Science.gov

Sample records for aqp4 aqp5 amtb

  1. Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG

    PubMed Central

    Musa-Aziz, Raif; Chen, Li-Ming; Pelletier, Marc F.; Boron, Walter F.

    2009-01-01

    The water channel aquaporin 1 (AQP1) and certain Rh-family members are permeable to CO2 and NH3. Here, we use changes in surface pH (pHS) to assess relative CO2 vs. NH3 permeability of Xenopus oocytes expressing members of the AQP or Rh family. Exposed to CO2 or NH3, AQP1 oocytes exhibit a greater maximal magnitude of pHS change (ΔpHS) compared with day-matched controls injected with H2O or with RNA encoding SGLT1, NKCC2, or PepT1. With CO2, AQP1 oocytes also have faster time constants for pHS relaxation (τpHs). Thus, AQP1, but not the other proteins, conduct CO2 and NH3. Oocytes expressing rat AQP4, rat AQP5, human RhAG, or the bacterial Rh homolog AmtB also exhibit greater ΔpHS(CO2) and faster τpHs compared with controls. Oocytes expressing AmtB and RhAG, but not AQP4 or AQP5, exhibit greater ΔpHS(NH3) values. Only AQPs exhibited significant osmotic water permeability (Pf). We computed channel-dependent (*) ΔpHS or Pf by subtracting values for H2O oocytes from those of channel-expressing oocytes. For the ratio ΔpHS(CO2)*/Pf*, the sequence was AQP5 > AQP1 ≅ AQP4. For ΔpHS(CO2)*/ΔpHS(NH3)*, the sequence was AQP4AQP5 > AQP1 > AmtB > RhAG. Thus, each channel exhibits a characteristic ratio for indices of CO2 vs. NH3 permeability, demonstrating that, like ion channels, gas channels can exhibit selectivity. PMID:19273840

  2. Effect of colostrum and milk on small intestine expression of AQP4 and AQP5 in newborn buffalo calves.

    PubMed

    Squillacioti, C; De Luca, A; Pero, M E; Vassalotti, G; Lombardi, P; Avallone, L; Mirabella, N; Pelagalli, A

    2015-12-01

    Functional studies indicate differences in newborn gastrointestinal morphology and physiology after a meal. Both water and solutes transfer across the intestinal epithelial membrane appear to occur via aquaporins (AQPs). Given that the physiological roles of AQP4 and AQP5 in the developing intestine have not been fully established, the objective of this investigation was to determine their distribution, expression and respective mRNA in the small intestine of colostrums-suckling buffalo calves by using immunohistochemistry, Western blot, and reverse transcriptase-PCR analysis. Results showed different tissue distribution between AQP4 and AQP5 with the presence of the former along the enteric neurons and the latter in the endocrine cells. Moreover, their expression levels were high in the ileum of colostrum-suckling buffalo calves. The data present a link between feeding, intestinal development and water homeostasis, suggesting the involvement of these channel proteins in intestinal permeability and fluid secretion/absorption during this stage of development after birth. PMID:26679810

  3. Biology of AQP4 and anti-AQP4 antibody: therapeutic implications

    PubMed Central

    Verkman, A. S.; Phuan, Puay-Wah; Asavapanumas, Nithi; Tradtrantip, Lukmanee

    2013-01-01

    The water channel aquaporin-4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4-IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot-processes of astrocytes throughout the central nervous system, as well as in skeletal muscle and epithelial cells in kidney, lung and gastrointestinal organs. Phenotype analysis of AQP4 knockout mice indicates the involvement of AQP4 in water movement into and out of the brain, astrocyte migration, glial scar formation, and neuroexcitatory phenomena. AQP4 monomers form tetramers in membranes, which further aggregate to form supramolecular assemblies called orthogonal arrays of particles. AQP4-IgG is pathogenic in NMO by a mechanism involving complement- and cell-mediated astrocyte cytotoxicity, which produces an inflammatory response with oligodendrocyte injury and demyelination. AQP4 orthogonal arrays are crucial in NMO pathogenesis, as they increase AQP4-IgG binding to AQP4 and greatly enhance complement-dependent cytotoxicity. Novel NMO therapeutics are under development that target AQP4-IgG or AQP4, including aquaporumab monoclonal antibodies and small molecules that block AQP4-IgG binding to AQP4, and enzymatic inactivation strategies to neutralize AQP4-IgG pathogenicity. PMID:24118484

  4. Neuroimmunological Implications of AQP4 in Astrocytes

    PubMed Central

    Ikeshima-Kataoka, Hiroko

    2016-01-01

    The brain has high-order functions and is composed of several kinds of cells, such as neurons and glial cells. It is becoming clear that many kinds of neurodegenerative diseases are more-or-less influenced by astrocytes, which are a type of glial cell. Aquaporin-4 (AQP4), a membrane-bound protein that regulates water permeability is a member of the aquaporin family of water channel proteins that is expressed in the endfeet of astrocytes in the central nervous system (CNS). Recently, AQP4 has been shown to function, not only as a water channel protein, but also as an adhesion molecule that is involved in cell migration and neuroexcitation, synaptic plasticity, and learning/memory through mechanisms involved in long-term potentiation or long-term depression. The most extensively examined role of AQP4 is its ability to act as a neuroimmunological inducer. Previously, we showed that AQP4 plays an important role in neuroimmunological functions in injured mouse brain in concert with the proinflammatory inducer osteopontin (OPN). The aim of this review is to summarize the functional implication of AQP4, focusing especially on its neuroimmunological roles. This review is a good opportunity to compile recent knowledge and could contribute to the therapeutic treatment of autoimmune diseases through strategies targeting AQP4. Finally, the author would like to hypothesize on AQP4’s role in interaction between reactive astrocytes and reactive microglial cells, which might occur in neurodegenerative diseases. Furthermore, a therapeutic strategy for AQP4-related neurodegenerative diseases is proposed. PMID:27517922

