Science.gov

Sample records for aprotic ionic liquids

  1. Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids

    SciTech Connect

    Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md. Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2013-11-07

    The stabilization energies for the formation (E{sub form}) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G{sup **} level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E{sub form} for the [dema][CF{sub 3}SO{sub 3}] and [dmpa][CF{sub 3}SO{sub 3}] complexes (−95.6 and −96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF{sub 3}SO{sub 3}] complex (−81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl{sup −}, BF{sub 4}{sup −}, TFSA{sup −} anions. The anion has contact with the N–H bond of the dema{sup +} or dmpa{sup +} cations in the most stable geometries of the dema{sup +} and dmpa{sup +} complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0–18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E{sub form} for the less stable geometries for the dema{sup +} and dmpa{sup +} complexes are close to those for the most stable etma{sup +} complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N–H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA{sup −} anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF{sub 3}SO{sub 3}] ionic liquid.

  2. Comparative Investigation of the Ionicity of Aprotic and Protic Ionic Liquids in Molecular Solvents by using Conductometry and NMR Spectroscopy.

    PubMed

    Thawarkar, Sachin; Khupse, Nageshwar D; Kumar, Anil

    2016-04-01

    Electrical conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium-based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmIm][BF4 ], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the (1) H NMR chemical shifts of the ionic liquids. The self-diffusion coefficients D of the cation and anion of [HmIm][CH3 COO] in D2 O and in [D6 ]DMSO are determined by using (1) H nuclei with pulsed field gradient spin-echo NMR spectroscopy. PMID:26864750

  3. Non-ionogenic amphiphiles in aprotic ionic liquids

    NASA Astrophysics Data System (ADS)

    Zherenkova, L. V.; Komarov, P. V.

    2015-04-01

    Structural properties of the imidazolium ionic liquid-non-ionogenic amphiphile system are studied on the basis of the integral equation theory. The effect of the alkyl substituent lengths of cations and solvent selectivity on the features of amphiphile self-assembly is studied. The need to allow for solvent structure in constructing a theory of phase behavior of amphiphile in ionic liquid is demonstrated. The characteristic scales of structural inhomogeneities of a mixture at the stage of the self-assembly of amphiphile molecules are analyzed. Aggregation characteristics of mixture, particularly medium-field spinodal temperature are calculated, depending on amphiphile concentration.

  4. A comparative study of the terrestrial ecotoxicity of selected protic and aprotic ionic liquids.

    PubMed

    Peric, Brezana; Sierra, Jordi; Martí, Esther; Cruañas, Robert; Garau, Maria Antonia

    2014-08-01

    Ionic liquids (ILs) are a fairly new and very promising group of compounds with a vast variety of possible structures and uses. They are considered to be potentially "green", but their impact on the environment tends to be neglected or not studied enough, especially when it comes to terrestrial ecotoxicity, where there are very few studies performed to date. This work presents a comparative study of the terrestrial ecotoxicity of selected representatives of two ILs groups: a new family of protic ILs (derived from aliphatic amines and organic acids) and some frequently used aprotic ILs (substituted imidazolium and piridinium chlorides). Toxicity of the ILs towards three terrestrial plant species (Allium cepa, Lolium perenne and Raphanus sativus) and soil microorganisms involved in carbon and nitrogen transformation was analyzed. Protic ILs have shown no toxic effect in most of the tests performed. The EC50 values for aprotic ILs are various orders of magnitude lower than the ones for protic ILs in all of the tests. The most toxic ILs are the most complex ones in both of the analyzed groups. Protic ILs seem to have a potential for biodegradation in soil, while aprotic ILs exhibit inhibitory effects towards the carbon transforming microbiota. These findings indicate that protic ILs can be considered as less toxic and safer for the terrestrial environment than the aprotic ILs. PMID:24630250

  5. Physical Absorption Of CO2 in Protic and Aprotic Ionic Liquids: An Interaction Perspective.

    PubMed

    Izgorodina, Ekaterina I; Hodgson, Jennifer L; Weis, Derick C; Pas, Steven J; MacFarlane, Douglas R

    2015-09-01

    The physical absorption of CO2 by protic and aprotic ionic liquids such as 1-ethyl-3-methyl-imidazolium tetrafluoroborate was examined at the molecular level using symmetry adapted perturbation theory (SAPT) and density functional techniques through comparison of interaction energies of noncovalently bound complexes between the CO2 molecule and a series of ionic liquid ions and ion pairs. These energies were contrasted with those for complexes with model amines such as methylamine, dimethylamine, and trimethylamine. Detailed analysis of the five fundamental forces that are responsible for stabilization of the complexes is discussed. It was confirmed that the nature of the anion had a greater effect upon the physical interaction energy in non functionalized ionic liquids, with dispersion forces playing an important role in CO2 solubility. Hydrogen bonding with protic cations was shown to impart additional stability to the noncovalently bound CO2IL complex through inductive forces. Two solvation models, the conductor-like polarizable continuum model (CPCM) and the universal solvation model (SMD), were used to estimate the impact of solvent effects on the CO2 binding. Both solvent models reduced interaction energies for all types of ions. These interaction energies appeared to favor imidazolium cations and carboxylic and sulfonic groups as well as bulky groups (e.g., NTf2) in anions for the physical absorption of CO2. The structure-reactivity relationships determined in this study may help in the optimization of the physical absorption process by means of ionic liquids. PMID:26267781

  6. Triphilic Ionic-Liquid Mixtures: Fluorinated and Non-fluorinated Aprotic Ionic-Liquid Mixtures

    PubMed Central

    Hollóczki, Oldamur; Macchiagodena, Marina; Weber, Henry; Thomas, Martin; Brehm, Martin; Stark, Annegret; Russina, Olga; Triolo, Alessandro; Kirchner, Barbara

    2015-01-01

    We present here the possibility of forming triphilic mixtures from alkyl- and fluoroalkylimidazolium ionic liquids, thus, macroscopically homogeneous mixtures for which instead of the often observed two domains—polar and nonpolar—three stable microphases are present: polar, lipophilic, and fluorous ones. The fluorinated side chains of the cations indeed self-associate and form domains that are segregated from those of the polar and alkyl domains. To enable miscibility, despite the generally preferred macroscopic separation between fluorous and alkyl moieties, the importance of strong hydrogen bonding is shown. As the long-range structure in the alkyl and fluoroalkyl domains is dependent on the composition of the liquid, we propose that the heterogeneous, triphilic structure can be easily tuned by the molar ratio of the components. We believe that further development may allow the design of switchable, smart liquids that change their properties in a predictable way according to their composition or even their environment. PMID:26305804

  7. Triphilic Ionic-Liquid Mixtures: Fluorinated and Non-fluorinated Aprotic Ionic-Liquid Mixtures.

    PubMed

    Hollóczki, Oldamur; Macchiagodena, Marina; Weber, Henry; Thomas, Martin; Brehm, Martin; Stark, Annegret; Russina, Olga; Triolo, Alessandro; Kirchner, Barbara

    2015-10-26

    We present here the possibility of forming triphilic mixtures from alkyl- and fluoroalkylimidazolium ionic liquids, thus, macroscopically homogeneous mixtures for which instead of the often observed two domains-polar and nonpolar-three stable microphases are present: polar, lipophilic, and fluorous ones. The fluorinated side chains of the cations indeed self-associate and form domains that are segregated from those of the polar and alkyl domains. To enable miscibility, despite the generally preferred macroscopic separation between fluorous and alkyl moieties, the importance of strong hydrogen bonding is shown. As the long-range structure in the alkyl and fluoroalkyl domains is dependent on the composition of the liquid, we propose that the heterogeneous, triphilic structure can be easily tuned by the molar ratio of the components. We believe that further development may allow the design of switchable, smart liquids that change their properties in a predictable way according to their composition or even their environment. PMID:26305804

  8. Elucidating Interactions and Conductivity of Newly Synthesised Low Bandgap Polymer with Protic and Aprotic Ionic Liquids

    PubMed Central

    Attri, Pankaj; Lee, Seung-Hyun; Hwang, Sun Woo; Kim, Joong I. L.; Lee, Sang Woo; Kwon, Gi-Chung; Choi, Eun Ha; Kim, In Tae

    2013-01-01

    In this paper, we have examined the conductivity and interaction studies of ammonium and imidazolium based ionic liquids (ILs) with the newly synthesised low bandgap polymer (Poly(2-heptadecyl-4-vinylthieno[3,4-d]thiazole) (PHVTT)). Use of low bandgap polymers is the most suitable way to harvest a broader spectrum of solar radiations for solar cells. But, still there is lack of most efficient low bandgap polymer. In order to solve this problem, we have synthesised a new low bandgap polymer and investigated its interaction with the ILs to enhance its conductivity. ILs may undergo almost unlimited structural variations; these structural variations have attracted extensive attention in polymer studies. The aim of present work is to illustrate the state of art progress of implementing the interaction of ILs (protic and aprotic ILs) with newly synthesised low bandgap polymer. In addition to this, our UV-Vis spectroscopy, confocal Raman spectroscopy and FT-IR spectroscopy results have revealed that all studied ILs (tributylmethylammonium methyl sulfate ([N1444][MeSO4] from ammonium family) and 1-methylimidazolium chloride ([Mim]Cl, and 1-butyl-3-methylimidazolium chloride ([Bmim]Cl from imidazolium family) have potential to interact with polymer. Our semi empirical calculation with help of Hyperchem 7 shows that protic IL ([Mim]Cl) interacts strongly with the low bandgap polymer through the H-bonding. Further, protic ILs shows enhanced conductivity than aprotic ILs in association with low bandgap polymer. This study provides the combined effect of low bandgap polymer and ILs that may generate many theoretical and experimental opportunities. PMID:23874829

  9. Surface interactions, corrosion processes and lubricating performance of protic and aprotic ionic liquids with OFHC copper

    NASA Astrophysics Data System (ADS)

    Espinosa, Tulia; Sanes, Jos; Jimnez, Ana-Eva; Bermdez, Mara-Dolores

    2013-05-01

    In order to select possible candidates for use as lubricants or as precursors of surface coatings, the corrosion and surface interactions of oxygen-free high conductivity (OFHC) copper with two new protic (PIL) and four aprotic (APIL) room-temperature ionic liquids have been studied. The PILs, with no heteroatoms in their composition, are the triprotic di[(2-hydroxyethyl)ammonium] succinate (MSu) and the diprotic di[bis-(2-hydroxyethyl)ammonium] adipate (DAd). The four APILs contain imidazolium cations with short or long alkyl chain substituents and reactive anions: 1-ethyl-3-methylimidazolium phosphonate ([EMIM]EtPO3H); 1-ethyl-3-methylimidazolium octylsulfate ([EMIM]C8H17SO4); 1-hexyl-3-methylimidazolium tetrafluoroborate ([HMIM]BF4) and 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM]PF6). Contact angles between the ionic liquids and OFHC copper surface were measured. Mass and roughness changes of OFHC copper after 168 h in contact with the ionic liquids have been determined. Copper surfaces were studied by XRD, SEM-EDX and XPS surface analysis. FTIR spectra of the liquid phases recovered after being in contact with the copper surface were compared with that of the neat ionic liquids. The lowest corrosion rate is observed for the diprotic ammonium adipate PIL (DAd), which gives low mass and surface roughness changes and forms adsorbed layers on copper, while the triprotic ammonium succinate salt (MSu) produces a severe corrosive attack by reaction with copper to form a blue crystalline solid, which has been characterized by FTIR and thermal analysis (TGA). All imidazolium APILs react with copper, with different results as a function of the anion. As expected, [EMIM]C8H17SO4 reacts with copper to form the corresponding copper sulphate salt. [EMIM]EtPO3H produces severe corrosion to form a phosphonate-copper soluble phase. [HMIM]BF4 gives rise to the highest roughness increase of the copper surface. [HMIM]PF6 shows the lowest mass and roughness changes of the four imidazolium ionic liquids due to the formation of a solid layer containing phosphorus and fluorine. The results described in the present study are in agreement with the outstanding good tribological performance of the diprotic ammonium adipate (DAd) ionic liquid for the copper-copper contact, in pin-on-disc tests, preventing wear and giving a very low friction coefficient of 0.01. Under the same conditions, [HMIM]PF6 gives a friction value of 0.03, while the reactivity of MSu towards copper produces maximum friction peaks of 0.05. In contrast with the absence of surface damage on copper, an abrasive wear mechanism is observed for MSu and [HMIM]PF6. The results confirm a better lubricating performance for a lower corrosion rate.

  10. Aprotic Heterocyclic Anion Triazolide Ionic Liquids - A New Class of Ionic Liquid Anion Accessed by the Huisgen Cycloaddition Reaction

    SciTech Connect

    Thompson, Robert L.; Damodaran, Krishnan; Luebke, David; Nulwala, Hunaid

    2013-06-01

    The triazole core is a highly versatile heterocyclic ring which can be accessed easily with the Cu(I)-catalyzed Huisgen cycloaddition reaction. Herein we present the preparation of ionic liquids that incorporate a 1,2,3-triazolide anion. These ionic liquids were prepared by a facile procedure utilizing a base-labile pivaloylmethyl group at the 1-position, which can act as precursors to 1H- 4-substituted 1,2,3-triazole. These triazoles were then subsequently converted into ionic liquids after deprotonation using an appropriate ionic liquid cation hydroxide. The densities and thermal decompositions of these ionic liquids were measured. These novel ionic liquids have potential applications in gas separations and in metal-free catalysis.

  11. Chemically tunable ionic liquids with aprotic heterocyclic anion (AHA) for CO(2) capture.

    PubMed

    Seo, Samuel; Quiroz-Guzman, Mauricio; DeSilva, M Aruni; Lee, Tae Bum; Huang, Yong; Goodrich, Brett F; Schneider, William F; Brennecke, Joan F

    2014-05-29

    Ionic liquids (ILs) with aprotic heterocyclic anions, or AHAs, can bind CO2 with reaction enthalpies that are suitable for gas separations and without suffering large viscosity increases. In the present work, we have synthesized ILs bearing an alkyl-phosphonium cation with indazolide, imidazolide, pyrrolide, pyrazolide and triazolide-based anions that span a wide range of predicted reaction enthalpies with CO2. Each AHA-based IL was characterized by NMR spectroscopy and their physical properties (viscosity, glass transition, and thermal decomposition temperature) determined. In addition, the influence of substituent groups on the reaction enthalpy was investigated by measuring the CO2 solubility in each IL at pressures between 0 and 1 bar at 22 °C using a volumetric method. The isotherm-derived enthalpies range between -37 and -54 kJ mol(-1) of CO2, and these values are in good agreement with computed enthalpies of gas-phase IL-CO2 reaction products from molecular electronic structure calculations. The AHA ILs show no substantial increase in viscosity when fully saturated with CO2 at 1 bar. Phase splitting and compositional analysis of one of the IL/H2O and IL/H2O/CO2 systems conclude that protonation of the 2-cyanopyrrolide anion is improbable, and this result was confirmed by the equimolar CO2 absorption in the presence of water. Taking advantage of the tunable binding energy and absence of viscosity increase after the reaction with CO2, AHA ILs are promising candidates for efficient and environmental-friendly absorbents in postcombustion CO2 capture. PMID:24811264

  12. Weakly Polar Aprotic Ionic Liquids Acting as Strong Dissociating Solvent: A Typical "Ionic Liquid Effect" Revealed by Accurate Measurement of Absolute pKa of Ylide Precursor Salts.

    PubMed

    Mao, Chong; Wang, Zedong; Wang, Zhen; Ji, Pengju; Cheng, Jin-Pei

    2016-05-01

    Absolute pKas of selected salts with different counter-anions were measured with high precision in four aprotic ionic liquids (AILs), which enables a detailed examination of solvation effect of ILs on salts. Interestingly, the counter-anions of the ylide precursor salts, protic amine, and phenol salts of this study, though differing dramatically in size and electron dispersion, were found to have no effect on the respective pKas of the substrates. This indicates that the ionic species generated upon acidic dissociation of the salts in weakly polar AILs of low dielectric constant (ε: 10-15) are not ion-paired, or in other words, behave like "free ions" as if in strongly dissociating molecular solvents of high polarity (e.g., DMSO). This suggests that the widely assumed ion-pairing phenomenon, an issue of much debate, is not important in the AILs under our experimental conditions, presenting a typical "ionic-liquid effect" on the solvation of charged species in AILs. PMID:27077218

  13. Physical Properties and CO2 Reaction Pathway of 1-Ethyl-3-Methylimidazolium Ionic Liquids with Aprotic Heterocyclic Anions

    SciTech Connect

    Seo, S; DeSilva, MA; Brennecke, JF

    2014-12-25

    Ionic liquids (ILs) with aprotic heterocyclic anions (AHA) are attractive candidates for CO2 capture technologies. In this study, a series of AHA ILs with 1-ethyl-3-methylimidazolium ([emim](+)) cations were synthesized, and their physical properties (density, viscosity, and ionic conductivity) were measured. In addition, CO2 solubility in each IL was determined at room temperature using a volumetric method at pressures between 0 and 1 bar. The AHAs are basic anions that are capable of reacting stoichiometrically with CO2 to form carbamate species. An interesting CO2 uptake isotherm behavior was observed, and this may be attributed to a parallel, equilibrium proton exchange process between the imidazolium cation and the basic AHA in the presence of CO2, followed by the formation of "transient" carbene species that react rapidly with CO2. The presence of the imidazolium-carboxylate species and carbamate anion species was verified using H-1 and C-13 NMR spectroscopy. While the reaction between CO2 and the proposed transient carbene resulted in cation-CO2 binding that is stronger than the anion-CO2 reaction, the reactions of the imidazolium AHA ILs were fully reversible upon regeneration at 80 degrees C with nitrogen purging. The presence of water decreased the CO2 uptake due to the inhibiting effect of the neutral species (protonated form of AHA) that is formed.

  14. Study of a Li-air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid

    NASA Astrophysics Data System (ADS)

    Cecchetto, Laura; Salomon, Mark; Scrosati, Bruno; Croce, Fausto

    2012-09-01

    Recent studies have clearly demonstrated that cyclic and linear carbonates are unstable when used in rechargeable Li-air batteries employing aprotic solvents mostly due to the cathodic formation of superoxide during the oxygen reduction reaction. In particular, it has been ascertained that nucleophilic attack by superoxide anion radical, O2-rad , at O-alkyl carbon is a common mechanism of decomposition of organic carbonates. Moreover, theoretical calculations showed that ether chemical functionalities are stable against nucleophilic substitution induced by superoxide. Aim of this study is to report on a new electrolyte solution for Li-air battery formed by a mixture of an ether-based aprotic solvent with an ionic liquid (IL). The IL-based electrolyte was obtained by mixing the pure ionic liquid N-methyl-(n-butyl) pyrrolidinium bis(trifluoromethane sulfonyl) imide (here denoted as PYR14TFSI) to a 0.91 M solution of lithium triflate (LiCF3SO3) in tetra ethylene glycol dimethyl etcher (TEGDME). We observed that the presence of IL beneficially affects the kinetics and the reversibility of the oxygen reactions involved at the cathode. The most significant result being a lower overvoltage for the charge reaction, compared to a Li/air cell containing the same electrolyte solution without IL.

  15. Ionic Grease Lubricants: Protic [Triethanolamine][Oleic Acid] and Aprotic [Choline][Oleic Acid].

    PubMed

    Mu, Liwen; Shi, Yijun; Ji, Tuo; Chen, Long; Yuan, Ruixia; Wang, Huaiyuan; Zhu, Jiahua

    2016-02-24

    Ionic liquid lubricants or lubricant additives have been studied intensively over past decades. However, ionic grease serving as lubricant has rarely been investigated so far. In this work, novel protic [triethanolamine][oleic acid] and aprotic [choline][oleic acid] ionic greases are successfully synthesized. These ionic greases can be directly used as lubricants without adding thickeners or other additives. Their distinct thermal and rheological properties are investigated and are well-correlated to their tribological properties. It is revealed that aprotic ionic grease shows superior temperature- and pressure-tolerant lubrication properties over those of protic ionic grease. The lubrication mechanism is studied, and it reveals that strong physical adsorption of ionic grease onto friction surface plays a dominating role for promoted lubrication instead of tribo-chemical film formation. PMID:26815603

  16. Ionic Liquids Database- (ILThermo)

    National Institute of Standards and Technology Data Gateway

    SRD 147 Ionic Liquids Database- (ILThermo) (Web, free access)   IUPAC Ionic Liquids Database, ILThermo, is a free web research tool that allows users worldwide to access an up-to-date data collection from the publications on experimental investigations of thermodynamic, and transport properties of ionic liquids as well as binary and ternary mixtures containing ionic liquids.

  17. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition. PMID:27175515

  18. Carbon Dioxide Capture by Superbase-Derived Protic Ionic Liquids

    SciTech Connect

    Dai, Sheng; Luo, Huimin; Li, Haoran; Wang, Chongmin; Jiang, Deen

    2010-01-01

    Protic ionic liquids (PILs) from a superbase and fluorinated alcohol, imidazole, pyrrolinone, or phenol were designed to capture CO{sub 2} based on the reactivity of their anions to CO{sub 2}. These PILs are capable of rapid and reversible capture of about one equivalent of CO{sub 2}, which is superior to those sorption systems based on traditional aprotic ILs.

  19. The distillation and volatility of ionic liquids

    NASA Astrophysics Data System (ADS)

    Earle, Martyn J.; Esperança, José M. S. S.; Gilea, Manuela A.; Canongia Lopes, José N.; Rebelo, Luís P. N.; Magee, Joseph W.; Seddon, Kenneth R.; Widegren, Jason A.

    2006-02-01

    It is widely believed that a defining characteristic of ionic liquids (or low-temperature molten salts) is that they exert no measurable vapour pressure, and hence cannot be distilled. Here we demonstrate that this is unfounded, and that many ionic liquids can be distilled at low pressure without decomposition. Ionic liquids represent matter solely composed of ions, and so are perceived as non-volatile substances. During the last decade, interest in the field of ionic liquids has burgeoned, producing a wealth of intellectual and technological challenges and opportunities for the production of new chemical and extractive processes, fuel cells and batteries, and new composite materials. Much of this potential is underpinned by their presumed involatility. This characteristic, however, can severely restrict the attainability of high purity levels for ionic liquids (when they contain poorly volatile components) in recycling schemes, as well as excluding their use in gas-phase processes. We anticipate that our demonstration that some selected families of commonly used aprotic ionic liquids can be distilled at 200-300°C and low pressure, with concomitant recovery of significant amounts of pure substance, will permit these currently excluded applications to be realized.

  20. Applications of ionic liquids.

    PubMed

    Patel, Divia Dinesh; Lee, Jong-Min

    2012-06-01

    Ionic liquids have recently gained popularity in the scientific community owing to their special properties and characteristics. One of the reasons why ionic liquids have been termed "green solvents" is due to their negligible vapour pressure. Their use in electrochemical, biological and metal extraction applications is discussed. Wide research has been carried out for their use in batteries, solar panels, fuel cells, drug deliveries and biomass pretreatments. This work aims to consolidate the various findings from previous works in these areas. PMID:22711528

  1. Synthesis of ionic liquids

    DOEpatents

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2008-09-09

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  2. Synthesis of ionic liquids

    SciTech Connect

    Dai, Sheng; Luo, Huimin

    2011-11-01

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  3. Dissociation of equimolar mixtures of aqueous carboxylic acids in ionic liquids: role of specific interactions.

    PubMed

    Shukla, Shashi Kant; Kumar, Anil

    2015-04-30

    Hammett acidity function observes the effect of protonation/deprotonation on the optical density/absorbance of spectrophotometric indicator. In this work, the Hammett acidity, H0, of equimolar mixtures of aqueous HCOOH, CH3COOH, and CH3CH2COOH was measured in 1-methylimidazolium-, 1-methylpyrrolidinium-, and 1-methylpiperidinium-based protic ionic liquids (PILs) and 1-butyl-3-methylimidazolium-based aprotic ionic liquid (AIL) with formate (HCOO(-)) anion. Higher H0 values were observed for the equimolar mixtures of aqueous carboxylic acids in protic ionic liquids compared with those of the aprotic ionic liquid because of the involvement of the stronger specific interactions between the conjugate acid of ionic liquid and conjugate base of carboxylic acids as suggested by the hard-soft acid base (HSAB) theory. The different H0 values for the equimolar mixtures of aqueous carboxylic acids in protic and aprotic ionic liquids were noted to depend on the activation energy of proton transfer (Ea,H(+)). The higher activation energy of proton transfer was obtained in AIL, indicating lower ability to form specific interactions with solute than that of PILs. Thermodynamic parameters determined by the "indicator overlapping method" further confirmed the involvement of the secondary interactions in the dissociation of carboxylic acids. On the basis of the thermodynamic parameter values, the potential of different ionic liquids in the dissociation of carboxylic acids was observed to depend on the hydrogen bond donor acidity (α) and hydrogen bond acceptor basicity (β), characteristics of specific interactions. PMID:25839210

  4. Void-Assisted Ion-Paired Proton Transfer at Water-Ionic Liquid Interfaces.

    PubMed

    de Eulate, Eva Alvarez; Silvester, Debbie S; Arrigan, Damien W M

    2015-12-01

    At the water-trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate ([P14,6,6,6][FAP]) ionic liquid interface, the unusual electrochemical transfer behavior of protons (H(+)) and deuterium ions (D(+)) was identified. Alkali metal cations (such as Li(+), Na(+), K(+)) did not undergo this transfer. H(+)/D(+) transfers were assisted by the hydrophobic counter anion of the ionic liquid, [FAP](-), resulting in the formation of a mixed capacitive layer from the filling of the latent voids within the anisotropic ionic liquid structure. This phenomenon could impact areas such as proton-coupled electron transfers, fuel cells, and hydrogen storage where ionic liquids are used as aprotic solvents. PMID:26489692

  5. Carbenes from ionic liquids.

    PubMed

    Hollóczki, Oldamur; Nyulászi, László

    2014-01-01

    In the last decade an explosive development has been observed in the fields of both ionic liquids (ILs) as potential chemically inert solvents with many possible technical applications, and N-heterocyclic carbenes (NHCs) as catalysts with superb performance. Since the cations of many ILs can be deprotonated by strong bases yielding NHCs, this two fields are inherently connected. It has only recently been recognized that some of the commonly used basic anions of the ILs (such as acetate) are able to deprotonate azolium cations. While the resulting NHC could clearly be observed in the vapor phase, in the liquid - where the mutual electrostatic interactions within the ion network stabilize the ion pairs - the neutral NHC cannot be detected by commonly used analytical techniques; however, from these ionic liquids NHCs can be trapped, e.g., by complex formation, or more importantly these ILs can be directly used as catalysts, since the NHC content is sufficiently large for these applications. Apart from imidazole-2-ylidenes, the formation of other highly reactive neutral species ("abnormal carbenes," 2-alkylideneimidazoles, pyridine-ylidenes or pyridinium-ylides) is feasible in highly basic ionic liquids. The cross-fertilizing overlap between the two fields may provide access to a great advance in both areas, and we give an overview here on the results published so far, and also on the remaining possibilities and challenges in the concept of "carbenes from ionic liquids." PMID:23539381

  6. Access to pure and highly volatile hydrochalcogenide ionic liquids.

    PubMed

    Finger, L H; Wohde, F; Grigoryev, E I; Hansmann, A-K; Berger, R; Roling, B; Sundermeyer, J

    2015-11-21

    The reaction of methylcarbonate ionic liquids with H2S or H2Se offers a highly selective synthesis of analytically pure, well-defined and soluble hydrosulphide and hydroselenide organic salts of general interest. Among them, imidazolium hydrochalcogenides show an astonishingly high volatility for cation-aprotic ILs, which allows their quantitative sublimation below 100 °C/10(-2) mbar and actually results in ionic single crystal growth from the gas phase. Vaporisation and decomposition characteristics were investigated by isothermal TGA measurements and DFT calculations. PMID:26377144

  7. Cyclic phosphonium ionic liquids

    PubMed Central

    Mukhlall, Joshua A; Romeo, Alicia R; Gohdo, Masao; Ramati, Sharon; Berman, Marc; Suarez, Sophia N

    2014-01-01

    Summary Ionic liquids (ILs) incorporating cyclic phosphonium cations are a novel category of materials. We report here on the synthesis and characterization of four new cyclic phosphonium bis(trifluoromethylsulfonyl)amide ILs with aliphatic and aromatic pendant groups. In addition to the syntheses of these novel materials, we report on a comparison of their properties with their ammonium congeners. These exemplars are slightly less conductive and have slightly smaller self-diffusion coefficients than their cyclic ammonium congeners. PMID:24605146

  8. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    DOEpatents

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  9. Electrodeposition in Ionic Liquids.

    PubMed

    Zhang, Qinqin; Wang, Qian; Zhang, Suojiang; Lu, Xingmei; Zhang, Xiangping

    2016-02-01

    Due to their attractive physico-chemical properties, ionic liquids (ILs) are increasingly used as deposition electrolytes. This review summarizes recent advances in electrodeposition in ILs and focuses on its similarities and differences with that in aqueous solutions. The electrodeposition in ILs is divided into direct and template-assisted deposition. We detail the direct deposition of metals, alloys and semiconductors in five types of ILs, including halometallate ILs, air- and water-stable ILs, deep eutectic solvents (DESs), ILs with metal-containing cations, and protic ILs. Template-assisted deposition of nanostructures and macroporous structures in ILs is also presented. The effects of modulating factors such as deposition conditions (current density, current density mode, deposition time, temperature) and electrolyte components (cation, anion, metal salts, additives, water content) on the morphology, compositions, microstructures and properties of the prepared materials are highlighted. PMID:26530378

  10. Ionic liquids as novel solvents for ionic polymer transducers

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew D.; Leo, Donald J.

    2004-07-01

    The use of ionic liquids as solvents for ionic polymer (specifically, Nafion) transducers is demonstrated. Ionic liquids are attractive for this application because of their high inherent stability. Ionic liquids are salts that exist as liquids at room temperature and have no measureable vapor pressure. Therefore, the use of ionic liquids as solvents for ionic polymer transducers can eliminate the traditional problem of water evaporation in these devices. Another benefit of the use of ionic liquids in this way is the reduction or elimination of the characteristic back-relaxation common in water-solvated ionic polymer actuators. The results demonstrate that the viscosity of the ionic liquid and the degree to which the ionic liquid swells the membrane are the important physical parameters to consider. Five ionic liquids were studied, based on substituted pyrrolidinium, phosphonium, or imidazolium cations and fluoroanions. Of these five ionic liquids, transduction is demonstrated in three of them and the best results are obtained with 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. This substance has an electrochemical stability window of 4.1 V, a melting point of -10 °C, and a viscosity of 35-45 cP [19]. Results demonstrate that platinum-plated Nafion transducers solvated with this ionic liquid exhibit sensing and actuation responses and that these transducers are stable in air. Endurance testing of this sample reveals a decrease in the free strain of only 25 % after 250,000 actuation cycles in air.

  11. Hydrophobic ionic liquids

    DOEpatents

    Koch, V.R.; Nanjundiah, C.; Carlin, R.T.

    1998-10-27

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas shown in a diagram wherein R{sub 1}, R{sub 2}, R{sub 3}, R{sub 4}, R{sub 5}, and R{sub 6} are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F-, Cl-, CF{sub 3}-, SF{sub 5}-, CF{sub 3}S-, (CF{sub 3}){sub 2}CHS- or (CF{sub 3}){sub 3}CS-; and X{sup {minus}} is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 {angstrom}{sup 3}. 4 figs.

  12. Hydrophobic ionic liquids

    DOEpatents

    Koch, Victor R.; Nanjundiah, Chenniah; Carlin, Richard T.

    1998-01-01

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

  13. Ionic Liquid Crystals: Versatile Materials.

    PubMed

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions. PMID:27088310

  14. Ionic Liquid Epoxy Resin Monomers

    NASA Technical Reports Server (NTRS)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  15. Protic ionic liquids: solvents with tunable phase behavior and physicochemical properties.

    PubMed

    Greaves, Tamar L; Weerawardena, Asoka; Fong, Celesta; Krodkiewska, Irena; Drummond, Calum J

    2006-11-16

    The phase behavior, including glass, devitrification, solid crystal melting, and liquid boiling transitions, and physicochemical properties, including density, refractive index, viscosity, conductivity, and air-liquid surface tension, of a series of 25 protic ionic liquids and protic fused salts are presented along with structure-property comparisons. The protic fused salts were mostly liquid at room temperature, and many exhibited a glass transition occurring at low temperatures between -114 and -44 degrees C, and high fragility, with many having low viscosities, down to as low as 17 mPa.s at 25 degrees C, and ionic conductivities up to 43.8 S/cm at 25 degrees C. These protic solvents are easily prepared through the stoichiometric combination of a primary amine and Brønsted acid. They have poor ionic behavior when compared to the far more studied aprotic ionic liquids. However, some of the other physicochemical properties possessed by these solvents are highly promising and it is anticipated that these, or analogous protic solvents, will find applications beyond those already identified for aprotic ionic liquids. This series of protic fused salts was employed to determine the effect of structural changes on the physicochemical properties, including the effect of hydroxyl groups, increasing alkyl chain lengths, branching, and the differences between inorganic and organic anions. It was found that simple structural modifications provide a mechanism to manipulate, over a wide range, the temperature at which phase transitions occur and to specifically tailor physicochemical properties for potential end-use applications. PMID:17091990

  16. Anion pairs in room temperature ionic liquids predicted by molecular dynamics simulation, verified by spectroscopic characterization

    SciTech Connect

    Schwenzer, Birgit; Kerisit, Sebastien N.; Vijayakumar, M.

    2014-01-01

    Molecular-level spectroscopic analyses of an aprotic and a protic room-temperature ionic liquid, BMIM OTf and BMIM HSO4, respectively, have been carried out with the aim of verifying molecular dynamics simulations that predict anion pair formation in these fluid structures. Fourier-transform infrared spectroscopy, Raman spectroscopy and nuclear magnetic resonance spectroscopy of various nuclei support the theoretically-determined average molecular arrangements.

  17. Two-dimensional ultrafast vibrational spectroscopy of azides in ionic liquids reveals solute-specific solvation.

    PubMed

    Dutta, Samrat; Ren, Zhe; Brinzer, Thomas; Garrett-Roe, Sean

    2015-10-28

    The stereochemistry and the reaction rates of bimolecular nucleophilic substitution reactions involving azides in ionic liquids are governed by solute-solvent interactions. Two-dimensional ultrafast vibrational spectroscopy (2D-IR) shows that the picosecond dynamics of inorganic azides are substantially slower than organic azides in a series of homologous imidazolium ionic liquids. In water, both organic and inorganic azides spectrally diffuse with a ∼2 ps time constant. In the aprotic solvent tetrahydrofuran, both kinds of azides spectrally diffuse on a timescale >5 ps. In ionic liquids, like 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), organic azides spectrally diffuse with a 2-4 ps time constant, and inorganic azides spectrally diffuse with a >40 ps time constant. Such a striking difference suggests that neutral (organic) and charged (inorganic) azides are incorporated in the ionic liquids with different solvation structures. PMID:26193916

  18. Void-Assisted Ion-Paired Proton Transfer at Water–Ionic Liquid Interfaces

    PubMed Central

    de Eulate, Eva Alvarez; Silvester, Debbie S; Arrigan, Damien W M

    2015-01-01

    At the water–trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate ([P14,6,6,6][FAP]) ionic liquid interface, the unusual electrochemical transfer behavior of protons (H+) and deuterium ions (D+) was identified. Alkali metal cations (such as Li+, Na+, K+) did not undergo this transfer. H+/D+ transfers were assisted by the hydrophobic counter anion of the ionic liquid, [FAP]−, resulting in the formation of a mixed capacitive layer from the filling of the latent voids within the anisotropic ionic liquid structure. This phenomenon could impact areas such as proton-coupled electron transfers, fuel cells, and hydrogen storage where ionic liquids are used as aprotic solvents. PMID:26489692

  19. Aqueous Brnsted-Lowry Chemistry of Ionic Liquid Ions.

    PubMed

    Driver, Gordon W

    2015-08-01

    Ionic liquids have become commonplace materials found in research laboratories the world over, and are increasingly utilised in studies featuring water as co-solvent. It is reported herein that proton activities, aH (+) , originating from auto-protolysis of H2O molecules, are significantly altered in mixtures with common ionic liquids comprised of Cl(-), [HSO4 ](-), [CH3SO4 ](-), [CH3COO](-), [BF4](-), relative to pure water. paH (+) values, recorded in partially aqueous media as -log(aH (+)), are observed over a wide range (?0-13) as a result of hydrolysis (or acid dissociation) of liquid salt ions to their associated parent molecules (or conjugate bases). Brnsted-Lowry acid-base character of ionic liquid ions observed is rooted in equilibria known to govern the highly developed aqueous chemistry of classical organic and inorganic salts, as their well-known aqueous pKs dictate. Classical salt behaviour observed for both protic and aprotic ions in the presence of water suggests appropriate attention need be given to relevant chemical systems in order to exploit, or avoid, the nature of the medium formed. PMID:26097128

  20. Elucidation of ionic interactions in the protic ionic liquid solutions by isothermal titration calorimetry.

    PubMed

    Rai, Gitanjali; Kumar, Anil

    2014-04-17

    The strong hydrogen-bonded network noted in protic ionic liquids (PILs) may lead to stronger interactions of the ionic entities of PILs with solvents (water, methanol, ethylene glycol, dimethylsulfoxide (DMSO), N,N'-dimethylformamide (DMF)) as compared with those of aprotic ionic liquids (APILs). The PILs used in this work are 1-methylimidazolium tetrafluoroborate, 2-methylpyridinium tetrafluoroborate, and N-methylpyrrolodinium tetrafluoroborate in comparison to 1-butyl-3-methylimidazolium tetrafluoroborate, which is classified as an APIL. In this work, the excess partial molar enthalpy, H(E)IL obtained from isothermal calorimetric titrations at 298.15 K is used to probe the nature of interactions of the PIL cations with solvent molecules against those present in APIL-solvent systems. This work also reports interesting flip-flopping in the thermal behavior of these PIL-solvent systems depending upon the structure of the cationic ring of a PIL. In some cases, these flip-flops are the specific fingerprints for specific PILs in a common solvent environment. The excess partial molar enthalpy at infinite dilution, H(E,∞)IL, of these PILs bears a critical dependence on the solvent properties. An analysis of relative apparent molar enthalpies, ϕL, of the PIL solutions by the ion interaction model of Pitzer yields important information on ionic interactions of these systems. PMID:24650134

  1. Ionic liquids as oxidic media for electron transfer studies

    NASA Astrophysics Data System (ADS)

    Ueno, Kazuhide; Angell, C. Austen

    2012-06-01

    We review the basic ideas underlying the electron free energy level diagrams that have been found useful in considering the thermodynamics of redox processes in molten silicates and related high temperature ionic liquid (IL) solvents, and then show how closely they link to behavior observable in ambient temperature ionic liquids. Much of the information available on redox levels in molten oxides has been gleaned from chemical analysis and spectroscopic species distribution studies, but it is simpler to obtain the data electrochemically. Here, we report some cyclic voltammetry measurements of the Fe(II)/Fe(III) redox equilibrium in aprotic ionic liquids whose anions provide oxide environments for the redox species that are of different electronic polarizability character from the high temperature solvents, and relate the observations to those of the earlier studies. Quasi-reversible behavior is found in each of the cases studied. As might be expected, the Fe(II)/Fe(III) equilibrium experiences a more basic environment in an acetate IL than it experiences in any of the common glassforming oxide media, while triflate anions contrast by providing a more acid environment than does the most acid of the molten oxide glassformers studied (an alkali phosphate). The difference can amount to well over 1 V, suggesting the possibility of a "basicity cell" where the same redox couple locates in anode and cathode compartments of the cell, and only the anion environment is different.

  2. PEROXIDASE ACTIVITY IN IONIC LIQUIDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Only a few enzymes have been examined in ionic liquids (ILs) to date. Initial results suggest that at least some enzymes tolerate ILs at least as well as conventional molecular solvents. Our work further explores the possibility that ILs provide a suitable (i.e., non-denaturing, non-inhibitory) en...

  3. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOEpatents

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  4. Surface tension of ionic liquids and ionic liquid solutions.

    PubMed

    Tariq, Mohammad; Freire, Mara G; Saramago, Benilde; Coutinho, João A P; Lopes, José N Canongia; Rebelo, Luís Paulo N

    2012-01-21

    Some of the most active scientific research fronts of the past decade are centered on ionic liquids. These fluids present characteristic surface behavior and distinctive trends of their surface tension versus temperature. One way to explore and understand their unique nature is to study their surface properties. This critical review analyses most of the surface tension data reported between 2001 and 2010 (187 references). PMID:21811714

  5. Ionic Liquids in Biomass Processing

    NASA Astrophysics Data System (ADS)

    Tan, Suzie Su Yin; Macfarlane, Douglas R.

    Ionic liquids have been studied for their special solvent properties in a wide range of processes, including reactions involving carbohydrates such as cellulose and glucose. Biomass is a widely available and renewable resource that is likely to become an economically viable source of starting materials for chemical and fuel production, especially with the price of petroleum set to increase as supplies are diminished. Biopolymers such as cellulose, hemicellulose and lignin may be converted to useful products, either by direct functionalisation of the polymers or depolymerisation to monomers, followed by microbial or chemical conversion to useful chemicals. Major barriers to the effective conversion of biomass currently include the high crystallinity of cellulose, high reactivity of carbohydrates and lignin, insolubility of cellulose in conventional solvents, as well as heterogeneity in the native lignocellulosic materials and in lignin itself. This combination of factors often results in highly heterogeneous depolymerisation products, which make efficient separation difficult. Thus the extraction, depolymerisation and conversion of biopolymers will require novel reaction systems in order to be both economically attractive and environmentally benign. The solubility of biopolymers in ionic liquids is a major advantage of their use, allowing homogeneous reaction conditions, and this has stimulated a growing research effort in this field. This review examines current research involving the use of ionic liquids in biomass reactions, with perspectives on how it relates to green chemistry, economic viability, and conventional biomass processes.

  6. Application of Ionic Liquids in Hydrometallurgy

    PubMed Central

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  7. Radiation Chemistry and Photochemistry of Ionic Liquids

    SciTech Connect

    Wishart, J.F.; Takahaski, K.

    2010-12-01

    As our understanding of ionic liquids and their tunable properties has grown, it is possible to see many opportunities for ionic liquids to contribute to the sustainable use of energy. The potential safety and environmental benefits of ionic liquids, as compared to conventional solvents, have attracted interest in their use as processing media for the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed. However, the radiation chemistry of ionic liquids is still a relatively unexplored topic although there has been a significant increase in the number of researchers in the field recently. This article provides a brief introduction to ionic liquids and their interesting properties, and recent advances in the radiation chemistry and photochemistry of ionic liquids. In this article, we will mainly focus on excess electron dynamics and radical reaction dynamics. Because solvation dynamics processes in ionic liquids are much slower than in molecular solvents, one of the distinguishing characteristics is that pre-solvated electrons play an important role in ionic liquid radiolysis. It will be also shown that the reaction dynamics of radical ions is significantly different from that observed in molecular solvents because of the Coulombic screening effects and electrostatic interactions in ionic liquids.

  8. Ionic Liquids to Replace Hydrazine

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

    2011-01-01

    A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

  9. Amphiphilic and phase-separable ionic liquids for biomass processing.

    PubMed

    Holding, Ashley J; Heikkil, Mikko; Kilpelinen, Ilkka; King, Alistair W T

    2014-05-01

    One main limiting factor for the technoeconomics of future bioprocesses that use ionic liquids (ILs) is the recovery of the expensive and potentially toxic IL. We have demonstrated a new series of phase-separable ionic liquids, based on the hydrophobic tetraalkylphosphonium cation ([PRRRR](+)), that can dissolve lignin in the neat state but also hemicellulose and high-purity cellulose in the form of their electrolyte solutions with dipolar aprotic solvents. For example, the IL trioctylmethylphosphonium acetate ([P8881][OAc]) was demonstrated to dissolve up to 19?wt?% of microcrystalline cellulose (MCC) at 60?C with the addition of 40?wt?% of DMSO. It was found that the MCC saturation point is dependent on the molar ratio of DMSO and IL in solution. At the optimum saturation, a ?1:1 molar ratio of [P8881][OAc] to anhydroglucose units is observed, which demonstrates highly efficient solvation. This is attributed to the positive contribution that these more amphiphilic cation-anion pairs provide, in the context of the Lindman hypothesis. This effective dissolution is further illustrated by solution-state HSQC?NMR spectroscopy on MCC. Finally, it is also demonstrated that these electrolytes are phase separable by the addition of aqueous solutions. The addition of 10?% NaOAc solution allows a near quantitative recovery of high-purity [P8881][OAc]. However, increased volumes of aqueous solution reduced the recovery. The regenerated material was found to partially convert into the cellulose?II crystalline polymorph. PMID:24616349

  10. Early Events in Ionic Liquid Radiation Chemistry

    SciTech Connect

    Wishart, J.F.; Cook, A.; Rimmer, R.D.; Gohdo, M.

    2010-09-14

    Ionic liquids are interesting and useful materials whose solvation time scales are up to thousands of times longer than in conventional solvents. The extended lifetimes of pre-solvated electrons and other energetic species in ionic liquids has profound consequences for the radiolytic product distributions and reactivity patterns. We use a newly developed, multiplexed variation of pulse-probe spectroscopy to measure the kinetics of the early dynamical and reactive events in ionic liquids.

  11. Surface orientation in ionic liquids

    NASA Astrophysics Data System (ADS)

    Law, George; Watson, Philip R.

    2001-09-01

    New surface tension data supports models of surface orientations previously derived from direct recoil spectrometry (DRS) data for the cations of 1-alkyl-3-methylimidazolium ionic liquids. For shorter-chain hexafluorophosphate compounds the favored average orientation appears to be one where the cation is oriented vertically with the N atoms uppermost, but the alkyl substituents do not protrude out of the surface. For longer chains or for compounds containing the smaller tetrafluoroborate anion the surface tension and DRS data are consistent with a shift to an average orientation embodying a rotation that moves the methyl group towards the surface.

  12. Membrane separation of ionic liquid solutions

    SciTech Connect

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  13. Engineered microorganisms having resistance to ionic liquids

    DOEpatents

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    2016-03-22

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  14. Lipid Biomembrane in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Yoo, Brian; Jing, Benxin; Shah, Jindal; Maginn, Ed; Zhu, Y. Elaine; Department of Chemical and Biomolecular Engineering Team

    2014-03-01

    Ionic liquids (ILs) have been recently explored as new ``green'' chemicals in several chemical and biomedical processes. In our pursuit of understanding their toxicities towards aquatic and terrestrial organisms, we have examined the IL interaction with lipid bilayers as model cell membranes. Experimentally by fluorescence microscopy, we have directly observed the disruption of lipid bilayer by added ILs. Depending on the concentration, alkyl chain length, and anion hydrophobicity of ILs, the interaction of ILs with lipid bilayers leads to the formation of micelles, fibrils, and multi-lamellar vesicles for IL-lipid complexes. By MD computer simulations, we have confirmed the insertion of ILs into lipid bilayers to modify the spatial organization of lipids in the membrane. The combined experimental and simulation results correlate well with the bioassay results of IL-induced suppression in bacteria growth, thereby suggesting a possible mechanism behind the IL toxicity. National Science Foundation, Center for Research Computing at Notre Dame.

  15. Actinide chemistry in ionic liquids.

    PubMed

    Takao, Koichiro; Bell, Thomas James; Ikeda, Yasuhisa

    2013-04-01

    This Forum Article provides an overview of the reported studies on the actinide chemistry in ionic liquids (ILs) with a particular focus on several fundamental chemical aspects: (i) complex formation, (ii) electrochemistry, and (iii) extraction behavior. The majority of investigations have been dedicated to uranium, especially for the 6+ oxidation state (UO2(2+)), because the chemistry of uranium in ordinary solvents has been well investigated and uranium is the most abundant element in the actual nuclear fuel cycles. Other actinides such as thorium, neptunium, plutonium, americium, and curiumm, although less studied, are also of importance in fully understanding the nuclear fuel engineering process and the safe geological disposal of radioactive wastes. PMID:22873132

  16. Ionic Conductivity of Nanostructured Block Copolymer and Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Megan L.; Virgili, Justin M.; Segalman, Rachel A.

    2010-03-01

    Block copolymer and ionic liquid mixtures are of interest for creating ionically conductive, thermally stable, and nanostructured membranes. For mixtures of poly(styrene-b-2-vinylpyridine) (S2VP) and the ionic liquid bis(trifluoromethanesulfonyl)imide ([Im][TFSI]), nanostructured ion-conducting domains are formed due to [Im][TFSI] selectively residing in the P2VP domains of the block copolymer. The dependence of ionic conductivity on temperature, ionic liquid loading, and volume fraction of PS in the neat block copolymer was investigated for membranes with the matrix phase being P2VP/[Im][TFSI]. It was determined that the temperature dependence of conductivity follows the Vogel-Tamman-Fulcher equation, with the activation energy determined by the ratio of [Im][TFSI] to 2VP monomers. The overall weight fraction of [Im][TFSI] in the mixtures, however, is the dominating factor determining conductivity, regardless of PS volume fraction. The insight gained from this work will be important for further investigation into the effect on the ion transport properties of ionic liquids when confined to minority nanostructured domains.

  17. Ionic liquids for rechargeable lithium batteries

    SciTech Connect

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz,John; Newman, John

    2005-09-29

    We have investigated possible anticipated advantages of ionic-liquid electrolytes for use in lithium-ion batteries. Thermal stabilities and phase behavior were studied by thermal gravimetric analysis and differential scanning calorimetry. The ionic liquids studied include various imidazoliumTFSI systems, pyrrolidiniumTFSI, BMIMPF{sub 6}, BMIMBF{sub 4}, and BMIMTf. Thermal stabilities were measured for neat ionic liquids and for BMIMBF{sub 4}-LiBF{sub 4}, BMIMTf-LiTf, BMIMTFSI-LiTFSI mixtures. Conductivities have been measured for various ionic-liquid lithium-salt systems. We show the development of interfacial impedance in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell and we report results from cycling experiments for a Li|BMIMBF{sub 4} + 1 mol/kg LIBF{sub 4}|C cell. The interfacial resistance increases with time and the ionic liquid reacts with the lithium electrode. As expected, imidazolium-based ionic liquids react with lithium electrodes. We seek new ionic liquids that have better chemical stabilities.

  18. Thermodynamics and micro heterogeneity of ionic liquids.

    PubMed

    Gomes, Margarida F Costa; Lopes, J N Canongia; Padua, A A H

    2010-01-01

    The high degree of organisation in the fluid phase of room-temperature ionic liquids has major consequences on their macroscopic properties, namely on their behaviour as solvents. This nanoscale self-organisation is the result of an interplay between two types of interaction in the liquid phase - Coulomb and van der Waals - that eventually leads to the formation of medium-range structures and the recognition of some ionic liquids as composed of a high-charge density, cohesive network permeated by low-charge density regions.In this chapter, the structure of the ionic liquids will be explored and some of their consequences to the properties of ionic liquids analyzed. PMID:21107797

  19. Photochemical Schiemann Reaction in Ionic Liquids

    PubMed Central

    Heredia-Moya, Jorge; Kirk, Kenneth L.

    2007-01-01

    Photochemical Schiemann reactions of imidazole derivatives 1 and 4 were carried out in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid [bmim][BF4] as solvent. The effects of temperature, co-solvent and wavelength on the rate of the reaction and product yield were examined. The use of ionic liquid increases the yield of the photochemical fluorodediazoniation reaction of 2 at 0°C. Careful temperature control is necessary to minimize the photodecomposition of the ionic liquid in order to increase the yield of product. PMID:18079989

  20. Recent development of ionic liquid stationary phases for liquid chromatography.

    PubMed

    Shi, Xianzhe; Qiao, Lizhen; Xu, Guowang

    2015-11-13

    Based on their particular physicochemical characteristics, ionic liquids have been widely applied in many fields of analytical chemistry. Many types of ionic liquids were immobilized on a support like silica or monolith as stationary phases for liquid chromatography. Moreover, different approaches were developed to bond covalently ionic liquids onto the supporting materials. The obtained ionic liquid stationary phases show multi-mode mechanism including hydrophobic, hydrophilic, hydrogen bond, anion exchange, π-π, and dipole-dipole interactions. Therefore, they could be used in different chromatographic modes including ion-exchange, RPLC, NPLC and HILIC to separate various classes of compounds. This review mainly summarizes the immobilized patterns and types of ionic liquid stationary phases, their retention mechanisms and applications in the recent five years. PMID:26463427

  1. Lithium-Air and ionic Liquids

    SciTech Connect

    Kellar, Michael

    2015-09-01

    The final portion of this project was accomplished at Sandia National Labs, Livermore, with the overall goal being to optimize lithium-air cells with an ionic liquid electrolyte. Both of these are potential future routes for lithium-ion technology. Lithiumair presents the advantage of higher gravimetric energy density, and ionic liquids present the advantage of greater hydrophobicity and much lower volatility, along with a larger window of electrochemical stability. Ionic liquids however have several drawbacks for the battery industry. Currently they are not as cost effective as many organic solvents. Additionally, because of the added viscosity of ionic interactions compared to the typical dipole interactions of a solvent, the ionic conductivity is lower than for common organic solvents.

  2. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    PubMed Central

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  3. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    NASA Astrophysics Data System (ADS)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  4. Phosphonium-based ionic liquids and uses

    DOEpatents

    Del Sesto, Rico E; Koppisch, Andrew T; Lovejoy, Katherine S; Purdy, Geraldine M

    2014-12-30

    Phosphonium-based room temperature ionic liquids ("RTILs") were prepared. They were used as matrices for Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry and also for preparing samples of dyes for analysis.

  5. Ionic liquid polyoxometalates as light emitting materials

    SciTech Connect

    Ortiz-acosta, Denisse; Del Sesto, Rico E; Scott, Brian; Bennett, Bryan L; Purdy, Geraldine M; Muenchausen, Ross E; Mc Kigney, Edward; Gilbertson, Robert

    2008-01-01

    The low melting point, negligible vapor pressure, good solubility, and thermal and chemical stability make ionic liquids useful materials for a wide variety of applications. Polyoxometalates are early transition metal oxygen clusters that can be synthesized in many different sizes and with a variety of heterometals. The most attractive feature of POMs is that their physical properties, in particular electrical, magnetic, and optical properties, can be easily modified following known procedures. It has been shown that POMs can exhibit cooperative properties, as superconductivity and energy transfer. POM ionic liquids can be obtained by selecting the appropliate cation. Different alkyl ammonium and alkyl phosphonium salts are being used to produce new POM ionic liquids together with organic or inorganic luminescent centers to design light emitting materials. Ammonium and phosphonium cations with activated, polymerizable groups are being used to further polymerize the ionic liquid into transparent, solid materials with high metal density.

  6. Superbase-derived protic ionic liquids

    DOEpatents

    Dai, Sheng; Luo, Huimin; Baker, Gary A.

    2013-09-03

    Protic ionic liquids having a composition of formula (A.sup.-)(BH.sup.+) wherein A.sup.- is a conjugate base of an acid HA, and BH.sup.+ is a conjugate acid of a superbase B. In particular embodiments, BH.sup.+ is selected from phosphazenium species and guanidinium species encompassed, respectively, by the general formulas: ##STR00001## The invention is also directed to films and membranes containing these protic ionic liquids, with particular application as proton exchange membranes for fuel cells.

  7. The Solubility Parameters of Ionic Liquids

    PubMed Central

    Marciniak, Andrzej

    2010-01-01

    The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated. PMID:20559495

  8. Dual Ionic and Organic Nature of Ionic Liquids.

    PubMed

    Shi, Rui; Wang, Yanting

    2016-01-01

    Inherited the advantages of inorganic salts and organic solvents, ionic liquids (ILs) exhibit many superior properties allowing them promising green solvents for the future. Although it has been widely acknowledged that the unique features of ILs originate from their dual ionic and organic nature, its microscopic physical origin still remains blurry. In this work, by comparing the ion/molecule cage structures obtained from molecular dynamics simulations for seven prototypic liquids-a molten inorganic salt, four ILs, a strongly polar organic solvent, and a weakly polar organic solvent, we have revealed that the depth of the cage energy landscape characterizes the ionic nature of ILs, whereas the slope and curvature of its mimimum determine the organic nature of ILs. This finding advances our understanding of ILs and thus will help their efficient utilization as well as the systematic design of novel functionalized ILs. PMID:26782660

  9. Anomalous Wien Effects in Supercooled Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Patro, L. N.; Burghaus, O.; Roling, B.

    2016-05-01

    We have measured conductivity spectra of several supercooled monocationic and dicationic ionic liquids in the nonlinear regime by applying ac electric fields with large amplitudes up to about 180 kV /cm . Thereby, higher harmonic ac currents up to the 7th order were detected. Our results point to the existence of anomalous Wien effects in supercooled ionic liquids. Most ionic liquids studied here exhibit a conductivity-viscosity relation, which is close to the predictions of the Nernst-Einstein and Stokes-Einstein equations, as observed for classical strong electrolytes like KCl. These "strong" ionic liquids show a much stronger nonlinearity of the conductivity than classical strong electrolytes. On the other hand, the conductivity-viscosity relation of the ionic liquid [P6 ,6 ,6 ,14][Cl ] points to ion association effects. This "weak" ionic liquid shows a strength of the nonlinear effect, which is comparable to classical weak electrolytes. However, the nonlinearity increases quadratically with the field. We suggest that a theory for explaining these anomalies will have to go beyond the level of Coulomb lattice gas models.

  10. Aqueous Solutions of Ionic Liquids: Microscopic Assembly.

    PubMed

    Vicent-Luna, Jose Manuel; Dubbeldam, David; Gómez-Álvarez, Paula; Calero, Sofia

    2016-02-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level interactions that influences the macroscopic behavior is hydrogen bonding. In this work, we conduct molecular dynamics simulations to investigate the effects of ionic liquids on the hydrogen-bond network of water in dilute aqueous solutions of ionic liquids with various combinations of cations and anions. Calculations are performed for imidazolium-based cations with alkyl chains of different lengths and for a variety of anions, namely, [Br](-) , [NO3 ](-) , [SCN](-) , [BF4 ](-) , [PF6 ](-) , and [Tf2 N](-) . The structure of water and the water-ionic liquid interactions involved in the formation of a heterogeneous network are analyzed by using radial distribution functions and hydrogen-bond statistics. To this end, we employ the geometric criterion of the hydrogen-bond definition and it is shown that the structure of water is sensitive to the amount of ionic liquid and to the anion type. In particular, [SCN](-) and [Tf2 N](-) were found to be the most hydrophilic and hydrophobic anions, respectively. Conversely, the cation chain length did not influence the results. PMID:26641024

  11. Adsorbed and near surface structure of ionic liquids at a solid interface.

    PubMed

    Segura, Juan José; Elbourne, Aaron; Wanless, Erica J; Warr, Gregory G; Voïtchovsky, Kislon; Atkin, Rob

    2013-03-01

    The structure of solid-ionic liquid (IL) interfaces has been characterised with unprecedented clarity by employing a range of atomic force microscopy (AFM) imaging techniques and tip pressures appropriate for the system under study. Soft contact and amplitude-modulation (AM) AFM imaging have been used to elucidate the lateral structure of ILs adsorbed onto mica, and in the near surface ion layers. Data is presented for ethylammonium nitrate (EAN) and 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)imide (EMIm TFSI). Whereas EAN is a protic IL that forms a nanostructured sponge phase in the bulk, EMIm TFSI is aprotic and has weak (or absent) bulk association structure. Comparison of results obtained for the two liquids elucidates how the strength of bulk liquid morphology effects lateral organisation at the surface, and any effect of IL class, i.e. protic versus aprotic. Imaging reveals EAN self assembles at the solid surface in a worm-like morphology, whereas EMIm cations adsorb in a more isolated fashion, but still in rows templated by the mica surface. To the authors' knowledge, the wormlike structures present at the EAN-mica interface are the smallest self-assembled aggregates ever imaged on a solid surface. PMID:23361257

  12. Dissolution of wood in ionic liquids.

    PubMed

    Kilpeläinen, Ilkka; Xie, Haibo; King, Alistair; Granstrom, Mari; Heikkinen, Sami; Argyropoulos, Dimitris S

    2007-10-31

    The present paper demonstrates that both hardwoods and softwoods are readily soluble in various imidazolium-based ionic liquids (ILs) under gentle conditions. More specifically, a variety of ionic liquids can only partially dissolve wood chips, whereas ionic liquids such as 1-butyl-3-methylimidazolium chloride and 1-allyl-3-methylimidazolium chloride have good solvating power for Norway spruce sawdust and Norway spruce and Southern pine thermomechanical pulp (TMP) fibers. Despite the fact that the obtained solutions were not fully clear, these ionic liquids provided solutions which permitted the complete acetylation of the wood. Alternatively, transparent amber solutions of wood could be obtained when the dissolution of the same lignocellulosic samples was attempted in 1-benzyl-3-methylimidazolium chloride. This realization was based on a designed augmented interaction of the aromatic character of the cation of the ionic liquid with the lignin in the wood. After dissolution, wood can be regenerated as an amorphous mixture of its original components. The cellulose of the regenerated wood can be efficiently digested to glucose by a cellulase enzymatic hydrolysis treatment. Furthermore, completely acetylated wood was found to be readily soluble in chloroform, allowing, for the first time, detailed proton nuclear magnetic resonance (NMR) spectra and NMR diffusion measurements to be made. It was thus demonstrated that the dissolution of wood in ionic liquids now offers a variety of new possibilities for its structural and macromolecular characterization, without the prior isolation of its individual components. Furthermore, considering the relatively wide solubility and compatibility of ionic liquids with many organic or inorganic functional chemicals or polymers, it is envisaged that this research could create a variety of new strategies for converting abundant woody biomass to valuable biofuels, chemicals, and novel functional composite biomaterials. PMID:17907779

  13. Ionic liquids behave as dilute electrolyte solutions.

    PubMed

    Gebbie, Matthew A; Valtiner, Markus; Banquy, Xavier; Fox, Eric T; Henderson, Wesley A; Israelachvili, Jacob N

    2013-06-11

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force-distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin-Landau-Verwey-Overbeek theory with an additive repulsive steric (entropic) ion-surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high-free-ion density ionic liquids and ionic liquid blends. PMID:23716690

  14. Water Contaminant Mitigation in Ionic Liquid Propellant

    NASA Technical Reports Server (NTRS)

    Conroy, David; Ziemer, John

    2009-01-01

    Appropriate system and operational requirements are needed in order to ensure mission success without unnecessary cost. Purity requirements applied to thruster propellants may flow down to materials and operations as well as the propellant preparation itself. Colloid electrospray thrusters function by applying a large potential to a room temperature liquid propellant (such as an ionic liquid), inducing formation of a Taylor cone. Ions and droplets are ejected from the Taylor cone and accelerated through a strong electric field. Electrospray thrusters are highly efficient, precise, scaleable, and demonstrate low thrust noise. Ionic liquid propellants have excellent properties for use as electrospray propellants, but can be hampered by impurities, owing to their solvent capabilities. Of foremost concern is the water content, which can result from exposure to atmosphere. Even hydrophobic ionic liquids have been shown to absorb water from the air. In order to mitigate the risks of bubble formation in feed systems caused by water content of the ionic liquid propellant, physical properties of the ionic liquid EMI-Im are analyzed. The effects of surface tension, material wetting, physisorption, and geometric details of the flow manifold and electrospray emitters are explored. Results are compared to laboratory test data.

