interest in a wide range of areas including energy storage, catalysis, lubrication, and many more. Theories describing the electrical double layer for ionic liquids have been proposed, however a full molecular level description of the double layer is lacking. To date, studies have been predominantly focused on ion distributions normal to the surface, however the 3D nature of the electrical double layer in ionic liquids requires a full picture of the double layer structure not only normal to the surface, but also in plane. Here wemore »utilize 3D force mapping to probe the in plane structure of an ionic liquid at a graphite interface and report the direct observation of the structure and properties of topological defects. The observation of ion layering at structural defects such as step-edges, reinforced by molecular dynamics simulations, defines the spatial resolution of the method. Observation of defects allows for the establishment of the universality of ionic liquid behavior vs. separation from the carbon surface and to map internal defect structure. In conclusion, these studies offer a universal pathway for probing the internal structure of topological defects in soft condensed matter on the nanometer level in three dimensions.« less

  15. Gamma and heavy ion radiolysis of ionic liquids: A comparative study

    NASA Astrophysics Data System (ADS)

    Dhiman, Surajdevprakash B.; Goff, George S.; Runde, Wolfgang; LaVerne, Jay A.

    2014-10-01

    A variety of imidazolium, quaternary ammonium, and phosphonium cation based ionic liquids were irradiated with ?-rays, 2-15 MeV protons and 5-20 MeV helium ions in order to examine their relative radiation stability and potential hazards for application in advanced nuclear fuel cycles. Molecular hydrogen production can be taken as an overall indicator of radiation stability, and was found to be considerably lower for the ?-irradiated aromatic imidazolium based compounds when compared to the other aliphatic based media. Increasing the length of the aliphatic side chain increases the H2 yields for all the compounds examined. Little difference is found in the production of H2 between the quaternary ammonium and phosphonium based ionic liquids with similar length side chains. Yields of H2 increase substantially from ?-rays to 5 MeV He ions for the imidazolium based ionic liquids, but little variation with radiation type is observed for the quaternary ammonium and phosphonium based ionic liquids. The imidazolium based ionic liquids show a darkening with increasing dose and the UV-Visible spectra show an increase in absorption from 240 to 400 nm that is probably due to induced changes in the cation. FTIR spectra show little variation with radiolysis, which is consistent with the low H2 yields. The formation of a new peak at 1658 cm-1 is attributable to the formation of acyclic disubstituted alkene bonds in the irradiated imidazolium based compounds.

  16. Studies of ionic liquids in lithium-ion battery test systems

    SciTech Connect

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-06-01

    In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

  17. Ionic liquid assisted hydrothermal fabrication of hierarchically organized ?-AlOOH hollow sphere

    SciTech Connect

    Tang, Zhe; Liu, Yunqi; Li, Guangci; Hu, Xiaofu; Liu, Chenguang

    2012-11-15

    Highlights: ? The ?-AlOOH hollow spheres were synthesized via an ionic liquid-assisted hydrothermal treatment. ? Ionic liquid plays an important role in the morphology of the product. ? Ionic liquid can be easily removed from the product and reused in next experiment. ? A “aggregation–solution–recrystallization” formation mechanism may occur in the system. -- Abstract: Hierarchically organized ?-AlOOH hollow spheres with nanoflake-like porous surface texture have been successfully synthesized via an ionic liquid-assisted hydrothermal synthesis method in citric acid monohydrate (CAMs). It was found that ionic liquid [bmim]{sup +}Cl{sup ?} played an important role in the morphology of the product due to its strong interactions with reaction particles. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM). The results show that the product has narrow particle size distribution (500–900 nm particle diameter range), high specific surface area (240.5 m{sup 2}/g) and large pore volume (0.61 cm{sup 3}/g). The corresponding ?-Al{sub 2}O{sub 3} hollow spheres can be obtained by calcining it at 550 °C for 3 h. The proposed formation mechanism and other influencing factors of the ?-AlOOH hollow sphere material, such as reaction temperature, reaction duration, CAMs and urea, have also been investigated.

  18. Electrotunable friction with ionic liquid lubricants: how important is the molecular structure of the ions?

    E-print Network

    O. Y. Fajardo; Fernando Bresme; Alexei A. Kornyshev; Michael Urbakh

    2015-08-23

    Using non-equilibrium molecular dynamics simulations and a coarse grained model of ionic liquids, we have investigated the impact that the shape and the intramolecular charge distribution of the ions have on the electrotuneable friction with ionic-liquid nanoscale films. We show that the electric-field induces significant structural changes in the film, leading to dramatic modifications of the friction force. Comparison of the present work with previous studies using different models of ionic liquids indicate that the phenomenology presented here applies to a wide range of ionic liquids. In particular, the electric-field-induced shift of the slippage plane from the solid-liquid interface to the interior of the film and the non-monotonic variation of the friction force are common features of ionic lubricants under strong confinement. We also demonstrate that the molecular structure of the ions plays an important role in determining the electrostriction and electroswelling of the confined film, hence showing the importance of ion-specific effects in electrotuneable friction.

  19. Design and Evaluation of Ionic Liquids as Novel CO2 Absorbents

    SciTech Connect

    Edward J. Maginn

    2006-09-30

    Progress from the third quarter 2006 activity on the project ''Design and Evaluation of Ionic Liquids as Novel CO{sub 2} Absorbents'' is provided. Major activities in two areas are reported: property measurement and molecular modeling. We have measured CO{sub 2} solubility in an ammonium lactate ionic liquid. Previous work has shown that the lactate anion enables chemical complexation to occur. We hypothesized that the lactate anion would not be as effective in complexing when paired with an ammonium cation as compared to when it is paired with an imidazolium cation. The results confirm this. We also measured CO{sub 2} solubility in a functionalized ionic liquid containing an amine group. These so-called task specific ionic liquids (TSILs) are expected to have dramatically higher CO{sub 2} solubility than physical absorbents. We report isotherms as well as entropies and enthalpies of absorption for CO{sub 2} in one TSIL. CO{sub 2} solubilities are higher in this compound than in any previous IL we have observed. Finally, we also developed a new simulation method that will enable us to compute full isotherms of gases in ionic liquids. So far, we have tested the method against model systems and found it to be highly effective.