  5. Neuroimmunological Implications of AQP4 in Astrocytes.

    PubMed

    Ikeshima-Kataoka, Hiroko

    2016-01-01

    The brain has high-order functions and is composed of several kinds of cells, such as neurons and glial cells. It is becoming clear that many kinds of neurodegenerative diseases are more-or-less influenced by astrocytes, which are a type of glial cell. Aquaporin-4 (AQP4), a membrane-bound protein that regulates water permeability is a member of the aquaporin family of water channel proteins that is expressed in the endfeet of astrocytes in the central nervous system (CNS). Recently, AQP4 has been shown to function, not only as a water channel protein, but also as an adhesion molecule that is involved in cell migration and neuroexcitation, synaptic plasticity, and learning/memory through mechanisms involved in long-term potentiation or long-term depression. The most extensively examined role of AQP4 is its ability to act as a neuroimmunological inducer. Previously, we showed that AQP4 plays an important role in neuroimmunological functions in injured mouse brain in concert with the proinflammatory inducer osteopontin (OPN). The aim of this review is to summarize the functional implication of AQP4, focusing especially on its neuroimmunological roles. This review is a good opportunity to compile recent knowledge and could contribute to the therapeutic treatment of autoimmune diseases through strategies targeting AQP4. Finally, the author would like to hypothesize on AQP4's role in interaction between reactive astrocytes and reactive microglial cells, which might occur in neurodegenerative diseases. Furthermore, a therapeutic strategy for AQP4-related neurodegenerative diseases is proposed. PMID:27517922

  6. Autoimmune AQP4 channelopathies and neuromyelitis optica spectrum disorders.

    PubMed

    Hinson, Shannon R; Lennon, Vanda A; Pittock, Sean J

    2016-01-01

    Neuromyelitis optica (NMO) spectrum disorders (SD) represent an evolving group of central nervous system (CNS)-inflammatory autoimmune demyelinating diseases unified by a pathogenic autoantibody specific for the aquaporin-4 (AQP4) water channel. It was historically misdiagnosed as multiple sclerosis (MS), which lacks a distinguishing biomarker. The discovery of AQP4-IgG moved the focus of CNS demyelinating disease research from emphasis on the oligodendrocyte and myelin to the astrocyte. NMO is recognized today as a relapsing disease, extending beyond the optic nerves and spinal cord to include brain (especially in children) and skeletal muscle. Brain magnetic resonance imaging abnormalities, identifiable in 60% of patients at the second attack, are consistent with MS in 10% of cases. NMOSD-typical lesions (another 10%) occur in AQP4-enriched regions: circumventricular organs (causing intractable nausea and vomiting) and the diencephalon (causing sleep disorders, endocrinopathies, and syndrome of inappropriate antidiuresis). Advances in understanding the immunobiology of AQP4 autoimmunity have necessitated continuing revision of NMOSD clinical diagnostic criteria. Assays that selectively detect pathogenic AQP4-IgG targeting extracellular epitopes of AQP4 are promising prognostically. When referring to AQP4 autoimmunity, we suggest substituting the term "autoimmune aquaporin-4 channelopathy" for the term "NMO spectrum disorders." Randomized clinical trials are currently assessing the efficacy and safety of newer immunotherapies. Increasing therapeutic options based on understanding the molecular pathogenesis is anticipated to improve the outcome for patients with AQP4 channelopathy. PMID:27112688

  7. Anti-asthmatic agents alleviate pulmonary edema by upregulating AQP1 and AQP5 expression in the lungs of mice with OVA-induced asthma.

    PubMed

    Dong, Chunling; Wang, Guifang; Li, Bo; Xiao, Kui; Ma, Zhongsen; Huang, Hua; Wang, Xiangdong; Bai, Chunxue

    2012-04-15

    Ovalbumin (OVA)-induced asthma in mouse lungs causes changes in the mRNA and protein levels of aquaporins (AQPs). AQP expression was examined in the presence of various anti-asthmatic agents, including dexamethasone, ambroxol, and terbutaline. The influence of these agents on OVA-induced airway inflammation was also evaluated. The mRNA expression levels of AQP1, 4, and 5 were significantly reduced and that of AQP3 was significantly increased 24h after the last OVA exposure. The protein levels of AQP1, 3, and 5 mirrored the mRNA expression profiles, but AQP4 did not exhibit any changes. Only the mRNA and protein expression levels of AQP1 and AQP5 were significantly increased by these three anti-asthmatic agents. Dexamethasone and ambroxol improved the eosinophil infiltration, mucus secretion, and pulmonary edema caused by OVA, but terbutaline only alleviated pulmonary edema. These results indicate that AQP1 and AQP5 are closely related to pulmonary edema but not to eosinophil infiltration or mucus secretion during asthma. Anti-asthmatic agents could alleviate pulmonary edema through upregulating the expression of AQP1 and AQP5 in mouse lungs that have OVA-induced asthma. PMID:22226856

  8. Human AQP5 Plays a Role in the Progression of Chronic Myelogenous Leukemia (CML)

    PubMed Central

    Chae, Young Kwang; Kang, Sung Koo; Kim, Myoung Sook; Woo, Janghee; Lee, Juna; Chang, Steven; Kim, Dong-Wook; Kim, Myungshin; Park, Seonyang; Kim, Inho; Keam, Bhumsuk; Rhee, Jiyoung; Koo, Nam Hee; Park, Gyeongsin; Kim, Soo-Hyun; Jang, Se-Eun; Kweon, Il-Young; Sidransky, David; Moon, Chulso