  15. ELECTROCHEMICAL STUDIES OF HEMIN IN IONIC LIQUIDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ionic liquids (ILs), room temperature liquid organic salts, have gained prominence as alternative media for volatile organic solvents. Recent studies have shown that some enzymes tolerate ILs and have catalytic activities comparable to those obtained in molecular organic solvents. We have investig...

  16. Key Developments in Ionic Liquid Crystals

    PubMed Central

    Alvarez Fernandez, Alexandra; Kouwer, Paul H. J.

    2016-01-01

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material? PMID:27196890

  17. Mixtures of protic ionic liquids and molecular cosolvents: a molecular dynamics simulation.

    PubMed

    Docampo-Álvarez, Borja; Gómez-González, Víctor; Méndez-Morales, Trinidad; Carrete, Jesús; Rodríguez, Julio R; Cabeza, Óscar; Gallego, Luis J; Varela, Luis M

    2014-06-01

    In this work, the effect of molecular cosolvents (water, ethanol, and methanol) on the structure of mixtures of these compounds with a protic ionic liquid (ethylammonium nitrate) is analyzed by means of classical molecular dynamics simulations. Included are as-yet-unreported measurements of the densities of these mixtures, used to test our parameterized potential. The evolution of the structure of the mixtures throughout the concentration range is reported by means of the calculation of coordination numbers and the fraction of hydrogen bonds in the system, together with radial and spatial distribution functions for the various molecular species and molecular ions in the mixture. The overall picture indicates a homogeneous mixing process of added cosolvent molecules, which progressively accommodate themselves in the network of hydrogen bonds of the protic ionic liquid, contrarily to what has been reported for their aprotic counterparts. Moreover, no water clustering similar to that in aprotic mixtures is detected in protic aqueous mixtures, but a somehow abrupt replacing of [NO3](-) anions in the first hydration shell of the polar heads of the ionic liquid cations is registered around 60% water molar concentration. The spatial distribution functions of water and alcohols differ in the coordination type, since water coordinates with [NO3](-) in a bidentate fashion in the equatorial plane of the anion, while alcohols do it in a monodentate fashion, competing for the oxygen atoms of the anion. Finally, the collision times of the different cosolvent molecules are also reported by calculating their velocity autocorrelation functions, and a caging effect is observed for water molecules but not in alcohol mixtures. PMID:24908021

  18. Mixtures of protic ionic liquids and molecular cosolvents: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Docampo-Álvarez, Borja; Gómez-González, Víctor; Méndez-Morales, Trinidad; Carrete, Jesús; Rodríguez, Julio R.; Cabeza, Óscar; Gallego, Luis J.; Varela, Luis M.

    2014-06-01

    In this work, the effect of molecular cosolvents (water, ethanol, and methanol) on the structure of mixtures of these compounds with a protic ionic liquid (ethylammonium nitrate) is analyzed by means of classical molecular dynamics simulations. Included are as-yet-unreported measurements of the densities of these mixtures, used to test our parameterized potential. The evolution of the structure of the mixtures throughout the concentration range is reported by means of the calculation of coordination numbers and the fraction of hydrogen bonds in the system, together with radial and spatial distribution functions for the various molecular species and molecular ions in the mixture. The overall picture indicates a homogeneous mixing process of added cosolvent molecules, which progressively accommodate themselves in the network of hydrogen bonds of the protic ionic liquid, contrarily to what has been reported for their aprotic counterparts. Moreover, no water clustering similar to that in aprotic mixtures is detected in protic aqueous mixtures, but a somehow abrupt replacing of [NO3]- anions in the first hydration shell of the polar heads of the ionic liquid cations is registered around 60% water molar concentration. The spatial distribution functions of water and alcohols differ in the coordination type, since water coordinates with [NO3]- in a bidentate fashion in the equatorial plane of the anion, while alcohols do it in a monodentate fashion, competing for the oxygen atoms of the anion. Finally, the collision times of the different cosolvent molecules are also reported by calculating their velocity autocorrelation functions, and a caging effect is observed for water molecules but not in alcohol mixtures.

  19. Dual Ionic and Organic Nature of Ionic Liquids

    PubMed Central

    Shi, Rui; Wang, Yanting

    2016-01-01

    Inherited the advantages of inorganic salts and organic solvents, ionic liquids (ILs) exhibit many superior properties allowing them promising green solvents for the future. Although it has been widely acknowledged that the unique features of ILs originate from their dual ionic and organic nature, its microscopic physical origin still remains blurry. In this work, by comparing the ion/molecule cage structures obtained from molecular dynamics simulations for seven prototypic liquids—a molten inorganic salt, four ILs, a strongly polar organic solvent, and a weakly polar organic solvent, we have revealed that the depth of the cage energy landscape characterizes the ionic nature of ILs, whereas the slope and curvature of its mimimum determine the organic nature of ILs. This finding advances our understanding of ILs and thus will help their efficient utilization as well as the systematic design of novel functionalized ILs. PMID:26782660

  20. Dual Ionic and Organic Nature of Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Shi, Rui; Wang, Yanting

    2016-01-01

    Inherited the advantages of inorganic salts and organic solvents, ionic liquids (ILs) exhibit many superior properties allowing them promising green solvents for the future. Although it has been widely acknowledged that the unique features of ILs originate from their dual ionic and organic nature, its microscopic physical origin still remains blurry. In this work, by comparing the ion/molecule cage structures obtained from molecular dynamics simulations for seven prototypic liquids—a molten inorganic salt, four ILs, a strongly polar organic solvent, and a weakly polar organic solvent, we have revealed that the depth of the cage energy landscape characterizes the ionic nature of ILs, whereas the slope and curvature of its mimimum determine the organic nature of ILs. This finding advances our understanding of ILs and thus will help their efficient utilization as well as the systematic design of novel functionalized ILs.

  1. Enzyme activity in dialkyl phosphate ionic liquids

    SciTech Connect

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  2. Desulfurization of oxidized diesel using ionic liquids

    NASA Astrophysics Data System (ADS)

    Wilfred, Cecilia D.; Salleh, M. Zulhaziman M.; Mutalib, M. I. Abdul

    2014-10-01

    The extraction of oxidized sulfur compounds from diesel were carried out using ten types of ionic liquids consisting of different cation and anion i.e. 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazoium thiocyanate, 1-butyl-3-methylimidazoium dicyanamide, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazoliumhexafluorophosphate, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate, trioctylmethylammonium chloride, 1-propionitrile-3-butylimidazolium thiocyanate, 1-propionitrile-3-butylimidazolium dicyanamide and 1-butyl-6-methylquinolinium dicyanamide. The oxidation of diesel was successfully done using phosphotungstic acid as the catalyst, hydrogen peroxide (H2O2) as the oxidant and trioctylmethylammonium chloride as the phase transfer agent. The oxidation of diesel changes the sulfur compounds into sulfone which increases its polarity and enhances the ionic liquid's extraction performance. Result showed that ionic liquid [C4mquin][N(CN)2] performed the highest sulfur removal (91% at 1:5 diesel:IL ratio) compared to the others.

  3. TETRAALKYLPHOSPHONIUM POLYOXOMETALATES AS NOVEL IONIC LIQUIDS.

    SciTech Connect

    DIETZ,M.L.; RICKERT, P.G.; ANTONIO, M.R.; FIRESTONE, M.A.; WISHART, J.F.; SZREDER, T.

    2007-11-30

    The pairing of a Lindqvist or Keggin polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation, [R{sub 3}R{prime}P]{sup +}, has been shown to yield an original family of ionic liquids (POM-ILs), among them salts liquid at or near ambient temperature. The physicochemical properties of several such 'inorganic liquids', in particular their thermal properties, suggests the possible application of these compounds as robust, thermally-stable solvents for liquid-liquid extraction. A preliminary evaluation of the potential of POM-ILs in this application is presented.

  4. Ionic liquids as active pharmaceutical ingredients.

    PubMed

    Ferraz, Ricardo; Branco, Luís C; Prudêncio, Cristina; Noronha, João Paulo; Petrovski, Zeljko

    2011-06-01

    Ionic liquids (ILs) are ionic compounds that possess a melting temperature below 100 °C. Their physical and chemical properties are attractive for various applications. Several organic materials that are now classified as ionic liquids were described as far back as the mid-19th century. The search for new and different ILs has led to the progressive development and application of three generations of ILs: 1) The focus of the first generation was mainly on their unique intrinsic physical and chemical properties, such as density, viscosity, conductivity, solubility, and high thermal and chemical stability. 2) The second generation of ILs offered the potential to tune some of these physical and chemical properties, allowing the formation of "task-specific ionic liquids" which can have application as lubricants, energetic materials (in the case of selective separation and extraction processes), and as more environmentally friendly (greener) reaction solvents, among others. 3) The third and most recent generation of ILs involve active pharmaceutical ingredients (API), which are being used to produce ILs with biological activity. Herein we summarize recent developments in the area of third-generation ionic liquids that are being used as APIs, with a particular focus on efforts to overcome current hurdles encountered by APIs. We also offer some innovative solutions in new medical treatment and delivery options. PMID:21557480

  5. Unravelling nanoconfined films of ionic liquids

    SciTech Connect

    Lee, Alpha A.; Vella, Dominic; Goriely, Alain; Perkin, Susan

    2014-09-07

    The confinement of an ionic liquid between charged solid surfaces is treated using an exactly solvable 1D Coulomb gas model. The theory highlights the importance of two dimensionless parameters: the fugacity of the ionic liquid, and the electrostatic interaction energy of ions at closest approach, in determining how the disjoining pressure exerted on the walls depends on the geometrical confinement. Our theory reveals that thermodynamic fluctuations play a vital role in the “squeezing out” of charged layers as the confinement is increased. The model shows good qualitative agreement with previous experimental data, with all parameters independently estimated without fitting.

  6. VOC and HAP recovery using ionic liquids

    SciTech Connect

    Michael R. Milota : Kaichang Li

    2007-05-29

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy(trihexyl)phosphonium dicyanamide as the RTIL. It was determined that it has good absorption properties for methanol and α-pinene, is thermally stable, and is relatively easy to synthesize. It has a density of 0.89 g/mL at 20°C and a molecular weight of 549.9 g/mol. Trials were conducted with a small absorption system and a larger absorption system. Methanol, formaldehyde, and other HAPs were absorbed well, nearly 100%. Acetaldehyde was difficult to capture. Total VOC capture, while satisfactory on methanol and α-pinene in a lab system, was less than expected in the field, 60-80%. The inability to capture the broad spectrum of total organics is likely due to difficulties in cleaning them from the ionic liquid rather than the ability of the ionic liquid to absorb. It’s likely that a commercial system could be constructed to remove 90 to 100% of the gas contaminates. Selecting the correct ionic liquid would be key to this. Absorption may not be the main selection criterion, but rather how easily the ionic liquid can be cleaned is very important. The ionic liquid absorption system might work very well in a system with a limited spectrum of pollutants, such as a paint spray line, where there are not very high molecular weight, non volatile, compounds in the exhaust.

  7. 1,2,3-triazolium ionic liquids

    SciTech Connect

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2014-12-09

    The present invention relates to compositions of matter that are ionic liquids, the compositions comprising substituted 1,2,3-triazolium cations combined with any anion. Compositions of the invention should be useful in the separation of gases and, perhaps, as catalysts for many reactions.

  8. Cellulose regeneration and spinnability from ionic liquids.

    PubMed

    Hauru, Lauri K J; Hummel, Michael; Nieminen, Kaarlo; Michud, Anne; Sixta, Herbert

    2016-02-01

    Ionic liquid solutions of cellulose or dopes can be spun into Lyocell-type textile fibers by dry-jet wet spinning. An extruded dope is drawn over an air gap into water, where the water hydrates the ionic liquid and cellulose is regenerated. Spinnability studies have concentrated on the deformation and failure modes in the air gap and thus the rheology of the unhydrated spinning dope. Herein, a breach in the bath, another failure mode, is discussed. Dopes are prepared from the good spinning solvents NMMO·H2O and [DBNH]OAc and the poor spinning solvents [emim]OAc and [TMGH]OAc. The diffusion constants for water diffusing inwards and for ionic liquid diffusing outwards the emerging filament are measured offline. The resiliences and strengths of cellulose-ionic liquid solutions with different hydration stoichiometries are measured by means of rheometry. By calculating the diffusion dynamics, the resilience distribution of the forming filament is simulated. Gel strength distribution accounts for the tendency of [emim]OAc dopes to undergo a telescope-type breach, whereas the gelatinous solution state of [TMGH]OAc dopes accounts for their poor spinnability. PMID:26660047

  9. BIOELECTROCATALYTIC REACTIONS IN ROOM TEMPERATURE IONIC LIQUIDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The direct electrochemical reduction of hemin, protopophyrin(IX) iron(III) chloride, ligated with strong or weak heterocyclic bases, was investigated in the ionic liquids (ILs), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][...

  10. Esterification of Starch in Ionic Liquids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We shall discuss the use of various ionic liquids in the preparation of starch esters. Starch was reacted with vinyl acetate in different 1-butyl-3-methylimidazolium (bmim) salts as solvents in an effort to produce starches with different acetylation patterns. Overall degree of substitution (DS) w...

  11. Reactions of Starch in Ionic Liquids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We found that starches are found to be soluble at 80 ºC in ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-butyl-3-methylimidazolium dicyanamide (BMIMdca) in concentration up to 10% (w/w). Higher concentrations of biopolymers in these novel solvents resulted in solutions w...

  12. Solvation and Reaction in Ionic Liquids

    SciTech Connect

    Maroncelli, Mark

    2015-01-15

    The long-range goal of our DOE-sponsored research is to obtain a fundamental understanding of solvation effects on photo-induced charge transfer and related processes. Much of the focus during the past funding period has been on studies of ionic liquids and on characterizing various reactions with which to probe the nature of this interesting new solvent medium.

  13. Ionic liquid electrolytes for reversible magnesium electrochemistry.

    PubMed

    Kar, Mega; Ma, Zheng; Azofra, Luis Miguel; Chen, Kun; Forsyth, Maria; MacFarlane, Douglas R

    2016-03-01

    Mg has great potential as the basis for a safe, low cost energy storage technology, however, cycling of magnesium is difficult to achieve in most electrolytes. We demonstrate cycling of Mg from a novel alkoxyammonium ionic liquid. DFT calculations highlight the role that Mg coordination with [BH4](-) ions plays in the mechanism. PMID:26888053

  14. Liquid clathrate formation in ionic liquid-aromatic mixtures.

    PubMed

    Holbrey, John D; Reichert, W Matthew; Nieuwenhuyzen, Mark; Sheppard, Oonagh; Hardacre, Christopher; Rogers, Robin D

    2003-02-21

    1-Alkyl-3-methylimidazolium containing ionic liquids with hexafluorophosphate, bis(trifyl)imide, tetrafluoroborate, and chloride anions form liquid clathrates when mixed with aromatic hydrocarbons; in the system 1,3-dimethylimidazolium hexafluorophosphate-benzene, the aromatic solute could be trapped in the solid state forming a crystalline 2:1 inclusion compound. PMID:12638957

  15. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    DOEpatents

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  16. Synthesis of electroactive ionic liquids for flow battery applications

    SciTech Connect

    Anderson, Travis Mark; Ingersoll, David; Staiger, Chad; Pratt, Harry

    2015-09-01

    The present disclosure is directed to synthesizing metal ionic liquids with transition metal coordination cations, where such metal ionic liquids can be used in a flow battery. A cation of a metal ionic liquid includes a transition metal and a ligand coordinated to the transition metal.

  17. Poly(ethylene oxide) Mushrooms Adsorbed at Silica-Ionic Liquid Interfaces Reduce Friction.

    PubMed

    Sweeney, James; Webber, Grant B; Atkin, Rob

    2016-03-01

    The adsorbed layer conformation and lubricity of 35, 100, and 300 kDa PEO adsorbed to ionic liquid (IL)-silica interfaces from 0.01 wt % solutions have been investigated using colloid probe atomic force microscopy. The ILs used were propylammonium nitrate (PAN) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), which are protic and aprotic ILs, respectively. Normal force curves reveal steric interactions consistent with adsorbed polymer layers which are best fit using the mushroom model. Friction measurements show that the adsorbed polymer layer markedly reduces friction compared to surfaces sliding in the pure ILs and that lubricity increases with polymer length. When polymer is adsorbed to the sliding surfaces, friction is controlled by the creation and disruption of intermolecular interactions between entangled chains and the dragging of polymer chains through the interpenetration region. These experiments show that added polymer can reduce friction while maintaining the useful properties of ILs as lubricants. PMID:26844589

  18. Phase behavior of ionic liquid crystals

    NASA Astrophysics Data System (ADS)

    Kondrat, S.; Bier, M.; Harnau, L.

    2010-05-01

    Bulk properties of ionic liquid crystals are investigated using density functional theory. The liquid crystal molecules are represented by ellipsoidal particles with charges located in their center or at their tails. Attractive interactions are taken into account in terms of the Gay-Berne pair potential. Rich phase diagrams involving vapor, isotropic and nematic liquid, as well as smectic phases are found. The dependence of the phase behavior on various parameters such as the length of the particles and the location of charges on the particles is studied.

  19. Ionic liquids as a novel solvent for lanthanide extraction.

    PubMed

    Nakashima, Kazunori; Kubota, Fukiko; Maruyama, Tatsuo; Goto, Masahiro

    2003-08-01

    Octyl(phenyl)-N,N-diisobutylcarbamoylmethyl phosphine oxide (CMPO) dissolved in an ionic liquids, 1-butyl-3-methyl-imidazolium hexafluorophosphate, greatly enhances extractability and selectivity of lanthanide cations compared to that dissolved in conventional organic solvents; further, the recovery of lanthanides extracted into ionic liquids can be accomplished using several stripping solutions containing complexing agents. The possibility of utilizing ionic liquids as novel separation media in an industrial liquid-liquid extraction process was demonstrated. PMID:12945658

  20. [Advances of poly (ionic liquid) materials in separation science].

    PubMed

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials. PMID:26939357

  1. Ionic Liquid Membranes for Carbon Dioxide Separation

    SciTech Connect

    Myers, C.R.; Ilconich, J.B.; Luebke, D.R.; Pennline, H.W.

    2008-07-12

    Recent scientific studies are rapidly advancing novel technological improvements and engineering developments that demonstrate the ability to minimize, eliminate, or facilitate the removal of various contaminants and green house gas emissions in power generation. The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide mitigation not only because of its higher efficiency as compared to conventional coal firing plants, but also due to a higher driving force in the form of high partial pressure. One of the novel technological concepts currently being developed and investigated is membranes for carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or pressures. Our earlier research studies examined the use of ionic liquids on various supports for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our initial studies with the following supports: polysulfone (PSF), poly(ether sulfone) (PES), and cross-linked nylon. The PSF and PES supports had similar performance at room temperature, but increasing temperature caused the supported membranes to fail. The ionic liquid with the PES support greatly affected the glass transition temperature, while with the PSF, the glass transition temperature was only slightly depressed. The cross-linked nylon support maintained performance without degradation over the temperature range 37-300°C with respect to its permeability and selectivity. However, while the cross-linked nylon support was able to withstand temperatures, the permeability continued to increase and the selectivity decreased with increasing temperature. Our studies indicated that further testing should examine the use of other ionic liquids, including those that form chemical complexes with CO2 based on amine interactions. The hypothesis is that the performance at the elevated temperatures could be improved by allowing a facilitated transport mechanism to become dominant. Several amine-based ionic liquids were tested on the cross-linked nylon support. It was found that using the amine-based ionic liquid did improve selectivity and permeability at higher temperature. The hypothesis was confirmed, and it was determined that the type of amine used also played a role in facilitated transport. Given the appropriate aminated ionic liquid with the cross-linked nylon support, it is possible to have a membrane capable of separating CO2 at IGCC conditions. With this being the case, the research has expanded to include separation of other constituents besides CO2 (CO, H2S, etc.) and if they play a role in membrane poisoning or degradation. This communication will discuss the operation of the recently fabricated ionic liquid membranes and the impact of gaseous components other than CO2 on their performance and stability.

  2. Furfural production using ionic liquids: A review.

    PubMed

    Peleteiro, Susana; Rivas, Sandra; Alonso, José Luis; Santos, Valentín; Parajó, Juan Carlos

    2016-02-01

    Furfural, a platform chemical with a bright future, is commercially obtained by acidic processing of xylan-containing biomass in aqueous media. Ionic liquids (ILs) can be employed in processed for furfural manufacture as additives, as catalysts and/or as reaction media. Depending on the IL utilized, externally added catalysts (usually, Lewis acids, Brönsted acids and/or solid acid catalysts) can be necessary to achieve high reaction yields. Oppositely, acidic ionic liquids (AILs) can perform as both solvents and catalysts, enabling the direct conversion of suitable substrates (pentoses, pentosans or xylan-containing biomass) into furfural. Operating in IL-containing media, the furfural yields can be improved when the product is continuously removed along the reaction (for example, by stripping or extraction), to avoid unwanted side-reactions leading to furfural consumption. These topics are reviewed, as well as the major challenges involved in the large scale utilization of ILs for furfural production. PMID:26708486

  3. Nontoxic Ionic Liquid Fuels for Exploration Applications

    NASA Technical Reports Server (NTRS)

    Coil, Millicent

    2015-01-01

    The toxicity of propellants used in conventional propulsion systems increases not only safety risks to personnel but also costs, due to special handling required during the entire lifetime of the propellants. Orbital Technologies Corporation (ORBITEC) has developed and tested novel nontoxic ionic liquid fuels for propulsion applications. In Phase I of the project, the company demonstrated the feasibility of several ionic liquid formulations that equaled the performance of conventional rocket propellant monomethylhydrazine (MMH) and also provided low volatility and low toxicity. In Phase II, ORBITEC refined the formulations, conducted material property tests, and investigated combustion behavior in droplet and microreactor experiments. The company also explored the effect of injector design on performance and demonstrated the fuels in a small-scale thruster. The ultimate goal is to replace propellants such as MMH with fuels that are simultaneously high-performance and nontoxic. The fuels will have uses in NASA's propulsion applications and also in a range of military and commercial functions.

  4. Understanding SO2 Capture by Ionic Liquids.

    PubMed

    Mondal, Anirban; Balasubramanian, Sundaram

    2016-05-19

    Ionic liquids have generated interest for efficient SO2 absorption due to their low vapor pressure and versatility. In this work, a systematic investigation of the structure, thermodynamics, and dynamics of SO2 absorption by ionic liquids has been carried out through quantum chemical calculations and molecular dynamics (MD) simulations. MP2 level calculations of several ion pairs complexed with SO2 reveal its preferential interaction with the anion. Results of condensed phase MD simulations of SO2-IL mixtures manifested the essential role of both cations and anions in the solvation of SO2, where the solute is surrounded by the "cage" formed by the cations (primarily its alkyl tail) through dispersion interactions. These structural effects of gas absorption are substantiated by calculated Gibbs free energy of solvation; the dissolution is demonstrated to be enthalpy driven. The entropic loss of SO2 absorption in ionic liquids with a larger anion such as [NTf2](-) has been quantified and has been attributed to the conformational restriction of the anion imposed by its interaction with SO2. SO2 loading IL decreases its shear viscosity and enhances the electrical conductivity. This systematic study provides a molecular level understanding which can aid the design of task-specific ILs as electrolytes for efficient SO2 absorption. PMID:27119562

  5. Mirrorless dye doped ionic liquid lasers.

    PubMed

    Barna, Valentin; De Cola, Luisa

    2015-05-01

    The study of electromagnetic waves propagation in periodically structured dielectrics and the linear and nonlinear optical phenomena in disordered systems doped with gain media represent one of the most challenging and exciting scientific areas of the past decade. Lasing and Random Lasers (RL) are fascinating examples of topics that synergize multiple scattering of light and optical amplification and lately have been the subject of intense theoretical and experimental studies. In this manuscript we demonstrate laser action in a new category of materials, namely dye doped ionic liquids. Ionic liquids prove to be perfect candidates for building, as shown, a series of exotic boundaryless or confined compact laser systems. Lasing is presented in standard wedge cells, freely suspended ionic liquid films and droplets. The optical emission properties are investigated in terms of spectral analysis, below and above lasing energy threshold behavior, emission efficiency, far field spatial laser modes intensity profiling, temporal emission behavior etc. As demonstrated, these materials can be employed as optimal near future replacements of conventional flammable solvents in already available dye laser instruments. PMID:25969283

  6. Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air

    PubMed Central

    Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin

    2016-01-01

    Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m2/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection. PMID:27070588

  7. Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air.

    PubMed

    Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin

    2016-01-01

    Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m²/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection. PMID:27070588

  8. Simulations of ionic liquids, solutions, and surfaces.

    PubMed

    Lynden-Bell, Ruth M; Del Pópolo, Mario G; Youngs, Tristan G A; Kohanoff, Jorge; Hanke, Christof G; Harper, Jason B; Pinilla, Carlos C

    2007-11-01

    We have been using atomistic simulation for the last 10 years to study properties of imidazolium-based ionic liquids. Studies of dissolved molecules show the importance of electrostatic interactions in both aromatic and hydrogen-bonding solutes. However, the local structure strongly depends upon ion-ion and solute-solvent interactions. We find interesting local alignments of cations at the gas-liquid and solid-liquid interfaces, which give a potential drop through the surface. If the solid interface is charged, this charge is strongly screened over distances of a few nanometres and this screening decays on a fast time scale. We have studied the sensitivity of the liquid structure to force-field parameters and show that results from ab initio simulations can be used in the development of force fields. PMID:17914887

  9. Ionic liquid based multifunctional double network gel

    NASA Astrophysics Data System (ADS)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  10. Liquid-liquid phase separation in solutions of ionic liquids: phase diagrams, corresponding state analysis and comparison with simulations of the primitive model

    NASA Astrophysics Data System (ADS)

    Schröer, W.; Vale, V. R.

    2009-10-01

    Phase diagrams of ionic solutions of the ionic liquid C18mim+NTF2- (1-n-octadecyl-3-methyl imidazolium bistrifluormethylsulfonylimide) in decalin, cyclohexane and methylcyclohexane are reported and compared with that of solutions of other imidazolium ionic liquids with the anions NTF2-, Cl- and BF4- in arenes, CCl4, alcohols and water. The phase diagrams are analysed presuming Ising criticality and taking into account the asymmetry of the phase diagrams. The resulting parameters are compared with simulation results for equal-sized charged hard spheres in a dielectric continuum, the restricted primitive model (RPM) and the primitive model (PM) that allows for ions of different size. In the RPM temperature scale the critical temperatures vary almost linearly with the dielectric permittivity of the solvent. The RPM critical temperatures of the solutions in non-polar solvents are very similar, somewhat below the RPM value. Correlations with the boiling temperatures of the solvents and a dependence on the length of the side chain of the imidazolium cations show that dispersion interactions modify the phase transition, which is mainly determined by Coulomb forces. Critical concentrations, widths of the phase diagrams and the slopes of the diameter are different for the solutions in protic and aprotic solvents. The phase diagrams of the solutions in alcohols and water get a lower critical solution point when represented in RPM variables.

  11. Use of ionic liquids as coordination ligands for organometallic catalysts

    DOEpatents

    Li, Zaiwei; Tang, Yongchun; Cheng; Jihong

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  12. Aggregation behavior of long-chain ionic liquids in an ionic liquid.

    PubMed

    Li, Na; Zhang, Shaohua; Zheng, Liqiang; Dong, Bin; Li, Xinwei; Yu, Li

    2008-08-14

    The aggregation behavior of long-chain ionic liquids 1-alkyl-3-methylimidazolium bromide (C(n)mimBr) in another ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), was studied for the first time. Surface tension measurements revealed that aggregates are formed by C(n)mimBr, and freeze fracture transmission electron microscopy (FF-TEM) observations suggested the aggregates are spheres with a size much larger than traditional micelles. The sizes of the aggregates were further confirmed by dynamic light scattering (DLS) measurements. PMID:18654675

  13. Importance of liquid fragility for energy applications of ionic liquids

    NASA Astrophysics Data System (ADS)

    Sippel, P.; Lunkenheimer, P.; Krohns, S.; Thoms, E.; Loidl, A.

    2015-09-01

    Ionic liquids (ILs) are salts that are liquid close to room temperature. Their possible applications are numerous, e.g., as solvents for green chemistry, in various electrochemical devices, and even for such “exotic” purposes as spinning-liquid mirrors for lunar telescopes. Here we concentrate on their use for new advancements in energy-storage and -conversion devices: Batteries, supercapacitors or fuel cells using ILs as electrolytes could be important building blocks for the sustainable energy supply of tomorrow. Interestingly, ILs show glassy freezing and the universal, but until now only poorly understood dynamic properties of glassy matter, dominate many of their physical properties. We show that the conductivity of ILs, an essential figure of merit for any electrochemical application, depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility.

  14. Importance of liquid fragility for energy applications of ionic liquids.

    PubMed

    Sippel, P; Lunkenheimer, P; Krohns, S; Thoms, E; Loidl, A

    2015-01-01

    Ionic liquids (ILs) are salts that are liquid close to room temperature. Their possible applications are numerous, e.g., as solvents for green chemistry, in various electrochemical devices, and even for such "exotic" purposes as spinning-liquid mirrors for lunar telescopes. Here we concentrate on their use for new advancements in energy-storage and -conversion devices: Batteries, supercapacitors or fuel cells using ILs as electrolytes could be important building blocks for the sustainable energy supply of tomorrow. Interestingly, ILs show glassy freezing and the universal, but until now only poorly understood dynamic properties of glassy matter, dominate many of their physical properties. We show that the conductivity of ILs, an essential figure of merit for any electrochemical application, depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility. PMID:26355037

  15. Importance of liquid fragility for energy applications of ionic liquids

    PubMed Central

    Sippel, P.; Lunkenheimer, P.; Krohns, S.; Thoms, E.; Loidl, A.

    2015-01-01

    Ionic liquids (ILs) are salts that are liquid close to room temperature. Their possible applications are numerous, e.g., as solvents for green chemistry, in various electrochemical devices, and even for such “exotic” purposes as spinning-liquid mirrors for lunar telescopes. Here we concentrate on their use for new advancements in energy-storage and -conversion devices: Batteries, supercapacitors or fuel cells using ILs as electrolytes could be important building blocks for the sustainable energy supply of tomorrow. Interestingly, ILs show glassy freezing and the universal, but until now only poorly understood dynamic properties of glassy matter, dominate many of their physical properties. We show that the conductivity of ILs, an essential figure of merit for any electrochemical application, depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility. PMID:26355037

  16. Importance of liquid fragility for energy applications of ionic liquids

    NASA Astrophysics Data System (ADS)

    Sippel, Pit; Lunkenheimer, Peter; Krohns, Stephan; Thoms, Erik; Loidl, Alois

    Ionic liquids (ILs) are salts that are liquid at ambient temperatures. The strong electrostatic forces between their molecular ions result, e.g., in low volatility and high stability for many members of this huge material class. For this reason they bear a high potential for new advancements in applications, e.g., as electrolytes in energy-storage devices such as supercapacitors or batteries, where the ionic conductivity is an essential figure of merit. Most ILs show dynamic properties typical for glassy matter, which dominate many of their physical properties. An important method to study these dynamical glass-properties is dielectric spectroscopy that can access relaxation times of dynamic processes and the conductivity in a broad frequency and temperature range. In the present contribution, we present results on a large variety of ionic liquids showing that the conductivity of ILs depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility. This work was supported by the Deutsche Forschungsgemeinschaft via Research Unit FOR1394 and by the BMBF via ENREKON 03EK3015.

  17. A morpholinium ionic liquid for cellulose dissolution.

    PubMed

    Raut, Dilip G; Sundman, Ola; Su, Weiqing; Virtanen, Pasi; Sugano, Yasuhito; Kordas, Krisztian; Mikkola, Jyri-Pekka

    2015-10-01

    A series of substituted morpholinium ionic salts and allyl ammonium acetates were prepared. Amongst those, N-allyl-N-methylmorpholinium acetate ([AMMorp][OAc]) was found to dissolve cellulose readily without any pre-processing of native cellulose. At 120°C, [AMMorp][OAc] could dissolve 30 wt%, 28 wt% and 25 wt% of cellulose with degree of polymerization (DPn) - 789, 1644 and 2082 respectively, in 20 min. Importantly, SEC analysis indicated that no discernible changes occurred in terms of the degree of polymerization of the different celluloses after regeneration. Furthermore, when comparing the cellulose dissolution capability of these newly synthesized ionic liquids, it is evident that the combination of all three constituents - the morpholinium cation, the existence of an allyl group and choosing the acetate anion are essential for efficient cellulose dissolution. The structure and morphology of the regenerated cellulosic materials were characterized by SEM, XRD, TGA, CP/MAS (13)C NMR and FTIR, respectively. PMID:26076596

  18. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2005-11-01

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF3SO3-), bis(trifluoromethylsulfonyl)imide ((CF3SO2)2N-), bis(perfluoroethylsulfonyl)imide ((CF3CF2SO2)2N-) and tris(trifluoromethylsulfonyl)methide ((CF3SO2)3C-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  19. Highly luminescent and color-tunable salicylate ionic liquids.

    PubMed

    Campbell, Paul S; Yang, Mei; Pitz, Demian; Cybinska, Joanna; Mudring, Anja-Verena

    2014-04-14

    High quantum yields of up to 40.5% can be achieved in salicylate-bearing ionic liquids. A range of these ionic liquids have been synthesized and their photoluminescent properties studied in detail. The differences noted can be related back to the structure of the ionic liquid cation and possible interionic interactions. It is found that shifts of emission, particularly in the pyridinium-based ionic liquids, can be related to cation-anion pairing interactions. Facile and controlled emission color mixing is demonstrated through combining different ILs, with emission colors ranging from blue to yellow. PMID:24615781

  20. Highly luminescent and color-tunable salicylate ionic liquids

    DOE PAGESBeta

    Campbell, Paul S.; Yang, Mei; Pitz, Demian; Cybinska, Joanna; Mudring, Anja -Verena

    2014-03-11

    High quantum yields of up to 40.5 % can be achieved in salicylate-bearing ionic liquids. A range of these ionic liquids have been synthesized and their photoluminescent properties studied in detail. The differences noted can be related back to the structure of the ionic liquid cation and possible interionic interactions. It is found that shifts of emission, particularly in the pyridinium-based ionic liquids, can be related to cationanion pairing interactions. Furthermore, facile and controlled emission color mixing is demonstrated through combining different ILs, with emission colors ranging from blue to yellow.

  1. Lipid extraction from microalgae using a single ionic liquid

    DOEpatents

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2013-05-28

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

  2. Ionic Liquids and Ionizing Radiation: Reactivity of Highly Energetic Species

    SciTech Connect

    Wishart, J.F.

    2010-11-04

    Due to their unique properties, ionic liquids present many opportunities for basic research on the interactions of radiation with materials under conditions not previously available. At the same time, there are practical applied reasons for characterizing, understanding, and being able to predict how ionic-liquid-based devices and industrial-scale systems will perform under conditions of extreme reactivity, including radiation. This perspective discusses current issues in ionic liquid physical chemistry, provides a brief introduction to radiation chemistry, draws attention to some key findings in ionic liquid radiation chemistry, and identifies some current hot topics and new opportunities.

  3. Highly luminescent and color-tunable salicylate ionic liquids

    SciTech Connect

    Campbell, Paul S.; Yang, Mei; Pitz, Demian; Cybinska, Joanna; Mudring, Anja -Verena

    2014-03-11

    High quantum yields of up to 40.5 % can be achieved in salicylate-bearing ionic liquids. A range of these ionic liquids have been synthesized and their photoluminescent properties studied in detail. The differences noted can be related back to the structure of the ionic liquid cation and possible interionic interactions. It is found that shifts of emission, particularly in the pyridinium-based ionic liquids, can be related to cation–anion pairing interactions. Furthermore, facile and controlled emission color mixing is demonstrated through combining different ILs, with emission colors ranging from blue to yellow.

  4. Properties of Water Confined in Ionic Liquids

    PubMed Central

    Saihara, Koji; Yoshimura, Yukihiro; Ohta, Soichi; Shimizu, Akio

    2015-01-01

    The varying states of water confined in the nano-domain structures of typical room temperature ionic liquids (ILs) were investigated by 1H NMR and by measurements of self-diffusion coefficients while systematically varying the IL cations and anions. The NMR peaks for water in BF4-based ILs were clearly split, indicating the presence of two discrete states of confined water (H2O and HOD). Proton and/or deuterium exchange rate among the water molecules was very slowly in the water-pocket. Notably, no significant changes were observed in the chemical shifts of the ILs. Self-diffusion coefficient results showed that water molecules exhibit a similar degree of mobility, although their diffusion rate is one order of magnitude faster than that of the IL cations and anions. These findings provide information on a completely new type of confinement, that of liquid water in soft matter. PMID:26024339

  5. Ionic liquid nanostructure enables alcohol self assembly.

    PubMed

    Murphy, Thomas; Hayes, Robert; Imberti, Silvia; Warr, Gregory G; Atkin, Rob

    2016-05-14

    Weakly structured solutions are formed from mixtures of one or more amphiphiles and a polar solvent (usually water), and often contain additional organic components. They contain solvophobic aggregates or association structures with incomplete segregation of components, which leads to a poorly defined interfacial region and significant contact between the solvent and aggregated hydrocarbon groups. The length scales, polydispersity, complexity and ill-defined structures in weakly structured solutions makes them difficult to probe experimentally, and obscures understanding of their formation and stability. In this work we probe the nanostructure of homogenous binary mixtures of the ionic liquid (IL) propylammonium nitrate (PAN) and octanol as a function of composition using neutron diffraction and atomistic empirical potential structure refinement (EPSR) fits. These experiments reveal why octanol forms weakly structured aggregates in PAN but not in water, the mechanism by which PAN stabilises the octanol assemblies, and how the aggregate morphologies evolve with octanol concentration. This new understanding provides insight into the general stabilisation mechanisms and structural features of weakly structured mixtures, and reveals new pathways for identifying molecular or ionic liquids that are likely to facilitate aggregation of non-traditional amphiphiles. PMID:27102801

  6. Oxygen Extraction from Regolith Using Ionic Liquids

    NASA Technical Reports Server (NTRS)

    Barrios, Elizabeth A.; Curreri, Peter A.; Karr, Laurel J.

    2011-01-01

    An important concern with long-duration manned space travel is the need to furnish enough materials to the vehicle, as well as the crew, for the duration of the mission. By extracting oxygen from the oxides present in regolith, propellant and life support could be supplied to the vehicle and the crew while in space, thereby limiting the amount of supplies needed prior to lift-off. Using a class of compounds known as ionic liquids, we have been able to lower the electrolysis operating temperature from 1600 C (molten oxide electrolysis) to less than 200 C, making this process much more feasible in terms of energy consumption and materials handling. To make this process ready for deployment into space, we have investigated what steps of the process would be affected by the low-gravity environment in space. In the lab, the solubilization of lunar regolith simulant in ionic liquid produces water vapor that is normally distilled out of solution and subsequently electrolyzed for oxygen production. This distillation is not possible in space, so we have tested a method known as pervaporation and have suggested a way this technique could be incorporated into a reactor design.

  7. Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: the evolution of an aprotic Li-O2 battery.

    PubMed

    Feng, Ningning; He, Ping; Zhou, Haoshen

    2015-02-01

    We show that by using a suitable soluble redox mediator, the charging overpotential can be reduced and the round-trip efficiency can be improved in an aprotic Li-O2 battery. Not only do we explore a new redox couple, 10-methyl-10H-phenothiazine, as a soluble catalyst that improves the electrochemical performance, but we also propose possible challenges that need to be overcome for the future improvement of aprotic Li-O2 batteries. PMID:25641874

  8. Kinetics and Thermodynamics of Hydrogen Oxidation and Oxygen Reduction in Hydrophobic Room-Temperature Ionic Liquids

    PubMed Central

    Rollins, Julie B.; Conboy, John C.

    2010-01-01

    In this study 1-dodecyl-3-methylimidazolium (C12mim) bis(pentafluoroethylsulfonyl)imide (BETI) and 1-dodecylimidazolium (C12im) BETI hydrophobic room-temperature ionic liquids (RTILs) were synthesized and used as proton-conducting electrolytes in a nonhumidified feed gas electrochemical cell. The ionic conductivities of C12mimBETI and C12imBETI were similar and increased linearly with an increase in temperature from 20 to 130°C. However, when used in the electrochemical system the protic water-equilibrated C12imBETI had a larger maximum current and power density compared to the aprotic water-equilibrated C12mimBETI. The effect of water content on the reaction rates and thermodynamics of these hydrophobic RTILs was also examined. The efficiency of the C12mimBETI increased upon removal of water while that of the C12imBETI decreased in efficiency when water was removed. The water structure in these RTILs was examined using attenuated total internal reflection Fourier transform IR spectroscopy and depended on the chemical structure of the cation. These studies give further insight into the possible mechanism of proton transport in these RTIL systems. PMID:20414470

  9. Brownian dynamics determine universality of charge transport in ionic liquids

    SciTech Connect

    Sangoro, Joshua R; Iacob, Ciprian; Mierzwa, Michal; Paluch, Marian; Kremer, Friedrich

    2012-01-01

    Broadband dielectric spectroscopy is employed to investigate charge transport in a variety of glass-forming ionic liquids over wide frequency, temperature and pressure ranges. Using a combination of Einstein, Einstein-Smoluchowski, and Langevin relations, the observed universal scaling of charge transport in ionic liquids is traced back to the dominant role of Brownian dynamics.

  10. Ionic Liquids and Green Chemistry: A Lab Experiment

    ERIC Educational Resources Information Center

    Stark, Annegret; Ott, Denise; Kralisch, Dana; Kreisel, Guenter; Ondruschka, Bernd

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few investigations have actually assessed the degree of…

  11. Ionic Liquids and Green Chemistry: A Lab Experiment

    ERIC Educational Resources Information Center

    Stark, Annegret; Ott, Denise; Kralisch, Dana; Kreisel, Guenter; Ondruschka, Bernd

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few investigations have actually assessed the degree of

  12. Exploring spectroscopic and physicochemical properties of new fluorescent ionic liquids.

    PubMed

    Marwani, Hadi M

    2013-03-01

    In the current study, spectroscopic and physicochemical properties of newly prepared ionic liquids were investigated. Ionic liquids were synthesized via a simple and straightforward route using a metathesis reaction of either N,N-diethyl-p-phenylenediamine monohydrochloride or N-phenacylpyridinium bromide with bis(trifluoromethane)sulfonimide lithium in water. High yield and purity were obtained for the resultant ionic liquids. Data acquired by use of (1)H NMR and FT-IR measurements were consistent with the chemical structures of newly prepared ionic liquids. Results of thermal gravimetric analysis also implied that these ionic liquids have good thermal stability. In addition, UV-vis and fluorescence spectroscopy measurements provided that new ionic liquids are good absorbent and fluorescent. Time-based fluorescence steady-state measurements showed that ionic liquids have high photostability against photobleaching. For a deeper mechanistic understanding of the analytical potential of newly synthesized ionic liquids, spectroscopic and physicochemical parameters, including singlet absorption, extinction coefficient, fluorescence quantum yield, Stokes shift, oscillator strength and dipole moment, were also investigated. PMID:23117624

  13. Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids.

    PubMed

    Fadeeva, Tatiana A; Husson, Pascale; DeVine, Jessalyn A; Costa Gomes, Margarida F; Greenbaum, Steven G; Castner, Edward W

    2015-08-14

    We report experimental results on the diffusivity of water in two ionic liquids obtained using the pulsed-gradient spin-echo NMR method. Both ionic liquids have the same cation, 1-butyl-1-methylpyrrolidinium, but different trifluoromethyl-containing anions. One has a strongly hydrophobic anion, bis(trifluoromethylsulfonyl)amide, while the second has a hydrophilic anion, trifluoromethylsulfonate. Transport of water in these ionic liquids is much faster than would be predicted from hydrodynamic laws, indicating that the neutral water molecules experience a very different friction than the anions and cations at the molecular level. Temperature-dependent viscosities, conductivities, and densities are reported as a function of water concentration to further analyze the properties of the ionic liquid-water mixtures. These results on the properties of water in ionic liquids should be of interest to researchers in diverse areas ranging from separations, solubilizing biomass and energy technologies. PMID:26277141

  14. Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids

    NASA Astrophysics Data System (ADS)

    Fadeeva, Tatiana A.; Husson, Pascale; DeVine, Jessalyn A.; Costa Gomes, Margarida F.; Greenbaum, Steven G.; Castner, Edward W.

    2015-08-01

    We report experimental results on the diffusivity of water in two ionic liquids obtained using the pulsed-gradient spin-echo NMR method. Both ionic liquids have the same cation, 1-butyl-1-methylpyrrolidinium, but different trifluoromethyl-containing anions. One has a strongly hydrophobic anion, bis(trifluoromethylsulfonyl)amide, while the second has a hydrophilic anion, trifluoromethylsulfonate. Transport of water in these ionic liquids is much faster than would be predicted from hydrodynamic laws, indicating that the neutral water molecules experience a very different friction than the anions and cations at the molecular level. Temperature-dependent viscosities, conductivities, and densities are reported as a function of water concentration to further analyze the properties of the ionic liquid-water mixtures. These results on the properties of water in ionic liquids should be of interest to researchers in diverse areas ranging from separations, solubilizing biomass and energy technologies.

  15. Polarization versus temperature in pyridinium ionic liquids.

    PubMed

    Chaban, Vitaly V; Prezhdo, Oleg V

    2014-12-01

    Electronic polarization and charge transfer effects play a crucial role in thermodynamic, structural, and transport properties of room-temperature ionic liquids (RTILs). These nonadditive interactions constitute a useful tool for tuning physical chemical behavior of RTILs. Polarization and charge transfer generally decay as temperature increases, although their presence should be expected over an entire condensed state temperature range. For the first time, we use three popular pyridinium-based RTILs to investigate temperature dependence of electronic polarization in RTILs, based on a nonperiodic electronic density description for a cation-anion pair. Atom-centered density matrix propagation molecular dynamics, supplemented by a weak coupling to an external bath, is used to simulate the temperature impact on system properties. We show that, quite surprisingly, nonadditivity in the cation-anion interactions changes negligibly between 300 and 900 K, while the average dipole moment increases due to thermal fluctuations of geometries. Our results contribute to the fundamental understanding of electronic effects in the condensed phase of ionic systems and foster progress in physical chemistry and engineering. PMID:25387327

  16. Volatile times for the very first ionic liquid: understanding the vapor pressures and enthalpies of vaporization of ethylammonium nitrate.

    PubMed

    Emel'yanenko, Vladimir N; Boeck, Gisela; Verevkin, Sergey P; Ludwig, Ralf

    2014-09-01

    A hundred years ago, Paul Walden studied ethyl ammonium nitrate (EAN), which became the first widely known ionic liquid. Although EAN has been investigated extensively, some important issues still have not been addressed; they are now tackled in this communication. By combining experimental thermogravimetric analysis with time of flight mass spectrometry (TGA-ToF-MS) and transpiration method with theoretical methods, we clarify the volatilisation of EAN from ambient to elevated temperatures. It was observed that up to 419 K, EAN evaporates as contact-ion pairs leading to very low vapour pressures of a few Pascal. Starting from 419 K, the decomposition to nitric acid and ethylamine becomes more thermodynamically favourable than proton transfer. This finding was supported by DFT calculations, which provide the free energies of all possible gas-phase species, and show that neutral molecules dominate over ion pairs above 500 K, an observation that is in nearly prefect agreement with the experimental boiling point of 513 K. This result is crucial for the ongoing practical applications of protic ionic liquids such as electrolytes for batteries and fuel cells because, in contrast to high-boiling conventional solvents, EAN exhibits no significant vapour pressure below 419 K and this property fulfils the requirements for the thermal behaviour of safe electrolytes. Overall, EAN shows the same barely measurable vapour pressures as typical aprotic ionic liquids at temperatures only 70 K lower. PMID:25077820

  17. Metsulfuron-methyl-based herbicidal ionic liquids.

    PubMed

    Pernak, Juliusz; Niemczak, Micha?; Shamshina, Julia L; Gurau, Gabriela; G?owacki, Grzegorz; Praczyk, Tadeusz; Marcinkowska, Katarzyna; Rogers, Robin D

    2015-04-01

    Ten sulfonylurea-based herbicidal ionic liquids (HILs) were prepared by combining the metsulfuron-methyl anion with various cation types including quaternary ammonium ([bis(2-hydroxyethyl)methyloleylammonium](+), [2-hydroxyethyltrimethylammonium](+)), pyridinium ([1-dodecylpyridinium](+)), piperidinium ([1-methyl-1-propylpiperidinium](+)), imidazolium ([1-allyl-3-methylimidazolium](+), [1-butyl-3-methylimidazolium](+)), pyrrolidinium ([1-butyl-1-methylpyrrolidinium](+)), morpholinium ([4-decyl-4-methylmorpholinium](+)), and phosphonium ([trihexyltetradecylphosphonium](+) and [tetrabutylphosphonium](+)). Their herbicidal efficacy was studied in both greenhouse tests and field trials. Preliminary results for the greenhouse tests showed at least twice the activity for all HILs when compared to the activity of commercial Galmet 20 SG, with HILs with phosphonium cations being the most effective. The results of two-year field studies showed significantly less enhancement of activity than observed in the greenhouse; nonetheless, it was found that the herbicidal efficacy was higher than that of the commercial analog, and efficacy varied depending on the plant species. PMID:25734891

  18. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2006-10-10

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  19. Oxidoreductase behavior in ionic liquids: a review.

    PubMed

    Pinto, Paula C A G; Saraiva, M Lúcia M F S; Lima, José L F C

    2008-10-01

    Due to their unique characteristics ionic liquids (ILs) have been extensively used as solvents in enzymatic procedures, proving to be advantageous alternatives to conventional organic solvents. The studies of enzyme behavior in ILs have increased exponentially in the last years and oxidoreductases particularly have recently started to be studied. The association of oxidoreductases with IL is very promising due to the large field of application of these enzymes. The materials are very interesting not only from the analytical point of view but also in the biocatalytic perspective. In this review, we discuss the behavior of oxidoreductases in the presence of ILs, the mechanisms involved in this association and the immobilization of oxidoreductases in composite materials with IL. The performance of proteins with peroxidase activity in ILs is also reviewed. Future trends and perspectives related with the development of biocatalytic studies involving oxidoreductases and ILs are also considered. PMID:18845879

  20. New triazolium based ionic liquid crystals

    SciTech Connect

    Stappert, Kathrin; Unal, Derya; Mallick, Bert; Mudring, Anja-Verena

    2014-01-01

    A set of novel 1,2,3-triazolium based ionic liquid crystals was synthesized and their mesomorphic behaviour studied by DSC (differential scanning calorimetry), POM (polarizing optical microscopy) and SAXS (small angle X-ray scattering). Beside the variation of the chain length (C10, C12 and C14) at the 1,2,3-triazolium cation also the anion has been varied (Br−, I−, I3−, BF4−, SbF6−, N(CN)2−, Tf2N−) to study the influence of ion size, symmetry and H-bonding capability on the mesophase formation. Interestingly, for the 1,3-didodecyl-1,2,3-triazolium cation two totally different conformations were found in the crystal structure of the bromide (U-shaped) and the triiodide (rod shaped).

  1. Synthesis of Crystalline Chalcogenides in Ionic Liquids.

    PubMed

    Santner, Silke; Heine, Johanna; Dehnen, Stefanie

    2016-01-18

    Crystalline chalcogenides belong to the most promising class of materials. In addition to dense solid-state structures, they may form molecular cluster arrangements and networks with high porosity, as in the so-called "zeotype" chalcogenidometalates. The high structural diversity comes along with interesting physical properties such as semi-/photoconductivity, ion transport capability, molecular trapping potential, as well as chemical and catalytic activity. The great interest in the development of new and tailored chalcogenides has provoked a continuous search for new and better synthesis strategies over the years. The trend has clearly been towards lower temperatures for both economic and ecological reasons as well as for better reaction control. This led to the application of ionic liquids as a designer-like medium for materials synthesis. In this Review, we summarize recent developments and present a survey of different chalcogenide families along with their properties. PMID:26661858

  2. Microwave-assisted synthesis using ionic liquids.

    PubMed

    Martínez-Palou, Rafael

    2010-02-01

    The research and application of green chemistry principles have led to the development of cleaner processes. In this sense, during the present century an ever-growing number of studies have been published describing the use of ionic liquids (ILs) as solvents, catalysts, or templates to develop more environmentally friendly and efficient chemical transformations for their use in both academia and industry. The conjugation of ILs and microwave irradiation as a non-conventional heating source has shown evident advantages when compared to conventional synthetic procedures for the generation of fast, efficient, and environmental friendly synthetic methodologies. This review focuses on the advances in the use of ILs in organic, polymers and materials syntheses under MW irradiation conditions. PMID:19507045

  3. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Burrell, Anthony K.; Agrawal, Anoop; Cronin; John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark

    2009-12-15

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  4. Durable Electrooptic Devices Comprising Ionic Liquids

    DOEpatents

    Burrell, Anthony K.; Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark

    2008-11-11

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  5. Carbon Dioxide and Ionic Liquid Refrigerants: Compact, Efficient Air Conditioning with Ionic Liquid-Based Refrigerants

    SciTech Connect

    2010-10-01

    BEETIT Project: Notre Dame is developing an air-conditioning system with a new ionic liquid and CO2 as the working fluid. Synthetic refrigerants used in air conditioning and refrigeration systems are potent GHGs and can trap 1,000 times more heat in the atmosphere than CO2 alone—making CO2 an attractive alternative for synthetic refrigerants in cooling systems. However, operating cooling systems with pure CO2 requires prohibitively high pressures and expensive hardware. Notre Dame is creating a new fluid made of CO2 and ionic liquid that enables the use of CO2 at low pressures and requires minimal changes to existing hardware and production lines. This new fluid also produces no harmful emissions and can improve the efficiency of air conditioning systems— enabling new use of CO2 as a refrigerant in cooling systems.

  6. Intermolecular vibrations and fast relaxations in supercooled ionic liquids

    NASA Astrophysics Data System (ADS)

    Ribeiro, Mauro C. C.

    2011-06-01

    Short-time dynamics of ionic liquids has been investigated by low-frequency Raman spectroscopy (4 < ? < 100 cm-1) within the supercooled liquid range. Raman spectra are reported for ionic liquids with the same anion, bis(trifluoromethylsulfonyl)imide, and different cations: 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-butyl-1-methylpiperidinium, trimethylbutylammonium, and tributylmethylammonium. It is shown that low-frequency Raman spectroscopy provides similar results as optical Kerr effect (OKE) spectroscopy, which has been used to study intermolecular vibrations in ionic liquids. The comparison of ionic liquids containing aromatic and non-aromatic cations identifies the characteristic feature in Raman spectra usually assigned to librational motion of the imidazolium ring. The strength of the fast relaxations (quasi-elastic scattering, QES) and the intermolecular vibrational contribution (boson peak) of ionic liquids with non-aromatic cations are significantly lower than imidazolium ionic liquids. A correlation length assigned to the boson peak vibrations was estimated from the frequency of the maximum of the boson peak and experimental data of sound velocity. The correlation length related to the boson peak (19 ) does not change with the length of the alkyl chain in imidazolium cations, in contrast to the position of the first-sharp diffraction peak observed in neutron and X-ray scattering measurements of ionic liquids. The rate of change of the QES intensity in the supercooled liquid range is compared with data of excess entropy, free volume, and mean-squared displacement recently reported for ionic liquids. The temperature dependence of the QES intensity in ionic liquids illustrates relationships between short-time dynamics and long-time structural relaxation that have been proposed for glass-forming liquids.

  7. Layering of ionic liquids on rough surfaces

    NASA Astrophysics Data System (ADS)

    Sheehan, Alexis; Jurado, L. Andres; Ramakrishna, Shivaprakash N.; Arcifa, Andrea; Rossi, Antonella; Spencer, Nicholas D.; Espinosa-Marzal, Rosa M.

    2016-02-01

    Understanding the behavior of ionic liquids (ILs) either confined between rough surfaces or in rough nanoscale pores is of great relevance to extend studies performed on ideally flat surfaces to real applications. In this work we have performed an extensive investigation of the structural forces between two surfaces with well-defined roughness (<9 nm RMS) in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide by atomic force microscopy. Statistical studies of the measured layer thicknesses, layering force, and layering frequency reveal the ordered structure of the rough IL-solid interface. Our work shows that the equilibrium structure of the interfacial IL strongly depends on the topography of the contact.Understanding the behavior of ionic liquids (ILs) either confined between rough surfaces or in rough nanoscale pores is of great relevance to extend studies performed on ideally flat surfaces to real applications. In this work we have performed an extensive investigation of the structural forces between two surfaces with well-defined roughness (<9 nm RMS) in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide by atomic force microscopy. Statistical studies of the measured layer thicknesses, layering force, and layering frequency reveal the ordered structure of the rough IL-solid interface. Our work shows that the equilibrium structure of the interfacial IL strongly depends on the topography of the contact. Electronic supplementary information (ESI) available: Optimized geometries and sizes for [HMIM] Ntf2, SEM images of the smooth and rough colloids, frequency of occurrence of layering in the resolved force-distance curves for all investigated systems with [HMIM] Ntf2, layer size and layering force measured with a sharp tip on mica for the same IL, and results of the kinetics experiments. See DOI: 10.1039/c5nr07805a

  8. Alkylsulfuric acid ionic liquids: a promising class of strongly acidic room-temperature ionic liquids.

    PubMed

    Dupont, David; Renders, Evelien; Binnemans, Koen

    2016-03-17

    Strongly acidic (pKa ≈ -3.5) room-temperature ionic liquids (ILs) with -OSO3H functionalized cations are introduced. The strong acidity, easy synthesis, and better physical properties of these R-OSO3H ILs make them excellent alternatives to the well-known sulfonic acid (R-SO3H) ILs, especially in the domain of metal processing. PMID:26947544

  9. Physics of transduction in ionic liquid-swollen Nafion membranes

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew; Leo, Donald

    2006-03-01

    Ionic polymer transducers are a class of electroactive polymers that are able to generate large strains (1-5%) in response to low voltage inputs (1-5 V). Additionally, these materials generate electrical charge in response to mechanical strain and are therefore able to operate as soft, distributed sensors. Traditionally, ionic polymer transducers have been limited in their application by their hydration dependence. This work seeks to overcome this limitation by replacing the water with an ionic liquid. Ionic liquids are molten salts that exhibit very high thermal and electrochemical stability while also possessing high ionic conductivity. Results have shown that an ionic liquid-swollen ionic polymer transducer can operate for more than 250,000 cycles in air as compared to about 2,000 cycles for a water-swollen transducer. The current work examines the mechanisms of transduction in ionic liquid-swollen transducers based on Nafion polymer membranes. Specifically, the morphology and relevant ion associations within these membranes are investigated by the use of small-angle X-ray scattering (SAXS), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR). These results reveal that the ionic liquid interacts with the membrane in much the same way that water does, and that the counterions of the Nafion polymer are the primary charge carriers. The results of these analyses are compared to the macroscopic transduction behavior in order to develop a model of the charge transport mechanism responsible for electromechanical coupling in these membranes.

