These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids  

NASA Astrophysics Data System (ADS)

The stabilization energies for the formation (Eform) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G** level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The Eform for the [dema][CF3SO3] and [dmpa][CF3SO3] complexes (-95.6 and -96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF3SO3] complex (-81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl-, BF4-, TFSA- anions. The anion has contact with the N-H bond of the dema+ or dmpa+ cations in the most stable geometries of the dema+ and dmpa+ complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0-18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The Eform for the less stable geometries for the dema+ and dmpa+ complexes are close to those for the most stable etma+ complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N-H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA- anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF3SO3] ionic liquid.

Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md. Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

2013-11-01

2

Interactions in ion pairs of protic ionic liquids: comparison with aprotic ionic liquids.  

PubMed

The stabilization energies for the formation (E(form)) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G** level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E(form) for the [dema][CF3SO3] and [dmpa][CF3SO3] complexes (-95.6 and -96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF3SO3] complex (-81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl(-), BF4(-), TFSA(-) anions. The anion has contact with the N-H bond of the dema(+) or dmpa(+) cations in the most stable geometries of the dema(+) and dmpa(+) complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0-18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E(form) for the less stable geometries for the dema(+) and dmpa(+) complexes are close to those for the most stable etma(+) complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N-H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA(-) anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF3SO3] ionic liquid. PMID:24206313

Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

2013-11-01

3

Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids  

SciTech Connect

The stabilization energies for the formation (E{sub form}) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G{sup **} level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E{sub form} for the [dema][CF{sub 3}SO{sub 3}] and [dmpa][CF{sub 3}SO{sub 3}] complexes (?95.6 and ?96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF{sub 3}SO{sub 3}] complex (?81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl{sup ?}, BF{sub 4}{sup ?}, TFSA{sup ?} anions. The anion has contact with the N–H bond of the dema{sup +} or dmpa{sup +} cations in the most stable geometries of the dema{sup +} and dmpa{sup +} complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0–18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E{sub form} for the less stable geometries for the dema{sup +} and dmpa{sup +} complexes are close to those for the most stable etma{sup +} complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N–H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA{sup ?} anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF{sub 3}SO{sub 3}] ionic liquid.

Tsuzuki, Seiji, E-mail: s.tsuzuki@aist.go.jp [Research Initiative of Computational Sciences (RICS), Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)] [Research Initiative of Computational Sciences (RICS), Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Shinoda, Wataru [Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)] [Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Miran, Md. Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi [Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)] [Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)

2013-11-07

4

A comparative study of the terrestrial ecotoxicity of selected protic and aprotic ionic liquids.  

PubMed

Ionic liquids (ILs) are a fairly new and very promising group of compounds with a vast variety of possible structures and uses. They are considered to be potentially "green", but their impact on the environment tends to be neglected or not studied enough, especially when it comes to terrestrial ecotoxicity, where there are very few studies performed to date. This work presents a comparative study of the terrestrial ecotoxicity of selected representatives of two ILs groups: a new family of protic ILs (derived from aliphatic amines and organic acids) and some frequently used aprotic ILs (substituted imidazolium and piridinium chlorides). Toxicity of the ILs towards three terrestrial plant species (Allium cepa, Lolium perenne and Raphanus sativus) and soil microorganisms involved in carbon and nitrogen transformation was analyzed. Protic ILs have shown no toxic effect in most of the tests performed. The EC50 values for aprotic ILs are various orders of magnitude lower than the ones for protic ILs in all of the tests. The most toxic ILs are the most complex ones in both of the analyzed groups. Protic ILs seem to have a potential for biodegradation in soil, while aprotic ILs exhibit inhibitory effects towards the carbon transforming microbiota. These findings indicate that protic ILs can be considered as less toxic and safer for the terrestrial environment than the aprotic ILs. PMID:24630250

Peric, Brezana; Sierra, Jordi; Martí, Esther; Cruañas, Robert; Garau, Maria Antonia

2014-08-01

5

Water-in-ionic liquid microemulsion formation in solvent mixture of aprotic and protic imidazolium-based ionic liquids.  

PubMed

We report that water-in-ionic liquid microemulsions (MEs) are stably formed in an organic solvent-free system, i.e., a mixture of aprotic (aIL) and protic (pIL) imidazolium-based ionic liquids (ILs) containing the anionic surfactant dioctyl sulfosuccinate sodium salt (AOT). Structural investigations using dynamic light, small-angle X-ray, and small-angle neutron scatterings were performed for MEs formed in mixtures of aprotic 1-octyl-3-methylimidazolium ([C8mIm(+)]) and protic 1-alkylimidazolium ([CnImH(+)], n = 4 or 8) IL with a common anion, bis(trifluoromethanesulfonyl)amide ([TFSA(-)]). It was found that the ME structure strongly depends on the mixing composition of the aIL/pIL in the medium. The ME size appreciably increases with increasing pIL content in both [C8mIm(+)][TFSA(-)]/[C8ImH(+)][TFSA(-)] and [C8mIm(+)][TFSA(-)]/[C4ImH(+)][TFSA(-)] mixtures. The size is larger for the n = 8 system than that for the n = 4 system. These results indicate that the shell part of MEs is composed of both AOT and pIL cation, and the ME size can be tuned by pIL content in the aIL/pIL mixtures. PMID:25226398

Kusano, Takumi; Fujii, Kenta; Hashimoto, Kei; Shibayama, Mitsuhiro

2014-10-14

6

(Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids.  

PubMed

Ionic liquids (ILs) are a promising group of compounds with a large variety of possible structures and uses. They are considered as a potential "green" replacement for traditional volatile organic solvents, but their impact on the environment is often neglected or not studied enough. In the present study, selected representatives of two ILs groups were analyzed: a new family of protic ILs (derived from aliphatic amines and organic acids) and some frequently used aprotic ILs (substituted imidazolium and piridinium chlorides). The aquatic toxicity (test organisms Vibrio fischeri, Pseudokirchneriella subcapitata and Lemna minor) and biodegradability tests were carried out. The additional tests with enzyme (acetylcholinesterase) and leukemia rat cells (IPC-81) provided more in-depth evaluation of toxicity. In our comparative hazard assessment protic ILs have EC50 values >100 mg L(-1) in all of the tests performed, except in the case of three representatives toward Lemna minor. They also show good biodegradability rates. The EC50 values for aprotic ILs are various orders of magnitude lower than the ones for protic ILs in most of the tests and they show a lower biodegradability potential. These findings indicate that protic ILs can be considered as environmentally safer alternatives for more toxic ILs and organic solvents. PMID:23912075

Peric, Brezana; Sierra, Jordi; Martí, Esther; Cruañas, Robert; Garau, Maria Antonia; Arning, Jürgen; Bottin-Weber, Ulrike; Stolte, Stefan

2013-10-15

7

Surface interactions, corrosion processes and lubricating performance of protic and aprotic ionic liquids with OFHC copper  

NASA Astrophysics Data System (ADS)

In order to select possible candidates for use as lubricants or as precursors of surface coatings, the corrosion and surface interactions of oxygen-free high conductivity (OFHC) copper with two new protic (PIL) and four aprotic (APIL) room-temperature ionic liquids have been studied. The PILs, with no heteroatoms in their composition, are the triprotic di[(2-hydroxyethyl)ammonium] succinate (MSu) and the diprotic di[bis-(2-hydroxyethyl)ammonium] adipate (DAd). The four APILs contain imidazolium cations with short or long alkyl chain substituents and reactive anions: 1-ethyl-3-methylimidazolium phosphonate ([EMIM]EtPO3H); 1-ethyl-3-methylimidazolium octylsulfate ([EMIM]C8H17SO4); 1-hexyl-3-methylimidazolium tetrafluoroborate ([HMIM]BF4) and 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM]PF6). Contact angles between the ionic liquids and OFHC copper surface were measured. Mass and roughness changes of OFHC copper after 168 h in contact with the ionic liquids have been determined. Copper surfaces were studied by XRD, SEM-EDX and XPS surface analysis. FTIR spectra of the liquid phases recovered after being in contact with the copper surface were compared with that of the neat ionic liquids. The lowest corrosion rate is observed for the diprotic ammonium adipate PIL (DAd), which gives low mass and surface roughness changes and forms adsorbed layers on copper, while the triprotic ammonium succinate salt (MSu) produces a severe corrosive attack by reaction with copper to form a blue crystalline solid, which has been characterized by FTIR and thermal analysis (TGA). All imidazolium APILs react with copper, with different results as a function of the anion. As expected, [EMIM]C8H17SO4 reacts with copper to form the corresponding copper sulphate salt. [EMIM]EtPO3H produces severe corrosion to form a phosphonate-copper soluble phase. [HMIM]BF4 gives rise to the highest roughness increase of the copper surface. [HMIM]PF6 shows the lowest mass and roughness changes of the four imidazolium ionic liquids due to the formation of a solid layer containing phosphorus and fluorine. The results described in the present study are in agreement with the outstanding good tribological performance of the diprotic ammonium adipate (DAd) ionic liquid for the copper-copper contact, in pin-on-disc tests, preventing wear and giving a very low friction coefficient of 0.01. Under the same conditions, [HMIM]PF6 gives a friction value of 0.03, while the reactivity of MSu towards copper produces maximum friction peaks of 0.05. In contrast with the absence of surface damage on copper, an abrasive wear mechanism is observed for MSu and [HMIM]PF6. The results confirm a better lubricating performance for a lower corrosion rate.

Espinosa, Tulia; Sanes, José; Jiménez, Ana-Eva; Bermúdez, María-Dolores

2013-05-01

8

Aprotic Heterocyclic Anion Triazolide Ionic Liquids - A New Class of Ionic Liquid Anion Accessed by the Huisgen Cycloaddition Reaction  

SciTech Connect

The triazole core is a highly versatile heterocyclic ring which can be accessed easily with the Cu(I)-catalyzed Huisgen cycloaddition reaction. Herein we present the preparation of ionic liquids that incorporate a 1,2,3-triazolide anion. These ionic liquids were prepared by a facile procedure utilizing a base-labile pivaloylmethyl group at the 1-position, which can act as precursors to 1H- 4-substituted 1,2,3-triazole. These triazoles were then subsequently converted into ionic liquids after deprotonation using an appropriate ionic liquid cation hydroxide. The densities and thermal decompositions of these ionic liquids were measured. These novel ionic liquids have potential applications in gas separations and in metal-free catalysis.

Thompson, Robert L.; Damodaran, Krishnan; Luebke, David; Nulwala, Hunaid

2013-06-01

9

Study of a Li-air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid  

NASA Astrophysics Data System (ADS)

Recent studies have clearly demonstrated that cyclic and linear carbonates are unstable when used in rechargeable Li-air batteries employing aprotic solvents mostly due to the cathodic formation of superoxide during the oxygen reduction reaction. In particular, it has been ascertained that nucleophilic attack by superoxide anion radical, O2-rad , at O-alkyl carbon is a common mechanism of decomposition of organic carbonates. Moreover, theoretical calculations showed that ether chemical functionalities are stable against nucleophilic substitution induced by superoxide. Aim of this study is to report on a new electrolyte solution for Li-air battery formed by a mixture of an ether-based aprotic solvent with an ionic liquid (IL). The IL-based electrolyte was obtained by mixing the pure ionic liquid N-methyl-(n-butyl) pyrrolidinium bis(trifluoromethane sulfonyl) imide (here denoted as PYR14TFSI) to a 0.91 M solution of lithium triflate (LiCF3SO3) in tetra ethylene glycol dimethyl etcher (TEGDME). We observed that the presence of IL beneficially affects the kinetics and the reversibility of the oxygen reactions involved at the cathode. The most significant result being a lower overvoltage for the charge reaction, compared to a Li/air cell containing the same electrolyte solution without IL.

Cecchetto, Laura; Salomon, Mark; Scrosati, Bruno; Croce, Fausto

2012-09-01

10

Electrochemical response in aprotic ionic liquid electrolytes of TiO2 anatase anodes based on mesoporous mesocrystals with uniform colloidal size  

NASA Astrophysics Data System (ADS)

Mesocrystals (superstructures of crystallographically-oriented inorganic nanocrystals) represent sophisticated configurations generated from biomineralization processes, and an example of nonclassical crystallization mechanisms. Being the closest relatives to single-crystals at the nanoscale, porous mesocrystals are considered as ideal configurations to improve functional properties, and to correlate structural and textural features with materials functionality. Here we show that TiO2 anatase mesoporous colloidal mesocrystals, synthesized by a self-assembly/seeding method, can be easily processed as active materials in anode composites. These anode composites can be efficiently infiltrated during battery operation with safe aprotic ionic liquid electrolytes down to the mesoporosity of mesocrystals (3-4 nm), and operate over a wider temperature window than organic carbonates. For example, after continuous galvanostatic cycling for 1 month at high temperatures (15 days at 60 °C + 15 days at 80 °C, ?130 cycles), these anode composites sustain a capacity at 67 mA g-1 that is still remarkable for TiO2-based anodes (155 mAh g-1 or 200 mAh cm-3, coulombic efficiency of ?99%). On contrast, in organic carbonates the capacity decays down to 80 mAh g-1 after only 15 days at 60 °C. Our results suggest that the principles derived from porous anatase mesocrystal/ionic liquid electrolyte combinations could constitute the basis for battery applications in which safety, durability and variability in operating temperature represent the primary concerns.

Amarilla, Jose Manuel; Morales, Enrique; Sanz, Jesus; Sobrados, Isabel; Tartaj, Pedro

2015-01-01

11

Influence of solvent on ion aggregation and transport in PY15TFSI ionic liquid-aprotic solvent mixtures.  

PubMed

Molecular dynamics (MD) simulations using a many-body polarizable APPLE&P force field have been performed on mixtures of the N-methyl-N-pentylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PY15TFSI) ionic liquid (IL) with three molecular solvents: propylene carbonate (PC), dimethyl carbonate (DMC), and acetonitrile (AN). The MD simulations predict density, viscosity, and ionic conductivity values that agree well with the experimental results. In the solvent-rich regime, the ionic conductivity of the PY15TFSI-AN mixtures was found to be significantly higher than the conductivity of the corresponding -PC and -DMC mixtures, despite the similar viscosity values obtained from both the MD simulations and experiments for the -DMC and -AN mixtures. The significantly lower conductivity of the PY15TFSI-DMC mixtures, as compared to those for PY15TFSI-AN, in the solvent-rich regime was attributed to the more extensive ion aggregation observed for the -DMC mixtures. The PY15TFSI-DMC mixtures present an interesting case where the addition of the organic solvent to the IL results in an increase in the cation-anion correlations, in contrast to what is found for the mixtures with PC and AN, where ion motion became increasingly uncorrelated with addition of solvent. A combination of pfg-NMR and conductivity measurements confirmed the MD simulation predictions. Further insight into the molecular interactions and properties was also obtained using the MD simulations by examining the solvent distribution in the IL-solvent mixtures and the mixture excess properties. PMID:23941158

Borodin, Oleg; Henderson, Wesley A; Fox, Eric T; Berman, Marc; Gobet, Mallory; Greenbaum, Steve

2013-09-12

12

Ionic Liquids  

Microsoft Academic Search

Ionic liquids are receiving an upsurge of interest as green solvents; primarily as replacements for conventional media in\\u000a chemical processes. This review presents an overview of the chemistry that has been developed utilising ionic liquids as either\\u000a catalyst and\\/or solvent, with particular emphasis on processes that have been taken beyond the pre-competetive laboratory\\u000a stage and represent clean industrial technology with

J. D. Holbrey; K. R. Seddon

1999-01-01

13

Decoupling of charge transport from structural dynamics in protic ionic liquids  

NASA Astrophysics Data System (ADS)

Broadband dielectric spectroscopy, differential scanning calorimetry and rheology are employed to investigate charge transport and dynamics in protic and aprotic ionic liquids. While the structural ?-relaxation rates and the characteristic charge diffusion rates coincide for aprotic ionic liquids, the latter is found to be more than 100 times for the protic ionic liquids studied. Moreover, the analysis of protic ionic liquids revealed a decoupling of temperature dependence of ionic transport from that of structural relaxation with the degree of decoupling increasing with fragility of the liquid. The potential technological impact of these results will be discussed.

Sangoro, Joshua; Sokolov, Alexei; Kremer, Friedrich; Paluch, Marian

2013-03-01

14

Ionic Liquids Database- (ILThermo)  

National Institute of Standards and Technology Data Gateway

SRD 147 Ionic Liquids Database- (ILThermo) (Web, free access)   IUPAC Ionic Liquids Database, ILThermo, is a free web research tool that allows users worldwide to access an up-to-date data collection from the publications on experimental investigations of thermodynamic, and transport properties of ionic liquids as well as binary and ternary mixtures containing ionic liquids.

15

Heat Capacity of Room-Temperature Ionic Liquids: A Critical Review  

NASA Astrophysics Data System (ADS)

Experimental data on heat capacity of room-temperature ionic liquids in the liquid state were compiled and critically evaluated. The compilation contains data for 102 aprotic ionic liquids from 63 literature references and covers the period of time from 1998 through the end of February 2010. Parameters of correlating equations for temperature dependence of the heat capacities were developed.

Paulechka, Yauheni U.

2010-09-01

16

Mixtures of ionic liquids.  

PubMed

Simple ionic liquids have long been held to be designer solvents, based upon the ability to independently vary their cations and anions. The formation of mixtures of ionic liquids increases this synthetic flexibility. We review the available literature of these ionic liquid mixtures to identify how their properties change and the possibility for their application. PMID:22890419

Niedermeyer, Heiko; Hallett, Jason P; Villar-Garcia, Ignacio J; Hunt, Patricia A; Welton, Tom

2012-12-01

17

Vaporisation of a dicationic ionic liquid revisited.  

PubMed

The vaporization of a dicationic ionic liquid at moderate temperatures and under reduced pressures--recently studied by line-of-sight mass spectrometry--was further analyzed using an ion-cyclotron resonance mass spectroscopy technique that allows the monitoring of the different species present in the gas phase through the implementation of controlled ion-molecule reactions. The results support the view that the vapour phase of an aprotic dicationic ionic liquid is composed of neutral ion triplets (one dication attached to two anions). Molecular dynamics simulations were also performed in order to explain the magnitude of the vaporization enthalpies of dicationic ionic liquids vis-à-vis their monocationic counterparts. PMID:21058381

Vitorino, Joana; Leal, João P; Licence, Peter; Lovelock, Kevin R J; Gooden, Peter N; Minas da Piedade, Manuel E; Shimizu, Karina; Rebelo, Luís P N; Canongia Lopes, José N

2010-12-01

18

The distillation and volatility of ionic liquids  

NASA Astrophysics Data System (ADS)

It is widely believed that a defining characteristic of ionic liquids (or low-temperature molten salts) is that they exert no measurable vapour pressure, and hence cannot be distilled. Here we demonstrate that this is unfounded, and that many ionic liquids can be distilled at low pressure without decomposition. Ionic liquids represent matter solely composed of ions, and so are perceived as non-volatile substances. During the last decade, interest in the field of ionic liquids has burgeoned, producing a wealth of intellectual and technological challenges and opportunities for the production of new chemical and extractive processes, fuel cells and batteries, and new composite materials. Much of this potential is underpinned by their presumed involatility. This characteristic, however, can severely restrict the attainability of high purity levels for ionic liquids (when they contain poorly volatile components) in recycling schemes, as well as excluding their use in gas-phase processes. We anticipate that our demonstration that some selected families of commonly used aprotic ionic liquids can be distilled at 200-300°C and low pressure, with concomitant recovery of significant amounts of pure substance, will permit these currently excluded applications to be realized.

Earle, Martyn J.; Esperança, José M. S. S.; Gilea, Manuela A.; Canongia Lopes, José N.; Rebelo, Luís P. N.; Magee, Joseph W.; Seddon, Kenneth R.; Widegren, Jason A.

2006-02-01

19

Coordinating chiral ionic liquids.  

PubMed

A practical synthesis of novel coordinating chiral ionic liquids with an amino alcohol structural motif was developed starting from commercially available amino alcohols. These basic chiral ionic liquids could be successfully applied as catalysts in the asymmetric alkylation of aldehydes and gave high enantioselectivities of up to 91% ee. PMID:24163003

Vasiloiu, Maria; Leder, Sonja; Gaertner, Peter; Mereiter, Kurt; Bica, Katharina

2013-12-14

20

Applications of ionic liquids.  

PubMed

Ionic liquids have recently gained popularity in the scientific community owing to their special properties and characteristics. One of the reasons why ionic liquids have been termed "green solvents" is due to their negligible vapour pressure. Their use in electrochemical, biological and metal extraction applications is discussed. Wide research has been carried out for their use in batteries, solar panels, fuel cells, drug deliveries and biomass pretreatments. This work aims to consolidate the various findings from previous works in these areas. PMID:22711528

Patel, Divia Dinesh; Lee, Jong-Min

2012-06-01

21

Synthesis of ionic liquids  

DOEpatents

Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

Dai, Sheng (Knoxville, TN); Luo, Huimin (Knoxville, TN)

2011-11-01

22

Synthesis of ionic liquids  

DOEpatents

Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

2008-09-09

23

Electroplating Using Ionic Liquids  

NASA Astrophysics Data System (ADS)

Electroplating is a key technology in many large-scale industrial applications such as corrosion-resistant and decorative coatings. Issues with current aqueous processes, such as toxicity of reagents and low current efficiencies, can often be overcome by using ionic liquids, and this approach has turned ionometallurgy into a fast-growing area of research. This review outlines the interactions in ionic liquids that are responsible for the advantageous properties of these solvents in electroplating. It summarizes recent research in which these properties have been analyzed or exploited and highlights fundamental issues in research and technology that need to be addressed.

Abbott, Andrew P.; Frisch, Gero; Ryder, Karl S.

2013-07-01

24

Chemical propulsion using ionic liquids.  

PubMed

Chemical propulsion generates motion by directly converting locally stored chemical energy into mechanical energy. Here, we describe chemically driven autonomous motion generated by using imidazolium-based ionic liquids on a water surface. From measurements of the driving force of a locomotor loaded with an ionic liquid and observations of convection on the water surface originating from the ionic liquid container of the locomotor, the driving mechanism of the motion is found to be due to the Marangoni effect that arises from the anisotropic distribution of ionic liquids on the water surface. The maximum driving force and the force-generation duration are determined by the surface activity of the ionic liquid and the solubility of the ionic liquid in water, respectively. Because of the special properties of ionic liquids, a chemical locomotor driven by ionic liquids is promising for realizing autonomous micromachines and nanomachines that are safe and environmentally friendly. PMID:23398242

Tsuchitani, Shigeki; Takagi, Nobuhiro; Kikuchi, Kunitomo; Miki, Hirobumi

2013-03-01

25

Protic ionic liquids based on decahydroisoquinoline: lost superfragility and ionicity-fragility correlation.  

PubMed

Physicochemical properties, ionicity, and fragility for protic ionic liquids (PILs) based on the protonation of the extremely fragile molecular liquid decahydroisoquinoline (DHiQ) by various Brønsted acids have been studied. The ionicity was evaluated using the Walden plot diagnostic, while the m-fragility (slope of T(g)-scaled Arrhenius plot at T(g)) was quantitatively measured by the Moynihan-Wang-Velikov variable scan rate, differential scanning calorimetry, method. DHiQ-derived PILs prove to cover the whole range of IL ionicities from poor IL to good IL, and even superionic, assessed from the Walden plot, depending on the choice of Brønsted acid. We find that the superfragile character of the parent DHiQ becomes completely suppressed upon conversion to ionic liquid, the initial value m = 128 sinking to m = 45-91 for the ionic liquid. Such values are in the intermediate to fragile range. The DHiQ-based PIL showing superionic behavior, anion [HSO(4)(-)], proves to be the case with the lowest m value (m = 45) so far reported for either aprotic or protic ILs. Both low fragility and dry proton conductivity can be attributed to an extended hydrogen bond network that is set up by the hydrogensulfate anion. The good DHiQ PILs have m values similar to those reported for typical aprotic ILs (m = 60-80), while the poor DHiQ PILs in which proton transfer from acid to base is weak show some memory of the parent fragility. Thus, a correlation of ionicity with m-fragility is characteristic of this system. A range of noncrystallizing, and also nonglassforming, behavior is observed in this series of compounds, suggesting a possible test for ideal glassformer existence. PMID:22126365

Ueno, Kazuhide; Zhao, Zuofeng; Watanabe, Masayoshi; Angell, C Austen

2012-01-12

26

Cyclic phosphonium ionic liquids  

PubMed Central

Summary Ionic liquids (ILs) incorporating cyclic phosphonium cations are a novel category of materials. We report here on the synthesis and characterization of four new cyclic phosphonium bis(trifluoromethylsulfonyl)amide ILs with aliphatic and aromatic pendant groups. In addition to the syntheses of these novel materials, we report on a comparison of their properties with their ammonium congeners. These exemplars are slightly less conductive and have slightly smaller self-diffusion coefficients than their cyclic ammonium congeners. PMID:24605146

Mukhlall, Joshua A; Romeo, Alicia R; Gohdo, Masao; Ramati, Sharon; Berman, Marc; Suarez, Sophia N

2014-01-01

27

Criteria for solvate ionic liquids.  

PubMed

Certain concentrated mixtures of salts and solvents are not simply "solutions" anymore, but they may be described as "ionic liquids". In this perspective paper, we describe possible criteria for the new family of ionic liquids: "solvate" ionic liquids. This subclass of ionic liquids was originally proposed by Angell et al. in their recent review; however, their criteria remain to be debated. Concentrated mixtures of lithium salts and organic solvents are useful models for these solvate ionic liquids, and the effects of the salt concentration, types of solvents, and counter anions of the lithium salts on their structure and properties have been explored to enable contrast with traditional solutions, and to help determine whether a given mixture belongs to the solvate ionic liquid or not. PMID:24676567

Mandai, Toshihiko; Yoshida, Kazuki; Ueno, Kazuhide; Dokko, Kaoru; Watanabe, Masayoshi

2014-05-21

28

Low Toxic Ionic Liquids, Liquid Catanionics, and Ionic Liquid Microemulsions  

Microsoft Academic Search

In the future the demand of sustainable and low toxic surfactants and solvents will constantly increase. In this article, we present some new approaches to meet these requirements. Whereas ionic liquids are often based on imidazolium ions, we will show that there are also much less toxic ones, especially with choline as cation. Choline salts, even if solid at room

Werner Kunz; Eva Maurer; Regina Klein; Didier Touraud; Doris Rengstl; Agnes Harrar; Susanne Dengler; Oliver Zech

2011-01-01

29

Ionic liquids in confined geometries.  

PubMed

Over recent years the Surface Force Apparatus (SFA) has been used to carry out model experiments revealing structural and dynamic properties of ionic liquids confined to thin films. Understanding characteristics such as confinement induced ion layering and lubrication is of primary importance to many applications of ionic liquids, from energy devices to nanoparticle dispersion. This Perspective surveys and compares SFA results from several laboratories as well as simulations and other model experiments. A coherent picture is beginning to emerge of ionic liquids as nano-structured in pores and thin films, and possessing complex dynamic properties. The article covers structure, dynamics, and colloidal forces in confined ionic liquids; ionic liquids are revealed as a class of liquids with unique and useful confinement properties and pertinent future directions of research are highlighted. PMID:22301770

Perkin, Susan

2012-04-21

30

Ionic liquids as surfactants  

NASA Astrophysics Data System (ADS)

Problems of self-assembling in systems containing ionic liquids (ILs) are discussed. Main attention is paid to micellization in aqueous solutions of dialkylimidazolium ILs and their mixtures with classical surfactants. Literature data are reviewed, the results obtained by the authors and co-workers are presented. Thermodynamic aspects of the studies and problems of molecular-thermodynamic modeling receive special emphasis. It is shown that the aggregation behavior of dialkylimidazolium ILs is close to that of alkyltrimethylammonium salts (cationic surfactants) though ILs have a higher ability to self-organize, especially as it concerns long-range ordering. Some aspects of ILs applications are outlined where their common features with classical surfactants and definite specificity are of value.

Smirnova, N. A.; Safonova, E. A.

2010-10-01

31

Particle self-assembly at ionic liquid-based interfaces.  

PubMed

This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid-water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid-water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water-ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil or water is incorporated. PMID:24230971

Frost, Denzil S; Nofen, Elizabeth M; Dai, Lenore L

2014-04-01

32

Electrokinetic Transport in Ionic Liquids  

E-print Network

A key difficulty in understanding electrokinetic transport in ionic liquids lies in the construction of an appropriate reference dynamics. The common assumption of modelling ion dynamics as a Langevin process is not warranted for solvent-free ionic liquids. The electrokinetic transport of ionic liquids obtained by coarse graining a simple exclusion process defined on a lattice is considered. The resulting dynamical equations can be written as a gradient flow with a degenerate mobility function. This form of the mobility function gives rise to charging behaviours that are different to the ones known in electrolytic solutions; the predicted behaviours agree qualitatively with the phenomenology observed in simulations.

Lee, Alpha A; Goriely, Alain

2015-01-01

33

Ionic Liquids in Chemical Analysis  

Microsoft Academic Search

Room-temperature ionic liquids are salts with a melting point close to or below room temperature. They form liquids composed in the majority of ions. This gives these materials the potential to behave very differently when they are used as solvents compared to conventional molecular liquids. The search for their application is growing in every area of analytical chemistry—electrochemistry, chromatography, electrophoresis,

Mihkel Koel

2005-01-01

34

Hydrophobic ionic liquids  

DOEpatents

Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

Koch, Victor R. (Lincoln, MA); Nanjundiah, Chenniah (Lynn, MA); Carlin, Richard T. (Nashua, NH)

1998-01-01

35

Hydrophobic ionic liquids  

DOEpatents

Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas shown in a diagram wherein R{sub 1}, R{sub 2}, R{sub 3}, R{sub 4}, R{sub 5}, and R{sub 6} are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F-, Cl-, CF{sub 3}-, SF{sub 5}-, CF{sub 3}S-, (CF{sub 3}){sub 2}CHS- or (CF{sub 3}){sub 3}CS-; and X{sup {minus}} is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 {angstrom}{sup 3}. 4 figs.

Koch, V.R.; Nanjundiah, C.; Carlin, R.T.

1998-10-27

36

Ionic Liquid Epoxy Resin Monomers  

NASA Technical Reports Server (NTRS)

Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

Paley, Mark S. (Inventor)

2013-01-01

37

Do all the protic ionic liquids exist as molecular aggregates in the gas phase?  

PubMed

According to an EI-MS study of 1,1,3,3-tetramethylguanidium-based protic ionic liquids (PILs), it has been concluded that not all PILs exist as molecular aggregates in the gas phase. The detection of both ions of m/z 115.0 and m/z 116.0 for the 1,1,3,3-tetramethylguanidinium trifluoromethylsulfonate (TMGS) protic ionic liquid indicates that both the molecular and ionic aggregates co-exist in the gas phase, which is to say that the TMGS may also evaporate via the ionic aggregates just like aprotic ionic liquids. Furthermore, investigation on triethylamine-based and 1-methylimidazole-based PILs confirmed that the gas phase structure of PILs depends on both the acidity and basicity of the corresponding acid and base. PMID:21897972

Zhu, Xiao; Wang, Yong; Li, Haoran

2011-10-21

38

Thermophysical Properties of Ionic Liquids  

NASA Astrophysics Data System (ADS)

Low melting point salts which are often classified as ionic liquids have received significant attention from research groups and industry for a range of novel applications. Many of these require a thorough knowledge of the thermophysical properties of the pure fluids and their mixtures. Despite this need, the necessary experimental data for many properties is scarce and often inconsistent between the various sources. By using accurate data, predictive physical models can be developed which are highly useful and some would consider essential if ionic liquids are to realize their full potential. This is particularly true if one can use them to design new ionic liquids which maximize key desired attributes. Therefore there is a growing interest in the ability to predict the physical properties and behavior of ionic liquids from simple structural information either by using group contribution methods or directly from computer simulations where recent advances in computational techniques are providing insight into physical processes within these fluids. Given the importance of these properties this review will discuss the recent advances in our understanding, prediction and correlation of selected ionic liquid physical properties.

Rooney, David; Jacquemin, Johan; Gardas, Ramesh

39

Elucidation of ionic interactions in the protic ionic liquid solutions by isothermal titration calorimetry.  

PubMed

The strong hydrogen-bonded network noted in protic ionic liquids (PILs) may lead to stronger interactions of the ionic entities of PILs with solvents (water, methanol, ethylene glycol, dimethylsulfoxide (DMSO), N,N'-dimethylformamide (DMF)) as compared with those of aprotic ionic liquids (APILs). The PILs used in this work are 1-methylimidazolium tetrafluoroborate, 2-methylpyridinium tetrafluoroborate, and N-methylpyrrolodinium tetrafluoroborate in comparison to 1-butyl-3-methylimidazolium tetrafluoroborate, which is classified as an APIL. In this work, the excess partial molar enthalpy, H(E)IL obtained from isothermal calorimetric titrations at 298.15 K is used to probe the nature of interactions of the PIL cations with solvent molecules against those present in APIL-solvent systems. This work also reports interesting flip-flopping in the thermal behavior of these PIL-solvent systems depending upon the structure of the cationic ring of a PIL. In some cases, these flip-flops are the specific fingerprints for specific PILs in a common solvent environment. The excess partial molar enthalpy at infinite dilution, H(E,?)IL, of these PILs bears a critical dependence on the solvent properties. An analysis of relative apparent molar enthalpies, ?L, of the PIL solutions by the ion interaction model of Pitzer yields important information on ionic interactions of these systems. PMID:24650134

Rai, Gitanjali; Kumar, Anil

2014-04-17

40

Ionic liquids as oxidic media for electron transfer studies  

NASA Astrophysics Data System (ADS)

We review the basic ideas underlying the electron free energy level diagrams that have been found useful in considering the thermodynamics of redox processes in molten silicates and related high temperature ionic liquid (IL) solvents, and then show how closely they link to behavior observable in ambient temperature ionic liquids. Much of the information available on redox levels in molten oxides has been gleaned from chemical analysis and spectroscopic species distribution studies, but it is simpler to obtain the data electrochemically. Here, we report some cyclic voltammetry measurements of the Fe(II)/Fe(III) redox equilibrium in aprotic ionic liquids whose anions provide oxide environments for the redox species that are of different electronic polarizability character from the high temperature solvents, and relate the observations to those of the earlier studies. Quasi-reversible behavior is found in each of the cases studied. As might be expected, the Fe(II)/Fe(III) equilibrium experiences a more basic environment in an acetate IL than it experiences in any of the common glassforming oxide media, while triflate anions contrast by providing a more acid environment than does the most acid of the molten oxide glassformers studied (an alkali phosphate). The difference can amount to well over 1 V, suggesting the possibility of a "basicity cell" where the same redox couple locates in anode and cathode compartments of the cell, and only the anion environment is different.

Ueno, Kazuhide; Angell, C. Austen

2012-06-01

41

Ionic liquids as oxidic media for electron transfer studies.  

PubMed

We review the basic ideas underlying the electron free energy level diagrams that have been found useful in considering the thermodynamics of redox processes in molten silicates and related high temperature ionic liquid (IL) solvents, and then show how closely they link to behavior observable in ambient temperature ionic liquids. Much of the information available on redox levels in molten oxides has been gleaned from chemical analysis and spectroscopic species distribution studies, but it is simpler to obtain the data electrochemically. Here, we report some cyclic voltammetry measurements of the Fe(II)?Fe(III) redox equilibrium in aprotic ionic liquids whose anions provide oxide environments for the redox species that are of different electronic polarizability character from the high temperature solvents, and relate the observations to those of the earlier studies. Quasi-reversible behavior is found in each of the cases studied. As might be expected, the Fe(II)?Fe(III) equilibrium experiences a more basic environment in an acetate IL than it experiences in any of the common glassforming oxide media, while triflate anions contrast by providing a more acid environment than does the most acid of the molten oxide glassformers studied (an alkali phosphate). The difference can amount to well over 1 V, suggesting the possibility of a "basicity cell" where the same redox couple locates in anode and cathode compartments of the cell, and only the anion environment is different. PMID:22755581

Ueno, Kazuhide; Angell, C Austen

2012-06-28

42

Externally Wetted Ionic Liquid Thruster  

NASA Astrophysics Data System (ADS)

This paper presents initial developments of an electric propulsion system based on ionic liquid ion sources (ILIS). Propellants are ionic liquids, which are organic salts with two important characteristics; they remain in the liquid state at room temperature and have negligible vapor pressure, thus allowing their use in vacuum. The working principles of ILIS are similar to those of liquid metal ion sources (LMIS), in which a Taylor cone is electrostatically formed at the tip of an externally wetted needle while ions are emitted directly from its apex. ILIS have the advantage of being able to produce negative ions that have similar masses than their positive counterparts with similar current levels. This opens up the possibility of achieving plume electrical neutrality without electron emitters. The possible multiplexing of these emitters is discussed in terms of achievable thrust density for applications other than micro-propulsion.

Lozano, P.; Martinez-Sanchez, M.; Lopez-Urdiales, J. M.

2004-10-01

43

Nanoparticle enhanced ionic liquid heat transfer fluids  

DOEpatents

A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

2014-08-12

44

Designing Imidazole-Based Ionic Liquids and Ionic Liquid Monomers for Emerging Technologies  

Microsoft Academic Search

Imidazolium-based ionic liquids and ionic liquid monomers are becoming increasingly popular in a variety of areas including biphasic reaction catalysis, electromechanical actuator membranes and diluents, separation science membranes, and water purification agents. Ionic liquids first incorporated the imidazole ring in 1984 and this heterocyclic ring has emerged as the focal point of the ionic liquid field. Imidazole was targeted for

Matthew D. Green; Timothy E. Long

2009-01-01

45

Ionic Liquids from Theoretical Investigations  

NASA Astrophysics Data System (ADS)

Theoretical investigations of ionic liquids are reviewed. Three main cate-gories are discussed, i.e., static quantum chemical calculations (electronic structure methods), traditional molecular dynamics simulations and first-principles molecular dynamics simulations. Simple models are reviewed in brief.

Kirchner, Barbara

46

Application of Ionic Liquids in Liquid Chromatography  

Microsoft Academic Search

Interest in ionic liquids (ILs) for their potential application in analytical chemistry continues to grow. Their usefulness can be due to favourable physicochemical properties, like the lack of vapour pressure, good thermal and chemical stability as well as very good dissolution properties regarding both organic and inorganic compounds. A specific feature of ILs is that these compounds provide strong proton

Micha? Piotr Marsza??; Roman Kaliszan

2007-01-01

47

Ionic liquid extraction systems utilizing ion recognition  

NASA Astrophysics Data System (ADS)

Ionic liquids have attracted much attention as the third liquid because they possess different properties from those of water and organic solvents. Their unique properties have encouraged us to develop liquid-liquid extraction systems using ionic liquids as extracting media. In this review, we describe metal ion and protein extractions in ionic liquid-water biphasic systems using the size recognition ability of macrocyclic compounds. Furthermore, we report the potential utility of ionic liquids as novel reaction media for biological catalysis with proteins extracted.

Shimojo, Kojiro; Goto, Masahiro

48

Surface tension of ionic liquids and ionic liquid solutions.  

PubMed

Some of the most active scientific research fronts of the past decade are centered on ionic liquids. These fluids present characteristic surface behavior and distinctive trends of their surface tension versus temperature. One way to explore and understand their unique nature is to study their surface properties. This critical review analyses most of the surface tension data reported between 2001 and 2010 (187 references). PMID:21811714

Tariq, Mohammad; Freire, Mara G; Saramago, Benilde; Coutinho, João A P; Lopes, José N Canongia; Rebelo, Luís Paulo N

2012-01-21

49

Synthesis, Purification and Characterization of Ionic Liquids  

NASA Astrophysics Data System (ADS)

The synthesis, purification and characterization of ionic liquids is reviewed. The major synthetic routes to low melting ionic salts are described in detail. The intrinsic properties of ionic liquids make purification difficult and therefore a special emphasis is placed on currently employed purification methodologies. Synthetic methods which are designed to avoid specific impurities are also discussed. For the same reasons highlighted above characterization of ionic liquids presents unique challenges; the available methods and some of the issues of their use are also reviewed.

Clare, Bronya; Sirwardana, Amal; Macfarlane, Douglas R.

50

Horseradish peroxidase in ionic liquids  

Microsoft Academic Search

The reactivity of horseradish peroxidase (HRP) with water insoluble phenolic compounds has been studied in 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4])\\/water mixtures. The enzyme retained some catalytic activity up to 90% ionic liquid in water at 25°C only at pH values higher than 9.0. Activity steadily decreased towards neutral and acidic conditions, as judged by 4-aminoantypirin\\/phenol activity tests. Inhibition of horseradish peroxidase under

Simona Sgalla; Giancarlo Fabrizi; Sandro Cacchi; Alberto Macone; Alessandra Bonamore; Alberto Boffi

2007-01-01

51

Application of ionic liquids in hydrometallurgy.  

PubMed

Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

2014-01-01

52

Ionic Liquids in Biomass Processing  

NASA Astrophysics Data System (ADS)

Ionic liquids have been studied for their special solvent properties in a wide range of processes, including reactions involving carbohydrates such as cellulose and glucose. Biomass is a widely available and renewable resource that is likely to become an economically viable source of starting materials for chemical and fuel production, especially with the price of petroleum set to increase as supplies are diminished. Biopolymers such as cellulose, hemicellulose and lignin may be converted to useful products, either by direct functionalisation of the polymers or depolymerisation to monomers, followed by microbial or chemical conversion to useful chemicals. Major barriers to the effective conversion of biomass currently include the high crystallinity of cellulose, high reactivity of carbohydrates and lignin, insolubility of cellulose in conventional solvents, as well as heterogeneity in the native lignocellulosic materials and in lignin itself. This combination of factors often results in highly heterogeneous depolymerisation products, which make efficient separation difficult. Thus the extraction, depolymerisation and conversion of biopolymers will require novel reaction systems in order to be both economically attractive and environmentally benign. The solubility of biopolymers in ionic liquids is a major advantage of their use, allowing homogeneous reaction conditions, and this has stimulated a growing research effort in this field. This review examines current research involving the use of ionic liquids in biomass reactions, with perspectives on how it relates to green chemistry, economic viability, and conventional biomass processes.

Tan, Suzie Su Yin; Macfarlane, Douglas R.

53

For session on "Structure and Properties of Ionic Liquids and Molten Salts" Ionic Liquids, quasi-ionic liquids, and quasi-liquid ionics, all with high  

E-print Network

For session on "Structure and Properties of Ionic Liquids and Molten Salts and hence the support a range of battery electrochemistries[1], and (ii in solid state batteries. [1] J.S. Wilkes, Green industrial applications of ionic

Angell, C. Austen

54

Ionic Liquids and Relative Process Design  

NASA Astrophysics Data System (ADS)

Ionic liquids have gained increasing attention in recent years due to their significant advantages, not only as alternative solvents but also as new materials and catalysts. Until now, most research work on ionic liquids has been at the laboratory or pilot scale. In view of the multifarious applications of ionic liquids, more new knowledge is needed and more systematic work on ionic liquids should be carried out deeply and broadly in order to meet the future needs of process design. For example, knowledge of the physicochemical properties is indispensable for the design of new ionic liquids and for the development of novel processes. The synthesis and application of ionic liquids are fundamental parts of engineering science, and the toxicity and environmental assessment of ionic liquids is critical importance for their large scale applications, especially for process design. These research aspects are closely correlated to the industrial applications of ionic liquids and to sustainable processes. However, material process design in the industrial applications of ionic liquids has hardly been implemented. Therefore, this chapter reviews several essential issues that are closely related to process design, such as the synthesis, structure-property relationships, important applications, and toxicity of ionic liquids.

Zhang, S.; Lu, X.; Zhang, Y.; Zhou, Q.; Sun, J.; Han, L.; Yue, G.; Liu, X.; Cheng, W.; Li, S.

55

Ionic Liquids to Replace Hydrazine  

NASA Technical Reports Server (NTRS)

A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

2011-01-01

56

Early Events in Ionic Liquid Radiation Chemistry  

SciTech Connect

Ionic liquids are interesting and useful materials whose solvation time scales are up to thousands of times longer than in conventional solvents. The extended lifetimes of pre-solvated electrons and other energetic species in ionic liquids has profound consequences for the radiolytic product distributions and reactivity patterns. We use a newly developed, multiplexed variation of pulse-probe spectroscopy to measure the kinetics of the early dynamical and reactive events in ionic liquids.

Wishart, J.F.; Cook, A.; Rimmer, R.D.; Gohdo, M.

2010-09-14

57

Enzyme catalysis with small ionic liquid quantities.  

PubMed

Enzyme catalysis with minimal ionic liquid quantities improves reaction rates, stereoselectivity and enables solvent-free processing. In particular the widely used lipases combine well with many ionic liquids. Demonstrated applications are racemate separation, esterification and glycerolysis. Minimal solvent processing is also an alternative to sluggish solvent-free catalysis. The method allows simplified down-stream processing, as only traces of ionic liquids have to be removed. PMID:21107639

Fischer, Fabian; Mutschler, Julien; Zufferey, Daniel

2011-04-01

58

From ionic liquids to supramolecular polymers.  

PubMed

Charging forward: Ionic interactions presented in a multivalent fashion in small-molecule ionic liquids lead to functional polymer-like materials (see picture) that are consistent with the formation of a supramolecular ionic network. For example, the ionic material formed from a dication consisting of two covalently linked tetraalkyl phosphonium moieties and a porphyrin tetracarboxylate has a viscosity of 10(6) Pa s at 25 degrees C. PMID:19222061

Craig, Stephen L

2009-01-01

59

Quantized friction across ionic liquid thin films.  

PubMed

Ionic liquids - salts in the liquid state under ambient conditions - are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition. PMID:23942943

Smith, Alexander M; Lovelock, Kevin R J; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

2013-10-01

60

Ionic liquid stationary phases for gas chromatography.  

PubMed

This article provides a summary of the development of ionic liquids as stationary phases for gas chromatography beginning with early work on packed columns that established details of the retention mechanism and established working methods to characterize selectivity differences compared with molecular stationary phases through the modern development of multi-centered cation and cross-linked ionic liquids for high-temperature applications in capillary gas chromatography. Since there are many reviews on ionic liquids dealing with all aspects of their chemical and physical properties, the emphasis in this article is placed on the role of gas chromatography played in the design of ionic liquids of low melting point, high thermal stability, high viscosity, and variable selectivity for separations. Ionic liquids provide unprecedented opportunities for extending the selectivity range and temperature-operating range of columns for gas chromatography, an area of separation science that has otherwise been almost stagnant for over a decade. PMID:21290604

Poole, Colin F; Poole, Salwa K

2011-04-01

61

Mixtures of protic ionic liquids and propylene carbonate as advanced electrolytes for lithium-ion batteries.  