    2008-01-01

    Aquaporins (AQPs) have previously been associated with increased expression in solid tumors. However, its expression in hematologic malignancies including CML has not been described yet. Here, we report the expression of AQP5 in CML cells by RT-PCR and immunohistochemistry. While normal bone marrow biopsy samples (n = 5) showed no expression of AQP5, 32% of CML patient samples (n = 41) demonstrated AQP5 expression. In addition, AQP5 expression level increased with the emergence of imatinib mesylate resistance in paired samples (p = 0.047). We have found that the overexpression of AQP5 in K562 cells resulted in increased cell proliferation. In addition, small interfering RNA (siRNA) targeting AQP5 reduced the cell proliferation rate in both K562 and LAMA84 CML cells. Moreover, by immunoblotting and flow cytometry, we show that phosphorylation of BCR-ABL1 is increased in AQP5-overexpressing CML cells and decreased in AQP5 siRNA-treated CML cells. Interestingly, caspase9 activity increased in AQP5 siRNA-treated cells. Finally, FISH showed no evidence of AQP5 gene amplification in CML from bone marrow. In summary, we report for the first time that AQP5 is overexpressed in CML cells and plays a role in promoting cell proliferation and inhibiting apoptosis. Furthermore, our findings may provide the basis for a novel CML therapy targeting AQP5. PMID:18612408

  9. Protective role of brain water channel AQP4 in murine cerebral malaria

    PubMed Central

    Promeneur, Dominique; Lunde, Lisa Kristina; Amiry-Moghaddam, Mahmood; Agre, Peter

    2013-01-01

    Tragically common among children in sub-Saharan Africa, cerebral malaria is characterized by rapid progression to coma and death. In this study, we used a model of cerebral malaria appearing in C57BL/6 WT mice after infection with the rodent malaria parasite Plasmodium berghei ANKA. Expression and cellular localization of the brain water channel aquaporin-4 (AQP4) was investigated during the neurological syndrome. Semiquantitative real-time PCR comparing uninfected and infected mice showed a reduction of brain AQP4 transcript in cerebral malaria, and immunoblots revealed reduction of brain AQP4 protein. Reduction of brain AQP4 protein was confirmed in cerebral malaria by quantitative immunogold EM; however, polarized distribution of AQP4 at the perivascular and subpial astrocyte membranes was not altered. To further examine the role of AQP4 in cerebral malaria, WT mice and littermates genetically deficient in AQP4 were infected with P. berghei. Upon development of cerebral malaria, WT and AQP4-null mice exhibited similar increases in width of perivascular astroglial end-feet in brain. Nevertheless, the AQP4-null mice exhibited more severe signs of cerebral malaria with greater brain edema, although disruption of the blood–brain barrier was similar in both groups. In longitudinal studies, cerebral malaria appeared nearly 1 d earlier in the AQP4-null mice, and reduced survival was noted when chloroquine rescue was attempted. We conclude that the water channel AQP4 confers partial protection against cerebral malaria. PMID:23277579

  10. AQP4-dependent water transport plays a functional role in exercise-induced skeletal muscle adaptations.

    PubMed

    Basco, Davide; Blaauw, Bert; Pisani, Francesco; Sparaneo, Angelo; Nicchia, Grazia Paola; Mola, Maria Grazia; Reggiani, Carlo; Svelto, Maria; Frigeri, Antonio

    2013-01-01

    In this study we assess the functional role of Aquaporin-4 (AQP4) in the skeletal muscle by analyzing whether physical activity modulates AQP4 expression and whether the absence of AQP4 has an effect on osmotic behavior, muscle contractile properties, and physical activity. To this purpose, rats and mice were trained on the treadmill for 10 (D10) and 30 (D30) days and tested with exercise to exhaustion, and muscles were used for immunoblotting, RT-PCR, and fiber-type distribution analysis. Taking advantage of the AQP4 KO murine model, functional analysis of AQP4 was performed on dissected muscle fibers and sarcolemma vesicles. Moreover, WT and AQP4 KO mice were subjected to both voluntary and forced activity. Rat fast-twitch muscles showed a twofold increase in AQP4 protein in D10 and D30 rats compared to sedentary rats. Such increase positively correlated with the animal performance, since highest level of AQP4 protein was found in high runner rats. Interestingly, no shift in muscle fiber composition nor an increase in AQP4-positive fibers was found. Furthermore, no changes in AQP4 mRNA after exercise were detected, suggesting that post-translational events are likely to be responsible for AQP4 modulation. Experiments performed on AQP4 KO mice revealed a strong impairment in osmotic responses as well as in forced and voluntary activities compared to WT mice, even though force development amplitude and contractile properties were unvaried. Our findings definitively demonstrate the physiological role of AQP4 in supporting muscle contractile activity and metabolic changes that occur in fast-twitch skeletal muscle during prolonged exercise. PMID:23520529

  11. Age-related changes in renal AQP3 and AQP4 expression in Sprague Dawley rats.

    PubMed

    Jing, X H; Liu, J; Hou, W Y; Gao, Y

    2016-01-01

    Aquaporin (AQP) 3 and AQP4 are important in urine concentrating mechanisms and in other physiological functions such as brain water balance, cell migration, cell proliferation, fat metabolism, and epidermal hydration. The results of studies investigating AQP3 and AQP4 expression in the kidneys are inconsistent, and systematic research is rare. This study aimed to obtain a better understanding of the changes in renal AQP3 and AQP4 mRNA expression that take place with age. The expression of AQP3 and AQP4 mRNA, during prenatal and postnatal development, and during aging, was investigated in kidneys from Sprague-Dawley rats. The pattern of AQP3 expression was similar to that of AQP4 expression during development, and both were detected at gestational day 19 in the rat kidney where they maintained a stable level to postnatal day 14. Subsequently, a significant increase in expression was observed from day 21 to day 35, with peak expression occurring at day 35. No significant change in AQP3 or AQP4 mRNA expression was observed after day 35, apart from AQP4, which increased at day 540. Moreover, the expression of both AQP3 and AQP4 on day 850 was higher than on day -2, and lower than on days 28 and 35. The expression of AQP3 and AQP4 was similar on days 1, 7, 14, and 21. These findings indicate that mRNA expression of AQP3 and AQP4 varies with age, which should be considered when treating kidney disease in pediatric and elderly patients. PMID:27525904

  12. Aquaporin-4 (AQP4) Associations and Array Dynamics Probed by Photobleaching and Single-molecule Analysis of Green Fluorescent Protein-AQP4 Chimeras*

    PubMed Central

    Tajima, Masato; Crane, Jonathan M.; Verkman, A. S.