  20. Study of surface-bonded dicationic ionic liquids as stationary phases for hydrophilic interaction chromatography.

    PubMed

    Qiao, Lizhen; Li, Hua; Shan, Yuanhong; Wang, Shuangyuan; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2014-02-21

    In the present study, several geminal dicationic ionic liquids based on 1,4-bis(3-allylimidazolium)butane and 1,8-bis(3-allylimidazolium)octane in combination with different anions bromide and bis(trifluoromethanesulphonyl)imide were prepared and then bonded to the surface of 3-mercaptopropyl modified silica materials through the "thiol-ene" click chemistry as stationary phases for hydrophilic interaction chromatography (HILIC). Compared with their monocationic analogues, the dicationic ionic liquids stationary phases presented effective retention and good selectivity for typical hydrophilic compounds under HILIC mode with the column efficiency as high as 130,000 plates/m. Moreover, the influence of different alkyl chain spacer between dications and combined anions on the retention behavior and selectivity of the dicationic ionic liquids stationary phases under HILIC mode was displayed. The results indicated that the longer linkage chain would decrease the hydrophilicity and retention on the dicationic ionic liquid stationary phase, and while differently combined anions had no difference due to the exchangeability under the common HILIC mobile phase with buffer salt. Finally, the retention mechanism was investigated by evaluating the effect of chromatographic factors on retention, including the water content in the mobile phase, the mobile phase pH and buffer salt concentration. The results showed that the dicationic ionic liquids stationary phases presented a mixed-mode retention behavior with HILIC mechanism and anion exchange. PMID:24484692

  1. The cosolvent-directed Diels-Alder reaction in ionic liquids.

    PubMed

    Khupse, Nageshwar D; Kumar, Anil

    2011-09-15

    The rate constants of a bimolecular Diels-Alder reaction in binary mixtures of ionic liquids prepared in molecular solvents were analyzed to investigate the effect of viscosity of the medium and solvent effect. In this connection, we have carried out the Diels-Alder reaction of anthracene 9-carbinol with N-ethyl maleimide in binary mixtures of pyridinium-based ionic liquids, 1-butyl-pyridinium tetrafluoroborate, 1-butyl-3-pyridinium tetrafluoroborate, and 1-butyl-4-methyl pyridinium tetrafluoroborate in water, methanol, and chloroform at 298.15 K. The rates of reaction decreased, caused by gradually increasing the volume fraction of ionic liquids in solvents for all three ionic liquids. The kinetic results demonstrate a successful application of the pairwise interaction model built upon the concept of enforced hydrophobic hydration. A temperature-dependent study of kinetics of the Diels-Alder reaction was carried out in the binary mixtures of ionic liquids in water and was explained by the entropy-enthalpy compensation effect based upon activation parameters. Kinetics of the Diels-Alder reaction in highly aqueous medium was noted to be entropically driven. PMID:21797206

  2. Global transcriptome response to ionic liquid by a tropical rain forest soil bacterium, Enterobacter lignolyticus.

    PubMed

    Khudyakov, Jane I; D'haeseleer, Patrik; Borglin, Sharon E; Deangelis, Kristen M; Woo, Hannah; Lindquist, Erika A; Hazen, Terry C; Simmons, Blake A; Thelen, Michael P

    2012-08-01

    To process plant-based renewable biofuels, pretreatment of plant feedstock with ionic liquids has significant advantages over current methods for deconstruction of lignocellulosic feedstocks. However, ionic liquids are often toxic to the microorganisms used subsequently for biomass saccharification and fermentation. We previously isolated Enterobacter lignolyticus strain SCF1, a lignocellulolytic bacterium from tropical rain forest soil, and report here that it can grow in the presence of 0.5 M 1-ethyl-3-methylimidazolium chloride, a commonly used ionic liquid. We investigated molecular mechanisms of SCF1 ionic liquid tolerance using a combination of phenotypic growth assays, phospholipid fatty acid analysis, and RNA sequencing technologies. Potential modes of resistance to 1-ethyl-3-methylimidazolium chloride include an increase in cyclopropane fatty acids in the cell membrane, scavenging of compatible solutes, up-regulation of osmoprotectant transporters and drug efflux pumps, and down-regulation of membrane porins. These findings represent an important first step in understanding mechanisms of ionic liquid resistance in bacteria and provide a basis for engineering microbial tolerance. PMID:22586090

  3. The presence of functional groups key for biodegradation in ionic liquids: effect on gas solubility.

    PubMed

    Deng, Yun; Morrissey, Saibh; Gathergood, Nicholas; Delort, Anne-Marie; Husson, Pascale; Costa Gomes, Margarida F

    2010-03-22

    The effect of the incorporation of either ester or ester and ether functions into the side chain of an 1-alkyl-3-methylimidazolium cation on the physico-chemical properties of ionic liquids containing bis(trifluoromethylsulfonyl)imide or octylsulfate anions is studied. It is believed that the introduction of an ester function into the cation of the ionic liquids greatly increases their biodegradability. The density of three such ionic liquids is measured as a function of temperature, and the solubility of four gases-carbon dioxide, ethane, methane, and hydrogen-is determined between 303 K and 343 K and at pressures close to atmospheric level. Carbon dioxide is the most soluble gas, followed by ethane and methane; the mole fraction solubilities vary from 1.8 x 10(-3) to 3.7 x 10(-2). These solubilities are of the same order of magnitude as those determined for alkylimidazolium-based ionic liquids. The chemical modification of the alkyl side chain does not result in a significant change of the solvation properties of the ionic liquid. All of the solubilities decrease with increasing temperature, corresponding to an exothermal solvation process. From the variation of this property with temperature, the thermodynamic functions of solvation (Gibbs energy, enthalpy, and entropy) are calculated and provide information about the solute-solvent interactions and the molecular structure of the solutions. PMID:20049767

  4. Liquid-vapor equilibria of ionic liquids from a SAFT equation of state with explicit electrostatic free energy contributions.

    PubMed

    Guzmán, Orlando; Ramos Lara, J Eloy; Del Río, Fernando

    2015-05-01

    Statistically associating fluid theory (SAFT) provides closed-form free energies by perturbation methods. We propose here a SAFT equation of state for ionic liquids that models the contribution from Coulomb forces after that of the Restricted Primitive Model (RPM) in the Mean Spherical Approximation (MSA). The resulting SAFT-MSA equation, fitted to simulated orthobaric curves of imidazolium based ionic liquids, predicts experimental density data with errors ?1% and the characteristic decrease of all critical coordinates with increasing cation size. The SAFT-MSA equation can be applied to calculate thermodynamic coefficients, the speed of sound and surface tension (among other properties) of pure ionic liquids and can be generalized straightforwardly to mixtures. PMID:25893582

  5. Video-microscopic observation of ionic liquid/alcohol interface and the corresponding molecular simulation study

    NASA Astrophysics Data System (ADS)