PubMed

In this study we investigated the chemical-physical properties of mixtures containing the protic ionic liquid (PIL) N-butyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYRH4TFSI), propylene carbonate (PC) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in view of their use as electrolytes for lithium-ion batteries (LIBs). We showed that these electrolytic solutions might display conductivity and viscosity comparable to those of conventional electrolytes. Depending on the amount of PIL present inside the mixtures, such mixtures might also display the ability to suppress the anodic dissolution of Al. Furthermore, we showed that the coordination of lithium ions by TFSI in PIL-PC mixtures appears to be different than the one observed for mixtures of PC and aprotic ionic liquids (AILs). When used in combination with a battery electrode, e.g. lithium iron phosphate (LFP), these mixtures allow the achievement of high performance also at a very high C-rate. PMID:25328075

Vogl, T; Menne, S; Balducci, A

2014-12-01

62

Actinide chemistry in ionic liquids.  

PubMed

This Forum Article provides an overview of the reported studies on the actinide chemistry in ionic liquids (ILs) with a particular focus on several fundamental chemical aspects: (i) complex formation, (ii) electrochemistry, and (iii) extraction behavior. The majority of investigations have been dedicated to uranium, especially for the 6+ oxidation state (UO2(2+)), because the chemistry of uranium in ordinary solvents has been well investigated and uranium is the most abundant element in the actual nuclear fuel cycles. Other actinides such as thorium, neptunium, plutonium, americium, and curiumm, although less studied, are also of importance in fully understanding the nuclear fuel engineering process and the safe geological disposal of radioactive wastes. PMID:22873132

Takao, Koichiro; Bell, Thomas James; Ikeda, Yasuhisa

2013-04-01

63

Ionic Liquids in Analytical Chemistry  

NASA Astrophysics Data System (ADS)

The role of ionic liquids (ILs) in analytical chemistry is increasing substantially every year. A decade ago there were but a handful of papers in this area of research that were considered curiosities at best. Today, those publications are recognized as seminal articles that gave rise to one of the most rapidly expanding areas of research in chemical analysis. In this review, we briefly highlight early work involving ILs and discuss the most recent advances in separations, mass spectrometry, spectroscopy, and electroanalytical chemistry. Many of the most important advances in these fields depend on the development of new, often unique ILs and multifunctional ILs. A better understanding of the chemical and physical properties of ILs is also essential.

Soukup-Hein, Renee J.; Warnke, Molly M.; Armstrong, Daniel W.

2009-07-01

64

Ionic liquids for rechargeable lithium batteries  

SciTech Connect

We have investigated possible anticipated advantages of ionic-liquid electrolytes for use in lithium-ion batteries. Thermal stabilities and phase behavior were studied by thermal gravimetric analysis and differential scanning calorimetry. The ionic liquids studied include various imidazoliumTFSI systems, pyrrolidiniumTFSI, BMIMPF{sub 6}, BMIMBF{sub 4}, and BMIMTf. Thermal stabilities were measured for neat ionic liquids and for BMIMBF{sub 4}-LiBF{sub 4}, BMIMTf-LiTf, BMIMTFSI-LiTFSI mixtures. Conductivities have been measured for various ionic-liquid lithium-salt systems. We show the development of interfacial impedance in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell and we report results from cycling experiments for a Li|BMIMBF{sub 4} + 1 mol/kg LIBF{sub 4}|C cell. The interfacial resistance increases with time and the ionic liquid reacts with the lithium electrode. As expected, imidazolium-based ionic liquids react with lithium electrodes. We seek new ionic liquids that have better chemical stabilities.

Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz,John; Newman, John

2005-09-29

65

Ionic liquids in pharmaceutical applications.  

PubMed

In the past several years, ionic liquids (ILs) have been at the cutting edge of the most promising science and technology. ILs not only have found applications in classical areas of knowledge but also are important candidates to solve classical problems within several societal challenges, such as clean and efficient energy, through the development of a broad swath of energy technologies, such as advanced batteries, dye-sensitized solar cells, double-layer capacitors, actuators, fuel cells, thermo-cells, and water splitting, essentially related to highly efficient carbon capture and storage technologies and resource efficiency to date. This review focuses on the application of IL methodologies to solve critical pharmaceutical problems, in particular, the low solubility and thus bioavailability of pharmaceutical compounds and the presence of polymorphs, which severely hamper the efficacy of important commercially available drugs. The development of strategies to use ILs as carriers of pharmaceutical active compounds is an extremely promising and wide avenue. Further, the synthesis of liquid salts through the discerning combination of cations and anions with several distinct pharmaceutical roles provides answers to some of today's pharmaceutical industrial challenges. PMID:24910920

Marrucho, I M; Branco, L C; Rebelo, L P N

2014-01-01

66

Design and synthesis of photoactive ionic liquids.  

PubMed

Two ionic liquids with photoisomerizable p-hydroxycinnamic acid moieties were synthesized and characterized by X-ray crystallography and DSC, and their photochemistry was studied in solution and neat conditions. Irradiation at absorption maxima led to trans-cis photoisomerization and resulted in significant reduction of melting temperatures of the ionic liquids. X-ray structures of both compounds show an intricate network of supramolecular interactions before irradiation. Physical and chemical transformations are completely reversible upon irradiation at lower wavelengths of ionic liquid solutions in acetonitrile. PMID:24787141

Avó, João; Cunha-Silva, Luís; Lima, João Carlos; Jorge Parola, A

2014-05-16

67

Influence of the ionic liquid/gas surface on ionic liquid chemistry.  

PubMed

Applications such as gas storage, gas separation, NP synthesis and supported ionic liquid phase catalysis depend upon the interaction of different species with the ionic liquid/gas surface. Consequently, these applications cannot proceed to the full extent of their potential without a profound understanding of the surface structure and properties. As a whole, this perspective contains more questions than answers, which demonstrates the current state of the field. Throughout this perspective, crucial questions are posed and a roadmap is proposed to answer these questions. A critical analysis is made of the field of ionic liquid/gas surface structure and properties, and a number of design rules are mined. The effects of ionic additives on the ionic liquid/gas surface structure are presented. A possible driving force for surface formation is discussed that has, to the best of my knowledge, not been postulated in the literature to date. This driving force suggests that for systems composed solely of ions, the rules for surface formation of dilute electrolytes do not apply. The interaction of neutral additives with the ionic liquid/gas surface is discussed. Particular attention is focussed upon H(2)O and CO(2), vital additives for many applications of ionic liquids. Correlations between ionic liquid/gas surface structure and properties, ionic liquid surfaces plus additives, and ionic liquid applications are given. PMID:22349469

Lovelock, Kevin R J

2012-04-21

68

Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal  

PubMed Central

The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

2014-01-01

69

Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal.  

PubMed

The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

2014-01-01

70

Materials Named “Ionic Liquids”—History and Definition  

NASA Astrophysics Data System (ADS)

In recent years, a series of materials named “ionic liquids” have attracted attention and been extensively studied in various fields of chemistry. What “ionic liquids” are, however, has not been yet standardized. This review presents the history of “ionic liquid” research and definition of the term “ionic liquid” from a viewpoint that it should be classified as a nonaqueous solvent.

Hirayama, Naoki

71

Encapsulated ionic liquids (ENILs): from continuous to discrete liquid phase.  

PubMed

Encapsulated ionic liquid (ENIL) material was developed, consisting of ionic liquid (IL) introduced into carbon submicrocapsules. ENILs contain >85% w/w of IL but discretized in submicroscopic encapsulated drops, drastically increasing the surface contact area with respect to the neat fluid. ENIL materials were here tested for gas separation processes, obtaining a drastic increase in mass transfer rate. PMID:22935733

Palomar, Jose; Lemus, Jesus; Alonso-Morales, Noelia; Bedia, Jorge; Gilarranz, Miguel A; Rodriguez, Juan J

2012-10-14

72

Phosphonium-based ionic liquids and uses  

DOEpatents

Phosphonium-based room temperature ionic liquids ("RTILs") were prepared. They were used as matrices for Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry and also for preparing samples of dyes for analysis.

Del Sesto, Rico E; Koppisch, Andrew T; Lovejoy, Katherine S; Purdy, Geraldine M

2014-12-30

73

Are Room Temperature Ionic Liquids Dilute Electrolytes?  

E-print Network

An important question in understanding the structure of ionic liquids is whether ions are truly "free" and mobile which would correspond to a concentrated ionic melt, or are rather "bound" in ion pairs, that is a liquid of ion pairs with a small concentration of free ions. Recent surface force balance experiments from different groups have given conflicting answers to this question. We propose a simple model for the thermodynamics and kinetics of ion pairing in ionic liquids. Our model takes into account screened ion-ion, dipole-dipole and dipole-ion interactions in the mean field limit. The results of this model suggest that almost two thirds of the ions are free at any instant, and ion pairs have a short lifetime comparable to the characteristic timescale for diffusion. These results suggest that there is no particular thermodynamic or kinetic preference for ions residing in pairs. We therefore conclude that ionic liquids are concentrated, rather than dilute, electrolytes.

Lee, Alpha A; Perkin, Susan; Goriely, Alain

2014-01-01

74

New electrolytes for aluminum production: Ionic liquids  

NASA Astrophysics Data System (ADS)

In this article, the reduction, refining/recycling, and electroplating of aluminum from room-temperature molten salts are reviewed. In addition, the characteristics of several non-conventional organic solvents, electrolytes, and molten salts are evaluated, and the applicability of these melts for production of aluminum is discussed with special attention to ionic liquids. Also reviewed are electrochemical processes and conditions for electrodeposition of aluminum using ionic liquids at near room temperatures.

Zhang, Mingming; Kamavarum, Venkat; Reddy, Ramana G.

2003-11-01

75

Superbase-derived protic ionic liquids  

DOEpatents

Protic ionic liquids having a composition of formula (A.sup.-)(BH.sup.+) wherein A.sup.- is a conjugate base of an acid HA, and BH.sup.+ is a conjugate acid of a superbase B. In particular embodiments, BH.sup.+ is selected from phosphazenium species and guanidinium species encompassed, respectively, by the general formulas: ##STR00001## The invention is also directed to films and membranes containing these protic ionic liquids, with particular application as proton exchange membranes for fuel cells.

Dai, Sheng; Luo, Huimin; Baker, Gary A.

2013-09-03

76

The Solubility Parameters of Ionic Liquids  

PubMed Central

The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated. PMID:20559495

Marciniak, Andrzej

2010-01-01

77

Study of thioglycosylation in ionic liquids  

PubMed Central

A novel, green chemistry, glycosylation strategy was developed based upon the use of ionic liquids. Research studies demonstrated that thiomethyl glycosides could readily be activated with methyl trifluoromethane sulfonate, using 1-butyl-3-methylimidazolium tetrafluoroborate as a solvent. This green chemistry glycosylation strategy provided disaccharides with typical yields averaging 75%. The ionic liquid solvent could be readily reused for five sequential glycosylation reactions with no impact on product yield. PMID:16803635

Zhang, Jianguo; Ragauskas, Arthur

2006-01-01

78

Vesicles and reverse vesicles of an ionic liquid in ionic liquids.  

PubMed

First evidence and the mechanism of formation of closed bilayer structures by a single chain amino acid ionic liquid (IL), L-proline isopropylester laurylsulfate in both hydrophilic and hydrophobic ILs, is reported. Such ionic self-assemblies are shown to be guided by fine balance of solvophobic effects and ionic arrangements via hydrogen bonding and electrostatic interactions. PMID:23917547

Rao, K Srinivasa; So, Soonyong; Kumar, Arvind

2013-09-21

79

Liquid ammonia as a dipolar aprotic solvent for aliphatic nucleophilic substitution reactions.  

PubMed

The rate constants for the reactions of a variety of nucleophiles reacting with substituted benzyl chlorides in liquid ammonia (LNH(3)) have been determined. To fully interpret the associated linear free-energy relationships, the ionization constants of phenols ions in liquid ammonia were obtained using UV spectra. These equilibrium constants are the product of those for ion-pair formation and dissociation to the free ions, which can be separated by evaluating the effect of added ammonium ions. There is a linear relationship between the pK(a) of phenols in liquid ammonia and those in water of slope 1.68. Aminium ions exist in their unprotonated free base form in liquid ammonia and their ionization constants could not be determined by NMR. The rates of solvolysis of substituted benzyl chlorides in liquid ammonia at 25 °C show a Hammett ? of zero, having little or no dependence upon ring substituents, which is in stark contrast with the hydrolysis rates of substituted benzyl halides in water, which vary 10(7) fold. The rate of substitution of benzyl chloride by substituted phenoxide ions is first order in the concentration of the nucleophile indicative of a S(N)2 process, and the dependence of the rate constants on the pK(a) of the phenol in liquid ammonia generates a Brønsted ?(nuc) = 0.40. Contrary to the solvolysis reaction, the reaction of phenoxide ion with 4-substituted benzyl chlorides gives a Hammett ? = 1.1, excluding the 4-methoxy derivative, which shows the normal positive deviation. The second order rate constants for the substitution of benzyl chlorides by neutral and anionic amines show a single Brønsted ?(nuc) = 0.21 (based on the aqueous pK(a) of amine), but their dependence on the substituent in substituted benzyl chlorides varies with a Hammett ? of 0 for neutral amines, similar to that seen for solvolysis, whereas that for amine anions is 0.93, similar to that seen for phenoxide ion. PMID:21348532

Ji, Pengju; Atherton, John; Page, Michael I

2011-03-01

80

Ionic liquid processing of cellulose.  

PubMed

Utilization of natural polymers has attracted increasing attention because of the consumption and over-exploitation of non-renewable resources, such as coal and oil. The development of green processing of cellulose, the most abundant biorenewable material on Earth, is urgent from the viewpoints of both sustainability and environmental protection. The discovery of the dissolution of cellulose in ionic liquids (ILs, salts which melt below 100 °C) provides new opportunities for the processing of this biopolymer, however, many fundamental and practical questions need to be answered in order to determine if this will ultimately be a green or sustainable strategy. In this critical review, the open fundamental questions regarding the interactions of cellulose with both the IL cations and anions in the dissolution process are discussed. Investigations have shown that the interactions between the anion and cellulose play an important role in the solvation of cellulose, however, opinions on the role of the cation are conflicting. Some researchers have concluded that the cations are hydrogen bonding to this biopolymer, while others suggest they are not. Our review of the available data has led us to urge the use of more chemical units of solubility, such as 'g cellulose per mole of IL' or 'mol IL per mol hydroxyl in cellulose' to provide more consistency in data reporting and more insight into the dissolution mechanism. This review will also assess the greenness and sustainability of IL processing of biomass, where it would seem that the choices of cation and anion are critical not only to the science of the dissolution, but to the ultimate 'greenness' of any process (142 references). PMID:22266483

Wang, Hui; Gurau, Gabriela; Rogers, Robin D

2012-02-21

81

Ionic liquids behave as dilute electrolyte solutions  

PubMed Central

We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin–Landau–Verwey–Overbeek theory with an additive repulsive steric (entropic) ion–surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high–free-ion density ionic liquids and ionic liquid blends. PMID:23716690

Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.

2013-01-01

82

The relationship between ionic structure and viscosity in room-temperature ionic liquids.  

PubMed

We investigate the relationship between ionic structure and viscosity in room-temperature ionic liquids. We build on an earlier theoretical work and derive an ionic property we call the charge lever moment (CLM) that provides insight on ionic liquid dynamics. We use electronic structure calculations to determine the CLM for ions in typical ionic liquids and demonstrate a correlation between this property and the experimental viscosities of ionic liquids. The relationship provides insight into the role of librational motion in ionic liquids in general, and the interpretation of Kerr effect experiments is discussed. PMID:19045036

Li, Hualin; Ibrahim, Murvat; Agberemi, Ismail; Kobrak, Mark N

2008-09-28

83

TETRAALKYLPHOSPHONIUM POLYOXOMETALATES AS NOVEL IONIC LIQUIDS.  

SciTech Connect

The pairing of a Lindqvist or Keggin polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation, [R{sub 3}R{prime}P]{sup +}, has been shown to yield an original family of ionic liquids (POM-ILs), among them salts liquid at or near ambient temperature. The physicochemical properties of several such 'inorganic liquids', in particular their thermal properties, suggests the possible application of these compounds as robust, thermally-stable solvents for liquid-liquid extraction. A preliminary evaluation of the potential of POM-ILs in this application is presented.

DIETZ,M.L.; RICKERT, P.G.; ANTONIO, M.R.; FIRESTONE, M.A.; WISHART, J.F.; SZREDER, T.

2007-11-30

84

Desulfurization of oxidized diesel using ionic liquids  

NASA Astrophysics Data System (ADS)

The extraction of oxidized sulfur compounds from diesel were carried out using ten types of ionic liquids consisting of different cation and anion i.e. 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazoium thiocyanate, 1-butyl-3-methylimidazoium dicyanamide, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazoliumhexafluorophosphate, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate, trioctylmethylammonium chloride, 1-propionitrile-3-butylimidazolium thiocyanate, 1-propionitrile-3-butylimidazolium dicyanamide and 1-butyl-6-methylquinolinium dicyanamide. The oxidation of diesel was successfully done using phosphotungstic acid as the catalyst, hydrogen peroxide (H2O2) as the oxidant and trioctylmethylammonium chloride as the phase transfer agent. The oxidation of diesel changes the sulfur compounds into sulfone which increases its polarity and enhances the ionic liquid's extraction performance. Result showed that ionic liquid [C4mquin][N(CN)2] performed the highest sulfur removal (91% at 1:5 diesel:IL ratio) compared to the others.

Wilfred, Cecilia D.; Salleh, M. Zulhaziman M.; Mutalib, M. I. Abdul

2014-10-01

85

Ionic liquids: a pathway to environmental acceptability.  

PubMed

Ionic liquids were initially proposed as replacements for conventional organic solvents; however, their chemistry has developed remarkably and offers unexpected opportunities in numerous fields, ranging from electrochemistry to biology. As a consequence of ionic liquids advancing towards potential and actual applications, a comprehensive determination of their environmental, health and safety impact is now required. This critical review aims to present an overview of the current understanding of the toxicity and environmental impact of the principal ionic liquid groups, and highlights some emerging concerns. Each cation type is considered separately, examining the significance of the biological data, and identifying the most critical questions, some yet unresolved. The need for more, and more detailed, studies is highlighted (176 references). PMID:21116514

Petkovic, Marija; Seddon, Kenneth R; Rebelo, Luís Paulo N; Silva Pereira, Cristina

2011-03-01

86

Enzyme activity in dialkyl phosphate ionic liquids  

SciTech Connect

The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

2011-12-01

87

Ionic Liquids as Extraction Media for Metal Ions  

NASA Astrophysics Data System (ADS)

In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.

Hirayama, Naoki

88

Unravelling nanoconfined films of ionic liquids  

NASA Astrophysics Data System (ADS)

The confinement of an ionic liquid between charged solid surfaces is treated using an exactly solvable 1D Coulomb gas model. The theory highlights the importance of two dimensionless parameters: the fugacity of the ionic liquid, and the electrostatic interaction energy of ions at closest approach, in determining how the disjoining pressure exerted on the walls depends on the geometrical confinement. Our theory reveals that thermodynamic fluctuations play a vital role in the "squeezing out" of charged layers as the confinement is increased. The model shows good qualitative agreement with previous experimental data, with all parameters independently estimated without fitting.

Lee, Alpha A.; Vella, Dominic; Perkin, Susan; Goriely, Alain

2014-09-01

89

Unravelling nanoconfined films of ionic liquids.  

PubMed

The confinement of an ionic liquid between charged solid surfaces is treated using an exactly solvable 1D Coulomb gas model. The theory highlights the importance of two dimensionless parameters: the fugacity of the ionic liquid, and the electrostatic interaction energy of ions at closest approach, in determining how the disjoining pressure exerted on the walls depends on the geometrical confinement. Our theory reveals that thermodynamic fluctuations play a vital role in the "squeezing out" of charged layers as the confinement is increased. The model shows good qualitative agreement with previous experimental data, with all parameters independently estimated without fitting. PMID:25194391

Lee, Alpha A; Vella, Dominic; Perkin, Susan; Goriely, Alain

2014-09-01

90

Polymer electrolyte with ionic liquid for DSSC application  

Microsoft Academic Search

We have investigated the structural and ionic conductivity properties of the polymer electrolyte PEO:KI\\/I2 doped with an ionic liquid 1-ethyl 3-methylimidazolium thio-cyanate (EMImSCN). Incorporation of the ionic liquid (IL) reduced the crystallinity, and enhanced the ionic conductivity. Optimized conductivity was found at 80 wt% of ionic liquid composition. This high electrical conductivity was suitable for dye sensitized solar cell (DSSC)

Pramod K. Singh; Ki-Il Kim; Jae-Wook Lee; Hee-Woo Rhee

2006-01-01

91

Wetting study of imidazolium ionic liquids.  

PubMed

In this work, we present a systematic contact angles study of a series of 1-alkyl, 3-methyl-imidazolium ionic liquids (ILs) on well-defined polar and nonpolar monolayer surfaces supported on Si wafers. The advancing and receding contact angles of ILs were used to determine the surface energy of the monolayer surfaces using Neumann's equation-of-state and Zisman's critical surface tension approaches. In parallel, the contact angles of conventional probe fluids (molecular liquids) including water, formamide, methylene iodide, ethylene glycol, and hexadecane were determined on the same surfaces. The results obtained showed a great deal of similarity in wetting behavior of ionic vs molecular probe fluids: the contact angles of both sets of liquids followed the same patterns in accord with the surface tension of the fluid. A good agreement was found between the surface energy determined by different sets of liquids. PMID:19027916

Batchelor, Tyler; Cunder, Joe; Fadeev, Alexander Y

2009-02-15

92

VOC and HAP recovery using ionic liquids  

SciTech Connect

During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy(trihexyl)phosphonium dicyanamide as the RTIL. It was determined that it has good absorption properties for methanol and ?-pinene, is thermally stable, and is relatively easy to synthesize. It has a density of 0.89 g/mL at 20°C and a molecular weight of 549.9 g/mol. Trials were conducted with a small absorption system and a larger absorption system. Methanol, formaldehyde, and other HAPs were absorbed well, nearly 100%. Acetaldehyde was difficult to capture. Total VOC capture, while satisfactory on methanol and ?-pinene in a lab system, was less than expected in the field, 60-80%. The inability to capture the broad spectrum of total organics is likely due to difficulties in cleaning them from the ionic liquid rather than the ability of the ionic liquid to absorb. It’s likely that a commercial system could be constructed to remove 90 to 100% of the gas contaminates. Selecting the correct ionic liquid would be key to this. Absorption may not be the main selection criterion, but rather how easily the ionic liquid can be cleaned is very important. The ionic liquid absorption system might work very well in a system with a limited spectrum of pollutants, such as a paint spray line, where there are not very high molecular weight, non volatile, compounds in the exhaust.

Michael R. Milota : Kaichang Li

2007-05-29

93

BIOELECTROCATALYTIC REACTIONS IN ROOM TEMPERATURE IONIC LIQUIDS  

Technology Transfer Automated Retrieval System (TEKTRAN)

The direct electrochemical reduction of hemin, protopophyrin(IX) iron(III) chloride, ligated with strong or weak heterocyclic bases, was investigated in the ionic liquids (ILs), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][...

94

1,2,3-triazolium ionic liquids  

DOEpatents

The present invention relates to compositions of matter that are ionic liquids, the compositions comprising substituted 1,2,3-triazolium cations combined with any anion. Compositions of the invention should be useful in the separation of gases and, perhaps, as catalysts for many reactions.

Luebke, David; Nulwala, Hunaid; Tang, Chau

2014-12-09

95

Thermoresponsive poly(ionic liquid) hydrogels.  

PubMed

A new series of LCST ILs have been copolymerised with crosslinkers of varying length to afford the first ever thermoresponsive poly(ionic liquid)-based hydrogels. These hydrogels exhibit surprisingly broad LCST and volume transition behaviour compared to standard thermoresponsive gels and linear ILs. PMID:24064665

Zió?kowski, Bartosz; Diamond, Dermot

2013-11-11

96

Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode  

SciTech Connect

Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we have succeeded in creating the static and stable gas (plasmas)-liquid (ionic liquids) interfacial field using a direct current discharge under a low gas pressure condition. It is clarified that the ionic liquid works as a nonmetal liquid electrode, and furthermore, a secondary electron emission coefficient of the ionic liquid is larger than that of conventional metal electrodes. The plasma potential structure of the gas-liquid interfacial region, and resultant interactions between the plasma and the ionic liquid are revealed by changing a polarity of the electrode in the ionic liquid. By utilizing the ionic liquid as a cathode electrode, the positive ions in the plasma region are found to be irradiated to the ionic liquid. This ion irradiation causes physical and chemical reactions at the gas-liquid interfacial region without the vaporization of the ionic liquid.

Kaneko, T. [Department of Electronic Engineering, Tohoku University, Sendai 980-8579 (Japan); CREST/JST, Tokyo 102-0075 (Japan); Baba, K.; Hatakeyama, R. [Department of Electronic Engineering, Tohoku University, Sendai 980-8579 (Japan)

2009-05-15

97

Ionic Liquid Catalyzed the Internal Redox Esterification Reaction  

Microsoft Academic Search

The internal redox esterification of ?, ?-unsaturated aldehydes and alcohols was carried out using different ionic liquids (ILs) as catalysts and reaction solvent. The basic ionic liquid, 1-butyl-3-methylimidazolium acetate ([bmim]OAc) exhibited highest activity for this reaction among them. The influences of the amount of ionic liquid catalyst, and reaction time on yield of saturated ester have been investigated subsequently. The

Yinyin Yu; Li Hua; Wenwen Zhu; Yu Shi; Ting Cao; Yunxiang Qiao; Zhenshan Hou

2012-01-01

98

Ionic Liquids as Alternatives to Traditional Organic and Inorganic Solvents  

Microsoft Academic Search

\\u000a The physical and chemical properties of ionic liquids are compared to those of traditional solvents. The behaviour of the\\u000a SN2 reaction and Diels-Alder reaction occurring in ionic liquids and common solvents is compared and contrasted. The chemistry\\u000a occurring in several common ionic liquids is also assessed.

Richard M. Pagni

99

Phase behavior of ionic liquid crystals  

NASA Astrophysics Data System (ADS)

Bulk properties of ionic liquid crystals are investigated using density functional theory. The liquid crystal molecules are represented by ellipsoidal particles with charges located in their center or at their tails. Attractive interactions are taken into account in terms of the Gay-Berne pair potential. Rich phase diagrams involving vapor, isotropic and nematic liquid, as well as smectic phases are found. The dependence of the phase behavior on various parameters such as the length of the particles and the location of charges on the particles is studied.

Kondrat, S.; Bier, M.; Harnau, L.

2010-05-01

100

Structure and Thermodynamics of Block Copolymers Doped with Ionic Liquids  

NASA Astrophysics Data System (ADS)

Incorporation of ionic liquids into block copolymers is of interest for applications such as high temperature fuel cell membranes and polymer processing. These applications take advantage of ionic liquids' attractive physiochemical properties, such as low vapor pressure and high thermal stability. We investigate the structure and thermodynamics of poly(styrene-b-2-vinylpyridine) (PS-PVP) block copolymers doped with an ionic liquid consisting of imidazole and bis(trifluoromethanesulfonyl)amide (HFTSI). Using small angle X-ray scattering (SAXS), we demonstrate that increased ionic liquid doping leads to swelling of lamellar nanodomains in a symmetric PS-PVP block copolymer. At high ionic liquid loadings, we observe break up of the lamellar domains into hexagonally perforated lamellae. We characterize the effect of ionic liquid loading on the order-disorder transition (ODT) temperature of PS-PVP. We observe depression of the PS-PVP ODT temperature with increasing loading of the ionic liquid.

Virgili, J. M.; Balsara, N. P.; Segalman, R. A.

2008-03-01

101

Ionic Liquid Membranes for Carbon Dioxide Separation  

SciTech Connect

Recent scientific studies are rapidly advancing novel technological improvements and engineering developments that demonstrate the ability to minimize, eliminate, or facilitate the removal of various contaminants and green house gas emissions in power generation. The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide mitigation not only because of its higher efficiency as compared to conventional coal firing plants, but also due to a higher driving force in the form of high partial pressure. One of the novel technological concepts currently being developed and investigated is membranes for carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or pressures. Our earlier research studies examined the use of ionic liquids on various supports for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our initial studies with the following supports: polysulfone (PSF), poly(ether sulfone) (PES), and cross-linked nylon. The PSF and PES supports had similar performance at room temperature, but increasing temperature caused the supported membranes to fail. The ionic liquid with the PES support greatly affected the glass transition temperature, while with the PSF, the glass transition temperature was only slightly depressed. The cross-linked nylon support maintained performance without degradation over the temperature range 37-300°C with respect to its permeability and selectivity. However, while the cross-linked nylon support was able to withstand temperatures, the permeability continued to increase and the selectivity decreased with increasing temperature. Our studies indicated that further testing should examine the use of other ionic liquids, including those that form chemical complexes with CO2 based on amine interactions. The hypothesis is that the performance at the elevated temperatures could be improved by allowing a facilitated transport mechanism to become dominant. Several amine-based ionic liquids were tested on the cross-linked nylon support. It was found that using the amine-based ionic liquid did improve selectivity and permeability at higher temperature. The hypothesis was confirmed, and it was determined that the type of amine used also played a role in facilitated transport. Given the appropriate aminated ionic liquid with the cross-linked nylon support, it is possible to have a membrane capable of separating CO2 at IGCC conditions. With this being the case, the research has expanded to include separation of other constituents besides CO2 (CO, H2S, etc.) and if they play a role in membrane poisoning or degradation. This communication will discuss the operation of the recently fabricated ionic liquid membranes and the impact of gaseous components other than CO2 on their performance and stability.

Myers, C.R.; Ilconich, J.B.; Luebke, D.R.; Pennline, H.W.

2008-07-12

102

Dissolution enthalpies of cellulose in ionic liquids.  

PubMed

In this work, interactions between cellulose and ionic liquids were studied calorimetrically and by optical microscopy. Two novel ionic liquids (1,5-Diazabicyclo[4.3.0]non-5-enium propionate and N-methyl-1,5-diazabicyclo[4.3.0]non-5-enium dimethyl phosphate) and 1-ethyl-3-methylimidazolium acetate-water mixtures were used as solvents. Optical microscopy served in finding the extent of dissolution and identifying the dissolution pattern of the cellulose sample. Calorimetric studies identified a peak relating to dissolution of cellulose in solvent. The transition did, however, not indicate complete dissolution, but rather dissolution inside fibre or fibrils. This method was used to study differences between four cellulose samples with different pretreatment or origins. PMID:25256460

Parviainen, Helena; Parviainen, Arno; Virtanen, Tommi; Kilpeläinen, Ilkka; Ahvenainen, Patrik; Serimaa, Ritva; Grönqvist, Stina; Maloney, Thaddeus; Maunu, Sirkka Liisa

2014-11-26

103

Photoluminescent silicon nanocrystals stabilized by ionic liquid  

Microsoft Academic Search

Silicon nanocrystals stabilized by an ionic liquid, dimethylimidazolium iodide, were synthesized by chemical reduction of\\u000a SiBr4 with metallic Na in an organic solvent, diglyme. The nanoparticles were crystalline with a diamond cubic lattice and average\\u000a size of 3.5 nm. Solid state 13C- and 29Si-NMR CP MAS spectra indicate the formation of imidazolium carbene, which ligates the Si atoms at the surface

A. Kamyshny; V. N. Zakharov; M. A. Zakharov; A. V. Yatsenko; S. V. Savilov; L. A. Aslanov; S. Magdassi

2011-01-01

104

Self-propelled chemotactic ionic liquid droplets.  

PubMed

Herein we report the chemotactic behaviour of self-propelled droplets composed solely of the ionic liquid trihexyl(tetradecyl)phosphonium chloride ([P6,6,6,14][Cl]). These droplets spontaneously move along an aqueous-air boundary in the direction of chloride gradients to specific destinations due to asymmetric release of [P6,6,6,14](+) cationic surfactant from the droplet into the aqueous phase. PMID:25562698

Francis, Wayne; Fay, Cormac; Florea, Larisa; Diamond, Dermot

2015-01-27

105

Solubilities and thermophysical properties of ionic liquids  

Microsoft Academic Search

This report presents the systematic study on the solubilities of 1-alkyl-3-methyl- imidazolium hexafluorophosphate (e, or bmim)(PF 6 ), 1-alkyl-3-methylimidazolium methylsulfate (almim)(CH 3 SO 4 ), 1-hexyloxymethyl-3-methylimidazolium ionic liquids (ILs) (C 6 H 13 OCH 2 mim)(BF 4 ), or (C 6 H 13 OCH 2 mim)((CF 3 SO 2 ) 2 N) in aliphatic hydrocar- bons (heptane, octane), cyclohydrocarbons (cyclopentane,

Urszula Domanska

2005-01-01

106

Dicationic organic salts: gelators for ionic liquids.  

PubMed

Diimidazolium and dipyrrolidinium organic salts were tested for their ability to gel both organic solvents and ionic liquids. Organic salts containing 1-(1-imidazolylmethyl)-3,5-di-(3'-octylimidazolylmethyl)-benzene and 1-(N-pyrrolidylmethyl)-3,5-di-(N,N-octylpyrrolidylmethyl)-benzene cations were used. In addition to the simple bromide anion, also dianions having a naphthalene core such as 1,5- and 2,6-naphthalenedisulfonate and 2,6-naphthalenedicarboxylate were taken into account. Gelation tests demonstrated that organic salts used were able to harden ionic liquids. The materials obtained were investigated for their thermal stability and also for electric conductivity properties using micro-DSC and dielectric spectroscopy. Furthermore, the opacity of some gel phases was monitored using UV-vis measurements. To obtain information about the gelation mechanism, gel phase formation was studied as a function of time by means of resonance light scattering investigation. Finally, the ability of materials to respond to external stimuli such as magnetic stirring or ultrasound irradiation was also analyzed. Data collected show that different relationships exist among the gelator and the ionic liquid structure, determining the properties of materials and their possible applications. PMID:25330144

D'Anna, Francesca; Rizzo, Carla; Vitale, Paola; Lazzara, Giuseppe; Noto, Renato

2014-12-14

107

Wetting and tribological properties of ionic liquids.  

PubMed

A phenomenological study of the surface-wetting and tribological properties of various ionic liquids was conducted using molecular dynamics simulations. The surface-wetting capabilities of the liquids were studied by simulating the morphological transformation of an isolated liquid drop in vacuum to its equilibrium state on solid surface. The tribological properties of the liquids were probed examining their flow behaviors and viscosities in computational lubrication experiments. All liquids exhibited good surface-wetting properties, as demonstrated by the hemispherical shape of the droplets at equilibrium and the surface contact angles. Contact angles for all liquids were much lower than 90°. Lubrication experiments demonstrated a flow behavior for the liquids that depended on the magnitude of the applied shear rate. Three distinctive flow regimes were observed: Newtonian, thixotropic (non-Newtonian), and oversheared. The liquids' viscosities were determined in the Newtonian regime and agree well with experimental results and with previously reported values calculated using equilibrium simulations. The phenomenological approach implemented in this study allowed for the calculation of the transport properties of the liquids and produced values within the appropriate order of magnitude without the use of calculational artifacts. These results corroborate previous reports indicating that nonequilibrium techniques represent a more robust approach for the calculation of transport properties than do equilibrium methods based on time-correlation functions. PMID:24641326

Castejón, Henry J; Wynn, Troy J; Marcin, Zachary M

2014-04-01

108

Anharmonicity and Fragility of Protic Ionic Liquids  

NASA Astrophysics Data System (ADS)

Supercooled liquids are often characterized by their fragility which is associated with physicochemical properties. However, the origin of fragility is still controversial. Superfragile liquid, decahydroisoquinoline (DHiQ) is chosen as a parent molecule to systematically investigate the relationship between anharmonicity and fragility of supercooled liquids. Earlier study by Ueno et al. (J. Phys. Chem. B 2012, 116) demonstrated that the protonation of DHiQ by different Bronsted acids results in the loss of superfragility. To understand the nature of fragile liquids, we conducted inelastic/quasielastic (IE/QE) neutron scattering measurements to examine low frequency vibrational dynamics (boson peak) and the relaxation behavior of DHiQ (high fragility) and DHiQ-based ionic liquids with intermediate (formate, Fm) and low (trifluoromethansulfonimide, TFSI) fragilities. With the protonation, molecular acids will be hydrogen-deficient and the scattering will be dominated by cation, [DHiQ^+]. This strategy simplifies our interpretation in terms of understanding the fitting result from IENS/QENS spectra. By protonating DHiQ with stronger acids, large shift in low frequency vibrational modes and smaller mean square displacements were examined at temperatures higher than Tg. We illustrate how the degree of protonation and ionicity plays a role in the loss in superfragility of DHiQ.

Kim, Jenny; Angell, Austen; Ueno, Kazuhide; Tyagi, Madhu; Soles, Christopher; Masser, Kevin

2013-03-01

109

Aqueous gelation of ionic liquids: reverse thermoresponsive ion gels.  

PubMed

The aqueous gelation of a quaternary ammonium oligo(propylene oxide)-based ionic liquid yields ion gels with a reverse thermoresponsive behavior (i.e., mechanical moduli and viscosity increase with temperature) and enhanced ionic conductivities. PMID:20730172

Ribot, Josep Casamada; Guerrero-Sanchez, Carlos; Hoogenboom, Richard; Schubert, Ulrich S

2010-10-01

110

Ammonia borane hydrogen release in ionic liquids.  

PubMed

The rate and extent of H(2)-release from ammonia borane (AB), a promising, high-capacity hydrogen storage material, was found to be enhanced in ionic-liquid solutions. For example, AB reactions in 1-butyl-3-methylimidazolium chloride (bmimCl) (50:50-wt %) exhibited no induction period and released 1.0 H(2)-equiv in 67 min and 2.2 H(2)-equiv in 330 min at 85 degrees C, whereas comparable solid-state AB reactions at 85 degrees C had a 180 min induction period and required 360 min to release approximately 0.8 H(2)-equiv, with the release of only another approximately 0.1 H(2)-equiv at longer times. Significant rate enhancements for the ionic-liquid mixtures were obtained with only moderate increases in temperature, with, for example, a 50:50-wt % AB/bmimCl mixture releasing 1.0 H(2)-equiv in 5 min and 2.2 H(2)-equiv in only 20 min at 110 degrees C. Increasing the AB/bmimCl ratio to 80:20 still gave enhanced H(2)-release rates compared to the solid-state, and produced a system that achieved 11.4 materials-weight percent H(2)-release. Solid-state and solution (11)B NMR studies of AB H(2)-release reactions in progress support a mechanistic pathway involving: (1) ionic-liquid promoted conversion of AB into its more reactive ionic diammoniate of diborane (DADB) form, (2) further intermolecular dehydrocoupling reactions between hydridic B-H hydrogens and protonic N-H hydrogens on DADB and/or AB to form neutral polyaminoborane polymers, and (3) polyaminoborane dehydrogenation to unsaturated cross-linked polyborazylene materials. PMID:19769390

Himmelberger, Daniel W; Alden, Laif R; Bluhm, Martin E; Sneddon, Larry G

2009-10-19

111

Maleimide-modified phosphonium ionic liquids: a template towards (multi)task-specific ionic liquids.  

PubMed

The synthesis and characterization of several compounds representing a new class of multitask-specific phosphonium ionic liquids that contain a maleimide functionality is reported. The maleimide moiety of the ionic liquid (IL) is shown to undergo Michael-type additions with substrates containing either a thiol or amine moiety, thus, serving as a template to introduce wide structural diversity into the IL. Multitask-specific ILs are accessible by reaction of the maleimide with Michael donors that are capable of serving some function. As a model example to illustrate this concept, a redox active ferrocenyl thiol was incorporated and examined by cyclic voltammetry. Because the maleimide moiety is highly reactive to additions, the task-specific ionic liquids (TSILs) are prepared as the furan-protected Diels-Alder maleimide. The maleimide moiety can then be liberated when required by simple heating. PMID:20572165

Tindale, Jocelyn J; Hartlen, Kurtis D; Alizadeh, Abdolhamid; Workentin, Mark S; Ragogna, Paul J

2010-08-01

112

Use of ionic liquids as coordination ligands for organometallic catalysts  

DOEpatents

Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

Li, Zaiwei (Moreno Valley, CA); Tang, Yongchun (Walnut, CA); Cheng; Jihong (Arcadia, CA)

2009-11-10

113

Magnetic microemulsions based on magnetic ionic liquids.  

PubMed

Microemulsions with magnetic properties were formed by employing a magnetic room temperature ionic liquid (MRTIL) as polar phase, cyclohexane as oil, and an appropriate mixture of ionic surfactant and decanol as a cosurfactant. By means of small-angle neutron scattering (SANS) and electric conductivity the microemulsion structure could be confirmed, where the classical structural sequence of oil-continuous-bicontinuous-polar phase continuous is observed with increasing ratio [polar phase]/[oil]. Accordingly a maximum of the structural size is observed at about equal volumes of oil and MRTIL contained. Therefore this system is structurally the same as normal microemulsions but with the magnetic properties added to it by the incorporation into the systems formulation. PMID:23060241

Klee, Andreas; Prevost, Sylvain; Kunz, Werner; Schweins, Ralf; Kiefer, Klaus; Gradzielski, Michael

2012-11-28

114

Application of ionic liquid in liquid phase microextraction technology.  

PubMed

Ionic liquids (ILs) are novel nonmolecular solvents. Their unique properties, such as high thermal stability, tunable viscosity, negligible vapor pressure, nonflammability, and good solubility for inorganic and organic compounds, make them excellent candidates as extraction media for a range of microextraction techniques. Many physical properties of ILs can be varied, and the structural design can be tuned to impart the desired functionality and enhance the analyte extraction selectivity, efficiency, and sensitivity. This paper provides an overview of the applications of ILs in liquid phase microextraction technology, such as single-drop microextraction, hollow fiber based liquid phase microextraction, and dispersive liquid-liquid microextraction. The sensitivity, linear calibration range, and detection limits for a range of target analytes in the methods were analyzed to determine the advantages of ILs in liquid phase microextraction. PMID:23002004

Han, Dandan; Tang, Baokun; Lee, Yu Ri; Row, Kyung Ho

2012-11-01

115

Probing thermal interactions of ionic liquids with dimethyl sulfoxide.  

PubMed

Interactions between ionic liquids and dimethyl sulfoxide (DMSO) are probed by isothermal titration calorimetry. The excess partial molar enthalpies of ionic liquids H(IL)(E) in DMSO are discussed in terms of solute-solvent interactions. The specific interaction theory originally developed by Pitzer is used to analyze the apparent molar enthalpy ?(L) of ionic liquids in DMSO with the help of ion-interaction parameters. Furthermore, quantitative information on solvent reorganization and clathrate formation is obtained and interpreted. PMID:22344773

Rai, Gitanjali; Kumar, Anil

2012-05-14

116

Mandelate racemase activity in ionic liquids: scopes and limitations  

Microsoft Academic Search

Ionic liquids (IL) offer new possibilities for solvent engineering for biocatalytic reactions. The deracemization of (±)-mandelic acid using a lipase-mandelate racemase two-enzyme system was used to investigate the scopes and limitations of ionic liquids as new reaction media for a dynamic resolution approach. Mandelate racemase [EC 5.1.2.2] from Pseudomonas putida ATCC 12633 was observed to be active in ionic liquids

Nicole Kaftzik; Wolfgang Kroutil; Kurt Faber; Udo Kragl

2004-01-01

117

Electrotunable lubricity with ionic liquid nanoscale films.  

PubMed

One of the main challenges in tribology is finding the way for an in situ control of friction without changing the lubricant. One of the ways for such control is via the application of electric fields. In this respect a promising new class of lubricants is ionic liquids, which are solvent-free electrolytes, and their properties should be most strongly affected by applied voltage. Based on a minimal physical model, our study elucidates the connection between the voltage effect on the structure of the ionic liquid layers and their lubricating properties. It reveals two mechanisms of variation of the friction force with the surface charge density, consistent with recent AFM measurements, namely via the (i) charge effect on normal and in-plane ordering in the film and (ii) swapping between anion and cation layers at the surfaces. We formulate conditions that would warrant low friction coefficients and prevent wear by resisting "squeezing-out" of the liquid under compression. These results give a background for controllable variation of friction. PMID:25572127

Fajardo, O Y; Bresme, F; Kornyshev, A A; Urbakh, M

2015-01-01

118

Electrotunable Lubricity with Ionic Liquid Nanoscale Films  

NASA Astrophysics Data System (ADS)

One of the main challenges in tribology is finding the way for an in situ control of friction without changing the lubricant. One of the ways for such control is via the application of electric fields. In this respect a promising new class of lubricants is ionic liquids, which are solvent-free electrolytes, and their properties should be most strongly affected by applied voltage. Based on a minimal physical model, our study elucidates the connection between the voltage effect on the structure of the ionic liquid layers and their lubricating properties. It reveals two mechanisms of variation of the friction force with the surface charge density, consistent with recent AFM measurements, namely via the (i) charge effect on normal and in-plane ordering in the film and (ii) swapping between anion and cation layers at the surfaces. We formulate conditions that would warrant low friction coefficients and prevent wear by resisting ``squeezing-out'' of the liquid under compression. These results give a background for controllable variation of friction.

Fajardo, O. Y.; Bresme, F.; Kornyshev, A. A.; Urbakh, M.

2015-01-01

119

High vacuum distillation of ionic liquids and separation of ionic liquid mixtures.  