    2010-01-01

    The plasma membrane assembly of aquaporin-4 (AQP4) water channels into orthogonal arrays of particles (OAPs) involves interactions of AQP4 N-terminal domains. To study in live cells the site of OAP assembly, the size and dynamics of plasma membrane OAPs, and the heterotetrameric associations of AQP4, we constructed green fluorescent protein (GFP)-labeled AQP4 “long” (M1) and “short” (M23) isoforms in which GFP was inserted at the cytoplasm-facing N or C terminus or between Val-141 and Val-142 in the second extracellular loop of AQP4. The C-terminal and extracellular loop GFP insertions did not interfere with the rapid unrestricted membrane diffusion of GFP-labeled M1 or the restricted diffusion and OAP assembly of GFP-labeled M23. Photobleaching of brefeldin A-treated cells showed comparable and minimally restricted diffusion of M1 and M23, indicating that OAP assembly occurs post-endoplasmic reticulum. Single-molecule step photobleaching and intensity analysis of GFP-labeled M1 in the absence versus presence of excess unlabeled M1 or M23 with an OAP-disrupting mutation indicated heterotetrameric AQP4 association. Time-lapse total internal reflection fluorescence imaging of M23 in live cells at 37 °C indicated that OAPs diffuse slowly (D ∼ 10−12 cm2/s) and rearrange over tens of minutes. Our biophysical measurements in live cells thus reveal extensive AQP4 monomer-monomer and tetramer-tetramer interactions. PMID:20071343

  13. Expression of Aquaporin 5 (AQP5) Promotes Tumor Invasion in Human Non Small Cell Lung Cancer

    PubMed Central

    Kang, Sung Koo; Kim, Myoung Sook; Lee, Juna; Lee, Seung Koo; Gong, Gyungyub; Kim, Yong Hee; Soria, Jean Charles; Jang, Se Jin; Sidransky, David; Moon, Chulso

    2008-01-01

    The aquaporins (AQP) are water channel proteins playing a major role in transcellular and transepithelial water movement. Recently, the role of AQPs in human carcinogenesis has become an area of great interest. Here, by immunohistochemistry (IHC), we have found an expression of AQP5 protein in 35.3% (IHC-score: ≥1, 144/408) of the resected NSCLC tissue samples. Cases with AQP5-positive status (IHC-score: ≥2) displayed a higher rate of tumor recurrence than negative ones in NSCLC (54.7% vs. 35.1%, p = 0.005) and worse disease-free survival (p = 0.033; OR = 1.52; 95%CI:1.04−2.23). Further in vitro invasion assay using BEAS-2B and NIH3T3 cells stably transfected with overexpression constructs for full length wild-type AQP5 (AQP5) and its two mutants, N185D which blocks membrane trafficking and S156A which blocks phosphorylation on Ser156, showed that AQP5 induced cell invasions while both mutants did not. In BEAS-2B cells, the expression of AQP5 caused a spindle-like and fibroblastic morphologic change and losses of cell-cell contacts and cell polarity. Only cells with AQP5, not either of two mutants, exhibited a loss of epithelial cell markers and a gain of mesenchymal cell markers. In a human SH3-domains protein array, cellular extracts from BEAS-2B with AQP5 showed a robust binding activity to SH3-domains of the c-Src, Lyn, and Grap2 C-terminal. Furthermore, in immunoprecipitation assay, activated c-Src, phosphorylated on Tyr416, showed a stronger binding activity to cellular extracts from BEAS-2B with AQP5 compared with N185D or S156A mutant. Fluorescence in situ hybridization (FISH) analysis failed to show evidence of genomic amplification, suggesting AQP5 expression as a secondary event. Based on these clinical and molecular observations, we conclude that AQP5, through its phosphorylation on Ser156 and subsequent interaction with c-Src, plays an important role in NSCLC invasion and, therefore, may provide a unique opportunity for developing a

  14. Computing membrane-AQP5-phosphatidylserine binding affinities with hybrid steered molecular dynamics approach

    PubMed Central

    Chen, Liao Y

    2015-01-01

    In order to elucidate how phosphatidylserine (PS6) interacts with AQP5 in a cell membrane, we develop a hybrid steered molecular dynamics (hSMD) method that involves (1) simultaneously steering two centers of mass of two selected segments of the ligand and (2) equilibrating the ligand-protein complex with and without biasing the system. Validating hSMD, we first study vascular endothelial growth factor receptor 1 (VEGFR1) in complex with N-(4-Chlorophenyl)-2-((pyridin-4-ylmethyl)amino)benzamide (8ST), for which the binding energy is known from in vitro experiments. In this study, our computed binding energy well agrees with the experimental value. Knowing the accuracy of this hSMD method, we apply it to the AQP5-lipid-bilayer system to answer an outstanding question relevant to AQP5’s physiological function: Will the PS6, a lipid having a single long hydrocarbon tail that was found in the central pore of the AQP5 tetramer crystal, actually bind to and inhibit AQP5’s central pore under near-physiological conditions, namely, when AQP5 tetramer is embedded in a lipid bilayer? We find, in silico, using the CHARMM 36 force field, that binding PS6 to AQP5 is a factor of 3 million weaker than “binding” it in the lipid bilayer. This suggests that AQP5’s central pore will not be inhibited by PS6 or a similar lipid in a physiological environment. PMID:25955791