    Zhu, Peixi

    This research is aimed at studying the ionic liquid/n-pentanol interface via video-microscopy and molecular dynamic simulations. Understanding the interfacial phenomena and interfacial transport between ionic liquids and other liquids is of interest to the development and application of ionic liquids in a number of areas. One such area is the biphasic hydroformylation of alkenes to obtain alcohol and aldehyde, in which case ionic liquid is the reaction medium where a catalyst resides. The dissolution of an ionic liquid into an alcohol was studied by microscopically observing and measuring the shrinking of a micropipette-produced droplet in real time. Although microscopic investigation of droplet dissolution has been studied before, no attempt had been made to measure the diffusion coefficient D of the droplet species in the surrounding medium. A key finding of this work is that the Epstein-Plesset mathematical model, which describes the dissolution of a droplet/bubble in another fluid medium, can be used to measure D. Other experimental studies of the ionic liquid/alcohol system include electrical conductivity and UV-visible spectroscopy measurements of solutions of 1-hexyl-3-methylimidazolium tetrafluoroborate in n-pentanol. Those experiments were done in order to understand the molecular state of the particular ionic liquid in n-pentanol, as well as obtaining the dissociation constant K of such weak electrolyte solution. The experimental results provide an entry to the assessment of ionic liquid interaction with n-pentanol at molecular scale. Subsequently, molecular dynamics simulation was implemented for the investigation of such interaction. The computation started with simulation of the bulk phase of 1-butyl-3-methylimidazolium tetrafluoroborate, an affine ionic liquid on which molecular simulations had already been reported. A generalized probability based on Fuoss approximation for the closest ion to a distinguished countercharge ion was developed. In addition to 1-butyl-3-methylimidazolium tetrafluoroborate, the generalization was tested also on tetraethyl ammonium tetrafluoroborate in propylene carbonate from low to high concentrations, and on the corresponding primitive model. Such generalization helps us understand paring of ions in electrolyte solution, especially for elevated concentrations. Two cases of 1-hexyl-3-methylimidazolium tetrafluoroborate ionic liquid/n-pentanol system were studied, which are (i) liquid-liquid interface; and (ii) solution of the former in the latter. Computation of biphasic interface revealed interaction at the liquid-liquid junction, e.g., the transport of molecules from one phase to another, and lead to evaluation of diffusion coefficient that has good agreement with experimental measurement. The simulation of dilute electrolyte solution, i.e., an ionic liquid pair in n-pentanol, gives free energy change as a function of ion separation distance. The dissociation constant K was evaluated and found to be closed to experimental value that was obtained from solution conductivity measurement. The investigation of ion dynamics, especially the memory function transformed from velocity autocorrelation function, lead to the finding of dielectric friction in the system. Furthermore, precise evaluation of D gives satisfied agreement with experimental measurement from micropipette technique.

  6. Influence of ester functional groups on the liquid-phase structure and solvation properties of imidazolium-based ionic liquids.

    PubMed

    Pensado, Alfonso S; Pádua, Agílio A H; Costa Gomes, Margarida F

    2011-04-14

    The incorporation of ester functions in the side chains in 1-alkyl-3-methylimidazolium cations seems to increase the biodegradability of these ionic liquids. We study here how the presence of ester functional groups affects the liquid-state structure (namely, the microphase segregation between polar and nonpolar domains in these ionic liquids) and the way in which the solvation of gases can be understood in these solvents. We use molecular simulation to study the structure of the ionic liquids 3-methyl-1-(pentoxycarbonylmethyl)imidazolium octylsulfate, [C(1)COOC(5)C(1)im][C(8)SO(4)]; and 3-methyl-1-(pentoxycarbonylmethyl)imidazolium bis(trifluoromethylsulfonyl)imide, [C(1)COOC(5)C(1)im][NTf(2)] in the liquid phase and to assess the molecular mechanisms of solvation of carbon dioxide and ethane. The presence of ester functions influences the relative size of the polar and nonpolar domains in the ionic liquids, but does not significantly affect the solvation of gases. PMID:21391547

  7. Hydrogen-bond acidity of ionic liquids: an extended scale.

    PubMed

    Kurnia, Kiki A; Lima, Filipa; Cláudio, Ana Filipa M; Coutinho, João A P; Freire, Mara G

    2015-07-15

    One of the main drawbacks comprising an appropriate selection of ionic liquids (ILs) for a target application is related to the lack of an extended and well-established polarity scale for these neoteric fluids. Albeit considerable progress has been made on identifying chemical structures and factors that influence the polarity of ILs, there still exists a high inconsistency in the experimental values reported by different authors. Furthermore, due to the extremely large number of possible ILs that can be synthesized, the experimental characterization of their polarity is a major limitation when envisaging the choice of an IL with a desired polarity. Therefore, it is of crucial relevance to develop correlation schemes and a priori predictive methods able to forecast the polarity of new (or not yet synthesized) fluids. In this context, and aiming at broadening the experimental polarity scale available for ILs, the solvatochromic Kamlet-Taft parameters of a broad range of bis(trifluoromethylsulfonyl)imide-([NTf2](-))-based fluids were determined. The impact of the IL cation structure on the hydrogen-bond donating ability of the fluid was comprehensively addressed. Based on the large amount of novel experimental values obtained, we then evaluated COSMO-RS, COnductor-like Screening MOdel for Real Solvents, as an alternative tool to estimate the hydrogen-bond acidity of ILs. A three-parameter model based on the cation-anion interaction energies was found to adequately describe the experimental hydrogen-bond acidity or hydrogen-bond donating ability of ILs. The proposed three-parameter model is also shown to present a predictive capacity and to provide novel molecular-level insights into the chemical structure characteristics that influence the acidity of a given IL. It is shown that although the equimolar cation-anion hydrogen-bonding energies (EHB) play the major role, the electrostatic-misfit interactions (EMF) and van der Waals forces (EvdW) also contribute, admittedly in a lower extent, towards the hydrogen-bond acidity of ILs. The new extended scale provided for the hydrogen-bond acidity of ILs is of high value for the design of new ILs for task-specific applications. PMID:26129926

  8. Hydrogen-bond acidity of ionic liquids: an extended scale†

    PubMed Central

    Kurnia, Kiki A.; Lima, Filipa; Cláudio, Ana Filipa M.; Coutinho, João A. P.; Freire, Mara G.

    2015-01-01

    One of the main drawbacks comprising an appropriate selection of ionic liquids (ILs) for a target application is related to the lack of an extended and well-established polarity scale for these neoteric fluids. Albeit considerable progress has been made on identifying chemical structures and factors that influence the polarity of ILs, there still exists a high inconsistency in the experimental values reported by different authors. Furthermore, due to the extremely large number of possible ILs that can be synthesized, the experimental characterization of their polarity is a major limitation when envisaging the choice of an IL with a desired polarity. Therefore, it is of crucial relevance to develop correlation schemes and a priori predictive methods able to forecast the polarity of new (or not yet synthesized) fluids. In this context, and aiming at broadening the experimental polarity scale available for ILs, the solvatochromic Kamlet–Taft parameters of a broad range of bis(trifluoromethylsulfonyl)imide-([NTf2]?)-based fluids were determined. The impact of the IL cation structure on the hydrogen-bond donating ability of the fluid was comprehensively addressed. Based on the large amount of novel experimental values obtained, we then evaluated COSMO-RS, COnductor-like Screening MOdel for Real Solvents, as an alternative tool to estimate the hydrogen-bond acidity of ILs. A three-parameter model based on the cation–anion interaction energies was found to adequately describe the experimental hydrogen-bond acidity or hydrogen-bond donating ability of ILs. The proposed three-parameter model is also shown to present a predictive capacity and to provide novel molecular-level insights into the chemical structure characteristics that influence the acidity of a given IL. It is shown that although the equimolar cation–anion hydrogen-bonding energies (EHB) play the major role, the electrostatic-misfit interactions (EMF) and van der Waals forces (EvdW) also contribute, admittedly in a lower extent, towards the hydrogen-bond acidity of ILs. The new extended scale provided for the hydrogen-bond acidity of ILs is of high value for the design of new ILs for task-specific applications. PMID:26129926