PubMed

The vaporisation of ionic liquids has been investigated using temperature programmed desorption (TPD) and ultra-high vacuum (UHV) distillation. 1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, [C(n)C(1)Im][Tf(2)N] (n = 2, 8), have been distilled at UHV and T > 500 K in a specially designed still. The distillation process yielded spectroscopically pure ionic liquid distillates with complete removal of volatile impurities such as water, argon and 1-methylimidazole. Such UHV distillation offers a method of obtaining high purity ionic liquids for analytical applications. The vapour phase of the ionic liquid mixtures [C(2)C(1)Im](0.05)[C(8)C(1)Im](0.95)[Tf(2)N] and [C(2)C(1)Im][C(8)C(1)Im][Tf(2)N][EtSO(4)] has been analysed by TPD using line-of-sight mass spectrometry (LOSMS). The vapour phase consisted of all possible combinations of neutral ion pairs (NIPs) from the liquid mixture. Neither mixture showed evidence of decomposition during TPD, and the [C(2)C(1)Im](0.05)[C(8)C(1)Im](0.95)[Tf(2)N] mixture was shown to obey Raoult's law. Based on the TPD results, fractional distillations were attempted for [C(2)C(1)Im][C(8)C(1)Im][Tf(2)N](2) and [C(2)C(1)Im][C(8)C(1)Im][Tf(2)N][EtSO(4)] mixtures. The distillate from [C(2)C(1)Im][C(8)C(1)Im][Tf(2)N](2) was enhanced in the more volatile [C(2)C(1)Im][Tf(2)N] components, but the [C(2)C(1)Im][C(8)C(1)Im][Tf(2)N][EtSO(4)] mixture underwent significant decomposition. The similarities and differences between UHV TPD, and high vacuum distillation, of ionic liquids, are discussed. Design parameters are outlined for a high vacuum ionic liquid still that will minimise decomposition and maximise separation of ILs of differing volatility. PMID:20145842

Taylor, Alasdair W; Lovelock, Kevin R J; Deyko, Alexey; Licence, Peter; Jones, Robert G

2010-02-28

120

Zwitterionic Polymersomes in an Ionic Liquid: Room Temperature TEM Characterization  

E-print Network

Zwitterionic Polymersomes in an Ionic Liquid: Room Temperature TEM Characterization Raghavendra R)- dimethylammonium methanesulfonate (see Figure 1). Polymer vesicles, also known as "polymersomes", have attracted

Tew, Gregory N.

121

Lipid extraction from microalgae using a single ionic liquid  

DOEpatents

A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

2013-05-28

122

Determination of solubility parameters of ionic liquids and ionic liquid/solvent mixtures from intrinsic viscosity.  

PubMed

The total and partial solubility parameters (dispersion, polar and hydrogen-bonding solubility parameters) of ten ionic liquids were determined. Intrinsic viscosity approaches were used that encompassed a one-dimensional method (1D-Method), and two different three-dimensional methods (3D-Method1 and 3D-Method2). The effect of solvent type, the dimethylacetamide (DMA) fraction in the ionic liquid, and dissolution temperature on solubility parameters were also investigated. For all types of effect, both the 1D-Method and 3D-Method2 present the same trend in the total solubility parameter. The partial solubility parameters are influenced by the cation and anion of the ionic liquid. Considering the effect on partial solubility parameters of the solvent type in the ionic liquid, it was observed that in both 3D methods, the dispersion and polar parameters of a 1-ethyl-3-methylimidazolium acetate/solvent (60:40 vol?%) mixture tend to increase as the total solubility parameter of the solvent increases. PMID:25145759

Weerachanchai, Piyarat; Wong, Yuewen; Lim, Kok Hwa; Tan, Timothy Thatt Yang; Lee, Jong-Min

2014-11-10

123

Tetraalkylphosphonium polyoxometalates : Electroactive, 'task-specific' ionic liquids.  

SciTech Connect

The pairing of selected polyoxometalate (POM) anions with appropriate tetraalkylphosphonium cations is shown to yield an original family of ionic liquids, among them an ambient-temperature 'liquid POM.'

Rickert, P. G.; Antonio, M. R.; Firestone, M. A.; Kubatko, K-A.; Szreder, T.; Wishart, J. F.; Dietz, M. L.; BNL; Univ. of Miami

2007-01-01

124

Application of ionic liquids in liquid chromatography and electrodriven separation.  

PubMed

Ionic liquids (ILs) are salts in the liquid state at ambient temperature, which are nonvolatile, nonflammable with high thermal stability and dissolve easily for a wide range of inorganic and organic materials. As a kind of potential green solvent, they show high efficiency and selectivity in the field of separation research, especially in instrumental analysis. Thus far, ILs have been successfully applied by many related researchers in high-performance liquid chromatography and capillary electrophoresis as chromatographic stationary phases, mobile phase additives or electroosmotic flow modifiers. This paper provides a detailed review of these applications in the study of natural products, foods, drugs and other fine chemicals. Furthermore, the prospects of ILs in liquid chromatographic and electrodriven techniques are discussed. PMID:23833208

Huang, Yi; Yao, Shun; Song, Hang

2013-08-01

125

Ionic liquid ion source emitter arrays fabricated on bulk porous substrates for spacecraft propulsion  

E-print Network

Ionic Liquid Ion Sources (ILIS) are a subset of electrospray capable of producing bipolar beams of pure ions from ionic liquids. Ionic liquids are room temperature molten salts, characterized by negligible vapor pressures, ...

Courtney, Daniel George

2011-01-01

126

Examination of the Potential of Ionic Liquids for Gas Separations  

Microsoft Academic Search

Ionic liquids have received increasing interest in recent years for “green” synthesis and separations because they have essentially no vapor pressure. We have begun an investigation of the potential of ionic liquids for gas separations, including the removal of carbon dioxide from stack gas generated in coal?fired power plants. In this paper, we report results from measurements of the permeance

Ruth E. Baltus; Robert M. Counce; Benjamin H. Culbertson; Huimin Luo; David W. DePaoli; Sheng Dai; Douglas C. Duckworth

2005-01-01

127

Molecular Dynamics Modeling of Ionic Liquids in Electrospray Propulsion  

E-print Network

Molecular Dynamics Modeling of Ionic Liquids in Electrospray Propulsion Nanako Takahashi, Paulo C Propulsion Nanako Takahashi, Paulo C. Lozano June 2010 SSL # 6-10 This work is based on the unaltered text of Technology. 1 #12;2 #12;Molecular Dynamics Modeling of Ionic Liquids in Electrospray Propulsion by Nanako

128

Polarity of the interface in ionic liquid in oil microemulsions.  

PubMed

Ionic liquid based microemulsions were characterized by absorption solvatochromic shifts, (1)H NMR and kinetic measurements in order to investigate the properties of the ionic liquid within the restricted geometry provided by microemulsions and the interactions of the ionic liquid with the interface. Experimental results show a significant difference between the interfaces of normal water and the new ionic liquid microemulsions. Absorption solvatochromic shift experiments and kinetic studies on the aminolysis of 4-nitrophenyl laurate by n-decylamine show that the polarity at the interface of the ionic liquid in oil microemulsions (IL/O) is higher than at the interface of water in oil microemulsions (W/O) despite the fact that the polarity of [bmim][BF(4)(-)] is lower than the polarity of water. (1)H NMR experiments showed that an increase in the ionic liquid content of the microemulsion led to an increase in the interaction between [bmim][BF(4)(-)] and TX-100. The reason for the higher polarity of the microemulsions with the ionic liquid can be explained in terms of the incorporation of higher levels of the ionic liquid at the interface of the microemulsions, as compared to water in the traditional systems. PMID:21820124

Andújar-Matalobos, María; García-Río, Luis; López-García, Susana; Rodríguez-Dafonte, Pedro

2011-11-01

129

The Hildebrand Solubility Parameters of Ionic Liquids—Part 2  

PubMed Central

The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods. PMID:21747694

Marciniak, Andrzej

2011-01-01

130

Ionic Liquids and Green Chemistry: A Lab Experiment  

ERIC Educational Resources Information Center

Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few investigations have actually assessed the degree of…

Stark, Annegret; Ott, Denise; Kralisch, Dana; Kreisel, Guenter; Ondruschka, Bernd

2010-01-01

131

Nonaborane and decaborane cluster anions can enhance the ignition delay in hypergolic ionic liquids and induce hypergolicity in molecular solvents.  

PubMed

The dissolution of nido-decaborane, B10H14, in ionic liquids that are hypergolic (fuels that spontaneously ignite upon contact with an appropriate oxidizer), 1-butyl-3-methylimidazolium dicyanamide, 1-methyl-4-amino-1,2,4-triazolium dicyanamide, and 1-allyl-3-methylimidazolium dicyanamide, led to the in situ generation of a nonaborane cluster anion, [B9H14](-), and reductions in ignition delays for the ionic liquids suggesting salts of borane anions could enhance hypergolic properties of ionic liquids. To explore these results, four salts based on [B10H13](-) and [B9H14](-), triethylammonium nido-decaborane, tetraethylammonium nido-decaborane, 1-ethyl-3-methylimidazolium arachno-nonaborane, and N-butyl-N-methyl-pyrrolidinium arachano-nonaborane were synthesized from nido-decaborane by reaction of triethylamine or tetraethylammonium hydroxide with nido-decaborane in the case of salts containing the decaborane anion or via metathesis reactions between sodium nonaborane (Na[B9H14]) and the corresponding organic chloride in the case of the salts containing the nonaborane anion. These borane cluster anion salts form stable solutions in some combustible polar aprotic solvents such as tetrahydrofuran and ethyl acetate and trigger hypergolic reactivity of these solutions. Solutions of these salts in polar protic solvents are not hypergolic. PMID:24716643

McCrary, Parker D; Barber, Patrick S; Kelley, Steven P; Rogers, Robin D

2014-05-01

132

Magnetic nanoparticles supported ionic liquids improve firefly luciferase properties.  

PubMed

Ionic liquids as neoteric solvents, microwave irradiation, and alternative energy source are becoming as a solvent for many enzymatic reactions. We recently showed that the incubation of firefly luciferase from Photinus pyralis with various ionic liquids increased the activity and stability of luciferase. Magnetic nanoparticles supported ionic liquids have been obtained by covalent bonding of ionic liquids-silane on magnetic silica nanoparticles. In the present study, the effects of [?-Fe2O3@SiO2][BMImCl] and [?-Fe2O3@SiO2][BMImI] were investigated on the structural properties and function of luciferase using circular dichroism, fluorescence spectroscopy, and bioluminescence assay. Enzyme activity and structural stability increased in the presence of magnetic nanoparticles supported ionic liquids. Furthermore, the effect of ingredients which were used was not considerable on K(m) value of luciferase for adenosine-5'-triphosphate and also K(m) value for luciferin. PMID:24492953

Noori, Ali Reza; Hosseinkhani, Saman; Ghiasi, Parisa; Akbari, Jafar; Heydari, Akbar

2014-03-01

133

4-Sulfonatocalix[6]arene-induced aggregation of ionic liquids.  

PubMed

The interaction of 4-sulfonatocalix[6]arene (SCX6) macrocycle with 1-alkyl-3-methylimidazolium type of ionic liquids possessing dodecyl, tetradecyl, or hexadecyl substituent was studied in aqueous solution at 298 K. Host-guest complexation promoted the spontaneous self-assembly into nanoparticles of 7:1 ionic liquid:SCX6 stoichiometry. Positively charged and stable nanoparticles were produced in solutions of 7-200-fold excess of ionic liquid as compared to the amount of SCX6. The negatively charged nanoparticles formed in solutions having 2-7 ionic liquid:SCX6 molar ratios evolved into larger species. The stability of the nanoparticles increased with the lengthening of aliphatic chain of the ionic liquid. Cryo-TEM experiments showed dense particles generally with spherical shape and multilayered structure, which has been confirmed by small-angle neutron scattering. PMID:23691918

Wintgens, Véronique; Le Coeur, Clémence; Amiel, Catherine; Guigner, Jean-Michel; Harangozó, József G; Miskolczy, Zsombor; Biczók, László

2013-06-25

134

Designer molecular probes for phosphonium ionic liquids.  

PubMed

Investigations into the extent of structuring present in phosphonium based ionic liquids (ILs) have been carried out using photochromic molecular probes. Three spiropyran derivatives containing hydroxyl (BSP-1), carboxylic acid (BSP-2) and aliphatic chain (C(14)H(29)) (BSP-3) functional groups have been analysed in a range of phosphonium based ionic liquids and their subsequent physico-chemical interactions were reported. It is believed that the functional groups locate the probe molecules into specific regions based upon the interaction of the functional groups with particular and defined regions of the ionic liquid. This structuring results in thermodynamic, kinetic and solvatochromic parameters that are not predictable from classical solvent models. BSP-1 and BSP-2 exhibit generally negative entropies of activation ranging from -50 J K(-1) mol(-1) to -90 J K(-1) mol(-1) implying relatively low solvent-solute interactions and possible anion interactions with IL polar functional groups. Higher than expected activation energies of 60 kJ mol(-1) to 100 kJ mol(-1) obtained for polar probes maybe be due to IL functional groups competing with the charged sites of the merocyanine (MC) isomer thus reducing MC stabilisation effects. Differences in thermal relaxation rate constants (2.5 x 10(-3) s(-1) in BSP-1 and 3 x 10(-4) s(-1) in BSP-2 in [P(6,6,6,14)][dbsa]) imply that while the polar probe systems are primarily located in polar/charged regions, each probe experiences slightly differing polar domains. BSP-3 entropies of activation are positive and between 30 J K(-1) mol(-1) to 66 J K(-1) mol(-1). The association of the non-polar functional group is believed to locate the spiropyran moiety in the interfacial polar and non-polar regions. The thermal relaxation of the MC form causes solvent reorientation to accommodate the molecule as it reverts to its closed form. Slow thermal relaxation rate constants were obserevd in contrast to high activation energies (5 x 10(-4) s(-1) and 111.91 kJ mol(-1) respectively, for BSP-3 in [P(6,6,6,14)][dbsa]). This may be due to steric effects arising from proposed nano-cavity formation by the alkyl chains in phosphonium based ILs. PMID:20145857

Byrne, Robert; Coleman, Simon; Gallagher, Simon; Diamond, Dermot

2010-02-28

135

Intermolecular vibrations and fast relaxations in supercooled ionic liquids.  

PubMed

Short-time dynamics of ionic liquids has been investigated by low-frequency Raman spectroscopy (4 < ? < 100 cm(-1)) within the supercooled liquid range. Raman spectra are reported for ionic liquids with the same anion, bis(trifluoromethylsulfonyl)imide, and different cations: 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-butyl-1-methylpiperidinium, trimethylbutylammonium, and tributylmethylammonium. It is shown that low-frequency Raman spectroscopy provides similar results as optical Kerr effect (OKE) spectroscopy, which has been used to study intermolecular vibrations in ionic liquids. The comparison of ionic liquids containing aromatic and non-aromatic cations identifies the characteristic feature in Raman spectra usually assigned to librational motion of the imidazolium ring. The strength of the fast relaxations (quasi-elastic scattering, QES) and the intermolecular vibrational contribution (boson peak) of ionic liquids with non-aromatic cations are significantly lower than imidazolium ionic liquids. A correlation length assigned to the boson peak vibrations was estimated from the frequency of the maximum of the boson peak and experimental data of sound velocity. The correlation length related to the boson peak (?19 A?) does not change with the length of the alkyl chain in imidazolium cations, in contrast to the position of the first-sharp diffraction peak observed in neutron and X-ray scattering measurements of ionic liquids. The rate of change of the QES intensity in the supercooled liquid range is compared with data of excess entropy, free volume, and mean-squared displacement recently reported for ionic liquids. The temperature dependence of the QES intensity in ionic liquids illustrates relationships between short-time dynamics and long-time structural relaxation that have been proposed for glass-forming liquids. PMID:21721643

Ribeiro, Mauro C C

2011-06-28

136

Bioanalytical separation and preconcentration using ionic liquids.  

PubMed

Ionic liquids (ILs) are novel solvents that display a number of unique properties, such as negligible vapor pressure, thermal stability (even at high temperatures), favorable viscosity, and miscibility with water and organic solvents. These properties make them attractive alternatives to environmentally unfriendly solvents that produce volatile organic compounds. In this article, a critical review of state-of-the-art developments in the use of ILs for the separation and preconcentration of bioanalytes in biological samples is presented. Special attention is paid to the determination of various organic and inorganic analytes--including contaminants (e.g., pesticides, nicotine, opioids, gold, arsenic, lead, etc.) and functional biomolecules (e.g., testosterone, vitamin B12, hemoglobin)--in urine, blood, saliva, hair, and nail samples. A brief introduction to modern microextraction techniques based on ILs, such as dispersive liquid-liquid microextraction (DLLME) and single-drop microextraction (SDME), is provided. A comparison of IL-based methods in terms of their limits of detection and environmental compatibilities is also made. Finally, critical issues and challenges that have arisen from the use of ILs in separation and preconcentration techniques are also discussed. PMID:23681199

Escudero, Leticia B; Castro Grijalba, Alexander; Martinis, Estefanía M; Wuilloud, Rodolfo G

2013-09-01

137

Carbon Dioxide and Ionic Liquid Refrigerants: Compact, Efficient Air Conditioning with Ionic Liquid-Based Refrigerants  

SciTech Connect

BEETIT Project: Notre Dame is developing an air-conditioning system with a new ionic liquid and CO2 as the working fluid. Synthetic refrigerants used in air conditioning and refrigeration systems are potent GHGs and can trap 1,000 times more heat in the atmosphere than CO2 alone—making CO2 an attractive alternative for synthetic refrigerants in cooling systems. However, operating cooling systems with pure CO2 requires prohibitively high pressures and expensive hardware. Notre Dame is creating a new fluid made of CO2 and ionic liquid that enables the use of CO2 at low pressures and requires minimal changes to existing hardware and production lines. This new fluid also produces no harmful emissions and can improve the efficiency of air conditioning systems— enabling new use of CO2 as a refrigerant in cooling systems.

None

2010-10-01

138

Durable Electrooptic Devices Comprising Ionic Liquids  

DOEpatents

Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

Burrell, Anthony K. (Los Alamos, NM); Agrawal, Anoop (Tucson, AZ); Cronin, John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

2008-11-11

139

Durable electrooptic devices comprising ionic liquids  

DOEpatents

Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

Burrell, Anthony K. (Los Alamos, NM); Agrawal, Anoop (Tucson, AZ); Cronin; John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

2009-12-15

140

Microwave-assisted synthesis using ionic liquids.  

PubMed

The research and application of green chemistry principles have led to the development of cleaner processes. In this sense, during the present century an ever-growing number of studies have been published describing the use of ionic liquids (ILs) as solvents, catalysts, or templates to develop more environmentally friendly and efficient chemical transformations for their use in both academia and industry. The conjugation of ILs and microwave irradiation as a non-conventional heating source has shown evident advantages when compared to conventional synthetic procedures for the generation of fast, efficient, and environmental friendly synthetic methodologies. This review focuses on the advances in the use of ILs in organic, polymers and materials syntheses under MW irradiation conditions. PMID:19507045

Martínez-Palou, Rafael

2010-02-01

141

Biphasic liquid mixtures of ionic liquids and polyethylene glycols.  

PubMed

We have found that 1-alkyl-3-methylimidazolium chloride ionic liquids (ILs) can form immiscible liquid mixtures with some polyethylene glycols (PEGs). Binary mixtures of 1-ethyl-3-methylimidazolium chloride with PEG of molecular weight 1500, 2000, or 3400 g mol(-1), or of 1-butyl-3-methylimidazolium chloride with PEG of molecular weight 2000 or 3400 g mol(-1), have been found to give rise to entirely liquid, stable biphasic systems over a significant temperature range (from 333.15 K to 413.15 K), while mixtures of 1-ethyl-3-methylimidazolium chloride with PEG-1000 and 1-butyl-3-methylimidazolium chloride with PEG-1000 and PEG-1500 are miscible. The mutual immiscibility of the IL and the PEG increases as the temperature increases. The evolution of the composition of the phases in equilibrium with the molecular weight of the PEG, or with the variation of the length of the alkyl substituent chain of the imidazolium cation of the IL, has been explored. The trends observed are explained through the complexity of interactions present within the binary system. A thermodynamic analysis of the liquid-liquid equilibrium data indicates negative values for the change of enthalpy and entropy of mixing. The potential application of these biphasic, entirely liquid systems, with low volatility and good solvation properties, for the dissolution and separation of cellulose and lignin at elevated temperature has been preliminarily explored, although only modest results have been achieved to date. PMID:19924326

Rodríguez, Héctor; Francisco, María; Rahman, Mustafizur; Sun, Ning; Rogers, Robin D

2009-12-14

142

Comparative study of bending characteristics of ionic polymer actuators containing ionic liquids for modeling actuation  

NASA Astrophysics Data System (ADS)

Ionic polymer metal composites (IPMCs) that can operate in air have recently been developed by incorporating an ionic liquid in ionic polymers. To understand transduction in these composites, it is important to determine the role of the ionic liquid in the ionic polymer (Nafion®), to identify the counter cation, and to investigate the interaction of IPMCs with water vapor in the air. We used Fourier-transform infrared spectroscopy to analyze three Nafion® membranes, which were soaked in mixtures of water and an ionic liquid (1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIBF4), 1-buthyl-3-methyl-imidazolium tetrafluoroborate (BMIBF4), and 1-buthyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6)). The results demonstrate that only cations (EMI+ and BMI+) in the ionic liquids are taken into the Nafion® membranes as counter ions and that the water content of the membranes in air is less than ˜4% that of Nafion® swollen with water. Based on the experimental results, a transduction model is proposed for an IPMC with an ionic liquid. In this model, bending is caused by local swelling due to the volume effect of the bulky counter cations. This model can explain 30-50% of the experimentally observed bending curvature.

Kikuchi, Kunitomo; Sakamoto, Takumi; Tsuchitani, Shigeki; Asaka, Kinji

2011-04-01

143

Soft ionization of thermally evaporated hypergolic ionic liquid aerosols  

SciTech Connect

Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center (NSRRC); Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

2012-03-16

144

Soft ionization of thermally evaporated hypergolic ionic liquid aerosols  

SciTech Connect

Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center (NSRRC); Institute of Chemistry, Hebrew University; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

2011-07-19

145

Soft ionization of thermally evaporated hypergolic ionic liquid aerosols.  

PubMed

Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim(+)][Tf(2)N(-)]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim(+)][Dca(-)]), are generated by vaporizing ionic liquid submicrometer aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim(+) and Bmim(+), presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim(+)][Tf(2)N(-)] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (?0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicrometer aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally "cooler" source of isolated intact ion pairs in the gas phase compared to effusive sources. PMID:21506546

Koh, Christine J; Liu, Chen-Lin; Harmon, Christopher W; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D; Vaghjiani, Ghanshyam L; Leone, Stephen R

2011-05-12

146

Particle aggregation mechanisms in ionic liquids.  

PubMed

Aggregation of sub-micron and nano-sized polystyrene latex particles was studied in room temperature ionic liquids (ILs) and in their water mixtures by time-resolved light scattering. The aggregation rates were found to vary with the IL-to-water molar ratio in a systematic way. At the water side, the aggregation rate is initially small, but increases rapidly with increasing IL content, and reaches a plateau value. This behaviour resembles simple salts, and can be rationalized by the competition of double-layer and van der Waals forces as surmised by the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO). At the IL side, aggregation slows down again. Two generic mechanisms could be identified to be responsible for the stabilization in ILs, namely viscous stabilization and solvation stabilization. Viscous stabilization is important in highly viscous ILs, as it originates from the slowdown of the diffusion controlled aggregation due to the hindrance of the diffusion in a viscous liquid. The solvation stabilization mechanism is system specific, but can lead to a dramatic slowdown of the aggregation rate in ILs. This mechanism is related to repulsive solvation forces that are operational in ILs due to the layering of the ILs close to the surfaces. These two stabilization mechanisms are suspected to be generic, as they both occur in different ILs, and for particles differing in surface functionalities and size. PMID:24727976

Szilagyi, Istvan; Szabo, Tamas; Desert, Anthony; Trefalt, Gregor; Oncsik, Tamas; Borkovec, Michal

2014-05-28

147

Liquid-liquid extraction of neodymium(III) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation.  

PubMed

The ionic liquids 1-hexyl-3-methylimidazolium bis(2-ethylhexyl)phosphate, [C6mim][DEHP], 1-hexyl-1-methylpyrrolidinium bis(2-ethylhexyl)phosphate, [C6mpyr][DEHP], and tetrabutylammonium bis(2-ethylhexyl)phosphate, [N4444][DEHP], were prepared and characterized using (1)H and (13)C NMR spectroscopy. The extraction behavior of neodymium(iii) from nitrate medium by these ionic liquids, diluted with the room temperature ionic liquids 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][NTf2], 1-hexyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C6mpyr][NTf2], and tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N1444][NTf2], was studied. The distribution ratio of neodymium(iii) was measured as a function of various parameters, such as pH, concentration of the ionic liquid extractant, nature of diluents, concentration of ionic liquid cations and nitrate anions in the aqueous phase. The extraction behavior was compared with that obtained for a solution of the molecular extractant bis(2-ethylhexyl)phosphoric acid (DEHPA) in an ionic liquid diluent. The extraction of neodymium(iii) in the ionic liquids [C6mim][DEHP] and [C6mpyr][DEHP] showed markedly different extraction properties in comparison with that of the quaternary ammonium analogue [N4444][DEHP], especially concerning the pH dependence of the extraction process. These results show that the extraction process can be tuned by the selection of the ionic liquid cation. The extraction experiments also included the trivalent rare-earth ions lanthanum(iii), cerium(iii), praseodymium(iii), ytterbium(iii) and yttrium(iii). Studies of the stripping behavior and the reusability of the ionic liquids were carried out, which indicate that the ionic liquids can be reused with no loss in activity. PMID:23949284

Rout, Alok; Kotlarska, Justyna; Dehaen, Wim; Binnemans, Koen

2013-10-21

148

Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces.  

PubMed

Ionic liquids are defined as salts composed solely of ions with melting points below 100 °C. These remarkable liquids have unique and fascinating properties and offer new opportunities for science and technology. New combinations of ions provide changing physical properties and thus novel potential applications for this class of liquid materials. To a large extent, the structure and properties of ionic liquids are determined by the intermolecular interaction between anions and cations. In this perspective we show that far infrared and terahertz spectroscopy are suitable methods for studying the cation-anion interaction in these Coulomb fluids. The interpretation of the measured low frequency spectra is supported by density functional theory calculations and molecular dynamics simulations. We present results for selected aprotic and protic ionic liquids and their mixtures with molecular solvents. In particular, we focus on the strength and type of intermolecular interaction and how both parameters are influenced by the character of the ions and their combinations. We show that the total interaction between cations and anions is a result of a subtle balance between Coulomb forces, hydrogen bonds and dispersion forces. For protic ionic liquids we could measure distinct vibrational modes in the low frequency spectra indicating clearly the cation-anion interaction characterized by linear and medium to strong hydrogen bonds. Using isotopic substitution we have been able to dissect frequency shifts related to pure interaction strength between cations and anions and to different reduced masses only. In this context we also show how these different types of interaction may influence the physical properties of ionic liquids such as the melting point, viscosity or enthalpy of vaporization. Furthermore we demonstrate that low frequency spectroscopy can also be used for studying ion speciation. Low vibrational features can be assigned to contact ion pairs and solvent separated ion pairs. In conclusion we showed how detailed knowledge of the low frequency spectra can be used to understand the change in interaction strength and structure by variation of temperature, solvent polarity and solvent concentration in ionic liquids and their mixtures with molecular solvents. In principle the used combination of methods is suitable for studying intermolecular interaction in pure molecular liquids and their solutions including additive materials such as nanoparticles. PMID:24898478

Fumino, Koichi; Reimann, Sebastian; Ludwig, Ralf

2014-10-28

149

Applications of Ionic Liquids as Electrolyte for Energy Devices  

NASA Astrophysics Data System (ADS)

In this paper, our studies to apply ionic liquids (ILs) as electrolyte in energy devices such as lithium ion batteries (LIB) and H2/O2 fuel cells (FC) are reviewed. Typical ionic liquids are non-volatile and thermally stable with high ionic conductivity without any molecular solvents and thus can be expected as next generation electrolyte. It is anticipated that safety of LIB can be improved by using Li+-conducting ILs and that FC can be operated under non-humidifying conditions by using H+-conducting ILs. By our studies, we could find important characteristics of ionic liquids for applying to energy devices. For LIB application, we revealed that glyme-Li salt complexes exhibit acceptable ionic conductivity with high Li+ transference number, while for PEFC application, we found that protic ILs exhibit high electrochemical activities for fuel cell reactions. The performances of LIB and non-humidifying FC using ILs were promising for the future developments.

Yasuda, Tomohiro; Watanabe, Masayoshi

150

Development of Practical Supported Ionic Liquid Membranes: A Systematic Approach  

SciTech Connect

Supported liquid membranes (SLMs) are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties to optimize membrane performance. These membranes also have the advantage of liquid phase diffusivities, which are higher than those observed in polymers and grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which may possess high CO2 solubility relative to light gases such as H2, are excellent candidates for this type of membrane since they are stable at elevated temperatures and have negligible vapor pressure. A study has been conducted evaluating the use of a variety of ionic liquids in supported ionic liquid membranes for the capture of CO2 from streams containing H2. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated membrane performance for the resulting materials. Several steps have been taken in the development of practical supported ionic liquid membranes. Proof-of-concept was established by showing that ionic liquids could be used as the transport media in SLMs. Results showed that ionic liquids are suitable media for gas transport, but the preferred polymeric supports were not stable at temperatures above 135oC. The use of cross-linked nylon66 supports was found to produce membranes mechanically stable at temperatures exceeding 300oC but CO2/H2 selectivity was poor. An ionic liquid whose selectivity does not decrease with increasing temperature was needed, and a functionalized ionic liquid that complexes with CO2 was used. An increase in CO2/H2 selectivity with increasing temperature over the range of 37 to 85oC was observed and the dominance of a facilitated transport mechanism established. The presentation will detail membrane development, the effect of increasing transmembrane pressure, and preliminary results dealing with other gas pairs and contaminants.

Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

2007-11-01

151

Phase-Changing Ionic Liquids: CO2 Capture with Ionic Liquids Involving Phase Change  

SciTech Connect

IMPACCT Project: Notre Dame is developing a new CO2 capture process that uses special ionic liquids (ILs) to remove CO2 from the gas exhaust of coal-fired power plants. ILs are salts that are normally liquid at room temperature, but Notre Dame has discovered a new class of ILs that are solid at room temperature and change to liquid when they bind to CO2. Upon heating, the CO2 is released for storage, and the ILs re-solidify and donate some of the heat generated in the process to facilitate further CO2 release. These new ILs can reduce the energy required to capture CO2 from the exhaust stream of a coal-fired power plant when compared to state-ofthe- art technology.

None

2010-07-01

152

Borohydride ionic liquids and borane/ionic-liquid solutions as hypergolic fuels with superior low ignition-delay times.  

PubMed

In propellant systems, fuels of choice continue to be hydrazine and its derivatives, even though they comprise a class of acutely carcinogenic and toxic substances which exhibit rather high vapor pressures and require expensive handling procedures and costly safety precautions. Hypergolic ionic liquids tend to have low volatility and high thermal and chemical stability, and often exhibit wide liquid ranges, which could allow the use of these substances as bipropellant fuels under a variety of conditions. A new family of borohydride ionic liquids and borane-ionic-liquid solutions is described which meets nearly all of the desired important criteria for well-performing fuels. They exhibit ignition-delay times that are superior to that of any known hypergolic ionic liquid and may thus be legitimate replacements for hydrazine and its derivatives. PMID:24604814

Li, Songqing; Gao, Haixiang; Shreeve, Jean'ne M

2014-03-10

153

Electrochemical transistors with ionic liquids for enzymatic sensing  

E-print Network

and anions. According to the current convention, a salt melting below the normal boiling point of water and lactate. Room temperature ionic liquids (RTILs) are organic salts, which are liquid at ambient temperature at ambient temperature. The most commonly known salt, NaCl, becomes liquid above 801 o C. Under normal

Lee, Hyowon

154

Double Layer in Ionic Liquids: Overscreening versus Crowding  

E-print Network

We develop a simple Landau-Ginzburg-type continuum theory of solvent-free ionic liquids and use it to predict the structure of the electrical double layer. The model captures overscreening from short-range correlations, ...

Bazant, Martin Z.

155

Robust and versatile ionic liquid microarrays achieved by microcontact printing  

NASA Astrophysics Data System (ADS)

Lab-on-a-chip and miniaturized systems have gained significant popularity motivated by marked differences in material performance at the micro-to-nano-scale realm. However, to fully exploit micro-to-nano-scale chemistry, solvent volatility and lack of reproducibility need to be overcome. Here, we combine the non-volatile and versatile nature of ionic liquids with microcontact printing in an attempt to establish a facile protocol for high throughput fabrication of open microreactors and microfluidics. The micropatterned ionic liquid droplets have been demonstrated as electrochemical cells and reactors for microfabrication of metals and charge transfer complexes, substrates for immobilization of proteins and as membrane-free high-performance amperometric gas sensor arrays. The results suggest that miniaturized ionic liquid systems can be used to solve the problems of solvent volatility and slow mass transport in viscous ionic liquids in lab-on-a-chip devices, thus providing a versatile platform for a diverse number of applications.

Gunawan, Christian A.; Ge, Mengchen; Zhao, Chuan

2014-04-01

156

Tribological Properties of Ionic Liquids Lubricants Containing Nanoparticles  

E-print Network

Recently, there has been an increase in research in the application of ionic liquids containing nanoparticles as lubricants due to their properties such as thermally stability, non-volatility and non-flammability. The purpose of this thesis...

Lu, Wei

2014-05-14

157

Surface modification using ionic liquid ion beams  

NASA Astrophysics Data System (ADS)

We developed an ionic liquid (IL) ion source using 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) and produced IL ion beams by applying a high electric field between the tip and the extractor. Time-of-flight measurements showed that small cluster and fragment ions were contained in the positive and negative ion beams. The positive and negative cluster ions were deposited on Si(1 0 0) substrates. X-ray photoelectron spectroscopy measurements showed that the composition of the deposited layers was similar to that of an IL solvent. This suggests that a cation (A+) or an anion (B-) was attached to an IL cluster (AB)n, resulting in the formation of positive cluster ions (AB)nA+ or negative cluster ions (AB)nB-, respectively. The surfaces of the IL layers deposited on Si(1 0 0) substrates were flat at an atomic level for positive and negative cluster ion irradiation. Moreover, the contact angles of the deposited layers were similar to that of the IL solvent. Thus, surface modification of Si(1 0 0) substrates was successfully demonstrated with BMIM-PF6 cluster ion beams.

Takaoka, Gikan H.; Hamaguchi, Takuya; Takeuchi, Mitsuaki; Ryuto, Hiromichi

2014-12-01

158

Density and surface tension of ionic liquids.  

PubMed

We measured the density and surface tension of 9 bis[(trifluoromethyl)sulfonyl]imide ([Tf(2)N](-))-based and 12 1-methyl-3-octylimidazolium ([C(8)C(1)Im](+))-based ionic liquids (ILs) with the vibrating tube and the pendant drop method, respectively. This comprehensive set of ILs was chosen to probe the influence of the cations and anions on density and surface tension. When the alkyl chain length in the [C(n)C(1)Im][Tf(2)N] series (n = 1, 2, 4, 6, 8, 10, 12) is increased, a decrease in density is observed. The surface tension initially also decreases but reaches a plateau for alkyl chain lengths greater than n = 8. Functionalizing the alkyl chains with ethylene glycol groups results in a higher density as well as a higher surface tension. For the dependence of density and surface tension on the chemical nature of the anion, relations are only found for subgroups of the studied ILs. Density and surface tension values are discussed with respect to intermolecular interactions and surface composition as determined by angle-resolved X-ray photoelectron spectroscopy (ARXPS). The absence of nonvolatile surface-active contaminants was proven by ARXPS. PMID:21141903

Kolbeck, C; Lehmann, J; Lovelock, K R J; Cremer, T; Paape, N; Wasserscheid, P; Fröba, A P; Maier, F; Steinrück, H-P

2010-12-30

159

Surfactant adsorption at the surface of mixed ionic liquids and ionic liquid water mixtures.  

PubMed

Surface tensiometry and neutron reflectivity have been used to elucidate the structure of the adsorbed layer of nonionic surfactant tetraethylene glycol tetradecyl ether (C(14)E(4)) at the free surface of the ionic liquids ethylammonium nitrate (EAN) and ethanolammonium nitrate (EtAN) and their binary mixtures with each other and with water. Surface tensions reveal that the critical micelle concentration (cmc) depends strongly on solvent composition. The adsorbed surfactant structure elucidated by neutron reflectivity shows that the level of solvation of the ethylene oxide groups varies for both the pure and mixed solvents. This is attributed to solvent-solvent interactions dominating solvent-surfactant interactions. PMID:22909055

Wakeham, Deborah; Warr, Gregory G; Atkin, Rob

2012-09-18

160

Preparation and Application of Ionic Liquid-Modified Stationary Phases in High Performance Liquid Chromatography  

Microsoft Academic Search

Ionic liquid-modified stationary phases are an important class of stationary phase. They have been shown a capability of separating various classes of compounds in HPLC. In this review, we focus on the preparation and application of ionic liquid-modified stationary phases in HPLC. First, two common theories of retention mechanism in the ionic liquid-modified stationary phases in HPLC were discussed. Then,

Jun Zhou; Wentao Bi; Kyung-Ho Row

2011-01-01

161

Preparation and Application of Ionic Liquid-Modified Stationary Phases in High Performance Liquid Chromatography  

Microsoft Academic Search

Ionic liquid-modified stationary phases are an important class of stationary phase. They have been shown to have a capability of separating various classes of compounds in HPLC. In this review, we focus on the preparation and application of ionic liquid-modified stationary phases in HPLC. First, two common theories of retention mechanism in the ionic liquid-modified stationary phases in HPLC were

Wentao Bi; Jun Zhou; Kyung-Ho Row

2012-01-01

162

Ionic liquid propellants: future fuels for space propulsion.  

PubMed

Use of green propellants is a trend for future space propulsion. Hypergolic ionic liquid propellants, which are environmentally-benign while exhibiting energetic performances comparable to hydrazine, have shown great potential to meet the requirements of developing nontoxic high-performance propellant formulations for space propulsion applications. This Concept article presents a review of recent advances in the field of ionic liquid propellants. PMID:24136866

Zhang, Qinghua; Shreeve, Jean'ne M

2013-11-11

163

Membrane contactor assisted extraction/reaction process employing ionic liquids  

DOEpatents

The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.

Lin, Yupo J. (Naperville, IL); Snyder, Seth W. (Lincolnwood, IL)

2012-02-07

164

Penicillin acylase catalysis in the presence of ionic liquids  

Microsoft Academic Search

Several ionic liquids were used as reaction media for penicillin G acylase catalysis. In all the assayed ionic liquids, [bmim]PF6 proved good media for PGA-catalyzed hydrolysis. A novel [bmim]PF6\\/water two-phase system is provided for 6-aminopenicillanic acid (APA) production, which will be more benefical than aquous batch systems used widely in industrial production of APA.

Wei-Guo Zhang; Dong-Zhi Wei; Xue-Peng Yang; Qing-Xun Song

2006-01-01

165

Nonionic surfactant mixtures in an imidazolium-type room-temperature ionic liquid.  

PubMed

The physicochemical properties of nonionic surfactant mixtures in an aprotic, imidazolium-type room-temperature ionic liquid (RT-IL) have been studied using a combination of static surface tensiometry, dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryo-TEM). The surfactants used in this study are phytosterol ethoxylates (BPS-n, where n is an oxyethylene chain length of either 5 or 30) and the selected RT-IL is 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF(6)). The shorter chain oxyethylene surfactant (BPS-5) exhibits greater surface activity in BmimPF(6) than BPS-30; hence, BPS-5 is a major component in driving the interfacial adsorption and molecular aggregation of the mixed system. The surface tension data demonstrate that an increased mole fraction of BPS-5 results in a decreased critical aggregation concentration (cac) and negatively increased Gibbs free energies estimated for molecular aggregation (?G(0)(agg)) and interfacial adsorption (?G(0)(ads)). Indeed, the compositions of the monolayer adsorbed at the air/solution interface and the molecular aggregate formed in the bulk solution are enriched with BPS-5. The combination of the DLS and cryo-TEM results demonstrates the spontaneous formation of multi-lamellar vesicles resulting from the BPS-5-rich composition of the molecular aggregates. PMID:22027021

Sakai, Hideki; Saitoh, Takanori; Misono, Takeshi; Tsuchiya, Koji; Sakai, Kenichi; Abe, Masahiko

2011-01-01

166

Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes  

NASA Astrophysics Data System (ADS)

Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene- b-2-vinyl pyridine) (PS-b-P2VP). In contrast to block copolymer/molecular solvent mixtures, the interfacial area occupied by each PS-b-P2VP chain decreases upon the addition of [Im][TFSI], indicating a considerable increase in the effective segregation strength of the PS-b-P2VP copolymer with ionic liquid addition. The relationship between membrane structure and ionic conductivity is illuminated through the development of scaling relationships that describe the ionic conductivity of block copolymer/ionic liquid mixtures as a function of membrane composition and temperature. It is shown that the dominant variable influencing conductivity is the overall volume fraction of ionic liquid in the mixture, which means there is incredible freedom in designing the block copolymer architecture in order to optimize the mechanical and other properties of the membrane without sacrificing conductivity. The derived scaling relationships are shown to be general for many block copolymer and ionic liquid chemistries. In certain cases, the mechanism of ion conduction in the ionic liquid is affected by block copolymer nanoconfinement. The introduction of excess neutral imidazole to [Im][TFSI] leads to enhanced proton conductivity as well as a high H+ transference number due to facilitated proton hopping between imidazole molecules. We show that there is increased proton hopping when the nonstoichiometric ionic liquid is confined to lamellar block copolymer nanodomains, which we hypothesize is due to changes in the hydrogen bond structure of the ionic liquid under confinement. This, in combination with unique ion aggregation behavior, leads to a lower activation energy for macroscopic ion transport compared to that in a corresponding homopolymer/ionic liquid mixture. Through this work, we further the understanding of the relationship between membrane composition, structure, and ion transport. The findings presented herein portend the rational design of nanostructured membranes having improved mechanical properties and conductivity.

Hoarfrost, Megan Lane

167

Carbon Dioxide Separation with Supported Ionic Liquid Membranes  

SciTech Connect

Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

2007-04-01

168

Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction  

DOEpatents

The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

2012-11-06

169

Interaction of nonionic surfactants and hydrophilic ionic liquids in aqueous solutions: can short ionic liquids be more than a solvent?  

PubMed

The interaction between an ethoxylated nonionic surfactant (C(12-14)EO(8)) and three conventional hydrophilic imidazolium-based ionic liquids (bmim-octyl SO(4), bmim-methyl SO(4), and bmim-BF(4)) in aqueous solution has been investigated. In most of the reported studies where a surfactant is dissolved in an ionic liquid aqueous solution, conventional ionic liquids are merely considered to be solvents. Consequently, the resulting critical micelle concentration (cmc) is considered to be that of the surfactant. However, given that the three ionic liquids selected showed the typical shape of a surface-active compound when the surface tension was plotted against concentration, the role of these compounds as secondary surfactants and consequently the possibility of mixed-micelle formation have been investigated. Different series of experiments where a surfactant and an ionic liquid were combined in a wide range of mole ratios have been performed and treated as typical binary surfactant systems in aqueous solution. It has been found for the three surfactant/ionic liquid systems that depending on the surfactant mole fraction, ?(1), attractive or repulsive interactions in mixed-micelle formation are produced. Therefore, when we select the appropriate ?(1) these systems can be adjusted to a given application, depending on whether monomers or micelles are mainly required. PMID:22998152

Comelles, Francesc; Ribosa, Isabel; González, Juan José; Garcia, Maria Teresa

2012-10-16

170

Density, viscosity and electrical conductivity of protic alkanolammonium ionic liquids.  

PubMed

Ionic liquids are molten salts with melting temperatures below the boiling point of water, and their qualification for applications in potential industrial processes does depend on their fundamental physical properties such as density, viscosity and electrical conductivity. This study aims to investigate the structure-property relationship of 15 ILs that are primarily composed of alkanolammonium cations and organic acid anions. The influence of both the nature and number of alkanol substituents on the cation and the nature of the anion on the densities, viscosities and electrical conductivities at ambient and elevated temperatures are discussed. Walden rule plots are used to estimate the ionic nature of these ionic liquids, and comparison with other studies reveals that most of the investigated ionic liquids show Walden rule values similar to many non-protic ionic liquids containing imidazolium, pyrrolidinium, tetraalkylammonium, or tetraalkylphosphonium cations. Comparison of literature data reveals major disagreements in the reported properties for the investigated ionic liquids. A detailed analysis of the reported experimental procedures suggests that inappropriate drying methods can account for some of the discrepancies. Furthermore, an example for the improved presentation of experimental data in scientific literature is presented. PMID:21298175

Pinkert, André; Ang, Keng L; Marsh, Kenneth N; Pang, Shusheng

2011-03-21

171

Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding.  

PubMed

Liquid-liquid extraction of actinides and lanthanides by use of ionic liquids is reviewed, considering, first, phenomenological aspects, then looking more deeply at the various mechanisms. Future trends in this developing field are presented. PMID:21203752

Billard, Isabelle; Ouadi, Ali; Gaillard, Clotilde

2011-06-01

172

Carbon Dioxide Separation with Supported Ionic Liquid Membranes  

SciTech Connect

A practical form of CO2 capture at water-gas shift conditions in the IGCC process could serve the dual function of producing a pure CO2 stream for sequestration and forcing the equilibrium-limited shift reaction to completion enriching the stream in H2. The shift temperatures, ranging from the low temperature shift condition of 260°C to the gasification condition of 900°C, limit capture options by diminishing associative interactions which favor removal of CO2 from the gas stream. Certain sorption interactions, such as carbonate formation, remain available but generally involve exceptionally high sorbent regeneration energies that contribute heavily to parasitic power losses. Carbon dioxide selective membranes need only establish an equilibrium between the gas phase and sorption states in order to transport CO2, giving them a potential energetic advantage over other technologies. Supported liquid membranes take advantage of high, liquid phase diffusivities and a solution diffusion mechanism similar to that observed in polymeric membranes to achieve superior permeabilities and selectivites. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high CO2 solubility relative to light gases such as H2, are excellent candidates for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of ionic liquids including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide in supported ionic liquid membranes for the capture of CO2 from streams containing H2. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Improvements to the ionic liquid and support have allowed testing of these supported ionic liquid membranes at temperatures up to 300°C without loss of support mechanical stability or degradation of the ionic liquid. Substantial improvements in selectivity have also been observed at elevated temperature with the best membrane currently achieving optimum performance at 75°C.

Luebke, D.R.; Ilconich, J.B.; Pennline, H.W.; Myers, C.R.