  10. Adsorption Kinetics at Silica Gel/Ionic Liquid Solution Interface.

    PubMed

    Flieger, Jolanta; Tatarczak-Michalewska, Małgorzata; Groszek, Anna; Blicharska, Eliza; Kocjan, Ryszard

    2015-01-01

    A series of imidazolium and pyridinium ionic liquids with different anions (Cl(-), Br(-), BF₄(-), PF₆(-)) has been evaluated for their adsorption activity on silica gel. Quantification of the ionic liquids has been performed by the use of RP-HPLC with organic-aqueous eluents containing an acidic buffer and a chaotropic salt. Pseudo-second order kinetic models were applied to the experimental data in order to investigate the kinetics of the adsorption process. The experimental data showed good fitting with this model, confirmed by considerably high correlation coefficients. The adsorption kinetic parameters were determined and analyzed. The relative error between the calculated and experimental amount of ionic liquid adsorbed at equilibrium was within 7%. The effect of various factors such as initial ionic liquid concentration, temperature, kind of solvent, kind of ionic liquid anion and cation on adsorption efficiency were all examined in a lab-scale study. Consequently, silica gel showed better adsorptive characteristics for imidazolium-based ionic liquids with chaotropic anions from aqueous solutions in comparison to pyridinium ionic liquids. The adsorption was found to decrease with the addition of organic solvents (methanol, acetonitrile) but it was not sensitive to the change of temperature in the range of 5-40 °C. PMID:26690392

  11. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Institute of Chemistry, Hebrew University; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-07-19

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  12. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

    2012-03-16

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  13. Liquid-liquid extraction of neodymium(III) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation.

    PubMed

    Rout, Alok; Kotlarska, Justyna; Dehaen, Wim; Binnemans, Koen

    2013-10-21

    The ionic liquids 1-hexyl-3-methylimidazolium bis(2-ethylhexyl)phosphate, [C6mim][DEHP], 1-hexyl-1-methylpyrrolidinium bis(2-ethylhexyl)phosphate, [C6mpyr][DEHP], and tetrabutylammonium bis(2-ethylhexyl)phosphate, [N4444][DEHP], were prepared and characterized using (1)H and (13)C NMR spectroscopy. The extraction behavior of neodymium(iii) from nitrate medium by these ionic liquids, diluted with the room temperature ionic liquids 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][NTf2], 1-hexyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C6mpyr][NTf2], and tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N1444][NTf2], was studied. The distribution ratio of neodymium(iii) was measured as a function of various parameters, such as pH, concentration of the ionic liquid extractant, nature of diluents, concentration of ionic liquid cations and nitrate anions in the aqueous phase. The extraction behavior was compared with that obtained for a solution of the molecular extractant bis(2-ethylhexyl)phosphoric acid (DEHPA) in an ionic liquid diluent. The extraction of neodymium(iii) in the ionic liquids [C6mim][DEHP] and [C6mpyr][DEHP] showed markedly different extraction properties in comparison with that of the quaternary ammonium analogue [N4444][DEHP], especially concerning the pH dependence of the extraction process. These results show that the extraction process can be tuned by the selection of the ionic liquid cation. The extraction experiments also included the trivalent rare-earth ions lanthanum(iii), cerium(iii), praseodymium(iii), ytterbium(iii) and yttrium(iii). Studies of the stripping behavior and the reusability of the ionic liquids were carried out, which indicate that the ionic liquids can be reused with no loss in activity. PMID:23949284

  14. Chelating ionic liquids for reversible zinc electrochemistry.

    PubMed

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions. PMID:23558696

  15. Temperature dependence of the electrical conductivity of imidazolium ionic liquids.

    PubMed

    Leys, Jan; Wübbenhorst, Michael; Preethy Menon, Chirukandath; Rajesh, Ravindran; Thoen, Jan; Glorieux, Christ; Nockemann, Peter; Thijs, Ben; Binnemans, Koen; Longuemart, Stéphane

    2008-02-14

    The electrical conductivities of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids and of 1-hexyl-3-methylimidazolium ionic liquids with different anions were determined in the temperature range between 123 and 393 K on the basis of dielectric measurements in the frequency range from 1 to 10(7) Hz. Most of the ionic liquids form a glass and the conductivity values obey the Vogel-Fulcher-Tammann equation. The glass transition temperatures are increasing with increasing length of the alkyl chain. The fragility is weakly dependent on the alkyl chain length but is highly sensitive to the structure of the anion. PMID:18282058

  16. Temperature dependence of the electrical conductivity of imidazolium ionic liquids

    NASA Astrophysics Data System (ADS)

    Leys, Jan; Wübbenhorst, Michael; Preethy Menon, Chirukandath; Rajesh, Ravindran; Thoen, Jan; Glorieux, Christ; Nockemann, Peter; Thijs, Ben; Binnemans, Koen; Longuemart, Stéphane

    2008-02-01

    The electrical conductivities of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids and of 1-hexyl-3-methylimidazolium ionic liquids with different anions were determined in the temperature range between 123 and 393K on the basis of dielectric measurements in the frequency range from 1to107Hz. Most of the ionic liquids form a glass and the conductivity values obey the Vogel-Fulcher-Tammann equation. The glass transition temperatures are increasing with increasing length of the alkyl chain. The fragility is weakly dependent on the alkyl chain length but is highly sensitive to the structure of the anion.

  17. Phase-Changing Ionic Liquids: CO2 Capture with Ionic Liquids Involving Phase Change

    SciTech Connect

    2010-07-01

    IMPACCT Project: Notre Dame is developing a new CO2 capture process that uses special ionic liquids (ILs) to remove CO2 from the gas exhaust of coal-fired power plants. ILs are salts that are normally liquid at room temperature, but Notre Dame has discovered a new class of ILs that are solid at room temperature and change to liquid when they bind to CO2. Upon heating, the CO2 is released for storage, and the ILs re-solidify and donate some of the heat generated in the process to facilitate further CO2 release. These new ILs can reduce the energy required to capture CO2 from the exhaust stream of a coal-fired power plant when compared to state-ofthe- art technology.

  18. Morphology-enhanced conductivity in dry ionic liquids.

    PubMed

    Erbaş, Aykut; de la Cruz, Monica Olvera

    2016-03-01

    Ionic liquids exhibit fascinating nanoscale morphological phases and are promising materials for energy storage applications. Liquid crystalline order emerges in ionic liquids with specific chemical structures. Here, we investigate the phase behaviour and related ionic conductivities of dry ionic liquids, using extensive molecular dynamics simulations. Temperature dependence, properties of polymeric tail and excluded volume symmetry of the amphiphilic ionic liquid molecules are investigated in large scale systems with both short and long-range Coulomb interactions. Our results suggest that by adjusting stiffness and steric interactions of the amphiphilic molecules, lamellar or 3D continuous phases result in these molecular salts. The resulting phases are composed of ion rich and ion pure domains. In 3D phases, ion rich clusters form ionic channels and have significant effects on the conductive properties of the observed nano-phases. If there is no excluded-volume asymmetry along the molecules, mostly lamellar phases with anisotropic conductivities emerge. If the steric interactions become asymmetric, lamellar phases are replaced by complex 3D continuous phases. Within the temperature ranges for which morphological phases are observed, conductivities exhibit low-temperature maxima in accord with experiments on ionic liquid crystals. Stiffer molecules increase the high-conductivity interval and strengthen temperature-resistance of morphological phases. Increasing the steric interactions of cation leads to higher conductivities. Moreover, at low monomeric volume fractions and at low temperatures, cavities are observed in the nano-phases of flexible ionic liquids. We also demonstrate that, in the absence of electrostatic interactions, the morphology is distorted. Our findings inspire new design principles for room temperature ionic liquids and help explain previously-reported experimental data. PMID:26862598

  19. Development of Practical Supported Ionic Liquid Membranes: A Systematic Approach

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-11-01

    Supported liquid membranes (SLMs) are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties to optimize membrane performance. These membranes also have the advantage of liquid phase diffusivities, which are higher than those observed in polymers and grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which may possess high CO2 solubility relative to light gases such as H2, are excellent candidates for this type of membrane since they are stable at elevated temperatures and have negligible vapor pressure. A study has been conducted evaluating the use of a variety of ionic liquids in supported ionic liquid membranes for the capture of CO2 from streams containing H2. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated membrane performance for the resulting materials. Several steps have been taken in the development of practical supported ionic liquid membranes. Proof-of-concept was established by showing that ionic liquids could be used as the transport media in SLMs. Results showed that ionic liquids are suitable media for gas transport, but the preferred polymeric supports were not stable at temperatures above 135oC. The use of cross-linked nylon66 supports was found to produce membranes mechanically stable at temperatures exceeding 300oC but CO2/H2 selectivity was poor. An ionic liquid whose selectivity does not decrease with increasing temperature was needed, and a functionalized ionic liquid that complexes with CO2 was used. An increase in CO2/H2 selectivity with increasing temperature over the range of 37 to 85oC was observed and the dominance of a facilitated transport mechanism established. The presentation will detail membrane development, the effect of increasing transmembrane pressure, and preliminary results dealing with other gas pairs and contaminants.

  20. Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces.

    PubMed

    Fumino, Koichi; Reimann, Sebastian; Ludwig, Ralf

    2014-10-28

    Ionic liquids are defined as salts composed solely of ions with melting points below 100 °C. These remarkable liquids have unique and fascinating properties and offer new opportunities for science and technology. New combinations of ions provide changing physical properties and thus novel potential applications for this class of liquid materials. To a large extent, the structure and properties of ionic liquids are determined by the intermolecular interaction between anions and cations. In this perspective we show that far infrared and terahertz spectroscopy are suitable methods for studying the cation-anion interaction in these Coulomb fluids. The interpretation of the measured low frequency spectra is supported by density functional theory calculations and molecular dynamics simulations. We present results for selected aprotic and protic ionic liquids and their mixtures with molecular solvents. In particular, we focus on the strength and type of intermolecular interaction and how both parameters are influenced by the character of the ions and their combinations. We show that the total interaction between cations and anions is a result of a subtle balance between Coulomb forces, hydrogen bonds and dispersion forces. For protic ionic liquids we could measure distinct vibrational modes in the low frequency spectra indicating clearly the cation-anion interaction characterized by linear and medium to strong hydrogen bonds. Using isotopic substitution we have been able to dissect frequency shifts related to pure interaction strength between cations and anions and to different reduced masses only. In this context we also show how these different types of interaction may influence the physical properties of ionic liquids such as the melting point, viscosity or enthalpy of vaporization. Furthermore we demonstrate that low frequency spectroscopy can also be used for studying ion speciation. Low vibrational features can be assigned to contact ion pairs and solvent separated ion pairs. In conclusion we showed how detailed knowledge of the low frequency spectra can be used to understand the change in interaction strength and structure by variation of temperature, solvent polarity and solvent concentration in ionic liquids and their mixtures with molecular solvents. In principle the used combination of methods is suitable for studying intermolecular interaction in pure molecular liquids and their solutions including additive materials such as nanoparticles. PMID:24898478

  1. Polymerized Ionic Liquids: Promising Class of Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Sokolov, Alexei

    Use of polymer electrolytes instead of traditional liquid electrolytes offers an elegant solution to many problems in current battery technology. However, a major obstacle in use of polymer electrolytes is their low ionic conductivity and low transference number (percentage of charge transported by the desired ion). Polymerized ionic liquids (PolyILs), a relatively new class of polymer electrolytes, are essentially single ion conductors and provide simple solution for the increase of the transference number. However, their ionic conductivity at ambient conditions remains low. Our earlier studies demonstrated that only strong decoupling of ionic conductivity from segmental dynamics can lead to a `superionic' behavior of a polymer and might provide sufficiently high conductivity. Based on this concept, we overview recent developments in the field of polymerized ionic liquids, with the emphasis on the polymer specific decoupling of ionic conductivity from segmental dynamics. The latter is well illustrated by the comparison of ionic liquids with their polymerized analogs. Ways to further improvement of ionic conductivity in PolyILs, and their possible limitations are discussed at the end.

  2. Water in Room Temperature Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Fayer, Michael

    2014-03-01

    Room temperature ionic liquids (or RTILs, salts with a melting point below 25 °C) have become a subject of intense study over the last several decades. Currently, RTIL application research includes synthesis, batteries, solar cells, crystallization, drug delivery, and optics. RTILs are often composed of an inorganic anion paired with an asymmetric organic cation which contains one or more pendant alkyl chains. The asymmetry of the cation frustrates crystallization, causing the salt's melting point to drop significantly. In general, RTILs are very hygroscopic, and therefore, it is of interest to examine the influence of water on RTIL structure and dynamics. In addition, in contrast to normal aqueous salt solutions, which crystallize at low water concentration, in an RTIL it is possible to examine isolated water molecules interacting with ions but not with other water molecules. Here, optical heterodyne-detected optical Kerr effect (OHD-OKE) measurements of orientational relaxation on a series of 1-alkyl-3-methylimidazolium tetrafluoroborate RTILs as a function of chain length and water concentration are presented. The addition of water to the longer alkyl chain RTILs causes the emergence of a long time bi-exponential orientational anisotropy decay. Such decays have not been seen previously in OHD-OKE experiments on any type of liquid and are analyzed here using a wobbling-in-a-cone model. The orientational relaxation is not hydrodynamic, with the slowest relaxation component becoming slower as the viscosity decreases for the longest chain, highest water content samples. The dynamics of isolated D2O molecules in 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) were examined using two dimensional infrared (2D IR) vibrational echo spectroscopy. Spectral diffusion and incoherent and coherent transfer of excitation between the symmetric and antisymmetric modes are examined. The coherent transfer experiments are used to address the nature of inhomogeneous broadening by observing ~ 100 fs time scale oscillations in the shape of the 2D IR spectra.

  3. A structural investigation of ionic liquid mixtures.

    PubMed

    Matthews, Richard P; Villar-Garcia, Ignacio J; Weber, Cameron C; Griffith, Jeraime; Cameron, Fiona; Hallett, Jason P; Hunt, Patricia A; Welton, Tom

    2016-03-16

    The structures of mixtures of ionic liquids (ILs) featuring a common 1-butyl-3-methylimidazolium ([C4C1im](+)) cation but different anions have been investigated both experimentally and computationally. (1)H and (13)C NMR of the ILs and their mixtures has been performed both on the undiluted liquids and those diluted by CD2Cl2. These experiments have been complemented by quantum chemical density functional theory calculations and molecular dynamics simulations. These techniques have identified the formation of preferential interactions between H(2) of the imidazolium cation and the most strongly hydrogen bond (H-bond) accepting anion. In addition, a preference for the more weakly H-bond accepting anion to interact above the imidazolium ring through anion-π(+) interactions has been identified. The modelling of these data has identified that the magnitude of these preferences are small, of the order of only a few kJ mol(-1), for all IL mixtures. No clustering of the anions around a specific cation could be observed, indicating that these interactions arise from the reorientation of the cation within a randomly assigned network of anions. π(+)-π(+) stacking of the imidazolium cations was also studied and found to be promoted by ILs with a strong H-bond accepting anion. Stacking interactions are easily disrupted by the introduction of small proportions (<50 mol%) of a weakly coordinating anion due to their propensity to form anion-π(+) interactions. These results suggest that the formation of IL mixtures with different anions leads to subtle structural changes of much lower energy than the Coulombic ordering of ions, accounting for why most IL mixtures exhibit ideal, or nearly ideal, behaviour. PMID:26947103

  4. Borohydride ionic liquids and borane/ionic-liquid solutions as hypergolic fuels with superior low ignition-delay times.

    PubMed

    Li, Songqing; Gao, Haixiang; Shreeve, Jean'ne M

    2014-03-10

    In propellant systems, fuels of choice continue to be hydrazine and its derivatives, even though they comprise a class of acutely carcinogenic and toxic substances which exhibit rather high vapor pressures and require expensive handling procedures and costly safety precautions. Hypergolic ionic liquids tend to have low volatility and high thermal and chemical stability, and often exhibit wide liquid ranges, which could allow the use of these substances as bipropellant fuels under a variety of conditions. A new family of borohydride ionic liquids and borane-ionic-liquid solutions is described which meets nearly all of the desired important criteria for well-performing fuels. They exhibit ignition-delay times that are superior to that of any known hypergolic ionic liquid and may thus be legitimate replacements for hydrazine and its derivatives. PMID:24604814

  5. Biocompatible Ionic Liquid-Derived Conducting Polymers

    NASA Astrophysics Data System (ADS)

    Firestone, Millicent; Burns, Christopher; Lee, Sungwon

    2009-03-01

    A significant and frequently encountered challenge when making an electrical connection to a protein is that its electron-transfer sites are buried within the polypeptide matrix and thus, are not readily accessible to bulk metal electrodes. A further complicating factor is that inorganic (i.e., metallic) electrodes are often incompatible with biological samples. These obstacles might be overcome by the use of conducting oligomers and / or polymers, which are flexible, offering a means to access remote redox centers. These oligomers can be readily modified to include chemical moieties that can connect covalently to sites near redox centers. In addition, conducting polymers can be made to be environmentally responsive (dynamic), processable (conformal coating, soluble) and mechanically durable, thus enabling them to function as an electrical conduit (wire or electrode) to biomolecules. In this work, we describe the design, synthesis and electrochemical properties of thiophene-based ionic liquid monomers and their bulk polymerization by chemical oxidation to yield cationic, aqueous-soluble polymers. Preliminary studies evaluating the electropolymerization of these monomers into nanostructured thin films will also be presented.

  6. Surface modification using ionic liquid ion beams

    NASA Astrophysics Data System (ADS)

    Takaoka, Gikan H.; Hamaguchi, Takuya; Takeuchi, Mitsuaki; Ryuto, Hiromichi

    2014-12-01

    We developed an ionic liquid (IL) ion source using 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) and produced IL ion beams by applying a high electric field between the tip and the extractor. Time-of-flight measurements showed that small cluster and fragment ions were contained in the positive and negative ion beams. The positive and negative cluster ions were deposited on Si(1 0 0) substrates. X-ray photoelectron spectroscopy measurements showed that the composition of the deposited layers was similar to that of an IL solvent. This suggests that a cation (A+) or an anion (B-) was attached to an IL cluster (AB)n, resulting in the formation of positive cluster ions (AB)nA+ or negative cluster ions (AB)nB-, respectively. The surfaces of the IL layers deposited on Si(1 0 0) substrates were flat at an atomic level for positive and negative cluster ion irradiation. Moreover, the contact angles of the deposited layers were similar to that of the IL solvent. Thus, surface modification of Si(1 0 0) substrates was successfully demonstrated with BMIM-PF6 cluster ion beams.

  7. Ionic liquids as plasticizers for polyelectrolyte complexes.

    PubMed

    Zhang, Bodong; Hoagland, David A; Su, Zhaohui

    2015-02-26

    Uptake of salts by insoluble polyelectrolyte complexes (PECs) leads to plasticization, and here it is shown that ionic liquids (ILs) are more effective plasticizers than simple organic salts such as NaCl. The PEC uptake of IL cation was monitored by solution (1)H NMR, and the mechanical impacts of plasticization were tracked by dynamic mechanical analysis (DMA). PECs prepared with polystyrene sulfonate (PSS) and poly(diallyldimethylammonium chloride) (PDDA) under charge stoichiometric conditions were immersed in aqueous solutions of 1-butyl-3-methylimidazolium chloride [BMIM][Cl] to cause IL uptake, which could be controlled by the solution's IL concentration: higher concentration leads to higher uptake which leads to greater plasticization. The effectiveness of plasticization was assessed through the position and height of a DMA tan(δ) peak ascribed to a glassy-to-rubbery PEC transition. Consistent with greater PEC uptake, isothermal titration calorimetry demonstrated that solution binding by PSS of [BMIM](+) was much stronger than binding of Na(+). PMID:25686291

  8. Long-range electrostatic screening in ionic liquids.

    PubMed

    Gebbie, Matthew A; Dobbs, Howard A; Valtiner, Markus; Israelachvili, Jacob N

    2015-06-16

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  9. Long-range electrostatic screening in ionic liquids

    PubMed Central

    Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.

    2015-01-01

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  10. Morphology-induced low temperature conductivity in ionic liquids

    NASA Astrophysics Data System (ADS)

    Erbas, Aykut; Olvera de La Cruz, Monica; Olvera de la Cruz Team

    Ionic liquids exhibit nano-scale liquid crystalline order depending on the polymeric details of salt molecules. The resulting morphology and temperature behavior are key factors in determining the room temperature conductivity of ionic liquids. Here we discuss the phase behavior and related ionic conductivities of dry ionic liquids with volume fractions close to unity by using extensive molecular dynamics simulations. Temperature dependence, effective persistence length of tails, and excluded volume symmetry of amphiphilic ionic liquid molecules are investigated in large scale systems with short and long-range electrostatics. Our results suggest that by adjusting stiffness of the amphiphilic molecules and excluded volume interactions, lamellar or interconnected 3D phases can be obtained. Resulting phases have significant effects on the conductive properties. If there is no excluded volume asymmetry along the molecules, mostly lamellar phases with anisotropic conductivities emerge. If the excluded volume interactions become asymmetric, lamellar phases are replaced by interconnected phases consist of charged groups. Within temperature ranges that morphological phases are observed, conductivities exhibit low-temperature maxima in accord with experiments of ionic liquid-based liquid Center of Bio-inspried Energy Center (CBES).

  11. Experimental and theoretical study of carbohydrate-ionic liquid interactions.

    PubMed

    Hassan, El-Sayed R E; Mutelet, Fabrice; Bouroukba, Mohammed

    2015-08-20

    With increasing interest in the use of lignocellulosic biomass for the production of renewable transportation fuels, new approaches for biomass pretreatment have been of considerable interest. The conversion of biomass cellulose to water-soluble sugars is currently one of the most intensive demands worldwide. The use of ionic liquids has been described as a new potentially viable development in this area. Indeed, previous work indicates that carbohydrates are soluble in some imidazolium based ionic liquids. For a better understanding of the behavior of such systems, theoretical quantum chemical calculation have become complementarities of experimental measurements. The goal of this work is to investigate the fundamental natures of the interaction between glucose or cellulose and imidazolium based ionic liquids using ab initio calculations and comparing these results with experimental data. Furthermore, a characterization study was made to investigate the changes in the cellulose structure during the process of solubility and regeneration with ionic liquids. PMID:25965489

  12. Electropolymerization of polypyrrole by bipolar electrochemistry in an ionic liquid.

    PubMed

    Kong, Shuwei; Fontaine, Olivier; Roche, Jérôme; Bouffier, Laurent; Kuhn, Alexander; Zigah, Dodzi

    2014-03-25

    Bipolar electrochemistry has been recently explored for the modification of conducting micro- and nanoobjects with various surface layers. So far, it has been assumed that such processes should be carried out in low-conductivity electrolytes in order to be efficient. We report here the first bipolar electrochemistry experiment carried out in an ionic liquid, which by definition shows a relatively high conductivity. Pyrrole has been electropolymerized on a bipolar electrode, either in ionic liquid or in acetonitrile. The resulting polymer films were characterized by scanning electron microscopy and by contact profilometry. We demonstrate that the films obtained in an ionic liquid are thinner and smoother than the films synthesized in acetonitrile. Furthermore, a well-defined band of polypyrrole can be obtained in ionic liquid, in contrast to acetonitrile for which the polypyrrole film is present on the whole anodic part of the bipolar electrode. PMID:24605863

  13. DIRECT FORMATION OF TETRAHYDROPYRANOLS VIA CATALYSIS IN IONIC LIQUID

    EPA Science Inventory

    Utilizing a simple homoallyl alcohol and an aldehyde in the presence of a catalytic amount of cerium triflate, the direct formation of tetrahydropyranol derivatives in ionic liquid is reported.

  14. Electrochemical transistors with ionic liquids for enzymatic sensing.

    PubMed

    Yang, Sang Yoon; Cicoira, Fabio; Byrne, Robert; Benito-Lopez, Fernando; Diamond, Dermot; Owens, Róisín M; Malliaras, George G

    2010-11-14

    We report an enzymatic sensor based on an organic electrochemical transistor that uses a room temperature ionic liquid as an integral part of its structure and as an immobilization medium for the enzyme and the mediator. PMID:20871879

  15. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors

    PubMed Central

    Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth

    2015-01-01

    Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO2) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO2 sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review. PMID:26690155

  16. The radiation chemistry of ionic liquids: A review

    SciTech Connect

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquid radiation chemistry literature as it affects separations, with these considerations in mind.

  17. Robust and versatile ionic liquid microarrays achieved by microcontact printing

    NASA Astrophysics Data System (ADS)

    Gunawan, Christian A.; Ge, Mengchen; Zhao, Chuan

    2014-04-01

    Lab-on-a-chip and miniaturized systems have gained significant popularity motivated by marked differences in material performance at the micro-to-nano-scale realm. However, to fully exploit micro-to-nano-scale chemistry, solvent volatility and lack of reproducibility need to be overcome. Here, we combine the non-volatile and versatile nature of ionic liquids with microcontact printing in an attempt to establish a facile protocol for high throughput fabrication of open microreactors and microfluidics. The micropatterned ionic liquid droplets have been demonstrated as electrochemical cells and reactors for microfabrication of metals and charge transfer complexes, substrates for immobilization of proteins and as membrane-free high-performance amperometric gas sensor arrays. The results suggest that miniaturized ionic liquid systems can be used to solve the problems of solvent volatility and slow mass transport in viscous ionic liquids in lab-on-a-chip devices, thus providing a versatile platform for a diverse number of applications.

  18. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors.

    PubMed

    Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth

    2015-01-01

    Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO?) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO? sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review. PMID:26690155

  19. The magic of aqueous solutions of ionic liquids: ionic liquids as a powerful class of catanionic hydrotropes†

    PubMed Central

    Cláudio, Ana Filipa M.; Neves, Márcia C.; Shimizu, Karina; Canongia Lopes, José N.; Freire, Mara G.; Coutinho, João A. P.

    2015-01-01

    Hydrotropes are compounds able to enhance the solubility of hydrophobic substances in aqueous media and therefore are widely used in the formulation of drugs, cleaning and personal care products. In this work, it is shown that ionic liquids are a new class of powerful catanionic hydrotropes where both the cation and the anion synergistically contribute to increase the solubility of biomolecules in water. The effects of the ionic liquid chemical structures, their concentration and the temperature on the solubility of two model biomolecules, vanillin and gallic acid were evaluated and compared with the performance of conventional hydrotropes. The solubility of these two biomolecules was studied in the entire composition range, from pure water to pure ionic liquids, and an increase in the solubility of up to 40-fold was observed, confirming the potential of ionic liquids to act as hydrotropes. Using dynamic light scattering, NMR and molecular dynamics simulations, it was possible to infer that the enhanced solubility of the biomolecule in the IL aqueous solutions is related to the formation of ionic-liquid–biomolecules aggregates. Finally, it was demonstrated that hydrotropy induced by ionic liquids can be used to recover solutes from aqueous media by precipitation, simply by using water as an anti-solvent. The results reported here have a significant impact on the understanding of the role of ionic liquid aqueous solutions in the extraction of value-added compounds from biomass as well as in the design of novel processes for their recovery from aqueous media. PMID:26379471

  20. Membrane contactor assisted extraction/reaction process employing ionic liquids

    DOEpatents

    Lin, Yupo J.; Snyder, Seth W.

    2012-02-07

    The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.

  1. Magnetic field tunable capacitive dielectric:ionic-liquid sandwich composites

    NASA Astrophysics Data System (ADS)

    Wu, Ye; Bhalla, Amar; Guo, Ruyan

    2016-03-01

    We examined the tunability of the capacitance for GaFeO3-ionic liquid-GaFeO3 composite material by external magnetic and electric field. Up to 1.6 folds of capacitance tunability could be achieved at 957 kHz with voltage 4 V and magnetic field 0.02 T applied. We show that the capacitance enhancement is due to the polarization coupling between dielectric layer and ionic liquid layer.

  2. NMR spectroscopy to follow reaction progress in ionic liquids.

    PubMed

    Butler, Bradley J; Thomas, Donald S; Hook, James M; Harper, Jason B

    2016-06-01

    In order to understand reaction outcomes in ionic liquids, it is crucial to be able to follow the progress of these reactions. This review highlights the advantages of NMR spectroscopy over other analytical techniques in following reaction progress in ionic liquids, particularly addressing the practical aspects of the methodology and highlighting the range of processes that can be readily followed. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25287592

  3. Ionic liquid propellants: future fuels for space propulsion.

    PubMed

    Zhang, Qinghua; Shreeve, Jean'ne M

    2013-11-11

    Use of green propellants is a trend for future space propulsion. Hypergolic ionic liquid propellants, which are environmentally-benign while exhibiting energetic performances comparable to hydrazine, have shown great potential to meet the requirements of developing nontoxic high-performance propellant formulations for space propulsion applications. This Concept article presents a review of recent advances in the field of ionic liquid propellants. PMID:24136866

  4. Ionic liquids and electrochemistry: from proteins to electrochromic devices.

    SciTech Connect

    Keizer, T. S.; McCleskey, T. M.; Baker, G. A.; Burrell, A. K.; Baker, S. N.; Warner, B. P.; Hall, S. B.

    2004-01-01

    We will report on a wide range of activities within the chemistry division at Los Alamos National Laboratory. Results on basic and applied research involving electrochemistry will be discussed. Topics will include electrochemistry of proteins, sensors based on electrochemical signals, temperature sensors, electrochromic devices in ionic liquids and the characterization of organic cation radicals. We have recently developed several applications in ionic liquids that include electrochromic devices, temperature sensors and chemical sensors. The electrochromic windows are being marketed as selftinting automotive mirrors. The ionic liquid based temperature sensor is stable and accurate over a wide range and has the potential to provide high-resolution temperature imaging. Chemical sensors have been developed that use electrochemistry to detect low levels of potential chemical agents in air. We have also studied the basic chemistry of charge transfer complexes and proteins in ionic liquids. Charge transfer complexes display unique behavior in ionic liquid compare to traditional solvents. Proteins can be solubilized at high levels that make it possible to probe electrochemistry in the proper ionic liquid.

  5. Thallium Transfer from Hydrochloric Acid Media into Pure Ionic Liquids.

    PubMed

    Tereshatov, Evgeny E; Boltoeva, Maria Yu; Mazan, Valerie; Volia, Merinda F; Folden, Charles M

    2016-03-10

    Pure hydrophobic ionic liquids are known to extract metallic species from aqueous solutions. In this work we have systematically investigated thallium (Tl) extraction from aqueous hydrochloric acid (HCl) solutions into six pure fluorinated ionic liquids, namely imidazolium- and pyrrolidinium-based ionic liquids with bis(trifluoromethanesulfonyl)imide and bis(fluorosulfonyl)-imide anions. The dependence of the Tl extraction efficiency on the structure and composition of the ionic liquid ions, metal oxidation state, and initial metal and aqueous acid concentrations have been studied. Tl concentrations were on the order of picomolar (analyzed using radioactive tracers) and millimolar (analyzed using inductively coupled plasma mass spectrometry). The extraction of the cationic thallium species Tl(+) is higher for ionic liquids with more hydrophilic cations, while for the TlXz(3-z) anionic species (where X = Cl(-) and/or Br(-)), the extraction efficiency is greater for ionic liquids with more hydrophobic cations. The highest distribution value of Tl(III) was approximately 2000. An improved mathematical model based on ion exchange and ion pair formation mechanisms has been developed to describe the coextraction of two different anionic species, and the relative contributions of each mechanism have been determined. PMID:26769597

  6. Employing ionic liquids to deposit cellulose on PET fibers.

    PubMed

    Textor, Torsten; Derksen, Leonie; Gutmann, Jochen S

    2016-08-01

    Several ionic liquids are excellent solvents for cellulose. Starting from that finishing of PET fabrics with cellulose dissolved in ionic liquids like 1-ethyl-3-methyl imidazolium acetate, diethylphosphate and chloride, or the chloride of butyl-methyl imidazolium has been investigated. Finishing has been carried out from solutions of different concentrations, using microcrystalline cellulose or cotton and by employing different cross-linkers. Viscosity of solutions has been investigated for different ionic liquids, concentrations, cellulose sources, linkers and temperatures. Since ionic liquids exhibit no vapor pressure, simple pad-dry-cure processes are excluded. Before drying the ionic liquid has to be removed by a rinsing step. Accordingly rinsing with fresh ionic liquid followed by water or the direct rinsing with water have been tested. The amount of cellulose deposited has been investigated by gravimetry, zinc chloride iodine test as well as reactive dyeing. Results concerning wettability, water up-take, surface resistance, wear-resistance or washing stability are presented. PMID:27112860

  7. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Megan Lane

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene- b-2-vinyl pyridine) (PS-b-P2VP). In contrast to block copolymer/molecular solvent mixtures, the interfacial area occupied by each PS-b-P2VP chain decreases upon the addition of [Im][TFSI], indicating a considerable increase in the effective segregation strength of the PS-b-P2VP copolymer with ionic liquid addition. The relationship between membrane structure and ionic conductivity is illuminated through the development of scaling relationships that describe the ionic conductivity of block copolymer/ionic liquid mixtures as a function of membrane composition and temperature. It is shown that the dominant variable influencing conductivity is the overall volume fraction of ionic liquid in the mixture, which means there is incredible freedom in designing the block copolymer architecture in order to optimize the mechanical and other properties of the membrane without sacrificing conductivity. The derived scaling relationships are shown to be general for many block copolymer and ionic liquid chemistries. In certain cases, the mechanism of ion conduction in the ionic liquid is affected by block copolymer nanoconfinement. The introduction of excess neutral imidazole to [Im][TFSI] leads to enhanced proton conductivity as well as a high H+ transference number due to facilitated proton hopping between imidazole molecules. We show that there is increased proton hopping when the nonstoichiometric ionic liquid is confined to lamellar block copolymer nanodomains, which we hypothesize is due to changes in the hydrogen bond structure of the ionic liquid under confinement. This, in combination with unique ion aggregation behavior, leads to a lower activation energy for macroscopic ion transport compared to that in a corresponding homopolymer/ionic liquid mixture. Through this work, we further the understanding of the relationship between membrane composition, structure, and ion transport. The findings presented herein portend the rational design of nanostructured membranes having improved mechanical properties and conductivity.

  8. Ionic structure in liquids confined by dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Jing, Yufei; Jadhao, Vikram; Zwanikken, Jos W.; Olvera de la Cruz, Monica

    2015-11-01

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as in the design of double-layer supercapacitors for energy storage and in the extraction of metal ions from wastewater. In this article, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics simulations and liquid state theory. We explore the effects of high electrolyte concentrations, multivalent ions, dielectric contrasts, and external electric field on the ionic distributions. We observe the presence of non-monotonic ionic density profiles leading to a layered structure in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of the dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of the effective interaction between the two interfaces.

  9. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-04-01

    Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

  10. The radiation chemistry of ionic liquids: A review

    DOE PAGESBeta

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquidmore » radiation chemistry literature as it affects separations, with these considerations in mind.« less

  11. Nonlinear capacitance and electrochemical response of ionic liquid-ionic polymers

    NASA Astrophysics Data System (ADS)

    Davidson, Jacob D.; Goulbourne, N. C.

    2011-04-01

    In this paper we present a physics-based model for the electrochemical response of ionic liquid-ionic polymer transducers (IPTs) and show how the mobile ionic liquid ions influence the charging characteristics and actuation performance of a device. It is assumed that a certain fraction of the ionic liquid ions exist as "free," making for a total of 3 mobile ions. This leads to predictions of distinctly different charging characteristics for ionic liquid versus water-based IPTs, since for the latter there is only a single mobile ion. The large ionic liquid ions are modeled by including steric effects in a set of modified Nernst-Planck/Poisson equations, and the resulting system of equations is solved using the method of matched asymptotic expansions (MAE). The inclusion of steric effects allows for a realistic description of boundary layer composition near actuator operating voltages (~1 V). Analytical expressions for the charge transferred and differential capacitance are derived as a function of the fraction of free ionic liquid ions, influence of steric effects in formation of the electric double layer, and applied voltage. It is shown that the presence of free ionic liquid ions tends to increase the overall amount of charge transferred, and also leads to a nonmonotonic capacitance-voltage curve. We suggest that these results could be used to experimentally identify the extent of free ionic liquid ion movement and to test the validity of the assumptions made in the underlying theory. A comparison with numerical results shows that while the MAE solution procedure gives valid results for capacitance and charge transferred, it cannot predict the dynamic response due to the presence of multiple time scales in the current decay. This is in contrast to previous results in analyzing water-based IPTs, where the MAE solution is in good agreement with numerical results at all times and applied voltages due to the presence of only a single mobile ion. By examining the structure of the electric double layer in the ionic liquid IPT, it is shown that although the additional mobile ions lead to more charge transferred, they likely do not increase the bending moment generated by a cantilevered IPT because of the increase in symmetry in boundary layer charge density profiles. These results are in good qualitative agreement with recent experiments.

  12. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    DOEpatents

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  13. Mixed ionic liquids: the case of pyridinium-based fluids.

    PubMed

    Aparicio, Santiago; Atilhan, Mert

    2012-03-01

    We report in this work a combined experimental and computational study on the molecular level structuring of binary ionic liquid mixtures comprising pyridium cations. The effect of anions on liquid structure was analyzed from the mixing (mixture 1) of [b3mpy][BF(4)] and [b3mpy][N(CN)(2)] ionic liquids, in the full composition range, leading to [b3mpy][BF(4)](x)[N(CN)(2)](1-x) mixed ionic liquids. The effect of the length of alkylic chains in cations was studied with mixtures (mixture 2) of [b3mpy][BF(4)] and [o3mpy][BF(4)] ionic liquids, also studied in the full composition range, leading to [b3mpy](x)[o3mpy](1-x)[BF(4)] ionic liquids. Fourier transform infrared-attenuated total reflection spectra were recorded and analyzed as a function of anionic and cationic composition for the two studied mixture types. Classical molecular dynamics simulations were also performed for mixtures 1 and 2 as a function of anionic and cationic composition. The reported experimental and computational results show that the properties of the studied mixed systems change in an almost linear way, leading to almost ideal mixtures from the thermodynamic viewpoint, and thus pointing to simple dilution effects of the involved ions controlling the mixture properties. PMID:22309042

  14. Ionic Liquid Catalyzed Electrolyte for Electrochemical Polyaniline Supercapacitors

    NASA Astrophysics Data System (ADS)

    Inamdar, A. I.; Im, Hyunsik; Jung, Woong; Kim, Hyungsang; Kim, Byungchul; Yu, Kook-Hyun; Kim, Jin-Sang; Hwang, Sung-Min

    2013-05-01

    The effect of different wt.% of ionic liquid "1,6-bis (trimethylammonium-1-yl) hexane tetrafluoroborate" in 0.5 M LiClO4+PC electrolyte on the supercapacitor properties of polyaniline (PANI) thin film are investigated. The PANI film is synthesized using electropolymerization of aniline in the presence of sulfuric acid. The electrochemical properties of the PANI thin film are studied by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) measurements. The optimum amount of the ionic liquid is found to be 2 wt.% which provides better ionic conductivity of the electrolyte. The highest specific capacitance of 259 F/g is obtained using the 2 wt.% electrolyte. This capacitance remains at up to 208 F/g (80% capacity retention) after 1000 charge-discharge cycles at a current density of 0.5 mA/g. The PANI film in the 2 wt.% ionic liquid catalyzed 0.5 M LiClO4+PC electrolyte shows small electrochemical resistance, better rate performance and higher cyclability. The increased ionic conductivity of the 2 wt.% ionic liquid catalyzed electrolyte causes a reduction in resistance at the electrode/electrolyte interface, which can be useful in electrochemically-preferred power devices for better applicability.

  15. Excess dielectron in an ionic liquid as a dynamic bipolaron.

    PubMed

    Liu, Jinxiang; Wang, Zhiping; Zhang, Meng; Cukier, Robert I; Bu, Yuxiang

    2013-03-01

    We report an ab initio molecular dynamics simulation study on the accommodation of a dielectron in a pyridinium ionic liquid in both the singlet and triplet state. In contrast to water and liquid ammonia, a dielectron does not prefer to reside in cavity-shaped structures in the ionic liquid. Instead, it prefers to be distributed over more cations, with long-lived diffuse and short-lived localized distributions, and with a triplet ground state and a low-lying, open-shell singlet excited state. The two electrons evolve nonsynchronously in both states via a diffuse-versus-localized interconversion mechanism that features a dynamic bipolaron with a modest mobility, slightly lower than a hydrated electron. This work presents the first detailed study on the structures and dynamics of a dielectron in ionic liquids. PMID:23521297

  16. Molecular solutes in ionic liquids: a structural perspective.

    PubMed

    Pádua, Agílio A H; Costa Gomes, Margarida F; Canongia Lopes, José N A

    2007-11-01

    Understanding physicochemical properties of ionic liquids is important for their rational use in extractions, reactions, and other applications. Ionic liquids are not simple fluids: their ions are generally asymetric, flexible, with delocalized electrostatic charges, and available in a wide variety. It is difficult to capture their subtle properties with models that are too simplistic. Molecular simulation using atomistic force fields, which describe structures and interactions in detail, is an excellent tool to gain insights into their liquid-state organization, how they solvate different compounds, and what molecular factors determine their properties. The identification of certain ionic liquids as self-organized phases, with aggregated nonpolar and charged domains, provides a new way to interpret the solvation and structure of their mixtures. Many advances are the result of a successful interplay between experiment and modeling, possible in this field where none of the two methodologies had a previous advance. PMID:17661440

  17. Interaction of Ionic Liquids with a Lipid Bilayer: A Biophysical Study of Ionic Liquid Cytotoxicity.

    PubMed

    Jing, Benxin; Lan, Nan; Qiu, Jie; Zhu, Yingxi

    2016-03-17

    Ionic liquids (ILs) have been widely considered and used as "green solvents" for more than two decades. However, their ecotoxicity results have contradicted this view, as ILs, particularly hydrophobic ones, are reported to exhibit high toxicity. Yet the origin of their toxicology remains unclear. In this work, we have investigated the interaction of amphiphilic ILs with a lipid bilayer as a model cell membrane to understand their cytotoxicity at a molecular level. By employing fluorescence imaging and light and X-ray scattering techniques, we have found that amphiphilic ILs could disrupt the lipid bilayer by IL insertion, end-capping the hydrophobic edge of the lipid bilayer, and eventually disintegrating the lipid bilayer at high IL concentration. The insertion of ILs to cause the swelling of the lipid bilayer shows strong dependence on the hydrophobicity of IL cationic alky chain and anions and is strongly correlated with the reported IL cytotoxicity. PMID:26910537

  18. Physicochemical properties and toxicities of hydrophobicpiperidinium and pyrrolidinium ionic liquids

    SciTech Connect

    Salminen, Justin; Papaiconomou, Nicolas; Kumar, R. Anand; Lee,Jong-Min; Kerr, John; Newman, John; Prausnitz, John M.

    2007-06-25

    Some properties are reported for hydrophobic ionic liquids (IL) containing 1-methyl-1-propyl pyrrolidinium [MPPyrro]{sup +}, 1-methyl-1-butyl pyrrolidinium [MBPyrro]{sup +}, 1-methyl-1-propyl piperidinium [MPPip]{sup +}, 1-methyl-1-butyl piperidinium [MBPip]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPyrro]{sup +} and 1-methyl-1-octylpiperidinium [MOPip]{sup +} cations. These liquids provide new alternatives to pyridinium and imidazolium ILs. High thermal stability of an ionic liquid increases safety in applications like rechargeable lithium-ion batteries and other electrochemical devices. Thermal properties, ionic conductivities, viscosities, and mutual solubilities with water are reported. In addition, toxicities of selected ionic liquids have been measured using a human cancer cell-line. The ILs studied here are sparingly soluble in water but hygroscopic. We show some structure-property relationships that may help to design green solvents for specific applications. While ionic liquids are claimed to be environmentally-benign solvents, as yet few data have been published to support these claims.

  19. Unimolecular Solvolyses in Ionic Liquid: Alcohol Dual Solvent Systems.

    PubMed

    Kochly, Elizabeth D; Lemon, Nicole Jean; Deh-Lee, Anne Marie

    2016-01-01

    A study was undertaken of the solvolysis of pivaloyl triflate in a variety of ionic liquid:alcohol solvent mixtures. The solvolysis is a kΔ process (i.e., a process in which ionization occurs with rearrangement), and the resulting rearranged carbocation intermediate reacts with the alcohol cosolvent via two competing pathways: nucleophilic attack or elimination of a proton. Five different ionic liquids and three different alcohol cosolvents were investigated to give a total of fifteen dual solvent systems. ¹H-NMR analysis was used to determine relative amounts of elimination and substitution products. It was found, not surprisingly, that increasing the bulkiness of alcohol cosolvent led to increased elimination product. The change in the amount of elimination product with increasing ionic liquid concentration, however, varied greatly between ionic liquids. These differences correlate strongly, though not completely, to the Kamlet-Taft solvatochromic parameters of the hydrogen bond donating and accepting ability of the solvent systems. An additional factor playing into these differences is the bulkiness of the ionic liquid anion. PMID:26751434

  20. Recyclability of an ionic liquid for biomass pretreatment.

    PubMed

    Weerachanchai, Piyarat; Lee, Jong-Min

    2014-10-01

    This study investigated the possibility of reusing an ionic liquid for the pretreatment of biomass. The effects of lignin and water content in a pretreatment solvent on pretreatment products were examined, along with the recyclability of an ionic liquid for pretreatment. It was discovered that the presence of lignin and water within a pretreatment solvent resulted in a far less effective pretreatment process. 1-Ethyl-3-methylimidazolium acetate/ethanolamine (60/40 vol%) presents more promising properties than EMIM-AC, providing a small decrease in sugar conversion and also a small increase of lignin deposition with an increasing lignin amount in the pretreatment solvent. Deteriorations of the ionic liquid were observed from considerably low sugar conversions and lignin extraction after using the 5th and 7th batch, respectively. Furthermore, the changes of ionic liquid properties and lignin accumulation in ionic liquid were determined by analyzing their thermal decomposition behavior (TGA) and chemical functional groups (FTIR and (1)H NMR). PMID:25063976

  1. Task-specific ionic liquid for solubilizing metal oxides.

    PubMed

    Nockemann, Peter; Thijs, Ben; Pittois, Stijn; Thoen, Jan; Glorieux, Christ; Van Hecke, Kristof; Van Meervelt, Luc; Kirchner, Barbara; Binnemans, Koen

    2006-10-26

    Protonated betaine bis(trifluoromethylsulfonyl)imide is an ionic liquid with the ability to dissolve large quantities of metal oxides. This metal-solubilizing power is selective. Soluble are oxides of the trivalent rare earths, uranium(VI) oxide, zinc(II) oxide, cadmium(II) oxide, mercury(II) oxide, nickel(II) oxide, copper(II) oxide, palladium(II) oxide, lead(II) oxide, manganese(II) oxide, and silver(I) oxide. Insoluble or very poorly soluble are iron(III), manganese(IV), and cobalt oxides, as well as aluminum oxide and silicon dioxide. The metals can be stripped from the ionic liquid by treatment of the ionic liquid with an acidic aqueous solution. After transfer of the metal ions to the aqueous phase, the ionic liquid can be recycled for reuse. Betainium bis(trifluoromethylsulfonyl)imide forms one phase with water at high temperatures, whereas phase separation occurs below 55.5 degrees C (temperature switch behavior). The mixtures of the ionic liquid with water also show a pH-dependent phase behavior: two phases occur at low pH, whereas one phase is present under neutral or alkaline conditions. The structures, the energetics, and the charge distribution of the betaine cation and the bis(trifluoromethylsulfonyl)imide anion, as well as the cation-anion pairs, were studied by density functional theory calculations. PMID:17048916

  2. Ionic conductivity of imidazole-functionalized liquid crystal mesogens

    NASA Astrophysics Data System (ADS)

    Roddecha, Supacharee; Anthamatten, Mitchell

    2012-02-01

    Imidazole has been investigated as a novel anhydrous proton conducting functional group that could enable higher temperature operation (> 120 ^oC) of polymer electrolyte fuel cells. Its amphoteric behavior can support Grotthuss-like proton transport; however molecular mobility and a high concentration of imidazole groups are needed to achieve high ionic conductivity. Our hypothesis is that liquid crystal ordering, particularly in layered smectic phase, can facilitate formation of 2D proton transport and promote proton conductivity. We have designed and synthesized two imidazole-terminated liquid crystal mesogens, and the ionic conductivities in the liquid crystalline and isotropic states have been measured. Here we report on synthesis and characterization of diacylhydrazine liquid crystals bearing imidazole terminal groups. The proton conductivity of products is compared to pure liquid imidazole and to liquid crystal mesogens without imidazole groups.

  3. Trace element partitioning between ionic crystal and liquid

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Philpotts, J. A.; Yin, L.

    1978-01-01

    The partitioning of trace elements between ionic crystals and the melt has been correlated with lattice energy of the host. The solid-liquid partition coefficient has been expressed in terms of the difference in relative ionic radius of the trace element and the homogeneous and heterogeneous strain of the host lattice. Predictions based on this model appear to be in general agreement with data for alkali nitrates and for rare-earth elements in natural garnet phenocrysts.

  4. Thermophysical properties of phosphonium-based ionic liquids

    PubMed Central

    Bhattacharjee, Arijit; Lopes-da-Silva, José A.; Freire, Mara G.; Coutinho, João A. P.; Carvalho, Pedro J.

    2015-01-01

    Experimental data for density, viscosity, refractive index and surface tension of four phosphonium-based ionic liquids were measured in the temperature range between (288.15 and 353.15) K and at atmospheric pressure. The ionic liquids considered include tri(isobutyl) methylphosphonium tosylate, [Pi(444)1][Tos], tri(butyl)methylphosphonium methylsulfate, [P4441][CH3SO4], tri(butyl)ethylphosphonium diethylphosphate, [P4442][(C2H5O)2PO2], and tetraoctylphosphonium bromide, [P8888][Br]. Additionally, derivative properties, such as the isobaric thermal expansion coefficient, the surface thermodynamic properties and the critical temperatures for the investigated ionic liquids were also estimated and are presented and discussed. Group contribution methods were evaluated and fitted to the density, viscosity and refractive index experimental data. PMID:26435574

  5. Methods for separating medical isotopes using ionic liquids

    SciTech Connect

    Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

    2014-10-21

    A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

  6. Electrochemical behavior of ferrocene in ionic liquid media.

    PubMed

    Nagy, Lívia; Gyetvai, Gergely; Kollár, László; Nagy, Géza

    2006-11-30

    Chemistry and applicability of ionic liquids (IL), - organic salts with low melting point - are in the focus of interest today. The ILs with melting point below room temperature are expected to be good solvents. Their applicability in organic synthetic work, in separation processes as well as in electrochemistry is very promising. In the work reported here the voltammetric behavior of ferrocene in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM+ PF6-) ionic liquid has been investigated. Conventional size and micro platinum and carbon electrodes were employed in CV and in chronoamperometric measurements. Karl Fischer method was used for the determination of water content of the solvent. Voltammetric measurements without addition of background electrolyte could be carried out in (BMIM+ PF6-) ionic liquid. A broad potential window could be used. Concentration dependence of the electrochemically determined diffusion coefficient of the ferrocene was observed. PMID:16650899

  7. Evaluation of cation-anion interaction strength in ionic liquids.

    PubMed

    Fernandes, Ana M; Rocha, Marisa A A; Freire, Mara G; Marrucho, Isabel M; Coutinho, João A P; Santos, Luís M N B F

    2011-04-14

    Electrospray ionization mass spectrometry with variable collision induced dissociation of the isolated [(cation)(2)anion](+) and/or [(anion)(2)cation](-) ions of imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ionic liquids (ILs) combined with a large set of anions, such as chloride, tetrafluoroborate, hexafluorophosphate, trifluoromethanesulfonate, and bis[(trifluoromethyl)sulfonyl]imide, was used to carry out a systematic and comprehensive study on the ionic liquids relative interaction energies. The results are interpreted in terms of main influences derived from the structural characteristics of both anion and cation. On the basis of quantum chemical calculations, the effect of the anion upon the dissociation energies of the ionic liquid pair, and isolated [(cation)(2)anion](+) and/or [(anion)(2)cation](-) aggregates, were estimated and are in good agreement with the experimental data. Both experimental and computational results indicate an energetic differentiation between the cation and the anion to the ionic pair. Moreover, it was found that the quantum chemical calculations can describe the trend obtained for the electrostatic cation-anion attraction potential. The impact of the cation-anion interaction strengths in the surface tension of ionic liquids is further discussed. The surface tensions dependence on the cation alkyl chain length, and on the anion nature, follows an analogous pattern to that of the relative cation-anion interaction energies determined by mass spectrometry. PMID:21425809

  8. Energy Efficient Electrochromic Windows Incorporating Ionic Liquids

    SciTech Connect

    Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

    2008-11-30

    One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to recover to a bleached state upon exposure to heat and solar radiation while being cycled over time from the bleached to the dark state. Most likely the polymers are undergoing degradation reactions which are accelerated by heat and solar exposure while in either the reduced or oxidized states and the performance of the polymers is greatly reduced over time. For this technology to succeed in an exterior window application, there needs to be more work done to understand the degradation of the polymers under real-life application conditions such as elevated temperatures and solar exposure so that recommendations for improvements in to the overall system can be made. This will be the key to utilizing this type of technology in any future real-life applications.

  9. Hydrolysis and Partial Recycling of a Chloroaluminate Ionic Liquid

    PubMed Central

    Fang, Ming-Hong; Wang, Li-Sheng

    2007-01-01

    Hydrolysis of the ionic liquid Et3NHCl-2AlCl3 and a process for recycling the triethylamine were studied. When the hydrolysis was carried out at a relatively high temperature, the released HCl could be absorbed more easily. With addition of sodium hydroxide to the aqueous hydrolysis solution, a feasible process for recycling triethylamine was developed, involving first distillation of triethylamine, followed by filtration of the aluminium hydroxide. The yield of recovered triethylamine was about 95%. The triethylhydrogenammonium chloride prepared from the recycled triethylamine was of good purity and could be reused to synthesize new chloroaluminate ionic liquids.

  10. Capturing CO2: conventional versus ionic-liquid based technologies

    NASA Astrophysics Data System (ADS)

    Privalova, E. I.; Mäki-Arvela, P.; Murzin, Dmitry Yu; Mikkhola, J. P.

    2012-05-01

    Since CO2 facilitates pipeline corrosion and contributes to a decrease of the calorific value of gaseous fuels, its removal has become an issue of significant economic importance. The present review discusses various types of traditional CO2 capture technologies in terms of their efficiency, complexity in system design, costs and environmental impact. The focus is hereby not only on conventional approaches but also on emerging "green" solvents such as ionic liquids. The suitability of different ionic liquids as gas separation solvents is discussed in the present review and a description on their synthesis and properties in terms of CO2 capture is provided. The bibliography includes 136 references.

  11. Tuning the ionic conductivity in protic polymerized ionic liquid homo, random, and block copolymers

    NASA Astrophysics Data System (ADS)

    Evans, Christopher; Segalman, Rachel; UCSB Team

    2015-03-01

    Proton conducting membranes are of interest for a number of energy applications including use in fuel cells and artificial photosynthesis systems. We have synthesized a new class of protic polymerized ionic liquids (PILs) based on imidazolium cations which exhibit high conductivities in the solid state. In contrast to previous imidazolium based PILs, the ionic liquid moiety is attached via a carbon on the imidazole thus leaving the two nitrogens available to act as a proton donor/acceptor. The conductivies of these protic PILs, measured by dielectric spectroscopy, are orders of magnitude higher than the analogous non-protic PILs at a given distance above (Tg). These high conductivities are the result of a strong contribution from proton motion. A series of random and block copolymers containing the polymerized ionic liquid monomer and a non-ionic comonomer were also investigated to determine the role of comonomer on the conductivity of these materials. It was found that methyl acrylate, which has a low glass transition temperature and high dielectric constant, can result in improvements of ionic conductivity. Studies using solid state NMR are underway to understand the role of protons and mobile anions in controlling the overall conductivity of these materials.

  12. Charge Transport and Glassy Dynamics in Ionic Liquids

    SciTech Connect

    Sangoro, Joshua R; Kremer, Friedrich

    2012-01-01

    Ionic liquids (ILs) exhibit unique features such as low melting points, low vapor pressures, wide liquidus temperature ranges, high thermal stability, high ionic conductivity, and wide electrochemical windows. As a result, they show promise for use in variety of applications: as reaction media, in batteries and supercapacitors, in solar and fuel cells, for electrochemical deposition of metals and semiconductors, for protein extraction and crystallization, and many others. Because of the ease with which they can be supercooled, ionic liquids offer new opportunities to investigate long-standing questions regarding the nature of the dynamic glass transition and its possible link to charge transport. Despite the significant steps achieved from experimental and theoretical studies, no generally accepted quantitative theory of dynamic glass transition to date has been capable of reproducing all the experimentally observed features. In this Account, we discuss recent studies of the interplay between charge transport and glassy dynamics in ionic liquids as investigated by a combination of several experimental techniques including broadband dielectric spectroscopy, pulsed field gradient nuclear magnetic resonance, dynamic mechanical spectroscopy, and differential scanning calorimetry. Based on EinsteinSmoluchowski relations, we use dielectric spectra of ionic liquids to determine diffusion coefficients in quantitative agreement with independent pulsed field gradient nuclear magnetic resonance measurements, but spanning a broader range of more than 10 orders of magnitude. This approach provides a novel opportunity to determine the electrical mobility and effective number density of charge carriers as well as their types of thermal activation from the measured dc conductivity separately. We also unravel the origin of the remarkable universality of charge transport in different classes of glass-forming ionic liquids.

  13. Picosecond time-resolved fluorescence study on solute-solvent interaction of 2-aminoquinoline in room-temperature ionic liquids: aromaticity of imidazolium-based ionic liquids.

    PubMed

    Iwata, Koichi; Kakita, Minoru; Hamaguchi, Hiro-o

    2007-05-10

    Time-resolved fluorescence spectra and fluorescence anisotropy decay of 2-aminoquinoline (2AQ) have been measured in eight room-temperature ionic liquids, including five imidazolium-based aromatic ionic liquids and three nonaromatic ionic liquids. The same experiments have also been carried out in several ordinary molecular liquids for comparison. The observed time-resolved fluorescence spectra indicate the formation of pi-pi aromatic complexes of 2AQ in some of the aromatic ionic liquids but not in the nonaromatic ionic liquids. The fluorescence anisotropy decay data show unusually slow rotational diffusion of 2AQ in the aromatic ionic liquids, suggesting the formation of solute-solvent complexes. The probe 2AQ molecule is likely to be incorporated in the possible local structure of ionic liquids, and hence the anisotropy decays only through the rotation of the whole local structure, making the apparent rotational diffusion of 2AQ slow. The rotational diffusion time decreases rapidly by adding a small amount of acetonitrile to the solution. This observation is interpreted in terms of the local structure formation in the aromatic ionic liquids and its destruction by acetonitrile. No unusual behavior upon addition of acetonitrile has been found for the nonaromatic ionic liquids. It is argued that the aromaticity of the imidazolium cation plays a key role in the local structure formation in imidazolium-based ionic liquids. PMID:17428083

  14. Fabrication of fiber supported ionic liquids and methods of use

    SciTech Connect

    Luebke, David R; Wickramanayake, Shan

    2013-02-26

    One or more embodiments relates to the production of a fabricated fiber having an asymmetric polymer network and having an immobilized liquid such as an ionic liquid within the pores of the polymer network. The process produces the fabricated fiber in a dry-wet spinning process using a homogenous dope solution, providing significant advantage over current fabrication methods for liquid-supporting polymers. The fabricated fibers may be effectively utilized for the separation of a chemical species from a mixture based on the selection of the polymer, the liquid, and the solvent utilized in the dope.

  15. Liquid-Mercury-Supported Langmuir Films of Ionic Liquids: Isotherms, Structure, and Time Evolution.

    PubMed

    Elfassy, Eitan; Mastai, Yitzhak; Pontoni, Diego; Deutsch, Moshe

    2016-04-01

    Ionic liquids have been intensively developed for the last few decades and are now used in a wide range of applications, from electrochemistry to catalysis and nanotechnology. Many of these applications involve ionic liquid interfaces with other liquids and solids, the subnanometric experimental study of which is highly demanding, and has been little studied to date. We present here a study of mercury-supported Langmuir films of imidazolium-based ionic liquids by surface tensiometry and X-ray reflectivity. The charge-delocalized ionic liquids studied here exhibit no 2D lateral order but show diffuse surface-normal electron density profiles exhibiting gradual mercury penetration into the ionic liquid film, and surface-normal structure evolution over a period of hours. The effect of increasing the nonpolar alkyl chain length was also investigated. The results obtained provide insights into the interactions between these ionic liquids and liquid mercury and about the time evolution of the structure and composition of their interface. PMID:26963651

  16. Ionic liquids as potential carriers of low viscosity magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Guerrero-Sanchez, Carlos; Ortiz-Alvarado, Armando; Schubert, Ulrich S.

    2009-03-01

    Based on the latest investigations on the formulation of new magneto-rheological fluids, it is envisioned that the use of ionic liquids as carriers of magneto-rheological fluids will open new possibilities of applications for these smart fluids due to the fact that their physical and chemical properties can be fine-tuned in a broad range. This contribution addresses one potentially important advantage of magneto-rheological fluids which use ionic liquids as novel carriers. In connection with this, magneto-rheological fluids with a low viscosity in the off-state without compromising other properties of the formulations (e. g., sedimentation of the dispersed magnetic particles, liquid state of the carriers in a broad range of temperatures) are often required for specific applications. In this regard, ionic liquids of low viscosity can be very useful in the development of such magneto-rheological fluids. Thus, this contribution reports on the magnetorheological properties of iron(II, III) oxide particles dispersed in the ionic liquid 1-ethyl-3-methylimidazolium thiocyanate (a low viscosity ionic liquid) in the temperature range from 20 °C to 80 °C. The experimental results have revealed that the apparent viscosity of the dispersion slightly changes with the temperature when a constant magnetic field is applied and its value mainly depends on the shear rate and the strength of the magnetic field. The viscosity of the dispersion remains practically unmodified with both the temperature and the magnetic field intensity as the magnetic saturation of the material is reached; in this regime the viscosity will only depend on the applied shear rate. In contrast, the yield stress values of the dispersion as well as the corresponding shear stress vs. shear rate curves have shown an inverse behavior with temperature for a constant magnetic field.