  9. Molecular models and IR spectra of asymmetric tetraalkyl phosphonium iodide ionic liquids

    NASA Astrophysics Data System (ADS)

    Benavides-Garcia, Maria G.; Monroe, Matthew

    2009-09-01

    Equilibrium geometries and IR spectra were computed for five novel tetraalkyl phosphonium iodide ionic liquids with potential use as electrolytes in Grätzel type nanocrystalline solar cells. These studies indicate a relationship between ionic conductivity and computed dipole moments, P-I ionic bond distances and HOMO-LUMO energy gaps. The computed IR spectra are in excellent agreement with observed spectra. DFT with the B3LYP hybrid functional was used together with Stuttgart-Dresden (SDD) basis sets for geometry optimization and frequency analysis calculations.

  10. Solvent extraction of rare-earth ions based on functionalized ionic liquids.

    PubMed

    Sun, Xiaoqi; Luo, Huimin; Dai, Sheng

    2012-02-15

    Three functionalized ionic liquids (ILs), tetrabutylammonium di(2-ethylhexyl)phosphate ([TBA][DEHP]), trioctylmethylammonium di(2-ethylhexyl)phosphate ([TOMA][DEHP]), and trihexyl(tetradecyl)phosphonium di(2-ethylhexyl)phosphate ([THTP][DEHP]), are synthesized and characterized. These ILs are used as DEHP-based ionic extractants and are investigated for rare earth elements (REEs) separation in 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C(6)mim][NTf(2)]) and diisopropylbenzene (DIPB) along with di(2-ethylhexyl)phosphoric acid (HDEHP). Solubilities of the DEHP-based ionic extractants in [C(6)mim][NTf(2)] are much better than that of HDEHP in [C(6)mim][NTf(2)]. We herein report the achievement of enhanced extractabilities and selectivities for separation of REEs using DEHP-based ionic extractants in [C(6)mim][NTf(2)]. This work highlights the potential of developing a comprehensive ionic liquid-based extraction strategy for REEs using ionic liquids as both extractant and diluent. PMID:22340127

  11. Carbon Dioxide Selective Supported Ionic Liquid Membranes: The Effect of Contaminants

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2008-04-01

    The integrated gasification combined cycle (IGCC) is widely viewed as a promising technology for the large scale production of energy in a carbon constrained world. These cycles, which include gasification, contaminant removal, water-gas shift, CO2 capture and compression, and combustion of the reduced-carbon fuel gas in a turbine, often have significant efficiency advantages over conventional combustion technologies. A CO2 selective membrane capable of maintaining performance at conditions approaching those of low temperature water-gas shift (260oC) could facilitate the production of carbon-neutral energy by simultaneously driving the shift reaction to completion and concentrating CO2 for sequestration. Supported ionic liquid membranes (SILMs) have been previously evaluated for this application and determined to be physically and chemically stable to temperatures in excess of 300oC. These membranes were based on ionic liquids which interacted physically with CO2 and diminished considerably in selectivity at higher temperatures. To alleviate this problem, the original ionic liquids were replaced with ionic liquids able to form chemical complexes with CO2. These complexing ionic liquid membranes have a local maximum in selectivity which is observed at increasing temperatures for more stable complexes. Efforts are currently underway to develop ionic liquids with selectivity maxima at temperatures greater than 75oC, the best result to date, but other practical concerns must also be addressed if the membrane is to be realistically expected to function under water-gas shift conditions. A CO2 selective membrane must function not only at high temperature, but also in the presence of all the reactants and contaminants likely to be present in coal-derived fuel gas, including water, CO, and H2S. A study has been undertaken which examines the effects of each of these gases on both complexing and physically interacting supported liquid membranes. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance.

  12. A brief overview of the potential environmental hazards of ionic liquids.

    PubMed

    Bubalo, Marina Cvjetko; Radoševi?, Kristina; Redovnikovi?, Ivana Radoj?i?; Halambek, Jasna; Sr?ek, Višnja Gaurina

    2014-01-01

    Over past decades ionic liquids, a promising alternative to traditional organic solvents, have been dramatically expanding in popularity as a new generation of chemicals with potential uses in various areas in industry. In the literature these compounds have often been referred to as environmentally friendly; however, in recent years the perception of their greenness dramatically changed as the scientific community began to proactively assess the risk of their application based on the entire life-cycle. This review gives a brief overview of the current knowledge regarding the potential risks linked to the application of ionic liquids - from preparation to their disposal, with special emphasis on their potential environmental impacts and future directions in designing inherently safer ionic liquids. PMID:24210364

  13. Reclamation of niobium compounds from ionic liquid electrochemical polishing of superconducting radio frequency cavities

    SciTech Connect

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.; Abdel-Fattah, Tarek M.

    2013-06-01

    Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.

  14. Physicochemical studies of PVdF-HFP-based polymer-ionic liquid composite electrolytes

    NASA Astrophysics Data System (ADS)

    Lalia, Boor Singh; Yamada, K.; Hundal, M. S.; Park, Jin-Soo; Park, Gu-Gon; Lee, Won-Yong; Kim, Chang-Soo; Sekhon, S. S.

    2009-08-01

    Polymer-ionic liquid composite electrolytes based on poly (vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP) and room temperature ionic liquid: 2,3-dimethyl-1-octylimidazolium hexafluorophosphate (DMOImPF6) have been synthesized and studied. The addition of dimethylacetamide (DMA) and propylene carbonate (PC), both with high dielectric constant and low viscosity, to polymer electrolytes has been found to result in an enhancement of conductivity by one order of magnitude. Composite polymer electrolytes containing ionic liquid have been found to be thermally stable upto 300°C. Motional narrowing observed in the variation of line width of 1H and 19F NMR peaks with temperature suggests that both cations and anions are mobile in these electrolytes.

  15. DEVELOPMENT OF ROOM TEMPERATURE IONIC LIQUIDS FOR APPLICATIONS IN ACTINIDE CHEMISTRY

    SciTech Connect

    W. OLDHAM; D. COSTA; W. SMITH

    2001-05-01

    One area of on-going research in our group at Los Alamos National Laboratory is directed toward characterization of the basic coordination chemistry and electrochemical behavior of f-element ions dissolved in room temperature ionic liquids (RTILs). The ultimate goal of this work is to introduce advanced, environmentally sustainable, nuclear processing and purification strategies into both the DOE complex and the civilian nuclear industry. Efforts to develop ambient temperature electrorefining and/or electrowinning technologies are focused on the design of ionic liquids characterized by extended cathodic stability. In this chapter a summary of the synthesis, physical properties and electrochemical behavior of the ionic liquids used in this work is presented. The feasibility of efficient electrochemical production of high electropositive metals is demonstrated through reversible plating and stripping of sodium and potassium metals.