  15. Expression of AQP5 and AQP8 in human colorectal carcinoma and their clinical significance

    PubMed Central

    2012-01-01

    Background The aquaporins (AQPs) are a family of small membrane transport proteins whose overexpression has been implicated in tumorigenesis. However, the expression of AQP5 and AQP8 in colorectal cancer and the clinical significance remain unexplored. This study aimed to detect the expression of AQP5 and AQP8 in clinical samples of colorectal cancer and analyze the correlations of their expression with the clinicopathological features of colorectal cancer. Methods Forty pairs of colorectal cancer tissue and paraneoplastic normal tissue were obtained at the time of surgery from patients with colorectal cancer. The expression of AQP5 and AQP8 was detected by immunohistochemical staining and reverse transcriptase polymerase chain reaction. Results AQP5 was mainly expressed in colorectal carcinoma cells and barely expressed in paraneoplastic normal tissues. By contrast, AQP8 was mainly expressed in paraneoplastic normal tissues and barely expressed in colorectal carcinoma cells. AQP5 expression was not significantly associated with the sex or age of the patient with colorectal cancer (P>0.05), but was closely associated with the differentiation, tumor-nodes-metastasis stage and distant lymph node metastasis of colorectal carcinoma (P<0.05). Conclusions AQP5 might be a novel prognostic biomarker for patients with colorectal cancer. PMID:23148732

  16. Aquaporin Expression in Normal and Pathological Skeletal Muscles: A Brief Review with Focus on AQP4

    PubMed Central

    Wakayama, Yoshihiro

    2010-01-01

    Freeze-fracture electron microscopy enabled us to observe the molecular architecture of the biological membranes. We were studying the myofiber plasma membranes of health and disease by using this technique and were interested in the special assembly called orthogonal arrays (OAs). OAs were present in normal myofiber plasma membranes and were especially numerous in fast twitch type 2 myofibers; while OAs were lost from sarcolemmal plasma membranes of severely affected muscles with dystrophinopathy and dysferlinopathy but not with caveolinopathy. In the mid nineties of the last century, the OAs turned out to be a water channel named aquaporin 4 (AQP4). Since this discovery, several groups of investigators have been studying AQP4 expression in diseased muscles. This review summarizes the papers which describe the expression of OAs, AQP4, and other AQPs at the sarcolemma of healthy and diseased muscle and discusses the possible role of AQPs, especially that of AQP4, in normal and pathological skeletal muscles. PMID:20339523

  17. Updated estimate of AQP4-IgG serostatus and disability outcome in neuromyelitis optica

    PubMed Central

    Jiao, Yujuan; Fryer, James P.; Lennon, Vanda A.; Jenkins, Sarah M.; Quek, Amy M.L.; Smith, Carin Y.; McKeon, Andrew; Costanzi, Chiara; Iorio, Raffaele; Weinshenker, Brian G.; Wingerchuk, Dean M.; Shuster, Elizabeth A.; Lucchinetti, Claudia F.

    2013-01-01

    Objective: To 1) determine, using contemporary recombinant antigen–based assays, the aquaporin-4 (AQP4)–immunoglobulin G (IgG) detection rate in sequential sera of patients assigned a clinical diagnosis of neuromyelitis optica (NMO) but initially scored negative by tissue-based indirect immunofluorescence (IIF) assay; and 2) evaluate the impact of serostatus on phenotype and outcome. Methods: From Mayo Clinic records (2005–2011), we identified 163 patients with NMO; 110 (67%) were seropositive by IIF and 53 (33%) were scored seronegative. Available stored sera from 49 “seronegative” patients were tested by ELISA, AQP4-transfected cell-based assay, and in-house fluorescence-activated cell sorting assay. Clinical characteristics were compared based on final serostatus. Results: Thirty of the 49 IIF-negative patients (61%) were reclassified as seropositive, yielding an overall AQP4-IgG seropositivity rate of 88% (i.e., 12% seronegative). The fluorescence-activated cell sorting assay improved the detection rate to 87%, cell-based assay to 84%, and ELISA to 79%. The sex ratio (female to male) was 1:1 for seronegatives and 9:1 for seropositives (p < 0.0001). Simultaneous optic neuritis and transverse myelitis as onset attack type (i.e., within 30 days of each other) occurred in 32% of seronegatives and in 3.6% of seropositives (p < 0.0001). Relapse rate, disability outcome, and other clinical characteristics did not differ significantly. Conclusions: Serological tests using recombinant AQP4 antigen are significantly more sensitive than tissue-based IIF for detecting AQP4-IgG. Testing should precede immunotherapy; if negative, later-drawn specimens should be tested. AQP4-IgG–seronegative NMO is less frequent than previously reported and is clinically similar to AQP4-IgG–seropositive NMO. PMID:23997151

  18. Spatial distributions of AQP5 and AQP0 in embryonic and postnatal mouse lens development

    PubMed Central

    Petrova, Rosica S.; Schey, Kevin L.; Donaldson, Paul J.; Grey, Angus C.

    2015-01-01

    The expression of the water channel protein aquaporin (AQP)-5 in adult rodent and human lenses was recently reported using immunohistochemistry, molecular biology, and mass spectrometry techniques, confirming a second transmembrane water channel that is present in lens fibre cells in addition to the abundant AQP0 protein. Interestingly, the sub-cellular distribution and level of post-translational modification of both proteins changes with fibre cell differentiation and location in the adult rodent lens. This study compares the sub-cellular distribution of AQP0 and AQP5 during embryonic and postnatal fibre cell development in the mouse lens to understand how the immunolabelling patterns for both AQPs observed in adult lens are first established. Immunohistochemistry was used to map the cellular and sub-cellular distribution of AQP5 and AQP0 throughout the lens in cryosections from adult (6 weeks to 8 months) and postnatal (0-2 weeks) mouse lenses and in sections from paraffin embedded mouse embryos (E10-E19). All sections were imaged by fluorescence confocal microscopy. Using antibodies directed against the C-terminus of each AQP, AQP5 was abundantly expressed early in development, being found in the cytoplasm of cells of the lens vesicle and surrounding tissues (E10), while AQP0 was detected later (E11), and only in the membranes of elongating primary fibre cells. During the course of subsequent embryonic and postnatal development the pattern of cytoplasmic AQP5 and membranous AQP0 labelling was maintained until postnatal day 6 (P6). From P6 AQP5 labelling became progressively more membranous initially in the lens nucleus and then later in all regions of the lens, while AQP0 labelling was abruptly lost in the lens nucleus due to C-terminal truncation. Our results show that the spatial distribution patterns of AQP0 and AQP5 observed in the adult lens are established during a narrow window of post natal development (P6-P15) that precedes eye opening and coincides

  19. Clinical utility of testing AQP4-IgG in CSF

    PubMed Central

    Majed, Masoud; Fryer, James P.; McKeon, Andrew; Lennon, Vanda A.