  17. Benzene solubility in ionic liquids: working toward an understanding of liquid clathrate formation.

    PubMed

    Pereira, Jorge F B; Flores, Luis A; Wang, Hui; Rogers, Robin D

    2014-11-17

    The solubility of benzene in 15 imidazolium, pyrrolidinium, pyridinium, and piperidinium ionic liquids has been determined; the resulting, benzene-saturated ionic liquid solutions, also known as liquid clathrates, were examined with (1) H and (19) F nuclear magnetic resonance spectroscopy to try and understand the molecular interactions that control liquid clathrate formation. The results suggest that benzene interacts primarily with the cation of the ionic liquid, and that liquid clathrate formation (and benzene solubility) is controlled by the strength of the cation-anion interactions, that is, the stronger the cation-anion interaction, the lower the benzene solubility. Other factors that were determined to be important in the final amount of benzene in any given liquid clathrate phase included attractive interactions between the anion and benzene (when significant), and larger steric or free volume demands of the ions, both of which lead to greater benzene solubility. PMID:25297708

  18. Preparation of C9-aldehyde via aldol condensation reactions in ionic liquid media.

    PubMed

    Mehnert, Christian P; Dispenziere, Nicholas C; Cook, Raymond A

    2002-08-01

    C9-aldehyde has been prepared via aldol condensation reactions in ionic liquid media; catalyst investigation showed enhanced product selectivity for the desired aldehyde in ionic liquid media than in conventional solvent systems. PMID:12170806

  19. Supported ionic liquid catalysis--a new concept for homogeneous hydroformylation catalysis.

    PubMed

    Mehnert, Christian P; Cook, Raymond A; Dispenziere, Nicholas C; Afeworki, Mobae

    2002-11-01

    The new concept of supported ionic liquid catalysis involves the surface of a support material that is modified with a monolayer of covalently attached ionic liquid fragments. Treatment of this surface with additional ionic liquid results in the formation of a multiple layer of free ionic liquid on the support. These layers serve as the reaction phase in which a homogeneous hydroformylation catalyst was dissolved. Supported ionic liquid catalysis combines the advantages of ionic liquid media with solid support materials which enables the application of fixed-bed technology and the usage of significantly reduced amounts of the ionic liquid. The concept of supported ionic liquid catalysis has successfully been used for hydroformylation reactions and can be further expanded into other areas of catalysis. PMID:12405804

  20. Sulfonium-based Ionic Liquids Incorporating the Allyl Functionality

    PubMed Central

    Zhao, Dongbin; Fei, Zhaofu; Ang, Wee Han; Dyson, Paul J.

    2007-01-01

    A series of sulfonium halides bearing allyl groups have been prepared and characterized. Anion metathesis with Li[Tf2N] and Ag[N(CN)2] resulted in sulfonium-based ionic liquids which exhibit low viscosities at room temperature. The solid state structure of one of the halide salts was determined by single crystal X-ray diffraction.

  1. Highly ion-conducting poly(ionic liquid) layers.

    PubMed

    Wood, Thomas J; Schofield, Wayne C E; Lund, Peter; Larsen, Mikkel J; Badyal, Jas Pal S

    2012-10-21

    Highly ion-conducting poly(ionic liquid) thin films have been prepared in the absence of solvents utilizing a simple 2-step approach comprising pulsed plasmachemical deposition of 1-allylimidazole followed by vapour-phase quaternization with 1-bromobutane. PMID:22962661

  2. EXPEDITIOUS SOLVENT-FREE PREPARATION OF IONIC LIQUIDS USING MICROWAVES

    EPA Science Inventory

    Ambient temperature ionic liquids comprising 1,3-dialkylimidazolium cations have shown great promise as alternative solvents in view of their negligible vapor pressure, ease of handling and potential for recycling. An efficient solventless protocol for the preparation of a wide v...

  3. Mixing Enthalpy for Binary Mixtures Containing Ionic Liquids.

    PubMed

    Podgoršek, A; Jacquemin, J; Pádua, A A H; Costa Gomes, M F

    2016-05-25

    A complete review of the published data on the mixing enthalpies of mixtures containing ionic liquids, measured directly using calorimetric techniques, is presented in this paper. The field of ionic liquids is very active and a number of research groups in the world are dealing with different applications of these fluids in the fields of chemistry, chemical engineering, energy, gas storage and separation or materials science. In all these fields, the knowledge of the energetics of mixing is capital both to understand the interactions between these fluids and the different substrates and also to establish the energy and environmental cost of possible applications. Due to the relative novelty of the field, the published data is sometimes controversial and recent reviews are fragmentary and do not represent a set of reliable data. This fact can be attributed to different reasons: (i) difficulties in controlling the purity and stability of the ionic liquid samples; (ii) availability of accurate experimental techniques, appropriate for the measurement of viscous, charged, complex fluids; and (iii) choice of an appropriate clear thermodynamic formalism to be used by an interdisciplinary scientific community. In this paper, we address all these points and propose a critical review of the published data, advise on the most appropriate apparatus and experimental procedure to measure this type of physical-chemical data in ionic liquids as well as the way to treat the information obtained by an appropriate thermodynamic formalism. PMID:27144455

  4. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating

    NASA Astrophysics Data System (ADS)

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-02-01

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

  5. Lunar Oxygen Production and Metals Extraction Using Ionic Liquids

    NASA Technical Reports Server (NTRS)

    Marone, Matthew; Paley, Mark Steven; Donovan, David N.; Karr, Laurel J.

    2009-01-01

    Initial results indicate that ionic liquids are promising media for the extraction of oxygen from lunar regolith. IL acid systems can solubilize regolith and produce water with high efficiency. IL electrolytes are effective for water electrolysis, and the spent IL acid media are capable of regeneration.

  6. Unexpected Preferential Dehydration of Artemisinin in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Sanders, Marc W.; Wright, Lawrence; Tate, Lauren; Fairless, Gayle; Crowhurst, Lorna; Bruce, Neil C.; Walker, Adam J.; Hembury, Guy A.; Shimizu, Seishi

    2009-09-01

    Thermodynamic measurements (at 298 K) reveal that a crucial step in the extraction process of the key antimalarial drug artemisinin by ionic liquids (ILs), namely, precipitation through the addition of water, is driven by artemisinin dehydration due to the differences in the water's interaction with the bulk ILs, rather than with the artemisinin itself.

  7. Ionic liquid-facilitated preparation of lignocellulosic composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulosic composites (LCs) were prepared by partially dissolving cotton along with steam exploded Aspen wood and burlap fabric reinforcements utilizing an ionic liquid (IL) solvent. Two methods of preparation were employed. In the first method, a controlled amount of IL was added to preassembl...

  8. EVALUATING THE GREENNESS OF IONIC LIQUIDS VIA LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    Ionic Liquids have been suggested as "greener" replacements to traditional solvents. However, the environmental impacts of the life cycle phases have not been studied. Such a "cradle to gate" Life Cycle Assessment (LCA) for comparing the environmental impact of various solvents...

  9. Room-Temperature Ionic Liquids for Electrochemical Capacitors

    NASA Technical Reports Server (NTRS)

    Fireman, Heather; Yowell, Leonard; Moloney, Padraig G.; Arepalli, Sivaram; Nikolaev, P.; Huffman, C.; Ready, Jud; Higgins, C.D.; Turano, S. P.; Kohl, P.A.; Kim, K.

    2009-01-01

    A document discusses room-temperature ionic liquids (RTILs) used as electrolytes in carbon-nanotube-based, electrochemical, double-layer capacitors. Unlike the previous electrolyte (EtNB4 in acetonitrile), the RTIL used here does not produce cyanide upon thermal decomposition and does not have a moisture sensitivity.

  10. SOLVENT-FREE SONOCHEMICAL PREPARATION OF IONIC LIQUIDS

    EPA Science Inventory

    An ultrasound-assisted preparation of a series of ambient temperature ionic liquids, 1-alkyl-3-methylimidazolium (AMIM) halides, that proceeds via efficient reaction of 1-methyl imidazole with alkyl halides/terminal dihalides under solvent-free conditions, is described.

  11. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating

    PubMed Central

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-01-01

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (−1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices. PMID:26852799

  12. High performance batteries with carbon nanomaterials and ionic liquids

    DOEpatents

    Lu, Wen

    2012-08-07

    The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

  13. IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE

    EPA Science Inventory

    A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...

  14. High performance ultracapacitors with carbon nanomaterials and ionic liquids

    SciTech Connect

    Lu, Wen; Henry, Kent Douglas

    2012-10-09

    The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

  15. Inhibited fragmentation of mAbs in buffered ionic liquids.

    PubMed

    Mazid, Romiza R; Vijayaraghavan, R; MacFarlane, Douglas R; Cortez-Jugo, Christina; Cheng, Wenlong

    2015-05-11

    We thoroughly investigated the biological, structural and chemical stability of epidermal growth factor receptor monoclonal antibody (EGFR mAb) using choline-based buffered ionic liquids (BILs). The results demonstrated substantially enhanced stabilities in our BILs, indicating their huge promise as real-world green biological buffers for antibody storage and transportation. PMID:25869239

  16. Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids.

    PubMed

    Potdar, Mahesh K; Kelso, Geoffrey F; Schwarz, Lachlan; Zhang, Chunfang; Hearn, Milton T W

    2015-01-01

    Over the past decade, a variety of ionic liquids have emerged as greener solvents for use in the chemical manufacturing industries. Their unique properties have attracted the interest of chemists worldwide to employ them as replacement for conventional solvents in a diverse range of chemical transformations including biotransformations. Biocatalysts are often regarded as green catalysts compared to conventional chemical catalysts in organic synthesis owing to their properties of low toxicity, biodegradability, excellent selectivity and good catalytic performance under mild reaction conditions. Similarly, a selected number of specific ionic liquids can be considered as greener solvents superior to organic solvents owing to their negligible vapor pressure, low flammability, low toxicity and ability to dissolve a wide range of organic and biological substances, including proteins. A combination of biocatalysts and ionic liquids thus appears to be a logical and promising opportunity for industrial use as an alternative to conventional organic chemistry processes employing organic solvents. This article provides an overview of recent developments in this field with special emphasis on the application of more sustainable enzyme-catalyzed reactions and separation processes employing ionic liquids, driven by advances in fundamental knowledge, process optimization and industrial deployment. PMID:26389873

  17. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    DOEpatents

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  18. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.

    PubMed

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-01-01

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices. PMID:26852799

  19. Robust and versatile ionic liquid microarrays achieved by microcontact printing.

    PubMed

    Gunawan, Christian A; Ge, Mengchen; Zhao, Chuan

    2014-01-01

    Lab-on-a-chip and miniaturized systems have gained significant popularity motivated by marked differences in material performance at the micro-to-nano-scale realm. However, to fully exploit micro-to-nano-scale chemistry, solvent volatility and lack of reproducibility need to be overcome. Here, we combine the non-volatile and versatile nature of ionic liquids with microcontact printing in an attempt to establish a facile protocol for high throughput fabrication of open microreactors and microfluidics. The micropatterned ionic liquid droplets have been demonstrated as electrochemical cells and reactors for microfabrication of metals and charge transfer complexes, substrates for immobilization of proteins and as membrane-free high-performance amperometric gas sensor arrays. The results suggest that miniaturized ionic liquid systems can be used to solve the problems of solvent volatility and slow mass transport in viscous ionic liquids in lab-on-a-chip devices, thus providing a versatile platform for a diverse number of applications. PMID:24781644

  20. Effect of Electric Field Alignment on Morphology and Ionic Conductivity of Polymerized Ionic Liquid Block Copolymers

    NASA Astrophysics Data System (ADS)

    Sharick, Sharon; Nykaza, Jacob; Elabd, Yossef A.; Winey, Karen I.

    2014-03-01

    Polymerized ionic liquid (PIL) block copolymers are appealing for numerous electrochemical applications, including solid polymer electrolyte membranes for batteries and anion exchange membranes for fuel cells. The extent to which the reduced segmental motion caused by the non-conducting polymer segments and grain boundaries between block copolymer microdomains are detrimental to ionic conductivity is unknown. Increased long-range morphological order and connectivity of PIL microdomains are key to understanding the ion transport mechanism and may improve the ionic conductivity of PIL block copolymers. The effect of electric field on the morphology and ionic conductivity of poly(styrene- b-1-[2-(methacryloyloxy)ethyl]-3-butylimidazolium-bis(trifluoromethanesulfonyl)imide)) (PS- b-PMEBIm-TFSI) will be discussed as a function of microdomain orientation. Electric field is used to increase the perpendicular orientation of ion-conducting pathways with respect to the electrodes. The morphology and ionic conductivity were characterized by small-angle X-ray scattering and electrochemical impedance spectroscopy, respectively. The ionic conductivity of unoriented and oriented block copolymers will be compared to the PIL homopolymer, PMEBIm-TFSI, using the Sax and Ottino model.

  1. Thermoelectric Potential of Polymer-Scaffolded Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Datta, R. S.; Said, S. M.; Sahamir, S. R.; Karim, M. R.; Sabri, M. F. M.; Nakajo, T.; Kubouchi, M.; Hayashi, K.; Miyazaki, Y.

    2014-06-01

    Organic thin films have been viewed as potential thermoelectric (TE) materials, given their ease of fabrication, flexibility, cost effectiveness, and low thermal conductivity. However, their intrinsically low electrical conductivity is a main drawback which results in a relatively lower TE figure of merit for polymer-based TE materials than for inorganic materials. In this paper, a technique to enhance the ion transport properties of polymers through the introduction of ionic liquids is presented. The polymer is in the form of a nanofiber scaffold produced using the electrospinning technique. These fibers were then soaked in different ionic liquids based on substituted imidazolium such as 1-ethyl-3-methylimidazolium chloride or 1-butyl-3-methylimidazolium bromide. This method was applied to electrospun polyacrylonitrile and a mixture of polyvinyl alcohol and chitosan polymers. The ion transport properties of the membranes have been observed to increase with increasing concentration of ionic liquid, with maximum electrical conductivity of 1.20 × 10-1 S/cm measured at room temperature. Interestingly, the maximum electrical conductivity value surpassed the value of pure ionic liquids. These results indicate that it is possible to significantly improve the electrical conductivity of a polymer membrane through a simple and cost-effective method. This may in turn boost the TE figures of merit of polymer materials, which are well known to be considerably lower than those of inorganic materials. Results in terms of the Seebeck coefficient of the membranes are also presented in this paper to provide an overall representation of the TE potential of the polymer-scaffolded ionic liquid membranes.

  2. Reaction kinetics of CO2 absorption in to phosphonium based anion-functionalized ionic liquids.

    PubMed

    Gurkan, Burcu E; Gohndrone, Thomas R; McCready, Mark J; Brennecke, Joan F

    2013-05-28

    The reaction kinetics between CO2 and trihexyl(tetradecyl)phosphonium ([P66614])-based ionic liquids (ILs) with prolinate ([Pro]), 2-cyanopyrrolide ([2-CNpyr]), and 3-(trifluoromethyl)pyrazolide ([3-CF3pyra]) anions are studied at temperatures from 22-60 °C. The absorption of CO2 is carried out in a stirred reactor under pseudo first order conditions. ILs are diluted to concentrations of 0.05, 0.1 and 0.15 M with tetraglyme--a nonreactive, low volatility solvent with much lower viscosity than the ILs. Physical solubility of CO2 in the mixtures is calculated using correlations developed from CO2 solubility measurements in tetraglyme and the N2O-analogy for ILs and dilute IL solutions. The diffusivity of CO2 is estimated from viscosity-dependent correlations chosen after a thorough literature review. The results indicate partial first order reaction kinetics with respect to IL with values ranging from 19,500 L mol(-1) s(-1) ([P66614][Pro]) to 3200 L mol(-1) s(-1) ([P66614][3-CF3pyra]) at 22 °C. The second order reaction rate constants follow Arrhenius behavior with the highest activation energy of 43 kJ mol(-1) measured for [P66614][Pro]. ILs with aprotic heterocylic anions (AHA), on the other hand, show small activation energies of 18 and 11 kJ mol(-1) for [P66614][3-CF3pyra] and [P66614][2-CNpyr], respectively. The ILs studied in this work exhibit reactivity comparable to or higher than common aqueous amines. High reaction rates and tunable capacity make ILs, and AHA ILs in particular, attractive solvents for CO2 separations. PMID:23598368

  3. Correlating morphology to dc conductivity in polymerized ionic liquids

    NASA Astrophysics Data System (ADS)

    Iacob, Ciprian; Matusmoto, Atsushi; Inoue, Tadashi; Runt, James

    Polymerized ionic liquids (PILs) combine the attractive mechanical characteristics of polymers and unique physico-chemical properties of low molecular weight ionic liquids in the same material. PILs have shown remarkable advantages when employed in electrochemical devices such as dye-sensitized solar cells and lithium batteries, among others. Understanding their ionic transport mechanism is the key for designing highly conductive PILs. In the current study, the correlation between morphology and charge transport in two homologous series of PILs with systematic variation of the alkyl chain length and anions is investigated using broadband dielectric spectroscopy, rheology, differential scanning calorimetry and X-ray scattering. As the alkyl chain length increases, the backbone-to-backbone separation increases, and dc-conductivity consequently decreases. The cations dominate structural dynamics since they are attached to the polymer chains, while the anions are smaller and more mobile ionic species thereby controlling the ionic conductivity. Further interpretation of decoupling of dc conductivity from the segmental relaxation enabled the correlation between polymer morphology and dc conductivity. Supported by the National Science Foundation, Polymers Program.

  4. Vaporisation and thermal decomposition of dialkylimidazolium halide ion ionic liquids.

    PubMed

    Lovelock, Kevin R J; Armstrong, James P; Licence, Peter; Jones, Robert G

    2014-01-28

    Vaporisation and liquid phase thermal decomposition, TD, of two halide ion ionic liquids, 1-octyl-3-methylimidazolium chloride, [C8C1Im]Cl, and 1-octyl-3-methylimidazolium iodide, [C8C1Im]I, are investigated using temperature programmed desorption (TPD) line of sight mass spectrometry (LOSMS) at ultra-high vacuum (UHV). The ability to use MS to distinguish between vaporisation and TD allows the thermodynamics/kinetics of both vaporisation and TD to be investigated within the same experiments. Vaporisation of both halide ion ionic liquids is demonstrated. For both [C8C1Im]Cl and [C8C1Im]I the vapour is shown to be composed of neutral ion pairs (NIPs). The enthalpy of vaporisation at temperature T, ΔvapHT, was experimentally determined as ΔvapH455 = 151 ± 10 kJ mol(-1) for [C8C1Im]Cl and ΔvapH480 = 149 ± 8 kJ mol(-1) for [C8C1Im]I. Extrapolation of ΔvapHT to the reference temperature, 298 K, gave ΔvapH298 = 166 ± 10 kJ mol(-1) for [C8C1Im]Cl and ΔvapH298 = 167 ± 8 kJ mol(-1) for [C8C1Im]I, higher than most ΔvapH298 values measured to date for other [C8C1Im](+)-containing ionic liquids. In addition, predictions of ΔvapH298 for other halide ion ionic liquids are made. Liquid phase TD is shown to proceed via nucleophilic substitution to give two sets of products: 1-octylimidazole and methylhalide, and 1-methylimidazole and 1-octylhalide. The activation energy of TD at a temperature T, Ea,TD,T, is measured for the nucleophilic substitution of [C8C1Im]I to give methyliodide; Ea,TD,480 = 136 ± 15 kJ mol(-1). Ea,TD,T is measured for the nucleophilic substitution of [C8C1Im]Cl to give methylchloride; Ea,TD,455 = 132 ± 10 kJ mol(-1). The fact that ΔvapHT and Ea,TD,T are the same (within error) for both ionic liquids is commented upon, and conclusions are drawn as to the thermal stability of these ionic liquids. PMID:24105256

  5. Solvent extraction of rare-earth ions based on functionalized ionic liquids

    SciTech Connect

    Sun, Xiaoqi; Dai, Sheng; Luo, Huimin

    2012-01-01

    We herein report the achievement of enhanced extractabilities and selectivities for separation of rare earth elements based on functionalized ionic liquids. This work highlights the potential of developing a comprehensive ionic liquid-based extraction strategy for rare earth elements using ionic liquids as both extractant and diluent.

  6. A NEW CLASS OF SOLVENTS FOR TRU DISSOLUTION AND SEPARATION: IONIC LIQUIDS

    EPA Science Inventory

    This report focuses on the progress of a study of a New Class of Solvents for TRU Dissolution and Separation: Ionic Liquids. Key research issues are: (1) examining Cs, Sr, Tc, and TRU partitioning in Ionic Liquid/aqueous systems; (2) developing new Ionic Liquids for TRU separat...

  7. Fixed Junction Photovoltaic Devices Based On Polymerizable Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Limanek, Austin; Leger, Janelle, , Dr.

    Recently, polymer-based photovoltaic devices (PPVs) have received significant attention as a possible affordable, large area and flexible solar energy technology. In particular, research on chemically fixed p-i-n junctions in polymer photovoltaic devices has shown promising results. These devices are composed of ionic monomers in a polymer matrix sandwiched between two electrodes. When a potential is applied, the ionic monomers migrate towards their corresponding electrodes, enabling electrochemical doping of the polymer. This leads to the formation of bonds between the polymer and ionic monomers, resulting in the formation of a chemically fixed p-i-n junction. However, early devices suffered from long charging times and low overall response. This has been attributed to the low phase compatibility between the ionic monomers and the polymer. It has been shown for light-emitting electrochemical cells, replacing the ionic monomers with polymerizable ionic liquids (PILs) mitigates these challenges. We will present the use of PILs as the dopant in fixed junction PPV devices. Preliminary devices demonstrate significantly improved performance, decreased charging times, and high open circuit voltages. This research supported by the National Science Foundation DMR-1057209.

  8. Force microscopy of layering and friction in an ionic liquid.

    PubMed

    Hoth, Judith; Hausen, Florian; Müser, Martin H; Bennewitz, Roland

    2014-07-16

    The mechanical properties of the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4][FAP]) in confinement between a SiOx and a Au(1 1 1) surface are investigated by means of atomic force microscopy (AFM) under electrochemical control. Up to 12 layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular shape of the force versus distance curve is explained by a model for the interaction between tip, gold surface and ionic liquid, which assumes an exponentially decaying oscillatory force originating from bulk liquid density correlations. Jumps in the tip-sample distance upon approach correspond to jumps of the compliant force sensor between branches of the oscillatory force curve. Frictional force between the laterally moving tip and the surface is detected only after partial penetration of the last double layer between tip and surface. PMID:24919549

  9. Morphological and electromechanical characterization of ionic liquid/Nafion polymer composites

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew; Leo, Donald

    2005-05-01

    Ionic liquids have shown promise as replacements for water in ionic polymer transducers. Ionic liquids are non-volatile and have a larger electrochemical stability window than water. Therefore, transducers employing ionic liquids can be operated for long periods of time in air and can be actuated with higher voltages. Furthermore, transducers based on ionic liquids do not exhibit the characteristic back relaxation that is common with water-swollen materials. However, the physics of transduction in the ionic liquid-swollen materials is not well understood. In this paper, the morphology of Nafion/ionic liquid composites is characterized using small-angle X-ray scattering (SAXS). The electromechanical transduction behavior of the composites is also investigated. For this testing, five different counterions and two ionic liquids are used. The results reveal that both the morphology and transduction performance of the composites is affected by the identity of the ionic liquid, the cation, and the swelling level of ionic liquid within the membrane. Specifically, speed of response is found to be lower for the membranes that were exchanged with the smaller lithium and potassium ions. The response speed is also found to increase with increased content of ionic liquid. Furthermore, for the two ionic liquids studied, the actuators swollen with the less viscous ionic liquid exhibited a slower response. The slower speed of response corresponds to less contrast between the ionically conductive phase and the inert phase of the polymer. This suggests that disruption of the clustered morphology in the ionic liquid-swollen membranes as compared to water-swollen membranes attenuates ion mobility within the polymer. This attenuation is attributed to swelling of the non-conductive phase by the ionic liquids.

  10. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect

    Wishart,J.F.

    2008-09-29

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Picosecond pulse radiolysis studies at BNL's Laser-Electron Accelerator Facility (LEAF) are used to identify reactive species in ionic liquids and measure their solvation and reaction rates. We and our collaborators (R. Engel (Queens College, CUNY) and S. Lall-Ramnarine, (Queensborough CC, CUNY)) develop and characterize new ionic liquids specifically designed for our radiolysis and solvation dynamics studies. IL solvation and rotational dynamics are measured by TCSPC and fluorescence upconversion measurements in the laboratory of E. W. Castner at Rutgers Univ. Investigations of radical species in irradiated ILs are carried out at ANL by I. Shkrob and S. Chemerisov using EPR spectroscopy. Diffusion rates are obtained by PGSE NMR in S. Greenbaum's lab at Hunter College, CUNY and S. Chung's lab at William Patterson U. Professor Mark Kobrak of CUNY Brooklyn College performs molecular dynamics simulations of solvation processes. A collaboration with M. Dietz at U. Wisc. Milwaukee is centered around the properties and radiolytic behavior of ionic liquids for nuclear separations. Collaborations with C. Reed (UC Riverside), D. Gabel (U. Bremen) and J. Davis (U. South Alabama) are aimed at characterizing the radiolytic and other properties of borated ionic liquids, which could be used to make fissile material separations processes inherently safe from criticality accidents.

  11. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode. Successful extraction of metal from metal oxide dissolved in Urea/ChCl (2:1) was accomplished. The current efficiencies were relatively high in both the metal deposition processes with current efficiency greater than 86% for lead and 95% for zinc. This technology will advance the metal oxide reduction process by increasing the process efficiency and also eliminate the production of CO2 which makes this an environmentally benign technology for metal extraction.

  12. SPECTROSCOPIC STUDIES OF STRUCTURE, DYNAMICS AND REACTIVITY IN IONIC LIQUIDS.

    SciTech Connect

    WISHART,J.F.

    2007-11-30

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Picosecond pulse radiolysis studies at BNL's Laser-Electron Accelerator Facility (LEAF) [1] are used to identify reactive species in ionic liquids and measure their solvation and reaction rates. IL solvation and rotational dynamics are measured by TCSPC in the laboratory of E. W. Castner at Rutgers Univ. Investigations of radical species in irradiated ILs are carried out at ANL by I. Shkrob and S. Chemerisov using EPR spectroscopy.

  13. Ionic Conductivity and Gas Permeability of Polymerized Ionic Liquid Block Copolymer Membranes

    NASA Astrophysics Data System (ADS)

    Evans, Christopher; Sanoja, Gabriel; Schneider, Yanika; Modestino, Miguel; Segalman, Rachel; Joint CenterArtificial Photosynthesis Team

    2014-03-01

    Polymer membranes for many energy applications, such as solar-to-hydrogen fuel production, require ionic conductivity while acting as gas diffusion barriers. We have synthesized a diblock copolymer consisting of poly(styrene-block-(4-(2-methacrylamidoethyl)-imidazolium trifluoroacetate) by treating poly(styrene-block-histamine methacrylamide) (PS- b-PHMA) with trifluoroacetic acid. The PS block serves as the structural support while the imidazolium derivative is an ion conducting polymerized ionic liquid (PIL). Small angle X-ray scattering and transmission electron microscopy demonstrate that the block copolymer self-assembles into well-ordered nanostructures, with lamellae and hexagonally packed cylindrical morphologies. The ionic conductivities of the PS-b-PHMA materials were as high as 2 x 10-4 S/cm while an order of magnitude increase in conductivity was observed upon conversion to PS-b-PIL. The ionic conductivity of the PS-b-PIL increased by a factor of ~ 4 up to 1.2 x 10-3 S/cm as the PIL domain size increased from 20 to 40 nm. These insights allow for the rational design of high performance ion conducting membranes with even greater conductivities via precise morphological control. Additionally, the role of thermal annealing on the ionic conductivity and gas permeability of copolymer membranes was investigated.

  14. High CO2 solubility, permeability and selectivity in ionic liquids with the tetracyanoborate anion

    SciTech Connect

    Mahurin, SM; Hillesheim, PC; Yeary, JS; Jiang, DE; Dai, S

    2012-01-01

    Five different ionic liquids containing the tetracyanoborate anion were synthesized and evaluated for CO2 separation performance. Measured CO2 solubility values were exceptionally high compared to analogous ionic liquids with different anions and ranged from 0.128 mol L-1 atm(-1) to 0.148 mol L-1 atm(-1). In addition, CO2 permeability and CO2/N-2 selectivity values were measured using a supported ionic liquid membrane architecture and the separations performance of the ionic liquid membranes exceeded the Robeson upper bound. These results establish the distinct potential of ionic liquids with the tetracyanoborate, [B(CN)(4)], anion for the separation of CO2.

  15. Can Ionic Liquids Be Used As Templating Agents For Controlled Design of Uranium-Containing Nanomaterials?

    SciTech Connect

    Visser, A.; Bridges, N.; Tosten, M.

    2013-04-09

    Nanostructured uranium oxides have been prepared in ionic liquids as templating agents. Using the ionic liquids as reaction media for inorganic nanomaterials takes advantage of the pre-organized structure of the ionic liquids which in turn controls the morphology of the inorganic nanomaterials. Variation of ionic liquid cation structure was investigated to determine the impact on the uranium oxide morphologies. For two ionic liquid cations, increasing the alkyl chain length increases the aspect ratio of the resulting nanostructured oxides. Understanding the resulting metal oxide morphologies could enhance fuel stability and design.

  16. Polymer--Ionic liquid Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Ketabi, Sanaz

    Polymer electrolyte, comprised of ionic conductors, polymer matrix, and additives, is one of the key components that control the performance of solid flexible electrochemical capacitors (ECs). Ionic liquids (ILs) are highly promising ionic conductors for next generation polymer electrolytes due to their excellent electrochemical and thermal stability. Fluorinated ILs are the most commonly applied in polymer-IL electrolytes. Although possessing high conductivity, these ILs have low environmental favorability. The aim of this work was to develop environmentally benign polymer-ILs for both electrochemical double layer capacitors (EDLCs) and pseudocapacitors, and to provide insights into the influence of constituent materials on the ion conduction mechanism and the structural stability of the polymer-IL electrolytes. Solid polymer electrolytes composed of poly(ethylene oxide) (PEO) and 1-ethyl-3-methylimidazolium hydrogen sulfate (EMIHSO4) were investigated for ECs. The material system was optimized to achieve the two criteria for high performance polymer-ILs: high ionic conductivity and highly amorphous structure. Thermal and structural analyses revealed that EMIHSO4 acted as an ionic conductor and a plasticizer that substantially decreased the crystallinity of PEO. Two types of inorganic nanofillers were incorporated into these polymer electrolytes. The effects of SiO2 and TiO2 nanofillers on ionic conductivity, crystallinity, and dielectric properties of PEO-EMIHSO 4 were studied over a temperature range from -10 °C and 80 °C. Using an electrochemical capacitor model, impedance (complex capacitance) and dielectric analyses were performed to understand the ionic conduction process with and without fillers in both semi crystalline and amorphous states of the polymer electrolytes. Despite their different nanostructures, both SiO2 and TiO2 promoted an amorphous structure in PEO-EMIHSO 4 and increased the ionic conductivity 2-fold. While in the amorphous state, the dielectric constant characteristic of the fillers contributed to the increased conductivity and cell capacitance. Leveraging the fillers, the ionic conductivity of the environmentally friendly polymer-ILs approached the level of the polymer-fluorinated IL at room temperature, and exceeded the latter at high temperature. Another approach to improve the performance of polymer electrolytes was undertaken through the development of protic ILs (PILs) and polymer-PIL electrolytes for pseudocapacitors. Binary eutectic systems of PILs were investigated, and the proton conduction of the eutectic systems was characterized in both liquid and polymer states. Devices enabled by PEO-EMIHSO4 and PEO-binary PILs demonstrated a comparable energy density to that with polymer-fluorinated ILs.

  17. Structure and ionic conductivity of ionic liquid embedded PEO- LiCF3SO3 polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Karmakar, A.; Ghosh, A.

    2014-08-01

    In this paper we have reported electrical and other physical properties of polyethylene oxide (PEO) - LiCF3SO3 polymer electrolytes embedded with 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. The addition of the ionic liquid to PEO- LiCF3SO3 electrolyte increases the amorphous phase content considerably and decreases the glass transition temperature. The relative amounts of different ionic species present in these electrolytes have been determined. It is observed that the fraction of free anions increase with the increase of ionic liquid concentration, whereas the fraction for ion pairs and aggregates show a decreasing trend under the same condition. The ionic conductivity of the PEO- LiCF3SO3 polymer electrolyte embedded with ionic liquid is higher than that of the PEO- LiCF3SO3 electrolyte. The ionic conductivity shows a transition around 323 K. The ionic conductivity above 323 K exhibits Arrhenius behavior with an activation energy, which decreases with the increase of ionic liquid concentration. However, below 323 K the conductivity shows Vogel-Tamman-Fulcher (VTF) type behavior.

  18. Free volume dependence of an ionic molecular rotor in Fluoroalkylphosphate (FAP) based ionic liquids

    NASA Astrophysics Data System (ADS)

    Singh, Prabhat K.; Mora, Aruna K.; Nath, Sukhendu

    2016-01-01

    The emission properties of Thioflavin-T (ThT), a cationic molecular rotor, have been investigated in two fluoroalkylphosphate ([FAP]) anion based ionic liquids, namely, 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate and 1-(2-hydroxyethyl)-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, over a wide temperature range. The micro-viscosities of ionic liquids around ThT, measured from the emission quantum yield, are found to be quite different from their bulk viscosities. The temperature dependence of the viscosity and the emission quantum yield reveals that, despite the very low shear viscosity of these ILs, the non-radiative torsional relaxation has a strong dependence on the free volume of these [FAP] anion based ILs.

  19. Direct Observation of Ion Distributions near Electrodes in Ionic Polymer Actuators Containing Ionic Liquids

    PubMed Central

    Liu, Yang; Lu, Caiyan; Twigg, Stephen; Ghaffari, Mehdi; Lin, Junhong; Winograd, Nicholas; Zhang, Q. M.

    2013-01-01

    The recent boom of energy storage and conversion devices, exploiting ionic liquids (ILs) to enhance the performance, requires an in-depth understanding of this new class of electrolytes in device operation conditions. One central question critical to device performance is how the mobile ions accumulate near charged electrodes. Here, we present the excess ion depth profiles of ILs in ionomer membrane actuators (Aquivion/1-butyl-2,3-dimethylimidazolium chloride (BMMI-Cl), 27 μm thick), characterized directly by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) at liquid nitrogen temperature. Experimental results reveal that for the IL studied, cations and anions are accumulated at both electrodes. The large difference in the total volume occupied by the excess ions between the two electrodes cause the observed large bending actuation of the actuator. Hence we demonstrate that ToF-SIMS experiment provides great insights on the physics nature of ionic devices. PMID:23512124

  20. Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems

    NASA Astrophysics Data System (ADS)

    Passos, Helena; Luís, Andreia; Coutinho, João A. P.; Freire, Mara G.

    2016-02-01

    The ability to induce reversible phase transitions between homogeneous solutions and biphasic liquid-liquid systems, at pre-defined and suitable operating temperatures, is of crucial relevance in the design of separation processes. Ionic-liquid-based aqueous biphasic systems (IL-based ABS) have demonstrated superior performance as alternative extraction platforms, and their thermoreversible behaviour is here disclosed by the use of protic ILs. The applicability of the temperature-induced phase switching is further demonstrated with the complete extraction of two value-added proteins, achieved in a single-step. It is shown that these temperature-induced mono(bi)phasic systems are significantly more versatile than classical liquid-liquid systems which are constrained by their critical temperatures. IL-based ABS allow to work in a wide range of temperatures and compositions which can be tailored to fit the requirements of a given separation process.

  1. Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems

    PubMed Central

    Passos, Helena; Luís, Andreia; Coutinho, João A. P.; Freire, Mara G.

    2016-01-01

    The ability to induce reversible phase transitions between homogeneous solutions and biphasic liquid-liquid systems, at pre-defined and suitable operating temperatures, is of crucial relevance in the design of separation processes. Ionic-liquid-based aqueous biphasic systems (IL-based ABS) have demonstrated superior performance as alternative extraction platforms, and their thermoreversible behaviour is here disclosed by the use of protic ILs. The applicability of the temperature-induced phase switching is further demonstrated with the complete extraction of two value-added proteins, achieved in a single-step. It is shown that these temperature-induced mono(bi)phasic systems are significantly more versatile than classical liquid-liquid systems which are constrained by their critical temperatures. IL-based ABS allow to work in a wide range of temperatures and compositions which can be tailored to fit the requirements of a given separation process. PMID:26843320

  2. Carbon dioxide in an ionic liquid: Structural and rotational dynamics.

    PubMed

    Giammanco, Chiara H; Kramer, Patrick L; Yamada, Steven A; Nishida, Jun; Tamimi, Amr; Fayer, Michael D

    2016-03-14

    Ionic liquids (ILs), which have widely tunable structural motifs and intermolecular interactions with solutes, have been proposed as possible carbon capture media. To inform the choice of an optimal ionic liquid system, it can be useful to understand the details of dynamics and interactions on fundamental time scales (femtoseconds to picoseconds) of dissolved gases, particularly carbon dioxide (CO2), within the complex solvation structures present in these uniquely organized materials. The rotational and local structural fluctuation dynamics of CO2 in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimNTf2) were investigated by using ultrafast infrared spectroscopy to interrogate the CO2 asymmetric stretch. Polarization-selective pump probe measurements yielded the orientational correlation function of the CO2 vibrational transition dipole. It was found that reorientation of the carbon dioxide occurs on 3 time scales: 0.91 ± 0.03, 8.3 ± 0.1, 54 ± 1 ps. The initial two are attributed to restricted wobbling motions originating from a gating of CO2 motions by the IL cations and anions. The final (slowest) decay corresponds to complete orientational randomization. Two-dimensional infrared vibrational echo (2D IR) spectroscopy provided information on structural rearrangements, which cause spectral diffusion, through the time dependence of the 2D line shape. Analysis of the time-dependent 2D IR spectra yields the frequency-frequency correlation function (FFCF). Polarization-selective 2D IR experiments conducted on the CO2 asymmetric stretch in the parallel- and perpendicular-pumped geometries yield significantly different FFCFs due to a phenomenon known as reorientation-induced spectral diffusion (RISD), revealing strong vector interactions with the liquid structures that evolve slowly on the (independently measured) rotation time scales. To separate the RISD contribution to the FFCF from the structural spectral diffusion contribution, the previously developed first order Stark effect RISD model is reformulated to describe the second order (quadratic) Stark effect-the first order Stark effect vanishes because CO2 does not have a permanent dipole moment. Through this analysis, we characterize the structural fluctuations of CO2 in the ionic liquid solvation environment, which separate into magnitude-only and combined magnitude and directional correlations of the liquid's time dependent electric field. This new methodology will enable highly incisive comparisons between CO2 dynamics in a variety of ionic liquid systems. PMID:26979696

  3. Carbon dioxide in an ionic liquid: Structural and rotational dynamics

    NASA Astrophysics Data System (ADS)

    Giammanco, Chiara H.; Kramer, Patrick L.; Yamada, Steven A.; Nishida, Jun; Tamimi, Amr; Fayer, Michael D.

    2016-03-01

    Ionic liquids (ILs), which have widely tunable structural motifs and intermolecular interactions with solutes, have been proposed as possible carbon capture media. To inform the choice of an optimal ionic liquid system, it can be useful to understand the details of dynamics and interactions on fundamental time scales (femtoseconds to picoseconds) of dissolved gases, particularly carbon dioxide (CO2), within the complex solvation structures present in these uniquely organized materials. The rotational and local structural fluctuation dynamics of CO2 in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimNTf2) were investigated by using ultrafast infrared spectroscopy to interrogate the CO2 asymmetric stretch. Polarization-selective pump probe measurements yielded the orientational correlation function of the CO2 vibrational transition dipole. It was found that reorientation of the carbon dioxide occurs on 3 time scales: 0.91 ± 0.03, 8.3 ± 0.1, 54 ± 1 ps. The initial two are attributed to restricted wobbling motions originating from a gating of CO2 motions by the IL cations and anions. The final (slowest) decay corresponds to complete orientational randomization. Two-dimensional infrared vibrational echo (2D IR) spectroscopy provided information on structural rearrangements, which cause spectral diffusion, through the time dependence of the 2D line shape. Analysis of the time-dependent 2D IR spectra yields the frequency-frequency correlation function (FFCF). Polarization-selective 2D IR experiments conducted on the CO2 asymmetric stretch in the parallel- and perpendicular-pumped geometries yield significantly different FFCFs due to a phenomenon known as reorientation-induced spectral diffusion (RISD), revealing strong vector interactions with the liquid structures that evolve slowly on the (independently measured) rotation time scales. To separate the RISD contribution to the FFCF from the structural spectral diffusion contribution, the previously developed first order Stark effect RISD model is reformulated to describe the second order (quadratic) Stark effect—the first order Stark effect vanishes because CO2 does not have a permanent dipole moment. Through this analysis, we characterize the structural fluctuations of CO2 in the ionic liquid solvation environment, which separate into magnitude-only and combined magnitude and directional correlations of the liquid's time dependent electric field. This new methodology will enable highly incisive comparisons between CO2 dynamics in a variety of ionic liquid systems.

  4. Liquid-liquid equilibria of binary mixtures of a lipidic ionic liquid with hydrocarbons.

    PubMed

    Green, Blane D; Badini, Alexander J; O'Brien, Richard A; Davis, James H; West, Kevin N

    2016-01-20

    Although structurally diverse, many ionic liquids (ILs) are polar in nature due to the strong coulombic forces inherent in ionic compounds. However, the overall polarity of the IL can be tuned by incorporating significant nonpolar content into one or more of the constituent ions. In this work, the binary liquid-liquid equilibria of one such IL, 1-methyl-3-(Z-octadec-9-enyl)imidazolium bistriflimide, with several hydrocarbons (n-hexane, n-octane, n-decane, cyclohexane, methylcyclohexane, 1-octene) is measured over the temperature range 0-70 °C at ambient pressure using a combination of cloud point and gravimetric techniques. The phase behavior of the systems are similar in that they exhibit two phases: one that is 60-90 mole% hydrocarbon and a second phase that is nearly pure hydrocarbon. Each phase exhibits a weak dependence of composition on temperature (steep curve) above ∼10 °C, likely due to swelling and restructuring of the nonpolar nano-domains of the IL being limited by energetically unfavorable restructuring in the polar nano-domains. The solubility of the n-alkanes decreases with increasing size (molar volume), a trend that continues for the cyclic alkanes, for which upper critical solution temperatures are observed below 70 °C. 1-Octene is found to be more soluble than n-octane, attributable to a combination of its lower molar volume and slightly higher polarity. The COSMO-RS model is used to predict the T-x'-x'' diagrams and gives good qualitative agreement of the observed trends. This work presents the highest known solubility of n-alkanes in an IL to date and tuning the structure of the ionic liquid to maximize the size/shape trends observed may provide the basis for enhanced separations of nonpolar species. PMID:26700653

  5. Ionic liquids for separation of olefin-paraffin mixtures

    DOEpatents

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2013-09-17

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  6. Ionic liquids for separation of olefin-paraffin mixtures

    DOEpatents

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2014-07-15

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  7. Reactions of Lignin Model Compounds in Ionic Liquids

    SciTech Connect

    Holladay, John E.; Binder, Joseph B.; Gray, Michel J.; White, James F.; Zhang, Z. Conrad

    2009-09-15

    Lignin, a readily available form of biomass, awaits novel chemistry for converting it to valuable aromatic chemicals. Recent work has demonstrated that ionic liquids are excellent solvents for processing woody biomass and lignin. Seeking to exploit ionic liquids as media for depolymerization of lignin, we investigated reactions of lignin model compounds in these solvents. Using Brønsted acid catalysts in 1-ethyl-3-methylimidazolium triflate at moderate temperatures, we obtained up to 11.6% yield of the dealkylation product guaiacol from the model compound eugenol and cleaved phenethyl phenyl ether, a model for lignin ethers. Despite these successes, acid catalysis failed in dealkylation of the unsaturated model compound 4-ethylguaiacol and did not produce monomeric products from organosolv lignin, demonstrating that further work is required to understand the complex chemistry of lignin depolymerization.

  8. ENZYMATIC POLYMERIZATION OF PHENOLS IN ROOM TEMPERATURE IONIC LIQUIDS

    PubMed Central

    Eker, Bilge; Zagorevski, Dmitri; Zhu, Guangyu; Linhardt, Robert J.; Dordick, Jonathan S.

    2009-01-01

    Soybean peroxidase (SBP) was used to catalyze the polymerization of phenols in room-temperature ionic liquids (RTILs). Phenolic polymers with number average molecular weights ranging from 1200 to 4100 D were obtained depending on the composition of the reaction medium and the nature of the phenol. Specifically, SBP was highly active in methylimidazolium-containing RTILs, including 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(BF4)), and 1-butyl-3-methylpyridinium tetrafluoroborate (BMPy(BF4)) with the ionic liquid content as high as 90% (v/v); the balance being aqueous buffer. Gel permeation chromatography and MALDI-TOF analysis indicated that higher molecular weight polymers can be synthesized in the presence of higher RTIL concentrations, with selective control over polymer size achieved by varying the RTIL concentration. The resulting polyphenols exhibited high thermostability and possessed thermosetting properties. PMID:20161409

  9. Distinctive Nanoscale Organization of Dicationic versus Monocationic Ionic Liquids

    SciTech Connect

    Li, Song; Feng, Guang; Banuelos, Jose Leo; Rother, Gernot; Fulvio, Pasquale F; Dai, Sheng; Cummings, Peter T

    2013-01-01

    The distinctive structural organization of dicationic ionic liquids (DILs) with varying alkyl linkage chain lengths is systematically investigated using classical molecular dynamics (MD) simulations. In comparison with their counterparts, monocationic ionic liquids (MILs) with free alkyl chain, the DILs with short linkage chains exhibit almost identical structural features regardless of anion types, whereas the long-chain DILs display a relatively insignificant prepeak and low heterogeneity order parameter (HOP), which is accompanied by the less evident structural heterogeneity. Moreover, the predominant role of anion type in the structure of DILs was verified, similar to what is observed in MILs. Finally, the different nanoscale organizations in DILs and MILs are rationalized by the relatively unfavorable straight and folded chain models proposed for the nanoaggregates in DILs and the favorable micelle-like arrangement for those in MILs.

  10. Ionic liquid-induced synthesis of selenium nanoparticles

    SciTech Connect

    Langi, Bhushan; Shah, Chetan; Singh, Krishankant; Chaskar, Atul; Kumar, Manmohan; Bajaj, Parma N.

    2010-06-15

    A simple wet chemical method has been used to synthesize selenium nanoparticles by the reaction of ionic liquid with sodium selenosulphate, a selenium precursor, in the presence of polyvinyl alcohol stabilizer, in aqueous medium. The method is capable of producing spherical selenium nanoparticles in the size range of 76-150 nm under ambient conditions. This is a first report on the production of nano-selenium assisted by an ionic liquid. The synthesized nanoparticles can be separated easily from the aqueous sol by a high-speed centrifuge machine, and can be re-dispersed in an aqueous medium. The synthesized selenium nanoparticles have been characterized by X-ray diffraction, energy dispersive X-ray analysis, differential scanning calorimetry and transmission electron microscopy techniques.

  11. Controlling Oxygen Vacancy Creation In Ionic Liquid Gated Vanadate Nanostructures

    NASA Astrophysics Data System (ADS)

    Kilcoyne, Colin; Singh, Sujay; Horrocks, Gregory; Marley, Peter; Banerjee, Sarbajit; Sambandamurthy, G.

    Vanadium dioxide (VO2) is a correlated material with a transition from a monoclinic insulator to a rutile metal at ~ 340 K. Through ionic liquid gating, oxygen vacancies can be electrochemically induced in VO2 and it is found that the vacancies formation is greatly facilitated in the rutile phase, leading to the suppression of the metal-insulator transition. The reversibility, the rate and kinetics of the electrochemical reaction can be readily controlled with the gate voltage sweeps suggesting a potential defect engineering route to tune the electrical and structural properties of VO2. Vanadium pentoxide (V2O5) is a related system with diverse structural and electronic phases that can be obtained by intercalation of various cations. The electrochemical role of ionic liquid gating in creating new phases and modulating conductance in exfoliated thin flakes of V2O5 will also be presented. This work is supported by NSF DMR 0847324.

  12. Hopping conduction via ionic liquid induced silicon surface states

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Reich, K. V.; Sammon, M.; Shklovskii, B. I.; Goldman, A. M.

    2015-08-01

    In order to clarify the physics of the gating of solids by ionic liquids (ILs) we have gated lightly doped p -Si, which is so well studied that it can be called the "hydrogen atom of solid state physics" and can be used as a test bed for ionic liquids. We explore the case where the concentration of induced holes at the Si surface is below 1012cm-2 , hundreds of times smaller than record values. We find that in this case an excess negative ion binds a hole on the interface between the IL and Si becoming a surface acceptor. We study the surface conductance of holes hopping between such nearest neighbor acceptors. Analyzing the acceptor concentration dependence of this conductivity, we find that the localization length of a hole is in reasonable agreement with our direct variational calculation of its binding energy. The observed hopping conductivity resembles that of well studied Na+ implanted Si MOSFETs.

  13. IONIC LIQUIDS: RADIATION CHEMISTRY, SOLVATION DYNAMICS AND REACTIVITY PATTERNS.

    SciTech Connect

    WISHART,J.F.

    2007-10-01

    energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Methods. Picosecond pulse radiolysis studies at BNL's Laser-Electron Accelerator Facility (LEAF) are used to identify reactive species in ionic liquids and measure their solvation and reaction rates. We and our collaborators (R. Engel (Queens College, CUNY) and S. Lall-Ramnarine, (Queensborough CC, CUNY)) develop and characterize new ionic liquids specifically designed for our radiolysis and solvation dynamics studies. IL solvation and rotational dynamics are measured by TCSPC and fluorescence upconversion measurements in the laboratory of E. W. Castner at Rutgers Univ. Investigations of radical species in irradiated ILs are carried out at ANL by I. Shkrob and S. Chemerisov using EPR spectroscopy. Diffusion rates are obtained by PGSE NMR in S. Greenbaum's lab at Hunter College, CUNY and S. Chung's lab at William Patterson U. Professor Mark Kobrak of CUNY Brooklyn College performs molecular dynamics simulations of solvation processes. A collaboration with M. Dietz and coworkers at ANL is centered around the properties and radiolytic behavior of ionic liquids for nuclear separations. Collaborations with C. Reed (UC Riverside), D. Gabel (U. Bremen) and J. Davis (U. South Alabama) are aimed at characterizing the radiolytic and other properties of borated ionic liquids, which could be used to make fissile material separations processes inherently safe from criticality accidents.

  14. Carbon films produced from ionic liquid carbon precursors

    SciTech Connect

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  15. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    SciTech Connect

    Dr. R. G. Reddy

    2007-09-01

    The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient (0.40). Nucleation phenomena involved in aluminum deposition on copper in AlCl3-BMIMCl electrolyte was found to be instantaneous followed by diffusion controlled three-dimensional growth of nuclei. Diffusion coefficient (Do) of the electroactive species Al2Cl7¯ ion was in the range from 6.5 to 3.9×10–7 cm2∙s–1 at a temperature of 30°C. Relatively little research efforts have been made toward the fundamental understanding and modeling of the species transport and transformation information involved in ionic liquid mixtures, which eventually could lead to quantification of electrochemical properties. Except that experimental work in this aspect usually is time consuming and expensive, certain characteristics of ionic liquids also made barriers for such analyses. Low vapor pressure and high viscosity make them not suitable for atomic absorption spectroscopic measurement. In addition, aluminum electrodeposition in ionic liquid electrolytes are considered to be governed by multi-component mass, heat and charge transport in laminar and turbulent flows that are often multi-phase due to the gas evolution at the electrodes. The kinetics of the electrochemical reactions is in general complex. Furthermore, the mass transfer boundary layer is about one order of magnitude smaller than the thermal and hydrodynamic boundary layer (Re=10,000). Other phenomena that frequently occur are side reactions and temperature or concentration driven natural convection. As a result of this complexity, quantitative knowledge of the local parameters (current densities, ion concentrations, electrical potential, temperature, etc.) is very difficult to obtain. This situation is a serious obstacle for improving the quality of products, efficiency of manufacturing and energy consumption. The gap between laboratory/batch scale processing with global process control and nanoscale deposit surface and materials specifications needs to be bridged. A breakthrough can only be realized if on each scale the occurring phenomena are understood and quantified. Multiscale numerical modeling nevertheless can help to bridge this gap. In conjunction with various scale experimental efforts, this project was aim to construct the basis for a strategy for innovation, by developing a generally applicable modeling methodology for understanding and controlling the electrochemical processes of aluminum electrodeposition in ionic liquids with the unifying characteristic that they are based on charge-driven mass transfer. The approaches developed in this project will not only be essential for the mass production of aluminum on any pilot scale or industrial level production processes, leading to the development of a new aluminum production technology, but also bring significant benefits to the society in terms of saving energy, reducing pollutants emission and recovering valuable metals.

  16. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    SciTech Connect

    Dr. Ramana G. Reddy

    2009-01-31

    EXECUTIVE SUMMARY The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient  = 0.40. Nucleation phenomena involved in aluminum deposition on copper in AlCl3-BMIMCl electrolyte was found to be instantaneous followed by diffusion controlled three-dimensional growth of nuclei. Diffusion coefficient (Do) of the electroactive species Al2Cl7¯ ion was in the range from 6.5 to 3.9×10–7 cm2∙s–1 at a temperature of 30°C. Relatively little research efforts have been made toward the fundamental understanding and modeling of the species transport and transformation information involved in ionic liquid mixtures, which eventually could lead to quantification of electrochemical properties. Except that experimental work in this aspect usually is time consuming and expensive, certain characteristics of ionic liquids also made barriers for such analyses. Low vapor pressure and high viscosity make them not suitable for atomic absorption spectroscopic measurement. In addition, aluminum electrodeposition in ionic liquid electrolytes are considered to be governed by multi-component mass, heat and charge transport in laminar and turbulent flows that are often multi-phase due to the gas evolution at the electrodes. The kinetics of the electrochemical reactions is in general complex. Furthermore, the mass transfer boundary layer is about one order of magnitude smaller than the thermal and hydrodynamic boundary layer (ReL≈10,000). Other phenomena that frequently occur are side reactions and temperature or concentration driven natural convection. As a result of this complexity, quantitative knowledge of the local parameters (current densities, ion concentrations, electrical potential, temperature, etc.) is very difficult to obtain. This situation is a serious obstacle for improving the quality of products, efficiency of manufacturing and energy consumption. The gap between laboratory/batch scale processing with global process control and nanoscale deposit surface and materials specifications needs to be bridged. A breakthrough can only be realized if on each scale the occurring phenomena are understood and quantified. Multiscale numerical modeling nevertheless can help to bridge this gap. In conjunction with various scale experimental efforts, this project was aim to construct the basis for a strategy for innovation, by developing a generally applicable modeling methodology for understanding and controlling the electrochemical processes of aluminum electrodeposition in ionic liquids with the unifying characteristic that they are based on charge-driven mass transfer. The approaches developed in this project will not only be essential for the mass production of aluminum on any pilot scale or industrial level production processes, leading to the development of a new aluminum production technology, but also bring significant benefits to the society in terms of saving energy, reducing pollutants emission and recovering valuable metals.

  17. HMDO-promoted peptide and protein synthesis in ionic liquids.

    PubMed

    Duan, Jianli; Sun, Yao; Chen, Hao; Qiu, Guofu; Zhou, Haibing; Tang, Ting; Deng, Zixin; Hong, Xuechuan

    2013-07-19

    Hexamethyldisiloxane (HMDO) has been developed to efficiently promote the metal-free direct coupling of an amino function of one cysteine-free peptide or protein and a C-terminal thioester of the second peptide in ionic liquids. The amide-coupling reaction proceeds smoothly under mild conditions to afford the corresponding products in good to excellent yields (63-94%). Peptide couplings were also achieved using in-situ-generated thioesters by the thioesterification of oxo esters. PMID:23829697

  18. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    SciTech Connect

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  19. Studies on the nuances of the electrochemically induced room temperature isomerization of cis-stilbene in acetonitrile and ionic liquids.

    PubMed

    Abdul-Rahim, Omar; Simonov, Alexandr N; Boas, John F; Rüther, Thomas; Collins, David J; Perlmutter, Patrick; Bond, Alan M

    2014-03-20

    Electrochemical reduction of cis-stilbene occurs by two well-resolved one-electron reduction steps in acetonitrile with (n-Bu)4NPF6 as the supporting electrolyte and in N-butyl-N-methylpyrrolidinium (Pyrr1,4(+)) and (trimethylamine)(dimethylethylamine)-dihydroborate bis(trifluoromethylsulfonyl)amide (NTf2(-)) ionic liquids (ILs). Mechanistic details of the electroreduction have been probed by dc and Fourier transformed ac voltammetry, simulation of the voltammetry, bulk electrolysis, and EPR spectroscopy. The first one-electron reduction induces fast cis to trans isomerization in CH3CN and ILs, most likely occurring via disproportionation of cis-stilbene radical anions and fast transformation of the cis-dianion to the trans-configuration. The second reduction process is chemically irreversible in CH3CN due to protonation of the dianion but chemically reversible in highly aprotic ILs under high cis-stilbene concentration conditions. Increase of the (n-Bu)4NPF6 supporting electrolyte concentration (0.01-1.0 M) in CH3CN induces substantial positive shifts in the potentials for reduction of cis-stilbene, consistent with strong ion pairing of the anion radical and dianion with (n-Bu)4N(+). However, protection by ion pairing against protonation of the stilbene dianions or electrochemically induced cis-trans-stilbene isomerization is not achieved. Differences in electrode kinetics and reversible potentials for cis-stilbene(0/•-) and trans-stilbene(0/•-) processes are less pronounced in the Pyrr1,4-NTf2 ionic liquid than in the molecular solvent acetonitrile. PMID:24558952

  20. Photochemical oxidation of water and reduction of polyoxometalate anions at interfaces of water with ionic liquids or diethylether

    PubMed Central

    Bernardini, Gianluca; Wedd, Anthony G.; Zhao, Chuan; Bond, Alan M.

    2012-01-01

    Photoreduction of [P2W18O62]6-, [S2Mo18O62]4-, and [S2W18O62]4- polyoxometalate anions (POMs) and oxidation of water occurs when waterionic liquid and waterdiethylether interfaces are irradiated with white light (275750nm) or sunlight. The ionic liquids (ILs) employed were aprotic ([Bmim]X; Bmim=(1-butyl-3-methylimidazolium,X=BF4,PF6) and protic (DEAS=diethanolamine hydrogen sulphate; DEAP=diethanolamine hydrogen phosphate). Photochemical formation of reduced POMs at both thermodynamically stable and unstable waterIL interfaces led to their initial diffusion into the aqueous phase and subsequent extraction into the IL phase. The mass transport was monitored visually by color change and by steady-state voltammetry at microelectrodes placed near the interface and in the bulk solution phases. However, no diffusion into the organic phase was observed when [P2W18O62]6- was photo-reduced at the waterdiethylether interface. In all cases, water acted as the electron donor to give the overall process: 4POM+2H2O+h??4POM-+4H++O2. However, more highly reduced POM species are likely to be generated as intermediates. The rate of diffusion of photo-generated POM- was dependent on the initial concentration of oxidized POM and the viscosity of the IL (or mixed phase system produced in cases in which the interface is thermodynamically unstable). In the water-DEAS system, the evolution of dioxygen was monitored in situ in the aqueous phase by using a Clark-type oxygen sensor. Differences in the structures of bulk and interfacial water are implicated in the activation of water. An analogous series of reactions occurred upon irradiation of solid POM salts in the presence of water vapor. PMID:22753501

  1. Application of Ionic Liquids in Pot-in-Pot Reactions.

    PubMed

    Çınar, Simge; Schulz, Michael D; Oyola-Reynoso, Stephanie; Bwambok, David K; Gathiaka, Symon M; Thuo, Martin

    2016-01-01

    Pot-in-pot reactions are designed such that two reaction media (solvents, catalysts and reagents) are isolated from each other by a polymeric membrane similar to matryoshka dolls (Russian nesting dolls). The first reaction is allowed to progress to completion before triggering the second reaction in which all necessary solvents, reactants, or catalysts are placed except for the starting reagent for the target reaction. With the appropriate trigger, in most cases unidirectional flux, the product of the first reaction is introduced to the second medium allowing a second transformation in the same glass reaction pot-albeit separated by a polymeric membrane. The basis of these reaction systems is the controlled selective flux of one reagent over the other components of the first reaction while maintaining steady-state catalyst concentration in the first "pot". The use of ionic liquids as tools to control chemical potential across the polymeric membranes making the first pot is discussed based on standard diffusion models-Fickian and Payne's models. Besides chemical potential, use of ionic liquids as delivery agent for a small amount of a solvent that slightly swells the polymeric membrane, hence increasing flux, is highlighted. This review highlights the critical role ionic liquids play in site-isolation of multiple catalyzed reactions in a standard pot-in-pot reaction. PMID:26927045

  2. Understanding the impact of ionic liquid pretreatment on eucalyptus

    SciTech Connect

    Centikol, Ozgul; Dibble, Dean; Cheng, Gang; Kent, Michael S; Knierim, Manfred; Melnichenko, Yuri B

    2010-01-01

    The development of cost-competitive biofuels necessitates the realization of advanced biomass pretreatment technologies. Ionic liquids provide a basis for one of the most promising pretreatment technologies and are known to allow effective processing of cellulose and some biomass species. Here, we demonstrate that the ionic liquid 1-ethyl-3-methyl imidazolium acetate, [C2mim][OAc], induces structural changes at the molecular level in the cell wall of Eucalyptus globulus. Deacetylation of xylan, acetylation of the lignin units, selective removal of guaiacyl units (increasing the syringyl:guaiacyl ratio) and decreased {beta}-ether content were the most prominent changes observed. Scanning electron microscopy images of the plant cell wall sections reveal extensive swelling during [C2mim][OAc] pretreatment. X-ray diffraction measurements indicate a change in cellulose crystal structure from cellulose I to cellulose II after [C2mim][OAc] pretreatment. Enzymatic saccharification of the pretreated material produced increased sugar yields and improved hydrolysis kinetics after [C2mim][OAc] pretreatment. These results provide new insight into the mechanism of ionic liquid pretreatment and reaffirm that this approach may be promising for the production of cellulosic biofuels from woody biomass.