  16. SO3H-functionalized ionic liquid: efficient catalyst for bagasse liquefaction.

    PubMed

    Long, Jinxing; Guo, Bin; Teng, Junjiang; Yu, Yinghao; Wang, Lefu; Li, Xuehui

    2011-11-01

    Liquefaction is a process for the production of biofuel or value-added biochemicals from non-food biomass. SO(3)H-, COOH-functionalized and HSO(4)-paired imidazolium ionic liquids were shown to be efficient catalysts for bagasse liquefaction in hot compressed water. Using SO(3)H-functionalized ionic liquid, 96.1% of bagasse was liquefied and 50.6% was selectively converted to low-boiling biochemicals at 543 K. The degree of liquefaction and selectivity for low-boiling products increased and the average molecular weight of the tetrahydrofuran soluble products decreased with increasing acidic strength of ionic liquids. Analysis of products and comparative characterization of raw materials and residues suggested that both catalytic liquefaction and hydrolysis processes contribute to the high conversion of bagasse. A possible liquefaction mechanism based on the generation of 3-cyclohexyl-1-propanol, one of the main products, is proposed. PMID:21906936

  17. Surface Activity and Aggregation Behavior of Siloxane-Based Ionic Liquids in Aqueous Solution.

    PubMed

    Wang, Guoyong; Li, Ping; Du, Zhiping; Wang, Wanxu; Li, Guojin

    2015-08-01

    Six novel siloxane-based surface-active ionic liquids (SAILs)--siloxane ammonium carboxylate [Si(n)N(2)-CA(1), (n = 3, 4)]--were designed and synthesized. Their melting points, surface activities, and self-aggregation behavior in aqueous solution were studied. The results showed that because of the bulky hydrophobic siloxane chains at the end of the tail, all six siloxane-based SAILs are room-temperature ionic liquids (RT-SAILs). The introduction of the siloxane group can reduce the melting point of ionic liquids to below room temperature and can promote the micellization and aggregation behavior more efficiently. These siloxane-based SAILs can greatly reduce the surface tension of water, as shown by the critical aggregation concentration (?CAC) values of 20 mN·m(-1); all six siloxane RT-SAILs can form a vesicle spontaneously in aqueous solution, indicating potential uses as model systems for biomembranes and vehicles for drug delivery. PMID:26172585

  18. Separation of Lignin from Corn Stover Hydrolysate with Quantitative Recovery of Ionic Liquid

    PubMed Central

    Underkofler, Kaylee A.; Teixeira, Rodrigo E.; Pietsch, Stephen A.; Knapp, Kurtis G.; Raines, Ronald T.

    2015-01-01

    Abundant lignocellulosic biomass could become a source of sugars and lignin, potential feedstocks for the now emergent bio-renewable economy. The production and conversion of sugars from biomass have been well-studied, but far less is known about the production of lignin that is amenable to valorization. Here we report the isolation of lignin generated from the hydrolysis of biomass dissolved in the ionic liquid 1-butyl-3-methylimidazolium chloride. We show that lignin can be isolated from the hydrolysate slurry by simple filtration or centrifugation, and that the ionic liquid can be recovered quantitatively by a straightforward wash with water. The isolated lignin is not only free from ionic liquid, but also lacks cellulosic residues and is substantially depolymerized, making it a promising feedstock for valorization by conversion into fuels and chemicals. PMID:25866701

  19. Highly efficient Brønsted acidic ionic liquid-based catalysts for biodiesel synthesis from vegetable oils.

    PubMed

    Ghiaci, M; Aghabarari, B; Habibollahi, S; Gil, A

    2011-01-01

    Biodiesel has been produced by transesterification of canola oil with methanol in the presence of highly Brønsted acidic ionic liquids based on 1-benzyl-1H-benzimidazole, and the effect of reaction temperature, type and amount of catalyst, molar ratio and reaction time investigated. The results show that the 4B ionic liquid has the highest catalytic activity and best recyclability under the optimised reaction conditions. Thus, this ionic liquid is able to catalyze the transesterification of canola oil to its methyl esters in 5 h with yields of more than 95%. Density functional calculations (B3LYP), using the 6-311G basis set, have been performed to have a better understanding on the reactivity of these catalysts. The catalytic activity of 4B for the transesterification of other vegetable oils and alcohols has also been studied. PMID:20970994

  20. NOVEL FISSION PRODUCT SEPARATION BASED ON ROOM-TEMPERATURE IONIC LIQUIDS

    SciTech Connect

    Hussey, Charles L.

    2004-06-01

    The DoE/NE underground storage tanks at Hanford, SRS, and INEEL contain liquid wastes with high concentrations of radioactive species, mainly 137Cs and 90Sr. Because the other components of the liquid waste are mainly sodium nitrate and sodium hydroxide, most of this tank waste can be treated inexpensively as low-level waste if 137Cs and 90Sr can be selectively removed. Many ionophores (crown ether and calixarene compounds) have been synthesized for the purpose of selectively extracting Cs+ and Sr2+ from an aqueous phase into an immiscible organic phase. Recent studies conducted at ORNL1,2 reveal that hydrophobic ionic liquids might be better solvents for extracting metal ions from aqueous solutions with these ionophores than conventional immiscible organic solvents, such as benzene, toluene, and dichloromethane, because both Cs+ and Sr2+ exhibit larger distribution coefficients in the ionic liquids. In addition, the vapor pressures of these ionic liquids are insignificant. Thus, there is little or no vaporization loss of these solvents. Most of the ionic liquids under investigation are relatively nontoxic compared to the hydrocarbon solvents that they replace, classifying them as ''green'' solvents.

  1. Borohydride Ionic Liquids as Hypergolic Fuels: A Quest for Improved Stability.

    PubMed

    Chand, Deepak; Zhang, Jiaheng; Shreeve, Jean'ne M

    2015-09-14

    Hydrazine and its derivatives are used as fuels in rocket propellant systems; however, due to high vapor pressure, toxicity, and carcinogenicity, handling of such compounds is extremely hazardous. Hypergolic ionic liquids have shown great promise to become viable replacements for hydrazines as fuels. Borohydride-containing ionic liquids have now been synthesized using a more efficient synthetic pathway that does not require liquid ammonia and halide precursors. Among the eight new compounds, 1-allyl-3-n-butyl-imidazolium borohydride (1) and 1, 3-diallylimidazolium borohydride (5) exhibit very short ignition-delay times (ID) of 8 and 3?ms, respectively. The hydrolytic stability of borohydride compounds has been greatly improved by attaching long-chain alkyl substituents to the imidazole ring. 1,3-Di-(n-octyl)-imidazolium borohydride (3) is a water stable borohydride-containing ionic liquid. 1,3-Di-(n-butyl)-imidazolium borohydride (2) is a unique example of a borohydride liquid crystal. These ionic liquids have some unusual advantages, including negligible vapor pressures, good ignition delay (ID) times, and reduced synthetic and storage costs, thereby showing good application potential as environmentally friendly fuels in bipropellant formulations. In addition, they also have potential applications in the form of reducing agents and hydrogen storage materials. PMID:26223830