    2016-01-01

    Objective: To define, using assays of optimized sensitivity and specificity, the most informative specimen type for aquaporin-4 immunoglobulin G (AQP4-IgG) detection. Methods: Results were reviewed from longitudinal service testing for AQP4-IgG among specimens submitted to the Mayo Clinic Neuroimmunology Laboratory from 101,065 individual patients. Paired samples of serum/CSF were tested from 616 patients, using M1-AQP4-transfected cell-based assays (both fixed AQP4-CBA Euroimmun kit [commercial CBA] and live in-house flow cytometry [FACS]). Sensitivities were compared for 58 time-matched paired specimens (drawn ≤30 days apart) from patients with neuromyelitis optica (NMO) or high-risk patients. Results: The frequency of CSF submission as sole initial specimen was 1 in 50 in 2007 and 1 in 5 in 2015. In no case among 616 paired specimens was CSF positive and serum negative. In 58 time-matched paired specimens, AQP4-IgG was detected by FACS or by commercial CBA more sensitively in serum than in CSF (respectively, p = 0.06 and p < 0.001). A serum titer >1:100 predicted CSF positivity (p < 0.001). The probability of CSF positivity was greater around attack time (p = 0.03). No control specimen from 128 neurologic patients was positive by either assay. Conclusions: FACS and commercial CBA detection of AQP4-IgG is less sensitive in CSF than in serum. The data suggest that most AQP4-IgG is produced in peripheral lymphoid tissues and that a critical serum/CSF gradient is required for IgG to penetrate the CNS in pathogenic quantity. Serum is the optimal and most cost-effective specimen for AQP4-IgG testing. Classification of evidence: This study provides Class IV evidence that for patients with NMO or NMOSD, CSF is less sensitive than serum for detection of AQP4-IgG. PMID:27144221

  20. Dynamics of expression patterns of AQP4, dystroglycan, agrin and matrix metalloproteinases in human glioblastoma.

    PubMed

    Noell, Susan; Wolburg-Buchholz, Karen; Mack, Andreas F; Ritz, Rainer; Tatagiba, Marcos; Beschorner, Rudi; Wolburg, Hartwig; Fallier-Becker, Petra

    2012-02-01

    In human glioblastoma, the blood-brain barrier (BBB) is disturbed. According to our concept, the glio-vascular relationships and thus the control of the BBB are essentially dependent on the polarity of astroglial cells. This polarity is characterized by the uneven distribution of the water channel protein aquaporin-4 (AQP4), dystroglycan and other molecules. Recently, we were able to show that the extracellular matrix component agrin is important for the construction and localization of the so-called orthogonal arrays of particles (OAPs), which consist in AQP4. Here, combining freeze-fracture electron microscopy, immunohistochemistry and Western blotting, we describe alterations of expression and distribution of AQP4, dystroglycan, agrin and the matrix metalloproteinases (MMP) 2, 3 and 9 in human primary glioblastomas (eight primary tumours, six recurrent tumours). Increase of MMP3- and MMP2/9 immunoreactivities went along with loss of agrin and dystroglycan respectively. On the protein level, AQP4 expression was increased in glioblastoma compared to control tissue. This was not accompanied by an increase of OAPs, suggesting that AQP4 can also occur without forming OAPs. The results underline our concept of the loss of glioma cell polarity as one of the factors responsible for the disturbance of the neurovascular unit and as an explanation for the formation of edemas in the glioblastoma. PMID:22307776

  1. Genistein inhibits rotavirus replication and upregulates AQP4 expression in rotavirus-infected Caco-2 cells.

    PubMed

    Huang, Haohai; Liao, Dan; Liang, Liping; Song, Lijun; Zhao, Wenchang

    2015-06-01

    Rotavirus (RV) is the primary cause of severe dehydrating gastroenteritis and acute diarrheal disease in infants and young children. Previous studies have revealed that genistein can inhibit the infectivity of enveloped or nonenveloped viruses. Although the biological properties of genistein are well studied, the mechanisms of action underlying their anti-rotavirus properties have not been fully elucidated. Here, we report that genistein significantly inhibits RV-Wa replication in vitro by repressing viral RNA transcripts, and possibly viral protein synthesis. Interestingly, we also found that aquaporin 4 (AQP4) mRNA and protein expression, which was downregulated in RV-infected Caco-2 cells, can be upregulated by genistein in a time- and dose-dependent manner. Further experiments confirmed that genistein triggers CREB phosphorylation through PKA activation and subsequently promotes AQP4 gene transcription. These findings suggest that the pathophysiological mechanism of RV infection involves decreased expression of AQP4 and that genistein may be a useful candidate for developing a new anti-RV strategy by inhibiting rotavirus replication and upregulating AQP4 expression via the cAMP/PKA/CREB signaling pathway. Further studies on the effect of genistein on RV-induced diarrhea are warranted. PMID:25877820

  2. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    SciTech Connect

    Guo, Kai; Jin, Faguang

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  3. Normal volumes and microstructural integrity of deep gray matter structures in AQP4+ NMOSD

    PubMed Central

    Heine, Josephine; Pache, Florence; Lacheta, Anna; Borisow, Nadja; Kuchling, Joseph; Bellmann-Strobl, Judith; Ruprecht, Klemens; Brandt, Alexander U.; Paul, Friedemann