  3. The solvation structures of cellulose microfibrils in ionic liquids.

    PubMed

    Mostofian, Barmak; Smith, Jeremy C; Cheng, Xiaolin

    2011-12-01

    The use of ionic liquids for non-derivatized cellulose dissolution promises an alternative method for the thermochemical pretreatment of biomass that may be more efficient and environmentally acceptable than more conventional techniques in aqueous solution. Here, we performed equilibrium MD simulations of a cellulose microfibril in the ionic liquid 1-butyl-3-methylimidazolium chloride (BmimCl) and compared the solute structure and the solute-solvent interactions at the interface with those from corresponding simulations in water. The results indicate a higher occurrence of solvent-exposed orientations of cellulose surface hydroxymethyl groups in BmimCl than in water. Moreover, spatial and radial distribution functions indicate that hydrophilic surfaces are a preferred site of interaction between cellulose and the ionic liquid. In particular, hydroxymethyl groups on the hydrophilic fiber surface adopt a different conformation from their counterparts oriented towards the fiber's core. Furthermore, the glucose units with these solvent-oriented hydroxymethyls are surrounded by the heterocyclic organic cation in a preferred parallel orientation, suggesting a direct and distinct interaction scheme between cellulose and BmimCl. PMID:22179764

  4. Ionic liquid crosslinkers for chiral imprinted nanoGUMBOS.

    PubMed

    Hamdan, Suzana; Moore, Leonard; Lejeune, Jason; Hasan, Farhana; Carlisle, Trevor K; Bara, Jason E; Gin, D L; LaFrate, Andrew L; Noble, R D; Spivak, David A; Warner, Isiah M

    2016-02-01

    Molecularly imprinted polymers (MIPs) are an important class of selective materials for molecular specific sensors and separations. Molecular imprinting using non-covalent interactions in aqueous conditions still remains a difficult challenge due to interruption of hydrogen-bonding or electrostatic interactions water. Newly developed crosslinking ionic liquids are demonstrated herein to overcome problems of synthesizing aqueous MIPs, adding to previous examples of ionic liquids used as monomers in non-aqueous conditions or used as MIP solvents. Vinylimidazole ionic liquid crosslinkers were synthesized and subsequently explored as matrix supports for fabrication of molecularly imprinted polymeric nanoGUMBOS (nanoparticles derived from a group of uniform materials based on organic salts). Each of the four crosslinkers incorporated a unique functional spacer between the vinylimidazole groups, and the performance of the corresponding molecularly imprinted polymers was evaluated using chiral recognition as the diagnostic. High uptake values for l-tryptophan were found in the 13-87μmol/g range; and chiral recognition was determined via binding ratios of l-tryptophan over d-tryptophan that ranged from 5:1 to 13:1 for polymers made using different crosslinkers. Not only are these materials good for chiral recognition, but the results highlight the utility of these materials for imprinting aqueous templates such as biological targets for theranostic agents. PMID:26513734

  5. The solvation structures of cellulose microfibrils in ionic liquids

    SciTech Connect

    Mostofian, Barmak; Smith, Jeremy C; Cheng, Xiaolin

    2011-01-01

    The use of ionic liquids for non-derivatized cellulose dissolution promises an alternative method for the thermochemical pretreatment of biomass that may be more efficient and environmentally acceptable than more conventional techniques in aqueous solution. Here, we performed equilibrium MD simulations of a cellulose microfibril in the ionic liquid 1-butyl-3-methylimidazolium chloride (BmimCl) and compared the solute structure and the solute-solvent interactions at the interface with those from corresponding simulations in water. The results indicate a higher occurrence of solvent-exposed orientations of cellulose surface hydroxymethyl groups in BmimCl than in water. Moreover, spatial and radial distribution functions indicate that hydrophilic surfaces are a preferred site of interaction between cellulose and the ionic liquid. In particular, hydroxymethyl groups on the hydrophilic fiber surface adopt a different conformation from their counterparts oriented towards the fiber s core. Furthermore, the glucose units with these solvent-oriented hydroxymethyls are surrounded by the heterocyclic organic cation in a preferred parallel orientation, suggesting a direct and distinct interaction scheme between cellulose and BmimCl.

  6. A roadmap to uranium ionic liquids: Anti-crystal engineering

    SciTech Connect

    Yaprak, Damla; Spielberg, Eike T.; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja -Verena

    2014-04-15

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO22+ unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure–property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. As a result, these materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.

  7. A roadmap to uranium ionic liquids: Anti-crystal engineering

    DOE PAGESBeta

    Yaprak, Damla; Spielberg, Eike T.; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja -Verena

    2014-04-15

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO22+ unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim tomore » establish structure–property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. As a result, these materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.« less

  8. Ionic liquids screening for desulfurization of natural gasoline by liquid-liquid extraction.

    PubMed

    Likhanova, Natalya V; Guzmán-Lucero, Diego; Flores, Eugenio A; García, Paloma; Domínguez-Aguilar, Marco A; Palomeque, Jorge; Martínez-Palou, Rafael

    2010-11-01

    Seventy five ionic liquids (ILs) were tested as a sequestering agent of sulfured compounds in natural gasoline (NG). Desulphurization of NG was performed by means of liquid-liquid extraction method at room temperature and atmospheric pressure. Experimental ILs containing imidazolium, pyridinium, and ammonium cations along with organic and inorganic anions were synthesized conventionally and under microwave and sonochemical conditions. The effect of the molecular structure of ILs on the desulfurization efficiency of NG with high sulfur content was evaluated. Analysis indicated that the anion type played a more important role than the cation on the desulphurization process. ILs based on halogen-ferrates and halogen-aluminates exhibited the highest efficiency in sulfur removal, and their efficiency is further improved when there is an excess of metallic salt in a ratio of at least 1:1.3 during the synthesis of the corresponding IL. An explanation for the ability of metallic ILs to remove sulfur-containing compounds from natural gasoline based on the ratio of the ionic charge to the atomic radius is proposed. Furthermore, a method to recover and reuse water-sensitive to halogenated precursors is described. PMID:20091120

  9. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    NASA Astrophysics Data System (ADS)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Cabeza, Oscar; Fedorov, Maxim; Lynden-Bell, Ruth M.; Gallego, Luis J.; Varela, Luis M.

    2015-09-01

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF6]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO3]- and [PF6]- anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca2+ cations. No qualitative difference with monovalent cations was found in what solvation is concerned, which suggests that no enhanced reduction of the mobility of these cations and their complexes in ILs respective to those of monovalent cations is to be expected.

  10. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids.

    PubMed

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Cabeza, Oscar; Fedorov, Maxim; Lynden-Bell, Ruth M; Gallego, Luis J; Varela, Luis M

    2015-09-28

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF6]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO3](-) and [PF6](-) anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca(2+) cations. No qualitative difference with monovalent cations was found in what solvation is concerned, which suggests that no enhanced reduction of the mobility of these cations and their complexes in ILs respective to those of monovalent cations is to be expected. PMID:26429024

  11. Dynamic effects in thin liquid films containing ionic surfactants

    NASA Astrophysics Data System (ADS)

    Karakashev, S. I.; Tsekov, R.; Ivanova, D. S.

    2010-03-01

    This paper is dedicated to studying dynamic effects in thin liquid films (TLF) containing ionic surfactants. The standard theory of TLF drainage has been developed without considering the electrical double layer (EDL) in the hydrodynamic equations, although EDL always exists. In addition, it has been found that this theory very well describes the drainage of TLF containing non-ionic surfactants in the presence of electrolytes. The inclusion of EDL into the hydrodynamics of TLF complicates the theory, producing additional dynamic effects during film drainage. For example, a gradient of electrostatic disjoining pressure across the film arises, thus causing non-uniform electrostatic repulsion between the film surfaces. This paper analyzes the hydrodynamics of TLF with EDL. A new equation of drainage was derived. This equation accounts for the non-uniform distribution of surface charges during the films drainage, which is coupled with non-uniform electrostatic repulsion between the film surfaces and results in faster film drainage. The theory was tested with drainage experiments on TLF with ionic surfactants. Foam films containing sodium dodecyl sulfate (SDS) in the presence and in the absence of added electrolyte were studied and the experimental data compared to the theoretical predictions. The experimental results, however, disagree with the theory. For example, the kinetic equation predicted faster film drainage for foam films at low ionic strength; at high ionic strength the theory tends to wReynolds drainagew. Inversely, the experiment exhibited slower drainage than predicted by the Reynolds equation in both cases of low and high ionic strengths. Numerical simulations yielded V/VRe<1. In addition, cases of wpositivew and wnegativew velocity of film surfaces were shown. Despite the sign of the velocity the dependence V/VRe<1 remained. The analysis showed similarity between the experimental data and the prediction of the Manev-Tsekov-Radoev (MTR) drainage model at R

  12. Unusual solvatochromic absorbance probe behaviour within mixtures of poly(ethylene glycol)-400+ionic liquid, [bmim][Tf2N].

    PubMed

    Ali, Anwar; Ali, Maroof; Malik, Nisar Ahmad; Uzair, Sahar

    2014-01-01

    The potentially green solvents made up of ionic liquids (ILs) and poly(ethylene glycols) may have wide range of the applications in many chemical and biochemical fields. In the present work, solvatochromic absorbance probe behaviour is used to assess the physicochemical properties of the mixtures composed of PEG-400+IL, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [bmim][Tf2N]. Lowest energy intramolecular charge-transfer absorbance maxima of a betaine dye, i.e., E(T)(N), indicates the dipolarity/polarizability and/or hydrogen-bond donating (HBD) acidity of the [bmim][Tf2N]+PEG-400 mixtures to be even higher than that of neat [bmim][Tf2N], the solution component with higher dipolarity/polarizability and/or HBD acidity. Dipolarity/polarizability (π(∗)) obtained separately from the electronic absorbance response of probe N,N-diethyl-4-nitroaniline, and the HBD acidity (α) of PEG-400+[bmim][Tf2N] mixtures are also observed to be anomalously high. A comparative study of the PEG+IL mixtures has also been done with PEG-400+molecular organic solvents (protic polar [methanol], aprotic polar [N,N-dimethylformamide], and non polar, [benzene]) mixtures, but these mixtures do not show this type of unusual behaviour. A four-parameter simplified combined nearly ideal binary solvent/Redlich-Kister (CNIBS/R-K) equation is shown to satisfactorily predict the solvatochromic parameters within PEG-400+different solvent mixtures. PMID:24280298

  13. A novel hydroxylamine ionic liquid salt resulting from the stabilization of NH2OH by a SO3H-functionalized ionic liquid.

    PubMed

    Li, Zhihui; Yang, Qiusheng; Qi, Xudong; Xu, Yuanyuan; Zhang, Dongsheng; Wang, Yanji; Zhao, Xinqiang

    2015-02-01

    A SO3H-functionalized ionic liquid was used as an alternative to conventional inorganic acids in hydroxylamine stabilization, leading to the formation of a novel hydroxylamine ionic liquid salt that exhibits improved thermal stability and reactivity in the one-step, solvent-free synthesis of caprolactam in comparison with hydroxylamine hydrochloride and hydroxylamine sulfate. PMID:25531208

  14. Imidazolium-based poly(ionic liquid)s as new alternatives for CO2 capture.

    PubMed

    Privalova, Elena I; Karjalainen, Erno; Nurmi, Mari; Mäki-Arvela, Päivi; Eränen, Kari; Tenhu, Heikki; Murzin, Dmitry Yu; Mikkola, Jyri-Pekka

    2013-08-01

    Solid imidazolium-based poly(ionic liquid)s with variable molecular weights that contain the poly[2-(1-butylimidazolium-3-yl)ethyl methacrylate] (BIEMA) cation and different counter anions were evaluated in terms of CO2 capture and compared with classical ionic liquids with similar counter anions. In addition to poly(ionic liquid)s with often-applied ions such as BF4 (-) , PF6 (-) , NTf2 (-) , trifluoromethanesulfonate (OTf(-) ) and Br(-) , for the first time [BIEMA][acetate] was synthesised, which revealed a remarkably high CO2 sorption performance that exceeded the poly(ionic liquid)s studied previously on average by a factor of four (12.46 mg gPIL (-1) ). This study provides an understanding of the factors that affect CO2 sorption and a comparison of the CO2 capture efficiency with the frequently used sorbents. Moreover, all the studied sorbents were reusable if regenerated under carefully selected conditions and can be considered as suitable candidates for CO2 sorption. PMID:23881741

  15. Synthesis and characterization of new class of ionic liquids containing phenolate anion

    NASA Astrophysics Data System (ADS)

    Lethesh, Kallidanthiyil Chellappan; Wilfred, Cecilia Devi; Taha, M. F.; Thanabalan, M.

    2014-10-01

    In these manuscript novel ionic liquids containing a new class of "phenolate" anions was synthesized and characterized. 1-methylmidazole with different alkyl chains such as butyl, hexyl and octyl groups was used as the cationic part. All the ionic liquids were obtained as liquids at room temperature. The synthesized ionic liquids were characterized using 1H NMR and 13C NMR spectroscopy. The thermal stability of the ionic liquids was studied using thermo gravimetric analysis (TGA). The effect of temperature on the density and viscosity of the ionic liquids were studied over a temperature range from 293.15 K to 373.15K at atmospheric pressure. From the experimental values of density, the molecular volume, standard molar entropy and the lattice energy of the ionic liquids were calculated.

  16. Synthesis and characterization of new class of ionic liquids containing phenolate anion

    SciTech Connect

    Lethesh, Kallidanthiyil Chellappan; Wilfred, Cecilia Devi; Taha, M. F.; Thanabalan, M.

    2014-10-24

    In these manuscript novel ionic liquids containing a new class of 'phenolate' anions was synthesized and characterized. 1-methylmidazole with different alkyl chains such as butyl, hexyl and octyl groups was used as the cationic part. All the ionic liquids were obtained as liquids at room temperature. The synthesized ionic liquids were characterized using {sup 1}H NMR and {sup 13}C NMR spectroscopy. The thermal stability of the ionic liquids was studied using thermo gravimetric analysis (TGA). The effect of temperature on the density and viscosity of the ionic liquids were studied over a temperature range from 293.15 K to 373.15K at atmospheric pressure. From the experimental values of density, the molecular volume, standard molar entropy and the lattice energy of the ionic liquids were calculated.

  17. Hg⁰ removal from flue gas by ionic liquid/H₂O₂.

    PubMed

    Cheng, Guangwen; Bai, Bofeng; Zhang, Qiang; Cai, Ming

    2014-09-15

    1-Alkyl-3-methylimidazolium chloride ionic liquids ([Cnmim] Cl, n=4, 6, 8) were prepared. The ionic liquid was then mixed with hydrogen peroxide (H2O2) to form an absorbent. The Hg(0) removal performance of the absorbent was investigated in a gas/liquid scrubber using simulated flue gas. It was found that the ionic liquid/H2O2 mixture was an excellent absorbent and could be used to remove Hg(0) from flue gas. When the mass ratio of H2O2 to ionic liquid was 0.5, the absorbent showed high Hg(0) removal efficiency (up to 98%). The Hg(0) removal efficiency usually increased with the absorption temperature, while decreased with the increase of alkyl chain length in ionic liquid molecule. The Hg(0) removal mechanism involved with Hg(0) oxidation by H2O2 and Hg(2+) transfer from aqueous phase to ionic liquid phase. PMID:25240646

  18. Relationships between center atom species (N, P) and ionic conductivity, viscosity, density, self-diffusion coefficient of quaternary cation room-temperature ionic liquids.

    PubMed

    Seki, Shiro; Hayamizu, Kikuko; Tsuzuki, Seiji; Fujii, Kenta; Umebayashi, Yasuhiro; Mitsugi, Takushi; Kobayashi, Takeshi; Ohno, Yasutaka; Kobayashi, Yo; Mita, Yuichi; Miyashiro, Hajime; Ishiguro, Shin-ichi

    2009-05-14

    The physicochemical properties (ionic conductivity, viscosity, density, and self-diffusion coefficient) of tri-n-ethylpentylphosphonium bis(trifluoromethanesulfonyl)amide (TEPP-TFSA) ionic liquid were compared with those of tri-n-ethylpentylammonium bis(trifluoromethanesulfonyl)amide (TEPA-TFSA). Compared with the TEPA-TFSA ionic liquid, the density and viscosity of the phosphorus ionic liquid are lower, although the ionic conductivity and self-diffusion coefficient are higher. The molar conductivities were compared for the values obtained by the electrochemical impedance method (electrochemical conductivity) and the calculated from the pulsed-gradient spin-echo nuclear magnetic resonance method (diffusive conductivity). The comparison shows that active ionic ratios of the TEPP-TFSA ionic liquid were smaller than those of the TEPA-TFSA ionic liquid in the whole temperature, regardless of the lower viscosity of the TEPP-TFSA ionic liquid, and results with high precision were obtained using Walden's law. PMID:19421555

  19. Transport properties, optical response and slow dynamics of ionic liquids

    NASA Astrophysics Data System (ADS)

    Hu, Zhonghan

    In this thesis, we report on our studies of the transport properties, optical response and slow dynamical nature of novel room temperature ionic liquids. Using computer simulations we have demonstrated that the diffusive dynamics of these systems is in many ways analogous to that of other glassy or supercooled liquids. These solvents show non-Gaussian rotational and translational diffusion which have a temporal extent on the order of nanoseconds at room temperature. Our study of their response upon application of an external mechanical perturbation shows that even for systems with a box length as large as 0.03 microns the viscosities computed from perturbation wavenumbers compatible with this box size have not yet reached the hydrodynamic limit. We found these systems to behave in a non-Newtonian fashion and we also observe a clear break down of linear response theory on the nano- or sub-micrometer scale. Upon photoexcitation of an organic probe with lifetime shorter than the reorganization timescale in these ionic liquids, (which is quite long on the order of several nanoseconds at least), the emission spectrum is absorption wavelength dependent. Our computer simulations rationalized this observation in terms of local solvent environment around individual subensemble probe members. Excitation of different solute molecules in the liquid gives rise to site-specific optical responses. We revealed that the origin of this excitation wavelength dependence is the existence of persistent excited-state environments that do not get solvent averaged on a time scale relevant to fluorescence. The computed time resolved fluorescence spectra show that the full loss of correlation between absorption and emission frequencies for probes in room temperature ionic liquids occur on a time scale of nanoseconds. One of the most interesting features of ionic liquids is their uncommonly large range of dynamical time scales which in turn makes some of their properties to be quite different from that of most other conventional solvents. We hope that our understanding of these phenomena will be useful in the future in the development of tools to harness their potential to control the outcome of chemical and photo-chemical reactions.

  20. Application of Ionic Liquids in High Performance Reversed-Phase Chromatography

    PubMed Central

    Wang, Ye; Tian, Minglei; Bi, Wentao; Row, Kyung Ho

    2009-01-01

    Ionic liquids, considered “green” chemicals, are widely used in many areas of analytical chemistry due to their unique properties. Recently, ionic liquids have been used as a kind of novel additive in separation and combined with silica to synthesize new stationary phase as separation media. This review will focus on the properties and mechanisms of ionic liquids and their potential applications as mobile phase modifier and surface-bonded stationary phase in reversed-phase high performance liquid chromatography (RP-HPLC). Ionic liquids demonstrate advantages and potential in chromatographic field. PMID:19582220

  1. Polysiloxane ionic liquids as good solvents for β-cyclodextrin-polydimethylsiloxane polyrotaxane structures

    PubMed Central

    Marangoci, Narcisa; Ardeleanu, Rodinel; Ursu, Laura; Ibanescu, Constanta; Danu, Maricel; Simionescu, Bogdan C

    2012-01-01

    Summary An ionic liquid based on polydimethylsiloxane with imidazolium salt brushes was synthesized as a good solvent for β-cyclodextrin-polydimethylsiloxane rotaxane. As expected the PDMS-Im/Br ionic liquid had a liquid-like non-Newtonian behavior with rheological parameters dependent on frequency and temperature. The addition of rotaxane to the ionic liquid strengthened the non-Newtonian character of the sample and a type of stable liquid-like network was formed due to the contribution of weak ionic interactions. The structure is stable in the 20 to 80 °C domain as proved by the oscillatory and rotational rheological tests. PMID:23209493

  2. Partition coefficients of organic compounds in new imidazolium based ionic liquids using inverse gas chromatography.

    PubMed

    Revelli, Anne-Laure; Mutelet, Fabrice; Jaubert, Jean-Noël

    2009-06-01

    Partition coefficients of organic compounds in four ionic liquids: 1-ethanol-3-methylimidazolium tetrafluoroborate, 1-ethanol-3-methylimidazolium hexafluorophosphate, 1,3-dimethylimidazolium dimethylphosphate and 1-ethyl-3-methylimidazolium diethylphosphate were measured using inverse gas chromatography from 303.3 to 332.55K. The influence of gas-liquid and gas-solid interfacial adsorption of different solutes on ionic liquids was also studied. Most of the polar solutes were retained largely by partition while light hydrocarbons were retained predominantly by interfacial adsorption on the ionic liquids studied in this work. The solvation characteristics of the ionic liquids were evaluated using the Abraham solvation parameter model. PMID:19414174

  3. New frontiers in materials science opened by ionic liquids.

    PubMed

    Torimoto, Tsukasa; Tsuda, Tetsuya; Okazaki, Ken-ichi; Kuwabata, Susumu

    2010-03-19

    Ionic liquids (ILs) including ambient-temperature molten salts, which exist in the liquid state even at room temperature, have a long research history. However, their applications were once limited because ILs were considered as highly moisture-sensitive solvents that should be handled in a glove box. After the first synthesis of moisture-stable ILs in 1992, their unique physicochemical properties became known in all scientific fields. ILs are composed solely of ions and exhibit several specific liquid-like properties, e.g., some ILs enable dissolution of insoluble bio-related materials and the use as tailor-made lubricants in industrial applications under extreme physicochemical conditions. Hybridization of ILs and other materials provides quasi-solid materials, which can be used to fabricate highly functional devices. ILs are also used as reaction media for electrochemical and chemical synthesis of nanomaterials. In addition, the negligible vapor pressure of ILs allows the fabrication of electrochemical devices that are operated under ambient conditions, and many liquid-vacuum technologies, such as X-ray photoelectron spectroscopy (XPS) analysis of liquids, electron microscopy of liquids, and sputtering and physical vapor deposition onto liquids. In this article, we review recent studies on ILs that are employed as functional advanced materials, advanced mediums for materials production, and components for preparing highly functional materials. PMID:20437507

  4. Mixtures of amino-acid based ionic liquids and water.

    PubMed

    Chaban, Vitaly V; Fileti, Eudes Eterno

    2015-09-01

    New ionic liquids (ILs) involving increasing numbers of organic and inorganic ions are continuously being reported. We recently developed a new force field; in the present work, we applied that force field to investigate the structural properties of a few novel imidazolium-based ILs in aqueous mixtures via molecular dynamics (MD) simulations. Using cluster analysis, radial distribution functions, and spatial distribution functions, we argue that organic ions (imidazolium, deprotonated alanine, deprotonated methionine, deprotonated tryptophan) are well dispersed in aqueous media, irrespective of the IL content. Aqueous dispersions exhibit desirable properties for chemical engineering. The ILs exist as ion pairs in relatively dilute aqueous mixtures (10 mol%), while more concentrated mixtures feature a certain amount of larger ionic aggregates. PMID:26277480

  5. A Triphasic Sorting System: Coordination Cages in Ionic Liquids.

    PubMed

    Grommet, Angela B; Bolliger, Jeanne L; Browne, Colm; Nitschke, Jonathan R

    2015-12-01

    Host-guest chemistry is usually carried out in either water or organic solvents. To investigate the utility of alternative solvents, three different coordination cages were dissolved in neat ionic liquids. By using (19) F NMR spectroscopy to monitor the presence of free and bound guest molecules, all three cages were demonstrated to be stable and capable of encapsulating guests in ionic solution. Different cages were found to preferentially dissolve in different phases, allowing for the design of a triphasic sorting system. Within this system, three coordination cages, namely Fe4 L6 2, Fe8 L12 3, and Fe4 L4 4, each segregated into a distinct layer. Upon the addition of a mixture of three different guests, each cage (in each separate layer) selectively bound its preferred guest. PMID:26494225

  6. Graphene/Ionic Liquid Composite Films and Ion Exchange

    PubMed Central

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-01-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602

  7. Novel thiosalicylate-based ionic liquids for heavy metal extractions.

    PubMed

    Leyma, Raphlin; Platzer, Sonja; Jirsa, Franz; Kandioller, Wolfgang; Krachler, Regina; Keppler, Bernhard K

    2016-08-15

    This study aims to develop novel ammonium and phosphonium ionic liquids (ILs) with thiosalicylate (TS) derivatives as anions and evaluate their extracting efficiencies towards heavy metals in aqueous solutions. Six ILs were synthesized, characterized, and investigated for their extracting efficacies for cadmium, copper, and zinc. Liquid-liquid extractions of Cu, Zn, or Cd with ILs after 1-24h using model solutions (pH 7; 0.1M CaCl2) were assessed using flame atomic absorption spectroscopy (F-AAS). Phosphonium-based ILs trihexyltetradecylphosphonium 2-(propylthio)benzoate [P66614][PTB] and 2-(benzylthio)benzoate [P66614][BTB] showed best extraction efficiency for copper and cadmium, respectively and zinc was extracted to a high degree by [P66614][BTB] exclusively. PMID:27131456

  8. Low-melting mixtures based on choline ionic liquids.

    PubMed

    Rengstl, Doris; Fischer, Veronika; Kunz, Werner

    2014-11-01

    In this article a strategy is proposed for the design of low toxic, room temperature liquid low-melting mixtures (LMMs) which are entirely composed of natural materials. From literature it is well known that, in general, deep eutectic solvents based on choline chloride and dicarboxylic acids are LMMs, but not liquids at room temperature, with one exception: a 1 : 1 molar mixture of malonic acid and choline chloride. Therefore, the starting point of this study was the decrease of the melting point of one of the components, namely the dicarboxylic acid, which is succinic, glutaric or adipic acid. For this purpose, one of the two protons of the acidic group was exchanged by a bulky unsymmetrical choline cation. The resulting ionic liquids (ILs) were still solid at room temperature, but have a reduced melting temperature compared to the corresponding acids. In the second step, mixtures of these ILs with choline chloride were prepared. It turned out that choline glutarate-choline chloride mixtures are liquids at room temperature at compositions containing 95-98 wt% of choline glutarate. Finally, urea was added as another hydrogen bond donor. Density, conductivity and viscosity measurements were performed for all obtained mixtures. Moreover, a Walden plot was drawn which indicates that all mixtures are liquids with fully dissociated ions moving independently. Therefore, they are considered as "good" ionic liquids and, thus, for example they can be used to exchange more toxic or less biodegradable ILs in application processes. A brief outlook containing application possibilities is given. It is demonstrated that choline dodecylsulfate is readily soluble in these mixtures, forming aggregates in the LMM at temperatures exceeding 55 °C. PMID:25242504

  9. A novel ionic liquid-tolerant Fusarium oxysporum BN secreting ionic liquid-stable cellulase: consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid.

    PubMed

    Xu, Jiaxing; Wang, Xinfeng; Hu, Lei; Xia, Jun; Wu, Zhen; Xu, Ning; Dai, Benlin; Wu, Bin

    2015-04-01

    In this study, microbial communities from chemicals polluted microhabitats were cultured with the addition of imidazolium-based ionic liquid (IL) to enrich for IL-tolerant microbes. A strain of Fusarium oxysporum BN producing cellulase from these enrichments was capable of growing in 10% (w/v) 1-ethyl-3-methylimidazolium phosphinate, much higher than the normal IL concentrations in the lignocellulose regenerated from ILs. Cellulase secreted by the strain showed high resistance to ILs based on phosphate and sulfate radicals, evidencing of a high conformational stability in relevant media. Gratifyingly, F. oxysporum BN can directly convert IL-pretreated rice straw to bioethanol via consolidated bioprocessing (I-CBP). At optimum fermentation condition, a maximum ethanol yield of 0.125 g ethanol g(-1) of rice straw was finally obtained, corresponding to 64.2% of the theoretical yield. PMID:25625459

  10. High-throughput screening for ionic liquids dissolving (ligno-)cellulose.

    PubMed

    Zavrel, Michael; Bross, Daniela; Funke, Matthias; Büchs, Jochen; Spiess, Antje C

    2009-05-01

    The recalcitrance of lignocellulosic biomass poses a major challenge for its sustainable and cost-effective utilization. Therefore, an efficient pretreatment is decisive for processes based on lignocellulose. A green and energy-efficient pretreatment could be the dissolution of lignocellulose in ionic liquids. Several ionic liquids were identified earlier which are capable to dissolve (ligno-)cellulose. However, due to their multitude and high costs, a high-throughput screening on small scale is essential for the determination of the most efficient ionic liquid. In this contribution two high-throughput systems are presented based on extinction or scattered light measurements. Quasi-continuous dissolution profiles allow a direct comparison of up to 96 ionic liquids per experiment in terms of their dissolution kinetics. The screening results indicate that among the ionic liquids tested EMIM Ac is the most efficient for dissolving cellulose. Moreover, it was observed that AMIM Cl is the most effective ionic liquid for dissolving wood chips. PMID:19157872

  11. Can ionic liquids be used as templating agents for controlled design of uranium-containing nanomaterials?

    SciTech Connect

    Visser, Ann E. Bridges, Nicholas J.; Tosten, Michael H.

    2013-09-01

    Graphical abstract: - Highlights: • Uranium oxides nanoparticles prepared using ionic liquids. • IL cation alkyl length impacts oxide morphology. • Low temperature UO{sub 2} synthesis. - Abstract: Nanostructured uranium oxides have been prepared in ionic liquids as templating agents. Using the ionic liquids as reaction media for inorganic nanomaterials takes advantage of the pre-organized structure of the ionic liquids which in turn controls the morphology of the inorganic nanomaterials. Variation of ionic liquid cation structure was investigated to determine the impact on the uranium oxide morphologies. For two ionic liquid cations, increasing the alkyl chain length increases the aspect ratio of the resulting nanostructured oxides. Understanding the resulting metal oxide morphologies could enhance fuel stability and design.

  12. Room temperature ionic liquids and their mixtures: potential pharmaceutical solvents.

    PubMed

    Mizuuchi, H; Jaitely, V; Murdan, S; Florence, A T

    2008-04-23

    Room temperature ionic liquids (RTILs) are organic salts which are liquids at ambient temperature. Composed of relatively large asymmetric organic cations and inorganic or organic anions, they have generated interest as 'green' solvents. Here we report on the solvency of alkyl imidazolium salts (PF(6)(-)Br(-)Cl(-)) for poorly water-soluble model drugs, albendazole and danazol, indicating their potential application as pharmaceutical solvents/cosolvents. The solubility of albendazole, for example, is increased by more than 10,000 times by 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF(6)(-)). Ionic liquids can be water-miscible or water-immiscible. The aqueous miscibility of a poorly water-miscible RTIL such as of [bmim]PF(6)(-) can be improved by the inclusion of a second more miscible RTIL (e.g. 1-hexyl-3-methylimidazolium bromide ([hmim]Br(-))). The extent of improvement in water miscibility was found to correlate with the hydrophilicity of the second RTIL. This ability to modulate RTILs' aqueous miscibility increases their usefulness as pharmaceutical solvents. PMID:18291630

  13. Development of Ionic Liquid Monopropellants for In-Space Propulsion

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Osborne, Robin; Drake, Gregory W.

    2005-01-01

    A family of new, low toxicity, high energy monopropellants is currently being evaluated at NASA Marshall Space Flight Center for in-space rocket engine applications such as reaction control engines. These ionic liquid monopropellants, developed in recent years by the Air Force Research Laboratory, could offer system simplification, less in-flight thermal management, and reduced handling precautions, while increasing propellant energy density as compared to traditional storable in-space propellants such as hydrazine and nitrogen tetroxide. However, challenges exist in identifying ignition schemes for these ionic liquid monopropellants, which are known to burn at much hotter combustion temperatures compared to traditional monopropellants such as hydrazine. The high temperature combustion of these new monopropellants make the use of typical ignition catalyst beds prohibitive since the catalyst cannot withstand the elevated temperatures. Current research efforts are focused on monopropellant ignition and burn rate characterization, parameters that are important in the fundamental understanding of the monopropellant behavior and the eventual design of a thruster. Laboratory studies will be conducted using alternative ignition techniques such as laser-induced spark ignition and hot wire ignition. Ignition delay, defined as the time between the introduction of the ignition source and the first sign of light emission from a developing flame kernel, will be measured using Schlieren visualization. An optically-accessible liquid monopropellant burner will be used to determine propellant burn rate as a function of pressure and initial propellant temperature. The burn rate will be measured via high speed imaging through the chamber s windows.

  14. Electrochemical transistors with ionic liquids for enzymatic sensing

    NASA Astrophysics Data System (ADS)

    Fraser, Kevin J.; Yang, Sang Yoon; Cicoira, Fabio; Curto, Vincenzo F.; Byrne, Robert; Benito-Lopez, Fernando; Khodagholy, Dion; Owens, Róisín M.; Malliaras, George G.; Diamond, Dermot

    2011-10-01

    Over the past decade conducting polymer electrodes have played an important role in bio-sensing and actuation. Recent developments in the field of organic electronics have made available a variety of devices that bring unique capabilities at the interface with biology. One example is organic electrochemical transistors (OECTs) that are being developed for a variety of bio-sensing applications, including the detection of ions, and metabolites, such as glucose and lactate. Room temperature ionic liquids (RTILs) are organic salts, which are liquid at ambient temperature. Their nonvolatile character and thermal stability makes them an attractive alternative to conventional organic solvents. Here we report an enzymatic sensor based on an organic electro-chemical transistor with RTIL's as an integral part of its structure and as an immobilization medium for the enzyme and the mediator. Further investigation shows that these platforms can be incorporated into flexible materials such as carbon cloth and can be utilized for bio-sensing. The aim is to incorporate the overall platform in a wearable sensor to improve athlete performance with regards to training. In this manuscript an introduction to ionic liquids (ILs), IL - enzyme mixtures and a combination of these novel materials being used on OECTs are presented.

  15. Electronic functions of solid-to-liquid interfaces of organic semiconductor crystals and ionic liquid

    NASA Astrophysics Data System (ADS)

    Takeya, J.

    2008-10-01

    The environment of surface electrons at 'solid-to-liquid' interfaces is somewhat extreme, subjected to intense local electric fields or harsh chemical pressures that high-density ionic charge or polarization of mobile molecules create. In this proceedings, we argue functions of electronic carriers generated at the surface of organic semiconductor crystals in response to the local electric fields in the very vicinity of the interface to ionic liquid. The ionic liquids (ILs), or room temperature molten salts, are gaining considerable interest in the recent decade at the prospect of nonvolatile 'green solvents', with the development of chemically stable and nontoxic compounds. Moreover, such materials are also applied to electrolytes for lithium ion batteries and electric double-layer (EDL) capacitors. Our present solid-to-liquid interfaces of rubrene single crystals and ionic liquids work as fast-switching organic field-effect transistors (OFETs) with the highest transconductance, i.e. the most efficient response of the output current to the input voltage, among the OFETs ever built.

  16. Thermodynamic studies of ionic hydration and interactions for amino acid ionic liquids in aqueous solutions at 298.15 K.

    PubMed

    Dagade, Dilip H; Madkar, Kavita R; Shinde, Sandeep P; Barge, Seema S

    2013-01-31

    Amino acid ionic liquids are a special class of ionic liquids due to their unique acid-base behavior, biological significance, and applications in different fields such as templates in synthetic chemistry, stabilizers for biological macromolecules, etc. The physicochemical properties of these ionic liquids can easily be altered by making the different combinations of amino acids as anion along with possible cation modification which makes amino acid ionic liquids more suitable to understand the different kinds of molecular and ionic interactions with sufficient depth so that they can provide fruitful information for a molecular level understanding of more complicated biological processes. In this context, volumetric and osmotic coefficient measurements for aqueous solutions containing 1-ethyl-3-methylimidazolium ([Emim]) based amino acid ionic liquids of glycine, alanine, valine, leucine, and isoleucine are reported at 298.15 K. From experimental osmotic coefficient data, mean molal activity coefficients of ionic liquids were estimated and analyzed using the Debye-Hückel and Pitzer models. The hydration numbers of ionic liquids in aqueous solutions were obtained using activity data. Pitzer ion interaction parameters are estimated and compared with other electrolytes reported in the literature. The nonelectrolyte contribution to the aqueous solutions containing ionic liquids was studied by calculating the osmotic second virial coefficient through an application of the McMillan-Mayer theory of solution. It has been found that the second osmotic virial coefficient which includes volume effects correlates linearly with the Pitzer ion interaction parameter estimated independently from osmotic data as well as the hydrophobicity of ionic liquids. The enthalpy-entropy compensation effect, explained using the Starikov-Nordén model of enthalpy-entropy compensation, and partial molar entropy analysis for aqueous [Emim][Gly] solutions are made by using experimental Gibb's free energy data and literature enthalpy data. This study highlights that the hydrophobic interaction persists even in the limit of infinite dilution where the hydration effects are usually dominant, implying importance of hydrophobic hydration. Analysis of the results further shows that the hydration of amino acid ionic liquids occurs through the cooperative H-bond formation with the kosmotropic effect in contrast to the usual inorganic salts or hydrophobic salts like tetraalkylammonium halides. PMID:23293839

  17. Gelatin-ionic liquid based platform for glucose detection.

    PubMed

    Sharma, Anshu; Rawat, Kamla; Solanki, Pratima R; Bohidar, H B

    2015-01-01

    Herein, we have fabricated a novel platform consisting of gelatin B in ionic liquid [1-ethyl- 3-methylimidazolium chloride [C2mim][Cl] (ionic liquid, IL)] formed ionogels (Ig) by dissolution method and used it for glucose detection. The ionogels were deposited onto indium tin oxide (ITO) coated glass plate using drop casting technique. Glucose oxidase (GOx) was selected as a model enzyme to investigate its interaction with Ig/ITO electrode using electrochemical and optical methods. Structural and morphological studies of the Ig/ITO electrode were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and cyclic voltmmetry before and after GOx immobilization. It was found that [C2mim][Cl] enhanced electrocatalytic behaviour of the fabricated electrode which provided electron transfer rate constant as Ks ≈ 0.113 s(-1). Response study of GOx/Ig/ITO bioelectrode as a function of glucose concentration was monitored. These gelatin-ionic liquid based bioelectrodes showed following results obtained from electrochemical technique linearity ≈ 1-20 mM, and low value of Michaelis-Menten constant, Km ≈ 0.174 mM with sensitivity ≈ 4.6µA mM(-1) cm(-2). In contrast, the optical detection of glucose exhibited linearity in the range of 6-20 mM, value of Km ≈ 3.8 mM with sensitivity 6.76 x 10(-3) Abs/mM cm(2). This clearly indicated that the prepared ionogel based electrodes will provide a promising platform for glucose detection. PMID:25858131

  18. Nanostructure of the Ionic Liquid-Graphite Stern Layer.

    PubMed

    Elbourne, Aaron; McDonald, Samila; Voïchovsky, Kislon; Endres, Frank; Warr, Gregory G; Atkin, Rob

    2015-07-28

    Ionic liquids (ILs) are attractive solvents for devices such as lithium ion batteries and capacitors, but their uptake is limited, partially because their Stern layer nanostructure is poorly understood compared to molecular solvents. Here, in situ amplitude-modulated atomic force microscopy has been used to reveal the Stern layer nanostructure of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIm TFSI)-HOPG (highly ordered pyrolytic graphite) interface with molecular resolution. The effect of applied surface potential and added 0.1 wt/wt % Li TFSI or EMIm Cl on ion arrangements is probed between ±1 V. For pure EMIm TFSI at open-circuit potential, well-defined rows are present on the surface formed by an anion-cation-cation-anion (A-C-C-A) unit cell adsorbed with like ions adjacent. As the surface potential is changed, the relative concentrations of cations and anions in the Stern layer respond, and markedly different lateral ion arrangements ensue. The changes in Stern layer structure at positive and negative potentials are not symmetrical due to the different surface affinities and packing constraints of cations and anions. For potentials outside ±0.4 V, images are featureless because the compositional variation within the layer is too small for the AFM tip to detect. This suggests that the Stern layer is highly enriched in either cations or anions (depending on the potential) oriented upright to the surface plane. When Li(+) or Cl(-) is present, some Stern layer ionic liquid cations or anions (respectively) are displaced, producing starkly different structures. The Stern layer structures elucidated here significantly enhance our understanding of the ionic liquid electrical double layer. PMID:26051040

  19. Imidazolium-based ionic liquids grafted on solid surfaces.

    PubMed

    Xin, Bingwei; Hao, Jingcheng

    2014-01-01

    Supported ionic liquids (SILs), which refer to ionic liquids (ILs) immobilized on supports, are among the most important derivatives of ILs. The immobilization process of ILs can transfer their desired properties to substrates. Combination of the advantages of ILs with those of support materials will derive novel performances while retaining properties of both moieties. SILs have been widely applied in almost all of fields involving ILs, and have brought about drastic expansion of the ionic liquid area. As green media in organic catalytic reactions, based on utilizing the ability of ILs to stabilize the catalysts, they have many advantages over free ILs, including avoiding the leaching of ILs, reducing their amount, and improving the recoverability and reusability of both themselves and catalysts. This has critical significance from both environmental and economical points of view. As novel functional materials in surface science and material chemistry, SILs are ideal surface modifying agents. They can modify and improve the properties of solids, such as wettability, lubricating property, separation efficiency and electrochemical response. With the achievements in the field of ILs, using magnetic nanoparticles (MNPs) to SILs has drawn increasing attention in catalytic reactions and separation technologies, and achieved substantial progress. The combination of MNPs and ILs renders magnetic SILs, which exhibit the unique properties of ILs as well as facile separation by an external magnetic field. In this article, we focus on imidazolium-based ILs covalently grafted to non-porous and porous inorganic materials. The excellent stability and durability of this kind of SILs offer a great advantage compared with free ILs and IL films physically adsorbed on substrates without covalent bonds. Including examples from our own research, we overview mainly the applications and achievements of covalent-linked SILs in catalytic reactions, surface modification, separation technologies and electrochemistry. PMID:25000475

  20. NMR Characterization of Ionicity and Transport Properties for a Series of Diethylmethylamine Based Protic Ionic Liquids.

    PubMed

    Davidowski, Stephen K; Thompson, Forrest; Huang, Wei; Hasani, Mohammad; Amin, Samrat A; Angell, C Austen; Yarger, Jeffery L

    2016-05-12

    The ionicity and transport properties of a series of diethylmethylamine (DEMA) based protic ionic liquids (PILs) were characterized, principally utilizing nuclear magnetic resonance (NMR) spectroscopy. PILs were formed via the protonation of DEMA by an array of acids spanning a large range of acidities. A correlation between the (1)H chemical shift of the exchangeable proton and the acidity of the acid used for the synthesis of the PIL was observed. The gas phase proton affinity of the acid was found to be a better predictor of the extent of proton transfer than the commonly used aqueous ΔpKa. Pulsed field gradient (PFG) NMR was used to determine the diffusivity of the exchangeable proton in a subset of the PILs. The exchangeable proton diffuses with the acid if the PIL is synthesized with a weak acid, and with the base if a strong acid is used. The ionicity of the PILs was characterized using the Walden analysis and by comparing to the ideal Nernst-Einstein conductivity predicted from the (1)H PFG-NMR results. PMID:27088704

  1. Coordinating Chiral Ionic Liquids: Design, Synthesis, and Application in Asymmetric Transfer Hydrogenation under Aqueous Conditions

    PubMed Central

    Vasiloiu, Maria; Gaertner, Peter; Zirbs, Ronald; Bica, Katharina

    2015-01-01

    Hydrophilic coordinating chiral ionic liquids with an amino alcohol substructure were developed and efficiently applied to the asymmetric reduction of ketones. Their careful design and adaptability to the desired reaction conditions allow for these chiral ionic liquids to be used as the sole source of chirality in a ruthenium-catalyzed transfer hydrogenation reaction of aromatic ketones. When used in this reaction system, these chiral ionic liquids afforded excellent yields and high enantioselectivities. PMID:26279638

  2. Synthesis and Characterization of Thiazolium-Based Room Temperature Ionic Liquids for Gas Separations

    SciTech Connect

    Hillesheim, PC; Mahurin, SM; Fulvio, PF; Yeary, JS; Oyola, Y; Jiang, DE; Dai, S

    2012-09-05

    A series of novel thiazolium-bis(triflamide) based ionic liquids has been synthesized and characterized. Physicochemical properties of the ionic liquids such as thermal stability, phase transitions, and infrared spectra were analyzed and compared to the imidazolium-based congeners. Several unique classes of ancillary substitutions are examined with respect to impacts on overall structure, in addition to their carbon dioxide absorption properties in supported ionic-liquid membranes for gas separation.

  3. Hydrogenation of CO2 to formic acid promoted by a diamine-functionalized ionic liquid.

    PubMed

    Zhang, Zhaofu; Hu, Suqin; Song, Jinliang; Li, Wenjing; Yang, Guanying; Han, Buxing

    2009-01-01

    Amines to an end: The basic diamine-functionalized ionic liquid 1,3-di(N,N-dimethylaminoethyl)-2-methylimidazolium trifluoromethanesulfonate was prepared and used in the hydrogenation of CO(2) to formic acid. One mole of the ionic liquid coordinates two moles of formic acid to promote the reaction. Both the ionic liquid and catalyst can be reused directly after their separation from the formic acid produced. PMID:19266516

  4. Weighing the surface charge of an ionic liquid

    NASA Astrophysics Data System (ADS)

    Hjalmarsson, Nicklas; Wallinder, Daniel; Glavatskih, Sergei; Atkin, Rob; Aastrup, Teodor; Rutland, Mark W.

    2015-09-01

    Electrochemical quartz crystal microbalance has been used to measure changes in the composition of the capacitive electrical double layer for 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate, an ionic liquid, in contact with a gold electrode surface as a function of potential. The mass difference between the cation and anion means that the technique can effectively ``weigh'' the surface charge accurately with high temporal resolution. This reveals quantitatively how changing the potential alters the ratio of cations and anions associated with the electrode surface, and thus the charge per unit area, as well as the kinetics associated with these interfacial processes. The measurements reveal that it is diffusion of co-ions into the interfacial region rather than expulsion of counterions that controls the relaxation. The measured potential dependent double layer capacitance experimentally validates recent theoretical predictions for counterion overscreening (low potentials) and crowding (high potentials) at electrode surfaces. This new capacity to quantitatively measure ion composition is critical for ionic liquid applications ranging from batteries, capacitors and electrodeposition through to boundary layer structure in tribology, and more broadly provides new insight into interfacial processes in concentrated electrolyte solutions.Electrochemical quartz crystal microbalance has been used to measure changes in the composition of the capacitive electrical double layer for 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate, an ionic liquid, in contact with a gold electrode surface as a function of potential. The mass difference between the cation and anion means that the technique can effectively ``weigh'' the surface charge accurately with high temporal resolution. This reveals quantitatively how changing the potential alters the ratio of cations and anions associated with the electrode surface, and thus the charge per unit area, as well as the kinetics associated with these interfacial processes. The measurements reveal that it is diffusion of co-ions into the interfacial region rather than expulsion of counterions that controls the relaxation. The measured potential dependent double layer capacitance experimentally validates recent theoretical predictions for counterion overscreening (low potentials) and crowding (high potentials) at electrode surfaces. This new capacity to quantitatively measure ion composition is critical for ionic liquid applications ranging from batteries, capacitors and electrodeposition through to boundary layer structure in tribology, and more broadly provides new insight into interfacial processes in concentrated electrolyte solutions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03965g

  5. Rapid Preparation of Silsesquioxane-Based Ionic Liquids.

    PubMed

    Li, Liguo; Liu, Hongzhi

    2016-03-24

    Three new hybrid ionic liquids (ILs) based on cage silsesquioxane (SQ) were rapidly prepared in high yields from octa(mercaptopropyl)silsesquioxane and 1-allyl-3-methylimidazolium salts (Br(-) , BF4 (-) , PF6 (-) ) through the photochemical thiol-ene reaction. These SQ-based ILs exhibited low glass transition temperatures and good thermal stability. The unique amphiphilic nature of these hybrid ILs cause them to self-assemble into perfect vesicles with "yolk-shell" structures, in which cages formed the "yolk" due to their aggregation and outer anions formed the "shell". PMID:26864313

  6. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis

    SciTech Connect

    Zhao, Hua; Jones, Cecil L; Baker, Gary A; Xia, Shuqian; Olubajo, Olarongbe; Person, Vernecia

    2009-01-01

    The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs)were found capable of dissolving more than 10 wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904 910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432 2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137 140, 407 421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and nonvolatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. 70 C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58 75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result, regenerated Avicel cellulose, filter paper and cottonwere hydrolyzed 2 10 times faster than the respective untreated celluloses. A complete hydrolysis of Avicel cellulose could be achieved in 6 h given the Trichoderma reesei cellulase/substrate ratio (w/w) of 3:20 at 50 C. In addition,we observed that cellulase is more thermally stable (up to 60 C) in the presence of regenerated cellulose. Furthermore, our systematic studies suggest that the presence of various ILs during the hydrolysis induced different degrees of cellulase inactivation. Therefore, a thorough removal of IL residues after cellulose regeneration is highly recommended, and a systematic investigation on this subject is much needed.

  7. Galvanism of continuous ionic liquid flow over graphene grids

    NASA Astrophysics Data System (ADS)

    He, Yijia; Lao, Junchao; Yang, Tingting; Li, Xiao; Zang, Xiaobei; Li, Xinming; Zhu, Miao; Chen, Qiao; Zhong, Minlin; Zhu, Hongwei

    2015-08-01

    Flow-induced voltage generation on graphene has attracted great attention, but harvesting voltage by ionic liquid continuously flowing along graphene at macro-scale is still a challenge. In this work, we design a network structure of graphene grids (GG) woven by crisscrossed graphene micron-ribbons. The structure is effective in splitting the continuous fluid into "droplets" to generate consistent voltage using the mechanism of electrochemical energy generation. Key parameters such as flow rate, mesh number of GG, and slope angle are optimized to obtain maximum voltage in energy generation. The results suggest great potential of this graphene-based generator for future applications in energy harvesting.

  8. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis.

    PubMed

    Zhao, Hua; Jones, Cecil L; Baker, Gary A; Xia, Shuqian; Olubajo, Olarongbe; Person, Vernecia N

    2009-01-01

    The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs) were found capable of dissolving more than 10wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904-910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432-2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137-140, 407-421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and non-volatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. approximately 70 degrees C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58-75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result, regenerated Avicel((R)) cellulose, filter paper and cotton were hydrolyzed 2-10 times faster than the respective untreated celluloses. A complete hydrolysis of Avicel((R)) cellulose could be achieved in 6h given the Trichoderma reesei cellulase/substrate ratio (w/w) of 3:20 at 50 degrees C. In addition, we observed that cellulase is more thermally stable (up to 60 degrees C) in the presence of regenerated cellulose. Furthermore, our systematic studies suggest that the presence of various ILs during the hydrolysis induced different degrees of cellulase inactivation. Therefore, a thorough removal of IL residues after cellulose regeneration is highly recommended, and a systematic investigation on this subject is much needed. PMID:18822323

  9. Doubly thermo-responsive copolymers in ionic liquid.

    PubMed

    Nguyen, H H; El Ezzi, M; Mingotaud, C; Destarac, M; Marty, J-D; Lauth-de Viguerie, N

    2016-04-01

    We report the behaviour of thermoresponsive block copolymers of n-butyl acrylate and N-alkyl acrylamides in [C2mim][NTf2]. Poly(N-isopropylacrylamide) exhibits an upper critical solution temperature in [C2mim][NTf2] whereas poly(n-butyl acrylate) has a lower critical solution temperature. Consequently, these polymers exhibit double thermo-responsiveness correlated with the macromolecular structure. Moreover, a switching from micellar to reverse micellar structures was induced by a change in temperature. This property enables the development of reversible shuttles between ionic liquids and water. PMID:26931173

  10. Analysis of mono- and oligosaccharides in ionic liquid containing matrices.

    PubMed

    Wahlström, Ronny; Rovio, Stella; Suurnäkki, Anna

    2013-05-24

    Ionic liquids (ILs), that is, salts with melting points <100°C, have recently attracted a lot of attention in biomass processing due to their ability to dissolve lignocellulosics. In this work, we studied how two imidazolium-based, hydrophilic, cellulose dissolving ionic liquids 1,3-dimethylimidazolium dimethylphosphate [DMIM]DMP and 1-ethyl-3-methylimidazolium acetate [EMIM]AcO affect the usually employed analytical methods for mono- and oligosaccharides, typical products from hydrolytic treatments of biomass. HPLC methods were severely hampered by the presence of ILs with loss of separation power and severe baseline problems, making their use for saccharide quantification extremely challenging. Problems in DNS photometric assay and chromatography were also encountered at high ionic liquid concentrations and many capillary electrophoresis (CE) methods did not allow an efficient analysis of saccharides in these matrices. In this paper we describe an optimized CE method with pre-column derivatization for the qualitative and quantitative analysis of mono- and oligosaccharides in sample matrices containing moderate (20-40% (v/v)) concentrations of ILs. The IL content and type in the sample matrix was found to affect both peak shape and quantification parameters. Generally, the presence of high IL concentrations (≥20% (v/v)) had a dampening effect on the detection of the analytes. IL in lower concentrations of <20% (v/v) was, however, found to improve peak shape and/or separation in some cases. The optimized CE method has good sensitivity in moderate concentrations of the ionic liquids used, with limits of detection of 5mg/L for cellooligomers up to the size of cellotetraose and 5-20mg/L for cellopentaose and cellohexaose, depending on the matrix. The method was used for analysing the action of a commercial β-glucosidase in ILs and for analysing saccharides in the IL containing hydrolysates from the hydrolysis of microcrystalline cellulose with Trichoderma reesei endoglucanase Cel5A. According to the results, [DMIM]DMP and [EMIM]AcO] showed clear differences in enzyme inactivation. PMID:23583452

  11. An ionic liquid process for mercury removal from natural gas.

    PubMed

    Abai, Mahpuzah; Atkins, Martin P; Hassan, Amiruddin; Holbrey, John D; Kuah, Yongcheun; Nockemann, Peter; Oliferenko, Alexander A; Plechkova, Natalia V; Rafeen, Syamzari; Rahman, Adam A; Ramli, Rafin; Shariff, Shahidah M; Seddon, Kenneth R; Srinivasan, Geetha; Zou, Yiran

    2015-05-14

    Efficient scrubbing of mercury vapour from natural gas streams has been demonstrated both in the laboratory and on an industrial scale, using chlorocuprate(II) ionic liquids impregnated on high surface area porous solid supports, resulting in the effective removal of mercury vapour from natural gas streams. This material has been commercialised for use within the petroleum gas production industry, and has currently been running continuously for three years on a natural gas plant in Malaysia. Here we report on the chemistry underlying this process, and demonstrate the transfer of this technology from gram to ton scale. PMID:25722100

  12. High CO2 Solubility, Permeability and Selectivity in Ionic Liquids with the Tetracyanoborate Anion

    SciTech Connect

    Mahurin, Shannon Mark; Hillesheim, Patrick C; Yeary, Joshua S; Jiang, Deen; Dai, Sheng

    2012-01-01

    Five different ionic liquids containing the tetracyanoborate anion were synthesized and evaluated for CO2 separation performance. Measured CO2 solubility values were exceptionally high compared to analogous ionic liquids with different anions and ranged from 0.128 mol L-1 atm-1 to 0.148 mol L-1 atm-1. In addition, CO2 permeability and CO2/N2 selectivity values were measured using a supported ionic liquid membrane architecture and the separations performance of the ionic liquid membranes exceeded the Robeson upper bound. These results establish the distinct potential of the tetracyanoborate, [B(CN)4], anion for the separation of CO2.

  13. Design and Evaluation of Ionic Liquids as Novel CO2 Absorbents

    SciTech Connect

    Edward Maginn

    2007-07-15

    This is the final report for project DE-FG26-04NT42122 'Design and Evaluation of Ionic Liquids as Novel CO{sub 2} Absorbents'. The objective of this 'breakthrough concepts' project was to investigate the feasibility of using ionic liquids for post-combustion CO{sub 2} capture and obtain a fundamental understanding of the solubility of CO{sub 2} and other components present in flue gas in ionic liquids. Our plan was to obtain information on how composition and structure of ionic liquid molecules affected solubility and other important physical properties via two major efforts: synthesis and experimental measurements and molecular simulation. We also planned to perform preliminary systems modeling study to assess the economic viability of a process based on ionic liquids. We accomplished all the milestones and tasks specified in the original proposal. Specifically, we carried out extensive quantum and classical atomistic-level simulations of a range of ionic liquids. These calculations provided detailed information on how the chemical composition of ionic liquids affects physical properties. We also learned important factors that govern CO{sub 2} solubility. Using this information, we synthesized or acquired 33 new ionic liquids. Many of these had never been made before. We carried out preliminary tests on all of these compounds, and more extensive tests on those that looked most promising for CO{sub 2} capture. We measured CO{sub 2} solubility in ten of these ionic liquids. Through our efforts, we developed an ionic liquid that has a CO{sub 2} solubility 2.6 times greater than the 'best' ionic liquid available to us at the start of the project. Moreover, we demonstrated that SO{sub 2} is also extremely soluble in ionic liquids, opening up the possibility of using ionic liquids to remove both SO{sub 2} and CO{sub 2} from flue gas. In collaboration with Trimeric Inc., a preliminary systems analysis was conducted and the results used to help identify physical properties that must be optimized to enable ionic liquids to be cost-competitive for CO{sub 2} capture. It was found that increasing the capacity of the ionic liquids for CO{sub 2} would be important, and that doing so could potentially make ionic liquids more effective than conventional amine solvents.

  14. Ionic liquids as heat transfer fluids: comparison with known systems, possible applications, advantages and disadvantages

    NASA Astrophysics Data System (ADS)

    Chernikova, E. A.; Glukhov, L. M.; Krasovskiy, V. G.; Kustov, L. M.; Vorobyeva, M. G.; Koroteev, A. A.

    2015-08-01

    The practical aspects and prospects of application of ionic liquids as heat transfer fluids are discussed. The physicochemical properties of ionic liquids (heat capacity, thermal conductivity, thermal and radiation stability, viscosity, density, saturated vapour pressure and corrosion activity) are compared with the properties of some commercial heat transfer fluids. The issues of toxicity of ionic liquids are considered. Much attention is paid to known organosilicon heat transfer fluids, which are considered to have much in common with ionic liquids in the set of properties and are used in the review as reference materials. The bibliography includes 132 references.

  15. The Effect of Ionic Liquids on Protein Crystallization and X-ray Diffraction Resolution

    SciTech Connect

    Judge, Russell A.; Takahashi, Sumiko; Longenecker, Kenton L.; Fry, Elizabeth H.; Abad-Zapatero, Cele; Chiu, Mark L.

    2009-09-08

    Ionic liquids exhibit a variety of properties that make them attractive solvents for biomaterials. Given the potential for productive interaction between ionic liquids and biological macromolecules, we investigated the use of ionic liquids as precipitating agents and additives for protein crystallization for six model proteins (lysozyme, catalase, myoglobin, trypsin, glucose isomerase, and xylanase). The ionic liquids produced changes in crystal morphology and mediated significant increases in crystal size in some cases. Crystals grown using ionic liquids as precipitating agents or as additives provided X-ray diffraction resolution similar to or better than that obtained without ionic liquids. Based upon the experiments performed with model proteins, the ionic liquids were used as additives for the crystallization of the poorly diffracting monoclonal antibody 106.3 Fab in complex with the B-type natriuretic peptide (5-13). The ionic liquids improved the crystallization behavior and provided improved diffraction resulting in the determination of the structure. Ionic liquids should be considered as useful additives for the crystallization of other proteins.

  16. Mechanical Properties of Composite SPEEK Polymer Membranes Modified with Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Sprugis, E.; Reinholds, I.; Vaivars, G.

    2015-03-01

    In this work, the mechanical properties of sulphonated polyetheretherketone (SPEEK) membranes impregnated with 3 different ionic liquids (1-butyl-2,3-dimethyl- imidazolium dimethylphosphate ([BMMIM][Me2PO4])), 1,2,3-trimethylimidazolium dimethylphosphate ([MMMIM][Me2PO4])), 1,3-dimethylimidazolium dimethylphosphate ([MMIM][Me2PO4])) have been investigated. Prepared SPEEK/ionic liquid composite membranes are characterized by mechanical testing both in room and elevated temperatures. It was found that the stiffness and tensile strength of composites decreased by increasing the content of ionic liquid and the length of alkyl radical in ionic liquid as well as by increasing the temperature.

  17. Methods of using ionic liquids having a fluoride anion as solvents

    DOEpatents

    Pagoria, Philip; Maiti, Amitesh; Gash, Alexander; Han, Thomas Yong; Orme, Christine; Fried, Laurence

    2011-12-06

    A method in one embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having a fluoride anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of about 90.degree. C. or less during the contacting. A method in another embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having an acetate or formate anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of less than about 90.degree. C. during the contacting.