  2. Block Copolymers and Ionic Liquids: A New Class of Functional Nanocomposites

    NASA Astrophysics Data System (ADS)

    Lodge, Timothy

    2009-03-01

    Block copolymers provide a remarkably versatile platform for achieving desired nanostructures by self-assembly, with lengthscales varying from a few nanometers up to several hundred nanometers. Ionic liquids are an emerging class of solvents, with an appealing set of physical attributes. These include negligible vapor pressure, high chemical and thermal stability, tunable solvation properties, high ionic conductivity, and wide electrochemical windows. For various applications it will be necessary to solidify the ionic liquid into particular spatial arrangements, such as membranes or gels, or to partition the ionic liquid in coexisting phases, such as microemulsions and micelles. One example includes formation of spherical, cylindrical, and vesicular micelles by poly(butadiene-b-ethylene oxide) and poly(styrene-b-methylmethacrylate) in the common hydrophobic ionic liquids [BMI][PF6] and [EMI][TFSI]. This work has been extended to the formation of reversible micelle shuttles between ionic liquids and water, whereby entire micelles transfer from one phase to the other, reversibly, depending on temperature and solvent quality. Formation of ion gels has been achieved by self-assembly of poly(styrene-b-ethylene oxide-b-styrene) triblocks in ionic liquids, and by the thermoreversible system poly(N-isopropylacrylamide-b-ethylene oxide-b-N-isopropylacrylamide), using as little as 4% copolymer. Further, these gels have been shown to be remarkably effective as gate dielectrics in organic thin film transistors. The remarkably high capacitance of the ion gels (> 10 ?F/cm^2) supports a very high carrier density in an organic semiconductor such as poly(3-hexylthiophene), leading to milliamp currents for low applied voltages. Furthermore, the rapid mobility of the ions enables switching speeds approaching 10 kHz, orders of magnitude higher than achievable with other polymer-based dielectrics such as PEO/LiClO4. Finally, we have shown that ordered nanostructures of block copolymers plus ionic liquids show the characteristic self-assembly properties of strongly-segregated systems. Prospects for anisotropic ionic conductivity are also being explored.

  3. NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors

    PubMed Central

    2015-01-01

    Ionic liquids are emerging as promising new electrolytes for supercapacitors. While their higher operating voltages allow the storage of more energy than organic electrolytes, they cannot currently compete in terms of power performance. More fundamental studies of the mechanism and dynamics of charge storage are required to facilitate the development and application of these materials. Here we demonstrate the application of nuclear magnetic resonance spectroscopy to study the structure and dynamics of ionic liquids confined in porous carbon electrodes. The measurements reveal that ionic liquids spontaneously wet the carbon micropores in the absence of any applied potential and that on application of a potential supercapacitor charging takes place by adsorption of counterions and desorption of co-ions from the pores. We find that adsorption and desorption of anions surprisingly plays a more dominant role than that of the cations. Having elucidated the charging mechanism, we go on to study the factors that affect the rate of ionic diffusion in the carbon micropores in an effort to understand supercapacitor charging dynamics. We show that the line shape of the resonance arising from adsorbed ions is a sensitive probe of their effective diffusion rate, which is found to depend on the ionic liquid studied, as well as the presence of any solvent additives. Taken as whole, our NMR measurements allow us to rationalize the power performances of different electrolytes in supercapacitors. PMID:25973552

  4. Synthesis and characterization of ionic liquid (EMImBF4)/Li+ - chitosan membranes for ion battery

    NASA Astrophysics Data System (ADS)

    Pasaribu, Marvin H.; Arcana, I. Made; Wahyuningrum, Deana

    2015-09-01

    Lithium ion battery has been currently developed and produced because it has a longer life time, high energycapacity, and the efficient use of lithium ion battery that is suitable for storing electrical energy. However, this battery has some drawbacks such as use liquid electrolytes that are prone to leakage and flammability during the battery charging process in high temperature. In this study, an ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) containing Li+ ions was synthesized and combined with chitosan polymer host as a polymer electrolyte membrane for lithium-ion batteries to solve this problems. This ionic liquid was obtained from the anion metathesis reaction between EMImBr and LiBF4 salt, while EMImBr was synthesized from the reaction between 1-methylimidazole and ethyl bromide utilizing Microwave Assisted Organic Synthesis (MAOS) method. The ionic liquid obtained was characterized by microstructure analysis with using NMR and FTIR spectroscopy. The polymer electrolyte membrane was characterized by analysis functional groups (FTIR), ionic conductivity (EIS), and surface morphology (SEM). The analysis results of ion conductivity by the EIS method showed the increase the ionic conductivity value of membranes from 1.30 × 10-2 S cm- 1 for chitosan to 1.30 × 10-2 S cm-1 for chitosan with EMImBF4/Li+, and this result was supported by analysis the surface morphology (SEM).

  5. Ionic-liquid-impregnated resin for the microwave-assisted solid-liquid extraction of triazine herbicides in honey.

    PubMed

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Yu, Cui; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-09-01

    Microwave-assisted ionic-liquid-impregnated resin solid-liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic-liquid-impregnated resin was prepared by immobilizing 1-hexyl-3-methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box-Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples. PMID:26082329

  6. Toward an understanding of the salting-out effects in aqueous ionic liquid solutions: vapor-liquid equilibria, liquid-liquid equilibria, volumetric, compressibility, and conductivity behavior.