2007-05-01

173

Dissolution of cellulose in room temperature ionic liquids: anion dependence.  

PubMed

The dissolution of cellulosic biomass in room temperature ionic liquids (RTILs) is studied through free energy calculations of its monomer, viz., cellobiose, within a molecular dynamics simulation approach. The solvation free energy (SFE) of cellobiose in ionic liquids containing any of seven different anions has been calculated. The ranking of these liquids based on SFE compares well with experimental data on the solubility of cellulose. The dissolution is shown to be enthalpically dominated, which is correlated with the strength of intermolecular hydrogen bonding between cellobiose and the anions of the IL. Large entropic changes upon solvation in [CF3SO3](-) and [OAc](-) based ionic liquids have been explained in terms of the solvent-aided conformational flexibility of cellobiose. PMID:25535797

Payal, Rajdeep Singh; Bejagam, Karteek K; Mondal, Anirban; Balasubramanian, Sundaram

2015-01-29

174

Excess Dielectron in an Ionic Liquid as a Dynamic Bipolaron  

NASA Astrophysics Data System (ADS)

We report an ab initio molecular dynamics simulation study on the accommodation of a dielectron in a pyridinium ionic liquid in both the singlet and triplet state. In contrast to water and liquid ammonia, a dielectron does not prefer to reside in cavity-shaped structures in the ionic liquid. Instead, it prefers to be distributed over more cations, with long-lived diffuse and short-lived localized distributions, and with a triplet ground state and a low-lying, open-shell singlet excited state. The two electrons evolve nonsynchronously in both states via a diffuse-versus-localized interconversion mechanism that features a dynamic bipolaron with a modest mobility, slightly lower than a hydrated electron. This work presents the first detailed study on the structures and dynamics of a dielectron in ionic liquids.

Liu, Jinxiang; Wang, Zhiping; Zhang, Meng; Cukier, Robert I.; Bu, Yuxiang

2013-03-01

175

Effect of liquid properties on electrosprays from externally wetted ionic liquid ion sources  

NASA Astrophysics Data System (ADS)

Ionic liquid ion sources (ILISs) are externally wetted and electrochemically etched and sharpened tungsten tips used as electrospraying sources for ionic liquids in a vacuum. They have recently shown an ability to operate as emitters of pure ion beams (no drops), even with ionic liquids of moderate surface tension (?<40dyn/cm) and electrical conductivity (K<1S/m) that had in all prior reports (all based on conventional internally fed capillary tips) always operated in the mixed ion-drop regime. The present study uses time of flight mass spectrometry to analyze full ion beams emitted from ILISs for a diversity of ionic liquids with properties in the wide range 0.26liquids tested achieve the purely ionic regime. The main effect of reducing electrical conductivity is a reduction of the emission current from 180to10nA.

Castro, S.; Larriba, C.; Fernandez de la Mora, J.; Lozano, P.; Sümer, S.; Yoshida, Y.; Saito, G.

2007-11-01

176

Physicochemical properties and toxicities of hydrophobicpiperidinium and pyrrolidinium ionic liquids  

SciTech Connect

Some properties are reported for hydrophobic ionic liquids (IL) containing 1-methyl-1-propyl pyrrolidinium [MPPyrro]{sup +}, 1-methyl-1-butyl pyrrolidinium [MBPyrro]{sup +}, 1-methyl-1-propyl piperidinium [MPPip]{sup +}, 1-methyl-1-butyl piperidinium [MBPip]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPyrro]{sup +} and 1-methyl-1-octylpiperidinium [MOPip]{sup +} cations. These liquids provide new alternatives to pyridinium and imidazolium ILs. High thermal stability of an ionic liquid increases safety in applications like rechargeable lithium-ion batteries and other electrochemical devices. Thermal properties, ionic conductivities, viscosities, and mutual solubilities with water are reported. In addition, toxicities of selected ionic liquids have been measured using a human cancer cell-line. The ILs studied here are sparingly soluble in water but hygroscopic. We show some structure-property relationships that may help to design green solvents for specific applications. While ionic liquids are claimed to be environmentally-benign solvents, as yet few data have been published to support these claims.

Salminen, Justin; Papaiconomou, Nicolas; Kumar, R. Anand; Lee,Jong-Min; Kerr, John; Newman, John; Prausnitz, John M.

2007-06-25

177

Recent developments of ionic liquids in oligosaccharide synthesis: the sweet side of ionic liquids.  

PubMed

The area of ionic liquid (IL) research has seen tremendous growth over the last few decades. The development of novel ILs with new and attractive physical and chemical properties has had a direct impact on organic synthesis. In particular, ILs have had many applications in carbohydrate chemistry including their use as solvents for dissolving high molecular weight carbohydrate polymers such as cellulose and as solvents and catalysts in oligosaccharide synthesis. In this area, ILs have been involved in protecting group manipulation reactions as well as glycosidic couplings leading to new methodologies and enhanced procedures. In addition, ILs have been successfully utilized as solution-phase purification supports. This review focuses on the most recent advances in the application of ILs to oligosaccharide synthesis. This is an emerging area that offers great promise at addressing some of the obstacles that remain on the path towards the automation of oligosaccharide synthesis. PMID:23685038

Galan, M Carmen; Jones, Rachel A; Tran, Anh-Tuan

2013-06-28

178

Insights into the surface composition and enrichment effects of ionic liquids and ionic liquid mixtures.  

PubMed

A systematic study of ionic liquid surfaces by angle resolved X-ray photoelectron spectroscopy (ARXPS) is presented. By reviewing recent and presenting new results for imidazolium-based ionic liquids (ILs), we discuss the impact of chemical differences on surface composition and on surface enrichment effects. (1) For the hydrophilic ethylene glycol (EG) functionalised ILs [Me(EG)MIm][Tf(2)N], [Et(EG)(2)MIm][Tf(2)N] and [Me(EG)(3)MIm][Tf(2)N], which vary in the number of ethylene glycol units (from 1 to 3), we find that the surface composition of the near-surface region is in excellent agreement with the bulk composition, which is attributed to attractive interactions between the oxygen atoms on the cation to the hydrogen atoms on the imidazolium ring. (2) For [C(n)C(1)Im][Tf(2)N] (where n = 1-16), i.e. ILs with an alkyl chain of increasing length, an enrichment of the aliphatic carbons is observed for longer chains (n > 2), at the expense of the polar cation head groups and the anions in the first molecular layer, both of which are located approximately at the same distance from the outer surface. (3) To study the influence of the anion on the surface enrichment, we investigated ten ILs [C(8)C(1)Im][X] with the same cation, but very different anions [X](-). In all cases, surface enrichment of the cation alkyl chains is found, with the degree of enrichment decreasing with increasing size of the anion, i.e., it is most pronounced for the smallest anions and least pronounced for the largest anions. (4) For the IL mixture [C(2)C(1)Im][Tf(2)N] and [C(12)C(1)Im][Tf(2)N] we find a homogeneous distribution in the outermost surface region with no specific enrichment of the [C(12)C(1)Im](+) cation. PMID:20145858

Maier, F; Cremer, T; Kolbeck, C; Lovelock, K R J; Paape, N; Schulz, P S; Wasserscheid, P; Steinrück, H-P

2010-02-28

179

Mechanical properties and XRD of Nafion modified by 2-hydroxyethylammonium ionic liquids  

NASA Astrophysics Data System (ADS)

In this work, the Nafion 112 membrane impregnated with 2-hydroxyethylammonium carboxylate ionic liquids have been investigated. The used ionic liquids were 2-hydroxyethylammonium formate [HEA]F, acetate [HEA]A and lactate [HEA]L. Prepared composite membranes Nafion/ionic liquid are characterized by mechanical testing, such as tensile test and creep test. It is found that ionic liquids decrease elastic modulus and creep compliance, but do not have significant effect on the tensile strength. Also, composite membranes were studied by wide angle X-ray diffraction. All ionic liquids shift the peak maximum to the lower angle. In this work, only biodegradable ionic liquids were used for composite preparation.

Garaev, V.; Pavlovica, S.; Reinholds, I.; Vaivars, G.

2013-12-01

180

Orientational dynamics of the ionic organic liquid 1-ethyl-3-methylimidazolium nitrate  

E-print Network

on ionic organic liquids as supercooled liquids, and a wide range of fragilities have been observed.15Orientational dynamics of the ionic organic liquid 1-ethyl-3-methylimidazolium nitrate Hu Cang, Jie-OKE experiments are used to study the orientational dynamics of the ionic organic liquid 1-ethyl-3

Fayer, Michael D.

181

The use of supported acidic ionic liquids in organic synthesis.  

PubMed

Catalysts obtained by the immobilisation of acidic ionic liquids (ILs) on solid supports offer several advantages compared to the use of catalytically active ILs themselves. Immobilisation may result in an increase in the number of accessible active sites of the catalyst and a reduction of the amount of the IL required. The ionic liquid films on the carrier surfaces provide a homogeneous environment for catalytic reactions but the catalyst appears macroscopically as a dry solid, so it can simply be separated from the reaction mixture. As another advantage, it can easily be applied in a continuous fixed bed reactor. In the present review the main synthetic strategies towards the preparation of supported Lewis acidic and Brønsted acidic ILs are summarised. The most important characterisation methods and structural features of the supported ionic liquids are presented. Their efficiency in catalytic reactions is discussed with special emphasis on their recyclability. PMID:24972271

Skoda-Földes, Rita

2014-01-01

182

Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools.  

PubMed

The increasing amount of papers published on ionic liquids generates an extensive quantity of data. The thermal stability data of divergent ionic liquids are collected in this paper with attention to the experimental set-up. The influence and importance of the latter parameters are broadly addressed. Both ramped temperature and isothermal thermogravimetric analysis are discussed, along with state-of-the-art methods, such as TGA-MS and pyrolysis-GC. The strengths and weaknesses of the different methodologies known to date demonstrate that analysis methods should be in line with the application. The combination of data from advanced analysis methods allows us to obtain in-depth information on the degradation processes. Aided with computational methods, the kinetics and thermodynamics of thermal degradation are revealed piece by piece. The better understanding of the behaviour of ionic liquids at high temperature allows selective and application driven design, as well as mathematical prediction for engineering purposes. PMID:23598738

Maton, Cedric; De Vos, Nils; Stevens, Christian V

2013-07-01

183

Chiral Ionic Liquids in Chromatographic Separation and Spectroscopic Discrimination  

NASA Astrophysics Data System (ADS)

Chiral ionic liquids (CILs) are a subclass of ionic liquids (ILs) in which the cation, anion, or both may be chiral. The chirality can be central, axial, or planar. CILs possess a number of unique advantageous properties which are inherited from ionic liquids including negligible vapor pressure, wide liquidus temperature range, high thermal stability, and high tunability. Due to their dual functionalities as chiral selectors and chiral solvents simultaneously, CILs recently have been widely used both in enantiomeric chromatographic separation and in chiral spectroscopic discrimination. In this chapter, the various applications of CILs in chiral chromatographic separations such as GC, HPLC, CE, and MEKC are reviewed. The applications of CILs in enantiomeric spectroscopic discrimination using techniques such as NMR, fluorescence, and NIR are described. In addition, chiral recognition and separation mechanism using the CILs as chiral selectors or chiral solvents is also discussed.

Li, Min; Bwambok, David K.; Fakayode, Sayo O.; Warner, Isiah M.

184

Methods for separating medical isotopes using ionic liquids  

SciTech Connect

A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

2014-10-21

185

Stability of polypyrrole soft actuators in ionic liquids  

NASA Astrophysics Data System (ADS)

Characteristics of electrochemomechanical deformation (ECMD) of polypyrrole films using ionic liquids are reported. The PPy film prepared by electrodeposition in an ionic liquid (1-Butyl-1-methylpyrrolidinium bis(trifluorometylsulfonyl)imide, BMPTFSI) was compact and high density. The other film prepared from LiTSFI/methyl benzoate and dimethyl phthalate mixed solvents was porous and low density. Both films demonstrated a stable ECMD in the ionic liquid. The strain of ECMD was 3-5% and superimposed on a creeping, showing a typical behaviour of cation movement. The Strains of ECMD in both films operated in a mixed electrolyte of BMPTFSI and propylene carbonate were enhanced up to 17- 25 %, showing anion movement. However, the large strain decreased upon several electrochemical cycles. The results were discussed in terms of swelling of the PPy film by solvents and loss of electrochemical activity.

Kaneto, Keiicgi; Takashima, Wataru

2012-04-01

186

Electrochemical behavior of ferrocene in ionic liquid media.  

PubMed

Chemistry and applicability of ionic liquids (IL), - organic salts with low melting point - are in the focus of interest today. The ILs with melting point below room temperature are expected to be good solvents. Their applicability in organic synthetic work, in separation processes as well as in electrochemistry is very promising. In the work reported here the voltammetric behavior of ferrocene in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM+ PF6-) ionic liquid has been investigated. Conventional size and micro platinum and carbon electrodes were employed in CV and in chronoamperometric measurements. Karl Fischer method was used for the determination of water content of the solvent. Voltammetric measurements without addition of background electrolyte could be carried out in (BMIM+ PF6-) ionic liquid. A broad potential window could be used. Concentration dependence of the electrochemically determined diffusion coefficient of the ferrocene was observed. PMID:16650899

Nagy, Lívia; Gyetvai, Gergely; Kollár, László; Nagy, Géza

2006-11-30

187

Determination of sulfonamides in butter samples by ionic liquid magnetic bar liquid-phase microextraction high-performance liquid chromatography.  

PubMed

A novel, simple, and environmentally friendly pretreatment method, ionic liquid magnetic bar liquid-phase microextraction, was developed for the determination of sulfonamides in butter samples by high-performance liquid chromatography. The ionic liquid magnetic bar was prepared by inserting a stainless steel wire into the hollow of a hollow fiber and immobilizing ionic liquid in the micropores of the hollow fiber. In the extraction process, the ionic liquid magnetic bars were used to stir the mixture of sample and extraction solvent and enrich the sulfonamides in the mixture. After extraction, the analyte-adsorbed ionic liquid magnetic bars were readily isolated with a magnet from the extraction system. It is notable that the present method was environmentally friendly since water and only several microliters of ionic liquid were used in the whole extraction process. Several parameters affecting the extraction efficiency were investigated and optimized, including the type of ionic liquid, sample-to-extraction solvent ratio, the number of ionic liquid magnetic bars, extraction temperature, extraction time, salt concentration, stirring speed, pH of the extraction solvent, and desorption conditions. The recoveries were in the range of 73.25-103.85 % and the relative standard deviations were lower than 6.84 %. The experiment results indicated that the present method was effective for the extraction of sulfonamides in high-fat content samples. PMID:25384336

Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

2015-01-01

188

Capturing CO2: conventional versus ionic-liquid based technologies  

NASA Astrophysics Data System (ADS)

Since CO2 facilitates pipeline corrosion and contributes to a decrease of the calorific value of gaseous fuels, its removal has become an issue of significant economic importance. The present review discusses various types of traditional CO2 capture technologies in terms of their efficiency, complexity in system design, costs and environmental impact. The focus is hereby not only on conventional approaches but also on emerging "green" solvents such as ionic liquids. The suitability of different ionic liquids as gas separation solvents is discussed in the present review and a description on their synthesis and properties in terms of CO2 capture is provided. The bibliography includes 136 references.

Privalova, E. I.; Mäki-Arvela, P.; Murzin, Dmitry Yu; Mikkhola, J. P.

2012-05-01

189

Ionic liquids: the link to high-temperature molten salts?  

PubMed

Due to their wide thermal windows, ionic liquids can be regarded as the missing link between aqueous/organic solutions and high-temperature molten salts. They can be employed efficiently for the coating of other metals with thin layers of tantalum, aluminum, and presumably many others at reasonable temperatures by electrochemical means. The development of ionic liquids, especially air and water stable ones, has opened the door for the electrodeposition of reactive elements such as, for example, Al, Ta, and Si, which in the past were only accessible using high-temperature molten salts or, in part, organic solvents. PMID:17521159

El Abedin, Sherif Zein; Endres, Frank

2007-11-01

190

Hydrolysis and Partial Recycling of a Chloroaluminate Ionic Liquid  

PubMed Central

Hydrolysis of the ionic liquid Et3NHCl-2AlCl3 and a process for recycling the triethylamine were studied. When the hydrolysis was carried out at a relatively high temperature, the released HCl could be absorbed more easily. With addition of sodium hydroxide to the aqueous hydrolysis solution, a feasible process for recycling triethylamine was developed, involving first distillation of triethylamine, followed by filtration of the aluminium hydroxide. The yield of recovered triethylamine was about 95%. The triethylhydrogenammonium chloride prepared from the recycled triethylamine was of good purity and could be reused to synthesize new chloroaluminate ionic liquids.

Fang, Ming-Hong; Wang, Li-Sheng

2007-01-01

191

Study on gas separation by supported liquid membranes applying novel ionic liquids  

Microsoft Academic Search

In the present study, the permeability of H2, N2 and CO2 was investigated through supported liquid membranes prepared by using four types of novel ionic liquids (VACEM 42, VACEM 44, VACEM 47, VACEM 58) under various gas phase pressures (2.2 bar, 1.8 bar, 1.4 bar) and temperatures (30°C, 40°C, 50°C). VACEM type ionic liquids, which are built up of a

P. Cserjési; N. Nemestóthy; A. Vass; Zs. Csanádi; K. Bélafi-Bakó

2009-01-01

192

Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids  

SciTech Connect

The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient (0.40). Nucleation phenomena involved in aluminum deposition on copper in AlCl3-BMIMCl electrolyte was found to be instantaneous followed by diffusion controlled three-dimensional growth of nuclei. Diffusion coefficient (Do) of the electroactive species Al2Cl7¯ ion was in the range from 6.5 to 3.9×10–7 cm2?s–1 at a temperature of 30°C. Relatively little research efforts have been made toward the fundamental understanding and modeling of the species transport and transformation information involved in ionic liquid mixtures, which eventually could lead to quantification of electrochemical properties. Except that experimental work in this aspect usually is time consuming and expensive, certain characteristics of ionic liquids also made barriers for such analyses. Low vapor pressure and high viscosity make them not suitable for atomic absorption spectroscopic measurement. In addition, aluminum electrodeposition in ionic liquid electrolytes are considered to be governed by multi-component mass, heat and charge transport in laminar and turbulent flows that are often multi-phase due to the gas evolution at the electrodes. The kinetics of the electrochemical reactions is in general complex. Furthermore, the mass transfer boundary layer is about one order of magnitude smaller than the thermal and hydrodynamic boundary layer (Re=10,000). Other phenomena that frequently occur are side reactions and temperature or concentration driven natural convection. As a result of this complexity, quantitative knowledge of the local parameters (current densities, ion concentrations, electrical potential, temperature, etc.) is very difficult to obtain. This situation is a serious obstacle for improving the quality of products, efficiency of manufacturing and energy consumption. The gap between laboratory/batch scale processing with global process control and nanoscale deposit surface and materials specifications needs to be bridged. A breakthrough can only be realized if on each scale the occurring phenomena are understood and quantified. Multiscale numerical modeling nevertheless can help t

Dr. R. G. Reddy

2007-09-01

193

Characterization of an iodine-based ionic liquid ion source and studies on ion fragmentation  

E-print Network

Electrosprays are a well studied source of charged droplets and ions. A specific subclass is the ionic liquid ion source (ILIS), which produce ion beams from the electrostatically stressed meniscus of ionic liquids. ILIS ...

Fedkiw, Timothy Peter

2010-01-01

194

Ionic Liquids 2014 and Selected Papers from ILMAT 2013: Highlighting the Ever-Growing Potential of Ionic Liquids.  

PubMed

Ionic Liquids (ILs) are arguably among the most intensely researched areas in today's natural sciences, especially the chemistry, physics, and materials sciences fields. The high promise of ILs for essentially all fields of science, engineering, and technology has also led to a sprouting of national and international meetings focusing on ILs and their use and application. Probably, the largest IL meeting is the Conference on Ionic Liquids (COIL) conference, now going into its 6th edition, to take place in Korea in 2015.[...]. PMID:25501335

Vioux, André; Taubert, Andreas

2014-01-01

195

Fabrication of fiber supported ionic liquids and methods of use  

DOEpatents

One or more embodiments relates to the production of a fabricated fiber having an asymmetric polymer network and having an immobilized liquid such as an ionic liquid within the pores of the polymer network. The process produces the fabricated fiber in a dry-wet spinning process using a homogenous dope solution, providing significant advantage over current fabrication methods for liquid-supporting polymers. The fabricated fibers may be effectively utilized for the separation of a chemical species from a mixture based on the selection of the polymer, the liquid, and the solvent utilized in the dope.

Luebke, David R; Wickramanayake, Shan

2013-02-26

196

Tail aggregation and domain diffusion in ionic liquids.  

PubMed

An extended multiscale coarse-graining model for ionic liquids is used to investigate the liquid crystal-like phase in certain ionic liquids. The tail groups of the cations with a sufficient side-chain length are found to aggregate, forming spatially heterogeneous domains, due to the competition between the electrostatic interactions between the charged head groups and the anions and the collective short-range interactions between the neutral tail groups. With a sufficiently long alkyl chain at a low enough temperature, the tail domains remain relatively stable, despite the diffusion of individual ions in the liquid phase. With increasing temperature, the average tail domains begin to diffuse, while beyond a transition temperature, their average density has an almost uniform distribution, although the tail groups still form instantaneous domains. PMID:16970489

Wang, Yanting; Voth, Gregory A

2006-09-21

197

Fission-Product Separation Based on Room-Temperature Ionic Liquids  

SciTech Connect

The objectives of this project are (a) to synthesize new ionic liquids tailored for the extractive separation of Cs + and Sr 2+; (b) to select optimum macrocyclic extractants through studies of complexation of fission products with macrocyclic extractants and transport in new extraction systems based on ionic liquids; (c) to develop efficient processes to recycle ionic liquids and crown ethers; and (d) to investigate chemical stabilities of ionic liquids under strong acid, strong base, and high-level-radiation conditions.

Luo, Huimin

2006-11-15

198

Fission-Product Separation Based on Room-Temperature Ionic Liquids  

SciTech Connect

The objectives of this project are (a) to synthesize new ionic liquids tailored for the extractive separation of Cs + and Sr 2+; (b) to select optimum macrocyclic extractants through studies of complexation of fission products with macrocyclic extractants and transport in new extraction systems based on ionic liquids; (c) to develop efficient processes to recycle ionic liquids and crown ethers; and (d) to investigate chemical stabilities of ionic liquids under strong acid, strong base, and high-level-radiation conditions.

Luo, Huimin; Hussey, Charles L.

2005-09-30

199

Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis  

Microsoft Academic Search

Ionic liquids, also called molten salts, are mixtures of cations and anions that melt below 100°C. Typical ionic liquids are\\u000a dialkylimidazolium cations with weakly coordinating anions such as (MeOSO3) or (PF6). Advanced ionic liquids such as choline citrate have biodegradable, less expensive, and less toxic anions and cations. Deep\\u000a eutectic solvents are also included in the advanced ionic liquids. Deep

Johnathan Gorke; Friedrich Srienc; Romas Kazlauskas

2010-01-01

200

DESIGN AND EVALUATION OF IONIC LIQUIDS AS NOVEL CO2 ABSORBENTS  

SciTech Connect

Progress from the second quarter of activity on the project ''Design and Evaluation of Ionic Liquids as Novel CO2 Absorbents'' is provided. Major activities in three areas are reported: ''compound synthesis, property measurement and molecular modeling''. Two new ionic liquid compounds have been synthesized and characterized. Viscosities, densities and gas solubilities have been measured for several of the ionic liquids synthesized during Q1. Continued progress on computational modeling of the ionic liquids has been made.

Edward J. Maginn

2005-01-31

201

Room temperature ionic liquids and their mixtures: Potential pharmaceutical solvents  

Microsoft Academic Search

Room temperature ionic liquids (RTILs) are organic salts which are liquids at ambient temperature. Composed of relatively large asymmetric organic cations and inorganic or organic anions, they have generated interest as ‘green’ solvents. Here we report on the solvency of alkyl imidazolium salts (PF6?Br?Cl?) for poorly water-soluble model drugs, albendazole and danazol, indicating their potential application as pharmaceutical solvents\\/cosolvents. The

H. Mizuuchi; V. Jaitely; S. Murdan; A. T. Florence

2008-01-01

202

Phosphonium-based ionic liquids analogues and their physical properties  

Microsoft Academic Search

New ionic liquids analogues, that is, deep eutectic solvents (DESs), have been successfully synthesized. These DESs have been synthesized by the reaction of phosphonium-based salts with different hydrogen bond donors. Many of these DESs have melting temperatures lower than 100 °C. Preliminary laboratory results showed that these DESs can be used in different applications, for example, electrochemical processes, separation of

M. A. Kareem; F. S. Mjalli; M. A. Hashim; I. M. Alnashef

2010-01-01

203

Unexpected Preferential Dehydration of Artemisinin in Ionic Liquids  

NASA Astrophysics Data System (ADS)

Thermodynamic measurements (at 298 K) reveal that a crucial step in the extraction process of the key antimalarial drug artemisinin by ionic liquids (ILs), namely, precipitation through the addition of water, is driven by artemisinin dehydration due to the differences in the water's interaction with the bulk ILs, rather than with the artemisinin itself.

Sanders, Marc W.; Wright, Lawrence; Tate, Lauren; Fairless, Gayle; Crowhurst, Lorna; Bruce, Neil C.; Walker, Adam J.; Hembury, Guy A.; Shimizu, Seishi

2009-09-01

204

Aggregation behavior of nonionic surfactants in ionic liquid mixtures.  

PubMed

We investigated the aggregation behavior of polyoxyethylene (POE)-type nonionic surfactants in ionic liquid mixtures composed of 1-ethyl- and 1-hexyl-3-methylimidazolium tetrafluoroborates (emimBF(4) and hmimBF(4), respectively) by means of (1)H NMR chemical shift analysis and dynamic light-scattering measurements. The surfactants do not aggregate in hmimBF(4), whereas they are essentially immiscible with emimBF(4). That is, the surfactants are highly solvophilic to hmimBF(4), while are highly solvophobic to emimBF(4). In mixtures of emimBF(4) and hmimBF(4) micellization was observed. The critical micelle concentration (cmc) decreased and the mean hydrodynamic diameter of micelles, and hence, the micellar aggregation number, increased with increase in mole fraction of emimBF(4) in the ionic liquid mixture. (1)H NMR chemical shift analysis revealed that hmimBF(4) interacts with surfactant molecules preferentially in the ionic liquid mixture through interaction of hexyl groups with the surfactant hydrocarbon chains. The present work demonstrates that solvent quality can be controlled by mixing two ionic liquids to induce self-aggregation of amphiphilic molecules. PMID:21767849

Inoue, Tohru; Kawashima, Kazuaki; Miyagawa, Yuji

2011-11-01

205

High performance batteries with carbon nanomaterials and ionic liquids  

DOEpatents

The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

Lu, Wen (Littleton, CO)

2012-08-07

206

Hypergolic Ionic Liquids DOI: 10.1002/anie.201101247  

E-print Network

to conventional fossil fuels. Commonly used hypergolic fuels include hydrazine and its methylated derivatives. Chambreau, Ghanshyam L. Vaghjiani, and Richard N. Zare* Fuels that can be ignited chemically under ambient costs and safety require- ments associated with handling hydrazine.[2] Ionic liquids (ILs)[3] have

Zare, Richard N.

207

Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns  

Microsoft Academic Search

Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis,

Wishart

2008-01-01

208

Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns  

Microsoft Academic Search

Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs generally have low volatilities and are combustion-resistant, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in

Wishart

2011-01-01

209

Method for synthesis of titanium dioxide nanotubes using ionic liquids  

DOEpatents

The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

Qu, Jun; Luo, Huimin; Dai, Sheng

2013-11-19

210

Studies of inherently conducting polymers in ionic liquids  

Microsoft Academic Search

In this dissertation, the effect of ionic liquid (IL) or classical electrolyte (CE) employed on the redox behaviour of many inherently conducting polymers (ICPs) was investigated with the ultimate goal of producing flexible batteries. ICPs can be used in a range of unique applications, and also to replace many metal conductors or inorganic semiconductors. Commercialisation of ICPs has, however, been

Jakub Mazurkiewicz

2007-01-01

211

EXPEDITIOUS SOLVENT-FREE PREPARATION OF IONIC LIQUIDS USING MICROWAVES  

EPA Science Inventory

Ambient temperature ionic liquids comprising 1,3-dialkylimidazolium cations have shown great promise as alternative solvents in view of their negligible vapor pressure, ease of handling and potential for recycling. An efficient solventless protocol for the preparation of a wide v...

212

IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE  

EPA Science Inventory

A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...

213

EVALUATING THE GREENNESS OF IONIC LIQUIDS VIA LIFE CYCLE ASSESSMENT  

EPA Science Inventory

Ionic Liquids have been suggested as "greener" replacements to traditional solvents. However, the environmental impacts of the life cycle phases have not been studied. Such a "cradle to gate" Life Cycle Assessment (LCA) for comparing the environmental impact of various solvents...

214

Ion irradiation effects on ionic liquids interfaced with rf discharge plasmas  

NASA Astrophysics Data System (ADS)

The availability of plasma ion irradiation toward a gas-liquid interface is investigated in a rf discharge system incorporating an ionic liquid. The introduction of the ionic liquid to the plasma causes the formation of a sheath electric field on the ionic liquid surface, resulting in the acceleration of the ions to the ionic liquid and the generation of secondary electrons from the ionic liquid by the ion irradiation. These effects are found to advance the discharge process and enhance the plasma production.

Baba, K.; Kaneko, T.; Hatakeyama, R.

2007-05-01

215

Microwave-assisted separation of ionic liquids from aqueous solution of ionic liquids.  

PubMed

Microwave-assisted separation has been applied to recover ionic liquid (IL) from its aqueous solution as an efficient method with respect to time and energy compared to the conventional vacuum distillation. Hydrophilic ILs such as 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim][TfO]) and 1-ethyl-3-methylimidazolium methylsulfate ([Emim][MS]) could be recovered in 6 min from the mixture of ILs and water (1:1, w/w) under microwave irradiation at constant power of 10 W while it took at least 240 min to obtain ILs containing same water content (less than 0.5 wt%) by conventional vacuum oven at 363.15 K with 90 kPa of vacuum pressure. Energy consumptions per gram of evaporated water from the homogeneous mixture of hydrophilic ILs and water (1:1, w/w) by microwave-assisted separation were at least 52 times more efficient than those in conventional vacuum oven. It demonstrated that microwave-assisted separation could be used for complete recovery of ILs in sense of time and energy as well as relevant purity. PMID:21040926

Ha, Sung Ho; Mai, Ngoc Lan; Koo, Yoon-Mo

2010-12-01

216

The initial stages of radiation damage in ionic liquids and ionic liquid-based extraction systems.  

PubMed

Radical intermediates generated in radiolysis and photoionization of ionic liquids (ILs) composed of ammonium, phosphonium, pyrrolidinium, and imidazolium cations and bis(triflyl)amide, dicyanamide, and bis(oxalato)borate anions have been studied using magnetic resonance spectroscopy. Large yields of terminal and penultimate C-centered radicals are observed in the aliphatic chains of the phosphonium, ammonium, and pyrrolidinium cations, but not for imidazolium cation. This pattern is indicative of efficient deprotonation of a hole trapped on the parent cation (the radical dication) that competes with rapid electron transfer from a nearby anion. This charge transfer leads to the formation of stable N- or O-centered radicals; the dissociation of parent anions is a minor pathway. Addition of 10-40 wt % of trialkyl phosphate (a common extraction agent) has relatively little effect on the fragmentation of the ILs. The yield of the alkyl radical fragment generated by dissociative electron attachment to the trialkyl phosphate is <4% of the yield of the radical fragments derived from the IL solvent. The import of these observations for radiation stability of the prospective nuclear cycle extraction systems based upon the ILs is discussed. PMID:17877387

Shkrob, Ilya A; Chemerisov, Sergey D; Wishart, James F

2007-10-11

217

The use of ionic liquids based on choline chloride for metal deposition: A green alternative?  

Microsoft Academic Search

Ionic liquids are studied intensively for different applications. They tend to be denoted as “green solvents”, largely because of their low vapour pressure. In recent years toxicity and biotoxicity of ionic liquids have also been investigated, which proved that not all of these are “green”. In this paper the use of ionic liquids based on choline chloride and ethylene glycol

Kurt Haerens; Edward Matthijs; Andrzej Chmielarz; Bart Van der Bruggen

2009-01-01

218

A NEW CLASS OF SOLVENTS FOR TRU DISSOLUTION AND SEPARATION: IONIC LIQUIDS  

EPA Science Inventory

This report focuses on the progress of a study of a New Class of Solvents for TRU Dissolution and Separation: Ionic Liquids. Key research issues are: (1) examining Cs, Sr, Tc, and TRU partitioning in Ionic Liquid/aqueous systems; (2) developing new Ionic Liquids for TRU separat...

219

Solvent extraction of rare-earth ions based on functionalized ionic liquids  

SciTech Connect

We herein report the achievement of enhanced extractabilities and selectivities for separation of rare earth elements based on functionalized ionic liquids. This work highlights the potential of developing a comprehensive ionic liquid-based extraction strategy for rare earth elements using ionic liquids as both extractant and diluent.

Sun, Xiaoqi [ORNL; Dai, Sheng [ORNL; Luo, Huimin [ORNL

2012-01-01

220

Phase behavior of phytosterol ethoxylates in an imidazolium-type room-temperature ionic liquid.  

PubMed

The temperature-concentration phase behavior of nonionic surfactants in an aprotic imidazolium-type room-temperature ionic liquid (RT-IL) was evaluated on the basis of a combination of visual appearance, polarized optical microscopy, and small angle X-ray scattering data. Phytosterol ethoxylates (BPS-n, where n denotes oxyethylene chain lengths of 5, 10, 20, and 30) were used as surfactants in the RT-IL, 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF?). The two component mixtures yielded various phases such as discontinuous cubic, hexagonal, and lamellar phases. An increased tendency toward formation of lesser-curved molecular assemblies was observed at higher BPS-n concentrations, at lower temperatures, and for shorter oxyethylene chain surfactants. These trends are similar to those observed in aqueous BPS-n systems; however, notable differences in the phase states of the aqueous system versus the BmimPF? system were evident. Comparison with the water system showed that the BmimPF? system yielded fewer phases and generally required higher BPS-n concentrations to induce phase transitions. Evaluation of the effects of addition of a third component (e.g., 1-dodecanol and dodecane) to the binary system on the phase behavior showed that at a given composition ratio of BPS-20 to BmimPF?, the addition of 1-dodecanol generally results in the phase transition to lesser-curved assemblies whereas dodecane generated no significant effects. The observed phase change is satisfactorily rationalized by localized solubilization of the third component into the binary surfactant assemblies. PMID:22362144

Sakai, Hideki; Saitoh, Takanori; Misono, Takeshi; Tsuchiya, Koji; Sakai, Kenichi; Abe, Masahiko

2012-01-01

221

Vaporisation and thermal decomposition of dialkylimidazolium halide ion ionic liquids.  

PubMed

Vaporisation and liquid phase thermal decomposition, TD, of two halide ion ionic liquids, 1-octyl-3-methylimidazolium chloride, [C8C1Im]Cl, and 1-octyl-3-methylimidazolium iodide, [C8C1Im]I, are investigated using temperature programmed desorption (TPD) line of sight mass spectrometry (LOSMS) at ultra-high vacuum (UHV). The ability to use MS to distinguish between vaporisation and TD allows the thermodynamics/kinetics of both vaporisation and TD to be investigated within the same experiments. Vaporisation of both halide ion ionic liquids is demonstrated. For both [C8C1Im]Cl and [C8C1Im]I the vapour is shown to be composed of neutral ion pairs (NIPs). The enthalpy of vaporisation at temperature T, ?vapHT, was experimentally determined as ?vapH455 = 151 ± 10 kJ mol(-1) for [C8C1Im]Cl and ?vapH480 = 149 ± 8 kJ mol(-1) for [C8C1Im]I. Extrapolation of ?vapHT to the reference temperature, 298 K, gave ?vapH298 = 166 ± 10 kJ mol(-1) for [C8C1Im]Cl and ?vapH298 = 167 ± 8 kJ mol(-1) for [C8C1Im]I, higher than most ?vapH298 values measured to date for other [C8C1Im](+)-containing ionic liquids. In addition, predictions of ?vapH298 for other halide ion ionic liquids are made. Liquid phase TD is shown to proceed via nucleophilic substitution to give two sets of products: 1-octylimidazole and methylhalide, and 1-methylimidazole and 1-octylhalide. The activation energy of TD at a temperature T, Ea,TD,T, is measured for the nucleophilic substitution of [C8C1Im]I to give methyliodide; Ea,TD,480 = 136 ± 15 kJ mol(-1). Ea,TD,T is measured for the nucleophilic substitution of [C8C1Im]Cl to give methylchloride; Ea,TD,455 = 132 ± 10 kJ mol(-1). The fact that ?vapHT and Ea,TD,T are the same (within error) for both ionic liquids is commented upon, and conclusions are drawn as to the thermal stability of these ionic liquids. PMID:24105256

Lovelock, Kevin R J; Armstrong, James P; Licence, Peter; Jones, Robert G

2014-01-28

222

A polymerized ionic liquid-supported B12 catalyst with a ruthenium trisbipyridine photosensitizer for photocatalytic dechlorination in ionic liquids.  

PubMed

By immobilizing a B12 complex and a Ru(ii) trisbipyridine photosensitizer in a polymerized ionic liquid (PIL), a visible light-driven photocatalyst was developed. The synthesized copolymer was characterized by GPC and DLS, and using UV-vis absorption spectra and luminescence spectra. The Ru(ii) trisbipyridine photosensitizer in the copolymer showed an enhanced emission compared to that of the monomer in the ionic liquid, 1-butyl-4-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C4mim][NTf2]). Formation of the Co(i) species of the B12 complex in the copolymer was confirmed by the UV-vis spectral change in [C4mim][NTf2] containing a sacrificial reductant (triethanolamine) under irradiation with visible light. The copolymer showed a high photocatalytic activity in various ionic liquids for 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) dechlorination with ?99% conversion after visible light irradiation for 2 h. Furthermore, both the B12 catalyst and photosensitizer in the polymer were easily recycled for use with the ionic liquid solvent without any loss of catalytic activity. PMID:25118045

Zhang, Wei; Shimakoshi, Hisashi; Houfuku, Noriyuki; Song, Xi-Ming; Hisaeda, Yoshio

2014-10-01

223

Effects of Extrinsic and Intrinsic Proton Activity on The Mechanism of Oxygen Reduction in Ionic Liquids  

NASA Astrophysics Data System (ADS)

Mechanisms for oxygen reduction are proposed for three distinct cases covering two ionic liquids of fundamentally different archetypes and almost thirty orders of magnitude of proton activity. Proton activity is treated both extrinsically by varying the concentration and intrinsically by selecting proton donors with a wide range of aqueous pKa values. The mechanism of oxygen reduction in ionic liquids is introduced by way of the protic ionic liquid (pIL) triethylammonium triflate (TEATf) which shares some similarities with aqueous acid solutions. Oxygen reduction in TEATf begins as the one electron rate limited step to form superoxide, O2 *-, which is then rapidly protonated by the pIL cation forming the perhydroxyl radical, HO2*. The perhydroxyl radical is further reduced to peroxidate (HO2-) and hydrogen peroxide in proportions in accordance with their pKa. The reaction does not proceed beyond this point due to the adsorption of the conjugate base triethylammine interfering with the disproportionation of hydrogen peroxide. This work demonstrates that this mechanism is consistent across Pt, Au, Pd, and Ag electrodes. Two related sets of experiments were performed in the inherently aprotic ionic liquid 1-butyl-2,3-dimethylimidazolium triflate (C4dMImTf). The first involved the titration of acidic species of varying aqueous pKa into the IL while monitoring the extent of oxygen reduction as a function of pKa and potential on Pt and glassy carbon (GC) electrodes. These experiments confirmed the greater propensity of Pt to reduce oxygen by its immediate and abrupt transition from one electron reduction to four electron reduction, while oxygen reduction on GC gradually approaches four electron reduction as the potentials were driven more cathodic. The potential at which oxygen reduction initiates shows general agreement with the Nernst equation and the acid's tabulated aqueous pKa value, however at the extremely acidic end, a small deviation is observed. The second set of experiments in C4dMImTf solicited water as the proton donor for oxygen reduction in an approximation of the aqueous alkaline case. The water content was varied between extremely dry (<0.1 mol% H2O) and saturated (approximately 15.8 mol% H2O). As the water content increased so too did the extent of oxygen reduction eventually approach two electrons on both Pt and GC. However, additional water led to a linear increase in the Tafel slope under enhanced mass transport conditions up to the point of 10 mol% water. This inhibition of oxygen adsorption is the result of the interaction between superoxide and water and more specifically is proposed to be associated with decomposition of theC4dMIm + cation by hydroxide at the elevated temperatures required for the experiment. Oxygen reduction on both Pt and GC follows Nernstian behavior as the water content is increased. Separate mechanisms for oxygen reduction on Pt and GC are proposed based on the nature of the Nernstian response in these systems.

Zeller, Robert August

224

Static and dynamic wetting behaviour of ionic liquids.  

PubMed

Ionic liquids (ILs) are a unique family of molecular liquids ('molten salts') that consist of a combination of bulky organic cations coupled to inorganic or organic anions. The net result of steric hindrance and strong hydrogen bonding between components results in a material that is liquid at room temperature. One can alter the properties of ionic liquids through chemical modification of anion and cation, thus tailoring the IL for a given application. One such property that can be controlled or selected is the wettability of an IL on a particular solid substrate. However, the study of wetting of ionic liquids is complicated by the care required for accurate and reproducible measurement, due to both the susceptibility of the IL properties to water content, as well as to the sensitivity of wettability measurements to the state of the solid surface. This review deals with wetting studies of ILs to date, including both static and dynamic wetting, as well as issues concerning line tension and the formation of precursor and wetting films. PMID:25103860

Delcheva, Iliana; Ralston, John; Beattie, David A; Krasowska, Marta

2014-07-18

225

Orientational dynamics in a lyotropic room temperature ionic liquid.  

PubMed

In a previous study of room temperature ionic liquid/water mixtures, the first clearly observed biexponential decays in optical heterodyne-detected optical Kerr effect (OHD-OKE) experiments on a liquid were reported, (Sturlaugson, A. L.; Fruchey, K. S.; Fayer, M. D. J. Phys. Chem. B 2012, 116, 1777), and it was suggested that the biexponential behavior is indicative of the approach to gelation. Here, new OHD-OKE experiments on mixtures of the room temperature ionic liquid 1-methyl-3-octylimidazolium chloride (OmimCl) with water are presented. The OmimCl/water system is shown to gel over the water mole fraction range of 0.69-0.81. In the OHD-OKE decays, the biexponential behavior becomes more distinct as the gelling concentration range is approached from either high or low water concentrations. The biexponential decays are analyzed in terms of the wobbling-in-a-cone model, and the resulting diffusion constants and "relative" order parameters and cone angles are reported. Comparison of the OmimCl/water data with the previously reported room temperature ionic liquid/water OHD-OKE decays supports the previous hypothesis that the biexponential dynamics are due to the approach to the liquid-gel transition and suggests that the order of the concentration-dependent phase transition can be tuned by the choice of anion. PMID:24171452

Sturlaugson, Adam L; Arima, Aaron Y; Bailey, Heather E; Fayer, Michael D

2013-11-27

226

Acrylate functionalized tetraalkylammonium salts with ionic liquid properties.  

PubMed

Acrylate functionalized ionic liquids based on tetraalkylammonium salts with terminal acrylates- and methylacrylates were synthesized. Melting points and ionic conductivity of twenty compounds in six groups were determined. Within one group the effect of three different counterions was investigated and discussed. The groups differ in cationic structure elements because of their functional groups such as acrylate and methacrylate, alkyl residues at the nitrogen and number of quaternary ammonium atoms within the organic cation. The effect of these cationic structure elements has been examined concerning the compiled parameters with a view to qualifying them as components for solid state electrolytes. The newly synthesized ionic liquids were characterized by NMR and FTIR analysis. The exchange of halide ions like bromide as counter ions to weakly coordinating [PF?]?, [OTf]? or [TFSI]? reduces the melting points significantly and leads to an ion conductivity of about 10?? S/cm at room temperature. In the case of the dicationic ionic liquid, an ion conductivity of about 10?³ S/cm was observed. PMID:22728356

Grothe, Dorian C; Meyer, Wolfdietrich; Janietz, Silvia

2012-01-01

227

Recent progress on dielectric properties of protic ionic liquids.  

PubMed

Protic ionic liquids (PILs) are key materials for a wide range of emerging technologies. In particular, these systems have long been envisioned as promising candidates for fuel cells. Therefore, in recent years special attention has been devoted to thorough studies of these compounds. Amongst others, dielectric properties of PILs at ambient and elevated pressure have become the subject of intense research. The reason for this lies in the role of broadband dielectric spectroscopy in recognizing the conductivity mechanism in protic ionic systems. In this paper, we summarize the dielectric results of various PILs reflecting recent advances in this field. PMID:25634823

Wojnarowska, Zaneta; Paluch, Marian

2015-02-25

228

25th anniversary article: "Cooking carbon with salt": carbon materials and carbonaceous frameworks from ionic liquids and poly(ionic liquid)s.  

PubMed

This review surveys recent work on the use of ionic liquids (ILs) and polymerized ionic liquids (PILs) as precursors to synthesize functional carbon materials. As solvents or educts with negligible vapour pressure, these systems enable simple processing, composition, and structural control of the resulting carbons under rather simple and green synthesis conditions. Recent applications of the resulting nanocarbons across a multitude of fields, such as fuel cells, energy storage in batteries and supercapacitors, catalysis, separation, and sorption materials are highlighted. PMID:24425624

Fellinger, Tim-Patrick; Thomas, Arne; Yuan, Jiayin; Antonietti, Markus

2013-11-01

229

Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns  

SciTech Connect

Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Picosecond pulse radiolysis studies at BNL's Laser-Electron Accelerator Facility (LEAF) are used to identify reactive species in ionic liquids and measure their solvation and reaction rates. We and our collaborators (R. Engel (Queens College, CUNY) and S. Lall-Ramnarine, (Queensborough CC, CUNY)) develop and characterize new ionic liquids specifically designed for our radiolysis and solvation dynamics studies. IL solvation and rotational dynamics are measured by TCSPC and fluorescence upconversion measurements in the laboratory of E. W. Castner at Rutgers Univ. Investigations of radical species in irradiated ILs are carried out at ANL by I. Shkrob and S. Chemerisov using EPR spectroscopy. Diffusion rates are obtained by PGSE NMR in S. Greenbaum's lab at Hunter College, CUNY and S. Chung's lab at William Patterson U. Professor Mark Kobrak of CUNY Brooklyn College performs molecular dynamics simulations of solvation processes. A collaboration with M. Dietz at U. Wisc. Milwaukee is centered around the properties and radiolytic behavior of ionic liquids for nuclear separations. Collaborations with C. Reed (UC Riverside), D. Gabel (U. Bremen) and J. Davis (U. South Alabama) are aimed at characterizing the radiolytic and other properties of borated ionic liquids, which could be used to make fissile material separations processes inherently safe from criticality accidents.