  18. Adsorption of alcohol from water by poly(ionic liquid)s.

    PubMed

    Bi, Wentao; Tang, Baokun; Row, Kyung Ho

    2013-06-01

    Bioethanol is used widely as a solvent and is considered a potential liquid fuel. Ethanol can be produced from biomass by fermentation, which results in low concentrations of alcohol in water. Conventional distillation is normally used to separate ethanol from water, but it required high energy consumption. Therefore, alternative approaches to this separation are being pursued. This study examined the potential use of poly(ionic liquid)s (PILs) for the extraction and separation of alcohols from the aqueous phase. Hydrophobic PILs were developed and evaluated by the adsorption of ethanol from ethanol/water solutions. All the necessary parameters, such as cations and anions of the ionic liquid, morphology of the polymer and processing conditions, were evaluated. PMID:23010726

  19. Dipolar motions and ionic conduction in an ibuprofen derived ionic liquid.

    PubMed

    Viciosa, M T; Santos, G; Costa, A; Danède, F; Branco, L C; Jordão, N; Correia, N T; Dionísio, M

    2015-10-01

    It was demonstrated that the combination of the almost water insoluble active pharmaceutical ingredient (API) ibuprofen with the biocompatible 1-ethanol-3-methylimidazolium [C2OHMIM] cation of an ionic liquid (IL) leads to a highly water miscible IL-API with a solubility increased by around 5 orders of magnitude. Its phase transformations, as crystallization and glass transition, are highly sensitive to the water content, the latter shifting to higher temperatures upon dehydration. By dielectric relaxation spectroscopy the dynamical behavior of anhydrous [C2OHMIM][Ibu] and with 18.5 and 3% of water content (w/w) was probed from well below the calorimetric glass transition (Tg) up to the liquid state. Multiple reorientational dipolar processes were detected which become strongly affected by conductivity and electrode polarization near above Tg. Therefore [C2OHMIM][Ibu] exhibits mixed behavior of a conventional molecular glass former and an ionic conductor being analysed in this work through conductivity, electrical modulus and complex permittivity. The dominant process, σα-process, originates by a coupling between both charge transport and dipolar mechanisms. The structural relaxation times were derived from permittivity analysis and confirmed by temperature modulated differential scanning calorimetry. The temperature dependence of the β-secondary relaxation is coherent with a Johari-Goldstein (βJG) process as detected in conventional glass formers. PMID:26315452

  20. Ionic liquids as solvents for in situ dispersive liquid-liquid microextraction of DNA.

    PubMed

    Li, Tianhao; Joshi, Manishkumar D; Ronning, Donald R; Anderson, Jared L

    2013-01-11

    Six ionic liquids (ILs) were applied for the first time as solvents in the extraction and preconcentration of deoxyribonucleic acid (DNA) using an in situ dispersive liquid-liquid microextraction (DLLME) approach. The effect of different IL substituents and functional group on the extraction efficiency of DNA was investigated. The highest extraction efficiencies of DNA were obtained using 1-(1,2-dihydroxypropyl)-3-hexadecylimidazolium bromide (C(16)POHIM-Br) and N,N-didecyl-N-methyl-d-glucaminium bromide [(C(10))(2)NMDG-Br]. Extraction efficiencies higher than 97% were obtained using small amounts of IL (0.50mg) for each extraction. The extraction of DNA from a sample matrix containing metal ions and protein revealed that the metal ions did not interfere with the extraction of DNA and that the co-extraction of protein can be mitigated by performing the extraction under moderately acidic conditions. Data from (31)P NMR spectroscopy suggest that a combination of electrostatic and ?-? interactions dominate IL-DNA complexation and that the extraction is concentration dependant. PMID:23261290

  1. Fast Measurement of Methanol Concentration in Ionic Liquids by Potential Step Method

    PubMed Central

    Hainstock, Michael L.; Tang, Yijun

    2015-01-01

    The development of direct methanol fuel cells required the attention to the electrolyte. A good electrolyte should not only be ionic conductive but also be crossover resistant. Ionic liquids could be a promising electrolyte for fuel cells. Monitoring methanol was critical in several locations in a direct methanol fuel cell. Conductivity could be used to monitor the methanol content in ionic liquids. The conductivity of 1-butyl-3-methylimidazolium tetrafluoroborate had a linear relationship with the methanol concentration. However, the conductivity was significantly affected by the moisture or water content in the ionic liquid. On the contrary, potential step could be used in sensing methanol in ionic liquids. This method was not affected by the water content. The sampling current at a properly selected sampling time was proportional to the concentration of methanol in 1-butyl-3-methylimidazolium tetrafluoroborate. The linearity still stood even when there was 2.4 M water present in the ionic liquid. PMID:25802522

  2. Controlled electrodeposition of Au monolayer film on ionic liquid

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei; Liu, Shengzhong Frank

    2016-05-01

    Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF6] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  3. Furfural production from Eucalyptus wood using an Acidic Ionic Liquid.

    PubMed

    Peleteiro, Susana; Santos, Valentín; Garrote, Gil; Parajó, Juan Carlos

    2016-08-01

    Eucalyptus globulus wood samples were treated with hot, compressed water to separate hemicelluloses (as soluble saccharides) from a solid phase mainly made up of cellulose and lignin. The liquid phase was dehydrated, and the resulting solids (containing pentoses as well as poly- and oligo- saccharides made up of pentoses) were dissolved and reacted in media containing an Acidic Ionic Liquid (1-butyl-3-methylimidazolium hydrogen sulfate) and a co-solvent (dioxane). The effects of the reaction time on the product distribution were studied at temperatures in the range 120-170°C for reaction times up to 8h, and operational conditions leading to 59.1% conversion of the potential substrates (including pentoses and pentose structural units in oligo- and poly- saccharides) into furfural were identified. PMID:27112846

  4. Development of Ionic Liquid Monopropellants for In-Space Propulsion

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Drake, Gregory W.; Osborne, Robin J.

    2005-01-01

    A family of new, low toxicity, high energy monopropellants is currently being evaluated at NASA Marshall Space Flight Center for in-space rocket engine applications such as reaction control engines. These ionic liquid monopropellants, developed in recent years by the Air Force Research Laboratory, could offer system simplification, less in-flight thermal management, and reduced handling precautions, while increasing propellant energy density as compared to traditional storable in-space propellants such as hydrazine and nitrogen tetroxide. However, challenges exist in identifying ignition schemes for these ionic liquid monopropellants, which are known to burn at much hotter combustion temperatures compared to traditional monopropellants such as hydrazine. The high temperature combustion of these new monopropellants make the use of typical ignition catalyst beds prohibitive since the catalyst cannot withstand the elevated temperatures. Current research efforts are focused on monopropellant ignition and burn rate characterization, parameters that are important in the fundamental understanding of the monopropellant behavior and the eventual design of a thruster. Laboratory studies will be conducted using alternative ignition techniques such as laser-induced spark ignition and hot wire ignition. Ignition delay, defined as the time between the introduction of the ignition source and the first sign of light emission from a developing flame kernel, will be measured using Schlieren visualization. An optically-accessible liquid monopropellant burner, shown schematically in Figure 1 and similar in design to apparatuses used by other researchers to study solid and liquid monopropellants, will be used to determine propellant burn rate as a function of pressure and initial propellant temperature. The burn rate will be measured via high speed imaging through the chamber s windows.

  5. (Eco)toxicity and biodegradability of protic ionic liquids.

    PubMed

    Oliveira, Maria V S; Vidal, Bruna T; Melo, Claudia M; de Miranda, Rita de C M; Soares, Cleide M F; Coutinho, João A P; Ventura, Sónia P M; Mattedi, Silvana; Lima, Álvaro S

    2016-03-01

    Ionic liquids (ILs) are often claimed to be "environmentally friendly" compounds however, the knowledge of their potential toxicity towards different organisms and trophic levels is still limited, in particular when protic ionic liquids (PILs) are addressed. This study aims to evaluate the toxicity against various microorganisms and the biodegradability of four PILs namely, N-methyl-2-hydroxyethylammonium acetate, m-2-HEAA; N-methyl-2-hydroxyethylammonium propionate, m-2-HEAPr; N-methyl-2-hydroxyethylammonium butyrate, m-2-HEAB; and N-methyl-2-hydroxyethylammonium pentanoate, m-2-HEAP. The antimicrobial activity was determined against the two bacteria, Sthaplylococcus aureus ATCC-6533 and Escherichia coli CCT-0355; the yeast Candida albicans ATCC-76645; and the fungi Fusarium sp. LM03. The toxicity of all PILs was tested against the aquatic luminescent marine bacterium Vibrio fischeri using the Microtox(®) test. The impact of the PILs was also studied regarding their effect on lettuce seeds (Lactuta sativa). The biodegradability of these PILs was evaluated using the ratio between the biochemical oxygen demand (BOD) and the chemical oxygen demand (COD). The results show that, in general, the elongation of the alkyl chain tends to increase the negative impact of the PILs towards the organisms and biological systems under study. According to these results, m-2-HEAA and m-2-HEAP are the less and most toxic PILs studied in this work, respectively. Additionally, all the PILs have demonstrated low biodegradability. PMID:26796340

  6. Spatial-decomposition analysis of electrical conductivity in ionic liquid.

    PubMed

    Tu, Kai-Min; Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2014-12-28

    The electrical conductivity of room temperature ionic liquid (IL) is investigated with molecular dynamics simulation. A trajectory of 1 μs in total is analyzed for the ionic liquid [C4mim][NTf2] (1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and the anion is also called TFSI or TFSA), and the ion motions are examined in direct connection to the conductivity within the framework formulated previously [K.-M. Tu, R. Ishizuka, and N. Matubayasi, J. Chem. Phys. 141, 044126 (2014)]. As a transport coefficient, the computed electrical conductivity is in fair agreement with the experiment. The conductivity is then decomposed into the autocorrelation term of Nernst-Einstein form and the cross-correlation term describing the two-body motions of ions, and the cross-correlation term is further decomposed spatially to incorporate the structural insights on ion configurations into the dynamic picture. It is observed that the ion-pair contribution to the conductivity is not spatially localized and extends beyond the first coordination shell. The extent of localization of the cross-correlation effect in the conductivity is in correspondence to that of the spatial correlation represented by radial distribution function, which persists over nanometer scale. PMID:25554167

  7. Ionic liquid biodegradability depends on specific wastewater microbial consortia.

    PubMed

    Docherty, Kathryn M; Aiello, Steven W; Buehler, Barbara K; Jones, Stuart E; Szymczyna, Blair R; Walker, Katherine A

    2015-10-01

    Complete biodegradation of a newly-synthesized chemical in a wastewater treatment plant (WWTP) eliminates the potential for novel environmental pollutants. However, differences within- and between-WWTP microbial communities may alter expectations for biodegradation. WWTP communities can also serve as a source of unique consortia that, when enriched, can metabolize chemicals that tend to resist degradation, but are otherwise promising green alternatives. We tested the biodegradability of three ionic liquids (ILs): 1-octyl-3-methylpyridinium bromide (OMP), 1-butyl-3-methylpyridinium bromide (BMP) and 1-butyl-3-methylimidazolium chloride (BMIM). We performed tests using communities from two WWTPs at three time points. Site-specific and temporal variation both influenced community composition, which impacted the success of OMP biodegradability. Neither BMP nor BMIM degraded in any test, suggesting that these ILs are unlikely to be removed by traditional treatment. Following standard biodegradation assays, we enriched for three consortia that were capable of quickly degrading OMP, BMP and BMIM. Our results indicate WWTPs are not functionally redundant with regard to biodegradation of specific ionic liquids. However, consortia can be enriched to degrade chemicals that fail biodegradability assays. This information can be used to prepare pre-treatment procedures and prevent environmental release of novel pollutants. PMID:25985304

  8. Polarizability effects on the structure and dynamics of ionic liquids

    SciTech Connect

    Cavalcante, Ary de Oliveira; Ribeiro, Mauro C. C.; Skaf, Munir S.

    2014-04-14

    Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup −} and PF{sub 6}{sup −}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (χ) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibrium structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.

  9. Antitumor Activity of Ionic Liquids Based on Ampicillin.

    PubMed

    Ferraz, Ricardo; Costa-Rodrigues, João; Fernandes, Maria H; Santos, Miguel M; Marrucho, Isabel M; Rebelo, Luís Paulo N; Prudêncio, Cristina; Noronha, João Paulo; Petrovski, Željko; Branco, Luís C

    2015-09-01

    Significant antiproliferative effects against various tumor cell lines were observed with novel ampicillin salts as ionic liquids. The combination of anionic ampicillin with appropriate ammonium, imidazolium, phosphonium, and pyridinium cations yielded active pharmaceutical ingredient ionic liquids (API-ILs) that show potent antiproliferative activities against five different human cancer cell lines: T47D (breast), PC3 (prostate), HepG2 (liver), MG63 (osteosarcoma), and RKO (colon). Some API-ILs showed IC50 values between 5 and 42 nM, activities that stand in dramatic contrast to the negligible cytotoxic activity level shown by the ampicillin sodium salt. Moreover, very low cytotoxicity against two primary cell lines-skin (SF) and gingival fibroblasts (GF)-indicates that the majority of these API-ILs are nontoxic to normal human cell lines. The most promising combination of antitumor activity and low toxicity toward healthy cells was observed for the 1-hydroxyethyl-3-methylimidazolium-ampicillin pair ([C2 OHMIM][Amp]), making this the most suitable lead API-IL for future studies. PMID:26190053

  10. Imidazolium-based ionic liquid surfaces for biosensing.

    PubMed

    Ratel, Mathieu; Provencher-Girard, Audrey; Zhao, Sandy Shuo; Breault-Turcot, Julien; Labrecque-Carbonneau, Jérémie; Branca, Mathieu; Pelletier, Joelle N; Schmitzer, Andreea R; Masson, Jean-Francois

    2013-06-18

    Ionic liquid self-assembled monolayers (SAM) were designed and applied for binding streptavidin, promoting affinity biosensing and enzyme activity on gold surfaces of sensors. The synthesis of 1-((+)-biotin)pentanamido)propyl)-3-(12-mercaptododecyl)-imidazolium bromide, a biotinylated ionic liquid (IL-biotin), which self-assembles on gold film, afforded streptavidin sensing with surface plasmon resonance (SPR). The IL-biotin-SAM efficiently formed a full streptavidin monolayer. The synthesis of 1-(carboxymethyl)-3-(mercaptododecyl)-imidazoliumbromide, a carboxylated IL (IL-COOH), was used to immobilize anti-IgG to create an affinity biosensor. The IL-COOH demonstrated efficient detection of IgG in the nanomolar concentration range, similar to the alkylthiols SAM and PEG. In addition, the IL-COOH demonstrated low fouling in crude serum, to a level equivalent to PEG. The IL-COOH was further modified with N,N'-bis (carboxymethyl)-l-lysine hydrate to bind copper ions and then, chelate histidine-tagged biomolecules. Human dihydrofolate reductase (hDHFR) was chelated to the modified IL-COOH. By monitoring enzyme activity in situ on the SPR sensor, it was revealed that the IL-COOH SAM improved the activity of hDHFR by 24% in comparison to classical SAM. Thereby, IL-SAM has been synthesized and successfully applied to three important biosensing schemes, demonstrating the advantages of this new class of monolayers. PMID:23706008

  11. Rationale for the implementation of reference electrodes in ionic liquids.

    PubMed

    Bonnaud, C; Billard, I; Papaiconomou, N; Chainet, E; Leprêtre, J C

    2016-03-01

    A thorough investigation of the reference electrodes for electrochemical measurements is presented in three ionic liquids (ILs), namely 1-butyl-3-butylimidazolium bis(trifluoromethanesulfonyl)imide [BMIM][Tf2N], 1-octyl-3-butylimidazolium bis(trifluoromethanesulfonyl)imide [OMIM][Tf2N] and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide [BMPyrr][Tf2N]. The influence of technical aspects such as internal resistance, scan rate and concentration of the active species on cyclic voltammetry has been investigated using three quasi-reference electrodes (QREs) (AgCl, Pt, and Pd) and three reference electrodes (REs) (Fc(+)/Fc/Pt, Ag(+)/Ag, and Cl(-)/AgCl/Ag). The results show that the internal resistance has to be taken dynamically into account during any cyclic voltammetry experiment. Quasi-reference electrodes can be used only for qualitative electrochemical studies. Reference electrodes based on Ag(+)/Ag or Fc(+)/Fc dissolved in an IL have a stable potential over 15 h and thus can be used to perform reliable electrochemical experiments in ionic liquids and to get quantitative information such as potentials. PMID:26924558

  12. Dialkylimidazolium ionic liquids hydrolyze cellulose under mild conditions.

    PubMed

    Gazit, Oz M; Katz, Alexander

    2012-08-01

    The average molecular weight of cellulose derived from filter paper, poplar, and Avicel decreases by up to two orders of magnitude during typical mild dissolution protocols using ionic liquids (ILs). About an order of magnitude greater cellulose depolymerization rate during ionic liquid dissolution occurs in 1-butyl-3-methylimidazolium chloride (BmimCl) and 1-ethyl-3-methylimidazolium chloride (EmimCl) compared to 1-ethyl-3-methylimidazolium acetate (EmimOAc), and, unintuitively, greater IL purity results in greater cellulose depolymerization. The following data support the mechanism of cellulose hydrolysis to be acid-catalyzed: (i) increase in number of reducing ends following cellulose dissolution in IL; (ii) addition of N-methylimidazolium base suppresses cellulose depolymerization during dissolution in IL; (iii) small amounts of glucose and traces of hydroxymethyl furfural are present following cellulose dissolution in IL. The acid is presumably synthesized via IL decomposition to generate a carbene and proton, consistent with hypothesis derived from molecular modeling. Titration experiments conducted here measure the amount of acid synthesized to be in the 4000 ppm range for high-purity BmimCl IL during mild processing conditions for cellulose dissolution. This data is relevant for understanding the extent of IL decomposition during biomass dissolution. PMID:22550059

  13. Weighing the surface charge of an ionic liquid.

    PubMed

    Hjalmarsson, Nicklas; Wallinder, Daniel; Glavatskih, Sergei; Atkin, Rob; Aastrup, Teodor; Rutland, Mark W

    2015-10-14

    Electrochemical quartz crystal microbalance has been used to measure changes in the composition of the capacitive electrical double layer for 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate, an ionic liquid, in contact with a gold electrode surface as a function of potential. The mass difference between the cation and anion means that the technique can effectively "weigh" the surface charge accurately with high temporal resolution. This reveals quantitatively how changing the potential alters the ratio of cations and anions associated with the electrode surface, and thus the charge per unit area, as well as the kinetics associated with these interfacial processes. The measurements reveal that it is diffusion of co-ions into the interfacial region rather than expulsion of counterions that controls the relaxation. The measured potential dependent double layer capacitance experimentally validates recent theoretical predictions for counterion overscreening (low potentials) and crowding (high potentials) at electrode surfaces. This new capacity to quantitatively measure ion composition is critical for ionic liquid applications ranging from batteries, capacitors and electrodeposition through to boundary layer structure in tribology, and more broadly provides new insight into interfacial processes in concentrated electrolyte solutions. PMID:26370450

  14. Surface confined ionic liquid as a stationary phase for HPLC

    SciTech Connect

    Wang, Qian; Baker, Gary A; Baker, Sheila N; Colon, Luis

    2006-01-01

    Trimethoxysilane ionosilane derivatives of room temperature ionic liquids based on alkylimidazolium bromides were synthesized for attachment to silica support material. The derivatives 1-methyl-3-(trimethoxysilylpropyl)imidazolium bromide and 1-butyl-3-(trimethoxysilylpropyl)imidazolium bromide were used to modify the surface of 3 {micro}m diameter silica particles to act as the stationary phase for HPLC. The modified particles were characterized by thermogravimetric analysis (TGA) and {sup 13}C and {sup 29}Si NMR spectroscopies. The surface modification procedure rendered particles with a surface coverage of 0.84 {micro}mol m{sup -2} for the alkylimidazolium bromide. The ionic liquid moiety was predominantly attached to the silica surface through two siloxane bonds of the ionosilane derivative (63%). Columns packed with the modified silica material were tested under HPLC conditions. Preliminary evaluation of the stationary phase for HPLC was performed using aromatic carboxylic acids as model compounds. The separation mechanism appears to involve multiple interactions including ion exchange, hydrophobic interaction, and other electrostatic interactions.

  15. Ionic Liquid Gating of SrTiO3 Nanowires

    NASA Astrophysics Data System (ADS)

    Bretz-Sullivan, Terence; Goldman, Allen

    2014-03-01

    In recent years, ionic liquid (IL) field effect gating of complex oxides has revealed novel electronic phases in electronic density regimes not easily attainable by chemical doping or by solid gate dielectric field effect tuning. Specifically, ionic liquid gated Strontium Titanate (STO) serves as an ideal system to study due to its relevance to the LaAlO3/SrTiO3 hetero-interface. Nevertheless, IL gating of nanoscale regions of STO has not been extensively explored. In this talk, the results of IL gated nanowires of STO will be discussed. Nanowires, patterned by electron beam lithography, are defined by a narrow channel of width 100nm in the resist PMMA on top of single crystal STO substrates. The IL is confined to this channel and thus by applying a gate voltage will accumulate electrons at the IL/STO interface, i.e. at the channel floor, by the formation on an electric double layer. Non-linear current-voltage characteristics have been observed using a two-terminal geometry over a set of gate voltages and a temperature range of 2K-35K. These characteristics exhibit behavior similar to Coulomb Blockade physics; however, the possibility of other phenomena has not been ruled out. Supported in part by the US Department of Energy Basic Energy Sciences under Grant No. DE-FG02-02ER4600. Samples were fabricated in the Nano Fabrication Center, which receives funding from the NSF as part of NINN.

  16. Interactions of Ionic Liquids with Uranium and its Bioreduction

    SciTech Connect

    Zhang, C.; Francis, A.

    2012-09-18

    We investigated the influence of ionic liquids (ILs) 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM]{sup +}[PF{sub 6}]{sup -}, N-ethylpyridinium trifluoroacetate [EtPy]{sup +}[CF{sub 3}COO]{sup -} and N-ethylpyridinium tetrafluoroborate [Et-Py]{sup +}[BF{sub 4}]{sup -} on uranium reduction by Clostridium sp. under anaerobic conditions. Potentiometric titration, UV-vis spectrophotometry, LC-MS and EXAFS analyses showed monodentate complexation between uranyl and BF{sub 4}{sup -} PF{sub 6}{sup -}; and bidentate complexation with CF{sub 3}COO{sup -}. Ionic liquids affected the growth of Clostridium sp. as evidenced by decrease in optical density, changes in pH, gas production, and the extent of U(VI) reduction and precipitation of U(IV) from solution. Reduction of U(VI) to U(IV) was observed in the presence of [EtPy][BF{sub 4}] and [BMIM][PF{sub 6}] but not with [EtPy][CF{sub 3}COO].

  17. Development of an Ionic-Liquid Absorption Heat Pump

    SciTech Connect

    Holcomb, Don

    2011-03-29

    Solar Fueled Products (SFP) is developing an innovative ionic-liquid absorption heat pump (ILAHP). The development of an ILAHP is extremely significant, as it could result in annual savings of more than 190 billion kW h of electrical energy and $19 billion. This absorption cooler uses about 75 percent less electricity than conventional cooling and heating units. The ILAHP also has significant environmental sustainability benefits, due to reduced CO2 emissions. Phase I established the feasibility and showed the economic viability of an ILAHP with these key accomplishments: • Used the breakthrough capabilities provided by ionic liquids which overcome the key difficulties of the common absorption coolers. • Showed that the theoretical thermodynamic performance of an ILAHP is similar to existing absorption-cooling systems. • Established that the half-effect absorption cycle reduces the peak generator temperature, improving collector efficiency and reducing collector area. • Component testing demonstrated that the most critical components, absorber and generator, operate well with conventional heat exchangers. • Showed the economic viability of an ILAHP. The significant energy savings, sustainability benefits, and economic viability are compelling reasons to continue the ILAHP development.

  18. Using Ionic Liquids in Selective Hydrocarbon Conversion Processes

    SciTech Connect

    Tang, Yongchun; Periana, Roy; Chen, Weiqun; van Duin, Adri; Nielsen, Robert; Shuler, Patrick; Ma, Qisheng; Blanco, Mario; Li, Zaiwei; Oxgaard, Jonas; Cheng, Jihong; Cheung, Sam; Pudar, Sanja

    2009-09-28

    This is the Final Report of the five-year project Using Ionic Liquids in Selective Hydrocarbon Conversion Processes (DE-FC36-04GO14276, July 1, 2004- June 30, 2009), in which we present our major accomplishments with detailed descriptions of our experimental and theoretical efforts. Upon the successful conduction of this project, we have followed our proposed breakdown work structure completing most of the technical tasks. Finally, we have developed and demonstrated several optimized homogenously catalytic methane conversion systems involving applications of novel ionic liquids, which present much more superior performance than the Catalytica system (the best-to-date system) in terms of three times higher reaction rates and longer catalysts lifetime and much stronger resistance to water deactivation. We have developed in-depth mechanistic understandings on the complicated chemistry involved in homogenously catalytic methane oxidation as well as developed the unique yet effective experimental protocols (reactors, analytical tools and screening methodologies) for achieving a highly efficient yet economically feasible and environmentally friendly catalytic methane conversion system. The most important findings have been published, patented as well as reported to DOE in this Final Report and our 20 Quarterly Reports.

  19. Transformation of acidic poorly water soluble drugs into ionic liquids.

    PubMed

    Balk, Anja; Wiest, Johannes; Widmer, Toni; Galli, Bruno; Holzgrabe, Ulrike; Meinel, Lorenz

    2015-08-01

    Poor water solubility of active pharmaceutical ingredients (API) is a major challenge in drug development impairing bioavailability and therapeutic benefit. This study is addressing the possibility to tailor pharmaceutical and physical properties of APIs by transforming these into tetrabutylphosphonium (TBP) salts, including the generation of ionic liquids (IL). Therefore, poorly water soluble acidic APIs (Diclofenac, Ibuprofen, Ketoprofen, Naproxen, Sulfadiazine, Sulfamethoxazole, and Tolbutamide) were converted into TBP ILs or low melting salts and compared to the corresponding sodium salts. Free acids and TBP salts were characterized by NMR and IR spectroscopy, DSC and XRPD, DVS and dissolution rate measurements, release profiles, and saturation concentration measurements. TBP salts had lower melting points and glass transition temperatures and dissolution rates were improved up to a factor of 1000 as compared to the corresponding free acid. An increase in dissolution rates was at the expense of increased hygroscopicity. In conclusion, the creation of TBP ionic liquids or solid salts from APIs is a valuable concept addressing dissolution and solubility challenges of poorly water soluble acidic compounds. The data suggested that tailor-made counterions may substantially expand the formulation scientist's armamentarium to meet challenges of poorly water soluble drugs. PMID:25976317

  20. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.

    PubMed

    Cowan, Matthew G; Gin, Douglas L; Noble, Richard D

    2016-04-19

    The recycling or sequestration of carbon dioxide (CO2) from the waste gas of fossil-fuel power plants is widely acknowledged as one of the most realistic strategies for delaying or avoiding the severest environmental, economic, political, and social consequences that will result from global climate change and ocean acidification. For context, in 2013 coal and natural gas power plants accounted for roughly 31% of total U.S. CO2 emissions. Recycling or sequestering this CO2 would reduce U.S. emissions by ca. 1800 million metric tons-easily meeting the U.S.'s currently stated CO2 reduction targets of ca. 17% relative to 2005 levels by 2020. This situation is similar for many developed and developing nations, many of which officially target a 20% reduction relative to 1990 baseline levels by 2020. To make CO2 recycling or sequestration processes technologically and economically viable, the CO2 must first be separated from the rest of the waste gas mixture-which is comprised mostly of nitrogen gas and water (ca. 85%). Of the many potential separation technologies available, membrane technology is particularly attractive due to its low energy operating cost, low maintenance, smaller equipment footprint, and relatively facile retrofit integration with existing power plant designs. From a techno-economic standpoint, the separation of CO2 from flue gas requires membranes that can process extremely high amounts of CO2 over a short time period, a property defined as the membrane "permeance". In contrast, the membrane's CO2/N2 selectivity has only a minor effect on the overall cost of some separation processes once a threshold permeability selectivity of ca. 20 is reached. Given the above criteria, the critical properties when developing membrane materials for postcombustion CO2 separation are CO2 permeability (i.e., the rate of CO2 transport normalized to the material thickness), a reasonable CO2/N2 selectivity (≥20), and the ability to be processed into defect-free thin-films (ca. 100-nm-thick active layer). Traditional polymeric membrane materials are limited by a trade-off between permeability and selectivity empirically described by the "Robeson upper bound"-placing the desired membrane properties beyond reach. Therefore, the investigation of advanced and composite materials that can overcome the limitations of traditional polymeric materials is the focus of significant academic and industrial research. In particular, there has been substantial work on ionic-liquid (IL)-based materials due to their gas transport properties. This review provides an overview of our collaborative work on developing poly(ionic liquid)/ionic liquid (PIL/IL) ion-gel membrane technology. We detail developmental work on the preparation of PIL/IL composites and describe how this chemical technology was adapted to allow the roll-to-roll processing and preparation of membranes with defect-free active layers ca. 100 nm thick, CO2 permeances of over 6000 GPU, and CO2/N2 selectivity of ≥20-properties with the potential to reduce the cost of CO2 removal from coal-fired power plant flue gas to ca. $15 per ton of CO2 captured. Additionally, we examine the materials developments that have produced advanced PIL/IL composite membranes. These advancements include cross-linked PIL/IL blends, step-growth PIL/IL networks with facilitated transport groups, and PIL/IL composites with microporous additives for CO2/CH4 separations. PMID:27046045

  1. Ionic Liquids and New Proton Exchange Membranes for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Belieres, Jean-Philippe

    2004-01-01

    There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research Center during this summer is to develop and characterize proton exchange membranes doped with ionic liquids. The main techniques used to characterize these materials are: Impedance Spectroscopy, NMR, DSC, TGA, DMA, IR, and SEM ...

  2. Ionic liquid-modified materials for solid-phase extraction and separation: a review.

    PubMed

    Vidal, Lorena; Riekkola, Marja-Liisa; Canals, Antonio

    2012-02-17

    In recent years, materials science has propelled to the research forefront. Ionic liquids with unique and fascinating properties have also left their footprints to the developments of materials science during the last years. In this review we highlight some of their recent advances and provide an overview at the current status of ionic liquid-modified materials applied in solid-phase extraction, liquid and gas chromatography and capillary electrochromatography with reference to recent applications. In addition, the potential of ionic liquids in the modification of capillary inner wall in capillary electrophoresis is demonstrated. The main target material modified with ionic liquids is silica, but polymers and monoliths have recently joined the studies. Although imidazolium is still clearly the most commonly used ionic liquid for the covalently modification of materials, the exploitation of pyridinium and phosphonium will most probably increase in the future. PMID:22244164

  3. Selective extraction of copper, mercury, silver and palladium ionsfrom water using hydrophobic ionic liquids.

    SciTech Connect

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; VonStosch, Moritz; Prausnitz, John M.

    2007-06-25

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPYRRO]{sup +} or 1-methyl-1-octylpiperidinium [MOPIP]{sup +}, and anions tetrafluoroborate [BF{sub 4}]{sup +}, trifluoromethyl sulfonate [TfO]{sup +} or nonafluorobutyl sulfonate [NfO]{sup +}. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium.

  4. Thermal properties of ionic systems near the liquid-liquid critical point

    NASA Astrophysics Data System (ADS)

    Méndez-Castro, Pablo; Troncoso, Jacobo; Pérez-Sánchez, Germán; Peleteiro, José; Romaní, Luis

    2011-12-01

    Isobaric heat capacity per unit volume, Cp, and excess molar enthalpy, hE, were determined in the vicinity of the critical point for a set of binary systems formed by an ionic liquid and a molecular solvent. Moreover, and, since critical composition had to be accurately determined, liquid-liquid equilibrium curves were also obtained using a calorimetric method. The systems were selected with a view on representing, near room temperature, examples from clearly solvophobic to clearly coulombic behavior, which traditionally was related with the electric permittivity of the solvent. The chosen molecular compounds are: ethanol, 1-butanol, 1-hexanol, 1,3-dichloropropane, and diethylcarbonate, whereas ionic liquids are formed by imidazolium-based cations and tetrafluoroborate or bis-(trifluromethylsulfonyl)amide anions. The results reveal that solvophobic critical behavior—systems with molecular solvents of high dielectric permittivity—is very similar to that found for molecular binary systems. However, coulombic systems—those with low permittivity molecular solvents—show strong deviations from the results usually found for these magnitudes near the liquid-liquid phase transition. They present an extremely small critical anomaly in Cp—several orders of magnitude lower than those typically obtained for binary mixtures—and extremely low hE—for one system even negative, fact not observed, up to date, for any liquid-liquid transition in the nearness of an upper critical solution temperature.

  5. Ionic liquid mixtures--an analysis of their mutual miscibility.

    PubMed

    Omar, Salama; Lemus, Jesus; Ruiz, Elia; Ferro, Víctor R; Ortega, Juan; Palomar, Jose

    2014-03-01

    The use of ionic liquid mixtures (IL-IL mixtures) is being investigated for fine solvent properties tuning of the IL-based systems. The scarce available studies, however, evidence a wide variety of mixing behaviors (from almost ideal to strongly nonideal), depending on both the structure of the IL components and the property considered. In fact, the adequate selection of the cations and anions involved in IL-IL mixtures may ensure the absence or presence of two immiscible liquid phases. In this work, a systematic computational study of the mixing behavior of IL-IL systems is developed by means of COSMO-RS methodology. Liquid-liquid equilibrium (LLE) and excess enthalpy (H(E)) data of more than 200 binary IL-IL mixtures (including imidazolium-, pyridinium-, pyrrolidinium-, ammonium-, and phosphonium-based ILs) are calculated at different temperatures, comparing to literature data when available. The role of the interactions between unlike cations and anions on the mutual miscibility/immiscibility of IL-IL mixtures was analyzed. On the basis of proposed guidelines, a new class of immiscible IL-IL mixtures was reported, which only is formed by imidazolium-based compounds. PMID:24521179

  6. Phase transition and conductive acceleration of phosphonium-cation-based room-temperature ionic liquid.

    PubMed

    Seki, Shiro; Umebayashi, Yasuhiro; Tsuzuki, Seiji; Hayamizu, Kikuko; Kobayashi, Yo; Ohno, Yasutaka; Kobayashi, Takeshi; Mita, Yuichi; Miyashiro, Hajime; Terada, Nobuyuki; Ishiguro, Shin-ichi

    2008-11-21

    An unusual ionic conduction phenomenon related to the phase transition of a novel phosphonium-cation-based room-temperature ionic liquid (RTIL) is reported; we found that in the phase change upon cooling, a clear increase in ionic conductivity was seen as the temperature was lowered, which differs from widely known conventional RTILs; clearly, our finding of abnormality of the correlation between temperature change and ionic conduction is the first observation in the electrolyte field. PMID:18997945

  7. Superfluorinated Ionic Liquid Crystals Based on Supramolecular, Halogen-Bonded Anions.

    PubMed

    Cavallo, Gabriella; Terraneo, Giancarlo; Monfredini, Alessandro; Saccone, Marco; Priimagi, Arri; Pilati, Tullio; Resnati, Giuseppe; Metrangolo, Pierangelo; Bruce, Duncan W

    2016-05-17

    Unconventional ionic liquid crystals in which the liquid crystallinity is enabled by halogen-bonded supramolecular anions [Cn F2 n+1 -I⋅⋅⋅I⋅⋅⋅I-Cn F2 n+1 ](-) are reported. The material system is unique in many ways, demonstrating for the first time 1) ionic, halogen-bonded liquid crystals, and 2) imidazolium-based ionic liquid crystals in which the occurrence of liquid crystallinity is not driven by the alkyl chains of the cation. PMID:27073033

  8. Suspension Array of Ionic Liquid or Ionic Liquid-Quantum Dots Conjugates for the Discrimination of Proteins and Bacteria.

    PubMed

    Chen, Shuai; Wei, Ling; Chen, Xu-Wei; Wang, Jian-Hua

    2015-11-01

    It is of great importance to develop novel and sensitive sensing materials for the detection of proteins and microorganisms to fulfill the demand of disease diagnosis. As the selectivity and sensitivity of sensing systems are highly dependent on the receptor, the fluorescent sensor array with imidazolium ionic liquids (ILs) and ionic liquid-quantum dots conjugates as semiselective receptors is developed for protein/bacteria differential sensing or discrimination. The IL sensing system formed by 1,3-dibutylimidazolium chloride (BBimCl), 1,3-diethylimidazolium bromine (EEimBr), 1,3-dibutylimidazolium bromine (BBimBr), 1,3-dihexylimidazolium bromine (HHimBr), and 1,3-dioctylimidazolium bromine (OOimBr) and the IL@QDs/QDs sensing system formed by CdTe, BBimCl@CdTe, EEimBr@CdTe, BBimBr@CdTe, and HHimBr@CdTe are tested, by transferring the interaction binding difference between receptors and proteins to the fluorescent response pattern. The IL sensing system is applied to the identification of 48 samples (8 proteins at 500 nM) with an accuracy of 91.7%. For the IL@QDs/QDs sensing system, 8 proteins are completely distinguished with 100% accuracy at a very low concentration level of 10 nM. Remarkably, 36 training cases (6 strains of bacteria from 3 different species) are discriminated with 100% (OD600 of 0.1). PMID:26424154

  9. Hydrophilic interaction liquid chromatography for separation and quantification of selected room-temperature ionic liquids.

    PubMed

    Le Rouzo, Guillaume; Lamouroux, Christine; Bresson, Carole; Guichard, Aline; Moisy, Philippe; Moutiers, Gilles

    2007-09-14

    Hydrophilic interaction liquid chromatography (HILIC) is an alternative technique to ion pairing-reversed-phase liquid chromatography (IP-RPLC) and classical RPLC for separation of alkylimidazolium room-temperature ionic liquids (RTILs). Particularly, HILIC offers better retention and selectivity for short-chains RTILs imidazolium compounds. HILIC mechanisms were investigated by studying the influence of organic modifier content and salt concentration in the mobile phase. HILIC method was validated by quantifying 1-butyl-3-methylimidazolium cation (BMIM) degradation under gamma radiation at 2.5MGy. Development of separative reproducible analytical methods, including for low concentration, applicable to RTILs are today mandatory to improve RTILs chemistry. PMID:17640658

  10. Enhanced electrical transport in ionic liquid dispersed TMAI-PEO solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Gupta, Neha; Rathore, Munesh; Dalvi, Anshuman; Kumar, Anil

    2014-04-01

    A polymer composite is prepared by dispersing ionic liquid [Bmim][BF4] in Polyethylene oxide-tetra methyl ammonium iodide composite and subsequent microwave treatment. X-ray diffraction patterns confirm the composite nature. To explore possibility of proton conductivity in these films, electrical transport is studied by impedance spectroscopy and DC polarization. It is revealed that addition of ionic liquid in host TMAI-PEO solid polymer electrolyte enhances the conductivity by ˜ 2 orders of magnitude. Polarization measurements suggest that composites are essentially ion conducting in nature. The maximum ionic conductivity is found to be ˜2 × 10-5 for 10 wt % ionic liquid.

  11. Enhanced electrical transport in ionic liquid dispersed TMAI-PEO solid polymer electrolyte

    SciTech Connect

    Gupta, Neha; Rathore, Munesh Dalvi, Anshuman; Kumar, Anil

    2014-04-24

    A polymer composite is prepared by dispersing ionic liquid [Bmim][BF{sub 4}] in Polyethylene oxide-tetra methyl ammonium iodide composite and subsequent microwave treatment. X-ray diffraction patterns confirm the composite nature. To explore possibility of proton conductivity in these films, electrical transport is studied by impedance spectroscopy and DC polarization. It is revealed that addition of ionic liquid in host TMAI-PEO solid polymer electrolyte enhances the conductivity by ∼ 2 orders of magnitude. Polarization measurements suggest that composites are essentially ion conducting in nature. The maximum ionic conductivity is found to be ∼2 × 10{sup −5} for 10 wt % ionic liquid.

  12. Lithium ion conductive behavior of TiO2 nanotube/ionic liquid matrices

    PubMed Central

    2014-01-01

    A series of TiO2 nanotube (TNT)/ionic liquid matrices were prepared, and their lithium ion conductive properties were studied. SEM images implied that ionic liquid was dispersed on the whole surface of TNT. Addition of TNT to ionic liquid (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (BMImTFSA)) resulted in significant increase of ionic conductivity. Furthermore, lithium transference number was also largely enhanced due to the interaction of anion with TNT. Vogel-Fulcher-Tammann parameter showed higher carrier ion number for TNT/BMImTFSA in comparison with BMImTFSA. PMID:25313300

  13. Viscosity Measurements on Ionic Liquids: A Cautionary Tale

    NASA Astrophysics Data System (ADS)

    Diogo, João C. F.; Caetano, Fernando J. P.; Fareleira, João M. N. A.; Wakeham, William A.

    2014-10-01

    The vibrating-wire viscometer has proven to be an exceedingly effective means of determining the viscosity of liquids over a wide range of temperature and pressure. The instrument has a long history but a variety of technological and theoretical developments over a number of years have improved its precision and most recently have enabled absolute measurements of high accuracy. However, the nature of the electrical measurements required for the technique has inhibited its widespread use for electrically conducting liquids so that there have been only a limited number of measurements. In the particular context of ionic liquids, which have themselves attracted considerable attention, this is unfortunate because it has meant that one primary measurement technique has seldom been employed for studies of their viscosity. In the last 2 years systematic efforts have been made to explore the applicability of the vibrating-wire technique by examining a number of liquids of increasing electrical conductivity. These extensions have been successful. However, in the process we have had cause to review previous studies of the viscosity and density of the same liquids at moderate temperatures and pressures and significant evidence has been accumulated to cause concern about the application of a range of viscometric techniques to these particular fluids. Because the situation is reminiscent of that encountered for a new set of environmentally friendly refrigerants at the end of the last decade, in this paper the experimental methods employed with these liquids have been reviewed which leads to recommendations for the handling of these materials that may have consequences beyond viscometric measurements. In the process new viscosity and density data for 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide [mim][], 1-ethyl-3-methylimidazolium ethyl sulfate [mim][], and 1-ethyl-3-methylpyridinium ethyl sulfate [mpy][] have been obtained.

  14. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.

    PubMed

    Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas

    2016-02-10

    Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. PMID:26771378

  15. Low-frequency Raman spectra and fragility of imidazolium ionic liquids

    SciTech Connect

    Ribeiro, Mauro C. C.

    2010-07-14

    Raman spectra within the 5-200 cm{sup -1} range have been recorded as a function of temperature for different ionic liquids based on imidazolium cations. A correlation has been found between fragility and the temperature dependence of the strength of fast relaxational motions. Understanding quasielastic scattering as the relaxational contribution to ionic mean-squared displacement elucidates some effects on ionic liquids' fragility resulting from modifications in the chemical structure.

  16. Morphology and Ionic Conductivity of Oriented Block Copolymer/Ionic Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Sharick, Sharon; Winey, Karen I.

    2015-03-01

    Ion-containing block copolymers with increased continuity and long-range order of ion-containing microdomains were prepared to probe the impact of grain boundaries and microdomain orientation on ion transport. We studied poly(styrene- b-methyl methacrylate) diblock copolymers swollen with 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonylimide) (SbMMA/IL), and characterized the thermal transitions, morphologies, and ionic conductivities by differential scanning calorimetry, small-angle X-ray scattering, and electrochemical impedance spectroscopy over a range of compositions. Two glass transition temperatures (Tgs) are observed, corresponding to PS and PMMA/IL microdomains, and Tg,PMMA/IL is modeled well by the Gordon-Taylor expression. SbMMA/IL films prepared by solvent evaporation exhibit strongly microphase-separated lamellar morphology with long-range order. Slower rates of solvent evaporation produce films with lamellae preferentially oriented to be in the plane. In-plane conductivities increase with both increasing ionic liquid content and with better parallel alignment of lamellae. The Sax and Ottino model will be used to compare the conductivity of SbMMA/IL with the homopolymer/IL mixture, PMMA/IL, and to discuss the ion transport mechanism.

  17. Comparison of Three Ionic Liquid-Tolerant Cellulases by Molecular Dynamics

    PubMed Central

    Jaeger, Vance; Burney, Patrick; Pfaendtner, Jim

    2015-01-01

    We have employed molecular dynamics to investigate the differences in ionic liquid tolerance among three distinct family 5 cellulases from Trichoderma viride, Thermogata maritima, and Pyrococcus horikoshii. Simulations of the three cellulases were conducted at a range of temperatures in various binary mixtures of the ionic liquid 1-ethyl-3-methyl-imidazolium acetate with water. Our analysis demonstrates that the effects of ionic liquids on the enzymes vary in each individual case from local structural disturbances to loss of much of one of the enzyme’s secondary structure. Enzymes with more negatively charged surfaces tend to resist destabilization by ionic liquids. Specific and unique structural changes in the enzymes are induced by the presence of ionic liquids. Disruption of the secondary structure, changes in dynamical motion, and local changes in the binding pocket are observed in less tolerant enzymes. Ionic-liquid-induced denaturation of one of the enzymes is indicated over the 500 ns timescale. In contrast, the most tolerant cellulase behaves similarly in water and in ionic-liquid-containing mixtures. Unlike the heuristic approaches that attempt to predict enzyme stability using macroscopic properties, molecular dynamics allows us to predict specific atomic-level structural and dynamical changes in an enzyme’s behavior induced by ionic liquids and other mixed solvents. Using these insights, we propose specific experimentally testable hypotheses regarding the origin of activity loss for each of the systems investigated in this study. PMID:25692593

  18. Draft Genome Sequence of the Ionic Liquid-Tolerant Bacterium Bacillus amyloliquefaciens CMW1

    PubMed Central

    Hirose, Yuu; Misawa, Naomi; Hurunaka, Kohei; Kishimoto, Noriaki

    2014-01-01

    Here, we report the draft genome sequence of an ionic liquid-tolerant bacterium, Bacillus amyloliquefaciens CMW1, which is newly isolated from a Japanese fermented soybean paste. The genome sequence will allow for a characterization of the molecular mechanism of its ionic liquid tolerance. PMID:25323721

  19. Concentration-dependent apparent partition coefficients of ionic liquids possessing ethyl- and bi-sulphate anions.

    PubMed

    Jain, Preeti; Kumar, Anil

    2016-01-14

    This study deals with the concentration dependent apparent partition coefficients log P of the ethyl and bisulfate-based ionic liquids. It is observed that the bisulfate-based ionic liquids show different behaviour with respect to concentration as compared to ethyl sulphate-based ionic liquids. It is significant and useful analysis for the further implementation of alkyl sulfate based ionic liquids as solvents in extraction processes. The log P values of the ethyl sulphate-based ionic liquids were noted to vary linearly with the concentration of the ionic liquid, whereas a flip-flop trend with the concentration for the log P values of the bisulphate-based ionic liquids was observed due to the difference in hydrogen bond accepting basicity and possibility of aggregate formation of these anions. The π-π interactions between the imidazolium and pyridinium rings were seen to affect the log P values. The alkyl chain length of anions was also observed to influence the log P values. The hydrophobicity of ionic liquid changes with the alkyl chain in the anion in the order; [HSO4](-) < [EtSO4](-) < [BuSO4](-). PMID:26660452

  20. Thermochromism and switchable paramagnetism of cobalt(II) in thiocyanate ionic liquids.

    PubMed

    Osborne, Stephen J; Wellens, Sil; Ward, Chris; Felton, Solveig; Bowman, Robert M; Binnemans, Koen; Swadźba-Kwaśny, Małgorzata; Gunaratne, H Q Nimal; Nockemann, Peter

    2015-07-01

    Temperature-dependent switching of paramagnetism of a cobalt(II) complex is observed in an ionic liquid solution. Paramagnetic and thermochromic switching occur simultaneously due to a reversible change in coordination. This reversible switching is possible in the ionic liquid solution, which enables mobility of thiocyanate anions by remaining mobile at low temperatures and acts as an anion reservoir. PMID:26053484

  1. Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive

    DOEpatents

    Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

    2014-08-19

    An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

  2. Ionic Liquid as a Solvent and Catalyst for Acylation of Maltodextrin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Catalyst-free esterification of maltodextrin was carried out in ionic liquid. Stearate esters of maltodextrin were obtained in various degree of substitution (DS) when vinyl stearate or stearic acid was heated with maltodextrin in ionic liquid, 1-butyl-3-methylimidazolium cyanamide (bmim[dca]). Re...

  3. Synthesis and characterization of novel dimeric ionic liquids by conventional approaches.

    PubMed

    Ganesan, Kilivelu; Alias, Yatimah

    2008-06-01

    The (1)H-NMR shifts of the imidazolium protons of some novel dimeric ionic liquids were examined in various deuterated solvents. Interactions between the solvent and the imidazolium salt of butyl substituted ionic liquids were observed to give higher chemical shifts than methyl substitution. PMID:19325800

  4. Method of purifying a gas stream using 1,2,3-triazolium ionic liquids

    SciTech Connect

    Luebke, David; Nulwala, Hunald; Tang, Chau

    2014-12-09

    A method for separating a target gas from a gaseous mixture using 1,2,3-triazolium ionic liquids is presented. Industrial effluent streams may be cleaned by removing carbon dioxide from the stream by contacting the effluent stream with a 1,2,3-triazolium ionic liquid compound.

  5. Dye Redissolution after Precipitation with a Water-miscible Ionic Liquid

    SciTech Connect

    Ali, Maroof; Baker, Gary A; Pandey, Siddharth

    2008-01-01

    Redissolution of five popular cationic dyes with a watermiscible ionic liquid l-butyl-3-methyBmidazolium tetraftuoroborate after their near quantitative precipitation from aqueous solutions is observed. The behavior of the ionic liquid is similar to that of a salt at lower concentrations, while it acts like a cosolvent at higher concentrations.

  6. Comparison of Dilute Acid and Ionic Liquid Pretreatment of Switchgrass: Biomass Recalcitrance, Delignification and Enzymatic Saccharification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficiency of two biomass pretreatment technologies, dilute acid hydrolysis and dissolution in an ionic liquid, are compared in terms of delignification, saccharification efficiency and saccharide yields with switchgrass serving as a model bioenergy crop. When subject to ionic liquid pretreatme...

  7. Exploiting hydrophobic borohydride-rich ionic liquids as faster-igniting rocket fuels.

    PubMed

    Liu, Tianlin; Qi, Xiujuan; Huang, Shi; Jiang, Linhai; Li, Jianling; Tang, Chenglong; Zhang, Qinghua

    2016-01-26

    A family of hydrophobic borohydride-rich ionic liquids was developed, which exhibited the shortest ignition delay times of 1.7 milliseconds and the lowest viscosity (10 mPa s) of hypergolic ionic fluids, demonstrating their great potential as faster-igniting rocket fuels to replace toxic hydrazine derivatives in liquid bipropellant formulations. PMID:26687630

  8. Visualization of Biomass Solubilization and Cellulose Regeneration during Ionic Liquid Pretreatment of Switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Auto-fluorescent mapping of plant cell walls was used to visualize cellulose and lignin in pristine switchgrass (Panicum virgatum) stems to determine the mechanisms of biomass dissolution during ionic liquid pretreatment. The addition of ground switchgrass to the ionic liquid 1-n-ethyl-3-methylimid...

  9. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect

    Wishart, J.F.

    2011-06-12

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs generally have low volatilities and are combustion-resistant, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of primary radiation chemistry, charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of reactions and product distributions. We study these issues by characterization of primary radiolysis products and measurements of their yields and reactivity, quantification of electron solvation dynamics and scavenging of electrons in different states of solvation. From this knowledge we wish to learn how to predict radiolytic mechanisms and control them or mitigate their effects on the properties of materials used in nuclear fuel processing, for example, and to apply IL radiation chemistry to answer questions about general chemical reactivity in ionic liquids that will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that the slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increase the importance of pre-solvated electron reactivity and consequently alter product distributions and subsequent chemistry. This difference from conventional solvents has profound effects on predicting and controlling radiolytic yields, which need to be quantified for the successful use under radiolytic conditions. Electron solvation dynamics in ILs are measured directly when possible and estimated using proxies (e.g. coumarin-153 dynamic emission Stokes shifts or benzophenone anion solvation) in other cases. Electron reactivity is measured using ultrafast kinetics techniques for comparison with the solvation process.

  10. Water-free rare-earth-metal ionic liquids/ionic liquid crystals based on hexanitratolanthanate(III) anion.

    PubMed

    Ji, Shun-Ping; Tang, Meng; He, Ling; Tao, Guo-Hong

    2013-04-01

    The hexanitratolanthanate anion (La(NO(3))(6)(3-)) is an interesting symmetric anion suitable to construct the component of water-free rare-earth-metal ionic liquids. The syntheses and structural characterization of eleven lanthanum nitrate complexes, [C(n)mim](3)[La(NO(3))(6)] (n=1, 2, 4, 6, 8, 12, 14, 16, 18), including 1,3-dimethylimidazolium hexanitratolanthanate ([C(1)mim](3)[La(NO(3))(6)], 1), 1-ethyl-3-methylimidazolium hexanitratolanthanate ([C(2)mim](3)[La(NO(3))(6)], 2), 1-butyl-3-methylimidazolium hexanitratolanthanate ([C(4)mim](3)[La(NO(3))(6)], 3), 1-isobutyl-3-methylimidazolium hexanetratolanthanate ([isoC(4)mim](3)[La(NO(3))(6)], 4), 1-methyl-3-(3'-methylbutyl)imidazolium hexanitratolanthanate ([MC(4)mim](3)[La(NO(3))(6)], 5), 1-hexyl-3-methylimidazolium hexanitratolanthanate ([C(6)mim](3)[La(NO(3))(6)], 6), 1-methyl-3-octylimidazolium hexanitratolanthanate ([C(8)mim](3)[La(NO(3))(6)], 7), 1-dodecyl-3-methylimidazolium hexanitratolanthanate ([C(12)mim](3)[La(NO(3))(6)], 8), 1-methyl-3-tetradecylimidazolium hexanitratolanthanate ([C(14)mim](3)[La-(NO(3))(6)], 9), 1-hexadecyl-3-methylimid-azolium hexanitratolanthanum ([C(16)dmim](3)[La(NO(3))(6)], 10), and 1-methyl-3-octadecylimidazolium hexanitratolanthanate ([C(18)mim](3)[La(NO(3))(6)], 11) are reported. All new compounds were characterized by (1)H and (13)C NMR, and IR spectroscopy as well as elemental analysis. The crystal structure of compound 1 was determined by using single-crystal X-ray diffraction, giving the following crystallographic information: monoclinic; P2(1)/c; a=15.3170 (3), b=14.2340 (2), c=13.8954(2) Å; β=94.3453(15)°, V=3020.80(9) Å(3), Z=4, ρ=1.764 g cm(-3). The coordination polyhedron around the lanthanum ion is rationalized by six nitrate anions with twelve oxygen atoms. No hydrogen-bonding network or water molecule was found in 1. The thermodynamic stability of the new complexes was investigated by using thermogravimetric analysis (TGA). The water-free hexanitratolanthanate ionic liquids are thermal and moisture stable. Four complexes, namely complexes 8-11, were found to be ionic liquid crystals by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). They all present smectic A liquid-crystalline phase. PMID:23471870

  11. Magnetomotive room temperature dicationic ionic liquid: a new concept toward centrifuge-less dispersive liquid-liquid microextraction.

    PubMed

    Beiraghi, Asadollah; Shokri, Masood; Seidi, Shahram; Godajdar, Bijan Mombani

    2015-01-01

    A new centrifuge-less dispersive liquid-liquid microextraction technique based on application of magnetomotive room temperature dicationic ionic liquid followed by electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of trace amount of gold and silver in water and ore samples, for the first time. Magnetic ionic liquids not only have the excellent properties of ionic liquids but also exhibit strong response to an external magnetic field. These properties provide more advantages and potential application prospects for magnetic ionic liquids than conventional ones in the fields of extraction processes. In this work, thio-Michler's ketone (TMK) was used as chelating agent to form Ag/Au-TMK complexes. Several important factors affecting extraction efficiency including extraction time, rate of vortex agitator, pH of sample solution, concentration of the chelating agent, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) were 3.2 and 7.3ngL(-1) with the preconcentration factors of 245 and 240 for Au and Ag, respectively. The precision values (RSD%, n=7) were 5.3% and 5.8% at the concentration level of 0.05μgL(-1) for Au and Ag, respectively. The relative recoveries for the spiked samples were in the acceptable range of 96-104.5%. The results demonstrated that except Hg(2+), no remarkable interferences are created by other various ions in the determination of Au and Ag, so that the tolerance limits (WIon/WAu or Ag) of major cations and anions were in the range of 250-1000. The validated method was successfully applied for the analysis of Au and Ag in some water and ore samples. PMID:25528072

  12. Contracting cardiomyocytes in hydrophobic room-temperature ionic liquid

    SciTech Connect

    Hoshino, Takayuki; Department of Bio-Application and System Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 ; Fujita, Kyoko; Higashi, Ayako; Sakiyama, Keiko; Ohno, Hiroyuki; Morishima, Keisuke; Department of Bio-Application and System Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Biocompatible room-temperature ionic liquid was applied on beating cardiomyocyte. Black-Right-Pointing-Pointer The lifetime of beating cardiomyocytes was depended on anion functional group. Black-Right-Pointing-Pointer A longer lifetime was recorded for no functional group on alkyl chain on their anion. Black-Right-Pointing-Pointer Amino group on alkyl chain and fluorine in anion induced fatal condition changes. Black-Right-Pointing-Pointer We reported liquid electrolyte interface to stimulate cardiomyocytes. -- Abstract: Room-temperature ionic liquids (RTILs) are drawing attention as a new class of nonaqueous solvents to replace organic and aqueous solvents for chemical processes in the liquid phase at room temperature. The RTILs are notable for their characteristics of nonvolatility, extremely low vapor pressure, electric conductivity, and incombustibility. These distinguished properties of RTILs have brought attention to them in applications with biological cells and tissue in vacuum environment for scanning electron microscopy, and in microfluidic devices for micro-total analysis system (micro-TAS). Habitable RTILs could increase capability of nonaqueous micro-TAS for living cells. Some RTILs seemed to have the capability to replace water in biological applications. However, these RTILs had been applied to just supplemental additives for biocompatible test, to fixed cells as a substitute for an aqueous solution, and to simple molecules. None of RTILs in which directly soaks a living cell culture. Therefore, we demonstrated the design of RTILs for a living cell culture and a liquid electrolyte to stimulate contracting cardiomyocytes using the RTILs. We assessed the effect of RTILs on the cardiomyocytes using the beating lifetime to compare the applicability of RTILs for biological applications. Frequent spontaneous contractions of cardiomyocytes were confirmed in amino acid anion RTILs [P{sub 8,8,8,8}][Leu] and [P{sub 8,8,8,8}][Ala], phosphoric acid derivatives [P{sub 8,8,8,8}][MeO(H)PO{sub 2}], and [P{sub 8,8,8,8}][C{sub 7}CO{sub 2}]. The anion type of RTILs had influence on applicable characteristics for the contracting cardiomyocyte. This result suggested the possibility for biocompatible design of hydrophobic group RTILs to achieve biological applications with living cells.

  13. Oxidative desulfurization of fuel oil by pyridinium-based ionic liquids.

    PubMed

    Zhao, Dishun; Wang, Yanan; Duan, Erhong

    2009-01-01

    In this work, an N-butyl-pyridinium-based ionic liquid [BPy]BF(4) was prepared. The effect of extraction desulfurization on model oil with thiophene and dibenzothiophene (DBT) was investigated. Ionic liquids and hydrogen peroxide (30%) were tested in extraction-oxidation desulfurization of model oil. The results show that the ionic liquid [BPy]BF(4) has a better desulfurization effect. The best technological conditions are: V(IL)/V(Oil) /V(H(2)O(2)) = 1:1:0.4, temperature 55 degrees C, the time 30 min. The ratio of desulfurization to thiophene and DBT reached 78.5% and 84.3% respectively, which is much higher than extraction desulfurization with simple ionic liquids. Under these conditions, the effect of desulfurization on gasoline was also investigated. The used ionic liquids can be recycled up to four times after regeneration. PMID:19924069

  14. Discovering less toxic ionic liquids by using the Microtox® toxicity test.

    PubMed

    Hernández-Fernández, F J; Bayo, J; Pérez de los Ríos, A; Vicente, M A; Bernal, F J; Quesada-Medina, J

    2015-06-01

    New Microtox® toxicity data of 16 ionic liquids of different cationic and anionic composition were determined. The ionic liquids 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate, [BMPyr(+)][TFO(-)], 1-butyl-1-methylpyrrolidinium chloride, [BMPyr(+)][Cl(-)], hydroxypropylmethylimidazolium fluoroacetate, [HOPMIM(+)][FCH2COO(-)], and hydroxypropylmethylimidazolium glycolate [HOPMIM(+)][glycolate(-)] were found to be less toxic than conventional organic solvent such as chloroform or toluene, accoding the Microtox® toxicity assays. The toxicity of pyrrolidinium cation was lower than the imidazolium and pyridinium ones. It was found that the inclusion of an hydroxyl group in the alkyl chain length of the cation also reduce the toxicity of the ionic liquid. To sum up, the Microtox® toxicity assays can be used as screening tool to easily determined the toxicity of a wide range of ionic liquids and the toxicity data obtained could allow the obtention of structure-toxicity relationships to design less toxic ionic liquids. PMID:25748519

  15. Ionic liquids and their solid-state analogues as materials for energy generation and storage

    NASA Astrophysics Data System (ADS)

    Macfarlane, Douglas R.; Forsyth, Maria; Howlett, Patrick C.; Kar, Mega; Passerini, Stefano; Pringle, Jennifer M.; Ohno, Hiroyuki; Watanabe, Masayoshi; Yan, Feng; Zheng, Wenjun; Zhang, Shiguo; Zhang, Jie

    2016-02-01

    Salts that are liquid at room temperature, now commonly called ionic liquids, have been known for more than 100 years; however, their unique properties have only come to light in the past two decades. In this Review, we examine recent work in which the properties of ionic liquids have enabled important advances to be made in sustainable energy generation and storage. We discuss the use of ionic liquids as media for synthesis of electromaterials, for example, in the preparation of doped carbons, conducting polymers and intercalation electrode materials. Focusing on their intrinsic ionic conductivity, we examine recent reports of ionic liquids used as electrolytes in emerging high-energy-density and low-cost batteries, including Li-ion, Li-O2, Li-S, Na-ion and Al-ion batteries. Similar developments in electrolyte applications in dye-sensitized solar cells, thermo-electrochemical cells, double-layer capacitors and CO2 reduction are also discussed.