    PubMed

    Sadeghi, Rahmat; Mostafa, Bahar; Parsi, Elham; Shahebrahimi, Yasaman

    2010-12-16

    The action of particular electrolytes in altering the solution properties of ionic liquids is well documented, although the origin of this effect is not clearly defined. In order to clarify this point, the aim of this work is to obtain further evidence about the salting-out effect produced by the addition of different salts to aqueous solutions of water miscible ionic liquids by evaluating the effect of a large series of salts on the vapor-liquid equilibria, liquid-liquid phase diagram, volumetric, compressibility, and conductometric properties of ionic liquids 1-alkyl-3-methylimidazolium halide ([C(n)mim][X]). In the first part of this work, the experimental measurements of water activity at 298.15 and 308.15 K for aqueous binary and ternary solutions containing 1-alkyl-3-methylimidazolium bromide ([Rmim][Br], R = butyl (C(4)), heptyl (C(7)), and octyl (C(8))), sodium dihydrogen citrate (NaH(2)Cit), disodium hydrogen citrate (Na(2)HCit), and trisodium citrate (Na(3)Cit) are taken using both vapor pressure osmometry (VPO) and improved isopiestic methods. The effect of temperature, charge on the anion of sodium citrate salts, and alkyl chain length of ionic liquids on the vapor-liquid equilibria properties of the investigated systems are studied. The constant water activity lines of all the ternary systems show large negative deviation from the linear isopiestic relation (Zdanovskii-Stokes-Robinson rule) derived using the semi-ideal hydration model, and the vapor pressure depression for a ternary solution is much larger than the sum of those for the corresponding binary solutions with the same molality of the ternary solution. The results have been interpreted in terms of the solute-water and solute-solute interactions. In the second part of this work, the effects of the addition of (NH(4))(3)Cit, K(3)Cit, Na(3)Cit, (NH(4))(2)HPO(4), and (NH(4))(3)PO(4) on the liquid-liquid phase diagram, apparent molar volume, isentropic compressibility, and conductivity of aqueous solutions containing the model ionic liquid 1-butyl-3-methylimidazolium iodide, [C(4)mim][I], are investigated at different temperatures. It was found that there is a relation between the relative concentration of various salts to form two-phase systems with [C(4)mim][I] and apparent molar volume or isentropic compressibility of transfer of [C(4)mim][I] from water to aqueous solutions of the investigated salts. PMID:21080679

  7. Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids

    SciTech Connect

    Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony; ,

    2012-04-13

    This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

  8. New ionic liquids based on complexation of dipropylsulfide and AlCl3 for electrochodeposition of aluminum

    SciTech Connect

    Fang, Youxing; Jiang, Xueguang; Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new kind of ionic liquid based on complexation of dipropyl sulfide (DPS) and AlCl3 has been prepared. The equivalent concentration of AlCl3 in the ionic liquid is as high as 2.3 M. More importantly, it is highly fluidic and exhibits an ambient ionic conductivity of 1.25 x 10-4 S cm-1. This new ionic liquid can be successfully used as an electrolyte for electrodeposition of aluminum.

  9. Gelled Ionic Liquid-Based Membranes: Achieving a 10,000 GPU Permeance for Post-Combustion Carbon Capture with Gelled Ionic Liquid-Based Membranes

    SciTech Connect

    2011-02-02

    IMPACCT Project: Alongside Los Alamos National Laboratory and the Electric Power Research Institute, CU-Boulder is developing a membrane made of a gelled ionic liquid to capture CO2 from the exhaust of coal-fired power plants. The membranes are created by spraying the gelled ionic liquids in thin layers onto porous support structures using a specialized coating technique. The new membrane is highly efficient at pulling CO2 out of coal-derived flue gas exhaust while restricting the flow of other materials through it. The design involves few chemicals or moving parts and is more mechanically stable than current technologies. The team is now working to further optimize the gelled materials for CO2 separation and create a membrane layer that is less than 1 micrometer thick.

  10. Microwave-assisted liquid-liquid microextraction based on solidification of ionic liquid for the determination of sulfonamides in environmental water samples.

    PubMed

    Song, Ying; Wu, Lijie; Lu, Chunmei; Li, Na; Hu, Mingzhu; Wang, Ziming

    2014-12-01

    An easy, quick, and green method, microwave-assisted liquid-liquid microextraction based on solidification of ionic liquid, was first developed and applied to the extraction of sulfonamides in environmental water samples. 1-Ethy-3-methylimidazolium hexafluorophosphate, which is a solid-state ionic liquid at room temperature, was used as extraction solvent in the present method. After microwave irradiation for 90 s, the solid-state ionic liquid was melted into liquid phase and used to finish the extraction of the analytes. The ionic liquid and sample matrix can be separated by freezing and centrifuging. Several experimental parameters, including amount of extraction solvent, microwave power and irradiation time, pH of sample solution, and ionic strength, were investigated and optimized. Under the optimum experimental conditions, good linearity was observed in the range of 2.00-400.00 ?g/L with the correlation coefficients ranging from 0.9995 to 0.9999. The limits of detection for sulfathiazole, sulfachlorpyridazine, sulfamethoxazole, and sulfaphenazole were 0.39, 0.33, 0.62, and 0.85 ?g/L, respectively. When the present method was applied to the analysis of environmental water samples, the recoveries of the analytes ranged from 75.09 to 115.78% and relative standard deviations were lower than 11.89%. PMID:25271847

  11. Ionic liquid-assisted formation of cellulose/calcium phosphate hybrid materials

    PubMed Central

    Salama, Ahmed; Neumann, Mike; Günter, Christina

    2014-01-01

    Summary Cellulose/calcium phosphate hybrid materials were synthesized via an ionic liquid-assisted route. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis/differential thermal analysis show that, depending on the reaction conditions, cellulose/hydroxyapatite, cellulose/chlorapatite, or cellulose/monetite composites form. Preliminary studies with MC3T3-E1 pre-osteoblasts show that the cells proliferate on the hybrid materials suggesting that the ionic liquid-based process yields materials that are potentially useful as scaffolds for regenerative therapies. PMID:25247137

  12. Accelerated CO2 transport on surface of AgO nanoparticles in ionic liquid BMIMBF4

    PubMed Central

    Ji, Dahye; Kang, Yong Soo; Kang, Sang Wook

    2015-01-01

    The AgO nanoparticles were utilized for a CO2 separation membrane. The AgO nanoparticles were successfully generated in ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate (BMIMBF4) by favorable interaction between the surface of particles and the counteranion of BMIMBF4. The generated AgO nanoparticles were confirmed by TEM, and the average size was 20?nm. Coordinative interactions of dissociated AgO particles with BMIM+BF4? were investigated by FT-Raman spectroscopy. When the ionic liquid BMIMBF4 containing AgO nanoparticles was utilized as a CO2 separation membrane, the separation performance was largely enhanced. PMID:26549605

  13. In-situ Analysis of Zinc Electrodeposition within an Ionic Liquid Electrolyte

    NASA Astrophysics Data System (ADS)