Wishart,J.F.

2008-09-29

230

Determination of four heterocyclic insecticides by ionic liquid dispersive liquid-liquid microextraction in water samples.  

PubMed

A novel microextraction method termed ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) combining high-performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of insecticides in water samples. Four heterocyclic insecticides (fipronil, chlorfenapyr, buprofezin, and hexythiazox) were selected as the model compounds for validating this new method. This technique combines extraction and concentration of the analytes into one step, and the ionic liquid was used instead of a volatile organic solvent as the extraction solvent. Several important parameters influencing the IL-DLLME extraction efficiency such as the volume of extraction solvent, the type and volume of disperser solvent, extraction time, centrifugation time, salt effect as well as acid addition were investigated. Under the optimized conditions, good enrichment factors (209-276) and accepted recoveries (79-110%) were obtained for the extraction of the target analytes in water samples. The calibration curves were linear with correlation coefficient ranged from 0.9947 to 0.9973 in the concentration level of 2-100 microg/L, and the relative standard deviations (RSDs, n=5) were 4.5-10.7%. The limits of detection for the four insecticides were 0.53-1.28 microg/L at a signal-to-noise ratio (S/N) of 3. PMID:19118833

Liu, Yu; Zhao, Ercheng; Zhu, Wentao; Gao, Haixiang; Zhou, Zhiqiang

2009-02-01

231

Can Ionic Liquids Be Used As Templating Agents For Controlled Design of Uranium-Containing Nanomaterials?  

SciTech Connect

Nanostructured uranium oxides have been prepared in ionic liquids as templating agents. Using the ionic liquids as reaction media for inorganic nanomaterials takes advantage of the pre-organized structure of the ionic liquids which in turn controls the morphology of the inorganic nanomaterials. Variation of ionic liquid cation structure was investigated to determine the impact on the uranium oxide morphologies. For two ionic liquid cations, increasing the alkyl chain length increases the aspect ratio of the resulting nanostructured oxides. Understanding the resulting metal oxide morphologies could enhance fuel stability and design.

Visser, A.; Bridges, N.; Tosten, M.

2013-04-09

232

SPECTROSCOPIC STUDIES OF STRUCTURE, DYNAMICS AND REACTIVITY IN IONIC LIQUIDS.  

SciTech Connect

Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Picosecond pulse radiolysis studies at BNL's Laser-Electron Accelerator Facility (LEAF) [1] are used to identify reactive species in ionic liquids and measure their solvation and reaction rates. IL solvation and rotational dynamics are measured by TCSPC in the laboratory of E. W. Castner at Rutgers Univ. Investigations of radical species in irradiated ILs are carried out at ANL by I. Shkrob and S. Chemerisov using EPR spectroscopy.

WISHART,J.F.

2007-11-30

233

Reduction of Metal Oxide to Metal using Ionic Liquids  

SciTech Connect

A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode. Successful extraction of metal from metal oxide dissolved in Urea/ChCl (2:1) was accomplished. The current efficiencies were relatively high in both the metal deposition processes with current efficiency greater than 86% for lead and 95% for zinc. This technology will advance the metal oxide reduction process by increasing the process efficiency and also eliminate the production of CO2 which makes this an environmentally benign technology for metal extraction.

Dr. Ramana Reddy

2012-04-12

234

Thermo-Rheometric Studies of New Class Ionic Liquid Lubricants  

NASA Astrophysics Data System (ADS)

Due to their specific properties, such as small volatility, nonflammability, extreme thermal stability, low melting point, wide liquid range, and good miscibility with organic materials, ionic liquids attracted particular interest in various industrial processes. Recently, the unique properties of ionic liquids caught the attention of space tribologists. The traditional lubricating materials used in space have limited lifetimes in vacuum due to the catalytic degradation on metal surfaces, high vaporization at high temperatures, dewetting, and other disadvantages. The lubricants for the space applications must have vacuum stability, high viscosity index, low creep tendency, good elastohydrodynamic and boundary lubrication properties, radiation atomic oxygen resistance, optical or infrared transparency. Unfortunately, the properties such as heat flow, heat capacity, thermogravimetric weight loss, and non-linearity in the rheological behavior of the lubricants are not studied well for newly developed systems. These properties are crucial to analyzing thermodynamic and energy dissipative aspects of the lubrication process. In this paper we will present the rheological and heat and mass transfer measurements for the ionic liquid lubricants, their mixtures with and without additive.

Bakhtiyarov, Sayavur; Street, Kenneth; Scheiman, Daniel; van Dyke, Alan

2010-11-01

235

Electrically switchable multi-stable cholesteric liquid crystal based on chiral ionic liquid.  

PubMed

A multi-stable and electrically switchable cholesteric liquid crystal based on chiral ionic liquid is demonstrated. The cholesteric liquid crystal can be switched among the planar texture, focal conic texture, wide-band reflected state, and fingerprint texture by applying specific electric fields. Each of these four states exists stably for several hours without any obvious change observed at room temperature. The electro-optical properties and driving scheme of the cholesteric liquid crystal are also reported. PMID:25502999

Lu, Hongbo; Xu, Wei; Song, Zhigang; Zhang, Shanna; Qiu, Longzhen; Wang, Xianghua; Zhang, Guobing; Hu, Juntao; Lv, Guoqiang

2014-12-15

236

Separation of fission products based on ionic liquids: Task-specific ionic liquids containing an aza-crown ether fragment  

SciTech Connect

A new class of task-specific ionic liquids (TSILs) based on the covalent attachment of imidazolium cations to a monoaza-crown ether fragment has been synthesized and characterized. The efficacy of these TSILs for the biphasic extraction of Cs(+) and Sr(2+) from aqueous solutions has been evaluated. The extraction properties of these TSILs can be influenced by the structures of the covalently attached imidazolium cations, which highlight the possibilities to enhance or tune the selectivities of crown ethers toward target ionic species through the covalent coupling with the imidazolium cations. (c) 2005 Elsevier B.V. All rights reserved.

Luo, Huimin [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL; Bonnesen, Peter V [ORNL] [ORNL; Buchanan III, A C [ORNL] [ORNL

2005-01-01

237

Direct Observation of Ion Distributions near Electrodes in Ionic Polymer Actuators Containing Ionic Liquids  

PubMed Central

The recent boom of energy storage and conversion devices, exploiting ionic liquids (ILs) to enhance the performance, requires an in-depth understanding of this new class of electrolytes in device operation conditions. One central question critical to device performance is how the mobile ions accumulate near charged electrodes. Here, we present the excess ion depth profiles of ILs in ionomer membrane actuators (Aquivion/1-butyl-2,3-dimethylimidazolium chloride (BMMI-Cl), 27??m thick), characterized directly by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) at liquid nitrogen temperature. Experimental results reveal that for the IL studied, cations and anions are accumulated at both electrodes. The large difference in the total volume occupied by the excess ions between the two electrodes cause the observed large bending actuation of the actuator. Hence we demonstrate that ToF-SIMS experiment provides great insights on the physics nature of ionic devices. PMID:23512124

Liu, Yang; Lu, Caiyan; Twigg, Stephen; Ghaffari, Mehdi; Lin, Junhong; Winograd, Nicholas; Zhang, Q. M.

2013-01-01

238

Ternary cubic phases containing ionic liquid  

Microsoft Academic Search

The phase diagram of 1-butyl-3-methylimidazolium tetrafluoroborate (bmim-BF4) in aqueous solutions of oleyl polyoxyethylene (20) ether (C18:1E20) was determined at 25?°C by a combination of visual inspection and small-angle X-ray scattering (SAXS). The micellar cubic Im3m liquid crystalline phase found in the ternary system was investigated by means of SAXS and rheological techniques. The cubic samples show highly elastic gel-like properties

Zhongni Wang; Wu Zhou; Ganzuo Li

2008-01-01

239

Photochemical oxidation of water and reduction of polyoxometalate anions at interfaces of water with ionic liquids or diethylether  

PubMed Central

Photoreduction of [P2W18O62]6-, [S2Mo18O62]4-, and [S2W18O62]4- polyoxometalate anions (POMs) and oxidation of water occurs when water–ionic liquid and water–diethylether interfaces are irradiated with white light (275–750 nm) or sunlight. The ionic liquids (ILs) employed were aprotic ([Bmim]X; Bmim = (1-butyl-3-methylimidazolium,X = BF4,PF6) and protic (DEAS = diethanolamine hydrogen sulphate; DEAP = diethanolamine hydrogen phosphate). Photochemical formation of reduced POMs at both thermodynamically stable and unstable water–IL interfaces led to their initial diffusion into the aqueous phase and subsequent extraction into the IL phase. The mass transport was monitored visually by color change and by steady-state voltammetry at microelectrodes placed near the interface and in the bulk solution phases. However, no diffusion into the organic phase was observed when [P2W18O62]6- was photo-reduced at the water–diethylether interface. In all cases, water acted as the electron donor to give the overall process: 4POM + 2H2O + h? ? 4POM- + 4H+ + O2. However, more highly reduced POM species are likely to be generated as intermediates. The rate of diffusion of photo-generated POM- was dependent on the initial concentration of oxidized POM and the viscosity of the IL (or mixed phase system produced in cases in which the interface is thermodynamically unstable). In the water-DEAS system, the evolution of dioxygen was monitored in situ in the aqueous phase by using a Clark-type oxygen sensor. Differences in the structures of bulk and interfacial water are implicated in the activation of water. An analogous series of reactions occurred upon irradiation of solid POM salts in the presence of water vapor. PMID:22753501

Bernardini, Gianluca; Wedd, Anthony G.; Zhao, Chuan; Bond, Alan M.

2012-01-01

240

Photochemical oxidation of water and reduction of polyoxometalate anions at interfaces of water with ionic liquids or diethylether.  

PubMed

Photoreduction of [P(2)W(18)O(62)](6-), [S(2)Mo(18)O(62)](4-), and [S(2)W(18)O(62)](4-) polyoxometalate anions (POMs) and oxidation of water occurs when water-ionic liquid and water-diethylether interfaces are irradiated with white light (275-750 nm) or sunlight. The ionic liquids (ILs) employed were aprotic ([Bmim]X; Bmim = (1-butyl-3-methylimidazolium, X = BF(4), PF(6)) and protic (DEAS = diethanolamine hydrogen sulphate; DEAP = diethanolamine hydrogen phosphate). Photochemical formation of reduced POMs at both thermodynamically stable and unstable water-IL interfaces led to their initial diffusion into the aqueous phase and subsequent extraction into the IL phase. The mass transport was monitored visually by color change and by steady-state voltammetry at microelectrodes placed near the interface and in the bulk solution phases. However, no diffusion into the organic phase was observed when [P(2)W(18)O(62)](6-) was photo-reduced at the water-diethylether interface. In all cases, water acted as the electron donor to give the overall process: 4POM + 2H(2)O + h? ? 4POM(-) + 4H(+) + O(2). However, more highly reduced POM species are likely to be generated as intermediates. The rate of diffusion of photo-generated POM(-) was dependent on the initial concentration of oxidized POM and the viscosity of the IL (or mixed phase system produced in cases in which the interface is thermodynamically unstable). In the water-DEAS system, the evolution of dioxygen was monitored in situ in the aqueous phase by using a Clark-type oxygen sensor. Differences in the structures of bulk and interfacial water are implicated in the activation of water. An analogous series of reactions occurred upon irradiation of solid POM salts in the presence of water vapor. PMID:22753501

Bernardini, Gianluca; Wedd, Anthony G; Zhao, Chuan; Bond, Alan M

2012-07-17

241

Carbon films produced from ionic liquid carbon precursors  

DOEpatents

The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

Dai, Sheng; Luo, Huimin; Lee, Je Seung

2013-11-05

242

IONIC LIQUIDS: RADIATION CHEMISTRY, SOLVATION DYNAMICS AND REACTIVITY PATTERNS.  

SciTech Connect

energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Methods. Picosecond pulse radiolysis studies at BNL's Laser-Electron Accelerator Facility (LEAF) are used to identify reactive species in ionic liquids and measure their solvation and reaction rates. We and our collaborators (R. Engel (Queens College, CUNY) and S. Lall-Ramnarine, (Queensborough CC, CUNY)) develop and characterize new ionic liquids specifically designed for our radiolysis and solvation dynamics studies. IL solvation and rotational dynamics are measured by TCSPC and fluorescence upconversion measurements in the laboratory of E. W. Castner at Rutgers Univ. Investigations of radical species in irradiated ILs are carried out at ANL by I. Shkrob and S. Chemerisov using EPR spectroscopy. Diffusion rates are obtained by PGSE NMR in S. Greenbaum's lab at Hunter College, CUNY and S. Chung's lab at William Patterson U. Professor Mark Kobrak of CUNY Brooklyn College performs molecular dynamics simulations of solvation processes. A collaboration with M. Dietz and coworkers at ANL is centered around the properties and radiolytic behavior of ionic liquids for nuclear separations. Collaborations with C. Reed (UC Riverside), D. Gabel (U. Bremen) and J. Davis (U. South Alabama) are aimed at characterizing the radiolytic and other properties of borated ionic liquids, which could be used to make fissile material separations processes inherently safe from criticality accidents.

WISHART,J.F.

2007-10-01

243

Ionic liquids for separation of olefin-paraffin mixtures  

DOEpatents

The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

2013-09-17

244

Ionic liquid lubricants: designed chemistry for engineering applications.  

PubMed

This tutorial review outlines current state of the art research on ionic liquid lubricants. Ionic liquids (ILs) were first reported as very promising high-performance lubricants in 2001 and have attracted considerable attention in the field of tribology since then because of their remarkable lubrication and anti-wear capabilities as compared with lubrication oils in general use; in recent times we have seen dramatically increased interest in the topic. The review starts with a brief introduction to ILs and fluid lubrication, and then discusses in more detail the tribological properties of IL lubricants, either as lubrication oils, additives or thin films. As well as lubrication mechanisms, some current problems and potential solutions are tentatively discussed. PMID:19690739

Zhou, Feng; Liang, Yongmin; Liu, Weimin

2009-09-01

245

Ionic liquid-induced synthesis of selenium nanoparticles  

SciTech Connect

A simple wet chemical method has been used to synthesize selenium nanoparticles by the reaction of ionic liquid with sodium selenosulphate, a selenium precursor, in the presence of polyvinyl alcohol stabilizer, in aqueous medium. The method is capable of producing spherical selenium nanoparticles in the size range of 76-150 nm under ambient conditions. This is a first report on the production of nano-selenium assisted by an ionic liquid. The synthesized nanoparticles can be separated easily from the aqueous sol by a high-speed centrifuge machine, and can be re-dispersed in an aqueous medium. The synthesized selenium nanoparticles have been characterized by X-ray diffraction, energy dispersive X-ray analysis, differential scanning calorimetry and transmission electron microscopy techniques.

Langi, Bhushan [Changu Kana Thakur Research Centre, New Panvel 410 206 (India)] [Changu Kana Thakur Research Centre, New Panvel 410 206 (India); Shah, Chetan; Singh, Krishankant [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)] [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Chaskar, Atul, E-mail: achaskar@rediffmail.com [Changu Kana Thakur Research Centre, New Panvel 410 206 (India)] [Changu Kana Thakur Research Centre, New Panvel 410 206 (India); Kumar, Manmohan; Bajaj, Parma N. [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)] [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

2010-06-15

246

Extraordinarily Efficient Conduction in a Redox-Active Ionic Liquid  

E-print Network

Iodine added to iodide-based ionic liquids leads to extraordinarily efficient charge transport, vastly exceeding that expected for such viscous systems. Using terahertz time-domain spectroscopy, in conjunction with dc conductivity, diffusivity and viscosity measurements we unravel the conductivity pathways in 1-methyl-3-propylimidazolium iodide melts. This study presents evidence of the Grotthuss mechanism as a significant contributor to the conductivity, and provides new insights into ion pairing processes as well as the formation of polyiodides. The terahertz and transport results are reunited in a model providing a quantitative description of the conduction by physical diffusion and the Grotthuss bond-exchange process. These novel results are important for the fundamental understanding of conduction in molten salts and for applications where ionic liquids are used as charge-transporting media such as in batteries and dye-sensitized solar cells.

Verner K. Thorsmølle; Guido Rothenberger; Daniel Topgaard; Jan C. Brauer; Dai-Bin Kuang; Shaik M. Zakeeruddin; Björn Lindman; Michael Grätzel; Jacques-E. Moser

2010-11-09

247

Extraordinarily efficient conduction in a redox-active ionic liquid.  

PubMed

Iodine added to iodide-based ionic liquids leads to extraordinarily efficient charge transport, vastly exceeding that expected for such viscous systems. Using terahertz time-domain spectroscopy, in conjunction with dc conductivity, diffusivity and viscosity measurements we unravel the conductivity pathways in 1-methyl-3-propylimidazolium iodide melts. This study presents evidence of the Grotthuss mechanism as a significant contributor to the conductivity, and provides new insights into ion pairing processes as well as the formation of polyiodides. The terahertz and transport results are reunited in a model providing a quantitative description of the conduction by physical diffusion and the Grotthuss bond-exchange process. These novel results are important for the fundamental understanding of conduction in molten salts and for applications where ionic liquids are used as charge-transporting media such as in batteries and dye-sensitized solar cells. PMID:21226195

Thorsmølle, Verner K; Rothenberger, Guido; Topgaard, Daniel; Brauer, Jan C; Kuang, Dai-Bin; Zakeeruddin, Shaik M; Lindman, Björn; Grätzel, Michael; Moser, Jacques-E

2011-01-17

248

Ionic liquids for separation of olefin-paraffin mixtures  

DOEpatents

The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

2014-07-15

249

Hydrolysis of polycarbonate catalyzed by ionic liquid [Bmim][Ac].  

PubMed

Hydrolysis of polycarbonate (PC) was studied using ionic liquid 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]) as a catalyst. The influences of temperature, time, water dosage and [Bmim][Ac] dosage on the hydrolysis reaction were examined. Under the conditions of temperature 140°C, reaction time 3.0 h, m([Bmim][Ac]):m(PC)=1.5:1 and m(H(2)O):m(PC)=0.35:1, the conversion of PC was nearly 100% and the yield of bisphenol A (BPA) was over 96%. The ionic liquid could be reused up to 6 times without apparent decrease in the conversion of PC and yield of BPA. The kinetics of the reaction was also investigated. The results showed that the hydrolysis of PC in [Bmim][Ac] was a first-order kinetic reaction with an activation energy of 228 kJ/mol. PMID:23246956

Song, Xiuyan; Liu, Fusheng; Li, Lei; Yang, Xuequn; Yu, Shitao; Ge, Xiaoping

2013-01-15

250

Synthesis and characterization of 5-cyanotetrazolide-based ionic liquids.  

PubMed

New salts based on imidazolium, pyrrolidinium, phosphonium, guanidinium, and ammonium cations together with the 5-cyanotetrazolide anion [C2 N5 ](-) are reported. Depending on the nature of cation-anion interactions, characterized by XRD, the ionic liquids (ILs) have a low viscosity and are liquid at room temperature or have higher melting temperatures. Thermogravimetric analysis, cyclic voltammetry, viscosimetry, and impedance spectroscopy display a thermal stability up to 230?°C, an electrochemical window of 4.5?V, a viscosity of 25?mPa?s at 20?°C, and an ionic conductivity of 5.4?mS?cm(-1) at 20?°C for the IL 1-butyl-1-methylpyrrolidinium 5-cyanotetrazolide [BMPyr][C2 N5 ]. On the basis of these results, the synthesized compounds are promising electrolytes for lithium-ion batteries. PMID:25504790

Bergholz, Timm; Oelkers, Benjamin; Huber, Benedikt; Roling, Bernhard; Sundermeyer, Jörg

2015-02-01

251

Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to Lactobacillus rhamnosus  

Microsoft Academic Search

In situ extractive fermentation of lactic acid using organic solvents has already been heavily investigated. Now ionic liquids are emerging as alternative solvents for volatile organic compounds traditionally used in liquid–liquid extraction. In this paper, we examine whether imidazolium-based ionic liquids can replace conventional organic solvents in the extractive fermentation of lactate by investigating their extraction behaviors and solvent toxicity.

Michiaki Matsumoto; Kenji Mochiduki; Kei Fukunishi; Kazuo Kondo

2004-01-01

252

Phase behavior and characterization of ionic liquids based microemulsions  

Microsoft Academic Search

A microemulsion based on imidazolium ionic liquids (ILs), 1-octyl-3-methylimidazolium chloride [omim][Cl], as a surfactant, a hydrophobic IL as a substitute for traditional organic solvent, 1-butyl-3-methylimidazolium hexaflourophosphate [bmim][PF6] and water was formed at 25°C. The phase behavior of this ternary system was investigated. The formation of [bmim][PF6]-in-water regions was identified by electrochemical methods using potassium hexacyanoferrate K4Fe(CN)6 and ferrocene as electroactive

Afsaneh Safavi; Norooz Maleki; Fatemeh Farjami

2010-01-01

253

Preparation of organo-soluble polyanilines in ionic liquid  

Microsoft Academic Search

A method for preparation of organo-soluble polyaniline (PANI) is described. Oxidative coupling polymerization of anilium chloride with ammonium persulfate in a new ionic liquid, 2-hydroxyethyl ammonium formate (HAF), gives organo-soluble polyaniline with appreciable molecular weights (Mw=86,400). Interestingly polyaniline (PANI) prepared by this method is highly soluble in many organic solvents such as acetone, tetrahydrofurane, dioxane, dimethyformamide and N-methyl, 2-pyrrolidinone. Thin

Niyazi B?çak; B. Filiz ?enkal; Esma Sezer

2005-01-01

254

Chromium electrodeposition from [BMIm][BF 4 ] ionic liquid  

Microsoft Academic Search

The electrodeposition of black chromium coatings from ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate with chromium\\u000a chloride, and the chemical composition of the deposits are discussed in this article. The UV–Vis spectra recorded for chromium(III)\\u000a species in 1-butyl-3-methylimidazolium tetrafluoroborate suggest that along with the chromium(III) complexes containing three\\u000a ligands, there are some amounts of chromium species containing four ligands in the bath employed.

S. Survilien?; S. Eugénio; R. Vilar

2011-01-01

255

Energy applications of ionic liquids Douglas R. MacFarlane,*a  

E-print Network

volatility coupled with high electrochemical and thermal stability, as well as ionic conductivity, create. As fuel cell electrolytes, the high proton conductivity of some of the protic ionic liquid family offersEnergy applications of ionic liquids Douglas R. MacFarlane,*a Naoki Tachikawa,a Maria Forsyth

Angell, C. Austen

256

Critical behaviour of ionic solutions in non-polar solvents with a liquid - liquid phase transition  

Microsoft Academic Search

Turbidity measurements showing crossover from mean-field to Ising criticality have been reported by Narayanan and Pitzer for the liquid - liquid phase transition in ionic solutions of alkyl-ammonium picrates in higher alcohols. The Ising region was found to increase with the dielectric permittivity D for solvents with 4 < D < 8. It was conjectured that the Ising region becomes

W. Schröer; M. Kleemeier; M. Plikat; V. Weiss; S. Wiegand

1996-01-01

257

Thermodynamics of ionic liquids precursors: 1-methylimidazole.  

PubMed

The standard molar enthalpy of formation in the liquid state for 1-methylimidazole (MeIm) was obtained from combustion calorimetry. The enthalpy of vaporization of the compound was derived from the temperature dependence of the vapor pressure measured by the transpiration method. Additionally, the enthalpy of vaporization for MeIm was measured directly using Calvet-type calorimetry. In order to verify the experimental data, first-principles calculations of MeIm were performed. The enthalpy of formation evaluated at the G3MP2 level of theory is in excellent agreement with the experimental value. The heat capacity and parameters of fusion of MeIm were measured in the temperature range (5 to 370) K using adiabatic calorimetry. The thermodynamic functions for the compound in the crystal and liquid states were calculated from these data. Based on the experimental spectroscopic data and the results of quantum-chemical calculations, the ideal-gas properties for MeIm were calculated by methods of statistical thermodynamics. PMID:21449548

Verevkin, Sergey P; Zaitsau, Dzmitry H; Emel'yanenko, Vladimir N; Paulechka, Yauheni U; Blokhin, Andrey V; Bazyleva, Ala B; Kabo, Gennady J

2011-04-21

258

The solvation structures of cellulose microfibrils in ionic liquids  

SciTech Connect

The use of ionic liquids for non-derivatized cellulose dissolution promises an alternative method for the thermochemical pretreatment of biomass that may be more efficient and environmentally acceptable than more conventional techniques in aqueous solution. Here, we performed equilibrium MD simulations of a cellulose microfibril in the ionic liquid 1-butyl-3-methylimidazolium chloride (BmimCl) and compared the solute structure and the solute-solvent interactions at the interface with those from corresponding simulations in water. The results indicate a higher occurrence of solvent-exposed orientations of cellulose surface hydroxymethyl groups in BmimCl than in water. Moreover, spatial and radial distribution functions indicate that hydrophilic surfaces are a preferred site of interaction between cellulose and the ionic liquid. In particular, hydroxymethyl groups on the hydrophilic fiber surface adopt a different conformation from their counterparts oriented towards the fiber s core. Furthermore, the glucose units with these solvent-oriented hydroxymethyls are surrounded by the heterocyclic organic cation in a preferred parallel orientation, suggesting a direct and distinct interaction scheme between cellulose and BmimCl.

Mostofian, Barmak [ORNL; Smith, Jeremy C [ORNL; Cheng, Xiaolin [ORNL

2011-01-01

259

Ionic liquids as ingredients in topical drug delivery systems.  

PubMed

Because of their properties, ionic liquids (ILs) (Ranke et al.) offer many advantages in topical drug delivery systems. For example, ionic liquids can be used to increase the solubility of sparingly soluble drugs and to enhance their topical and transdermal delivery. Furthermore, ILs can be used either to synthesize active pharmaceutical ingredients or as antimicrobial ingredients. In the present work, the conventional oil-in-water (O/W) and water-in-oil (W/O) emulsions containing the hydrophilic IL [HMIM] [Cl] and the hydrophobic IL [BMIM] [PF6] were prepared, and the influence of the ILs on emulsion properties was evaluated. It was found that ILs could be successfully incorporated into the emulsion structure, resulting in stable formulations. The antimicrobial activity of ILs in the formulations was estimated, and their application as preservatives was confirmed by performing preservative efficacy tests. Evaluation of the in vitro cytotoxicity of the emulsions containing hydrophilic or hydrophobic ILs showed the low cytotoxicity of the carriers. Finally, penetration enhancement of a fluorescent dye as a model drug in the presence of ionic liquids was shown. PMID:23123180

Dobler, Dorota; Schmidts, Thomas; Klingenhöfer, Ines; Runkel, Frank

2013-01-30

260

In situ electron holographic study of Ionic liquid.  

PubMed

Investigation of the effect of electron irradiation on ionic liquid (IL) droplets using electron holography revealed that electron irradiation changed the electrostatic potential around the IL. The potential for low electron flux irradiation (0.5 × 10(17)e/m(2)s) was almost constant as a function of time (up to 180 min). For higher electron flux irradiation (2 × 10(17)e/m(2)s), the potential increased exponentially for a certain time, reflecting the charging effect and then leveled off. The IL was found to be changed from liquid to solid state after a significant increase in the electrostatic potential due to electron irradiation. PMID:25171751

Shirai, Manabu; Tanigaki, Toshiaki; Aizawa, Shinji; Park, Hyun Soon; Matsuda, Tsuyoshi; Shindo, Daisuke

2014-11-01

261

Unusual solvatochromic absorbance probe behaviour within mixtures of poly(ethylene glycol)-400+ionic liquid, [bmim][Tf2N].  

PubMed

The potentially green solvents made up of ionic liquids (ILs) and poly(ethylene glycols) may have wide range of the applications in many chemical and biochemical fields. In the present work, solvatochromic absorbance probe behaviour is used to assess the physicochemical properties of the mixtures composed of PEG-400+IL, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [bmim][Tf2N]. Lowest energy intramolecular charge-transfer absorbance maxima of a betaine dye, i.e., E(T)(N), indicates the dipolarity/polarizability and/or hydrogen-bond donating (HBD) acidity of the [bmim][Tf2N]+PEG-400 mixtures to be even higher than that of neat [bmim][Tf2N], the solution component with higher dipolarity/polarizability and/or HBD acidity. Dipolarity/polarizability (?(?)) obtained separately from the electronic absorbance response of probe N,N-diethyl-4-nitroaniline, and the HBD acidity (?) of PEG-400+[bmim][Tf2N] mixtures are also observed to be anomalously high. A comparative study of the PEG+IL mixtures has also been done with PEG-400+molecular organic solvents (protic polar [methanol], aprotic polar [N,N-dimethylformamide], and non polar, [benzene]) mixtures, but these mixtures do not show this type of unusual behaviour. A four-parameter simplified combined nearly ideal binary solvent/Redlich-Kister (CNIBS/R-K) equation is shown to satisfactorily predict the solvatochromic parameters within PEG-400+different solvent mixtures. PMID:24280298

Ali, Anwar; Ali, Maroof; Malik, Nisar Ahmad; Uzair, Sahar

2014-01-01

262

Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid  

Microsoft Academic Search

1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) was synthesized and purified to be used as a ionic liquid solvent. Its physicochemical properties were studied. The ionic liquid\\/water (Pil\\/water) and ionic liquid\\/heptane (Pil\\/heptane) distribution coefficients of a set of 40 compounds with various functionalities, including organic acids, organic bases, amino acids, antioxidants, and neutral compounds, were measured using liquid chromatography. For ionizable compounds, the Pil\\/water

S. Carda-Broch; A. Berthod; D. W. Armstrong

2003-01-01

263

A novel hydroxylamine ionic liquid salt resulting from the stabilization of NH2OH by a SO3H-functionalized ionic liquid.  

PubMed

A SO3H-functionalized ionic liquid was used as an alternative to conventional inorganic acids in hydroxylamine stabilization, leading to the formation of a novel hydroxylamine ionic liquid salt that exhibits improved thermal stability and reactivity in the one-step, solvent-free synthesis of caprolactam in comparison with hydroxylamine hydrochloride and hydroxylamine sulfate. PMID:25531208

Li, Zhihui; Yang, Qiusheng; Qi, Xudong; Xu, Yuanyuan; Zhang, Dongsheng; Wang, Yanji; Zhao, Xinqiang

2015-01-20

264

Ionic liquids screening for desulfurization of natural gasoline by liquid-liquid extraction.  

PubMed

Seventy five ionic liquids (ILs) were tested as a sequestering agent of sulfured compounds in natural gasoline (NG). Desulphurization of NG was performed by means of liquid-liquid extraction method at room temperature and atmospheric pressure. Experimental ILs containing imidazolium, pyridinium, and ammonium cations along with organic and inorganic anions were synthesized conventionally and under microwave and sonochemical conditions. The effect of the molecular structure of ILs on the desulfurization efficiency of NG with high sulfur content was evaluated. Analysis indicated that the anion type played a more important role than the cation on the desulphurization process. ILs based on halogen-ferrates and halogen-aluminates exhibited the highest efficiency in sulfur removal, and their efficiency is further improved when there is an excess of metallic salt in a ratio of at least 1:1.3 during the synthesis of the corresponding IL. An explanation for the ability of metallic ILs to remove sulfur-containing compounds from natural gasoline based on the ratio of the ionic charge to the atomic radius is proposed. Furthermore, a method to recover and reuse water-sensitive to halogenated precursors is described. PMID:20091120

Likhanova, Natalya V; Guzmán-Lucero, Diego; Flores, Eugenio A; García, Paloma; Domínguez-Aguilar, Marco A; Palomeque, Jorge; Martínez-Palou, Rafael

2010-11-01

265

Liquid-liquid extraction of lysozyme using a dye-modified ionic liquid.  

PubMed

An affinity-dye, Cibacron Blue 3GA (CB), derivatized organic salt [BMIM]3[CB] was synthesized for lysozyme extraction. This compound was formed by mixing an ionic liquid (IL) [BMIM][Cl] and the silver salt of CB. Liquid-liquid extractions of lysozyme from the aqueous and [BMIM]3[CB] in [BMIM][PF6] solutions were examined in this study. The transfer of lysozyme from the aqueous phase to the IL phase decreased while the pH of the aqueous phase increased. An extraction higher than 90% was observed at pH 4. Under a high ionic strength, the lysozyme would transform back from the IL phase into the aqueous phase. Lysozyme molecules were almost quantitatively recovered from the IL phase to the aqueous solutions of 1M KCl under pH 9-11. It appeared that the extraction was specific for lysozyme in contrast to cytochrome c, ovalbumin, and bovine serum albumin. The extraction efficiency of the IL phase remained essentially the same after eight cycles of extraction. PMID:18462742

Tzeng, Yu-Ping; Shen, Ching-Wei; Yu, Tiing

2008-06-01

266

Dynamic effects in thin liquid films containing ionic surfactants  

NASA Astrophysics Data System (ADS)

This paper is dedicated to studying dynamic effects in thin liquid films (TLF) containing ionic surfactants. The standard theory of TLF drainage has been developed without considering the electrical double layer (EDL) in the hydrodynamic equations, although EDL always exists. In addition, it has been found that this theory very well describes the drainage of TLF containing non-ionic surfactants in the presence of electrolytes. The inclusion of EDL into the hydrodynamics of TLF complicates the theory, producing additional dynamic effects during film drainage. For example, a gradient of electrostatic disjoining pressure across the film arises, thus causing non-uniform electrostatic repulsion between the film surfaces. This paper analyzes the hydrodynamics of TLF with EDL. A new equation of drainage was derived. This equation accounts for the non-uniform distribution of surface charges during the films drainage, which is coupled with non-uniform electrostatic repulsion between the film surfaces and results in faster film drainage. The theory was tested with drainage experiments on TLF with ionic surfactants. Foam films containing sodium dodecyl sulfate (SDS) in the presence and in the absence of added electrolyte were studied and the experimental data compared to the theoretical predictions. The experimental results, however, disagree with the theory. For example, the kinetic equation predicted faster film drainage for foam films at low ionic strength; at high ionic strength the theory tends to wReynolds drainagew. Inversely, the experiment exhibited slower drainage than predicted by the Reynolds equation in both cases of low and high ionic strengths. Numerical simulations yielded V/VRe<1. In addition, cases of wpositivew and wnegativew velocity of film surfaces were shown. Despite the sign of the velocity the dependence V/VRe<1 remained. The analysis showed similarity between the experimental data and the prediction of the Manev-Tsekov-Radoev (MTR) drainage model at R

Karakashev, S. I.; Tsekov, R.; Ivanova, D. S.

2010-03-01

267

Effect of water in ionic liquid on the separation performance of supported ionic liquid membrane for CO 2\\/N 2  

Microsoft Academic Search

The effect of water content in 1-n-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) on CO2\\/N2 separation performance of polyethersulfone supported ionic liquid membrane has been investigated theoretically and experimentally. A small addition of water in [bmim][BF4] obviously improves the performance of the membrane. CO2 permeance increases from 11.5 to 13.8GPU and CO2\\/N2 selectivity increases from 50 to 60, where the water molar fraction increases

Wei Zhao; Gaohong He; Lingling Zhang; Jia Ju; Hong Dou; Fei Nie; Cuina Li; Hongjing Liu

2010-01-01

268

Fluorescent probe studies of polarity and solvation within room temperature ionic liquids: a review.  

PubMed

Ionic liquids display an array of useful and sometimes unconventional, solvent features and have attracted considerable interest in the field of green chemistry for the potential they hold to significantly reduce environmental emissions. Some of these points have a bearing on the chemical reactivity of these systems and have also generated interest in the physical and theoretical aspects of solvation in ionic liquids. This review presents an introduction to the field of ionic liquids, followed by discussion of investigations into the solvation properties of neat ionic liquids or mixed systems including ionic liquids as a major or minor component. The ionic liquid based multicomponent systems discussed are composed of other solvents, other ionic liquids, carbon dioxide, surfactants or surfactant solutions. Although we clearly focus on fluorescence spectroscopy as a tool to illuminate ionic liquid systems, the issues discussed herein are of general relevance to discussions of polarity and solvent effects in ionic liquids. Transient solvation measurements carried out by means of time-resolved fluorescence measurements are particularly powerful for their ability to parameterize the kinetics of the solvation process in ionic liquids and are discussed as well. PMID:22711136

Pandey, Shubha; Baker, Sheila N; Pandey, Siddharth; Baker, Gary A

2012-09-01

269

The use of ionic liquid ion sources (ILIS) in FIB applications  

E-print Network

A new monoenergetic, high-brightness ion source can be constructed using an arrangement similar to liquid metal ion sources (LMIS) by substituting the liquid metal with an ionic liquid, or room temperature molten salt. Ion ...

Zorzos, Anthony Nicholas

2009-01-01

270

Hg? removal from flue gas by ionic liquid/H?O?.  

PubMed

1-Alkyl-3-methylimidazolium chloride ionic liquids ([Cnmim] Cl, n=4, 6, 8) were prepared. The ionic liquid was then mixed with hydrogen peroxide (H2O2) to form an absorbent. The Hg(0) removal performance of the absorbent was investigated in a gas/liquid scrubber using simulated flue gas. It was found that the ionic liquid/H2O2 mixture was an excellent absorbent and could be used to remove Hg(0) from flue gas. When the mass ratio of H2O2 to ionic liquid was 0.5, the absorbent showed high Hg(0) removal efficiency (up to 98%). The Hg(0) removal efficiency usually increased with the absorption temperature, while decreased with the increase of alkyl chain length in ionic liquid molecule. The Hg(0) removal mechanism involved with Hg(0) oxidation by H2O2 and Hg(2+) transfer from aqueous phase to ionic liquid phase. PMID:25240646

Cheng, Guangwen; Bai, Bofeng; Zhang, Qiang; Cai, Ming

2014-09-15

271

Homogeneous Liquid–Liquid Extraction of Rare Earths with the Betaine—Betainium Bis(trifluoromethylsulfonyl)imide Ionic Liquid System  

PubMed Central

Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature. PMID:24169434

Hoogerstraete, Tom Vander; Onghena, Bieke; Binnemans, Koen

2013-01-01

272

Homogeneous liquid-liquid extraction of rare earths with the betaine-betainium bis(trifluoromethylsulfonyl)imide ionic liquid system.  

PubMed

Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature. PMID:24169434

Vander Hoogerstraete, Tom; Onghena, Bieke; Binnemans, Koen

2013-01-01

273

Polysiloxane ionic liquids as good solvents for ?-cyclodextrin-polydimethylsiloxane polyrotaxane structures  

PubMed Central

Summary An ionic liquid based on polydimethylsiloxane with imidazolium salt brushes was synthesized as a good solvent for ?-cyclodextrin-polydimethylsiloxane rotaxane. As expected the PDMS-Im/Br ionic liquid had a liquid-like non-Newtonian behavior with rheological parameters dependent on frequency and temperature. The addition of rotaxane to the ionic liquid strengthened the non-Newtonian character of the sample and a type of stable liquid-like network was formed due to the contribution of weak ionic interactions. The structure is stable in the 20 to 80 °C domain as proved by the oscillatory and rotational rheological tests. PMID:23209493

Marangoci, Narcisa; Ardeleanu, Rodinel; Ursu, Laura; Ibanescu, Constanta; Danu, Maricel; Simionescu, Bogdan C

2012-01-01

274

Application of Ionic Liquids in High Performance Reversed-Phase Chromatography  

PubMed Central

Ionic liquids, considered “green” chemicals, are widely used in many areas of analytical chemistry due to their unique properties. Recently, ionic liquids have been used as a kind of novel additive in separation and combined with silica to synthesize new stationary phase as separation media. This review will focus on the properties and mechanisms of ionic liquids and their potential applications as mobile phase modifier and surface-bonded stationary phase in reversed-phase high performance liquid chromatography (RP-HPLC). Ionic liquids demonstrate advantages and potential in chromatographic field. PMID:19582220

Wang, Ye; Tian, Minglei; Bi, Wentao; Row, Kyung Ho

2009-01-01

275

Nanostructure of an ionic liquid-glycerol mixture.  

PubMed

The nanostructure of a 50?:?50 vol% mixture of glycerol and ethylammonium formate (EAF), a protic ionic liquid (IL), has been investigated using neutron diffraction and empirical potential structure refinement (EPSR) fits. EPSR fits reveal that the mixture is nanostructured. Electrostatic interactions between IL charge groups leads to the formation of ionic regions. These solvophobically repel cation alkyl groups which cluster together to form apolar domains. The polar glycerol molecules are preferentially incorporated into the charged domains, and form hydrogen bonds with EAF groups rather than with other glycerol molecules. However, radial distribution functions reveal that glycerol molecules pack around each other in a fashion similar to that found in pure glycerol. This suggests that a glycerol channel runs through the ionic domain of EAF. The absence of significant glycerol-glycerol hydrogen bonding indicates that glycerol molecules are able to span the polar domain, bridging EAF charge groups. Glycerol can adopt six distinct conformations. The distribution of conformers in the EAF mixture is very different to that found in the pure liquid because hydrogen bonds form with EAF rather than with other glycerol molecules, which imparts different packing constraints. PMID:24871824

Murphy, Thomas; Hayes, Robert; Imberti, Silvia; Warr, Gregory G; Atkin, Rob

2014-07-14

276

Solubility of phosphonium ionic liquid in alcohols, benzene, and alkylbenzenes.  

PubMed

The (solid + liquid) phase equilibria and (liquid + liquid) phase equilibria of binary mixtures containing quaternary phosphonium salt-tetrabutylphosphonium methanesulfonate and alcohols or alkylbenzenes were investigated. The systems {[(CH(3)CH(2)CH(2)CH(2))4P][CH(3)SO(3)] + 1-butanol, or 1-hexanol, 1-octanol, 1-decanol, or 1-dodecanol} and {[(CH(3)CH(2)CH(2)CH(2))4P][CH(3)SO(3)] + benzene, or toluene, ethylbenzene, or propylbenzene} have been measured by a dynamic method at a wide range of temperatures from 220 to 386 K. Solid-liquid equilibria with immiscibility in the liquid phase were detected with the aromatic hydrocarbons ethylbenzene and propylbenzene. The basic thermodynamic properties of pure ionic liquid--the melting point, enthalpy of fusion, enthalpy of solid-solid-phase transition, and glass transition--have been determined by differential scanning calorimetry. The experimental data of systems with alcohols were correlated by means of the UNIQUAC ASM and NRTL1 equations and of systems with alkylbenzenes with Wilson and NRTL equations utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular equation used. PMID:17391024

Doma?ska, Urszula; Casás, Lidia M

2007-04-26

277

New frontiers in materials science opened by ionic liquids.  

PubMed

Ionic liquids (ILs) including ambient-temperature molten salts, which exist in the liquid state even at room temperature, have a long research history. However, their applications were once limited because ILs were considered as highly moisture-sensitive solvents that should be handled in a glove box. After the first synthesis of moisture-stable ILs in 1992, their unique physicochemical properties became known in all scientific fields. ILs are composed solely of ions and exhibit several specific liquid-like properties, e.g., some ILs enable dissolution of insoluble bio-related materials and the use as tailor-made lubricants in industrial applications under extreme physicochemical conditions. Hybridization of ILs and other materials provides quasi-solid materials, which can be used to fabricate highly functional devices. ILs are also used as reaction media for electrochemical and chemical synthesis of nanomaterials. In addition, the negligible vapor pressure of ILs allows the fabrication of electrochemical devices that are operated under ambient conditions, and many liquid-vacuum technologies, such as X-ray photoelectron spectroscopy (XPS) analysis of liquids, electron microscopy of liquids, and sputtering and physical vapor deposition onto liquids. In this article, we review recent studies on ILs that are employed as functional advanced materials, advanced mediums for materials production, and components for preparing highly functional materials. PMID:20437507

Torimoto, Tsukasa; Tsuda, Tetsuya; Okazaki, Ken-ichi; Kuwabata, Susumu

2010-03-19

278

Graphene/Ionic Liquid Composite Films and Ion Exchange  

PubMed Central

Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602

Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

2014-01-01

279

Low-melting mixtures based on choline ionic liquids.  

PubMed

In this article a strategy is proposed for the design of low toxic, room temperature liquid low-melting mixtures (LMMs) which are entirely composed of natural materials. From literature it is well known that, in general, deep eutectic solvents based on choline chloride and dicarboxylic acids are LMMs, but not liquids at room temperature, with one exception: a 1?:?1 molar mixture of malonic acid and choline chloride. Therefore, the starting point of this study was the decrease of the melting point of one of the components, namely the dicarboxylic acid, which is succinic, glutaric or adipic acid. For this purpose, one of the two protons of the acidic group was exchanged by a bulky unsymmetrical choline cation. The resulting ionic liquids (ILs) were still solid at room temperature, but have a reduced melting temperature compared to the corresponding acids. In the second step, mixtures of these ILs with choline chloride were prepared. It turned out that choline glutarate-choline chloride mixtures are liquids at room temperature at compositions containing 95-98 wt% of choline glutarate. Finally, urea was added as another hydrogen bond donor. Density, conductivity and viscosity measurements were performed for all obtained mixtures. Moreover, a Walden plot was drawn which indicates that all mixtures are liquids with fully dissociated ions moving independently. Therefore, they are considered as "good" ionic liquids and, thus, for example they can be used to exchange more toxic or less biodegradable ILs in application processes. A brief outlook containing application possibilities is given. It is demonstrated that choline dodecylsulfate is readily soluble in these mixtures, forming aggregates in the LMM at temperatures exceeding 55 °C. PMID:25242504

Rengstl, Doris; Fischer, Veronika; Kunz, Werner

2014-11-01

280

Thermodynamic studies of ionic hydration and interactions for amino acid ionic liquids in aqueous solutions at 298.15 K.  