  16. Effect of ionic liquid on activity, stability, and structure of enzymes: a review.

    PubMed

    Naushad, Mu; Alothman, Zied Abdullah; Khan, Abbul Bashar; Ali, Maroof

    2012-11-01

    Ionic liquids have shown their potential as a solvent media for many enzymatic reactions as well as protein preservation, because of their unusual characteristics. It is also observed that change in cation or anion alters the physiochemical properties of the ionic liquids, which in turn influence the enzymatic reactions by altering the structure, activity, enatioselectivity, and stability of the enzymes. Thus, it is utmost need of the researchers to have full understanding of these influences created by ionic liquids before choosing or developing an ionic liquid to serve as solvent media for enzymatic reaction or protein preservation. So, in the present review, we try to shed light on effects of ionic liquids chemistry on structure, stability, and activity of enzymes, which will be helpful for the researchers in various biocatalytic applications. PMID:22732130

  17. The configuration exchanging theory for transport properties and glass formation temperature of ionic liquids

    NASA Astrophysics Data System (ADS)

    Hu, Yu-Feng; Zhang, Xian-Ming; Qi, Jian-Guang; Yin, Liu-Yi

    2015-11-01

    Understanding molecular motion in terms of molecular structure is an important issue for microscopic understanding of the nature of transport properties and glass transition, and for design of structured materials to meet specific demands in various applications. Herein, a novel molecular mechanism is proposed to connect macroscopic motion in ionic liquids with molecular structure via conformational conversions of the constituent ions or of the cation-anion pairs. New equations for description of relaxation time, diffusion coefficient, molar conductivity, and viscosity of ionic liquids are established. The equation parameters, which were determined from the temperature dependent heat capacities, self-diffusion coefficients, molar conductivities, and viscosities of typical ionic liquids, were used to produce predictions for the corresponding properties of other ionic liquids and for the glass transition temperatures of representative ionic liquids. All predictions are in nice agreements with the experimental results.

  18. Influence of oxygen functionalities on the environmental impact of imidazolium based ionic liquids.

    PubMed

    Deng, Yun; Besse-Hoggan, Pascale; Sancelme, Martine; Delort, Anne-Marie; Husson, Pascale; Gomes, Margarida F Costa

    2011-12-30

    Several physico-chemical properties relevant to determine the environmental impact of ionic liquids - aqueous solubility, octanol-water partition coefficient and diffusion coefficients in water at infinite dilution - together with toxicity and biodegradability of ionic liquids based on 1-alkyl-3-methylimidazolium cations with or without different oxygenated functional groups (hydroxyl, ester and ether) are studied in this work. The presence of oxygen groups on the imidazolium cation reduces the toxicity of ionic liquids 1-alkyl-3-methylimidazolium with bis(trifluoromethylsulfonyl)imide or octylsulfate anions and simultaneously decreases the value of their octanol-water partition coefficient. The presence of ester functions renders the ionic liquids more easily biodegradable, especially for long alkyl side-chains in the cation but leads to hydrolysis with the formation of reaction products that accumulate. The imidazolium ring is resistant to biodegradability and to abiotic degradation. The oxygen functionalised ionic liquids are more soluble in water and, diffuse more slowly in this medium. PMID:22071261

  19. The configuration exchanging theory for transport properties and glass formation temperature of ionic liquids.

    PubMed

    Hu, Yu-Feng; Zhang, Xian-Ming; Qi, Jian-Guang; Yin, Liu-Yi

    2015-11-28

    Understanding molecular motion in terms of molecular structure is an important issue for microscopic understanding of the nature of transport properties and glass transition, and for design of structured materials to meet specific demands in various applications. Herein, a novel molecular mechanism is proposed to connect macroscopic motion in ionic liquids with molecular structure via conformational conversions of the constituent ions or of the cation-anion pairs. New equations for description of relaxation time, diffusion coefficient, molar conductivity, and viscosity of ionic liquids are established. The equation parameters, which were determined from the temperature dependent heat capacities, self-diffusion coefficients, molar conductivities, and viscosities of typical ionic liquids, were used to produce predictions for the corresponding properties of other ionic liquids and for the glass transition temperatures of representative ionic liquids. All predictions are in nice agreements with the experimental results. PMID:26627962

  20. Versatile cation transport in imidazolium based polymerized ionic liquids

    NASA Astrophysics Data System (ADS)

    Evans, Christopher; Segalman, Rachel

    Polymerized ionic liquids (PIL) with tethered imidazolium groups are able to conduct a diverse array of cations relevant for energy applications. The well-known complexation of imidazolium with transition metals is exploited to bind ions such as H +, Li+, Cu2+, and Ni2+ by doping the neutral PIL with the appropriate Cation-TFSI- salt. Conductivities were first determined via AC impedance indicating that H+ salts lead to the highest conductivity (due to low ion mass and potential Grotthus mechanism) followed by Cu2+, Li+, Ag+, and Ni2+. The equilibrium constant for imidazolium complexation is larger for Cu2+ relative to Li-, Ag-, and Ni-imidazolium complexes leading to greater salt dissociation and higher conductivities. For LiTFSI and CuTFSI2 salts, metallic lithium or copper electrodes were employed in battery cells to pass a steady DC current and confirm that the cations are in fact carrying current. Interestingly, the divalent Cu2+ also ionically crosslinks the polymer leading to a plateau in the viscosity. Thus, divalent ions provide an unique route to high conductivity, high modulus polymeric electrolytes. Future studies involving ZnTFSI2 and MgTFSI2 for battery applications are proposed to examine how versatile the PIL platform is for cation transport.

  1. Elucidating Interactions between DMSO and Chelate-Based Ionic Liquids.

    PubMed

    Chen, Hang; Wang, Xinyu; Yao, Jia; Chen, Kexian; Guo, Yan; Zhang, Pengfei; Li, Haoran

    2015-12-21

    The C-D bond stretching vibrations of deuterated dimethyl sulfoxide ([D6 ]DMSO) and the C2 -H bond stretching vibrations of 1,1,1,5,5,5-hexafluoropentane-2,4-dione (hfac) ligand in anion are chosen as probes to elucidate the solvent-solute interaction between chelate-based ionic liquids (ILs) and DMSO by vibrational spectroscopic studies. The indirect effect from the interaction of the adjacent S=O functional group of DMSO with the cation [C10 mim](+) and anion [Mn(hfac)3 ](-) of the ILs leads to the blue-shift of the C-D stretching vibrations of DMSO. The C2 -H bond stretching vibrations in hfac ligand is closely related to the ionic hydrogen bond strength between the cation and anion of chelate-based ILs. EPR studies reveal that the crystal field of the central metal is kept when the chelate-based ILs are in different microstructure environment in the solution. PMID:26486924

  2. Ion transport and softening in a polymerized ionic liquid.

    PubMed

    Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; Tselev, Alexander; Kravchenko, Ivan I; Berdzinski, Stefan; Strehmel, Veronika; Ovchinnikova, Olga S; Minutolo, Joseph A; Sangoro, Joshua R; Agapov, Alexander L; Sokolov, Alexei P; Kalinin, Sergei V; Sumpter, Bobby G

    2015-01-21

    Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this work, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current-voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as the Wien effect). Onsager's theory of the Wien effect coupled with the Poisson-Nernst-Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. The observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field. PMID:25463322

  3. Ferrocenyl-phosphonium ionic liquids - synthesis, characterisation and electrochemistry.

    PubMed

    Kübler, Paul; Sundermeyer, Jörg

    2014-03-01

    New unsymmetrically substituted ferrocenyl-phosphonium ionic liquids (ILs) [FcPR2R']NTf2 are synthesized by two or three step syntheses starting from ferrocene, Fc = (C5H5)Fe(C5H4); R = Me, (n)Bu, (n)Hex, Ph; R' = Me, (n)Pr, (n)Bu, Ph; NTf2 = N(SO2CF3)2. The selective synthesis of alkyl phosphines FcPR2via a Friedel-Crafts phosphorylation is highlighted as an alternative for the standard protocol commonly used for ferrocenyl arylphosphines involving lithiation of FcH followed by phosphorylation. The influence of the P-substituents on thermal stability, electrochemical potential, chemical shift, and UV-Vis absorption behavior of the ILs is studied. The phosphonium group acts both as an ionic tag and as an electron-withdrawing substituent directly bound at the Cp-ring position. Therefore the title compounds are attractive for further studies to use them as tunable redox mediators for (photo)electrochemical devices such as dye sensitized solar cells (DSSCs) or redox flow batteries. PMID:24441282

  4. Catalytic pyrolysis of cellulose in ionic liquid [bmim]OTf.

    PubMed

    Qu, Guangfei; He, Weiwei; Cai, Yingying; Huang, Xi; Ning, Ping

    2016-09-01

    This study discussed the catalytic cracking process of cellulose in ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim]OTF) under 180°C, 240°C and 340°C, found that [bmim]OTF is an effective catalyst which can effectively reduce the pyrolysis temperature(nearly 200°C) of the cellulose. FRIR, XRD and SEM were used to analyze the structure characterization of fiber before and after the cracking; GC-MS was used for liquid phase products analysis; GC was used to analyze gas phase products. The results showed that the cellulose pyrolysis in [bmim]OTf mainly generated CO2, CO and H2, also generated 2-furfuryl alcohol, 2,5-dimethyl-1,5-diallyl-3-alcohol, 1,4-butyrolactone, 5-methyl furfural, 4-hydroxy butyric acid, vinyl propionate, 1-acetoxyl group-2-butanone, furan formate tetrahydrofuran methyl ester liquid product, and thus simulated the evolution mechanism of cellulose pyrolysis products based on the basic model of cellulose monomer. PMID:27185153

  5. Saturation properties of 1-alkyl-3-methylimidazolium based ionic liquids.

    PubMed

    Rane, Kaustubh S; Errington, Jeffrey R

    2014-07-24

    We study the liquid-vapor saturation properties of room temperature ionic liquids (RTILs) belonging to the homologous series 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Cnmim][NTf2]) using Monte Carlo simulation. We examine the effect of temperature and cation alkyl chain length n on the saturated densities, vapor pressures, and enthalpies of vaporization. These properties are explicitly calculated for temperatures spanning from 280 to 1000 K for RTILs with n = 2, 4, 6, 8, 10, and 12. We also explore how the identity of the anion influences saturation properties. Specifically, we compare results for [C(4)mim][NTf2] with those for 1-butyl-3-methylimidazolium tetrafluoroborate ([C(4)mim][BF4]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF6]). Simulations are completed with a recently developed realistic united-atom force field. A combination of direct grand canonical and isothermal-isobaric temperature expanded ensemble simulations are used to construct phase diagrams. Our results are compared with experimental data and Gibbs ensemble simulation data. Overall, we find good agreement between our results and those measured experimentally. We find that the vapor pressures and enthalpies of vaporization show a strong dependence on the size of the alkyl chain at low temperatures, whereas no particular trend is observed at high temperatures. Finally, we also discuss the effect of temperature on liquid phase nanodomains observed in RTILs with large hydrophobic groups. We do not observe a drastic change in liquid phase structure upon variation of the temperature, which suggests there is not a sharp phase transition between a nanostructured and homogeneous liquid, as has been suggested in earlier studies. PMID:24986360

  6. Tunable wavelength soft photoionization of ionic liquid vapors

    SciTech Connect

    Strasser, Daniel; Goulay, Fabien; Belau, Leonid; Kostko, Oleg; Koh, Christine; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Ahmed, Musahid; Leone, Stephen R.

    2009-11-11

    Combined data of photoelectron spectra and photoionization efficiency curves in the near threshold ionization region of isolated ion-pairs from [emim][Tf2N], [emim][Pf2N]and [dmpim][Tf2N]ionic liquid vapors reveal small shifts in the ionization energies of ion-pair systems due to cation and anion substitutions. Shifts towards higher binding energy following anion substitution are attributed to increased electronegativity of the anion itself, while shifts towards lower binding energies following cation substitution are attributed to an increase in the cation-anion distance that causes a lower Coulombic binding potential. The predominant ionization mechanism in the near threshold photon energy region is identified as dissociative ionization, involving dissociation of the ion-pair and the production of intact cations as the positively charged products.

  7. Nonlinear transport in ionic liquid gated strontium titanate nanowires

    SciTech Connect

    Bretz-Sullivan, Terence M.; Goldman, A. M.

    2015-09-14

    Measurements of the current-voltage (I–V) characteristics of ionic liquid gated nanometer scale channels of strontium titanate have been carried out. At low gate voltages, the I–V characteristics exhibit a large voltage threshold for conduction and a nonlinear power law behavior at all temperatures measured. The source-drain current of these nanowires scales as a power law of the difference between the source-drain voltage and the threshold voltage. The scaling behavior of the I–V characteristic is reminiscent of collective electronic transport through an array of quantum dots. At large gate voltages, the narrow channel acts as a quasi-1D wire whose conductance follows Landauer's formula for multichannel transport.

  8. New models for predicting thermophysical properties of ionic liquid mixtures.

    PubMed

    Huang, Ying; Zhang, Xiangping; Zhao, Yongsheng; Zeng, Shaojuan; Dong, Haifeng; Zhang, Suojiang

    2015-10-28

    Potential applications of ILs require the knowledge of the physicochemical properties of ionic liquid (IL) mixtures. In this work, a series of semi-empirical models were developed to predict the density, surface tension, heat capacity and thermal conductivity of IL mixtures. Each semi-empirical model only contains one new characteristic parameter, which can be determined using one experimental data point. In addition, as another effective tool, artificial neural network (ANN) models were also established. The two kinds of models were verified by a total of 2304 experimental data points for binary mixtures of ILs and molecular compounds. The overall average absolute deviations (AARDs) of both the semi-empirical and ANN models are less than 2%. Compared to previously reported models, these new semi-empirical models require fewer adjustable parameters and can be applied in a wider range of applications. PMID:26399303

  9. Ionic liquid-based green processes for energy production.

    PubMed

    Zhang, Suojiang; Sun, Jian; Zhang, Xiaochun; Xin, Jiayu; Miao, Qingqing; Wang, Jianji

    2014-11-21

    To mitigate the growing pressure on resource depletion and environment degradation, the development of green processes for the production of renewable energy is highly required. As a class of novel and promising media, ionic liquids (ILs) have shown infusive potential applications in energy production. Aiming to offer a critical overview regarding the new challenges and opportunities of ILs for developing green processes of renewable energy, this article emphasises the role of ILs as catalysts, solvents, or electrolytes in three broadly interesting energy production processes from renewable resources, such as CO2 conversion to fuels and fuel additives, biomass pretreatment and conversion to biofuels, as well as solar energy and energy storage. It is expected that this article will stimulate a generation of new ideas and new technologies in IL-based renewable energy production. PMID:24553494

  10. Aggregation behavior of aqueous solutions of ionic liquids.

    PubMed

    Bowers, James; Butts, Craig P; Martin, Pamela J; Vergara-Gutierrez, Marcos C; Heenan, Richard K

    2004-03-16

    The aggregation behavior in aqueous solutions of three ionic liquids based on the 1-alkyl-3-methylimidazolium cation has been investigated by means of surface tension, conductivity, and small-angle neutron scattering (SANS) measurements. From analysis of the SANS data, models for the shapes and sizes of aggregates have been proposed: the short-chain 1-butyl-3-methylimidazolium tetrafluoroborate [C4mim] [BF4] system can be best modeled by treating it as a dispersion of polydisperse spherical aggregates that form above a critical aggregation concentration, whereas the 1-octyl-3-methylimidazolium iodide, [C8mim] [I], solutions can be modeled as a system of regularly sized near-spherical charged micelles that form above a critical micelle concentration. Solutions of 1-octyl-3-methylimidazolium chloride, [C8mim]-[Cl], display weak long-range ordering of possibly disklike particles culminating in the formation of structures with distinct long-range order at higher concentrations. PMID:15835670

  11. Thermophysical properties of two ammonium-based protic ionic liquids

    PubMed Central

    Bhattacharjee, Arijit; Coutinho, João A. P.; Freire, Mara G.; Carvalho, Pedro J.

    2015-01-01

    Experimental data for density, viscosity, refractive index and surface tension are reported, for the first time, in the temperature range between 288.15 K and 353.15 K and at atmospheric pressure for two protic ionic liquids, namely 2-(dimethylamino)-N,N-dimethylethan-1-ammonium acetate, [N11{2(N11)}H][CH3CO2], and N-ethyl-N,N-dimethylammonium phenylacetate, [N112H][C7H7CO2]. The effect of the anion aromaticity and the cation’s aliphatic tails on the studied properties is discussed. From the measured properties temperature dependency the derived properties, such as the isobaric thermal expansion coefficient, the surface entropy and enthalpy, and the critical temperature, were estimated. PMID:26435554

  12. Unexpected hydrogen bond dynamics in imidazolium-based ionic liquids.

    PubMed

    Thar, Jens; Brehm, Martin; Seitsonen, Ari P; Kirchner, Barbara

    2009-11-19

    Employing first-principles molecular dynamics simulations, we characterize the structural and dynamical hydrogen bonding in the ionic liquid [C(2)C(1)im][SCN]. The geometric picture indicates a superior role for the most acidic hydrogen bond (at H2) as compared to the two other hydrogen atoms at the rear. Despite the structural picture, the hydrogen bond dynamics at H2 is found to decay faster than the according dynamics at the H4 and H5 proton. Neglecting the directionality provides a dynamics which reflects the geometrical analysis. Two movements are identified. First, a fast (<0.3 ps) hopping of the anion above and below the imidazolium ring and second translational motion of the anion away from the cation in-plane of the imidazolium ring (5-10 ps). PMID:19852454

  13. Viscosity mixing rules for binary systems containing one ionic liquid.

    PubMed

    Tariq, Mohammed; Altamash, Tausif; Salavera, Daniel; Coronas, Alberto; Rebelo, Luis P N; Canongia Lopes, Jose N

    2013-06-24

    In this work the applicability of four of the most commonly used viscosity mixing rules to [ionic liquid (IL)+molecular solvent (MS)] systems is assessed. More than one hundred (IL+MS) binary mixtures were selected from the literature to test the viscosity mixing rules proposed by 1) Hind (Hi), 2) Grunberg and Nissan (G-N), 3) Herric (He) and 4) Katti and Chaudhri (K-C). The analyses were performed by estimating the average (absolute or relative) deviations, AADs and ARDs, between the available experimental data and the predicted ideal mixture viscosity values obtained by means of each rule. The interaction terms corresponding to the adjustable parameters inherent to each rule were also calculated and their trends discussed. PMID:23650138

  14. CO2 Chemistry of Phenolate-Based Ionic Liquids.

    PubMed

    Lee, Tae Bum; Oh, Seungmin; Gohndrone, Thomas R; Morales-Collazo, Oscar; Seo, Samuel; Brennecke, Joan F; Schneider, William F

    2016-03-01

    We synthesized ionic liquids (ILs) comprising an alkylphosphonium cation paired with phenolate, 4-nitrophenolate, and 4-methoxyphenolate anions that span a wide range of predicted reaction enthalpies with CO2. Each phenolate-based IL was characterized by spectroscopic techniques, and their physical properties (viscosity, conductivity, and CO2 solubility) were determined. We use the computational quantum chemical approach paired with experimental results to reveal the reaction mechanism of CO2 with phenolate ILs. Model chemistry shows that the oxygen atom of phenolate associates strongly with phosphonium cations and is able to deprotonate the cation to form an ylide with an affordable activation barrier. The ATR-FTIR and (31)P NMR spectra indicate that the phosphonium ylide formation and its reaction with CO2 are predominantly responsible for the observed CO2 uptake rather than direct anion-CO2 interaction. PMID:26556283

  15. Printed environmentally friendly supercapacitors with ionic liquid electrolytes on paper

    NASA Astrophysics Data System (ADS)

    Pettersson, F.; Keskinen, J.; Remonen, T.; von Hertzen, L.; Jansson, E.; Tappura, K.; Zhang, Y.; Wilén, C.-E.; Österbacka, R.

    2014-12-01

    Environmentally friendly supercapacitors are fabricated using commercial grade aluminum coated paper as a substrate and symmetrical activated carbon electrodes as large area electrodes. Different choline chloride-based eutectic solvents are used as electrolyte. These are inexpensive, environmentally friendly and have a larger operating window compared to that of water electrolytes. As the entire device is printed and the materials used are inexpensive, both small- and large-area power sources can be fabricated to be used in cheap, disposable and recyclable devices. Supercapacitors with different eutectic solvents are measured using cyclic charge-discharge and impedance spectroscopy measurements and compared to one widely used and one “green” imidazolium ionic liquid; EMIM:TFSI and EcoEng 212™, respectively. A mixture of ethylene glycol and choline chloride, Glyceline™, show the highest capacitance and power densities of the electrolytes being tested, including the imidazolium alternatives.

  16. Multiple headspace extraction for gas detection in ionic liquids.

    PubMed

    Müller, D; Fühl, M; Pinkwart, K; Baltes, N

    2014-10-16

    In this study multiple headspace extraction was used for the first time to measure the saturation concentration of carbon monoxide and oxygen in various ionic liquids (ILs). Many processes in ILs involve the reaction of gases so that the reactant solubility is not a mere characteristical parameter, but understanding the solubility of gases in ILs is required for assessing the feasibility of possible applications. Multiple headspace extraction has proofed to be a powerful tool to obtain solubilities in good accordance with literature data. The measured saturation concentration for carbon monoxide and oxygen in ILs based on rarely researched tetracyanoborates and other anions was in the range of 1.5-6.5mmol/L. The great advantage of multiple headspace extraction is that it is a nonexpensive method that can be realised in most analytical laboratories by combination of a simple gas chromatograph and an eligible headspace injector. PMID:25458524

  17. Stable prenucleation mineral clusters are liquid-like ionic polymers

    PubMed Central

    Demichelis, Raffaella; Raiteri, Paolo; Gale, Julian D.; Quigley, David; Gebauer, Denis

    2011-01-01

    Calcium carbonate is an abundant substance that can be created in several mineral forms by the reaction of dissolved carbon dioxide in water with calcium ions. Through biomineralization, organisms can harness and control this process to form various functional materials that can act as anything from shells through to lenses. The early stages of calcium carbonate formation have recently attracted attention as stable prenucleation clusters have been observed, contrary to classical models. Here we show, using computer simulations combined with the analysis of experimental data, that these mineral clusters are made of an ionic polymer, composed of alternating calcium and carbonate ions, with a dynamic topology consisting of chains, branches and rings. The existence of a disordered, flexible and strongly hydrated precursor provides a basis for explaining the formation of other liquid-like amorphous states of calcium carbonate, in addition to the non-classical behaviour during growth of amorphous calcium carbonate. PMID:22186886

  18. Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes.

    PubMed

    Grande, Lorenzo; von Zamory, Jan; Koch, Stephan L; Kalhoff, Julian; Paillard, Elie; Passerini, Stefano

    2015-03-18

    In this study, we report on the electroplating and stripping of lithium in two ionic liquid (IL) based electrolytes, namely N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl) imide (Pyr14FSI) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), and mixtures thereof, both on nickel and lithium electrodes. An improved method to evaluate the Li cycling efficiency confirmed that homogeneous electroplating (and stripping) of Li is possible with TFSI-based ILs. Moreover, the presence of native surface features on lithium, directly observable via scanning electron microscope imaging, was used to demonstrate the enhanced electrolyte interphase (SEI)-forming ability, that is, fast cathodic reactivity of this class of electrolytes and the suppressed dendrite growth. Finally, the induced inhomogeneous deposition enabled us to witness the SEI cracking and revealed previously unreported bundled Li fibers below the pre-existing SEI and nonrod-shaped protuberances resulting from Li extrusion. PMID:25714124

  19. Nanotribology of nanooxide materials in ionic liquids on silicon wafers

    NASA Astrophysics Data System (ADS)

    Hamidunsani, Ahmad Termizi; Radiman, Shahidan; Hassan, Masjuki Haji; Rahman, Irman Abdul

    2015-09-01

    Nanotribological properties have a significant impact on daily life. Ionic liquids (ILs) are becoming new favourable lubricants currently in researches. Addition of nanooxide materials in lubricants provide improvements to new technology. In this study, we determine nanotribological properties of BMIM+BF4- IL addition of different amount of ZnO nanomaterial on single crystals silicon wafer (Si110). The viscosity changes of IL samples against temperature increase were determined by rheological method. Nanotribological properties were determined by changes in friction coefficient and wear rate on silicon substrate surfaces using a reciprocating friction and wear monitor in 1 hour duration time. Aluminium cylinders acted as pins used to rub Si (110) substrate sample surfaces. Thus, on range between 0 mg to 3.5 mg of ZnO nanooxide material dispersed in 10ml BMIM+BF4- showed a good friction coefficient, wear and surface roughness reduction.

  20. Cyanoborohydride-based ionic liquids as green aerospace bipropellant fuels.

    PubMed

    Zhang, Qinghua; Yin, Ping; Zhang, Jiaheng; Shreeve, Jean'ne M

    2014-06-01

    In propellant systems, the most common bipropellants are composed of two chemicals, a fuel (or reducer) and an oxidizer. Currently, the choices for propellant fuels rely mainly on hydrazine and its methylated derivatives, even though they are extremely toxic, highly volatile, sensitive to adiabatic compression (risk of detonation), and, therefore, difficult to handle. With this background, the search for alternative green propellant fuels has been an urgent goal of space science. In this study, a new family of cyanoborohydride-based ionic liquids (ILs) with properties and performances comparable to hydrazine derivatives were designed and synthesized. These new ILs as bipropellant fuels, have some unique advantages including negligible vapor pressure, ultra-short ignition delay (ID) time, and reduced synthetic and storage costs, thereby showing great application potential as environmentally friendly fuels in bipropellant formulations. PMID:24737218

  1. Ionogels of a Sugar Surfactant in Ionic Liquids.

    PubMed

    Wang, Xiaolin; Yang, Qiao; Cao, Yixue; Zhou, Junhan; Hao, Haibin; Liang, Yuanyuan; Hao, Jingcheng

    2016-03-01

    Green and environmentally friendly ionogels formed by a sugar surfactant were prepared in two kinds of imidazolium-based ionic liquids. The phase transition from ribbon structures to lamellar structures induced by temperature and the transition mechanism were investigated in detail by means of freeze-fracture TEM and field-emission SEM observations, as well as small-angle X-ray scattering measurements. The rheological properties and tribological properties of two kinds of ionogels were systematically investigated. The difference in the lubricating properties and antiwear capability can be explained well by the mechanical and viscoelastic properties, as well as the different microstructures of samples destroyed by shear forces. This work provides a better understanding of the relationship between the structures, rheological properties, and tribological properties of ionogels. PMID:26647361

  2. Nitrile-functionalized pyrrolidinium ionic liquids as solvents for cross-coupling reactions involving in situ generated nanoparticle catalyst reservoirs.

    PubMed

    Cui, Yugang; Biondi, Ilaria; Chaubey, Manish; Yang, Xue; Fei, Zhaofu; Scopelliti, Rosario; Hartinger, Christian G; Li, Yongdan; Chiappe, Cinzia; Dyson, Paul J

    2010-02-28

    A series of nitrile-functionalized pyrrolidinium-based ionic liquids have been prepared and characterized by spectroscopic methods and X-ray crystallography. The application of these new ionic liquids as reaction media for Suzuki and Stille C-C cross-coupling reactions has been investigated and compared with related imidazolium and pyridinium systems (including those with and without nitrile functionalities). The nature of the ionic liquid strongly influences the catalyzed reaction and it would appear that, in addition to the nitrile group, the strength of anion-cation pairing in the ionic liquid and the viscosity of the ionic liquid play critical roles. Nanoparticles are also detected following catalysis and their role, and the influence of the ionic liquid on them, is assessed. The ability to use the nitrile-functionalized pyrrolidinium-based ionic liquids diluted in other (non-functionalized) ionic liquids is also described. PMID:20145850

  3. Nonlinear polarization of ionic liquids: theory, simulations, experiments

    NASA Astrophysics Data System (ADS)

    Kornyshev, Alexei

    2010-03-01

    Room temperature ionic liquids (RTILs) composed of large, often asymmetric, organic cations and simple or complex inorganic or organic anions do not freeze at ambient temperatures. Their rediscovery some 15 years ago is widely accepted as a ``green revolution'' in chemistry, offering an unlimited number of ``designer'' solvents for chemical and photochemical reactions, homogeneous catalysis, lubrication, and solvent-free electrolytes for energy generation and storage. As electrolytes they are non-volatile, some can sustain without decomposition up to 6 times higher voltages than aqueous electrolytes, and many are environmentally friendly. The studies of RTILs and their applications have reached a critical stage. So many of them can be synthesized - about a thousand are known already - their mixtures can further provide ``unlimited'' number of combinations! Thus, establishing some general laws that could direct the best choice of a RTIL for a given application became crucial; guidance is expected from theory and modelling. But for a physical theory, RTILs comprise a peculiar and complex class of media, the description of which lies at the frontier line of condensed matter theoretical physics: dense room temperature ionic plasmas with ``super-strong'' Coulomb correlations, which behave like glasses at short time-scale, but like viscous liquids at long-time scale. This talk will introduce RTILs to physicists and overview the current understanding of the nonlinear response of RTILs to electric field. It will focus on the theory, simulations, and experimental characterisation of the structure and nonlinear capacitance of the electrical double layer at a charged electrode. It will also discuss pros and contras of supercapacitor applications of RTILs.

  4. Testing Fundamental Properties of Ionic Liquids for Colloid Microthruster Applications

    NASA Technical Reports Server (NTRS)

    Anderson, John R.; Plett, Gary; Anderson, Mark; Ziemer, John

    2006-01-01

    NASA's New Millennium Program is scheduled to test a Disturbance Reduction System (DRS) on Space Technology 7 (ST7) as part of the European Space Agency's (ESA's) LISA Pathfinder Mission in late 2009. Colloid Micronewton Thrusters (CMNTs) will be used to counteract forces, mainly solar photon pressure, that could disturb gravitational reference sensors as part of the DRS. The micronewton thrusters use an ionic liquid, a room temperature molten salt, as propellant. The ionic liquid has a number of unusual properties that have a direct impact on thruster design. One of the most important issues is bubble formation before and during operation, especially during rapid pressure transitions from atmospheric to vacuum conditions. Bubbles have been observed in the feed system causing variations in propellant flow rate that can adversely affect thruster control. Bubbles in the feed system can also increase the likelihood that propellant will spray onto surfaces that can eventually lead to shorting high voltage electrodes. Two approaches, reducing the probability of bubble formation and removing bubbles with a new bubble eliminator device in the flow system, were investigated at Busek Co., Inc. and the Jet Propulsion Laboratory (JPL) to determine the effectiveness of both approaches. Results show that bubble formation is mainly caused by operation at low pressure and volatile contaminants in the propellant coming out of solution. A specification for the maximum tolerable level of contamination has been developed, and procedures for providing system cleanliness have been tested and implemented. The bubble eliminator device has also been tested successfully and has been implemented in recent thruster designs at Busek. This paper focuses on the propellant testing work at JPL, including testing of a breadboard level bubble eliminator device.

  5. Activation and stabilization of enzymes in ionic liquids.

    PubMed

    Moniruzzaman, Muhammad; Kamiya, Noriho; Goto, Masahiro

    2010-06-28

    As environmentally benign "green" solvents, room temperature ionic liquids (ILs) have been used as solvents or (co)solvents in biocatalytic reactions and processes for a decade. The technological utility of enzymes can be enhanced greatly by their use in ionic liquids (ILs) rather than in conventional organic solvents or in their natural aqueous reaction media. In fact, the combination of green properties and unique tailor-made physicochemical properties make ILs excellent non-aqueous solvents for enzymatic catalysis with numerous advantages over other solvents, including high conversion rates, high selectivity, better enzyme stability, as well as better recoverability and recyclability. However, in many cases, particularly in hydrophilic ILs, enzymes show relative instability and/or lower activity compared with conventional solvents. To improve the enzyme activity as well as stability in ILs, various attempts have been made by modifying the form of the enzymes. Examples are enzyme immobilization onto support materials via adsorption or multipoint attachment, lyophilization in the presence of stabilizing agents, chemical modification with stabilizing agents, formation of cross-linked enzyme aggregates, pretreatment with polar organic solvents or enzymes combined with suitable surfactants to form microemulsions. The use of these enzyme preparations in ILs can dramatically increase the solvent tolerance, enhance activity as well as stability, and improve enantioselectivity. This perspective highlights a number of pronounced strategies being used successfully for activation and stabilization of enzymes in non-aqueous ILs media. This review is not intended to be comprehensive, but rather to present a general overview of the potential approaches to activate enzymes for diverse enzymatic processes and biotransformations in ILs. PMID:20445940

  6. Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass

    PubMed Central

    2014-01-01

    Background Lignocellulosic biomass is highly recalcitrant and various pretreatment techniques are needed to facilitate its effective enzymatic hydrolysis to produce sugars for further conversion to bio-based chemicals. Ionic liquids (ILs) are of interest in pretreatment because of their potential to dissolve lignocellulosic materials including crystalline cellulose. Results Four imidazolium-based ionic liquids (ILs) ([C=C2C1im][MeCO2], [C4C1im][MeCO2], [C4C1im][Cl], and [C4C1im][HSO4]) well known for their capability to dissolve lignocellulosic species were synthesized and then used for pretreatment of substrates prior to enzymatic hydrolysis. In order to achieve a broad evaluation, seven cellulosic, hemicellulosic and lignocellulosic substrates, crystalline as well as amorphous, were selected. The lignocellulosic substrates included hybrid aspen and Norway spruce. The monosaccharides in the enzymatic hydrolysate were determined using high-performance anion-exchange chromatography. The best results, as judged by the saccharification efficiency, were achieved with [C4C1im][Cl] for cellulosic substrates and with the acetate-based ILs for hybrid aspen and Norway spruce. After pretreatment with acetate-based ILs, the conversion to glucose of glucan in recalcitrant softwood lignocellulose reached similar levels as obtained with pure crystalline and amorphous cellulosic substrates. IL pretreatment of lignocellulose resulted in sugar yields comparable with that obtained with acidic pretreatment. Heterogeneous dissolution with [C4C1im][HSO4] gave promising results with aspen, the less recalcitrant of the two types of lignocellulose included in the investigation. Conclusions The ability of ILs to dissolve lignocellulosic biomass under gentle conditions and with little or no by-product formation contributes to making them highly interesting alternatives for pretreatment in processes where high product yields are of critical importance. PMID:24779378

  7. Selective Single-Step Separation of a Mixture of Three Metal Ions by a Triphasic Ionic-Liquid-Water-Ionic-Liquid Solvent Extraction System.

    PubMed

    Vander Hoogerstraete, Tom; Blockx, Jonas; De Coster, Hendrik; Binnemans, Koen

    2015-08-10

    In a conventional solvent extraction system, metal ions are distributed between two immiscible phases, typically an aqueous and an organic phase. In this paper, the proof-of-principle is given for the distribution of metal ions between three immiscible phases, two ionic liquid phases with an aqueous phase in between them. Three-liquid-phase solvent extraction allows separation of a mixture of three metal ions in a single step, whereas at least two steps are required to separate three metals in the case of two-liquid-phase solvent extraction. In the triphasic system, the lower organic phase is comprised of the ionic liquid betainium- or choline bis(trifluoromethylsulfonyl)imide, whereas the upper organic phase is comprised of the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide. The triphasic system was used for the separation of a mixture of tin(II), yttrium(III), and scandium(III) ions. PMID:26178665

  8. Influence of Elemental Iodine on Imidazolium-Based Ionic Liquids: Solution and Solid-State Effects.

    PubMed

    Fei, Zhaofu; Bobbink, Félix D; Păunescu, Emilia; Scopelliti, Rosario; Dyson, Paul J

    2015-11-01

    Ionic liquids doped with I2, usually resulting in the formation of polyiodide anions, are extensively used as electrolytes and in iodination reactions. Herein, NMR spectroscopy and single-crystal X-ray diffraction were used to rationalize the structures of imidazolium-based polyiodide ionic liquids in the liquid and solid states. Combined, these studies show that extensive interactions between the imidazolium cation and the resulting polyiodide anion are present, which have the net effect of lengthening, polarizing, and weakening the I-I bonds in the anion. This bond weakening rationalizes the high conductivity and reactivity of ionic liquids doped with I2. PMID:26465973

  9. Prominent roles of impurities in ionic liquid for catalytic conversion of carbohydrates

    SciTech Connect

    Zhao, Haibo; Brown, Heather M.; Holladay, Johnathan E.; Zhang, Z. Conrad

    2012-02-07

    In the last two decades, ionic liquids have emerged as new and versatile solvents, and many of them are also catalysts for a broad range of catalytic reactions. Certain ionic liquids have been found to possess the unique capability of dissolving cellulosic biomass. The potential of such ionic liquids as solvent to enable catalytic conversion of cellulosic polymers was first explored and demonstrated by Zhao et al. This field of research has since experienced a rapid growth. Most ionic liquids have negligible vapor pressure and excellent thermal stability over a wide temperature range. For example, ionic liquids composed of 1-ethyl-3-methylimidazolium (EMIM+) cation and Cl- anion was reported to be stable up to 285 C, while salts of the same cation with other anions such as BF4- and PF6- are thermally stable above 380 C under inert atmosphere. It is well known that presence of impurities in ionic liquids typically causes changes in physical properties, e.g. decreasing in melting point and viscosity. Addition of Lewis acidic metal chlorides, e.g. AlCl3 to 1-alkyl-3-methylimidazolium chloride, [AMIM]Cl, is an exothermic reaction and considerably reduces the melting point by forming [AMIM]AlCl4 or [AMIM]Al2Cl7 that are also ionic liquids but have much lower melting point than the parent [AMIM]Cl. While most early research on catalysis of ionic liquids involving metallohalide anions were typically conducted from stoichiometric ratio of such anions to organic cations, e.g. [AMIM]+, the use of pure ionic liquids only as a solvent to carry out catalysis by a catalytic amount of a metal halide as catalyst truly displayed the solvent property of such ionic liquids.4 In such reaction systems, catalytic amounts of metal halides were used to catalyze the conversion of glucose and cellulose.4,11,12 The metal chloride catalyst concentration was in the order of 10-3 M. The presence of another metal chloride in the ionic liquids, even in the order of 10-5 M concentration was found to bring a dramatic synergistic effect. Therefore, the catalytic performance of the metal halide catalyst for the conversion of carbohydrates in the ionic liquid systems is highly sensitive to the presence of impurities. This work presents findings on the role of impurities that were present in some commercially available ionic liquids used for the conversion of the cellulose.

  10. STRUCTURE AND PROPERTIES OF CORN, RICE, WHEAT AND POTATO STARCH DISPERSED IN THE IONIC LIQUID, 1-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ionic liquid has gained industry attention, especially in environmentally friendly green chemistry. Researchers have utilized ionic liquid for dispersing cellulose, but no report using ionic liquid for other polysaccharides. In this study, corn, rice, wheat and potato starches were dispersed in ho...

  11. 81891 - A New Class of Solvents for TRU Dissolution and Separation: Ionic Liquids

    SciTech Connect

    Robin D. Rogers

    2004-12-10

    Through the current EMSP funding, solvent extraction technologies based on liquid-liquid partitioning of TRU to an Ionic Liquid phase containing conventional complexants has been shown to be viable. The growing understanding of the role that the different components of an ionic liquid can have on the partitioning mechanism, and on the nature of the subsequent dissolved species indicates strongly that ionic liquids are not necessarily direct replacements for volatile or otherwise hazardous organic solvents. Separations and partitioning can be exceptionally complex with competing solvent extraction, cation, anion and sacrificial ion exchange mechanisms are all important, depending on the selection of components for formation of the ionic liquid phase, and that control of these competing mechanisms can be utilized to provide new, alternative separations schemes.

  12. A New Class of Solvents for TRU Dissolution and Separation: Ionic Liquids

    SciTech Connect

    Rogers, Robin D.

    2004-12-31

    Through the current EMSP funding, solvent extraction technologies based on liquid-liquid partitioning of TRU to an Ionic Liquid phase containing conventional complexants has been shown to be viable. The growing understanding of the role that the different components of an ionic liquid can have on the partitioning mechanism, and on the nature of the subsequent dissolved species indicates strongly that ionic liquids are not necessarily direct replacements for volatile or otherwise hazardous organic solvents. Separations and partitioning can be exceptionally complex with competing solvent extraction, cation, anion and sacrificial ion exchange mechanisms are all important, depending on the selection of components for formation of the ionic liquid phase, and that control of these competing mechanisms can be utilized to provide new, alternative separations schemes.

  13. Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: Biomass fractionation, enzymatic digestion and ionic liquid reuse.

    PubMed

    An, Yan-Xia; Zong, Min-Hua; Wu, Hong; Li, Ning

    2015-09-01

    Pretreatment of lignocelluloses is a key step in the biorefinery for production of biofuels and valuable platform chemicals. In this work, various lignocelluloses were pretreated using cholinium ionic liquids (ILs) that are wholly composed of biomaterials, and fractionated into carbohydrate-rich materials (CRMs) and lignin-rich materials (LRMs). Cholinium ILs were found to be effective pretreatment solvents for grass lignocelluloses as well as eucalyptus, resulting in significant improvements in the glucose yields (58-75%) in subsequent enzymatic hydrolysis, while they were inefficient to make pine susceptible to biodegradation. Approximately 46% of lignin in native rice straw was fractionated as LRM after pretreatment using cholinium argininate ([Ch][Arg]). [Ch][Arg] showed excellent recyclability, and the total recovery was as high as 75% after reused for 8 cycles. Besides, rice straw pretreated by the recycled IL remained highly digestible, and good glucose yields (63-75%) were achieved after its enzymatic hydrolysis. PMID:26026293

  14. Electrolyte-gated polymer thin film transistors making use of ionic liquids and ionic liquid-solvent mixtures

    NASA Astrophysics Data System (ADS)

    Sayago, Jonathan; Meng, Xiang; Quenneville, Francis; Liang, Shuang; Bourbeau, Étienne; Soavi, Francesca; Cicoira, Fabio; Santato, Clara

    2015-03-01

    Electrolyte-Gated (EG) transistors, making use of electrolytes as the gating medium, are interesting for their low operation voltage. Furthermore, EG polymer transistors offer the advantage of solution processing, low cost, and mechanical flexibility. Despite the intense research activity in EG transistors, clear guidelines to correlate the properties of the materials used for the transistor channel and electrolytes with the doping effectiveness of the transistor channel are yet to be clearly established. Here, we investigate the use of room temperature ionic liquids (RTILs) based on the [TFSI] anion (namely, [EMIM][TFSI], [BMIM][TFSI], and [PYR14][TFSI]), to gate transistors making use of MEH-PPV as the channel material. Morphological studies of MEH-PPV and RTIL films showed a certain degree of segregation between the two components. All the EG transistors featured clear drain-source current modulations at voltages below 1 V. Polar solvent additives as propylene carbonate were used to improve the transistor response time.

  15. Conductivity Scaling Relationships for Nanostructured Block Copolymer/Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Megan; Segalman, Rachel

    2013-03-01

    Nanostructured membranes containing structural and ion-conducting domains are of great interest for a wide range of applications requiring high conductivity coupled with high thermal stability. To optimize the properties of such membranes, it is essential to understand scaling relationships between composition, structure, temperature, and ionic conductivity. The conductivity behaviors of mixtures of two block copolymer chemistries with two different ionic liquids have been investigated. The conductivities of all the mixtures are described by a single expression, which combines the Vogel-Tamman-Fulcher (VTF) equation with percolation theory. The VTF equation takes into account the effect of the glass transition temperature of the conducting phase on the temperature dependence of conductivity, while percolation theory reflects the power law dependence of conductivity on the overall volume fraction of ionic liquid in the membrane. The dominance of the overall volume fraction of ionic liquid in determining conductivity indicates that there is incredible flexibility in designing highly conductive block copolymer/ionic liquid membranes.

  16. Synthesis of new solid polymer electrolyte and actuator based on PEDOT/NBR/ionic liquid

    NASA Astrophysics Data System (ADS)

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2006-03-01

    The conducting polymer actuator was presented. The solid polymer electrolyte based on nitrile rubber (NBR) activated with different ionic liquids was prepared. The three different grades of NBR films were synthesized by emulsion polymerization with different amount of acrylonitrile, 23, 35, and 40 mol. %, respectively. The effect of acrylonitrile content on the ionic conductivity and dielectric constant of solid polymer electrolytes was characterized. A conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique, and room temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X [where X= BF 4 -, PF 6 -, (CF 3SO II) IIN -], were absorbed into the composite film. The effects of the anion size of the ionic liquids on the displacement of the actuator were examined. The displacement increased with increasing the anion-size of the ionic liquids.

  17. Synthesis and physico-chemical properties of new tetraethylammonium-based amino acid chiral ionic liquids.

    PubMed

    Abdul Rahman, Mohd Basyaruddin; Jumbri, Khairulazhar; Basri, Mahiran; Abdulmalek, Emilia; Sirat, Kamaliah; Salleh, Abu Bakar

    2010-04-01

    This paper reports the synthesis of a series of new tetraethylammonium-based amino acid chiral ionic liquids (CILs). Their physico-chemical properties, including melting point, thermal stability, viscosity and ionic conductivity, have been comprehensively studied. The obtained results indicated that the decomposition for these salts proceeds in one step and the temperature of decomposition (T(onset)) is in the range of 168-210 degrees C. Several new CILs prepared in this work showed high ionic conductivity compared to the amino acid ionic liquids (AAILs) found in the literature. PMID:20428050

  18. Thermoelectric energy recovery at ionic-liquid/electrode interface

    NASA Astrophysics Data System (ADS)

    Bonetti, Marco; Nakamae, Sawako; Huang, Bo Tao; Salez, Thomas J.; Wiertel-Gasquet, Cécile; Roger, Michel

    2015-06-01

    A thermally chargeable capacitor containing a binary solution of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide in acetonitrile is electrically charged by applying a temperature gradient to two ideally polarisable electrodes. The corresponding thermoelectric coefficient is -1.7 mV/K for platinum foil electrodes and -0.3 mV/K for nanoporous carbon electrodes. Stored electrical energy is extracted by discharging the capacitor through a resistor. The measured capacitance of the electrode/ionic-liquid interface is 5 μF for each platinum electrode while it becomes four orders of magnitude larger, ≈36 mF, for a single nanoporous carbon electrode. Reproducibility of the effect through repeated charging-discharging cycles under a steady-state temperature gradient demonstrates the robustness of the electrical charging process at the liquid/electrode interface. The acceleration of the charging by convective flows is also observed. This offers the possibility to convert waste-heat into electric energy without exchanging electrons between ions and electrodes, in contrast to what occurs in most thermogalvanic cells.

  19. Structure study of a microemulsion system with an ionic liquid.

    PubMed

    Kang, Tae Hui; Jeon, Yoonnam; Kim, Mahn Won

    2015-11-01

    We found that an ionic liquid (IL) with a long alkyl chain moiety, 1-tetradecyl-3-methylimidazolium chloride (C14MIMCl), forms a single crystal after the addition of octanol in an alkane solvent. But the solution exhibits a structural change after adding a small amount of water. An optically clear solution is found within limits, and it is stable for several months. Since the IL molecule has an amphiphilic property, it behaves as a surfactant in the microemulsion system. But the IL formed a single crystal rather than a lyotropic liquid crystalline structure, unlike a typical surfactant. Therefore, it is important to understand the structure of the microemulsion system. We used the small angle neutron scattering (SANS) technique to investigate the structure. The scattering intensity was analyzed using a spherical core-shell model with the Schultz size distribution, and a contrast matching method was used to study the internal structure. The structure of the solution is confirmed to be a water-in-oil microemulsion system, and the swelling law is obeyed in the microemulsion system. PMID:26439624

  20. Thermoelectric energy recovery at ionic-liquid/electrode interface

    SciTech Connect

    Bonetti, Marco; Nakamae, Sawako; Huang, Bo Tao; Wiertel-Gasquet, Cécile; Roger, Michel; Salez, Thomas J.

    2015-06-28

    A thermally chargeable capacitor containing a binary solution of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide in acetonitrile is electrically charged by applying a temperature gradient to two ideally polarisable electrodes. The corresponding thermoelectric coefficient is −1.7 mV/K for platinum foil electrodes and −0.3 mV/K for nanoporous carbon electrodes. Stored electrical energy is extracted by discharging the capacitor through a resistor. The measured capacitance of the electrode/ionic-liquid interface is 5 μF for each platinum electrode while it becomes four orders of magnitude larger, ≈36 mF, for a single nanoporous carbon electrode. Reproducibility of the effect through repeated charging-discharging cycles under a steady-state temperature gradient demonstrates the robustness of the electrical charging process at the liquid/electrode interface. The acceleration of the charging by convective flows is also observed. This offers the possibility to convert waste-heat into electric energy without exchanging electrons between ions and electrodes, in contrast to what occurs in most thermogalvanic cells.

  1. Absorption degree analysis on biogas separation with ionic liquid systems.

    PubMed

    Zhang, Xin; Zhang, Suojiang; Bao, Di; Huang, Ying; Zhang, Xiangping

    2014-10-22

    For biogas upgrading, present work mainly focuses on either thermodynamics or mass transfer properties. A systematical study on these two aspects is important for developing a new biogas separation process. In this work, a new criterion "absorption degree", which combines both thermodynamics and mass transfer properties, was proposed for the first time to comprehensively evaluate the absorption performance. Henry's law constants of CO2 and CH4 in ionic liquids-polyethylene glycol dimethyl ethers mixtures were investigated. The liquid-side mass transfer coefficients (kL) were determined. The results indicate that IL-NHD mixtures exhibit not only a high CO2/CH4 selectivity, but also a fast kL for CO2 absorption. The [bmim][NO3]+NHD mixtures present a high absorption degree value for CO2 but a low value for CH4. For presenting a highest relative absorption degree value, the 50wt% [bmim][NO3]+50wt% NHD mixture is recommended for biogas upgrading. PMID:25459814

  2. Reverse dynamic calorimetry of a viscous ionic liquid.

    PubMed

    Huang, Wei; Richert, Ranko

    2009-11-14

    We compare the time scale of thermal relaxation with that of the electric modulus in the deeply supercooled regime of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Thermal relaxation refers to the process of configurational temperatures of the slow degrees of freedom equilibrating toward the vibrational temperature, which is a reliable indicator for the time scale of structural relaxation. Energy is supplied to the sample by absorption from a sinusoidal electric field with amplitude as high as 387 kV/cm and frequencies in the 0.2 Hz-56 kHz range, analogous to microwave heating. The time resolved response of configurational temperature as well as the low field dielectric properties are measured in a single high field impedance setup. Near T(g), we find that the macroscopic field (or modulus M) relaxes considerably faster than the structure (in terms of thermal relaxation, solvation dynamics, and probe rotation), although the liquid is entirely composed of mobile ions. PMID:19916606

  3. Communication: Nanoscale structure of tetradecyltrihexylphosphonium based ionic liquids

    NASA Astrophysics Data System (ADS)

    Hettige, Jeevapani J.; Araque, Juan C.; Kashyap, Hemant K.; Margulis, Claudio J.

    2016-03-01

    In a recent communication [J. J. Hettige et al., J. Chem. Phys. 140, 111102 (2014)], we investigated the anomalous temperature dependence of the X-ray first sharp diffraction peak (or prepeak) in the tetradecyltrihexylphosphonium bis(trifluoromethylsulfonyl)-amide ionic liquid. Contrary to what was expected and often observed, the first sharp diffraction peak in this system was shown to increase in intensity with increasing temperature. This implies higher intermediate-range periodicity at a higher temperature. Is this counter-intuitive behavior specific to the combination of cation and anion? The current work analyzes the structural behavior of the same cation coupled with six different anions ranging from the small and spherically symmetric Cl- to the more structurally complex and charge-diffuse NTf2-. In all cases, the same temperature behavior trend for the prepeak is observed independent of anionic nature. We will show that the intensity increase in the prepeak region is associated with the structural behavior of charged liquid subcomponents. Instead, upon a temperature increase, the apolar subcomponents contribute to what would be an expected decrease of prepeak intensity.

  4. Thermoelectric energy recovery at ionic-liquid/electrode interface.

    PubMed

    Bonetti, Marco; Nakamae, Sawako; Huang, Bo Tao; Salez, Thomas J; Wiertel-Gasquet, Cécile; Roger, Michel

    2015-06-28

    A thermally chargeable capacitor containing a binary solution of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide in acetonitrile is electrically charged by applying a temperature gradient to two ideally polarisable electrodes. The corresponding thermoelectric coefficient is -1.7 mV/K for platinum foil electrodes and -0.3 mV/K for nanoporous carbon electrodes. Stored electrical energy is extracted by discharging the capacitor through a resistor. The measured capacitance of the electrode/ionic-liquid interface is 5 μF for each platinum electrode while it becomes four orders of magnitude larger, ≈36 mF, for a single nanoporous carbon electrode. Reproducibility of the effect through repeated charging-discharging cycles under a steady-state temperature gradient demonstrates the robustness of the electrical charging process at the liquid/electrode interface. The acceleration of the charging by convective flows is also observed. This offers the possibility to convert waste-heat into electric energy without exchanging electrons between ions and electrodes, in contrast to what occurs in most thermogalvanic cells. PMID:26133450

  5. Reversible transformation between ionic liquids and coordination polymers by application of light and heat.

    PubMed

    Funasako, Yusuke; Mori, Shotaro; Mochida, Tomoyuki

    2016-05-01

    Reversible transformation between an ionic liquid and a coordination polymer by application of light and heat has been achieved. Ultraviolet light irradiation transforms the transparent liquid to a yellow solid; a reverse reaction occurs due to the application of heat. The transformation accompanies drastic switching of intra- and intermolecular coordination bonds of a ruthenium complex. This is a novel material conversion methodology that connects the fields of ionic liquids and coordination polymers. PMID:27080208

  6. Poly(ionic liquid)s as phase splitting promoters in aqueous biphasic systems.

    PubMed

    João, Karen G; Tomé, Liliana C; Isik, Mehmet; Mecerreyes, David; Marrucho, Isabel M

    2015-11-01

    Aqueous biphasic systems (ABSs) provide a sustainable and efficient alternative to conventional liquid-liquid extraction techniques with volatile organic solvents, and can be used for the extraction, recovery, and purification of diverse solutes. In this work, and for the first time, ABSs composed of poly(ionic liquid)s (PILs) and inorganic salts were measured at 25 °C and atmospheric pressure. New PILs having pyrrolidinium polycations combined with different counter-anions, namely acetate [Ac](-), trifluoroacetate [TFAc](-), hexanoate [Hex](-), adipate [Adi](-), and citrate [Cit](-) were synthesized, by a simple and environmentally-friendly procedure, and characterized. The effect of the PIL features, namely molecular weight and anionic character, and other experimental variables, such as temperature, on the phase splitting ability was researched. The aptitude of the studied ABS to be implemented as separation technologies was also evaluated through the use of a model biomolecule, tryptophan. PMID:26421939

  7. Proton solvation in protic and aprotic solvents.

    PubMed

    Rossini, Emanuele; Knapp, Ernst-Walter

    2016-05-01

    Protonation pattern strongly affects the properties of molecular systems. To determine protonation equilibria, proton solvation free energy, which is a central quantity in solution chemistry, needs to be known. In this study, proton affinities (PAs), electrostatic energies of solvation, and pKA values were computed in protic and aprotic solvents. The proton solvation energy in acetonitrile (MeCN), methanol (MeOH), water, and dimethyl sulfoxide (DMSO) was determined from computed and measured pKA values for a specially selected set of organic compounds. pKA values were computed with high accuracy using a combination of quantum chemical and electrostatic approaches. Quantum chemical density functional theory computations were performed evaluating PA in the gas-phase. The electrostatic contributions of solvation were computed solving the Poisson equation. The computations yield proton solvation free energies with high accuracy, which are in MeCN, MeOH, water, and DMSO -255.1, -265.9, -266.3, and -266.4 kcal/mol, respectively, where the value for water is close to the consensus value of -265.9 kcal/mol. The pKA values of MeCN, MeOH, and DMSO in water correlates well with the corresponding proton solvation energies in these liquids, indicating that the solvated proton was attached to a single solvent molecule. © 2016 Wiley Periodicals, Inc. PMID:26786747

  8. Oxidative desulfurization of dibenzothiophene from model oil using ionic liquids as extracting agent

    NASA Astrophysics Data System (ADS)

    Taha, Mohd F.; Atikah, N.; Chong, F. K.; Shaharun, Maizatul S.

    2012-09-01

    The oxidative desulfurization of dibenzothiophene (DBT) from model oil (in n-dodecane) was carried out using ionic liquid as the extractant and catalyst, and hydrogen peroxide (H2O2) in combination with acetic acid (CH3COOH) and sulphuric acid (H2SO4) as the oxidant. The ionic liquids used were 1-butyl-3-methylimidazolium octyl sulphate ([Bmim][OcSO4]) and 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]). The effect of the amounts of H2O2 on oxidative desulphurization of model oil was first investigated without the usage of ionic liquids at room temperature. The results indicate that greater amount of H2O2 give higher desulfurization and the maximum desulfurization in this study, i.e. 34 %, was occurred when the molar ratio of H2O2 to sulfur was 5:1. With the usage of ionic liquid and the molar ratio of 5:1 (H2O2:sulfur), the efficiency of DBT removal from model oil was increased significantly in terms of percent removal and removal time. Ionic liquid of [Bmim][OcSO4] performed better than [Bmim][Ac] with 72 % DBT removal. When molar ratio of H2O2 to sulphur was 5:1, volume ratio of ionic liquid to model oil was 1:1 and mixing time was 60 min at room temperature. The results indicate the potential of ionic liquids as the extractant and catalyst for oxidative desulfurization of hydrocarbon fuels.

  9. Direct Capture of Organic Acids From Fermentation Media Using Ionic Liquids

    SciTech Connect

    Klasson, K.T.

    2004-11-03

    Several ionic liquids have been investigated for the extraction of organic acids from fermentation broth. Partitioning of representative organic acids (lactic, acetic, and succinic) between aqueous solution and nine hydrophobic ionic liquids was measured. The extraction efficiencies were strongly dependent on pH of the aqueous phase. Distribution coefficient was very good (approximately 60) at low succinic acid concentrations for one of the ionic liquids (trihexyltetradecylphosphonium methanesulfonate) at neutral pH. However, this ionic liquid had to be diluted with nonanol due to its high viscosity in order to be useful. A diluent (trioctylamine) was also added to this mixture. The results suggest that an extraction system based on ionic liquids may be feasible for succinic acid recovery from fermentation broth and that two ideal extraction stages are needed to reduce the concentration from 33 g/L to 1 g/L of succinic acid. Further studies are needed to evaluate other issues related to practical applications, including ionic liquid loss in the process, toxicity effects of ionic liquids during simultaneous fermentation and extractions.

  10. Synthesis and Applications of Ionic Liquids Derived from Natural Sugars

    NASA Astrophysics Data System (ADS)

    Chiappe, Cinzia; Marra, Alberto; Mele, Andrea

    Aiming to develop environmentally compatible chemical syntheses, the replacement of traditional organic solvents with ionic liquids (ILs) has attracted considerable attention. ILs are special molten salts with melting points below 100°C that are typically constituted of organic cations (imidazolium, pyridinium, sulfonium, phosphonium, etc.) and inorganic anions. Due to their ionic nature, they are endowed with high chemical and thermal stability, good solvent properties, and non-measurable vapor pressure. Although the recovery of unaltered ILs and recycling partly compensate their rather high cost, it is important to develop new synthetic approaches to less expensive and environmentally sustainable ILs based on renewable raw materials. In fact, most of these alternative solvents are still prepared starting from fossil feedstocks. Until now, only a limited number of ILs have been prepared from renewable sources. Surprisingly, the most available and inexpensive raw material, i.e., carbohydrates, has been hardly exploited in the synthesis of ILs. In 2003 imidazolium-based ILs were prepared from d-fructose and used as solvents in Mizoroki-Heck and Diels-Alder reactions. Later on, the first chiral ILs derived from sugars were prepared from methyl d-glucopyranoside. In the same year, a family of new chiral ILs, obtained from commercial isosorbide (dianhydro-d-glucitol), was described. A closely related approach was followed by other researchers to synthesize mono- and bis-ammonium ILs from isomannide (dianhydro-d-mannitol). Finally, a few ILs bearing a pentofuranose unit as the chiral moiety were prepared using sugar phosphates as glycosyl donors and 1-methylimidazole as the acceptor.