    2016-01-01

    Objective: To assess volumes and microstructural integrity of deep gray matter structures in a homogeneous cohort of patients with neuromyelitis optica spectrum disorder (NMOSD). Methods: This was a cross-sectional study including 36 aquaporin-4 antibody-positive (AQP4 Ab-positive) Caucasian patients with NMOSD and healthy controls matched for age, sex, and education. Volumetry of deep gray matter structures (DGM; thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, nucleus accumbens) was performed using 2 independent automated methods. Microstructural integrity was assessed based on diffusion tensor imaging. Results: Both volumetric analysis methods consistently revealed similar volumes of DGM structures in patients and controls without significant group differences. Moreover, no differences in DGM microstructural integrity were observed between groups. Conclusions: Deep gray matter structures are not affected in AQP4 Ab-positive Caucasian patients with NMOSD. NMOSD imaging studies should be interpreted with respect to Ab status, educational background, and ethnicity of included patients. PMID:27144219

  4. TRPV4 and AQP4 Channels Synergistically Regulate Cell Volume and Calcium Homeostasis in Retinal Müller Glia

    PubMed Central

    Jo, Andrew O.; Phuong, Tam T.T.; Verkman, Alan S.; Yarishkin, Oleg; MacAulay, Nanna

    2015-01-01

    Brain edema formation occurs after dysfunctional control of extracellular volume partly through impaired astrocytic ion and water transport. Here, we show that such processes might involve synergistic cooperation between the glial water channel aquaporin 4 (AQP4) and the transient receptor potential isoform 4 (TRPV4), a polymodal swelling-sensitive cation channel. In mouse retinas, TRPV4 colocalized with AQP4 in the end feet and radial processes of Müller astroglia. Genetic ablation of TRPV4 did not affect the distribution of AQP4 and vice versa. However, retinas from Trpv4−/− and Aqp4−/− mice exhibited suppressed transcription of genes encoding Trpv4, Aqp4, and the Kir4.1 subunit of inwardly rectifying potassium channels. Swelling and [Ca2+]i elevations evoked in Müller cells by hypotonic stimulation were antagonized by the selective TRPV4 antagonist HC-067047 (2-methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide) or Trpv4 ablation. Elimination of Aqp4 suppressed swelling-induced [Ca2+]i elevations but only modestly attenuated the amplitude of Ca2+ signals evoked by the TRPV4 agonist GSK1016790A [(N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide]. Glial cells lacking TRPV4 but not AQP4 showed deficits in hypotonic swelling and regulatory volume decrease. Functional synergy between TRPV4 and AQP4 during cell swelling was confirmed in the heterologously expressing Xenopus oocyte model. Importantly, when the swelling rate was osmotically matched for AQP4-positive and AQP4-negative oocytes, TRPV4 activation became independent of AQP4. We conclude that AQP4-mediated water fluxes promote the activation of the swelling sensor, whereas Ca2+ entry through TRPV4 channels reciprocally modulates volume regulation, swelling, and Aqp4 gene expression. Therefore, TRPV4–AQP4 interactions constitute a molecular system that

  5. The role of AQP4 in neuromyelitis optica: More answers, more questions.

    PubMed

    Yang, Xin; Ransom, Bruce R; Ma, Jian-Fang

    2016-09-15

    Neuromyelitis optica (NMO) is a recurrent inflammatory disease that preferentially targets the optic nerves and spinal cord. The presence of antibodies to the water channel protein aquaporin-4 (AQP4), expressed almost exclusively in astrocytes in the central nervous system (CNS), is a reliable biomarker for NMO. These antibodies, NMO-IgG, may be responsible for the sequential cascade of immune events, including IgG/IgM deposition, infiltration of granulocytes and complement-mediated cytotoxicity (i.e. astrocyte loss) and demyelination. This review summarizes current thinking about the role of NMO-IgG in the pathogenesis of this condition. New insights were also generated along with important additional questions. PMID:27609277

  6. Regulation of astrocyte glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) expression in a model of epilepsy.

    PubMed

    Hubbard, Jacqueline A; Szu, Jenny I; Yonan, Jennifer M; Binder, Devin K

    2016-09-01

    Astrocytes regulate extracellular glutamate and water homeostasis through the astrocyte-specific membrane proteins glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4), respectively. The role of astrocytes and the regulation of GLT1 and AQP4 in epilepsy are not fully understood. In this study, we investigated the expression of GLT1 and AQP4 in the intrahippocampal kainic acid (IHKA) model of temporal lobe epilepsy (TLE). We used real-time polymerase chain reaction (RT-PCR), Western blot, and immunohistochemical analysis at 1, 4, 7, and 30days after kainic acid-induced status epilepticus (SE) to determine hippocampal glial fibrillary acidic protein (GFAP, a marker for reactive astrocytes), GLT1, and AQP4 expression changes during the development of epilepsy (epileptogenesis). Following IHKA, all mice had SE and progressive increases in GFAP immunoreactivity and GFAP protein expression out to 30days post-SE. A significant initial increase in dorsal hippocampal GLT1 immunoreactivity and protein levels were observed 1day post SE and followed by a marked downregulation at 4 and 7days post SE with a return to near control levels by 30days post SE. AQP4 dorsal hippocampal protein expression was significantly downregulated at 1day post SE and was followed by a gradual return to baseline levels with a significant increase in ipsilateral protein levels by 30days post SE. Transient increases in GFAP and AQP4 mRNA were also observed. Our findings suggest that specific molecular changes in astrocyte glutamate transporters and water channels occur during epileptogenesis in this model, and suggest the novel therapeutic strategy of restoring glutamate and water homeostasis. PMID:27155358