PubMed

Amino acid ionic liquids are a special class of ionic liquids due to their unique acid-base behavior, biological significance, and applications in different fields such as templates in synthetic chemistry, stabilizers for biological macromolecules, etc. The physicochemical properties of these ionic liquids can easily be altered by making the different combinations of amino acids as anion along with possible cation modification which makes amino acid ionic liquids more suitable to understand the different kinds of molecular and ionic interactions with sufficient depth so that they can provide fruitful information for a molecular level understanding of more complicated biological processes. In this context, volumetric and osmotic coefficient measurements for aqueous solutions containing 1-ethyl-3-methylimidazolium ([Emim]) based amino acid ionic liquids of glycine, alanine, valine, leucine, and isoleucine are reported at 298.15 K. From experimental osmotic coefficient data, mean molal activity coefficients of ionic liquids were estimated and analyzed using the Debye-Hückel and Pitzer models. The hydration numbers of ionic liquids in aqueous solutions were obtained using activity data. Pitzer ion interaction parameters are estimated and compared with other electrolytes reported in the literature. The nonelectrolyte contribution to the aqueous solutions containing ionic liquids was studied by calculating the osmotic second virial coefficient through an application of the McMillan-Mayer theory of solution. It has been found that the second osmotic virial coefficient which includes volume effects correlates linearly with the Pitzer ion interaction parameter estimated independently from osmotic data as well as the hydrophobicity of ionic liquids. The enthalpy-entropy compensation effect, explained using the Starikov-Nordén model of enthalpy-entropy compensation, and partial molar entropy analysis for aqueous [Emim][Gly] solutions are made by using experimental Gibb's free energy data and literature enthalpy data. This study highlights that the hydrophobic interaction persists even in the limit of infinite dilution where the hydration effects are usually dominant, implying importance of hydrophobic hydration. Analysis of the results further shows that the hydration of amino acid ionic liquids occurs through the cooperative H-bond formation with the kosmotropic effect in contrast to the usual inorganic salts or hydrophobic salts like tetraalkylammonium halides. PMID:23293839

Dagade, Dilip H; Madkar, Kavita R; Shinde, Sandeep P; Barge, Seema S

2013-01-31

281

Molecular dynamics simulations of charged nanoparticle self-assembly at ionic liquid-water and ionic liquid-oil interfaces.  

PubMed

Nanoparticle self-assembly at liquid-liquid interfaces can be significantly affected by the individual nanoparticle charges. This is particularly true at ionic liquid (IL) based interfaces, where Coulombic forces play a major role. Employing 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) as a model IL, we have studied the self-assembly of hydrophobic nanoparticles with different surface charges at the IL/water and IL/oil (hexane) interfaces using molecular dynamics simulations. In the IL/water system, the nanoparticles were initially dispersed in the water phase but quickly equilibrated at the interface, somewhat in favor of the IL phase. This preference was lessened with increased nanoparticle charge. In the IL/hexane system, all charged nanoparticles interacted with the IL to some extent, whereas the uncharged nanoparticles remained primarily in the hexane phase. Potential of mean force calculations supported the observations from the equilibrium studies and provided new insights into the interactions of the nanoparticles and ionic liquid based interfaces. PMID:22380058

Frost, Denzil S; Dai, Lenore L

2012-02-28

282

Molecular dynamics simulations of charged nanoparticle self-assembly at ionic liquid-water and ionic liquid-oil interfaces  

NASA Astrophysics Data System (ADS)

Nanoparticle self-assembly at liquid-liquid interfaces can be significantly affected by the individual nanoparticle charges. This is particularly true at ionic liquid (IL) based interfaces, where Coulombic forces play a major role. Employing 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) as a model IL, we have studied the self-assembly of hydrophobic nanoparticles with different surface charges at the IL/water and IL/oil (hexane) interfaces using molecular dynamics simulations. In the IL/water system, the nanoparticles were initially dispersed in the water phase but quickly equilibrated at the interface, somewhat in favor of the IL phase. This preference was lessened with increased nanoparticle charge. In the IL/hexane system, all charged nanoparticles interacted with the IL to some extent, whereas the uncharged nanoparticles remained primarily in the hexane phase. Potential of mean force calculations supported the observations from the equilibrium studies and provided new insights into the interactions of the nanoparticles and ionic liquid based interfaces.

Frost, Denzil S.; Dai, Lenore L.

2012-02-01

283

Ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction for the separation and determination of estrogens in water samples by high-performance liquid chromatography with fluorescence detection.  

PubMed

An ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction method was proposed for the extraction and concentration of 17-?-estradiol, 17-?-estradiol-benzoate, and quinestrol in environmental water samples by high-performance liquid chromatography with fluorescence detection. 1-Hexyl-3-methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion-pairing and salting-out agent NH4 PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1-hexyl-3-methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid-liquid microextraction was widened. PMID:25146581

Zhang, Rui; Wang, Chuanliu; Yue, Qiaohong; Zhou, Tiecheng; Li, Na; Zhang, Hanqi; Hao, Xiaoke

2014-11-01

284

Reactions of carbon acids and 1,3-dipoles in the presence of ionic liquids  

NASA Astrophysics Data System (ADS)

The review is devoted to the use of ionic liquids as solvents, immobilized organocatalysts and reagents in reactions involving carbon acids and 1,3-dipoles, which are widely used to prepare practically valuable organic compounds of various classes. The characteristic features of processes in the presence of ionic liquids, the effects of the structure of cations and anions on the regio-, stereo- and enantioselectivities of reactions and methods of recovery of ionic liquids are considered.

Zlotin, Sergei G.; Makhova, Nina N.

2010-09-01

285

Structure of water at ionic liquid\\/Ag interface probed by surface enhanced Raman spectroscopy  

Microsoft Academic Search

The potential-dependent adsorption behavior of water and ionic liquid was probed by surface-enhanced Raman spectroscopy (SERS)\\u000a at the Ag electrode surface in the ionic liquids containing water with different concentrations. The configuration of water\\u000a at the ionic liquid\\/electrode interface and the relationship between the potential of zero charge (pzc) and the molar fraction\\u000a of water were deduced through the changes

TianChao Niu; YaXian Yuan; JianLin Yao; Feng Lu; RenAo Gu

2011-01-01

286

Electronic functions of solid-to-liquid interfaces of organic semiconductor crystals and ionic liquid  

NASA Astrophysics Data System (ADS)

The environment of surface electrons at 'solid-to-liquid' interfaces is somewhat extreme, subjected to intense local electric fields or harsh chemical pressures that high-density ionic charge or polarization of mobile molecules create. In this proceedings, we argue functions of electronic carriers generated at the surface of organic semiconductor crystals in response to the local electric fields in the very vicinity of the interface to ionic liquid. The ionic liquids (ILs), or room temperature molten salts, are gaining considerable interest in the recent decade at the prospect of nonvolatile 'green solvents', with the development of chemically stable and nontoxic compounds. Moreover, such materials are also applied to electrolytes for lithium ion batteries and electric double-layer (EDL) capacitors. Our present solid-to-liquid interfaces of rubrene single crystals and ionic liquids work as fast-switching organic field-effect transistors (OFETs) with the highest transconductance, i.e. the most efficient response of the output current to the input voltage, among the OFETs ever built.

Takeya, J.

2008-10-01

287

Electrochemical transistors with ionic liquids for enzymatic sensing  

NASA Astrophysics Data System (ADS)

Over the past decade conducting polymer electrodes have played an important role in bio-sensing and actuation. Recent developments in the field of organic electronics have made available a variety of devices that bring unique capabilities at the interface with biology. One example is organic electrochemical transistors (OECTs) that are being developed for a variety of bio-sensing applications, including the detection of ions, and metabolites, such as glucose and lactate. Room temperature ionic liquids (RTILs) are organic salts, which are liquid at ambient temperature. Their nonvolatile character and thermal stability makes them an attractive alternative to conventional organic solvents. Here we report an enzymatic sensor based on an organic electro-chemical transistor with RTIL's as an integral part of its structure and as an immobilization medium for the enzyme and the mediator. Further investigation shows that these platforms can be incorporated into flexible materials such as carbon cloth and can be utilized for bio-sensing. The aim is to incorporate the overall platform in a wearable sensor to improve athlete performance with regards to training. In this manuscript an introduction to ionic liquids (ILs), IL - enzyme mixtures and a combination of these novel materials being used on OECTs are presented.

Fraser, Kevin J.; Yang, Sang Yoon; Cicoira, Fabio; Curto, Vincenzo F.; Byrne, Robert; Benito-Lopez, Fernando; Khodagholy, Dion; Owens, Róisín M.; Malliaras, George G.; Diamond, Dermot

2011-10-01

288

Influence of the ionic liquid cation on the solvent extraction of trivalent rare-earth ions by mixtures of Cyanex 923 and ionic liquids.  

PubMed

Trivalent rare-earth ions were extracted from nitric acid medium by the neutral phosphine oxide extractant Cyanex 923 into ionic liquid phases containing the bis(trifluoromethylsulfonyl)imide anion. Five different cations were considered: 1-butyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, methyltributylammonium, methyltrioctylammonium and trihexyl(tetradecyl)phosphonium. The extraction behavior of neodymium(iii) was investigated as a function of various parameters: pH, extractant concentration, concentration of the neodymium(iii) ion in the aqueous feed and concentration of the salting-out agent. The loading capacity of the ionic liquid phase was studied. The extraction efficiency increased with increasing pH of the aqueous feed solution. The extraction occurred for all ionic liquids via an ion-exchange mechanism and the extraction efficiency could be related to the solubility of the ionic liquid cation in the aqueous phase: high distribution ratios for hydrophilic cations and low ones for hydrophobic cations. Addition of nitrate ions to the aqueous phase resulted in an increase in extraction efficiency for ionic liquids with hydrophobic cations due to extraction of neutral complexes. Neodymium(iii) could be stripped from the ionic liquid phase by 0.5-1.0 M nitric acid solutions and the extracting phase could be reused. The extractability of other rare earths present in the mixture was compared for the five ionic liquids. PMID:25423581

Rout, Alok; Binnemans, Koen

2015-01-21

289

Acidic Ionic Liquids as Composite Forming Additives for Ion-conducting Materials  

NASA Astrophysics Data System (ADS)

This paper represents the material conductivity investigation of several AILs (Acidic Ionic Liquids) containing an alkane sulfonic acid group covalently bonded to pyridine and N-alkylimidazole cations. Three different anions (HSO4-, H2PO4- and TsO-) have been introduced in the structure of ionic liquids to evaluate the impact of this factor on material conductivity. Ion conductivity values in all studied ionic liquids obtained from impedance measurements in temperature range from 20 to 120 °C. Values of electroconductivity depending on ionic liquid's structure vary in rage from 1.34·10-5 to 1.05·10-2 S/cm at 25 °C.

Lasmane, L.; Ausekle, E.; Vaivars, G.; Priksane, A.

2013-12-01

290

High CO2 Solubility, Permeability and Selectivity in Ionic Liquids with the Tetracyanoborate Anion  

SciTech Connect

Five different ionic liquids containing the tetracyanoborate anion were synthesized and evaluated for CO2 separation performance. Measured CO2 solubility values were exceptionally high compared to analogous ionic liquids with different anions and ranged from 0.128 mol L-1 atm-1 to 0.148 mol L-1 atm-1. In addition, CO2 permeability and CO2/N2 selectivity values were measured using a supported ionic liquid membrane architecture and the separations performance of the ionic liquid membranes exceeded the Robeson upper bound. These results establish the distinct potential of the tetracyanoborate, [B(CN)4], anion for the separation of CO2.

Mahurin, Shannon Mark [ORNL; Hillesheim, Patrick C [ORNL; Yeary, Joshua S [ORNL; Jiang, Deen [ORNL; Dai, Sheng [ORNL

2012-01-01

291

The Effect of Ionic Liquids on Protein Crystallization and X-ray Diffraction Resolution  

SciTech Connect

Ionic liquids exhibit a variety of properties that make them attractive solvents for biomaterials. Given the potential for productive interaction between ionic liquids and biological macromolecules, we investigated the use of ionic liquids as precipitating agents and additives for protein crystallization for six model proteins (lysozyme, catalase, myoglobin, trypsin, glucose isomerase, and xylanase). The ionic liquids produced changes in crystal morphology and mediated significant increases in crystal size in some cases. Crystals grown using ionic liquids as precipitating agents or as additives provided X-ray diffraction resolution similar to or better than that obtained without ionic liquids. Based upon the experiments performed with model proteins, the ionic liquids were used as additives for the crystallization of the poorly diffracting monoclonal antibody 106.3 Fab in complex with the B-type natriuretic peptide (5-13). The ionic liquids improved the crystallization behavior and provided improved diffraction resulting in the determination of the structure. Ionic liquids should be considered as useful additives for the crystallization of other proteins.

Judge, Russell A.; Takahashi, Sumiko; Longenecker, Kenton L.; Fry, Elizabeth H.; Abad-Zapatero, Cele; Chiu, Mark L.; (Abbott)

2009-09-08

292

Methods of using ionic liquids having a fluoride anion as solvents  

DOEpatents

A method in one embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having a fluoride anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of about 90.degree. C. or less during the contacting. A method in another embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having an acetate or formate anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of less than about 90.degree. C. during the contacting.

Pagoria, Philip (Livermore, CA); Maiti, Amitesh (San Ramon, CA); Gash, Alexander (Brentwood, CA); Han, Thomas Yong (Pleasanton, CA); Orme, Christine (Oakland, CA); Fried, Laurence (Livermore, CA)

2011-12-06

293

Thermal Conductivity of Ionic Liquids: Measurement and Prediction  

Microsoft Academic Search

This study reports thermal-conductivity data for a series of [EMIM] (1-ethyl-3-methylimidazolium)-based ionic liquids (ILs)\\u000a having the anions [NTf2] (bis(trifluoromethylsulfonyl)imide), [OAc] (acetate), [N(CN)2] (dicyanimide), [C(CN)3] (tricyanomethide), [MeOHPO2] (methylphosphonate), [EtSO4] (ethylsulfate), or [OcSO4] (octylsulfate), and in addition for ILs with the [NTf2]-anion having the cations [HMIM] (1-hexyl-3-methylimidazolium), [OMA] (methyltrioctylammonium), or [BBIM] (1,3-dibutylimidazolium).\\u000a Measurements were performed in the temperature range between (273.15 and

A. P. Fröba; M. H. Rausch; K. Krzeminski; D. Assenbaum; P. Wasserscheid; A. Leipertz

2010-01-01

294

Hydrogen Fluoride Capture by Imidazolium Acetate Ionic Liquid  

E-print Network

Extraction of hydrofluoric acid (HF) from oils is a drastically important problem in petroleum industry, since HF causes quick corrosion of pipe lines and brings severe health problems to humanity. Some ionic liquids (ILs) constitute promising scavenger agents thanks to strong binding to polar compounds and tunability. PM7-MD simulations and hybrid density functional theory are employed here to consider HF capture ability of ILs. Discussing the effects and impacts of the cation and the anion separately and together, I will evaluate performance of imidazolium acetate and outline systematic search guidelines for efficient adsorption and extraction of HF.

Chaban, Vitaly

2015-01-01

295

Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis  

SciTech Connect

The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs)were found capable of dissolving more than 10 wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904 910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432 2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137 140, 407 421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and nonvolatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. 70 C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58 75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result, regenerated Avicel cellulose, filter paper and cottonwere hydrolyzed 2 10 times faster than the respective untreated celluloses. A complete hydrolysis of Avicel cellulose could be achieved in 6 h given the Trichoderma reesei cellulase/substrate ratio (w/w) of 3:20 at 50 C. In addition,we observed that cellulase is more thermally stable (up to 60 C) in the presence of regenerated cellulose. Furthermore, our systematic studies suggest that the presence of various ILs during the hydrolysis induced different degrees of cellulase inactivation. Therefore, a thorough removal of IL residues after cellulose regeneration is highly recommended, and a systematic investigation on this subject is much needed.

Zhao, Hua [Savannah State University; Jones, Cecil L [Savannah State University; Baker, Gary A [ORNL; Xia, Shuqian [Tianjin University, Tianjin, China; Olubajo, Olarongbe [Savannah State University; Person, Vernecia [Savannah State University

2009-01-01

296

Synthesis and properties of trigeminal tricationic ionic liquids.  

PubMed

Novel trigeminal tricationic ionic liquids (TTILs) have been successfully synthesized in high yields by means of Menschutkin quaternization via an S(N)1 mechanism. This reaction presents a new convenient method for transforming glycerol into multifunctional compounds. The physical properties of a series of TTILs were characterized by using a variety of techniques. The prepared salts were tested for antimicrobial activity. Electrochemical characterization of TTILs was also performed, which allowed the estimation of the conductivity of these new compounds, to establish their electrochemical stability window and capacitance properties over a wide range of temperatures. A good correlation of the physical properties of TTILs with capacitance values was observed. PMID:17212367

Pernak, Juliusz; Skrzypczak, Andrzej; Lota, Grzegorz; Frackowiak, Elzbieta

2007-01-01

297

Ionic-liquid-supported (ILS) catalysts for asymmetric organic synthesis.  

PubMed

The asymmetric synthesis of compounds that contain new C-C and C-O bonds remains one of the most important types of synthesis in organic chemistry. Over the years, many different types of catalysts have been designed and used effectively to carry out such transformations. Ionic-liquid-supported (ILS) catalysts represent a new and very effective class of catalysts that are used to facilitate the asymmetric synthesis of such compounds. There are many advantages to using ILS catalysts; they are nontoxic, environmentally benign, and, most important, recyclable. An overview of the design, synthesis, mode of action, and effectiveness of this class of catalysts is reported. PMID:20235242

Ni, Bukuo; Headley, Allan D

2010-04-19

298

Lithium cation conducting TDI anion-based ionic liquids.  

PubMed

In this paper we present the synthesis route and electrochemical properties of new class of ionic liquids (ILs) obtained from lithium derivate TDI (4,5-dicyano-2-(trifluoromethyl)imidazolium) anion. ILs synthesized by us were EMImTDI, PMImTDI and BMImTDI, i.e. TDI anion with 1-alkyl-3-methylimidazolium cations, where alkyl meant ethyl, propyl and butyl groups. TDI anion contains fewer fluorine atoms than LiPF6 and thanks to C-F instead of P-F bond, they are less prone to emit fluorine or hydrogen fluoride due to the rise in temperature. Use of IL results in non-flammability, which is making such electrolyte even safer for both application and environment. The thermal stability of synthesized compounds was tested by DSC and TGA and no signal of decomposition was observed up to 250 °C. The LiTDI salt was added to ILs to form complete electrolytes. The structures of tailored ILs with lithium salt were confirmed by X-ray diffraction patterns. The electrolytes showed excellent properties regarding their ionic conductivity (over 3 mS cm(-1) at room temperature after lithium salt addition), lithium cation transference number (over 0.1), low viscosity and broad electrochemical stability window. The ionic conductivity and viscosity measurements of pure ILs are reported for reference. PMID:24803282

Niedzicki, Leszek; Karpierz, Ewelina; Zawadzki, Maciej; Dranka, Maciej; Kasprzyk, Marta; Zalewska, Aldona; Marcinek, Marek; Zachara, Janusz; Doma?ska, Urszula; Wieczorek, W?adys?aw

2014-06-21

299

Effective viscosities in thin ionic micellar liquid films  

SciTech Connect

Thin liquid films stabilized by surfactants above the critical micelle concentration exhibit stratification or stepwise dynamic thinning. A continuum hydrodynamic model is outlined for stepwise film thinning that incorporates equilibrium micellar structuring through self-consistent oscillatory disjoining pressures and effective viscosities. Effective viscosities as functions of thickness are evaluated with an extension of the local average density model, considering dilute colloidal suspension shear viscosities and solvent effects. To establish local shear viscosities, structured DFT micellar profiles, coarse-grained densities, and disjoining pressure are used. Ionic micelles and other colloidal systems with repulsive interactions show structured effective viscosities that are generally less than the corresponding homogeneous solution shear viscosity, bounded by the pure solvent viscosity and that of the bulk micellar solution. For 0.1 and 0.2-M sodium dodecylsulfate micellar solutions, the effective viscosities are less than 5 and 10%, respectively, below the homogeneous fluid viscosity, except at small thicknesses, indicating that the micellar film thins faster than a pure water film of the same thickness. Calculated thinning curves closely resemble experimental observations in the stepwise thinning behavior, displaying decreasing slopes and increased step durations at later times. Despite the micellar structuring within the film, the ionic micelles do not contribute appreciably to the viscous resistance of the thinning film. Rather, Reynolds` film thinning is obeyed, with the equilibrium oscillatory disjoining pressures driving the step-wise dynamics. The shear viscosity of the ionic micellar film is well approximated by that of the bulk solution.

Pollard, M.L.; Radke, C.J. [Lawrence Berkeley Lab., CA (United States)] [Lawrence Berkeley Lab., CA (United States)

1996-07-01

300

On the formation of a protic ionic liquid in nature.  

PubMed

The practical utility of ionic liquids (ILs) makes the absence (heretofore) of reported examples from nature quite puzzling, given the facility with which nature produces many other types of exotic but utilitarian substances. In that vein, we report here the identification and characterization of a naturally occurring protic IL. It can be formed during confrontations between the ants S.?invicta and N.?fulva. After being sprayed with alkaloid-based S.?invicta venom, N.?fulva detoxifies by grooming with its own venom, formic acid. The mixture is a viscous liquid manifestly different from either of the constituents. Further, we find that the change results as a consequence of formic acid protonation of the N centers of the S.?invicta venom alkaloids. The resulting mixed-cation ammonium formate milieu has properties consistent with its classification as a protic IL. PMID:25045040

Chen, Li; Mullen, Genevieve E; Le Roch, Myriam; Cassity, Cody G; Gouault, Nicolas; Fadamiro, Henry Y; Barletta, Robert E; O'Brien, Richard A; Sykora, Richard E; Stenson, Alexandra C; West, Kevin N; Horne, Howard E; Hendrich, Jeffrey M; Xiang, Kang Rui; Davis, James H

2014-10-27

301

Chiral ionic liquids in chromatographic and electrophoretic separations.  

PubMed

This report provides an overview of the application of chiral ionic liquids (CILs) in separation technology, and particularly in capillary electrophoresis and both gas and liquid chromatography. There is a large number of CILs that have been synthesized and designed as chiral agents. However, only a few have successfully been applied in separation technology. Even though this application of CILs is still in its early stages, the scientific interest is increasing dramatically. This article is focused on the use of CILs as chiral selectors, background electrolyte additives, chiral ligands and chiral stationary phases in electrophoretic and chromatographic techniques. Different examples of CILs, which contain either a chiral cation, a chiral anion or both, are presented in this review article, and their major advantages along with their potential applications in chiral electrophoretic and chromatographic recognition are discussed. PMID:24913367

Kapnissi-Christodoulou, Constantina P; Stavrou, Ioannis J; Mavroudi, Maria C

2014-10-10

302

Static and dynamic electrowetting of an ionic liquid in a solid/liquid/liquid system.  

PubMed

A droplet of an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, bmim.BF(4)) is immersed in an immiscible liquid (n-hexadecane) and electrowetted on a flat Teflon AF1600-coated ITO electrode. The static contact angle decreases significantly when voltage is applied between the droplet and the electrode: from 145 degrees down to 50 degrees (with DC voltage) and 15 degrees (with AC voltage). The electrowetting curves (contact angle versus voltage) are similar to the ones obtained in other solid/liquid/vapor and solid/liquid/liquid systems: symmetric with respect to zero voltage and correctly described by Young-Lippmann equation below saturation. The reversibility is excellent and contact angle hysteresis is minimal (approximately 2 degrees). The step size used in applying the DC voltage and the polarity of the voltage are unimportant. The saturation contact angle cannot be predicted with the simple zero-interfacial tension theory. Spreading (after applying a DC voltage) and retraction (after switching off the voltage) of the droplet is monitored. The base area of the droplet varies exponentially during wetting (exponential saturation) and dewetting (exponential decay). The characteristic time is 20 ms for spreading and 35 ms for retraction (such asymmetry is not observed with water-glycerol mixtures of a similar viscosity). The spreading kinetics (dynamic contact angle versus contact line speed) can be described by the hydrodynamic model (Voinov's equation) for small contact angles and by the molecular-kinetic model (Blake's equation) for large contact angles. The role of viscous and molecular dissipation follows the scheme outlined by Brochard-Wyart and de Gennes. PMID:20507151

Paneru, Mani; Priest, Craig; Sedev, Rossen; Ralston, John

2010-06-23

303

Selective extraction of emerging contaminants from water samples by dispersive liquid–liquid microextraction using functionalized ionic liquids  

Microsoft Academic Search

Functionalized ionic liquids containing the tris(pentafluoroethyl)trifluorophosphate (FAP) anion were used as extraction solvents in dispersive liquid–liquid microextraction (DLLME) for the extraction of 14 emerging contaminants from water samples. The extraction efficiencies and selectivities were compared to those of an in situ IL DLLME method which uses an in situ metathesis reaction to exchange 1-butyl-3-methylimidazolium chloride (BMIM-Cl) to 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMIM-NTf2).

Cong Yao; Tianhao Li; Pamela Twu; William R. Pitner; Jared L. Anderson

2011-01-01

304

Using Ionic Liquids in Selective Hydrocarbon Conversion Processes  

SciTech Connect

This is the Final Report of the five-year project Using Ionic Liquids in Selective Hydrocarbon Conversion Processes (DE-FC36-04GO14276, July 1, 2004- June 30, 2009), in which we present our major accomplishments with detailed descriptions of our experimental and theoretical efforts. Upon the successful conduction of this project, we have followed our proposed breakdown work structure completing most of the technical tasks. Finally, we have developed and demonstrated several optimized homogenously catalytic methane conversion systems involving applications of novel ionic liquids, which present much more superior performance than the Catalytica system (the best-to-date system) in terms of three times higher reaction rates and longer catalysts lifetime and much stronger resistance to water deactivation. We have developed in-depth mechanistic understandings on the complicated chemistry involved in homogenously catalytic methane oxidation as well as developed the unique yet effective experimental protocols (reactors, analytical tools and screening methodologies) for achieving a highly efficient yet economically feasible and environmentally friendly catalytic methane conversion system. The most important findings have been published, patented as well as reported to DOE in this Final Report and our 20 Quarterly Reports.

Tang, Yongchun; Periana, Roy; Chen, Weiqun; van Duin, Adri; Nielsen, Robert; Shuler, Patrick; Ma, Qisheng; Blanco, Mario; Li, Zaiwei; Oxgaard, Jonas; Cheng, Jihong; Cheung, Sam; Pudar, Sanja

2009-09-28

305

Ionic liquids and ultrasound in combination: synergies and challenges.  

PubMed

Ionic liquids, as reaction media, and sonochemistry are two recently developing fields of chemistry that present some similarities. Firstly, they constitute separately unconventional approaches to reaction chemistry that, in many cases, generate improvements in yield, rate and selectivity compared to classical chemistry, or even change the mechanisms or products expected. In addition, both are often associated with green chemistry concepts as a result of their properties and their possible eco-friendly uses. A recent trend has been to combine these two technologies in a range of different applications and the results demonstrate very significant and occasionally surprising synergetic effects. Here we critically review the advantages and limitations of the ionic liquid/ultrasound combination in different applications in chemistry, to understand how, and in which respects, it could become an essential tool of sustainable chemistry in the future. Many practical and theoretical aspects associated with this combination of techniques are not understood or resolved and we discus where fundamental studies might further advance this field. PMID:25198613

Chatel, G; MacFarlane, D R

2014-12-01

306

Ionic liquid/water mixtures: from hostility to conciliation.  

PubMed

Water was originally inimical to ionic liquids (ILs) especially in the analysis of their detailed properties. Various data on the properties of ILs indicate that there are two ways to design functions of ionic liquids. The first is to change the structure of component ions, to provide "task-specific ILs". The second is to mix ILs with other components, such as other ILs, organic solvents or water. Mixing makes it easy to control the properties of the solution. In this strategy, water is now a very important partner. Below, we summarise our recent results on the properties of IL/water mixtures. Stable phase separation is an effective method in some separation processes. Conversely, a dynamic phase change between a homogeneous mixture and separation of phases is important in many fields. Analysis of the relation between phase behaviour and the hydration state of the component ions indicates that the pattern of phase separation is governed by the hydrophilicity of the ions. Sufficiently hydrophilic ions yielded ILs that are miscible with water, and hydrophobic ions gave stable phase separation with water. ILs composed of hydrophobic but hydrated ions undergo a dynamic phase change between a homogeneous mixture and separate phases according to temperature. ILs having more than seven water molecules per ion pair undergo this phase transition. These dynamic phase changes are considered, with some examples, and application is made to the separation of water-soluble proteins. PMID:22683915

Kohno, Yuki; Ohno, Hiroyuki

2012-07-21

307

Dialkylimidazolium ionic liquids hydrolyze cellulose under mild conditions.  

PubMed

The average molecular weight of cellulose derived from filter paper, poplar, and Avicel decreases by up to two orders of magnitude during typical mild dissolution protocols using ionic liquids (ILs). About an order of magnitude greater cellulose depolymerization rate during ionic liquid dissolution occurs in 1-butyl-3-methylimidazolium chloride (BmimCl) and 1-ethyl-3-methylimidazolium chloride (EmimCl) compared to 1-ethyl-3-methylimidazolium acetate (EmimOAc), and, unintuitively, greater IL purity results in greater cellulose depolymerization. The following data support the mechanism of cellulose hydrolysis to be acid-catalyzed: (i) increase in number of reducing ends following cellulose dissolution in IL; (ii) addition of N-methylimidazolium base suppresses cellulose depolymerization during dissolution in IL; (iii) small amounts of glucose and traces of hydroxymethyl furfural are present following cellulose dissolution in IL. The acid is presumably synthesized via IL decomposition to generate a carbene and proton, consistent with hypothesis derived from molecular modeling. Titration experiments conducted here measure the amount of acid synthesized to be in the 4000 ppm range for high-purity BmimCl IL during mild processing conditions for cellulose dissolution. This data is relevant for understanding the extent of IL decomposition during biomass dissolution. PMID:22550059

Gazit, Oz M; Katz, Alexander

2012-08-01

308

Spatial-decomposition analysis of electrical conductivity in ionic liquid.  

PubMed

The electrical conductivity of room temperature ionic liquid (IL) is investigated with molecular dynamics simulation. A trajectory of 1??s in total is analyzed for the ionic liquid [C4mim][NTf2] (1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and the anion is also called TFSI or TFSA), and the ion motions are examined in direct connection to the conductivity within the framework formulated previously [K.-M. Tu, R. Ishizuka, and N. Matubayasi, J. Chem. Phys. 141, 044126 (2014)]. As a transport coefficient, the computed electrical conductivity is in fair agreement with the experiment. The conductivity is then decomposed into the autocorrelation term of Nernst-Einstein form and the cross-correlation term describing the two-body motions of ions, and the cross-correlation term is further decomposed spatially to incorporate the structural insights on ion configurations into the dynamic picture. It is observed that the ion-pair contribution to the conductivity is not spatially localized and extends beyond the first coordination shell. The extent of localization of the cross-correlation effect in the conductivity is in correspondence to that of the spatial correlation represented by radial distribution function, which persists over nanometer scale. PMID:25554167

Tu, Kai-Min; Ishizuka, Ryosuke; Matubayasi, Nobuyuki

2014-12-28

309

Spatial-decomposition analysis of electrical conductivity in ionic liquid  

NASA Astrophysics Data System (ADS)

The electrical conductivity of room temperature ionic liquid (IL) is investigated with molecular dynamics simulation. A trajectory of 1 ?s in total is analyzed for the ionic liquid [C4mim][NTf2] (1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and the anion is also called TFSI or TFSA), and the ion motions are examined in direct connection to the conductivity within the framework formulated previously [K.-M. Tu, R. Ishizuka, and N. Matubayasi, J. Chem. Phys. 141, 044126 (2014)]. As a transport coefficient, the computed electrical conductivity is in fair agreement with the experiment. The conductivity is then decomposed into the autocorrelation term of Nernst-Einstein form and the cross-correlation term describing the two-body motions of ions, and the cross-correlation term is further decomposed spatially to incorporate the structural insights on ion configurations into the dynamic picture. It is observed that the ion-pair contribution to the conductivity is not spatially localized and extends beyond the first coordination shell. The extent of localization of the cross-correlation effect in the conductivity is in correspondence to that of the spatial correlation represented by radial distribution function, which persists over nanometer scale.

Tu, Kai-Min; Ishizuka, Ryosuke; Matubayasi, Nobuyuki

2014-12-01

310

Polarizability effects on the structure and dynamics of ionic liquids  

SciTech Connect

Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup ?} and PF{sub 6}{sup ?}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (?) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibrium structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.

Cavalcante, Ary de Oliveira, E-mail: arycavalcante@ufam.edu.br [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil); Departamento de Química, Universidade Federal do Amazonas, Av. Rodrigo Octávio, 6200, Coroado, Manaus, AM (Brazil); Ribeiro, Mauro C. C. [Laboratório de Espectroscopia Molecular, Instituto de Química, Universidade de São Paulo, São Paulo, SP C.P. 26077, 05513 970 São Paulo, SP (Brazil)] [Laboratório de Espectroscopia Molecular, Instituto de Química, Universidade de São Paulo, São Paulo, SP C.P. 26077, 05513 970 São Paulo, SP (Brazil); Skaf, Munir S. [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil)] [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil)

2014-04-14

311

Ionic liquid-modified materials for solid-phase extraction and separation: a review.  

PubMed

In recent years, materials science has propelled to the research forefront. Ionic liquids with unique and fascinating properties have also left their footprints to the developments of materials science during the last years. In this review we highlight some of their recent advances and provide an overview at the current status of ionic liquid-modified materials applied in solid-phase extraction, liquid and gas chromatography and capillary electrochromatography with reference to recent applications. In addition, the potential of ionic liquids in the modification of capillary inner wall in capillary electrophoresis is demonstrated. The main target material modified with ionic liquids is silica, but polymers and monoliths have recently joined the studies. Although imidazolium is still clearly the most commonly used ionic liquid for the covalently modification of materials, the exploitation of pyridinium and phosphonium will most probably increase in the future. PMID:22244164

Vidal, Lorena; Riekkola, Marja-Liisa; Canals, Antonio

2012-02-17

312

TOPICAL REVIEW: Molecular simulation of ionic liquids: current status and future opportunities  

NASA Astrophysics Data System (ADS)

Ionic liquids are salts that are liquid near ambient conditions. Interest in these unusual compounds has exploded in the last decade, both at the academic and commercial level. Molecular simulations based on classical potentials have played an important role in helping researchers understand how condensed phase properties of these materials are linked to chemical structure and composition. Simulations have also predicted many properties and unexpected phenomena that have subsequently been confirmed experimentally. The beneficial impact molecular simulations have had on this field is due in large part to excellent timing. Just when computing power and simulation methods matured to the point where complex fluids could be studied in great detail, a new class of materials virtually unknown to experimentalists came on the scene and demanded attention. This topical review explores some of the history of ionic liquid molecular simulations, and then gives examples of the recent use of molecular dynamics and Monte Carlo simulation in understanding the structure of ionic liquids, the sorption of small molecules in ionic liquids, the nature of ionic liquids in the vapor phase and the dynamics of ionic liquids. This review concludes with a discussion of some of the outstanding problems facing the ionic liquid modeling community and how condensed phase molecular simulation experts not presently working on ionic liquids might help advance the field.

Maginn, E. J.

2009-09-01

313

Exploring gas-phase ionic liquid aggregates by mass spectrometry and computational chemistry   

E-print Network

Ionic liquids (IL) are salts which are liquid at low temperatures, typically with melting points under 100 °C. In recent years ILs have been treated as novel solvents and used in a wide variety of applications such as ...

Gray, Andrew Peter

2012-06-22

314

Ionic Liquids and New Proton Exchange Membranes for Fuel Cells  

NASA Technical Reports Server (NTRS)

There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research Center during this summer is to develop and characterize proton exchange membranes doped with ionic liquids. The main techniques used to characterize these materials are: Impedance Spectroscopy, NMR, DSC, TGA, DMA, IR, and SEM ...

Belieres, Jean-Philippe

2004-01-01

315

Enhanced electrical transport in ionic liquid dispersed TMAI-PEO solid polymer electrolyte  

SciTech Connect

A polymer composite is prepared by dispersing ionic liquid [Bmim][BF{sub 4}] in Polyethylene oxide-tetra methyl ammonium iodide composite and subsequent microwave treatment. X-ray diffraction patterns confirm the composite nature. To explore possibility of proton conductivity in these films, electrical transport is studied by impedance spectroscopy and DC polarization. It is revealed that addition of ionic liquid in host TMAI-PEO solid polymer electrolyte enhances the conductivity by ? 2 orders of magnitude. Polarization measurements suggest that composites are essentially ion conducting in nature. The maximum ionic conductivity is found to be ?2 × 10{sup ?5} for 10 wt % ionic liquid.

Gupta, Neha [Physics Department, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India and Department of Physics, JECRC University, Jaipur-303905, Rajasthan (India); Rathore, Munesh, E-mail: adalvi@pilani.bits-pilani.ac.in; Dalvi, Anshuman, E-mail: adalvi@pilani.bits-pilani.ac.in [Physics Department, Birla Institute of Technology and Science, Pilani-333031, Rajasthan (India); Kumar, Anil [Chemistry Department, Birla Institute of Technology and Science, Pilani-333031, Rajasthan (India)

2014-04-24

316

Low-frequency Raman spectra and fragility of imidazolium ionic liquids  

SciTech Connect

Raman spectra within the 5-200 cm{sup -1} range have been recorded as a function of temperature for different ionic liquids based on imidazolium cations. A correlation has been found between fragility and the temperature dependence of the strength of fast relaxational motions. Understanding quasielastic scattering as the relaxational contribution to ionic mean-squared displacement elucidates some effects on ionic liquids' fragility resulting from modifications in the chemical structure.

Ribeiro, Mauro C. C. [Laboratorio de Espectroscopia Molecular, Instituto de Quimica, Universidade de Sao Paulo, CP 26077, CEP 05513-970 Sao Paulo, Sao Paulo (Brazil)

2010-07-14

317

Tuning ionic liquids for high gas solubility and reversible gas sorption  

Microsoft Academic Search

New 1,1,3,3-tetramethylguanidinium-based ionic liquids have been synthesized and their ability to reversibly absorb gaseous sulfur dioxide and ammonia investigated. It was found that up to 2moles of gas at 1bar could be absorbed per mole of ionic liquid at room temperature and almost completely desorbed by heating or lowering of the pressure. No change in absorbing capacity of the ionic

Jun Huang; Anders Riisager; Rolf W. Berg; Rasmus Fehrmann

2008-01-01

318

Evaluation of basic operating characteristics of ion conductive polymer actuator using ionic liquid  

Microsoft Academic Search

Nafion®-based ionic polymer-metal composites (IPMCs), whose counter ions are exchanged using ionic liquids, are fabricated. EMIBF4, BMIBF4, and BMIPF6 are used as ionic liquids. During long-term (180min.) operation in air, changes in curvature of IPMCs are about 10% of the initial one. This change is enough smaller than that of conventional IPMCs using metallic counter ion. The curvature is larger

Takeshi Yokota; Kunitomo Kikuchi; Shigeki Tsuchitani

2008-01-01

319

Evaluation of basic operating characteristics of ion conductive polymer actuator using ionic liquid  

Microsoft Academic Search

Nafionreg-based ionic polymer-metal composites (IPMCs), whose counter ions are exchanged using ionic liquids, are fabricated. EMIBF4, BMIBF4, and BMIPF6 are used as ionic liquids. During long-term (180 min.) operation in air, changes in curvature of IPMCs are about 10% of the initial one. This change is enough smaller than that of conventional IPMCs using metallic counter ion. The curvature is

Kunitomo Kikuchi; Masafumi Miwa; Shigeki Tsuchitani

2008-01-01

320

Synthesis and Characterization of Novel Dimeric Ionic Liquids by Conventional Approaches  

PubMed Central

The 1H-NMR shifts of the imidazolium protons of some novel dimeric ionic liquids were examined in various deuterated solvents. Interactions between the solvent and the imidazolium salt of butyl substituted ionic liquids were observed to give higher chemical shifts than methyl substitution. PMID:19325800

Ganesan, Kilivelu; Alias, Yatimah

2008-01-01

321

Comparison of three ionic liquid-tolerant cellulases by molecular dynamics.  

PubMed

We have employed molecular dynamics to investigate the differences in ionic liquid tolerance among three distinct family 5 cellulases from Trichoderma viride, Thermogata maritima, and Pyrococcus horikoshii. Simulations of the three cellulases were conducted at a range of temperatures in various binary mixtures of the ionic liquid 1-ethyl-3-methyl-imidazolium acetate with water. Our analysis demonstrates that the effects of ionic liquids on the enzymes vary in each individual case from local structural disturbances to loss of much of one of the enzyme's secondary structure. Enzymes with more negatively charged surfaces tend to resist destabilization by ionic liquids. Specific and unique structural changes in the enzymes are induced by the presence of ionic liquids. Disruption of the secondary structure, changes in dynamical motion, and local changes in the binding pocket are observed in less tolerant enzymes. Ionic-liquid-induced denaturation of one of the enzymes is indicated over the 500 ns timescale. In contrast, the most tolerant cellulase behaves similarly in water and in ionic-liquid-containing mixtures. Unlike the heuristic approaches that attempt to predict enzyme stability using macroscopic properties, molecular dynamics allows us to predict specific atomic-level structural and dynamical changes in an enzyme's behavior induced by ionic liquids and other mixed solvents. Using these insights, we propose specific experimentally testable hypotheses regarding the origin of activity loss for each of the systems investigated in this study. PMID:25692593

Jaeger, Vance; Burney, Patrick; Pfaendtner, Jim

2015-02-17

322

Transparent and colourless room temperature ionic liquids having high refractive index over 1.60.  

PubMed

Transparent and colourless ionic liquids with refractive index over 1.60 were synthesised by combining 1-benzyl-3-methylimidazolium or hexyltriphenylphosphonium cations with suitable anions. There is a positive relation between their refractive index and Kamlet-Taft parameters, especially dipolarity/polarisability, suggested as a potential parameter to design ionic liquids with high refractive index. PMID:25319716

Kayama, Yoko; Ichikawa, Takahiro; Ohno, Hiroyuki

2014-12-01

323

Technical Highlights for July 2012 New Collaboration Underway to Investigate Ionic Liquids for Enhancing Engine Efficiency  

E-print Network

for Enhancing Engine Efficiency A new Cooperative Research and Development Agreement (CRADA), No. NFE-12) #0000239 award, "Ionic Liquids as Multi-Functional Lubricant Additives to Enhance Engine Efficiency-soluble ionic liquids as engine oil additives to substantially improve the mechanical efficiency of internal

324

Enthalpies of dissolution of ionic liquids in water-acetonitrile solutions at 298.15 K  

NASA Astrophysics Data System (ADS)

Enthalpies of dissolution of ionic liquids [C4mim]OTf, [C4mim]NTf2, and [C4mpy]NTf2 are measured in studying the thermodynamic characteristics of solvation and ion association for ionic liquids in nonaqueous and mixed solvents in acetonitrile-water of three compositions at 298.15 K. Standard enthalpies of solution are determined.

Belov, A. V.; Solov'ev, S. N.

2015-02-01

325

The Tribological Properties of Ionic Liquids and Their Improvement by Additives  

NASA Astrophysics Data System (ADS)

The tribological properties of ionic liquids are outlined in terms of their chemical structure. Advantages of imidazolium cation and bis (tetrafluoromethylsulfonyl) imide are pointed out. Improvement in the tribological properties is possible by applying additives such as simple carboxylic acids. Requirements in ionic liquids as advanced lubricants are outlined.

Minami, Ichiro; Mori, Shigeyuki

326

Unraveling the photoelectrochemical properties of ionic liquids: cognizance of partially reversible redox activity.  

PubMed

Ionic liquid based electrolytes are gaining great interest in the field of photoenergy conversion. We have found that the ionic liquids namely BMIm Cl, BMIm PF6 and BMIm Tf2N inherently offer redox activity. The device performance of the photoelectrochemical (PEC) cells of the configuration PbOx (0.25 cm(2))|blank ionic liquids|platinum (2 cm(2)) was analyzed in detail to get insights into the working principle of such systems. It was found that partially reversible redox ion pairs diminish the performance of such cells as power generating devices. The partial redox activity of the ionic liquids was confirmed by a number of observations derived from the PEC spectra. The important parameter, Vredox, which determines the performance of any PEC cell was also calculated for all the ionic liquids. The difficulties that arise in high frequency C-V measurements for ionic liquid systems were overcome by choosing the appropriate probing frequency. The evaluated Vredox of BMIm Cl, BMIm PF6 and BMIm Tf2N ionic liquids was found to be -0.30, -0.20 and -0.78 V (vs. NHE), respectively. This study will be beneficial to understand the role of ionic liquids as redox active electrolyte media in several applications. PMID:25234329

Patel, Dipal B; Chauhan, Khushbu R; Mukhopadhyay, Indrajit

2014-11-01

327

Method of purifying a gas stream using 1,2,3-triazolium ionic liquids  

DOEpatents

A method for separating a target gas from a gaseous mixture using 1,2,3-triazolium ionic liquids is presented. Industrial effluent streams may be cleaned by removing carbon dioxide from the stream by contacting the effluent stream with a 1,2,3-triazolium ionic liquid compound.

Luebke, David; Nulwala, Hunald; Tang, Chau

2014-12-09

328

Ionic Liquid as a Solvent and Catalyst for Acylation of Maltodextrin  

Technology Transfer Automated Retrieval System (TEKTRAN)

Catalyst-free esterification of maltodextrin was carried out in ionic liquid. Stearate esters of maltodextrin were obtained in various degree of substitution (DS) when vinyl stearate or stearic acid was heated with maltodextrin in ionic liquid, 1-butyl-3-methylimidazolium cyanamide (bmim[dca]). Re...

329

Synthesis and characterization of novel dimeric ionic liquids by conventional approaches.  