    Keist, Jayme Scot

    Ionic liquids have received considerable attention as an alternative electrolyte for rechargeable battery systems. The goal of this investigation is to develop an understanding on the electrodeposition behavior of zinc within ionic liquid electrolytes and determine whether the unique properties of ionic liquids may allow for enhanced cyclability of the zinc electrode for rechargeable battery systems. Three different analysis techniques are employed for the investigation of the zinc deposition behavior within an imidazolium based ionic liquid electrolyte. First, the electrochemical behavior of the electrodeposition behavior is analyzed by cyclic voltammetry and potential step methods. Second, in-situ atomic force microscopy (AFM) is conducted to investigate the morphological evolution of zinc during electrodeposition. Finally, in-situ ultra-small-angle X-ray scattering (USAXS) is conducted during the electrodeposition of zinc to understand how the electrode surface evolves during electrodeposition and help confirm the results obtained from the in-situ AFM analysis. The ionic liquid electrolyte chosen for the investigation of zinc electrodeposition is an imidazolium based system consisting of zinc trifluoromethanesulfonate (Zn(OTf)2) dissolved within 1-butyl-3-methyl-imidazolium trifluoromethanesulfonate (BMIm OTf), and electrodeposition analysis is conducted on a Pt disk electrode. The behavior of Zn/Zn(II) within the ionic liquid electrolyte is analyzed at various deposition overpotentials, Zn(OTf)2 concentrations, and temperatures. Three distinct morphological behaviors are observed during the in-situ AFM analysis: growth of boulder like morphology, growth dominated by favorably oriented grains, and the formation of surface instabilities that manifested as agglomerate islands. The electrodeposition growth of Zn dominated by favorably oriented grains obtains a steady state where the surface roughness remained constant despite continued growth. The in-situ USAXS analysis confirms the results observed by the in-situ AFM analysis. In addition, the USAXS data shows that the zinc deposition behavior is hierarchical whereby the main scattering entities exhibited a sub-structure that remains constant in size with continued deposition. The results of this research indicate that zinc deposition within an ionic liquid electrolyte can obtain a compact and dense morphology. Furthermore, the morphology can evolve under a steady state condition under certain deposition parameters identified by this research. The improved deposition morphology of zinc within ionic liquid electrolytes may help improve the cycling performance of the zinc electrode and help make zinc based rechargeable batteries a viable alternative for energy storage applications.

  14. Synthesis and ionic liquid gating of hexagonal WO{sub 3} thin films

    SciTech Connect

    Wu, Phillip M. E-mail: beasley@stanford.edu; Munakata, Ko; Hammond, R. H.; Geballe, T. H.; Beasley, M. R. E-mail: beasley@stanford.edu; Ishii, Satoshi; Tanabe, Kenji; Tokiwa, Kazuyasu

    2015-01-26

    Via thin film deposition techniques, the meta-stable in bulk crystal hexagonal phase of tungsten oxide (hex-WO{sub 3}) is stabilized as a thin film. The hex-WO{sub 3} structure is potentially promising for numerous applications and is related to the structure for superconducting compounds found in WO{sub 3}. Utilizing ionic liquid gating, carriers were electrostatically induced in the films and an insulator-to-metal transition is observed. These results show that ionic liquid gating is a viable technique to alter the electrical transport properties of WO{sub 3}.

  15. Simulating the vibrational spectra of ionic liquid systems: 1-Ethyl-3-methylimidazolium acetate and its mixtures

    NASA Astrophysics Data System (ADS)

    Thomas, Martin; Brehm, Martin; Hollóczki, Oldamur; Kelemen, Zsolt; Nyulászi, László; Pasinszki, Tibor; Kirchner, Barbara

    2014-07-01

    The vibrational spectra of the ionic liquid 1-ethyl-3-methylimidazolium acetate and its mixtures with water and carbon dioxide are calculated using ab initio molecular dynamics simulations, and the results are compared to experimental data. The new implementation of a normal coordinate analysis in the trajectory analyzer TRAVIS is used to assign the experimentally observed bands to specific molecular vibrations. The applied computational approaches prove to be particularly suitable for the modeling of bulk phase effects on vibrational spectra, which are highly important for the discussion of the microscopic structure in systems with a strong dynamic network of intermolecular interactions, such as ionic liquids.

  16. Accelerated CO2 transport on surface of AgO nanoparticles in ionic liquid BMIMBF4

    NASA Astrophysics Data System (ADS)

    Ji, Dahye; Kang, Yong Soo; Kang, Sang Wook

    2015-11-01

    The AgO nanoparticles were utilized for a CO2 separation membrane. The AgO nanoparticles were successfully generated in ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate (BMIMBF4) by favorable interaction between the surface of particles and the counteranion of BMIMBF4. The generated AgO nanoparticles were confirmed by TEM, and the average size was 20?nm. Coordinative interactions of dissociated AgO particles with BMIM+BF4? were investigated by FT-Raman spectroscopy. When the ionic liquid BMIMBF4 containing AgO nanoparticles was utilized as a CO2 separation membrane, the separation performance was largely enhanced.

  17. Synthesis and ionic liquid gating of hexagonal WO3 thin films

    NASA Astrophysics Data System (ADS)

    Wu, Phillip M.; Ishii, Satoshi; Tanabe, Kenji; Munakata, Ko; Hammond, R. H.; Tokiwa, Kazuyasu; Geballe, T. H.; Beasley, M. R.

    2015-01-01

    Via thin film deposition techniques, the meta-stable in bulk crystal hexagonal phase of tungsten oxide (hex-WO3) is stabilized as a thin film. The hex-WO3 structure is potentially promising for numerous applications and is related to the structure for superconducting compounds found in WO3. Utilizing ionic liquid gating, carriers were electrostatically induced in the films and an insulator-to-metal transition is observed. These results show that ionic liquid gating is a viable technique to alter the electrical transport properties of WO3.

  18. Rapid and Efficient Functionalized Ionic Liquid-Catalyzed Aldol Condensation Reactions Associated with Microwave Irradiation

    PubMed Central

    Wang, Chang; Liu, Jing; Leng, Wenguang; Gao, Yanan

    2014-01-01

    Five quaternary ammonium ionic liquid (IL) and two tetrabutylphosphonium ILs were prepared and characterized. An environmentally benign and convenient functionalized ionic liquid catalytic system was thus explored in the aldol condensation reactions of aromatic aldehydes with acetone. The aldol reactions proceeded more efficiently through microwave-assisted heating than through conventional thermal heating. The yield of products obtained under microwave heating for 30 min was approximately 90%, and the ILs can be recovered and reused at least five times without apparent loss of activity. In addition, this catalytic system can be successfully extended to the Henry reactions. PMID:24445262

  19. Hydrophobic Bronsted Acid-Base Ionic Liquids Based on PAMAM Dendrimers with High Proton Conductivity and Blue Photoluminescence.

    SciTech Connect

    Liang, Chengdu; Huang, Jing-Fang; Luo, Huimin; Sun, Dr. Wen; Baker, Gary A; Dai, Sheng

    2005-01-01

    A simple strategy has been described to synthesize a novel hydrophobic Broensted acid-base ionic liquid based on a PAMAM dendrimer. The resulting ionic liquid is highly fluorescent and proton conductive with great potential for sensors and nonaqueous proton-conducting electrolytes.

  20. On the dissolution of non-metallic solid elements (sulfur, selenium, tellurium and phosphorus) in ionic liquids.

    PubMed

    Boros, Eva; Earle, Martyn J; Gîlea, Manuela A; Metlen, Andreas; Mudring, Anja-Verena; Rieger, Franziska; Robertson, Allan J; Seddon, Kenneth R; Tomaszowska, Alina A; Trusov, Lev; Vyle, Joseph S

    2010-02-01

    Ionic liquids are shown to be good solvents for elemental sulfur, selenium, phosphorus and tellurium, and can be designed to maximise the solubility of these elements. The presence of the [S(3)](*-) radical anion in diluted solutions of sulfur in some ionic liquids has been confirmed, and is the origin of their intense blue colour (cf. lapis lazuli). PMID:20087497