  11. Ionic Liquid Development for Absorption Heat Pump Applications

    SciTech Connect

    MAERZKE, Katie; MOZURKEWICH, George; Abdelaziz, Omar; Gluesenkamp, Kyle R; Schneider, William F; Morrison, Doug; Maginn, Prof. Edward

    2014-01-01

    Ionic liquids (ILs) are a unique class of solvents with many potential applications, including absorption heating/cooling. Due to the large number of possible combinations of cations and anions, it is possible to tune the IL to obtain the required properties for the application of interest. Many ILs are very hydrophilic, while even the most hydrophobic ILs often absorb significant amounts of water. The presence of water in an IL can have a large effect on the system properties. For instance, a small amount of dissolved water often leads to a dramatic reduction in the viscosity of the mixture. Dissolved water also affects the ionic conductivity of ILs and alters the solvation power of ILs for both polar and non-polar solutes. Knowledge of the phase diagram of these IL/water mixtures therefore is essential when designing absorption heating systems. Measuring isotherms often requires time consuming and/or expensive experiments, and does not necessarily lead to a deeper understanding of the molecular level interactions responsible for water-IL interactions. In contrast, molecular simulations are relatively inexpensive to perform, allowing one to screen potential ILs for a given application. Simulation also provides a detailed picture of how water and a given IL interact, thereby providing insight into ways of designing an IL to have a desired water solubility. Toward this end, atomistic-level Monte Carlo (MC) simulations have been performed to predict isotherms for a variety of IL/water mixtures. The simulations predict that exchanging some of the IL cations with a small metal cation can lead to an increase in the hydrophilicity of the IL, which impacts the capacity of the fluid and the enthalpy of mixing. Molecular dynamics simulations, which unlike Monte Carlo simulations capture timedependent properties, were also carried out to estimate the relative viscosities of the solutions.

  12. Influence of ionic association, transport properties, and solvation on the catalytic hydrogenation of 1,3-cyclohexadiene in ionic liquids.

    PubMed

    Podgoršek, Ajda; Salas, Gorka; Campbell, Paul S; Santini, Catherine C; Pádua, Agílio A H; Costa Gomes, Margarida F; Fenet, Bernard; Chauvin, Yves

    2011-10-27

    The influence of the nature of two different ionic liquids, namely 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], and 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(1)C(4)Im][NTf(2)], on the catalytic hydrogenation of 1,3-cyclohexadiene with [Rh(COD)(PPh(3))(2)][NTf(2)] (COD = 1,5-cyclooctadiene) was studied. Initially, the effect of different concentrations of 1,3-cyclohexadiene on the molecular interactions and on the structure in two ionic liquids was investigated by NMR and by molecular dynamic simulations. It was found that in both ionic liquids 1,3-cyclohexadiene is solvated preferentially in the lipophilic regions. Furthermore, the higher solubility of 1,3-cyclohexadiene in [C(1)C(4)Im][NTf(2)] and the smaller positive values of the excess molar enthalpy of mixing for the 1,3-cyclohexadiene + [C(1)C(4)Im][NTf(2)] system in comparison with 1,3-cyclohexadiene + [C(1)C(1)C(4)Im][NTf(2)] indicate more favorable interactions between 1,3-cyclohexadiene and the C(1)C(4)Im(+) cation than with the C(1)C(1)C(4)Im(+) cation. Subsequently, diffusivity and conductivity measurements of the 1,3-cyclohexadiene + ionic liquid mixtures at different compositions allowed a characterization of mass and charge transport in the media and access to the ionicity of ionic liquids in the mixture. From the dependence of the ratio between molar conductivity and the conductivity inferred from NMR diffusion measurements, Λ(imp)/Λ(NMR), on concentration of 1,3-cyclohexadiene in the ionic liquid mixture, it was found that increasing the amount of 1,3-cyclohexadiene leads to a decrease in the ionicity of the medium. Finally, the reactivity of the catalytic hydrogenation of 1,3-cyclohexadiene using [Rh(COD)(PPh(3))(2)][NTf(2)] performed in [C(1)C(4)Im][NTf(2)] at different compositions of 1,3-cyclohexadiene and in [C(1)C(1)C(4)Im][NTf(2)] at one composition was related linearly to the viscosity, hence the reaction rate is determined by the mass transport properties of the media. PMID:21910488

  13. Fluorescence anisotropy of a nonpolar solute in 1-alkyl-3-methylimidazolium-based ionic liquids: does the organized structure of the ionic liquid influence solute rotation?

    PubMed

    Gangamallaiah, V; Dutt, G B

    2013-05-01

    Temperature-dependent fluorescence anisotropies of a nonpolar solute 9-phenylanthracene (9-PA) have been measured in 1-alkyl-3-methylimidazolium-based ionic liquids with anions such as bis(trifluoromethylsulfonyl)imide ([Tf2N–]), tris(pentafluoroethyl)trifluorophosphate ([FAP–]), tetrafluoroborate ([BF4(–)]), and hexafluorophosphate ([PF6(–)]) to find out if the organized structure of the ionic liquid has a bearing on solute rotation. Analysis of the experimental data using the Stokes–Einstein–Debye hydrodynamic theory indicates that there is no significant variation in the solute–solvent coupling constants (Cobs) with an increase in the length of the alkyl chain on the imidazolium cation for the ionic liquids with [Tf2N–] and [FAP–] anions. However, in the case of ionic liquids with [BF4(–)] and [PF6(–)] anions, the rotation of 9-PA for a given viscosity at constant temperature becomes progressively faster and C(obs) decreases by a factor of 2.4 from ethyl to octyl derivatives. Quasihydrodynamic theories of Gierer–Wirtz and Dote–Kivelson–Schwartz could not account for the significant decrease in the C(obs) values. The observed behavior has been rationalized in terms of the organized structure of the ionic liquids having [BF4(–)] and [PF6(–)] anions, which results as a consequence of the high charge-to-size ratio of these anions compared to [Tf2N–] and [FAP–]. PMID:23530453

  14. Complementing Crystallography with Ultralow-Frequency Raman Spectroscopy: Structural Insights into Nitrile-Functionalized Ionic Liquids.

    PubMed

    Chen, Hong-Kai; Srivastava, Nitin; Saha, Satyen; Shigeto, Shinsuke

    2016-01-01

    Functionalized ionic liquids are a subclass of ionic liquids that are tailored for a specific application. Structural characterization in both solid and liquid phases is central to understanding their physical properties. Here, we used ultralow-frequency Raman spectroscopy, which can measure Raman spectra down to approximately 5 cm(-1) , to study the structures and physical properties of 1-(4-cyanobenzyl)-3-methylimidazolium salts with five different anions. A comparison of the observed low-frequency Raman spectral patterns enabled us to predict the crystal symmetry of one of the synthesized salts for which single-crystal X-ray diffraction data were unobtainable. Real-time tracking of the low-frequency Raman spectral changes during melting revealed peak shifts indicative of different degrees of microscopic heterogeneity in the ionic liquids. The results show that our method provides a facile means that is complementary to X-ray crystallography, for obtaining structural information of ionic liquids. PMID:26449719

  15. On the collective network of ionic liquid/water mixtures. IV. Kinetic and rotational depolarization

    NASA Astrophysics Data System (ADS)

    Schröder, Christian; Sega, Marcello; Schmollngruber, Michael; Gailberger, Elias; Braun, Daniel; Steinhauser, Othmar

    2014-05-01

    Dielectric spectroscopy is a measure of the collective Coulomb interaction in liquid systems. Adding ionic liquids to an aqueous solution results in a decrease of the static value of the generalized dielectric constant which cannot be attributed to kinetic depolarization models characterized by the static conductivity and rotational relaxation constant. However, a dipolar Poisson-Boltzmann model computing the water depolarization in the proximity of ions is not only successful for simple electrolytes but also in case of molecular ionic liquids. Moreover, our simple geometric hydration model is also capable to explain the dielectric depolarization. Both models compute the dielectric constant of water and obtain the overall dielectric constant by averaging the values of its components, water and the ionic liquid, weighted by their volume occupancies. In this sense, aqueous ionic liquid mixtures seem to behave like polar mixtures.

  16. On the collective network of ionic liquid/water mixtures. IV. Kinetic and rotational depolarization.

    PubMed

    Schröder, Christian; Sega, Marcello; Schmollngruber, Michael; Gailberger, Elias; Braun, Daniel; Steinhauser, Othmar

    2014-05-28

    Dielectric spectroscopy is a measure of the collective Coulomb interaction in liquid systems. Adding ionic liquids to an aqueous solution results in a decrease of the static value of the generalized dielectric constant which cannot be attributed to kinetic depolarization models characterized by the static conductivity and rotational relaxation constant. However, a dipolar Poisson-Boltzmann model computing the water depolarization in the proximity of ions is not only successful for simple electrolytes but also in case of molecular ionic liquids. Moreover, our simple geometric hydration model is also capable to explain the dielectric depolarization. Both models compute the dielectric constant of water and obtain the overall dielectric constant by averaging the values of its components, water and the ionic liquid, weighted by their volume occupancies. In this sense, aqueous ionic liquid mixtures seem to behave like polar mixtures. PMID:24880299

  17. Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents.

    PubMed

    Dai, Yuntao; van Spronsen, Jaap; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2013-11-22

    Mixtures of solid chemicals may become liquid under certain conditions. These liquids are characterized by the formation of strong ionic (ionic liquids) or hydrogen bonds (deep eutectic solvents). Due to their extremely low vapor pressure, they are now widely used in polymer chemistry and synthetic organic chemistry, yet little attention has been paid to their use as extraction solvents of natural products. This review summarizes the preparation of ionic liquids and deep eutectic solvents with natural product components and recent progress in their applications to the extraction and analysis of natural products as well as the recovery of extracted compounds from their extracts. Additionally, various factors affecting extraction features of ionic liquids and deep eutectic solvents, as well as potential useful technologies including microwave and ultrasound to increase the extraction efficiency, are discussed. PMID:24188074

  18. Ionic liquid-modified metal sulfides/graphene oxide nanocomposites for photoelectric conversion

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Yù; Pei, Qi; Feng, Ting; Mao, Hui; Zhang, Wei; Wu, Shuyao; Liu, Daliang; Wang, Hongyu; Song, Xi-Ming

    2015-08-01

    Ionic liquid-modified metal sulfides/graphene oxide nanocomposites are prepared via a facile electrostatic adsorption. Ionic liquid (IL) is firstly used as surface modifier and structure-directing agent of metal sulfide (MS) crystallization process, obtaining ionic liquid modified-MS (IL-MS) nanoparticles with positive charges on surface. IL-MS/GO is obtained by electrostatic adherence between positively charged IL-MS and negatively charged graphene oxide (GO). The as-prepared sample shows enhanced photocurrent and highly efficient photocatalytic activity under visible light irradiation, indicating IL-MS/GO nanocomposites greatly promoted the separation of photogenerated electron-hole pairs.

  19. Direct Enzymatic Oxidation of Glucose with a Poly(Ionic Liquid) - Gold-Nanoparticle Composite

    NASA Astrophysics Data System (ADS)

    Firestone, Millicent; Lee, Sungwon; Seifert, Soenke

    2011-03-01

    In this work we describe the synthesis, fabrication and characterization of a gold nanoparticle - ionic liquid-derived polymer composite for conversion of biofuels into electricity. Glucose oxidase (GOx) electrostatically adsorbed on an ionic liquid-derived polymer containing internally organized columns of Au nanoparticles exhibits bioelectrocatalytic properties in the oxidation of glucose. The cationic poly(ionic liquid) provides an ideal substrate for the immobilization of GOx. The encapsulated Au nanoparticles serve two roles: promoting direct electron transfer with the recessed enzyme redox centers, and imparting electronic conduction to the composite, thereby allowing it to function as an electrode for electrochemical detection.

  20. Protic ionic liquid as additive on lipase immobilization using silica sol-gel.

    PubMed

    de Souza, Ranyere Lucena; de Faria, Emanuelle Lima Pache; Figueiredo, Renan Tavares; Freitas, Lisiane dos Santos; Iglesias, Miguel; Mattedi, Silvana; Zanin, Gisella Maria; dos Santos, Onélia Aparecida Andreo; Coutinho, João A P; Lima, Álvaro Silva; Soares, Cleide Mara Faria

    2013-03-01

    Ionic liquids (ILs) have evolved as a new type of non-aqueous solvents for biocatalysis, mainly due to their unique and tunable physical properties. A number of recent review papers have described a variety of enzymatic reactions conducted in IL solutions, on the other hand, to improve the enzyme's activity and stability in ILs; major methods being explored include the enzyme immobilization (on solid support, sol-gel, etc.), protic ionic liquids used as an additive process. The immobilization of the lipase from Burkholderia cepacia by the sol-gel technique using protic ionic liquids (PIL) as additives to protect against inactivation of the lipase due to release of alcohol and shrinkage of the gel during the sol-gel process was investigated in this study. The influence of various factors such as the length of the alkyl chain of protic ionic liquids (monoethanolamine-based) and a concentration range between 0.5 and 3.0% (w/v) were evaluated. The resulting hydrophobic matrices and immobilized lipases were characterised with regard to specific surface area, adsorption-desorption isotherms, pore volume (V(p)) and size (d(p)) according to nitrogen adsorption and scanning electron microscopy (SEM), physico-chemical properties (thermogravimetric - TG, differential scanning calorimetry - DSC and Fourier transform infrared spectroscopy - FTIR) and the potential for ethyl ester and emulsifier production. The total activity yields (Y(a)) for matrices of immobilized lipase employing protic ionic liquids as additives always resulted in higher values compared with the sample absent the protic ionic liquids, which represents 35-fold increase in recovery of enzymatic activity using the more hydrophobic protic ionic liquids. Compared with arrays of the immobilized biocatalyst without additive, in general, the immobilized biocatalyst in the presence of protic ionic liquids showed increased values of surface area (143-245 m(2) g(-1)) and pore size (19-38 Å). Immobilization with protic ionic liquids also favoured reduced mass loss according to TG curves (always less than 42.9%) when compared to the immobilized matrix without protic ionic liquids (45.1%), except for the sample containing 3.0% protic ionic liquids (46.5%), verified by thermogravimetric analysis. Ionic liquids containing a more hydrophobic alkyl group in the cationic moiety were beneficial for recovery of the activity of the immobilized lipase. The physico-chemical characterization confirmed the presence of the enzyme and its immobilized derivatives obtained in this study by identifying the presence of amino groups, and profiling enthalpy changes of mass loss. PMID:23410924

  1. Ionic liquids supported on metal-organic frameworks: remarkable adsorbents for adsorptive desulfurization.

    PubMed

    Khan, Nazmul Abedin; Hasan, Zubair; Jhung, Sung Hwa

    2014-01-01

    Acidic ionic-liquids (IL) supported on metal-organic frameworks (MOFs) have been shown to be beneficial for adsorptive desulfurization. A remarkable improvement in the adsorption capacity (ca. 71%) was observed in for ILs supported on MIL-101 compared with virgin MIL-101. The improved adsorptive performance might be explained by the acid-base interactions between the acidic ionic liquid and basic benzothiophene (BT). Moreover, from this study, it can be suggested that porous MOFs, supported with ionic liquids, may introduce a new class of highly porous adsorbents for the efficient adsorption of various compounds. PMID:24390909

  2. Formation of p-n-p junction with ionic liquid gate in graphene

    SciTech Connect

    He, Xin; Tang, Ning E-mail: geweikun@mail.tsinghua.edu.cn Duan, Junxi; Zhang, Yuewei; Lu, Fangchao; Xu, Fujun; Yang, Xuelin; Gao, Li; Wang, Xinqiang; Shen, Bo E-mail: geweikun@mail.tsinghua.edu.cn; Ge, Weikun E-mail: geweikun@mail.tsinghua.edu.cn

    2014-04-07

    Ionic liquid gating is a technique which is much more efficient than solid gating to tune carrier density. To observe the electronic properties of such a highly doped graphene device, a top gate made of ionic liquid has been used. By sweeping both the top and back gate voltage, a p-n-p junction has been created. The mechanism of forming the p-n-p junction has been discussed. Tuning the carrier density by ionic liquid gate can be an efficient method to be used in flexible electronics.

  3. Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends

    PubMed Central

    Ye, Hui; Huang, Jian; Xu, Jun John; Khalfan, Amish; Greenbaum, Steve G.

    2009-01-01

    Ionic liquids thermodynamically compatible with Li metal are very promising for applications to rechargeable lithium batteries. 1-methyl-3-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P13TFSI) is screened out as a particularly promising ionic liquid in this study. Dimensionally stable, elastic, flexible, nonvolatile polymer gel electrolytes (PGEs) with high electrochemical stabilities, high ionic conductivities and other desirable properties have been synthesized by dissolving Li imide salt (LiTFSI) in P13TFSI ionic liquid and then mixing the electrolyte solution with poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP) copolymer. Adding small amounts of ethylene carbonate to the polymer gel electrolytes dramatically improves the ionic conductivity, net Li ion transport concentration, and Li ion transport kinetics of these electrolytes. They are thus favorable and offer good prospects in the application to rechargeable Li batteries including open systems like Li/air batteries, as well as more “conventional” rechargeable lithium and lithium ion batteries. PMID:20354587

  4. New ionic liquids based on complexation of dipropylsulfide and AlCl3 for electrochodeposition of aluminum

    DOE PAGESBeta

    Fang, Youxing; Jiang, Xueguang; Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new kind of ionic liquid based on complexation of dipropyl sulfide (DPS) and AlCl3 has been prepared. The equivalent concentration of AlCl3 in the ionic liquid is as high as 2.3 M. More importantly, it is highly fluidic and exhibits an ambient ionic conductivity of 1.25 x 10-4 S cm-1. This new ionic liquid can be successfully used as an electrolyte for electrodeposition of aluminum.

  5. Morphology and Ionic Conductivity of Block Copolymer Electrolytes Containing Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Park, Moon Jeong

    2015-03-01

    The global energy crisis and an increase in environmental pollution in the recent years have drawn the attention of the scientific community towards the development of efficient electrochemical devices. Polymers containing charged species have the potential to serve as electrolytes in next-generation devices and achieving high ion transport properties in these electrolytes is the key to improving their efficiency. Although the synthesis and characterization of a wide variety of ion-containing polymers have been extensively reported over the last decade, quantitative understanding of the factors governing the ion transport properties of these materials is in its infancy. In this talk, I will present the current understanding of the diverse factors affecting the thermodynamics, morphologies and ion transport of ion-containing polymers by focusing on the use of ionic liquids (ILs). Various strategies for accessing improved transport properties of IL-containing polymers are elucidated by focusing on the role of IL-polymer interactions. The major accomplishment of obtaining well-defined morphologies for these IL-containing polymers by the use of block copolymer is particularly emphasized as a novel means of controlling the transport properties. The application of IL-incorporated polymer electrolytes in high temperature fuel cells and electro-active actuators is also enclosed.

  6. Effect of protic ionic liquid and surfactant structure on partitioning of polyoxyethylene non-ionic surfactants.

    PubMed

    Topolnicki, Inga L; FitzGerald, Paul A; Atkin, Rob; Warr, Gregory G

    2014-08-25

    The partitioning constants and Gibbs free energies of transfer of poly(oxyethylene) n-alkyl ethers between dodecane and the protic ionic liquids (ILs) ethylammonium nitrate (EAN) and propylammonium nitrate (PAN) are determined. EAN and PAN have a sponge-like nanostructure that consists of interpenetrating charged and apolar domains. This study reveals that the ILs solvate the hydrophobic and hydrophilic parts of the amphiphiles differently. The ethoxy groups are dissolved in the polar region of both ILs by means of hydrogen bonds. The environment is remarkably water-like and, as in water, the solubility of the ethoxy groups in EAN decreases on warming, which underscores the critical role of the IL hydrogen-bond network for solubility. In contrast, amphiphile alkyl chains are not preferentially solvated by the charged or uncharged regions of the ILs. Rather, they experience an average IL composition and, as a result, partitioning from dodecane into the IL increases as the cation alkyl chain is lengthened from ethyl to propyl, because the IL apolar volume fraction increases. Together, these results show that surfactant dissolution in ILs is related to structural compatibility between the head or tail group and the IL nanostructure. Thus, these partitioning studies reveal parameters for the effective molecular design of surfactants in ILs. PMID:24862589

  7. Ionic Liquid Films at the Water-Air Interface: Langmuir Isotherms of Tetra-alkylphosphonium-Based Ionic Liquids.

    PubMed

    Shimizu, Karina; Canongia Lopes, José N; Gonçalves da Silva, Amélia M P S

    2015-08-01

    The behavior of ionic liquids trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide and trihexyl(tetradecyl)phosphonium dicyanamide, [P6 6 6 14][Ntf2] and [P6 6 6 14][N(CN)2], respectively, at the water-air interface was investigated using the Langmuir trough technique. The obtained surface pressure versus mean molecular area (MMA) isotherms, π-A, and surface potential versus MMA isotherms, ΔV-A, show distinct interfacial behavior between the two systems. The results were interpreted at a molecular level using molecular dynamics simulations: the different compression regimes along the [P6 6 6 14][Ntf2] isotherm correspond to the self-organization of the ions at the water surface into compact and planar monolayers that coalesce at an MMA value of ca. 1.85 nm(2)/ion pair to form an expanded liquidlike layer. Upon further compression, the monolayer collapses at around 1.2 nm(2)/ion pair to yield a progressively thicker and less organized layer. These transitions are much more subdued in the [P6 6 6 14][N(CN)2] system because of the more hydrophilic nature of the dicyanamide anion. The numerical density profiles obtained from the MD simulation trajectories are also able to emphasize the very unusual packing of the four long alkyl side chains of the cation above and below the ionic layer that forms at the water surface. Such a distribution is also different for the two studied systems during the different compression regimes. PMID:26161843

  8. Ionic liquid decorated mesoporous silica nanoparticles: a new high-performance hybrid electrolyte for lithium batteries.

    PubMed

    Li, Yang; Wong, Ka-Wai; Ng, Ka-Ming

    2016-03-10

    We report a novel hybrid electrolyte based on mesoporous silica nanoparticles decorated with an ionic liquid, which exhibits a superior lithium ion transference number of >0.8, and an excellent electrochemical window of >5 V with attractive ionic conductivity. The insights obtained pave a new way for the preparation of high-performance electrolytes with mesoporous structures. PMID:26926805

  9. Homogeneous Liquid–Liquid Extraction of Rare Earths with the Betaine—Betainium Bis(trifluoromethylsulfonyl)imide Ionic Liquid System

    PubMed Central

    Hoogerstraete, Tom Vander; Onghena, Bieke; Binnemans, Koen

    2013-01-01

    Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature. PMID:24169434

  10. Nanostructuration Effect on the Thermal Behavior of Ionic Liquids.

    PubMed

    Rodrigues, Ana S M C; Santos, Luís M N B F

    2016-05-18

    This work shows how the nanostructuration of ionic liquids (ILs) governs the glass and melting transitions of the bistriflimide imidazolium-based [Cn C1 im][NTf2 ] and [Cn Cn im][NTf2 ] series, which highlights the trend shift that occurs at the critical alkyl size (CAS) of n=6. An initial increase in the glass temperature (Tg ) with an increase in the alkyl side chain was observed due to the intensification of the dispersive interactions (van der Waals). Above the CAS, the -CH2 - increment has the same effect in both glass and liquid states, which leads to a plateau in the glass transition after nanostructuration. The melting temperature (Tm ) of the [Cn C1 im][NTf2 ] and [Cn Cn im][NTf2 ] series presents a V-shaped profile. For the short-alkyl ILs, the -CH2 - increment affects the electrostatic ion pair interactions, which leads to an increase in the conformational entropy. The -CH2 - increment disturbs the packing ability of the ILs and leads to a higher entropy value (ΔslSm○ ) and consequently a decrease in Tm . Above the CAS, the -CH2 - contribution to the melting temperature becomes more regular, as a consequence of the nanostructuration of the IL into polar and nonpolar domains. The dependence of the alkyl chain on the temperature, enthalpy, and entropy of melting in the ILs above the CAS is very similar to the one observed for the alkane series, which highlights the importance of the nonpolar alkyl domains on the ILs thermal behavior. PMID:26888172

  11. The aquatic impact of ionic liquids on freshwater organisms.

    PubMed

    Costa, Susana P F; Pinto, Paula C A G; Saraiva, M Lúcia M F S; Rocha, Fábio R P; Santos, Joyce R P; Monteiro, Regina T R

    2015-11-01

    Ionic liquids (ILs), also known as liquid electrolytes, are powerful solvents with a wide variety of academic and industrial applications. Bioassays with aquatic organisms constitute an effective tool for the evaluation of ILs' toxicity, as well as for the prediction and identification of possible moieties that act as toxicophores. In this work, the acute toxicity of six ILs and two commonly used organic solvents was evaluated using freshwater organisms: Daphnia magna, Raphidocelis subcapitata and Hydra attenuata. The bioassays were performed by exposing the organisms to increasing concentrations of the ILs and observing D. magna immobilization, R. subcapitata growth inhibition, and the morphological or mortality effects in H. attenuata. The results demonstrate that the tested organisms are not equally susceptible to the ILs, e.g., bmpyr [BF4] was the least toxic compound for R. subcapitata, N1,1 [N1,1,1OOH] for D. magna and emim [Tf2N] for H. attenuata. This highlights the importance of applying a battery of assays in toxicological analysis. Additionally, Hydra proved to be the most tolerant species to the tested ILs. According to their hazard rankings, the tested ILs are considered practically harmless or moderately toxic, except (Hex)3(TDec)P [Cl], which was classified as highly toxic. The ILs were revealed to be more harmful to aquatic systems than the tested organic solvents, reaffirming the need to analyze carefully the (eco)toxicological impact of these compounds. The present study provides additional data in the evaluation of the potential hazard and the impact of ILs in the environment. PMID:26151376

  12. Density-viscosity product of small-volume ionic liquid samples using quartz crystal impedance analysis.

    PubMed

    McHale, Glen; Hardacre, Chris; Ge, Rile; Doy, Nicola; Allen, Ray W K; MacInnes, Jordan M; Bown, Mark R; Newton, Michael I

    2008-08-01

    Quartz crystal impedance analysis has been developed as a technique to assess whether room-temperature ionic liquids are Newtonian fluids and as a small-volume method for determining the values of their viscosity-density product, rho eta. Changes in the impedance spectrum of a 5-MHz fundamental frequency quartz crystal induced by a water-miscible room-temperature ionic liquid, 1-butyl-3-methylimiclazolium trifluoromethylsulfonate ([C4mim][OTf]), were measured. From coupled frequency shift and bandwidth changes as the concentration was varied from 0 to 100% ionic liquid, it was determined that this liquid provided a Newtonian response. A second water-immiscible ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4mim][NTf2], with concentration varied using methanol, was tested and also found to provide a Newtonian response. In both cases, the values of the square root of the viscosity-density product deduced from the small-volume quartz crystal technique were consistent with those measured using a viscometer and density meter. The third harmonic of the crystal was found to provide the closest agreement between the two measurement methods; the pure ionic liquids had the largest difference of approximately 10%. In addition, 18 pure ionic liquids were tested, and for 11 of these, good-quality frequency shift and bandwidth data were obtained; these 12 all had a Newtonian response. The frequency shift of the third harmonic was found to vary linearly with square root of viscosity-density product of the pure ionic liquids up to a value of square root(rho eta) approximately 18 kg m(-2) s(-1/2), but with a slope 10% smaller than that predicted by the Kanazawa and Gordon equation. It is envisaged that the quartz crystal technique could be used in a high-throughput microfluidic system for characterizing ionic liquids. PMID:18611039

  13. Switchable ionic liquids as delignification solvents for lignocellulosic materials.

    PubMed

    Anugwom, Ikenna; Eta, Valerie; Virtanen, Pasi; Mäki-Arvela, Päivi; Hedenström, Mattias; Hummel, Michael; Sixta, Herbert; Mikkola, Jyri-Pekka

    2014-04-01

    The transformation of lignocellulosic materials into potentially valuable resources is compromised by their complicated structure. Consequently, new economical and feasible conversion/fractionation techniques that render value-added products are intensely investigated. Herein an unorthodox and feasible fractionation method of birch chips (B. pendula) using a switchable ionic liquid (SIL) derived from an alkanol amine (monoethanol amine, MEA) and an organic super base (1,8-diazabicyclo-[5.4.0]-undec-7-ene, DBU) with two different trigger acid gases (CO2 and SO2 ) is studied. After SIL treatment, the dissolved fractions were selectively separated by a step-wise method using an antisolvent to induce precipitation. The SIL was recycled after concentration and evaporation of anti-solvent. The composition of undissolved wood after MEA-SO2 -SIL treatment resulted in 80 wt % cellulose, 10 wt % hemicelluloses, and 3 wt % lignin, whereas MEA-CO2 -SIL treatment resulted in 66 wt % cellulose, 12 wt % hemicelluloses and 11 wt % lignin. Thus, the MEA-SO2 -SIL proved more efficient than the MEA-CO2 -SIL, and a better solvent for lignin removal. All fractions were analyzed by gas chromatography (GC), Fourier transform infrared spectroscopy (FT-IR), (13) C nuclear magnetic resonance spectroscopy (NMR) and Gel permeation chromatography (GPC). PMID:24616172

  14. Terrestrial ecotoxicity of short aliphatic protic ionic liquids.

    PubMed

    Peric, Brezana; Martí, Esther; Sierra, Jordi; Cruañas, Robert; Iglesias, Miguel; Garau, Maria Antonia

    2011-12-01

    A study of the ecotoxicity of different short aliphatic protic ionic liquids (PILs) on terrestrial organisms was conducted. Tests performed within the present study include those assessing the effects of PILs on soil microbial functions (carbon and nitrogen mineralization) and terrestrial plants. The results show that the nominal lowest-observed-adverse-effect concentration (LOAEC) values were 5,000 mg/kg (dry soil) for the plant test in two species (Lolium perenne, Allium cepa), 1,000 mg/kg (dry soil) for the plant test in one species (Raphanus sativus), and 10,000 mg/kg (dry soil) for carbon and nitrogen microbial transformation tests (all concentrations are nominal). Most of the median effective concentration values (EC50) were above 1,000 mg/kg (dry soil). Based on the obtained results, these compounds can be described as nontoxic for soil microbiota and the analyzed plants, and potentially biodegradable in soils, as can be deduced from the respirometric experiment. The toxicity rises with the increase of complexity of the PILs molecule (branch and length of aliphatic chain) among the three PILs analyzed. PMID:21935980

  15. Cellulose aerogel from ionic liquid solution dried by silylation

    NASA Astrophysics Data System (ADS)

    Rein, Dmitry; Cohen, Yachin

    2011-03-01

    Aerogels are a class of materials characterised by a highly porous structure with low solids content. There is much interest in cellulose aerogel (aerocellulose) as a biodegradable and sustainable material. Cellulose lyogel can be fabricated from its solution in ionic liquids (IL) by coagulation with a nonsolvent such as water. However, subsequent drying capillary forces in the gel pores that result in severe shrinkage and pore closure. The use of supercritical fluids for drying or freeze-drying entails high equipment and energy requirements. We describe the fabrication and structure of aerocellulose fabricated from IL solution with a simple novel drying process: Addition of a compatible reactive agent (trimethylchlorosilane) and its diffusion into the water-swollen cellulose hydrogel pores results in a reaction with water as well as the pore surface hydroxyl groups. The remaining hydrophobic compound (hexamethyldisiloxane-HMDS), which fills the initially hydrophilic cellulose hydrogel pores, has a low intrinsic surface tension in the pores allowing easy drying with minimal shrinkage. Furthermore it allows modification of the pore surface and even fabrication of cellulose-polysiloxane composites. Relations between aerocellolose processing conditions and the resulting structural features will be discussed.

  16. Cellulose triacetate doped with ionic liquids for membrane gas separation

    NASA Astrophysics Data System (ADS)

    Lam, Benjamin Fatt Soon

    The doping of cellulose triacetate (CTA) with imidazolium based ionic liquids (ILs) is investigated in order to reduce the polymer crystallinity and enhance the affinity with CO2, thus increasing CO2 permeability and CO2/light gas selectivity. CTA membranes doped with [emim] BF4 or [emim] DCA were prepared, and the effect of the ILs loading on properties, such as crystallinity, density, degradation temperature, glass transition temperature, and gas transport properties, has been determined. In general, doping with IL reduces the crystallinity in CTA, increasing gas solubility, diffusivity and permeability. The ILs doping also increases CO 2/CH4 solubility selectivity and CO2/N2 permeability selectivity, due to the affinity of these ILs with CO2, instead of light gases such as CH4 and N2. This study provides a mechanistic understanding of interaction of ILs and CTA, and demonstrates an effective route in manipulating the morphology and gas transport properties of semi crystalline polymers by doping with ILs.

  17. EFFECTS OF GAMMA RADIATION ON ELECTROCHEMICAL PROPERTIES OF IONIC LIQUIDS

    SciTech Connect

    Visser, A; Nicholas Bridges, N; Thad Adams, T; John Mickalonis, J; Mark02 Williamson, M

    2009-04-21

    The electrochemical properties of ionic liquids (ILs) make them attractive for possible replacement of inorganic salts in high temperature molten salt electrochemical processing of nuclear fuel. To be a feasible replacement solvent, ILs need to be stable in moderate and high doses of radiation without adverse chemical and physical effects. Here, we exposed seven different ILs to a 1.2 MGy dose of gamma radiation to investigate their physical and chemical properties as they related to radiological stability. The azolium-based ILs experienced the greatest change in appearance, but these ILs were chemically more stable to gamma radiation than some of the other classes of ILs tested, due to the presence of aromatic electrons in the azolium ring. All the ILs exhibited a decrease in their conductivity and electrochemical window (at least 1.1 V), both of which could affect the utility of ILs in electrochemical processing. The concentration of the irradiation decomposition products was less than 3 mole %, with no impurities detectable using NMR techniques.

  18. Thermophysical properties of sulfonium- and ammonium-based ionic liquids

    PubMed Central

    Bhattacharjee, Arijit; Luís, Andreia; Lopes-da-Silva, José A.; Freire, Mara G.; Carvalho, Pedro J.; Coutinho, João A. P.

    2014-01-01

    Experimental data for the density, viscosity, refractive index and surface tension of four sulfonium- and ammonium-based Ionic Liquids (ILs) with the common bis(trifluoromethylsulfonyl)imide anion were measured in the temperature range between 288.15 and 353.15 K and at atmospheric pressure. The ILs considered include butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [N4111][NTf2], tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N4441][NTf2], diethylmethylsulfonium bis(trifluoromethylsulfonyl)imide, [S221][NTf2], and triethylsulfonium bis(trifluoromethylsulfonyl)imide, [S222][NTf2]. Based on the gathered results and on data taken from literature, the impact of the cation isomerism and of the size of the aliphatic tails, as well as the effect resulting from the substitution of a nitrogen by a sulfur atom as the cation central atom, on the thermophysical properties of sulfonium- and ammonium-based ILs is here discussed. Remarkably, more symmetric cations present a lower viscosity for the same, and sometimes even for higher, alkyl chain lengths at the cation. Additional derivative properties, such as the isobaric thermal expansion coefficient, the surface thermodynamic properties and the critical temperature for the investigated ILs were also estimated and are presented and discussed. PMID:25516634

  19. Multifilament cellulose/chitin blend yarn spun from ionic liquids.

    PubMed

    Mundsinger, Kai; Müller, Alexander; Beyer, Ronald; Hermanutz, Frank; Buchmeiser, Michael R

    2015-10-20

    Cellulose and chitin, both biopolymers, decompose before reaching their melting points. Therefore, processing these unmodified biopolymers into multifilament yarns is limited to solution chemistry. Especially the processing of chitin into fibers is rather limited to distinctive, often toxic or badly removable solvents often accompanied by chemical de-functionalization to chitosan (degree of acetylation, DA, <50%). This work proposes a novel method for the preparation of cellulose/chitin blend fibers using ionic liquids (ILs) as gentle, removable, recyclable and non-deacetylating solvents. Chitin and cellulose are dissolved in ethylmethylimidazolium propionate ([C2mim](+)[OPr](-)) and the obtained one-pot spinning dope is used to produce multifilament fibers by a continuous wet-spinning process. Both the rheology of the corresponding spinning dopes and the structural and physical properties of the obtained fibers have been determined for different biopolymer ratios. With respect to medical or hygienic application, the cellulose/chitin blend fiber show enhanced water retention capacity compared to pure cellulose fibers. PMID:26256157

  20. Spectroscopic Studies of Imidizolium and Pyridinium Based Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Booth, Ryan; Stearns, Jaime

    2015-03-01

    Ionic liquids (ILs) have been shown to be extremely useful in areas ranging from chemical synthesis to energetic materials. Furthermore, ILs are thought to be a potential replacement for hydrazine as satellite propellants because a subset are hypergolic with nitric acid. While ILs are useful, however, there is a lack of understanding of the microscopic origins for their macroscopic properties (e.g. viscosity). An example of this is that [emim+][tf2N-] is three times less viscous than its methylated counterpart [emmim+][tf2N-] and there is some discord regarding the reason. We have investigated the molecular properties of such IL pairs using UV and IR spectroscopy in the gas phase on both imidozolium and pyridinium-based ([pyr+]) ILs. UV data show that the photophysics of [emmim+][tf2N-] is different than [emim+][tf2N-] in that there is a lack of evidence for the existence of a charge transfer (CT) state (as was seen in [emim+][tf2N-]). Preliminary UV spectra for the [pyr+] ILs show at least two distinct peaks in the region from 208-270 nm, which are tentatively established as CT states between the anion and cation. IR spectra deliver structural information for both sets of ILs and should provide insight into the correlation between microscopic and macroscopic properties.

  1. Electrochemistry of magnesium electrolytes in ionic liquids for secondary batteries.

    PubMed

    Vardar, Gulin; Sleightholme, Alice E S; Naruse, Junichi; Hiramatsu, Hidehiko; Siegel, Donald J; Monroe, Charles W

    2014-10-22

    The electrochemistry of Mg salts in room-temperature ionic liquids (ILs) was studied using plating/stripping voltammetry to assess the viability of IL solvents for applications in secondary Mg batteries. Borohydride (BH4(-)), trifluoromethanesulfonate (TfO(-)), and bis(trifluoromethanesulfonyl)imide (Tf2N(-)) salts of Mg were investigated. Three ILs were considered: l-n-butyl-3-methylimidazolium (BMIM)-Tf2N, N-methyl-N-propylpiperidinium (PP13)-Tf2N, and N,N-diethyl-N-methyl(2-methoxyethyl)ammonium (DEME(+)) tetrafluoroborate (BF4(-)). Salts and ILs were combined to produce binary solutions in which the anions were structurally similar or identical, if possible. Contrary to some prior reports, no salt/IL combination appeared to facilitate reversible Mg plating. In solutions containing BMIM(+), oxidative activity near 0.8 V vs Mg/Mg(2+) is likely associated with the BMIM cation, rather than Mg stripping. The absence of voltammetric signatures of Mg plating from ILs with Tf2N(-) and BF4(-) suggests that strong Mg/anion Coulombic attraction inhibits electrodeposition. Cosolvent additions to Mg(Tf2N)2/PP13-Tf2N were explored but did not result in enhanced plating/stripping activity. The results highlight the need for IL solvents or cosolvent systems that promote Mg(2+) dissociation. PMID:25248147

  2. Solvent effects on the polar network of ionic liquid solutions.

    PubMed

    Bernardes, Carlos E S; Shimizu, Karina; Canongia Lopes, José N

    2015-05-20

    Molecular dynamics simulations were used to probe mixtures of ionic liquids (ILs) with common molecular solvents. Four types of systems were considered: (i) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide plus benzene, hexafluorobenzene or 1,2-difluorobenzene mixtures; (ii) choline-based ILs plus ether mixtures (iii) choline-based ILs plus n-alkanol mixtures; and (iv) 1-butyl-3-methylimidazolium nitrate and 1-ethyl-3-methylimidazolium ethyl sulfate aqueous mixtures. The results produced a wealth of structural and aggregation information that highlight the resilience of the polar network of the ILs (formed by clusters of alternating ions and counter-ions) to the addition of different types of molecular solvent. The analysis of the MD data also shows that the intricate balance between different types of interaction (electrostatic, van der Waals, H-bond-like) between the different species present in the mixtures has a profound effect on the morphology of the mixtures at a mesoscopic scale. In the case of the IL aqueous solutions, the present results suggest an alternative interpretation for very recently published x-ray and neutron diffraction data on similar systems. PMID:25923649

  3. Distributed polarizability models for imidazolium-based ionic liquids.

    PubMed

    Millot, Claude; Chaumont, Alain; Engler, Etienne; Wipff, Georges

    2014-09-25

    Quantum chemical calculations are used to derive distributed polarizability models sufficiently accurate and compact to be used in classical molecular dynamics simulations of imidazolium-based room temperature ionic liquids. Two distributed polarizability models are fitted to reproduce the induction energy of three imidazolium cations (1,3-dimethyl-, 1-ethyl-3-methyl-, and 1-butyl-3-methylimidazolium) and four anions (tetrafluoroborate, hexafluorophosphate, nitrate, and thiocyanate) polarized by a point charge located successively on a grid of surrounding points. The first model includes charge-flow polarizabilities between first-neighbor atoms and isotropic dipolar polarizability on all atoms (except H), while the second model includes anisotropic dipolar polarizabilities on all atoms (except H). For the imidazolium cations, particular attention is given to the transferability of the distributed polarizability sets. The molecular polarizability and its anisotropy rebuilt by the distributed models are found to be in good agreement with the exact ab initio values for the three cations and 23 additional conformers of 1-ethyl-3-methyl-, 1-butyl-3-methyl-, 1-pentyl-3-methyl-, and 1-hexyl-3-methylimidazolium cations. PMID:25133873

  4. Solvent effects on the polar network of ionic liquid solutions

    NASA Astrophysics Data System (ADS)

    Bernardes, Carlos E. S.; Shimizu, Karina; Canongia Lopes, José N.

    2015-05-01

    Molecular dynamics simulations were used to probe mixtures of ionic liquids (ILs) with common molecular solvents. Four types of systems were considered: (i) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide plus benzene, hexafluorobenzene or 1,2-difluorobenzene mixtures; (ii) choline-based ILs plus ether mixtures (iii) choline-based ILs plus n-alkanol mixtures; and (iv) 1-butyl-3-methylimidazolium nitrate and 1-ethyl-3-methylimidazolium ethyl sulfate aqueous mixtures. The results produced a wealth of structural and aggregation information that highlight the resilience of the polar network of the ILs (formed by clusters of alternating ions and counter-ions) to the addition of different types of molecular solvent. The analysis of the MD data also shows that the intricate balance between different types of interaction (electrostatic, van der Waals, H-bond-like) between the different species present in the mixtures has a profound effect on the morphology of the mixtures at a mesoscopic scale. In the case of the IL aqueous solutions, the present results suggest an alternative interpretation for very recently published x-ray and neutron diffraction data on similar systems.

  5. Thinning of reverse osmosis membranes by ionic liquids

    NASA Astrophysics Data System (ADS)

    Meng, Hong; Gong, Beibei; Geng, Tao; Li, Chunxi

    2014-02-01

    In this study, ionic liquids (ILs) were used to thin out the dense layer and, in turn, tune the surface properties and separation performance of commercial aromatic polyamide reverse osmosis membranes. It was observed that the structure of the ILs and dipping time had a strong impact on the dense layer thickness and morphology. This can be understood in terms of the dissolubility and interaction force between ILs and the organic membrane surface, such as hydrogen bonding and π-π interactions. Among the ILs synthesized, 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) showed the most promising thinning effects. It was observed that the thickness of the dense layer on the surface decreased from 127 to 67 nm after dipping treatment with [BMIM]Cl for 24 h. The water flux was enhanced by 20% at the expense of a slight decline of salt rejection. AFM, contact angle and zeta potential analyses suggest that the surface hydrophilicity and electronegativity increased, while the roughness decreased, which improved the anti-fouling properties.

  6. Aspects of Protonic Ionic Liquid as Electrolyte in Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Laux, Edith; Uhl, Stefanie; Journot, Tony; Brossard, Julien; Jeandupeux, Laure; Keppner, Herbert

    2016-04-01

    The Seebeck coefficient (S E) or thermopower and power output have been measured in a series of 16 ionic liquids (ILs). Thermoelectric current extraction is assisted by a dissolved redox couple (I2/LiI) added to the IL. The experiments were carried out in a thermoelectric cell where the IL is packaged between two electrodes. A large range of Seebeck coefficients and power outputs could be observed. The highest S E was measured for protonic ILs, reaching a value of 968 μV/K. Moreover, the maximal power output of an IL-based thermoelectric generator and the polarity of its electrodes depend on the concentration of the redox-active species in the IL. The power output of the generator increased continuously with the redox concentration up to a maximum value (at 0.4 mol/L) but decayed for higher concentrations. We showed that an IL with high S E [linked to open-circuit voltage (V OC)] does not necessarily lead to high power output; rather, it is carrier transport and extraction that determine the generator power. Surprisingly, the carrier extraction is not highest at the maximum electrode temperature difference; the power output observed for a given electrode temperature difference can be further increased by heating up the cold electrode in spite of the consequent reduction in the total temperature difference between the electrodes.

  7. Phase separation in mixtures of ionic liquids and water.

    PubMed

    Chen, Ye; Ke, Fuyou; Wang, Huaping; Zhang, Yumei; Liang, Dehai

    2012-01-16

    The phase separation of ionic liquids (ILs) in water is studied by laser light scattering (LLS). For the ILs with longer alkyl chains, such as [C(8)mim]BF(4) and [C(6)mim]BF(4) (mim = methylimidazolium), macroscopic phase separation occurs in the mixture with water. LLS also reveals the coexistence of the mesoscopic phase, the size of which is in the order of 100-800 nm. In aqueous mixtures of ILs with shorter alkyl chains, such as [C(4)mim]BF(4), only the mesoscopic phase exists. The mesoscopic phase can be effectively removed by filtration through a 0.22 μm filter. However, it reforms with time and can be enhanced by lowering the temperature, thus indicating that it is controlled by thermodynamics. The degree of mesoscopic phase separation can be used to evaluate the miscibility of ILs with water. This study helps to optimize the applications of ILs in related fields, as well as the recycling of ILs in the presence of water. PMID:22128113

  8. Paramagnetic ionic liquids for measurements of density using magnetic levitation.

    PubMed

    Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

    2013-09-01

    Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev. PMID:23972068

  9. Structure, stability and behaviour of nucleic acids in ionic liquids

    PubMed Central

    Tateishi-Karimata, Hisae; Sugimoto, Naoki

    2014-01-01

    Nucleic acids have become a powerful tool in nanotechnology because of their conformational polymorphism. However, lack of a medium in which nucleic acid structures exhibit long-term stability has been a bottleneck. Ionic liquids (ILs) are potential solvents in the nanotechnology field. Hydrated ILs, such as choline dihydrogen phosphate (choline dhp) and deep eutectic solvent (DES) prepared from choline chloride and urea, are ‘green’ solvents that ensure long-term stability of biomolecules. An understanding of the behaviour of nucleic acids in hydrated ILs is necessary for developing DNA materials. We here review current knowledge about the structures and stabilities of nucleic acids in choline dhp and DES. Interestingly, in choline dhp, A–T base pairs are more stable than G–C base pairs, the reverse of the situation in buffered NaCl solution. Moreover, DNA triplex formation is markedly stabilized in hydrated ILs compared with aqueous solution. In choline dhp, the stability of Hoogsteen base pairs is comparable to that of Watson–Crick base pairs. Moreover, the parallel form of the G-quadruplex is stabilized in DES compared with aqueous solution. The behaviours of various DNA molecules in ILs detailed here should be useful for designing oligonucleotides for the development of nanomaterials and nanodevices. PMID:25013178

  10. Structure, stability and behaviour of nucleic acids in ionic liquids.

    PubMed

    Tateishi-Karimata, Hisae; Sugimoto, Naoki

    2014-08-01

    Nucleic acids have become a powerful tool in nanotechnology because of their conformational polymorphism. However, lack of a medium in which nucleic acid structures exhibit long-term stability has been a bottleneck. Ionic liquids (ILs) are potential solvents in the nanotechnology field. Hydrated ILs, such as choline dihydrogen phosphate (choline dhp) and deep eutectic solvent (DES) prepared from choline chloride and urea, are 'green' solvents that ensure long-term stability of biomolecules. An understanding of the behaviour of nucleic acids in hydrated ILs is necessary for developing DNA materials. We here review current knowledge about the structures and stabilities of nucleic acids in choline dhp and DES. Interestingly, in choline dhp, A-T base pairs are more stable than G-C base pairs, the reverse of the situation in buffered NaCl solution. Moreover, DNA triplex formation is markedly stabilized in hydrated ILs compared with aqueous solution. In choline dhp, the stability of Hoogsteen base pairs is comparable to that of Watson-Crick base pairs. Moreover, the parallel form of the G-quadruplex is stabilized in DES compared with aqueous solution. The behaviours of various DNA molecules in ILs detailed here should be useful for designing oligonucleotides for the development of nanomaterials and nanodevices. PMID:25013178

  11. Lipase activation and stabilization in room-temperature ionic liquids.

    PubMed

    Kaar, Joel L

    2011-01-01

    Widespread interest in the use of room temperature ionic liquids (RTILs) as solvents in anhydrous biocatalytic reactions has largely been met with underwhelming results. Enzymes are frequently inactivated in RTILs as a result of the influence of solvent on the enzyme's microenvironment, be it through interacting with the enzyme or enzyme-bound water molecules. The purpose of this chapter is to present a rational approach to mediate RTIL-enzyme interactions, which is essential if we are to realize the advantages of RTILs over conventional solvents for biocatalysis in full. The underlying premise for this approach is the stabilization of enzyme structure via multipoint covalent immobilization within a polyurethane foam matrix. Additionally, the approach entails the use of salt hydrates to control the level of hydration of the immobilized enzyme, which is critical to the activation of enzymes in nonaqueous media. Although lipase is used as a model enzyme, this approach may be effective in activating and stabilizing virtually any enzyme in RTILs. PMID:20865386

  12. Functionalized ionic liquids as electrolytes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pandian, Shanthi; Raju, S. G.; Hariharan, Krishnan S.; Kolake, Subramanya M.; Park, Da-Hye; Lee, Myung-Jin

    2015-07-01

    The design of potential and new electrochemically stable electrolytes for Li-ion batteries is an important task in the field of energy. Room temperature ionic liquids (RTILs) characterized by a wide electrochemical window (EW) are the commonly used electrolytes for Li battery applications. In this work, a novel quantum computational method is proposed to estimate the electrochemical stability of RTILs that accurately predicts the trends in EWs of ammonium based ILs and is computationally faster than the state-of-the-art methods. Subsequently, the EW of ILs with phosphonium and sulfonium cations are computed and compared against the well-established ammonium congeners. Based on the criterion of electrochemical stability defined with respect to Li, the increasing order of stability is found to be: sulfonium < ammonium < phosphonium based ILs. The effect of various substituents like butyl, phenyl and benzyl on the phosphonium and sulfonium based ILs is examined and a greater stability for the phenyl over other substituents is observed. The key factor influencing the reduction potential of the cations is inferred as the thermodynamic stability of the radical formed during decomposition. Based on the results, design guidelines to identify stable IL systems as electrolytes in high voltage Li-ion battery applications are provided.

  13. Engineering ionic liquid-tolerant cellulases for biofuels production.

    PubMed

    Wolski, Paul W; Dana, Craig M; Clark, Douglas S; Blanch, Harvey W

    2016-04-01

    Dissolution of lignocellulosic biomass in certain ionic liquids (ILs) can provide an effective pretreatment prior to enzymatic saccharification of cellulose for biofuels production. Toward the goal of combining pretreatment and enzymatic hydrolysis, we evolved enzyme variants of Talaromyces emersonii Cel7A to be more active and stable than wild-type T. emersonii Cel7A or Trichoderma reesei Cel7A in aqueous-IL solutions (up to 43% (w/w) 1,3-dimethylimdazolium dimethylphosphate and 20% (w/w) 1-ethyl-3-methylimidazolium acetate). In general, greater enzyme stability in buffer at elevated temperature corresponded to greater stability in aqueous-ILs. Post-translational modification of the N-terminal glutamine residue to pyroglutamate via glutaminyl cyclase enhanced the stability of T. emersonii Cel7A and variants. Differential scanning calorimetry revealed an increase in melting temperature of 1.9-3.9°C for the variant 1M10 over the wild-type T. emersonii Cel7A in aqueous buffer and in an IL-aqueous mixture. We observed this increase both with and without glutaminyl cyclase treatment of the enzymes. PMID:26819239

  14. Stable ferrofluids of magnetite nanoparticles in hydrophobic ionic liquids

    NASA Astrophysics Data System (ADS)

    Mestrom, Luuk; Lenders, Jos J. M.; de Groot, Rick; Hooghoudt, Tonnis; Sommerdijk, Nico A. J. M.; Vilaplana Artigas, Marcel

    2015-07-01

    Ferrofluids (FFs) of metal oxide nanoparticles in ionic liquids (ILs) are a potentially useful class of magnetic materials for many applications because of their properties related to temperature/pressure stability, hydrophobicity, viscosity and recyclability. In this work, the screening of several designer surfactants for their stabilizing capabilities has resulted in the synthesis of stable FFs of superparamagnetic 7 ± 2 nm magnetite (Fe3O4) nanoparticles in the hydrophobic IL 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([CRMIM][NTf2]). The designed and synthesized 1-butyl-3-(10-carboxydecyl)-1H-imidazol-3-ium bromide (ILC10-COOH) surfactant that combines the same imidazole moiety as the IL with a long alkyl chain ensured compatibility with the IL and increased the steric repulsion between the magnetite nanoparticles sufficiently such that stable dispersions of up to 50 wt% magnetite were obtained according to stability tests in the presence of a magnetic field (0.5-1 Tesla). Cryo-transmission electron microscopy (cryo-TEM) of the IL-based FFs allowed direct visualization of the surfactant-stabilized nanoparticles in the ILs and the native, hardly aggregated state of their dispersion.

  15. Thermoresponsive ketoprofen-imprinted monolith prepared in ionic liquid.

    PubMed

    Sun, Xuan; Zhao, Chun-Yan; Wang, Xian-Hua; Huang, Yan-Ping; Liu, Zhao-Sheng

    2014-09-01

    A thermoresponsive imprinted monolith with the ability of molecular recognition for ketoprofen was prepared for the first time. The smart monolith was synthesized in a stainless steel column using acrylamide (AAm) and 2-acrylamide-2-methyl propanesulfonic acid (AMPS) as functional monomers, which can form interpolymer complexation to restrict access of the analyte to the imprinted networks at low temperatures. To avoid a high back pressure of the column derived from neat dimethyl sulfoxide (DMSO) as a porogenic solvent that is needed to solve polar AMPS, an ionic liquid, [BMIM]BF4, was introduced into the pre-polymerization mixture. The molecular recognition ability towards ketoprofen of the resulting thermoresponsive molecularly imprinted polymer (MIP) monolith displayed significant dependence on temperature compared with a non-imprinted column (NIP), and the greatest imprinting factor was achieved at the transition temperature of 35 °C (above 10). Furthermore, the number of binding sites of the smart MIP monolith at 35 °C was about 76 times as large as that at 25 °C. In addition, Freundlich analyses indicated that the thermoresponsive MIP monolith had homogeneous affinity sites at both 25 and 35 °C with heterogeneity index 0.9251 and 0.9851, respectively. PMID:24916075

  16. Ultrasound response of aqueous poly(ionic liquid) solution.

    PubMed

    Li, Kai; Kobayashi, Takaomi

    2016-05-01

    Ultrasound (US) effects on aqueous poly(ionic liquid) (PIL) solution were investigated using viscosity and FT-IR spectroscopy after exposure to US of 23, 43, and 96 kHz frequencies at 50 W. The viscosity of the poly(1-vinyl-3-butyl-imidazolium chloride) (PIL) aqueous solution decreased during exposure to US. It then increased gradually within about 10 min as US stopped. The aqueous PIL behavior was then observed using FT-IR spectroscopy. The US exposure enhanced the FT-IR band intensity of the OH stretching. The band intensity returned to its original value after the US stopped. These results responded cyclically to the US on/off. Analysis of the FT-IR spectra revealed that US influenced the breakage and reformation of hydrogen bonds in the PIL and water. Two-dimensional correlation and deconvolution were used to analyze the change of components in the region of 3000-3700 cm(-1) for US exposure. Results of these analyses suggest that US exposure might break hydrogen bonds between PIL segments and water. In the absence of US, hydrogen bonds reformation was also observed between the PIL and water. PMID:26597539

  17. Polyelectrolyte and carbon nanotube multilayers made from ionic liquid solutions.

    PubMed

    Nakashima, Takuya; Zhu, Jian; Qin, Ming; Ho, Szushen; Kotov, Nicholas A

    2010-10-01

    The inevitable contact of substrates with water during the traditional practice of layer-by-layer assembly (LBL) creates problems for multiple potential applications of LBL films in electronics. To resolve this issue, we demonstrate here the possibility of a LBL process using ionic liquids (ILs), which potentially eliminates corrosion and hydration processes related to aqueous media and opens additional possibilities in structural control of LBL films. ILs are also considered to be one of the best "green" processing solvents, and hence, are advantageous in respect to traditional organic solvents. Poly(ethyleneimine) (PEI) and poly(sodium styrenesulfonate) (PSS) were dispersed in a hydrophilic IL and successfully deposited in the LBL fashion. To produce electroactive thin films with significance to electronics, a similar process was realized for PSS-modified single-walled carbon nanotubes (SWNT-PSS) and poly(vinyl alcohol) (PVA). Characterization of the coating using standard spectroscopy and microscopy techniques typical of the multilayer field indicated that there are both similarities and differences in the structure and properties of LBL films build from ILs and aqueous solutions. The films exhibited electrical conductivity of 10(2) S m(-1) with transparency as high as 98% for visible light, which is comparable to similar parameters for many carbon nanotube and graphene films prepared by both aqueous LBL and other methods. PMID:20931147

  18. Inhibitory effects of ionic liquids on the lactic dehydrogenase activity.

    PubMed

    Dong, Xing; Fan, Yunchang; Zhang, Heng; Zhong, Yingying; Yang, Yang; Miao, Juan; Hua, Shaofeng

    2016-05-01

    Ionic liquids (ILs) were widely used in scientific and industrial application and have been reported to possess potential toxicity to the environment and human health. The effects of six typical N-methylimidazolium-based ILs ([Cnmim]X, n=4, 6, 8; X=Br(-), Cl(-), BF4(-), CF3SO3(-)) on the lactic dehydrogenase (LDH) activity and the molecular interaction mechanism of ILs and the LDH were investigated with the aid of spectroscopic techniques. Experimental results showed that the LDH activity was inhibited in the presence of ILs. For the ILs with the same anion but different cations, their inhibitory ability on the LDH activity increased with increasing the alkyl chain length on the IL cation. Thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were obtained by analyzing the fluorescence behavior of LDH with the addition of ILs. Both positive ΔH and ΔS suggested that hydrophobicity was the major driven force in the interaction process as expected. PMID:26802246

  19. Theory of Phase Separation and Polarization for Pure Ionic Liquids.

    PubMed

    Gavish, Nir; Yochelis, Arik

    2016-04-01

    Room temperature ionic liquids are attractive to numerous applications and particularly, to renewable energy devices. As solvent free electrolytes, they demonstrate a paramount connection between the material morphology and Coulombic interactions: the electrode/RTIL interface is believed to be a product of both polarization and spatiotemporal bulk properties. Yet, theoretical studies have dealt almost exclusively with independent models of morphology and electrokinetics. Introduction of a distinct Cahn-Hilliard-Poisson type mean-field framework for pure molten salts (i.e., in the absence of any neutral component), allows a systematic coupling between morphological evolution and the electrokinetic phenomena, such as transient currents. Specifically, linear analysis shows that spatially periodic patterns form via a finite wavenumber instability and numerical simulations demonstrate that while labyrinthine type patterns develop in the bulk, lamellar structures are favored near charged surfaces. The results demonstrate a qualitative phenomenology that is observed empirically and thus, provide a physically consistent methodology to incorporate phase separation properties into an electrochemical framework. PMID:26954098

  20. Proactive aquatic ecotoxicological assessment of room-temperature ionic liquids

    USGS Publications Warehouse

    Kulacki, K.J.; Chaloner, D.T.; Larson, J.H.; Costello, D.M.; Evans-White, M. A.; Docherty, K.M.; Bernot, R.J.; Brueseke, M.A.; Kulpa, C.F.; Lamberti, G.A.

    2011-01-01

    Aquatic environments are being contaminated with a myriad of anthropogenic chemicals, a problem likely to continue due to both unintentional and intentional releases. To protect valuable natural resources, novel chemicals should be shown to be environmentally safe prior to use and potential release into the environment. Such proactive assessment is currently being applied to room-temperature ionic liquids (ILs). Because most ILs are water-soluble, their effects are likely to manifest in aquatic ecosystems. Information on the impacts of ILs on numerous aquatic organisms, focused primarily on acute LC50 and EC50 endpoints, is now available, and trends in toxicity are emerging. Cation structure tends to influence IL toxicity more so than anion structure, and within a cation class, the length of alkyl chain substituents is positively correlated with toxicity. While the effects of ILs on several aquatic organisms have been studied, the challenge for aquatic toxicology is now to predict the effects of ILs in complex natural environments that often include diverse mixtures of organisms, abiotic conditions, and additional stressors. To make robust predictions about ILs will require coupling of ecologically realistic laboratory and field experiments with standard toxicity bioassays and models. Such assessments would likely discourage the development of especially toxic ILs while shifting focus to those that are more environmentally benign. Understanding the broader ecological effects of emerging chemicals, incorporating that information into predictive models, and conveying the conclusions to those who develop, regulate, and use those chemicals, should help avoid future environmental degradation. ?? 2011 Bentham Science Publishers Ltd.