PubMed

The (1)H-NMR shifts of the imidazolium protons of some novel dimeric ionic liquids were examined in various deuterated solvents. Interactions between the solvent and the imidazolium salt of butyl substituted ionic liquids were observed to give higher chemical shifts than methyl substitution. PMID:19325800

Ganesan, Kilivelu; Alias, Yatimah

2008-06-01

330

Investigation of Nanostructure in Room Temperature Ionic Liquids using Electronic Excitation Transfer  

E-print Network

for this phenomenon has be seen in fluorescence21,22 and optical Kerr effect studies.23 This partitioning appearsInvestigation of Nanostructure in Room Temperature Ionic Liquids using Electronic Excitation temperature ionic liquid (RTIL) 1-methyl-3- octylimidazolium chloride using time dependent fluorescence

Fayer, Michael D.

331

Surface tensions of imidazolium based ionic liquids: Anion, cation, temperature and water effect  

Microsoft Academic Search

This work addresses the experimental measurements of the surface tension of eight imidazolium based ionic liquids (ILs) and their dependence with the temperature (288–353 K) and water content. The set of selected ionic liquids was chosen to provide a comprehensive study of the influence of the cation alkyl chain length, the number of cation substitutions and the anion on the

Mara G. Freire; Pedro J. Carvalho; Ana M. Fernandes; Isabel M. Marrucho; António J. Queimada; João A. P. Coutinho

2007-01-01

332

Fine tuning the ionic liquid-vacuum outer atomic surface using ion mixtures.  

PubMed

Ionic liquid-vacuum outer atomic surfaces can be created that are remarkably different from the bulk composition. In this communication we demonstrate, using low-energy ion scattering (LEIS), that for ionic liquid mixtures the outer atomic surface shows significantly more atoms from anions with weaker cation-anion interactions (and vice versa). PMID:25236677

Villar-Garcia, Ignacio J; Fearn, Sarah; Ismail, Nur L; McIntosh, Alastair J S; Lovelock, Kevin R J

2014-09-19

333

Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive  

DOEpatents

An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

2014-08-19

334

Draft Genome Sequence of the Ionic Liquid-Tolerant Bacterium Bacillus amyloliquefaciens CMW1  

PubMed Central

Here, we report the draft genome sequence of an ionic liquid-tolerant bacterium, Bacillus amyloliquefaciens CMW1, which is newly isolated from a Japanese fermented soybean paste. The genome sequence will allow for a characterization of the molecular mechanism of its ionic liquid tolerance. PMID:25323721

Hirose, Yuu; Misawa, Naomi; Hurunaka, Kohei; Kishimoto, Noriaki

2014-01-01

335

Lyotropic liquid crystal phases of phytantriol in a protic ionic liquid with fluorous anion.  

PubMed

The phase behaviour of phytantriol in the protic ionic liquid (PIL) 1-methylimidazolium pentadecafluorooctanoate (MImOF) and four different MImOF-water compositions was investigated by small- and wide-angle X-ray scattering (SAXS/WAXS), cross polarised optical microscopy (CPOM) and infrared spectroscopy (IR). MImOF is a distinct protic ionic liquid in that it contains a fluorocarbon anion and a hydrocarbon cation. This leads to MImOF having an unusual liquid nanostructure, such that it contains fluorocarbon, hydrocarbon and polar domains. No lyotropic liquid crystal phases were observed for phytantriol in neat MImOF. However, on addition of water, lamellar, cubic Ia3¯d and micellar phases were observed for specific MImOF-phytantriol-water compositions at room temperature, and up to 60 °C. The phase behaviour for phytantriol in the solvent mixture of 25 wt%-MImOF-75 wt%-water was the most similar to the phytantriol-water phase diagram. Only this MImOF-water composition supported the Ia3¯d cubic phase, which had a lattice parameter between 100-140 Å compared to 86-100 Å in deionised water, indicating significant swelling due to the MImOF. IR spectroscopy showed that a percentage of the water molecules were hydrogen bonded to the N-H of the MIm cation, and this water decreased the hydrogen bonding present between the cation and anion of the ionic liquid. This investigation furthers our understanding of the interaction of ionic liquids with solutes, and the important role that the different IL nanostructures can have on influencing these interactions. PMID:25177837

Shen, Yan; Greaves, Tamar L; Kennedy, Danielle F; Weerawardena, Asoka; Kirby, Nigel; Song, Gonghua; Drummond, Calum J

2014-10-21

336

Morphology, Modulus, and Ionic Conductivity of a Triblock Terpolymer/Ionic Liquid Electrolyte Membrane  

NASA Astrophysics Data System (ADS)

A key challenge in designing solid polymer electrolytes is increasing bulk mechanical properties such as stiffness, without sacrificing ionic conductivity. Previous work has focused on diblock copolymers, where one block is a stiff, glassy insulator and the other is a flexible ion conductor. Disadvantages of these systems include difficulty in achieving network morphologies, which minimize dead-ends for ion transport, and the necessity to operate below both the Tg of the glassy block and the order-disorder temperature. We have investigated the triblock terpolymer poly[isoprene-b-(styrene-co-norbornenylethyl styrene)-b-ethylene oxide] because it self-assembles into a triply-continuous network structure. SAXS and TEM revealed the bulk morphology of INSO to be disordered but strongly correlated after solvent casting from dichloromethane. This apparent disordered network structure was retained after chemical crosslinking and addition of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide. Impedance spectroscopy confirmed the expected conductivity for ions confined to continuous PEO channels. The mechanical response before and after crosslinking showed an increase in the material modulus.

McIntosh, Lucas D.; Lodge, Timothy P.

2013-03-01

337

Effect of ionic liquid on activity, stability, and structure of enzymes: a review.  

PubMed

Ionic liquids have shown their potential as a solvent media for many enzymatic reactions as well as protein preservation, because of their unusual characteristics. It is also observed that change in cation or anion alters the physiochemical properties of the ionic liquids, which in turn influence the enzymatic reactions by altering the structure, activity, enatioselectivity, and stability of the enzymes. Thus, it is utmost need of the researchers to have full understanding of these influences created by ionic liquids before choosing or developing an ionic liquid to serve as solvent media for enzymatic reaction or protein preservation. So, in the present review, we try to shed light on effects of ionic liquids chemistry on structure, stability, and activity of enzymes, which will be helpful for the researchers in various biocatalytic applications. PMID:22732130

Naushad, Mu; Alothman, Zied Abdullah; Khan, Abbul Bashar; Ali, Maroof

2012-11-01

338

Ionic-liquid materials for the electrochemical challenges of the future  

NASA Astrophysics Data System (ADS)

Ionic liquids are room-temperature molten salts, composed mostly of organic ions that may undergo almost unlimited structural variations. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal/semiconductor electrodeposition, and as batteries and fuel cells where conventional media, organic solvents (in batteries) or water (in polymer-electrolyte-membrane fuel cells), fail. Biology and biomimetic processes in ionic liquids are also discussed. In these decidedly different materials, some enzymes show activity that is not exhibited in more traditional systems, creating huge potential for bioinspired catalysis and biofuel cells. Our goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas. As well as informing materials scientists, we hope to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.

Armand, Michel; Endres, Frank; Macfarlane, Douglas R.; Ohno, Hiroyuki; Scrosati, Bruno

2009-08-01

339

High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites  

SciTech Connect

Composite membranes that exhibit fast proton transport at elevated temperatures are needed for proton-exchange-membrane fuel cells and other electrochemical devices operating in the 100 to 200 C range. Traditional water-swollen proton conducting membranes such as the Nafion membrane suffer from the volatility of water in this temperature range leading to a subsequent drop in conductivity. Here the authors demonstrate that perfluorinated ionomer membranes such as the Nafion membrane can be swollen with ionic liquids giving composite free-standing membranes with excellent stability and proton conductivity in this temperature range while retaining the low volatility of the ionic liquid. Ionic conductivities in excess of 0.1 S/cm at 180 C have been demonstrated using the ionic liquid 1-butyl, 3-methyl imidazolium trifluoromethane sulfonate. Comparisons between the ionic-liquid-swollen membrane and the neat liquid itself indicate substantial proton mobility in these composites.

Doyle, M.; Choi, S.K.; Proulx, G.

2000-01-01

340

Phase Behavior and Ionic Conductivity of Concentrated Solutions of Polystyrene-Poly(ethylene oxide) Diblock Copolymers in an Ionic Liquid  

SciTech Connect

Concentrated solutions of poly(styrene-b-ethylene oxide) (PS-PEO) diblock copolymers were prepared using the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMI][TFSI] as the solvent. The self-assembled microstructures adopted by the copolymer solutions have been characterized using small-angle X-ray scattering. Lyotropic mesophase transitions were observed, with a progression from hexagonally packed cylinders of PEO, to lamellae, to hexagonally packed cylinders of PS upon increasing [EMI][TFSI] content. The change in lamellar domain spacing with ionic liquid concentration was found to be comparable to that reported for other block copolymers in strongly selective solvents. The ionic conductivity of the concentrated PS-PEO/[EMI][TFSI] solutions was measured via impedance spectroscopy, and ranged from 1 x 10{sup -7} to 1 x 10{sup -3} S/cm at temperatures from 25-100 C. Additionally, the ionic conductivity of the solutions was found to increase with both ionic liquid concentration and molecular weight of the PEO blocks. The ionic conductivity of PEO homopolymer/[EMI][TFSI] solutions was also measured in order to compare the conductivity of the PS-PEO solutions to the expected limit for a lamellar sample with randomly oriented microstructure grains.

Simone, Peter M.; Lodge, Timothy P.; (UMM)

2010-03-16

341

Magnetomotive room temperature dicationic ionic liquid: A new concept toward centrifuge-less dispersive liquid-liquid microextraction.  

PubMed

A new centrifuge-less dispersive liquid-liquid microextraction technique based on application of magnetomotive room temperature dicationic ionic liquid followed by electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of trace amount of gold and silver in water and ore samples, for the first time. Magnetic ionic liquids not only have the excellent properties of ionic liquids but also exhibit strong response to an external magnetic field. These properties provide more advantages and potential application prospects for magnetic ionic liquids than conventional ones in the fields of extraction processes. In this work, thio-Michler's ketone (TMK) was used as chelating agent to form Ag/Au-TMK complexes. Several important factors affecting extraction efficiency including extraction time, rate of vortex agitator, pH of sample solution, concentration of the chelating agent, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) were 3.2 and 7.3ngL(-1) with the preconcentration factors of 245 and 240 for Au and Ag, respectively. The precision values (RSD%, n=7) were 5.3% and 5.8% at the concentration level of 0.05?gL(-1) for Au and Ag, respectively. The relative recoveries for the spiked samples were in the acceptable range of 96-104.5%. The results demonstrated that except Hg(2+), no remarkable interferences are created by other various ions in the determination of Au and Ag, so that the tolerance limits (WIon/WAu or Ag) of major cations and anions were in the range of 250-1000. The validated method was successfully applied for the analysis of Au and Ag in some water and ore samples. PMID:25528072

Beiraghi, Asadollah; Shokri, Masood; Seidi, Shahram; Godajdar, Bijan Mombani

2015-01-01

342

Ionic Clusters vs. Shear Viscosity in Aqueous Amino Acid Ionic Liquids  

E-print Network

Aqueous solutions of amino acid ionic liquids (AAILs) are of high importance for applications in protein synthesis and solubilization, enzymatic reactions, templates for synthetic study, etc. This work employs molecular dynamics simulations using our own force field to investigate shear viscosity and cluster compositions of three 1-ethyl-3-methylimidazolium (emim) amino acid salts: [emim][ala], [emim][met], and [emim][trp] solutions (2, 5, 10, 20, 30 mol%) in water at 310 K. We, for the first time, establish simple correlations between cluster composition, on one side, and viscosity, on another side. We argue that knowledge about any of these properties alone is enough to derive insights regarding the missed properties, using the reported correlations. The numerical observations and qualitative correlations are discussed in the context of chemical structure of the amino acid anions, [ala], [met], and [trp]. The reported results will enhance progress in the efficient design and applications of AAILs and their ...

Chaban, Vitaly V

2014-01-01

343

Contracting cardiomyocytes in hydrophobic room-temperature ionic liquid  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Biocompatible room-temperature ionic liquid was applied on beating cardiomyocyte. Black-Right-Pointing-Pointer The lifetime of beating cardiomyocytes was depended on anion functional group. Black-Right-Pointing-Pointer A longer lifetime was recorded for no functional group on alkyl chain on their anion. Black-Right-Pointing-Pointer Amino group on alkyl chain and fluorine in anion induced fatal condition changes. Black-Right-Pointing-Pointer We reported liquid electrolyte interface to stimulate cardiomyocytes. -- Abstract: Room-temperature ionic liquids (RTILs) are drawing attention as a new class of nonaqueous solvents to replace organic and aqueous solvents for chemical processes in the liquid phase at room temperature. The RTILs are notable for their characteristics of nonvolatility, extremely low vapor pressure, electric conductivity, and incombustibility. These distinguished properties of RTILs have brought attention to them in applications with biological cells and tissue in vacuum environment for scanning electron microscopy, and in microfluidic devices for micro-total analysis system (micro-TAS). Habitable RTILs could increase capability of nonaqueous micro-TAS for living cells. Some RTILs seemed to have the capability to replace water in biological applications. However, these RTILs had been applied to just supplemental additives for biocompatible test, to fixed cells as a substitute for an aqueous solution, and to simple molecules. None of RTILs in which directly soaks a living cell culture. Therefore, we demonstrated the design of RTILs for a living cell culture and a liquid electrolyte to stimulate contracting cardiomyocytes using the RTILs. We assessed the effect of RTILs on the cardiomyocytes using the beating lifetime to compare the applicability of RTILs for biological applications. Frequent spontaneous contractions of cardiomyocytes were confirmed in amino acid anion RTILs [P{sub 8,8,8,8}][Leu] and [P{sub 8,8,8,8}][Ala], phosphoric acid derivatives [P{sub 8,8,8,8}][MeO(H)PO{sub 2}], and [P{sub 8,8,8,8}][C{sub 7}CO{sub 2}]. The anion type of RTILs had influence on applicable characteristics for the contracting cardiomyocyte. This result suggested the possibility for biocompatible design of hydrophobic group RTILs to achieve biological applications with living cells.

Hoshino, Takayuki [Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan) [Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Bio-Application and System Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan); Fujita, Kyoko [Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan)] [Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan); Higashi, Ayako; Sakiyama, Keiko [Department of Bio-Application and System Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan)] [Department of Bio-Application and System Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan); Ohno, Hiroyuki [Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan)] [Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan); Morishima, Keisuke, E-mail: morishima@mech.eng.osaka-u.ac.jp [Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan) [Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Bio-Application and System Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan)

2012-10-19

344

Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.  

PubMed

Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. PMID:22244134

Pino, Verónica; Afonso, Ana M

2012-02-10

345

Ion transport and softening in a polymerized ionic liquid.  

PubMed

Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this work, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current-voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as the Wien effect). Onsager's theory of the Wien effect coupled with the Poisson-Nernst-Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. The observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field. PMID:25463322

Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; Tselev, Alexander; Kravchenko, Ivan I; Berdzinski, Stefan; Strehmel, Veronika; Ovchinnikova, Olga S; Minutolo, Joseph A; Sangoro, Joshua R; Agapov, Alexander L; Sokolov, Alexei P; Kalinin, Sergei V; Sumpter, Bobby G

2014-12-18

346

Ferrocenyl-phosphonium ionic liquids - synthesis, characterisation and electrochemistry.  

PubMed

New unsymmetrically substituted ferrocenyl-phosphonium ionic liquids (ILs) [FcPR2R']NTf2 are synthesized by two or three step syntheses starting from ferrocene, Fc = (C5H5)Fe(C5H4); R = Me, (n)Bu, (n)Hex, Ph; R' = Me, (n)Pr, (n)Bu, Ph; NTf2 = N(SO2CF3)2. The selective synthesis of alkyl phosphines FcPR2via a Friedel-Crafts phosphorylation is highlighted as an alternative for the standard protocol commonly used for ferrocenyl arylphosphines involving lithiation of FcH followed by phosphorylation. The influence of the P-substituents on thermal stability, electrochemical potential, chemical shift, and UV-Vis absorption behavior of the ILs is studied. The phosphonium group acts both as an ionic tag and as an electron-withdrawing substituent directly bound at the Cp-ring position. Therefore the title compounds are attractive for further studies to use them as tunable redox mediators for (photo)electrochemical devices such as dye sensitized solar cells (DSSCs) or redox flow batteries. PMID:24441282

Kübler, Paul; Sundermeyer, Jörg

2014-03-01

347

Laser desorption from a room temperature ionic liquid  

NASA Astrophysics Data System (ADS)

We report laser desorption from a Room Temperature Ionic Liquid (RTIL) as a novel source for time of flight mass spectrometry. We use the 2nd harmonic of an Nd:YAG laser to deposit intensities of 1-50 MW/cm2 via backside illumination onto our RTIL desorption sample. A microstructured metal grid situated on top of a glass microscope slide coated with RTIL serves as our desorption sample. The RTIL we use, 1-Butyl, 3-Methylimidazolium Hexafluorophosphate, remains liquid at pressures below 10-8 torr. The use of liquid desorption sample allows for improved surface conditions, homogeneity and sample life as compared to Matrix Assisted Laser Desorption Ionization (MALDI) techniques. Our desorption technique is also unique as it allows the study of both multiphoton and acoustic desorption processes within the same time of flight spectra. Our technique yields intrinsically high resolution, low noise data. We observe differences between ion species in their preference for desorption by a particular desorption method. Specifically, we observe desorption solely by acoustic means of an entire RTIL molecule adducted with an RTIL cation. Finally, we report the applicability of this technique for the desorption of biomolecules.

Harris, Peter Ronald

348

Rheology of protic ionic liquids and their mixtures.  

PubMed

The rheological properties of five pure protic ionic liquids (ILs), ethylammonium nitrate (EAN), propylammonium nitrate (PAN), ethanolammonium nitrate (EtAN), ethylammonium formate (EAF), and dimethylethylammonium formate (DMEAF), are characterized and interpreted by considering the effects of both the H-bond network and the solvophobic nanostructure of the liquids. The results demonstrate that these effects are not, however, independent or simply additive. At 20 °C, EtAN has the highest zero shear viscosity of 156.1 mPa·s, followed by PAN (89.3 mPa·s), EAN (35.9 mPa·s), EAF (23.1 mPa·s), and DMEAF (9.8 mPa·s). The primary ammonium ILs behave as Newtonian fluids at low shear rates but shear thin at high shear. Fits to the Vogel-Fulcher-Tammann model reveal that nanostructure is not affected appreciably by temperature and that all the ILs studied are of intermediate fragility. The rheology of binary mixtures of these ILs was analyzed and used to demonstrate fundamental differences in the way IL cations and anions interact. IL mixtures containing both nitrate and formate anions resist flow more strongly than the pure liquids, which is a consequence of the difference in hydrogen bonding capacity of the anions. Mixing cations can give rise to complex behavior due to the offsetting effects of hydrogen bonding and solvophobic nanostructure formation. PMID:24102175

Smith, J A; Webber, Grant B; Warr, Gregory G; Atkin, Rob

2013-11-01

349

Amphiphilic self-assembly of alkanols in protic ionic liquids.  

PubMed

Strong cohesive forces in protic ionic liquids (PILs) can induce a liquid nanostructure consisting of segregated polar and apolar domains. Small-angle X-ray scattering has shown that these forces can also induce medium chain length n-alkanols to self-assemble into micelle- and microemulsion-like structures in ethylammonium (EA(+)) and propylammonium (PA(+)) PILs, in contrast to their immiscibility with both water and ethanolammonium (EtA(+)) PILs. These binary mixtures are structured on two distinct length scales: one associated with the self-assembled n-alkanol aggregates and the other with the underlying liquid nanostructure. This suggests that EA(+) and PA(+) enable n-alkanol aggregation by acting as cosurfactants, which EtA(+) cannot do because its terminating hydroxyl renders the cation nonamphiphilic. The primary determining factor for miscibility and self-assembly is the ratio of alkyl chain lengths of the alkanol and PIL cation, modulated by the anion type. These results show how ILs can support the self-assembly of nontraditional amphiphiles and enable the creation of new forms of soft matter. PMID:25068766

Jiang, Haihui Joy; FitzGerald, Paul A; Dolan, Andrew; Atkin, Rob; Warr, Gregory G

2014-08-21

350

Theoretical study of cellobiose hydrolysis to glucose in ionic liquids  

NASA Astrophysics Data System (ADS)

The SN1-type hydrolysis reaction of cellobiose in ionic liquids (ILs) was theoretically investigated. First principles and ab initio quantum chemical methods were used in conjunction with the ‘reference interaction site model self-consistent field with spatial electron density distribution’ (RISM-SCF-SEDD) method. Reaction mechanism pathways are discussed and compared to calculations in gas phase and in aqueous solution. Analysis of solvation effects indicates strong interaction between hydrogen atoms of glucose hydroxyl groups and the anions in ILs, contributing to large stabilization of the reaction product. The calculated activation energy in ILs (24.5 kcal/mol) agrees quantitatively with the experimental value (26.5 kcal/mol).

Nishimura, Yoshifumi; Yokogawa, Daisuke; Irle, Stephan

2014-05-01

351

Stable prenucleation mineral clusters are liquid-like ionic polymers  

PubMed Central

Calcium carbonate is an abundant substance that can be created in several mineral forms by the reaction of dissolved carbon dioxide in water with calcium ions. Through biomineralization, organisms can harness and control this process to form various functional materials that can act as anything from shells through to lenses. The early stages of calcium carbonate formation have recently attracted attention as stable prenucleation clusters have been observed, contrary to classical models. Here we show, using computer simulations combined with the analysis of experimental data, that these mineral clusters are made of an ionic polymer, composed of alternating calcium and carbonate ions, with a dynamic topology consisting of chains, branches and rings. The existence of a disordered, flexible and strongly hydrated precursor provides a basis for explaining the formation of other liquid-like amorphous states of calcium carbonate, in addition to the non-classical behaviour during growth of amorphous calcium carbonate. PMID:22186886

Demichelis, Raffaella; Raiteri, Paolo; Gale, Julian D.; Quigley, David; Gebauer, Denis

2011-01-01

352

Tunable wavelength soft photoionization of ionic liquid vapors  

SciTech Connect

Combined data of photoelectron spectra and photoionization efficiency curves in the near threshold ionization region of isolated ion-pairs from [emim][Tf2N], [emim][Pf2N]and [dmpim][Tf2N]ionic liquid vapors reveal small shifts in the ionization energies of ion-pair systems due to cation and anion substitutions. Shifts towards higher binding energy following anion substitution are attributed to increased electronegativity of the anion itself, while shifts towards lower binding energies following cation substitution are attributed to an increase in the cation-anion distance that causes a lower Coulombic binding potential. The predominant ionization mechanism in the near threshold photon energy region is identified as dissociative ionization, involving dissociation of the ion-pair and the production of intact cations as the positively charged products.

Strasser, Daniel; Goulay, Fabien; Belau, Leonid; Kostko, Oleg; Koh, Christine; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Ahmed, Musahid; Leone, Stephen R.

2009-11-11

353

Ionic liquid-based green processes for energy production.  

PubMed

To mitigate the growing pressure on resource depletion and environment degradation, the development of green processes for the production of renewable energy is highly required. As a class of novel and promising media, ionic liquids (ILs) have shown infusive potential applications in energy production. Aiming to offer a critical overview regarding the new challenges and opportunities of ILs for developing green processes of renewable energy, this article emphasises the role of ILs as catalysts, solvents, or electrolytes in three broadly interesting energy production processes from renewable resources, such as CO2 conversion to fuels and fuel additives, biomass pretreatment and conversion to biofuels, as well as solar energy and energy storage. It is expected that this article will stimulate a generation of new ideas and new technologies in IL-based renewable energy production. PMID:24553494

Zhang, Suojiang; Sun, Jian; Zhang, Xiaochun; Xin, Jiayu; Miao, Qingqing; Wang, Jianji

2014-11-21

354

Stable prenucleation mineral clusters are liquid-like ionic polymers.  

PubMed

Calcium carbonate is an abundant substance that can be created in several mineral forms by the reaction of dissolved carbon dioxide in water with calcium ions. Through biomineralization, organisms can harness and control this process to form various functional materials that can act as anything from shells through to lenses. The early stages of calcium carbonate formation have recently attracted attention as stable prenucleation clusters have been observed, contrary to classical models. Here we show, using computer simulations combined with the analysis of experimental data, that these mineral clusters are made of an ionic polymer, composed of alternating calcium and carbonate ions, with a dynamic topology consisting of chains, branches and rings. The existence of a disordered, flexible and strongly hydrated precursor provides a basis for explaining the formation of other liquid-like amorphous states of calcium carbonate, in addition to the non-classical behaviour during growth of amorphous calcium carbonate. PMID:22186886

Demichelis, Raffaella; Raiteri, Paolo; Gale, Julian D; Quigley, David; Gebauer, Denis

2011-01-01

355

Nonlinear polarization of ionic liquids: theory, simulations, experiments  

NASA Astrophysics Data System (ADS)

Room temperature ionic liquids (RTILs) composed of large, often asymmetric, organic cations and simple or complex inorganic or organic anions do not freeze at ambient temperatures. Their rediscovery some 15 years ago is widely accepted as a ``green revolution'' in chemistry, offering an unlimited number of ``designer'' solvents for chemical and photochemical reactions, homogeneous catalysis, lubrication, and solvent-free electrolytes for energy generation and storage. As electrolytes they are non-volatile, some can sustain without decomposition up to 6 times higher voltages than aqueous electrolytes, and many are environmentally friendly. The studies of RTILs and their applications have reached a critical stage. So many of them can be synthesized - about a thousand are known already - their mixtures can further provide ``unlimited'' number of combinations! Thus, establishing some general laws that could direct the best choice of a RTIL for a given application became crucial; guidance is expected from theory and modelling. But for a physical theory, RTILs comprise a peculiar and complex class of media, the description of which lies at the frontier line of condensed matter theoretical physics: dense room temperature ionic plasmas with ``super-strong'' Coulomb correlations, which behave like glasses at short time-scale, but like viscous liquids at long-time scale. This talk will introduce RTILs to physicists and overview the current understanding of the nonlinear response of RTILs to electric field. It will focus on the theory, simulations, and experimental characterisation of the structure and nonlinear capacitance of the electrical double layer at a charged electrode. It will also discuss pros and contras of supercapacitor applications of RTILs.

Kornyshev, Alexei

2010-03-01

356

Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass  

PubMed Central

Background Lignocellulosic biomass is highly recalcitrant and various pretreatment techniques are needed to facilitate its effective enzymatic hydrolysis to produce sugars for further conversion to bio-based chemicals. Ionic liquids (ILs) are of interest in pretreatment because of their potential to dissolve lignocellulosic materials including crystalline cellulose. Results Four imidazolium-based ionic liquids (ILs) ([C=C2C1im][MeCO2], [C4C1im][MeCO2], [C4C1im][Cl], and [C4C1im][HSO4]) well known for their capability to dissolve lignocellulosic species were synthesized and then used for pretreatment of substrates prior to enzymatic hydrolysis. In order to achieve a broad evaluation, seven cellulosic, hemicellulosic and lignocellulosic substrates, crystalline as well as amorphous, were selected. The lignocellulosic substrates included hybrid aspen and Norway spruce. The monosaccharides in the enzymatic hydrolysate were determined using high-performance anion-exchange chromatography. The best results, as judged by the saccharification efficiency, were achieved with [C4C1im][Cl] for cellulosic substrates and with the acetate-based ILs for hybrid aspen and Norway spruce. After pretreatment with acetate-based ILs, the conversion to glucose of glucan in recalcitrant softwood lignocellulose reached similar levels as obtained with pure crystalline and amorphous cellulosic substrates. IL pretreatment of lignocellulose resulted in sugar yields comparable with that obtained with acidic pretreatment. Heterogeneous dissolution with [C4C1im][HSO4] gave promising results with aspen, the less recalcitrant of the two types of lignocellulose included in the investigation. Conclusions The ability of ILs to dissolve lignocellulosic biomass under gentle conditions and with little or no by-product formation contributes to making them highly interesting alternatives for pretreatment in processes where high product yields are of critical importance. PMID:24779378

2014-01-01

357

Testing Fundamental Properties of Ionic Liquids for Colloid Microthruster Applications  

NASA Technical Reports Server (NTRS)

NASA's New Millennium Program is scheduled to test a Disturbance Reduction System (DRS) on Space Technology 7 (ST7) as part of the European Space Agency's (ESA's) LISA Pathfinder Mission in late 2009. Colloid Micronewton Thrusters (CMNTs) will be used to counteract forces, mainly solar photon pressure, that could disturb gravitational reference sensors as part of the DRS. The micronewton thrusters use an ionic liquid, a room temperature molten salt, as propellant. The ionic liquid has a number of unusual properties that have a direct impact on thruster design. One of the most important issues is bubble formation before and during operation, especially during rapid pressure transitions from atmospheric to vacuum conditions. Bubbles have been observed in the feed system causing variations in propellant flow rate that can adversely affect thruster control. Bubbles in the feed system can also increase the likelihood that propellant will spray onto surfaces that can eventually lead to shorting high voltage electrodes. Two approaches, reducing the probability of bubble formation and removing bubbles with a new bubble eliminator device in the flow system, were investigated at Busek Co., Inc. and the Jet Propulsion Laboratory (JPL) to determine the effectiveness of both approaches. Results show that bubble formation is mainly caused by operation at low pressure and volatile contaminants in the propellant coming out of solution. A specification for the maximum tolerable level of contamination has been developed, and procedures for providing system cleanliness have been tested and implemented. The bubble eliminator device has also been tested successfully and has been implemented in recent thruster designs at Busek. This paper focuses on the propellant testing work at JPL, including testing of a breadboard level bubble eliminator device.

Anderson, John R.; Plett, Gary; Anderson, Mark; Ziemer, John

2006-01-01

358

STRUCTURE AND PROPERTIES OF CORN, RICE, WHEAT AND POTATO STARCH DISPERSED IN THE IONIC LIQUID, 1-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE  

Technology Transfer Automated Retrieval System (TEKTRAN)

Ionic liquid has gained industry attention, especially in environmentally friendly green chemistry. Researchers have utilized ionic liquid for dispersing cellulose, but no report using ionic liquid for other polysaccharides. In this study, corn, rice, wheat and potato starches were dispersed in ho...

359

Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage  

E-print Network

1 Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes electrolyte solutions with nonvolatile and nonflammable ionic liquids instead of actual carbonate mixtures could be safer. However, few definitions of thermal stability of electrolytes based on ionic liquids

Paris-Sud XI, Université de

360

Prominent roles of impurities in ionic liquid for catalytic conversion of carbohydrates  

SciTech Connect

In the last two decades, ionic liquids have emerged as new and versatile solvents, and many of them are also catalysts for a broad range of catalytic reactions. Certain ionic liquids have been found to possess the unique capability of dissolving cellulosic biomass. The potential of such ionic liquids as solvent to enable catalytic conversion of cellulosic polymers was first explored and demonstrated by Zhao et al. This field of research has since experienced a rapid growth. Most ionic liquids have negligible vapor pressure and excellent thermal stability over a wide temperature range. For example, ionic liquids composed of 1-ethyl-3-methylimidazolium (EMIM+) cation and Cl- anion was reported to be stable up to 285 C, while salts of the same cation with other anions such as BF4- and PF6- are thermally stable above 380 C under inert atmosphere. It is well known that presence of impurities in ionic liquids typically causes changes in physical properties, e.g. decreasing in melting point and viscosity. Addition of Lewis acidic metal chlorides, e.g. AlCl3 to 1-alkyl-3-methylimidazolium chloride, [AMIM]Cl, is an exothermic reaction and considerably reduces the melting point by forming [AMIM]AlCl4 or [AMIM]Al2Cl7 that are also ionic liquids but have much lower melting point than the parent [AMIM]Cl. While most early research on catalysis of ionic liquids involving metallohalide anions were typically conducted from stoichiometric ratio of such anions to organic cations, e.g. [AMIM]+, the use of pure ionic liquids only as a solvent to carry out catalysis by a catalytic amount of a metal halide as catalyst truly displayed the solvent property of such ionic liquids.4 In such reaction systems, catalytic amounts of metal halides were used to catalyze the conversion of glucose and cellulose.4,11,12 The metal chloride catalyst concentration was in the order of 10-3 M. The presence of another metal chloride in the ionic liquids, even in the order of 10-5 M concentration was found to bring a dramatic synergistic effect. Therefore, the catalytic performance of the metal halide catalyst for the conversion of carbohydrates in the ionic liquid systems is highly sensitive to the presence of impurities. This work presents findings on the role of impurities that were present in some commercially available ionic liquids used for the conversion of the cellulose.

Zhao, Haibo; Brown, Heather M.; Holladay, Johnathan E.; Zhang, Z. Conrad

2012-02-07

361

81891 - A New Class of Solvents for TRU Dissolution and Separation: Ionic Liquids  

SciTech Connect

Through the current EMSP funding, solvent extraction technologies based on liquid-liquid partitioning of TRU to an Ionic Liquid phase containing conventional complexants has been shown to be viable. The growing understanding of the role that the different components of an ionic liquid can have on the partitioning mechanism, and on the nature of the subsequent dissolved species indicates strongly that ionic liquids are not necessarily direct replacements for volatile or otherwise hazardous organic solvents. Separations and partitioning can be exceptionally complex with competing solvent extraction, cation, anion and sacrificial ion exchange mechanisms are all important, depending on the selection of components for formation of the ionic liquid phase, and that control of these competing mechanisms can be utilized to provide new, alternative separations schemes.

Robin D. Rogers

2004-12-10

362

Ion transport and softening in a polymerized ionic liquid  

NASA Astrophysics Data System (ADS)

Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this work, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current-voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as the Wien effect). Onsager's theory of the Wien effect coupled with the Poisson-Nernst-Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. The observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field.Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this work, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current-voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as the Wien effect). Onsager's theory of the Wien effect coupled with the Poisson-Nernst-Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. The observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field. Electronic supplementary information (ESI) available: Details of the COMSOL modeling focusing on temperature distribution in polymer film under biased AFM tip, estimated of ionic conductivity using SPM and BDS measurements, Poisson-Nernst-Planck-Wien-Onsager model and thermodynamic description of the depression in melting due to the presence of ``free'' ions can be found in the ESI. See DOI: 10.1039/c4nr05491a

Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; Tselev, Alexander; Kravchenko, Ivan I.; Berdzinski, Stefan; Strehmel, Veronika; Ovchinnikova, Olga S.; Minutolo, Joseph A.; Sangoro, Joshua R.; Agapov, Alexander L.; Sokolov, Alexei P.; Kalinin, Sergei V.; Sumpter, Bobby G.

2014-12-01

363

Gas chromatography on wall-coated open-tubular columns with ionic liquid stationary phases.  

PubMed

Ionic liquids have moved from novel to practical stationary phases for gas chromatography with an increasing portfolio of applications. Ionic liquids complement conventional stationary phases because of a combination of thermophysical and solvation properties that only exist for ionic solvents. Their high thermal stability and low vapor pressure makes them suitable as polar stationary phases for separations requiring high temperatures. Ionic liquids are good solvents and can be used to expand the chemical space for separations. They are the only stationary phases with significant hydrogen-bond acidity in common use; they extend the hydrogen-bond basicity of conventional stationary phases; they are as dipolar/polarizable as the most polar conventional stationary phases; and some ionic liquids are significantly less cohesive than conventional polar stationary phases. Problems in column coating techniques and related low column performance, column activity, and stationary phase reactivity require further exploration as the reasons for these features are poorly understood at present. PMID:24690306

Poole, Colin F; Lenca, Nicole

2014-08-29

364

Conductivity Scaling Relationships for Nanostructured Block Copolymer/Ionic Liquid Membranes  

NASA Astrophysics Data System (ADS)

Nanostructured membranes containing structural and ion-conducting domains are of great interest for a wide range of applications requiring high conductivity coupled with high thermal stability. To optimize the properties of such membranes, it is essential to understand scaling relationships between composition, structure, temperature, and ionic conductivity. The conductivity behaviors of mixtures of two block copolymer chemistries with two different ionic liquids have been investigated. The conductivities of all the mixtures are described by a single expression, which combines the Vogel-Tamman-Fulcher (VTF) equation with percolation theory. The VTF equation takes into account the effect of the glass transition temperature of the conducting phase on the temperature dependence of conductivity, while percolation theory reflects the power law dependence of conductivity on the overall volume fraction of ionic liquid in the membrane. The dominance of the overall volume fraction of ionic liquid in determining conductivity indicates that there is incredible flexibility in designing highly conductive block copolymer/ionic liquid membranes.

Hoarfrost, Megan; Segalman, Rachel

2013-03-01

365

Why Are Ionic Liquids Liquid? A Simple Explanation Based on Lattice and Solvation Energies  

Microsoft Academic Search

We have developed a simple and quantitative explanation for the relatively low melting temperatures of ionic liquids (ILs). The basic concept was to assess the Gibbs free energy of fusion (¢fusG) for the process IL(s) f IL(l), which relates to the melting point of the IL. This was done using a suitable Born-Fajans-Haber cycle that was closed by the lattice

Ingo Krossing; John M. Slattery; Corinne Daguenet; Paul J. Dyson; Alla Oleinikova; Hermann Weingartner

2006-01-01

366

Probing the chemical interaction between iridium nanoparticles and ionic liquid by XPS analysis  

Microsoft Academic Search

In situ X-ray photoelectron spectroscopy analysis of Ir(0) nanoparticles (1.6±0.3nm) dispersed in imidazolium ionic liquid (EMI.EtSO4) shows evidences of the effective interaction between the metallic clusters and the surrounding liquid. By monitoring the C 1s signal of the ionic liquid one observes a change of the binding energy in one of its components (C2) when in the presence of Ir

F. Bernardi; J. D. Scholten; G. H. Fecher; J. Dupont; J. Morais

2009-01-01

367

Simulation studies of ionic liquids: Orientational correlations and static dielectric properties  

NASA Astrophysics Data System (ADS)

The ionic liquids BMIM+I-, BMIM+BF4-, and BMIM+PF6- were simulated by means of the molecular dynamics method over a time period of more than 100ns. Besides the common structural analysis, e.g., radial distribution functions and three dimensional occupancy plots, a more sophisticated orientational analysis was performed. The angular correlation functions g00110(r) and g00101(r) are the first distance dependent coefficients of the pairwise orientational distribution function g(rij,?1,?2,?12). These functions help to interpret the three dimensional plot and reveal interesting insights into the local structure of the analyzed ionic liquids. Furthermore, the collective network of ionic liquids can be characterized by the Kirkwood factor G?(r ) [J. Chem. Phys. 7, 911 (1939)]. The short-range behavior (r<10Å) of this factor may be suitable to predict the water miscibility of the ionic liquid. The long-range limit of Gk? is below 1 which demonstrates the strongly coupled nature of the ionic liquid networks. In addition, this factor relates the orientational structure and the dielectric properties of the ionic liquids. The static dielectric constant ?(? =0) for the simulated system is 8.9-9.5. Since in ionic liquids the very same molecule contributes to the total dipole moment as well as carries a net charge, a small, but significant contribution of the cross term between the total dipole moment and the electric current to ?(? =0) is observed.

Schröder, C.; Rudas, T.; Steinhauser, O.

2006-12-01

368

Direct Capture of Organic Acids From Fermentation Media Using Ionic Liquids  

SciTech Connect

Several ionic liquids have been investigated for the extraction of organic acids from fermentation broth. Partitioning of representative organic acids (lactic, acetic, and succinic) between aqueous solution and nine hydrophobic ionic liquids was measured. The extraction efficiencies were strongly dependent on pH of the aqueous phase. Distribution coefficient was very good (approximately 60) at low succinic acid concentrations for one of the ionic liquids (trihexyltetradecylphosphonium methanesulfonate) at neutral pH. However, this ionic liquid had to be diluted with nonanol due to its high viscosity in order to be useful. A diluent (trioctylamine) was also added to this mixture. The results suggest that an extraction system based on ionic liquids may be feasible for succinic acid recovery from fermentation broth and that two ideal extraction stages are needed to reduce the concentration from 33 g/L to 1 g/L of succinic acid. Further studies are needed to evaluate other issues related to practical applications, including ionic liquid loss in the process, toxicity effects of ionic liquids during simultaneous fermentation and extractions.

Klasson, K.T.

2004-11-03

369

Fluorescence Correlation Spectroscopy Evidence for Structural Heterogeneity in Ionic Liquids  

SciTech Connect

Self-aggregation in room temperature ionic liquids (RTILs) has been a subject of intense interest in recent years. In this work, we provide new experimental evidence for chain length-dependent self-aggregation in RTILs using fluorescence correlation spectroscopy (FCS). In studying a homologous series of N-alkyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide, [CnMPy][Tf2N] RTILs of varying alkyl chain length (n = 3, 4, 6, 8, and 10), biphasic rhodamine 6G solute diffusion dynamics were observed; both the fast and slow diffusion coefficients decrease with increasing alkyl chain length, with the relative contribution from slower diffusion increasing for longer-chained [CnMPy][Tf2N]. We propose that the biphasic diffusion dynamics originate from self-aggregation of the nonpolar alkyl chains in the cationic [CnMPy]+. The presence of this local liquid structuring provides important insight into the behavior of RTILs relevant to their application in photovoltaics, fuel cells, and batteries.

Guo, Jianchang [ORNL; Baker, Gary A [ORNL; Hillesheim, Patrick C [ORNL; Dai, Sheng [ORNL; Shaw, Robert W [ORNL; Mahurin, Shannon Mark [ORNL

2011-01-01

370

Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents.  

PubMed

Mixtures of solid chemicals may become liquid under certain conditions. These liquids are characterized by the formation of strong ionic (ionic liquids) or hydrogen bonds (deep eutectic solvents). Due to their extremely low vapor pressure, they are now widely used in polymer chemistry and synthetic organic chemistry, yet little attention has been paid to their use as extraction solvents of natural products. This review summarizes the preparation of ionic liquids and deep eutectic solvents with natural product components and recent progress in their applications to the extraction and analysis of natural products as well as the recovery of extracted compounds from their extracts. Additionally, various factors affecting extraction features of ionic liquids and deep eutectic solvents, as well as potential useful technologies including microwave and ultrasound to increase the extraction efficiency, are discussed. PMID:24188074

Dai, Yuntao; van Spronsen, Jaap; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

2013-11-22

371

Protic ionic liquid as additive on lipase immobilization using silica sol-gel.  

PubMed

Ionic liquids (ILs) have evolved as a new type of non-aqueous solvents for biocatalysis, mainly due to their unique and tunable physical properties. A number of recent review papers have described a variety of enzymatic reactions conducted in IL solutions, on the other hand, to improve the enzyme's activity and stability in ILs; major methods being explored include the enzyme immobilization (on solid support, sol-gel, etc.), protic ionic liquids used as an additive process. The immobilization of the lipase from Burkholderia cepacia by the sol-gel technique using protic ionic liquids (PIL) as additives to protect against inactivation of the lipase due to release of alcohol and shrinkage of the gel during the sol-gel process was investigated in this study. The in?uence of various factors such as the length of the alkyl chain of protic ionic liquids (monoethanolamine-based) and a concentration range between 0.5 and 3.0% (w/v) were evaluated. The resulting hydrophobic matrices and immobilized lipases were characterised with regard to specific surface area, adsorption-desorption isotherms, pore volume (V(p)) and size (d(p)) according to nitrogen adsorption and scanning electron microscopy (SEM), physico-chemical properties (thermogravimetric - TG, differential scanning calorimetry - DSC and Fourier transform infrared spectroscopy - FTIR) and the potential for ethyl ester and emulsifier production. The total activity yields (Y(a)) for matrices of immobilized lipase employing protic ionic liquids as additives always resulted in higher values compared with the sample absent the protic ionic liquids, which represents 35-fold increase in recovery of enzymatic activity using the more hydrophobic protic ionic liquids. Compared with arrays of the immobilized biocatalyst without additive, in general, the immobilized biocatalyst in the presence of protic ionic liquids showed increased values of surface area (143-245 m(2) g(-1)) and pore size (19-38 Å). Immobilization with protic ionic liquids also favoured reduced mass loss according to TG curves (always less than 42.9%) when compared to the immobilized matrix without protic ionic liquids (45.1%), except for the sample containing 3.0% protic ionic liquids (46.5%), verified by thermogravimetric analysis. Ionic liquids containing a more hydrophobic alkyl group in the cationic moiety were beneficial for recovery of the activity of the immobilized lipase. The physico-chemical characterization confirmed the presence of the enzyme and its immobilized derivatives obtained in this study by identifying the presence of amino groups, and profiling enthalpy changes of mass loss. PMID:23410924

de Souza, Ranyere Lucena; de Faria, Emanuelle Lima Pache; Figueiredo, Renan Tavares; Freitas, Lisiane dos Santos; Iglesias, Miguel; Mattedi, Silvana; Zanin, Gisella Maria; dos Santos, Onélia Aparecida Andreo; Coutinho, João A P; Lima, Álvaro Silva; Soares, Cleide Mara Faria

2013-03-01

372

Structure of tetraalkylammonium ionic liquids in the interlayer of modified montmorillonite  

NASA Astrophysics Data System (ADS)

We perform molecular dynamics simulations of tetraalkylammonium ionic liquids confined in the interlayer of montmorillonite (MMT). We study the structure and energetics of the systems, which consist of cations with two different alkyl chain lengths and several ionic liquid concentrations. The results we obtained for the structure, namely the presence of a strong layering in all systems and the formation of nonpolar domains with interdigitated alkyl chains in some cases, are largely consistent with previous surface force balance experiments performed on similar systems. Finally, we show that swelling of the organo-modified MMT by a large amount of ionic liquid seems energetically favorable in all cases.

Duarte, Daniel; Salanne, Mathieu; Rotenberg, Benjamin; Bizeto, Marcos A.; Siqueira, Leonardo J. A.

2014-07-01

373

Structure of tetraalkylammonium ionic liquids in the interlayer of modified montmorillonite.  

PubMed

We perform molecular dynamics simulations of tetraalkylammonium ionic liquids confined in the interlayer of montmorillonite (MMT). We study the structure and energetics of the systems, which consist of cations with two different alkyl chain lengths and several ionic liquid concentrations. The results we obtained for the structure, namely the presence of a strong layering in all systems and the formation of nonpolar domains with interdigitated alkyl chains in some cases, are largely consistent with previous surface force balance experiments performed on similar systems. Finally, we show that swelling of the organo-modified MMT by a large amount of ionic liquid seems energetically favorable in all cases. PMID:24920411

Duarte, Daniel; Salanne, Mathieu; Rotenberg, Benjamin; Bizeto, Marcos A; Siqueira, Leonardo J A

2014-07-16

374

Formation of p-n-p junction with ionic liquid gate in graphene  

SciTech Connect

Ionic liquid gating is a technique which is much more efficient than solid gating to tune carrier density. To observe the electronic properties of such a highly doped graphene device, a top gate made of ionic liquid has been used. By sweeping both the top and back gate voltage, a p-n-p junction has been created. The mechanism of forming the p-n-p junction has been discussed. Tuning the carrier density by ionic liquid gate can be an efficient method to be used in flexible electronics.

He, Xin; Tang, Ning, E-mail: ntang@pku.edu.cn, E-mail: geweikun@mail.tsinghua.edu.cn, E-mail: bshen@pku.edu.cn; Duan, Junxi; Zhang, Yuewei; Lu, Fangchao; Xu, Fujun; Yang, Xuelin [State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Gao, Li [Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province (China); Wang, Xinqiang; Shen, Bo, E-mail: ntang@pku.edu.cn, E-mail: geweikun@mail.tsinghua.edu.cn, E-mail: bshen@pku.edu.cn [State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China); Ge, Weikun, E-mail: ntang@pku.edu.cn, E-mail: geweikun@mail.tsinghua.edu.cn, E-mail: bshen@pku.edu.cn [Department of Physics, Tsinghua University, Beijing 100084 (China)

2014-04-07

375

Comparative behavior of various lipases in benign water and ionic liquids solvents  

Microsoft Academic Search

Lipases were shown to catalyze acylation of various sulfonamides using water or ionic liquids (ILs) as solvents. Ionic liquids that were used include [bmim][PF6], [bmim][N(Tf)2], and [bmim][BF4] (where bmim=1-butyl-3-methylimidazolium, PF6=hexafluorophosphate, N(Tf)2=bis(trifluoromethylsulfonyl)imide, and BF4=tetrafluoroborate). As a function of the lipase nature the ionic liquid can be or not a suitable solvent for this reaction. Therefore, it may be stated that an

L. Mantarosie; S. Coman; V. I. Parvulescu

2008-01-01

376

Ionic Liquid Development for Absorption Heat Pump Applications  

SciTech Connect

Ionic liquids (ILs) are a unique class of solvents with many potential applications, including absorption heating/cooling. Due to the large number of possible combinations of cations and anions, it is possible to tune the IL to obtain the required properties for the application of interest. Many ILs are very hydrophilic, while even the most hydrophobic ILs often absorb significant amounts of water. The presence of water in an IL can have a large effect on the system properties. For instance, a small amount of dissolved water often leads to a dramatic reduction in the viscosity of the mixture. Dissolved water also affects the ionic conductivity of ILs and alters the solvation power of ILs for both polar and non-polar solutes. Knowledge of the phase diagram of these IL/water mixtures therefore is essential when designing absorption heating systems. Measuring isotherms often requires time consuming and/or expensive experiments, and does not necessarily lead to a deeper understanding of the molecular level interactions responsible for water-IL interactions. In contrast, molecular simulations are relatively inexpensive to perform, allowing one to screen potential ILs for a given application. Simulation also provides a detailed picture of how water and a given IL interact, thereby providing insight into ways of designing an IL to have a desired water solubility. Toward this end, atomistic-level Monte Carlo (MC) simulations have been performed to predict isotherms for a variety of IL/water mixtures. The simulations predict that exchanging some of the IL cations with a small metal cation can lead to an increase in the hydrophilicity of the IL, which impacts the capacity of the fluid and the enthalpy of mixing. Molecular dynamics simulations, which unlike Monte Carlo simulations capture timedependent properties, were also carried out to estimate the relative viscosities of the solutions.

MAERZKE, Katie [University of Notre Dame, IN; MOZURKEWICH, George [Ionic Research Technologies LLC; Abdelaziz, Omar [ORNL; Gluesenkamp, Kyle R [ORNL; Schneider, William F [University of Notre Dame, IN; Morrison, Doug [Ionic Research Technologies LLC; Maginn, Prof. Edward [University of Notre Dame, IN

2014-01-01

377

Solvent nanostructure, the solvophobic effect and amphiphile self-assembly in ionic liquids.  

PubMed

The ability of ionic liquids (ILs) to support amphiphile self-assembly into a range of mesophase structures has been established as a widespread phenomenon. From the ILs evaluated as self-assembly media, the vast majority have supported some lyotropic liquid crystal phase formation. Many neat ionic liquids have been shown to segregate into polar and non-polar domains to form a nanostructured liquid. A very strong correlation between the nanostructure of the ionic liquid and its characteristics as an amphiphile self-assembly solvent has been found. In this review we discuss ionic liquids as amphiphile self-assembly media, and identify trends that can be used to distinguish which ionic liquids are likely to have good promotion properties as self-assembly media. In particular these trends focus on the nanostructure of neat ionic liquids, their solvent cohesive energy density, and the related solvophobic effect. We forecast that many more ILs will be identified as amphiphile self-assembly solvents in the future. PMID:23165291

Greaves, Tamar L; Drummond, Calum J

2013-02-01

378

Effect of stationary phase polarity on the retention of ionic liquid cations in reversed phase liquid chromatography.  

PubMed

Chromatographic analysis of ionic liquids on different types of packings offers interesting possibility to determine their retention mechanism. As a consequence, the major interactions between stationary phase ligands and analyzed chemical entities can be defined. The main aim of this work was to analyze cations of ionic liquids on chemically bonded stationary phases with specific structural properties. The attempt to predict the main interactions between positive ions of ionic liquids and stationary phase ligands was undertaken. For that purpose, butyl, octyl, octadecyl, phenyl, aryl, mixed, alkylamide, and cholesterolic packings were chosen and applied to the analysis of six most commonly used ionic liquids' cations. Obtained results indicate mainly dispersive and pi-pi type of interaction part in the retention mechanism of analyzed compounds. PMID:17313103

Kowalska, Sylwia; Buszewski, Boguslaw

2006-11-01

379

Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends  

PubMed Central

Ionic liquids thermodynamically compatible with Li metal are very promising for applications to rechargeable lithium batteries. 1-methyl-3-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P13TFSI) is screened out as a particularly promising ionic liquid in this study. Dimensionally stable, elastic, flexible, nonvolatile polymer gel electrolytes (PGEs) with high electrochemical stabilities, high ionic conductivities and other desirable properties have been synthesized by dissolving Li imide salt (LiTFSI) in P13TFSI ionic liquid and then mixing the electrolyte solution with poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP) copolymer. Adding small amounts of ethylene carbonate to the polymer gel electrolytes dramatically improves the ionic conductivity, net Li ion transport concentration, and Li ion transport kinetics of these electrolytes. They are thus favorable and offer good prospects in the application to rechargeable Li batteries including open systems like Li/air batteries, as well as more “conventional” rechargeable lithium and lithium ion batteries. PMID:20354587

Ye, Hui; Huang, Jian; Xu, Jun John; Khalfan, Amish; Greenbaum, Steve G.

2009-01-01

380

Phase behaviour, transport properties, and interactions in Li-salt doped ionic liquids.  

PubMed

We report on the influence of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) doping on the glass transition temperature (Tg), the ionic conductivity, and Li-ion coordination of two dicationic ionic liquids (DILs) based on the TFSI anion. The results are compared to the behaviour of traditional mono-cationic ionic liquids. The cations of the DILs contain two imidazolium rings, connected by a decane hydrocarbon chain. Homogeneous mixtures of these ILs and LiTFSI can be obtained in a large concentration range. With increasing Li-salt concentration the ionic conductivity decreases whereas the glass transition temperature increases in both systems. However, the influence of the salt doping on the ionic conductivity and the glass transition temperature is low compared to typical mono-cationic ionic liquids, based on for example the pyrrolidinium cation and the TFSI anion. This behaviour is mirrored in the average coordination number of TFSI anions around Li-ions, determined by Raman spectroscopy. The coordination number is systematically lower in the DILs, suggesting a connection between the difference in the Li-ion environment and the behaviour of the glass transition and the ionic conductivity. A Tg-scaled Arrhenius plot of the ionic conductivity shows that the ionic conductivity for all LiTFSI concentrations has the same temperature dependence, i.e., the fragility of the liquid is the same. This implies that the conduction process is dominated by the viscous properties of the liquids over the entire concentration range. This provides further support for linking the local environment of the Li-ions to the glass transition and conduction process in the ionic liquid/salt mixtures. PMID:22455015

Pitawala, Jagath; Kim, Jae-Kwang; Jacobsson, Per; Koch, Victor; Croce, Fausto; Matic, Aleksandar

2012-01-01

381

Effect of protic ionic liquid and surfactant structure on partitioning of polyoxyethylene non-ionic surfactants.  

PubMed

The partitioning constants and Gibbs free energies of transfer of poly(oxyethylene) n-alkyl ethers between dodecane and the protic ionic liquids (ILs) ethylammonium nitrate (EAN) and propylammonium nitrate (PAN) are determined. EAN and PAN have a sponge-like nanostructure that consists of interpenetrating charged and apolar domains. This study reveals that the ILs solvate the hydrophobic and hydrophilic parts of the amphiphiles differently. The ethoxy groups are dissolved in the polar region of both ILs by means of hydrogen bonds. The environment is remarkably water-like and, as in water, the solubility of the ethoxy groups in EAN decreases on warming, which underscores the critical role of the IL hydrogen-bond network for solubility. In contrast, amphiphile alkyl chains are not preferentially solvated by the charged or uncharged regions of the ILs. Rather, they experience an average IL composition and, as a result, partitioning from dodecane into the IL increases as the cation alkyl chain is lengthened from ethyl to propyl, because the IL apolar volume fraction increases. Together, these results show that surfactant dissolution in ILs is related to structural compatibility between the head or tail group and the IL nanostructure. Thus, these partitioning studies reveal parameters for the effective molecular design of surfactants in ILs. PMID:24862589

Topolnicki, Inga L; FitzGerald, Paul A; Atkin, Rob; Warr, Gregory G

2014-08-25

382

Extraction of Biofuels and Biofeedstocks from Aqueous Solutions Using Ionic Liquids  

E-print Network

Extraction of Biofuels and Biofeedstocks from Aqueous Solutions Using Ionic Liquids Luke D. Simoni-Butanol, Extraction, Liquid-Liquid Equilibrium, Excess Gibbs Energy Models, Biofuels #12;1 1. Introduction other organic compounds can be produced biologically, and thus can be considered as biofuel candidates

Stadtherr, Mark A.

383

Bilayer membrane permeability of ionic liquid-filled block copolymer vesicles in aqueous solution.  

PubMed

The bilayer membrane permeability of block copolymer vesicles ("polymersomes") with ionic liquid interiors dispersed in water is quantified using fluorescence quenching. Poly((1,2-butadiene)-b-ethylene oxide) (PB-PEO) block copolymer vesicles in water with their interiors filled with a common hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide, were prepared containing a hydrophobic dye, Nile Red, by intact migration of dye-encapsulated vesicles from the ionic liquid to water at room temperature. A small quencher molecule, dichloroacetamide, was added to the aqueous solution of the dye-loaded vesicles, and the permeation of the quencher passing through the membrane into the interior was determined from the fluorescence quenching kinetics. Rapid permeation of the quencher across the nanoscale membrane was observed, consistent with the high fluidity of the liquid polybutadiene membrane. Two different PB-PEO copolymers were employed, in order to vary the thickness of the solvophobic membrane. A significant increase in membrane permeability was also observed with decreasing membrane thickness, which is tentatively attributable to differences in quencher solubility in the membranes. Quantitative migration of the vesicles from the aqueous phase back to an ionic liquid phase was achieved upon heating. These microscopically heterogeneous and thermoresponsive vesicles with permeable and robust membranes have potential as recyclable nanoreactors, in which the high viscosity and capital expense of an ionic liquid reaction medium can be mitigated, while retaining the desirable features of ionic liquids as reaction media, and facile catalyst recovery. PMID:22765509

Bai, Zhifeng; Zhao, Bin; Lodge, Timothy P

2012-07-19

384

Recent advances in the applications of ionic liquids in protein stability and activity: a review.  

PubMed

Room temperatures ionic liquids are considered as miraculous solvents for biological system. Due to their inimitable properties and large variety of applications, they have been widely used in enzyme catalysis and protein stability and separation. The related information present in the current review is helpful to the researchers working in the field of biotechnology and biochemistry to design or choose an ionic liquid that can serve as a noble and selective solvent for any particular enzymatic reaction, protein preservation and other protein based applications. We have extensively analyzed the methods used for studying the protein-IL interaction which is useful in providing information about structural and conformational dynamics of protein. This can be helpful to develop and understanding about the effect of ionic liquids on stability and activity of proteins. In addition, the affect of physico-chemical properties of ionic liquids, viz. hydrogen bond capacity and hydrophobicity on protein stability are discussed. PMID:24599667

Patel, Rajan; Kumari, Meena; Khan, Abbul Bashar

2014-04-01

385

DIRECT FORMATION OF TETRAHYDROPYRANOLS VIA CATALYSIS IN IONIC LIQUID. (R828129)  

EPA Science Inventory

Utilizing a simple homoallyl alcohol and an aldehyde in the presence of a catalytic amount of cerium triflate, the direct stereoselective formation of tetrahydropyranol derivatives in ionic liquid is reported. ...

386

Environmentally Benign Production of Ionic Liquids in CO2-Expanded Systems  

E-print Network

The need to reduce air pollution in chemical manufacturing processes continues to drive the search for alternative solvents. Ionic Liquids (ILs) have emerged in recent years as a promising solution. In contrast to traditional organic solvents, ILs...

Nwosu, Sylvia Ogechi

2012-08-31

387

Theoretical Investigations on Nanoporpus Materials and Ionic Liquids for Energy Storage  

E-print Network

by adsorption. In this regard carbon nanotube and Metal Organic Framework (MOFs) based materials are worth studying. Ionic liquids (IL) are potential electrolytes that can improve energy storage capacity and safety in Li ion batteries. Therefore it is important...

Mani Biswas, Mousumi

2012-02-14

388

Novel Ionic Liquid with Both Lewis and Brønsted Acid Sites for Michael Addition  

PubMed Central

Ionic liquid with both Lewis and Brønsted acid sites has been synthesized and its catalytic activities for Michael addition were carefully studied. The novel ionic liquid was stable to water and could be used in aqueous solution. The molar ratio of the Lewis and Brønsted acid sites could be adjusted to match different reactions. The results showed that the novel ionic liquid was very efficient for Michael addition with good to excellent yields within several min. Operational simplicity, high stability to water and air, small amount used, low cost of the catalyst used, high yields, chemoselectivity, applicability to large-scale reactions and reusability are the key features of this methodology, which indicated that this novel ionic liquid also holds great potential for environmentally friendly processes. PMID:22174608

Jiang, Xiaoyue; Ye, Weidong; Song, Xiaohua; Ma, Wenxin; Lao, Xuejun; Shen, Runpu

2011-01-01

389

Electrochemical Windows of Room-Temperature Ionic Liquids from Molecular Dynamics and Density Functional Theory Calculations  

E-print Network

We investigated the cathodic and anodic limits of six room-temperature ionic liquids (ILs) formed from a combination of two common cations, 1-butyl-3-methylimidazolium (BMIM) and N,N-propylmethylpyrrolidinium (P13), and ...

Ong, Shyue Ping

390

PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)  

EPA Science Inventory

The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...

391

Structure, stability and behaviour of nucleic acids in ionic liquids.  

PubMed

Nucleic acids have become a powerful tool in nanotechnology because of their conformational polymorphism. However, lack of a medium in which nucleic acid structures exhibit long-term stability has been a bottleneck. Ionic liquids (ILs) are potential solvents in the nanotechnology field. Hydrated ILs, such as choline dihydrogen phosphate (choline dhp) and deep eutectic solvent (DES) prepared from choline chloride and urea, are 'green' solvents that ensure long-term stability of biomolecules. An understanding of the behaviour of nucleic acids in hydrated ILs is necessary for developing DNA materials. We here review current knowledge about the structures and stabilities of nucleic acids in choline dhp and DES. Interestingly, in choline dhp, A-T base pairs are more stable than G-C base pairs, the reverse of the situation in buffered NaCl solution. Moreover, DNA triplex formation is markedly stabilized in hydrated ILs compared with aqueous solution. In choline dhp, the stability of Hoogsteen base pairs is comparable to that of Watson-Crick base pairs. Moreover, the parallel form of the G-quadruplex is stabilized in DES compared with aqueous solution. The behaviours of various DNA molecules in ILs detailed here should be useful for designing oligonucleotides for the development of nanomaterials and nanodevices. PMID:25013178

Tateishi-Karimata, Hisae; Sugimoto, Naoki

2014-08-01

392

Unexpected interaction between PEDOT and phosphonium ionic liquids.  

PubMed

In-situ-polymerized films of poly(3,4-ethylenedioxythiophene) (PEDOT) are known to be relatively ordered materials and maintain this order under changing chemical and electrochemical conditions. It is therefore surprising that certain ionic liquids (ILs) were found to interact with PEDOT and thereby to a large extent disrupt the ordered structure. The current work demonstrates the expansion of the interlayer distance (d100) of PEDOT and the composite of PEDOT with poly(ethyleneglycol) (PEDOT(PTS):PEG) in the presence of IL mixtures containing triisobutylmethylphosphonium tosylate (P1444PTS) and water. In presence of the mixtures, the PEDOT(PTS):PEG film expands up to ~100% while the PEDOT(PTS) film expanded ~50%. The expansion did not increase the electrical resistance but increased the absorption in the ?-?* range, which can be explained by increased shielding of the PEDOT chains by the IL. The incorporation of P1444PTS increased the capacitance by 350%, compared to the theoretical capacitance of PEDOT(PTS), due to the formation of additional double-layer capacitance. PMID:23834210

Armel, Vanessa; Rivnay, Jonathan; Malliaras, George; Winther-Jensen, Bjorn

2013-07-31

393

Cellulose aerogel from ionic liquid solution dried by silylation  

NASA Astrophysics Data System (ADS)

Aerogels are a class of materials characterised by a highly porous structure with low solids content. There is much interest in cellulose aerogel (aerocellulose) as a biodegradable and sustainable material. Cellulose lyogel can be fabricated from its solution in ionic liquids (IL) by coagulation with a nonsolvent such as water. However, subsequent drying capillary forces in the gel pores that result in severe shrinkage and pore closure. The use of supercritical fluids for drying or freeze-drying entails high equipment and energy requirements. We describe the fabrication and structure of aerocellulose fabricated from IL solution with a simple novel drying process: Addition of a compatible reactive agent (trimethylchlorosilane) and its diffusion into the water-swollen cellulose hydrogel pores results in a reaction with water as well as the pore surface hydroxyl groups. The remaining hydrophobic compound (hexamethyldisiloxane-HMDS), which fills the initially hydrophilic cellulose hydrogel pores, has a low intrinsic surface tension in the pores allowing easy drying with minimal shrinkage. Furthermore it allows modification of the pore surface and even fabrication of cellulose-polysiloxane composites. Relations between aerocellolose processing conditions and the resulting structural features will be discussed.

Rein, Dmitry; Cohen, Yachin

2011-03-01

394

Mesophases in nearly 2D room-temperature ionic liquids.  

PubMed

Computer simulations of (i) a [C(12)mim][Tf(2)N] film of nanometric thickness squeezed at kbar pressure by a piecewise parabolic confining potential reveal a mesoscopic in-plane density and composition modulation reminiscent of mesophases seen in 3D samples of the same room-temperature ionic liquid (RTIL). Near 2D confinement, enforced by a high normal load, as well as relatively long aliphatic chains are strictly required for the mesophase formation, as confirmed by computations for two related systems made of (ii) the same [C(12)mim][Tf(2)N] adsorbed at a neutral solid surface and (iii) a shorter-chain RTIL ([C(4)mim][Tf(2)N]) trapped in the potential well of part i. No in-plane modulation is seen for ii and iii. In case ii, the optimal arrangement of charge and neutral tails is achieved by layering parallel to the surface, while, in case iii, weaker dispersion and packing interactions are unable to bring aliphatic tails together into mesoscopic islands, against overwhelming entropy and Coulomb forces. The onset of in-plane mesophases could greatly affect the properties of long-chain RTILs used as lubricants. PMID:19886615

Manini, N; Cesaratto, M; Del Pópolo, M G; Ballone, P

2009-11-26

395

Interfacial ionicliquids’: connecting static and dynamic structures  

NASA Astrophysics Data System (ADS)

It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene–RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (?0.15 eV).

Uysal, Ahmet; Zhou, Hua; Feng, Guang; Lee, Sang Soo; Li, Song; Cummings, Peter T.; Fulvio, Pasquale F.; Dai, Sheng; McDonough, John K.; Gogotsi, Yury; Fenter, Paul

2015-01-01

396

Switchable ionic liquids as delignification solvents for lignocellulosic materials.  

PubMed

The transformation of lignocellulosic materials into potentially valuable resources is compromised by their complicated structure. Consequently, new economical and feasible conversion/fractionation techniques that render value-added products are intensely investigated. Herein an unorthodox and feasible fractionation method of birch chips (B. pendula) using a switchable ionic liquid (SIL) derived from an alkanol amine (monoethanol amine, MEA) and an organic super base (1,8-diazabicyclo-[5.4.0]-undec-7-ene, DBU) with two different trigger acid gases (CO2 and SO2 ) is studied. After SIL treatment, the dissolved fractions were selectively separated by a step-wise method using an antisolvent to induce precipitation. The SIL was recycled after concentration and evaporation of anti-solvent. The composition of undissolved wood after MEA-SO2 -SIL treatment resulted in 80 wt % cellulose, 10 wt % hemicelluloses, and 3 wt % lignin, whereas MEA-CO2 -SIL treatment resulted in 66 wt % cellulose, 12 wt % hemicelluloses and 11 wt % lignin. Thus, the MEA-SO2 -SIL proved more efficient than the MEA-CO2 -SIL, and a better solvent for lignin removal. All fractions were analyzed by gas chromatography (GC), Fourier transform infrared spectroscopy (FT-IR), (13) C nuclear magnetic resonance spectroscopy (NMR) and Gel permeation chromatography (GPC). PMID:24616172

Anugwom, Ikenna; Eta, Valerie; Virtanen, Pasi; Mäki-Arvela, Päivi; Hedenström, Mattias; Hummel, Michael; Sixta, Herbert; Mikkola, Jyri-Pekka

2014-04-01

397

Interfacial ionic 'liquids': connecting static and dynamic structures.  

PubMed

It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene-RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (?0.15 eV). PMID:25475119

Uysal, Ahmet; Zhou, Hua; Feng, Guang; Lee, Sang Soo; Li, Song; Cummings, Peter T; Fulvio, Pasquale F; Dai, Sheng; McDonough, John K; Gogotsi, Yury; Fenter, Paul

2015-01-28

398

EFFECTS OF GAMMA RADIATION ON ELECTROCHEMICAL PROPERTIES OF IONIC LIQUIDS  

SciTech Connect

The electrochemical properties of ionic liquids (ILs) make them attractive for possible replacement of inorganic salts in high temperature molten salt electrochemical processing of nuclear fuel. To be a feasible replacement solvent, ILs need to be stable in moderate and high doses of radiation without adverse chemical and physical effects. Here, we exposed seven different ILs to a 1.2 MGy dose of gamma radiation to investigate their physical and chemical properties as they related to radiological stability. The azolium-based ILs experienced the greatest change in appearance, but these ILs were chemically more stable to gamma radiation than some of the other classes of ILs tested, due to the presence of aromatic electrons in the azolium ring. All the ILs exhibited a decrease in their conductivity and electrochemical window (at least 1.1 V), both of which could affect the utility of ILs in electrochemical processing. The concentration of the irradiation decomposition products was less than 3 mole %, with no impurities detectable using NMR techniques.

Visser, A; Nicholas Bridges, N; Thad Adams, T; John Mickalonis, J; Mark02 Williamson, M

2009-04-21

399

Thermophysical properties of sulfonium- and ammonium-based ionic liquids  

PubMed Central

Experimental data for the density, viscosity, refractive index and surface tension of four sulfonium- and ammonium-based Ionic Liquids (ILs) with the common bis(trifluoromethylsulfonyl)imide anion were measured in the temperature range between 288.15 and 353.15 K and at atmospheric pressure. The ILs considered include butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [N4111][NTf2], tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N4441][NTf2], diethylmethylsulfonium bis(trifluoromethylsulfonyl)imide, [S221][NTf2], and triethylsulfonium bis(trifluoromethylsulfonyl)imide, [S222][NTf2]. Based on the gathered results and on data taken from literature, the impact of the cation isomerism and of the size of the aliphatic tails, as well as the effect resulting from the substitution of a nitrogen by a sulfur atom as the cation central atom, on the thermophysical properties of sulfonium- and ammonium-based ILs is here discussed. Remarkably, more symmetric cations present a lower viscosity for the same, and sometimes even for higher, alkyl chain lengths at the cation. Additional derivative properties, such as the isobaric thermal expansion coefficient, the surface thermodynamic properties and the critical temperature for the investigated ILs were also estimated and are presented and discussed. PMID:25516634

Bhattacharjee, Arijit; Luís, Andreia; Lopes-da-Silva, José A.; Freire, Mara G.; Carvalho, Pedro J.; Coutinho, João A. P.

2014-01-01

400

Ether-Bond-Containing Ionic Liquids as Supercapacitor Electrolytes  

PubMed Central

Electrochemical capacitors (ECs) are electrical energy storage devices that have the potential to be very useful in a wide range of applications, especially where there is a large disparity between peak and average power demands. The use of ionic liquids (ILs) as electrolytes in ECs can increase the energy density of devices; however, the viscosity and conductivity of ILs adversely influence the power density of the device. We present experimental results where several ILs containing different cations have been employed as the electrolyte in cells containing mesoporous carbon electrodes. Specifically, the behavior of ILs containing an ether bond in an alkyl side chain are compared with those of a similar structure and size but containing purely alkyl side chains. Using electrochemical impedance spectroscopy and constant current cycling, we show that the presence of the ether bond can dramatically increase the specific capacitance and reduce device resistance. These results have the important implication that such ILs can be used to tailor the physical properties and electrochemical performance of IL-based electrolytes. PMID:24920995

2013-01-01

401

Redox chemistry of the Keggin heteropolyoxotungstate anion in ionic liquids.  

SciTech Connect

The solid salts of the 1-ethyl-3-methylimidazolium and the 1-n-pentyl-3-methylimidazolium cations, abbreviated [C{sub 2}mim]{sup +} and [C{sub 5}mim]{sup +}, respectively, of the Keggin heteropolyanion, {alpha}-[PW{sub 12}O{sub 40}]{sup 3-}, were prepared. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements of both [C{sub n}mim]{sub 3}[{alpha}-PW{sub 12}O{sub 40}] salts (for n=2 and 5) were performed in acetonitrile containing either tetra-n-butylammonium hexafluorophosphate, abbreviated TBAPF{sub 6}, or the corresponding [C{sub n}mim]BF{sub 4} ionic liquids (ILs) as electrolytes. The results are compared with the corresponding data obtained in the neat [C{sub n}mim]BF{sub 4} ILs without addition of other electrolytes. The effects of countercation and supporting electrolyte on the voltammetry of the Keggin ion {alpha}-[PW{sub 12}O{sub 40}]{sup 3-} are interpreted as resulting from an amalgamation of isomerization, ion-association, and redox processes. The combination of the unique solvent/electrolyte properties of ILs with the well-known electrochemistry of molecular polyoxometalates (POMs) like the Keggin aanion leads to redox behavior that may have impact on the research and technology of catalytic and energy-storage phenomena.

Chiang, M.-H.; Dzielawa, J. A.; Dietz, M. L.; Antonio, M. R.; Chemistry

2004-06-01

402

Spectroscopic study of ionic liquid adsorption from solution onto gold.  

PubMed

Gold was exposed to ethanol solutions containing 0.1 wt% 1-hexyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide (HMIM NTf2), an ionic liquid (IL). The resulting adsorbed layers were interrogated using X-ray photoelectron spectroscopy (XPS - both conventional and synchrotron-based) and spectroscopic ellipsometry. Ellipsometry indicated that the adsorbed layer thickness was smaller than the size of an IL ion pair, with an average determined layer thickness of 0.15 nm. This value indicates that the adsorbed layer on gold is most likely patchy. Conventional XPS revealed that the IL adsorbs irreversibly to gold, with equal amounts of anion and cation in the adsorbed layer. High signal-to-noise synchrotron XPS spectra permitted detailed deconvolution of the S 2p and N 1s peaks for the IL-treated gold, providing more information on adsorbed layer composition and structure. Spectra acquired as a function of X-ray exposure time indicate that non-interacting physisorbed IL components are preferentially removed at the expense of surface bound components, and that anion and cation are both present in the surface bound layer, and also in the layer above. A model structure for the IL adsorbed on gold is proposed. PMID:25567107

Beattie, David A; Harmer-Bassell, Sarah L; Ho, Tracey T M; Krasowska, Marta; Ralston, John; Sellapperumage, Pasindu M F; W?sik, Patryk

2015-01-28

403

Conventional study on novel dicationic ionic liquid inclusion with ?-cyclodextrin.  

PubMed

This study focuses on the synthesis and characterization of the inclusion complex of ?-Cyclodextrin (?-CD) with dicationic ionic liquid, 3,3'-(1,4-Phenylenebis [methylene]) bis(1-methyl-1H-imidazol-3-ium) di(bromide) (PhenmimBr). The inclusion complex was prepared at room temperature utilizing conventional kneading technique. Proton ((1)H) NMR and 2D ((1)H-(1)H) COSY NMR were the primary characterization tools employed to verify the formation of the inclusion complex. COSY spectra showed strong correlations between protons of imidazolium and protons of ?-CD which indicates that the imidazolium ring of PhenmimBr has entered the cavity of ?-CD. UV absorption indicated that ?-CD reacts with PhenmimBr to form a 2:1 ?-CD-PhenmimBr complex with an apparent formation constant of 2.61 × 10(5) mol&(-2) L(2). Other characterization studies such as UV, FT-IR, XRD, TGA, DSC and SEM studies were also used to further support the formation of the ?-CD-PhenmimBr inclusion complex. PMID:22016662

Mohamad, Sharifah; Surikumaran, Hemavathy; Raoov, Muggundha; Marimuthu, Tilagam; Chandrasekaram, Kumuthini; Subramaniam, Puvaneswary

2011-01-01

404

Enhanced performance of dicationic ionic liquid electrolytes by organic solvents.  

PubMed

The use of dicationic ionic liquid (DIL) electrolytes in supercapacitors is impeded by the slow dynamics of DILs, whereas the addition of organic solvents into DIL electrolytes improves ion transport and then enhances the power density of supercapacitors. In this work, the influences of organic solvents on the conductivity of DILs and the electrical double layer (EDL) of DIL-based supercapacitors are investigated using classical molecular dynamics simulation. Two types of organic solvents, acetonitrile (ACN) and propylene carbonate (PC), were used to explore the effects of different organic solvents on the EDL structure and capacitance of DIL/organic solvent-based supercapacitors. Firstly, it was found that the conductivity of DIL electrolytes was greatly enhanced in the presence of the organic solvent ACN. Secondly, a stronger adsorption of PC on graphite results in different EDL structures formed by DIL/ACN and DIL/PC electrolytes. The expulsion of co-ions from EDLs was observed in DIL/organic solvent electrolytes rather than neat DILs and this feature is more evident in DIL/PC. Furthermore, the bell-shaped differential capacitance-electric potential curve was not essentially changed by the presence of organic solvents. Comparing DIL/organic solvent electrolytes with neat DILs, the capacitance is slightly increased by organic solvents, which is in agreement with experimental observation. PMID:24920237

Li, Song; Zhang, Pengfei; Fulvio Pasquale, F; Hillesheim Patrick, C; Feng, Guang; Dai, Sheng; Cummings Peter, T

2014-07-16

405

Molecular assembly-assisted biocatalytic reactions in ionic liquids.  

PubMed

Room temperature ionic liquids (RTILs), having no measurable vapor pressure, represent an interesting class of tunable designer solvents. Due to their many unique properties, ILs have been used as attractive alternatives to environmentally harmful ordinary organic solvents in a wide range of applications including enzymatic biotransformation. Compared to conventional organic solvents, ILs offer many advantages for biocatalysis such as enhanced conversion rates, high enantioselectivity, better enzyme stability, and improved catalyst recoverability and recyclability. However, biocatalysis in ILs has not yet fully achieved its potential because many biocatalysts are insoluble in most ILs. This limitation could be overcome by the formation of nano/micrometer-sized aqueous microemulsion droplets in an IL continuous phase (referred to as water-in-IL microemulsions) stabilized by a layer of surfactants. Enzymes can be dissolved in such water droplets and protected from the unfavorable effect of ILs by the surfactant layer. In this chapter, a simple and effective method for the development of aqueous microemulsion droplets in a hydrophobic IL comprising an anionic surfactant sodium bis(2-ethyl-1-hexyl) sulfosuccinate (AOT) is presented. For this approach, we have synthesized a hydrophobic IL [C(8)mim][Tf(2)N] (1-octyl-3-methyl imidazolium bis(trifluoromethyl sulfonyl) amide) containing a long pendant hydrocarbon chain to facilitate the dissolution of AOT molecules. A detailed description of the procedure for the potential use of this newly developed water-in-IL reverse microemulsion for biocatalysis is also included. PMID:21553181

Moniruzzaman, Muhammad; Goto, Masahiro

2011-01-01

406

Production and irradiation of ionic liquid cluster ions  

NASA Astrophysics Data System (ADS)

We have developed a field-emission-type of cluster ion source using ionic liquids such as 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6). The current obtained was stable by placing a porous cap around the emitter. Time-of-flight (TOF) measurement showed that the peak mass number was approximately 5000 for positive and negative BMIM-PF6 ion beams. This indicated that BMIM-PF6 clusters with a size of a few tens of molecules were produced. With regard to the surface modification by BMIM-PF6 ion beams, positive and negative cluster ion beams were used to irradiate Si(1 0 0) and glass substrates. Scanning electron microscope (SEM) and atomic force microscope (AFM) observations showed that the surface roughness of substrates increased. Furthermore, X-ray photoelectron spectroscopy (XPS) measurement showed that the composition ratio of layers deposited by positive or negative cluster ion beams was similar to that of BMIM-PF6 solvent.

Takaoka, Gikan H.; Takeuchi, Mitsuaki; Ryuto, Hiromichi; Ueda, Ryo

2013-07-01

407

Vaporisation of an ionic liquid near room temperature.  

PubMed

The temperature at which the vapour phase of the ionic liquids (ILs) 1-ethyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]imide, [C(2)C(1)Im][Tf(2)N], and 1-ethyl-3-methylimidazolium ethylsulfate, [C(2)C(1)Im][EtOSO(3)], can be detected was investigated using line-of-sight mass spectrometry (LOSMS). By optimising the detection system used in previous experiments, the lowest temperature for which vapour was detected for [C(2)C(1)Im][Tf(2)N] was approximately 340 K, whereas for [C(2)C(1)Im][EtOSO(3)] it was approximately 390 K. Initial investigations also show that the temperature at which measurements are made affects the enthalpy of vaporisation at 298 K, Delta(vap)H(298). The reasons for these differences in Delta(vap)H(298) with respect to temperature are discussed. The vapour pressure of both ILs is estimated at far lower temperatures than previously achieved and extrapolations to room temperature are given. PMID:20535409

Lovelock, Kevin R J; Deyko, Alexey; Licence, Peter; Jones, Robert G

2010-08-21

408

Interfacial Ionic Liquids: Connecting Static and Dynamic Structures  

E-print Network

It is well-known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e., with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time X-ray reflectivity (XR) to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene-RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics (MD) simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion and cation adsorbed structures separated by an energy barrier (~0.15 eV).

Ahmet Uysal; Hua Zhou; Guang Feng; Sang Soo Lee; Song Li; Peter T. Cummings; Pasquale F. Fulvio; Sheng Dai; John K. McDonough; Yury Gogotsi; Paul Fenter

2014-12-06

409

Silica particle stability and settling in protic ionic liquids.  

PubMed

Silica particle suspensions of 10 wt % have been investigated in the protic ionic liquids (ILs) ethylammonium nitrate (EAN), ethanolammonium nitrate (EtAN), propylammonium nitrate (PAN), and dimethylethylammonium formate (DMEAF). Static and dynamic light scattering reveal that single particles coexist in dynamic equilibrium with flocculated networks at room temperature. These types of systems are classified as weakly flocculated and are quite rare. As weakly flocculated systems generally exist only within a narrow range of conditions, the effect of temperature was probed. When temperature is increased, the thermal motion of suspended particles increases, favoring dispersion, but in ILs suspensions, heating reduces the stabilizing effect of the interfacial structure of the IL. When subjected to a small increase in temperature, particle suspensions in ILs become unstable, indicated by the absence of a peak corresponding to single particles in the light scattering data. For EAN and DMEAF, further increasing temperatures above 40 °C returns the systems to a weakly flocculated state in which thermal energy is sufficient to break particles away from aggregates. Weakly flocculated suspensions in EAN and EtAN settle more rapidly than predicted by the Stokes equation, as the particles spend a significant portion of time in large, rapidly settling flocs. Surprisingly, suspensions in PAN and DMEAF settle slower than predicted. Oscillatory rheology indicates that these suspensions are viscoelastic, due to a persistent, long-range structure in the suspension that slows settling. In aggregated systems, settling is very rapid. PMID:24450614

Smith, Jacob; Webber, Grant Bruce; Warr, Gregory G; Atkin, Rob

2014-02-18

410

Paramagnetic ionic liquids for measurements of density using magnetic levitation.  

PubMed

Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev. PMID:23972068

Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

2013-09-01

411

An ionic liquid as a solvent for headspace single drop microextraction of chlorobenzenes from water samples  

Microsoft Academic Search

A headspace single-drop microextraction (HS-SDME) procedure using room temperature ionic liquid and coupled to high-performance liquid chromatography capable of quantifying trace amounts of chlorobenzenes in environmental water samples is proposed. A Plackett–Burman design for screening was carried out in order to determine the significant experimental conditions affecting the HS-SDME process (namely drop volume, aqueous sample volume, stirring speed, ionic strength,

Lorena Vidal; Elefteria Psillakis; Claudia E. Domini; Nuria Grané; Frank Marken; Antonio Canals

2007-01-01

412

Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials  

PubMed Central

Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels. PMID:25000264

Isik, Mehmet; Sardon, Haritz; Mecerreyes, David

2014-01-01

413

Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass  

Microsoft Academic Search

Auto-fluorescent mapping of plant cell walls was used to visualize cellulose and lignin in pristine switchgrass (Panicum virgatum) stems to determine the mechanisms of biomass dissolution during ionic liquid pretreatment. The addition of ground switchgrass to the ionic liquid 1-n-ethyl-3-methylimidazolium acetate resulted in the disruption and solubilization of the plant cell wall at mild temperatures. Swelling of the plant cell

Seema Singh; Blake A. Simmons; Kenneth P. Vogel

2009-01-01

414

Elucidating graphene - Ionic Liquid interfacial region: a combined experimental and computational study  

SciTech Connect

The interfacial region between graphene and an imidazolium based ionic liquid is studied using spectroscopic analysis and computational modelling. This combined approach reveals that the molecular level structure of the interfacial region is significantly influenced by functional group defects on the graphene surface.The combined experimental and computational study reveals that the molecular structure at interfacial region between graphene and imidazolium based ionic liquid is defined by the hydroxyl functional groups on the graphene surface

Vijayakumar, M.; Schwenzer, Birgit; Shutthanandan, V.; Hu, Jian Z.; Liu, Jun; Aksay, Ilhan A.

2014-01-10

415

Ionic-liquid materials for the electrochemical challenges of the future  

Microsoft Academic Search

Ionic liquids are room-temperature molten salts, composed mostly of organic ions that may undergo almost unlimited structural variations. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal\\/semiconductor electrodeposition, and as batteries and fuel cells where conventional media, organic solvents (in batteries) or water (in polymer-electrolyte-membrane fuel cells),

Michel Armand; Frank Endres; Douglas R. Macfarlane; Hiroyuki Ohno; Bruno Scrosati

2009-01-01

416

Upgrading and viscosity reducing of heavy oils by [BMIM][AlCl 4] ionic liquid  

Microsoft Academic Search

The ionic liquid [BMIM][AlCl4] was synthesized to upgrade heavy oils. The influences of contents of sulfur and water, reaction temperature, and transition metal salts on upgrading heavy oils were investigated. The experimental results show that a certain amount of sulfur in heavy oils is beneficial to the viscosity reduction. The reduction of viscosity by [BMIM][AlCl4] ionic liquid is better when

Ze-xia FAN; Teng-fei WANG; Yu-hai HE

2009-01-01

417

Vapor pressure measurement for binary and ternary systems containing a phosphoric ionic liquid  

Microsoft Academic Search

Vapor pressure data were measured for nine binary systems containing water, methanol or ethanol with the ionic liquids 1-methyl-3-methylimidazolium dimethylphosphate ([MMIM][DMP]), 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][DEP]) and 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP]) and one ternary system ethanol–water–[MMIM][DMP] at varying temperature and ionic liquid mass percent ranging from 10% to 70% by a quasi-static method. The vapor pressure data of the binary systems were correlated

Jin Zhao; Xiao-Chuan Jiang; Chun-Xi Li; Zi-Hao Wang

2006-01-01

418

Anion effects in imidazolium ionic liquids on the performance of IPMCs  

Microsoft Academic Search

Four ionic liquids were explored for as inner solvents of IPMC to overcome the shortcomings of water, especially its high volatility and low electrolysis potential. The imidazolium salts were composed of 1-ethyl-3-methylimidazolium [EMIm] cation and anions including bromide [Br], nitrate [NO3], acetate [AcO], and trifluoroacetate [TA]. The 1H NMR studies confirmed the structures of the four ionic liquids and indicated

Jang-Woo Lee; Young-Tai Yoo

2009-01-01

419

Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials.  

PubMed

Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels. PMID:25000264

Isik, Mehmet; Sardon, Haritz; Mecerreyes, David

2014-01-01

420

Structure of ionic liquids under external electric field: a molecular dynamics simulation  

Microsoft Academic Search

Understanding the structure of ionic liquids under external electric field (EEF) is very important for their applications in many fields, such as cells, electrowetting and electrospray. An all-atom molecular dynamic simulation was performed under EEF for [C2MIM][BF4] in order to explore the structure and properties of ionic liquids. It is found that EEF can change the distribution from disorder to

Yuling Zhao; Kun Dong; Xiaomin Liu; Suojiang Zhang; Jianjun Zhu; Jianji Wang

2012-01-01

421

Direct electrochemistry of cytochrome c entrapped in agarose hydrogel in room temperature ionic liquids  

Microsoft Academic Search

Direct electrochemistry of cytochrome c (cyt-c) entrapped in agarose hydrogel on gold electrode (Au), edge plane pyrolytic graphite electrode (EPPGE) and glassy carbon electrode (GC) in two room temperature ionic liquids was investigated. The effects of the addition of N,N-dimethylformamide (DMF) in the agarose-cyt-c film, water concentration in ionic liquids and exterior metal ions on the electrochemical behavior of cyt-c

Sui Wang; Zhiyong Guo; Huina Zhang

2011-01-01

422

Structure of ionic liquids under external electric field: a molecular dynamics simulation  

Microsoft Academic Search

Understanding the structure of ionic liquids under external electric field (EEF) is very important for their applications in many fields, such as cells, electrowetting and electrospray. An all-atom molecular dynamic simulation was performed under EEF for [C2MIM][BF4] in order to explore the structure and properties of ionic liquids. It is found that EEF can change the distribution from disorder to

Yuling Zhao; Kun Dong; Xiaomin Liu; Suojiang Zhang; Jianjun Zhu; Jianji Wang

2011-01-01

423

Monolayer and bilayer structures in ionic liquids and their mixtures confined to nano-films.  

PubMed

The confinement of liquids to thin films can lead to dramatic changes in their structural arrangement and dynamic properties. Ionic liquids display nano-structures in the bulk of the liquid, consisting of polar and non-polar domains, whereas a solid surface can induce layered structures in the near-surface liquid. Here we compare and contrast the layer structures in a series of imidazolium and pyrrolidinium-based ionic liquids upon confinement of the liquids to films of approximately 0-20 nm between two negatively charged mica surfaces. Using a surface force balance (SFB) we measured the force between the two atomically smooth mica surfaces with ionic liquid between, directly revealing the ion packing and dimensions of layered structures for each liquid. The ionic liquids with shorter alkyl chain substituents form alternating cation-anion monolayer structures on confinement, whilst a longer alkyl chain leads to alignment of the cations in bilayer formation. The crossover from monolayers to bilayers, however, occurs at different alkyl chain lengths for imidazolium- and pyrrolidinium-based ionic liquids with a common anion. In addition, we find that imidazolium cation bilayers are arranged in toe-to-toe orientation, whereas pyrrolidinium cations form bilayers consisting of fully interdigitated alkyl chains. Results for a mixture of monolayer-preferring (i.e. short alkyl chain) and bilayer-preferring (i.e. long alkyl chain) liquids indicate alkyl chain segregation and bilayer-like structures. We discuss the driving forces for these self-assembly effects, and the contrasting behaviour of the imidazolium and pyrrolidinium-type ionic liquids. PMID:24640496

Smith, Alexander M; Lovelock, Kevin R J; Perkin, Susan

2013-01-01

424

Crystalline and liquid structure of zinc chloride trihydrate: a unique ionic liquid.  

PubMed

The water/ZnCl2 phase diagram in the vicinity of the 75 mol % water composition is reported, demonstrating the existence of a congruently melting phase. Single crystals of this 3-equiv hydrate were grown, and the crystal structure of [Zn(OH2)6][ZnCl4] was determined. Synchrotron X-ray and neutron diffraction and IR and Raman spectroscopy along with reverse Monte Carlo modeling demonstrate that a CsCl-type packing of the molecular ions persists into the liquid state. Consistent with the crystalline and liquid structural data, IR spectroscopy demonstrates that the O-H bonds of coordinated water do not exhibit strong intermolecular hydrogen ion bonding but are significantly weakened because of the water's coordination to Lewis acidic zinc ions. The O-H bond weakening makes this system a very strong hydrogen-bond donor, whereas the ionic packing along with the nonpolar geometry of the molecular ions makes this system a novel nonpolar, hydrogen-bonding, ionic liquid solvent. PMID:25597378

Wilcox, Robert J; Losey, Bradley P; Folmer, Jacob C W; Martin, James D; Zeller, Matthias; Sommer, Roger

2015-02-01

425