  7. Effect of progesterone intervention on the dynamic changes of AQP-4 in hypoxic-ischaemic brain damage.

    PubMed

    Li, Xiaojuan; Bai, Ruiying; Zhang, Junhe; Wang, Xiaoyin

    2015-01-01

    To observe the effect of progesterone (PROG) on blood-brain barrier (BBB) permeability, brain tissue water content and dynamic changes of aquaporin-4 (AQP-4) in neonatal rats with hypoxic-ischaemic brain damage (HIBD). 72 neonatal Wistar rats, aged 7 days old, were randomly divided into control, hypoxic-ischaemic (6, 24 and 72 h, and 7 d subgroups) and drug groups (6, 24 and 72 h, and 7 d subgroups). The HIBD animal model was established. BBB was detected via an Evans blue tracer. Brain water content was determined by the dry/wet method. The AQP-4 expression in the cerebral cortex was observed through immunohistochemistry and Western blot. BBB permeability in the cerebral cortex of the neonatal rats, brain water content and AQP-4 expression in the hypoxia-ischaemia group were significantly higher than those of the control group after hypoxia for 6 h (P < 0.05), continued to rise within 24 h and then reached the peak at 72 h. BBB permeability in the cerebral cortex of the neonatal rats, brain water content and AQP-4 expression in the drug group were significantly lower than those of the hypoxia-ischaemia group after hypoxia for 6, 24 and 72 h (P < 0.05). Moreover, BBB permeability and BBB expression were positively correlated with the AQP-4 expression. In conclusion, PROG protects the brain of HIBD neonatal rats by alleviating the damage of BBB and cerebral oedema. The protective effect of PROG may be related to the down-regulation of AQP-4 expression in the cerebral cortex of neonatal rats. PMID:26770503

  8. Effect of progesterone intervention on the dynamic changes of AQP-4 in hypoxic-ischaemic brain damage

    PubMed Central

    Li, Xiaojuan; Bai, Ruiying; Zhang, Junhe; Wang, Xiaoyin

    2015-01-01

    To observe the effect of progesterone (PROG) on blood-brain barrier (BBB) permeability, brain tissue water content and dynamic changes of aquaporin-4 (AQP-4) in neonatal rats with hypoxic-ischaemic brain damage (HIBD). 72 neonatal Wistar rats, aged 7 days old, were randomly divided into control, hypoxic-ischaemic (6, 24 and 72 h, and 7 d subgroups) and drug groups (6, 24 and 72 h, and 7 d subgroups). The HIBD animal model was established. BBB was detected via an Evans blue tracer. Brain water content was determined by the dry/wet method. The AQP-4 expression in the cerebral cortex was observed through immunohistochemistry and Western blot. BBB permeability in the cerebral cortex of the neonatal rats, brain water content and AQP-4 expression in the hypoxia-ischaemia group were significantly higher than those of the control group after hypoxia for 6 h (P < 0.05), continued to rise within 24 h and then reached the peak at 72 h. BBB permeability in the cerebral cortex of the neonatal rats, brain water content and AQP-4 expression in the drug group were significantly lower than those of the hypoxia-ischaemia group after hypoxia for 6, 24 and 72 h (P < 0.05). Moreover, BBB permeability and BBB expression were positively correlated with the AQP-4 expression. In conclusion, PROG protects the brain of HIBD neonatal rats by alleviating the damage of BBB and cerebral oedema. The protective effect of PROG may be related to the down-regulation of AQP-4 expression in the cerebral cortex of neonatal rats. PMID:26770503

  9. Curcumin attenuates brain edema in mice with intracerebral hemorrhage through inhibition of AQP4 and AQP9 expression

    PubMed Central

    Wang, Bao-feng; Cui, Zhen-wen; Zhong, Zhi-hong; Sun, Yu-hao; Sun, Qing-fang; Yang, Guo-yuan; Bian, Liu-guan

    2015-01-01

    Aim: Aquaporins (AQPs) are the water-channels that play important roles in brain water homeostasis and in cerebral edema induced by brain injury. In this study we investigated the relationship between AQPs and a neuroprotective agent curcumin that was effective in the treatment of brain edema in mice with intracerebral hemorrhage (ICH). Methods: ICH was induced in mice by autologous blood infusion. The mice immediately received curcumin (75, 150, 300 mg/kg, ip). The Rotarod test scores, brain water content and brain expression of AQPs were measured post ICH. Cultured primary mouse astrocytes were used for in vitro experiments. The expression of AQP1, AQP4 and AQP9 and NF-κB p65 were detected using Western blotting or immunochemistry staining. Results: Curcumin administration dose-dependently reduced the cerebral edema at d 3 post ICH, and significantly attenuated the neurological deficits at d 5 post ICH. Furthermore, curcumin dose-dependently decreased the gene and protein expression of AQP4 and AQP9, but not AQP1 post ICH. Treatment of the cultured astrocytes with Fe2+ (10–100 μmol/L) dose-dependently increased the expression and nuclear translocation of NF-κB p65 and the expression of AQP4 and AQP9, which were partly blocked by co-treatment with curcumin (20 μmol/L) or the NF-κB inhibitor PDTC (10 μmol/L). Conclusion: Curcumin effectively attenuates brain edema in mice with ICH through inhibition of the NF-κB pathway and subsequently the expression of AQP4 and AQP9. Curcumin may serve as a potential therapeutic agent for ICH. PMID:26119880

  10. Antibodies to MOG and AQP4 in adults with neuromyelitis optica and suspected limited forms of the disease

    PubMed Central

    Armangue, Thaís; Blanco, Yolanda; Rostásy, Kevin; Calvo, Alvaro Cobo; Olascoaga, Javier; Ramió-Torrentà, Lluís; Reindl, Markus; Benito-León, Julián; Casanova, Bonaventura; Arrambide, Georgina; Sabater, Lidia; Graus, Francesc; Dalmau, Josep; Saiz, Albert

    2016-01-01

    Objective We aimed to report the frequency and implications of antibodies to myelin oligodendrocyte glycoprotein (MOG-ab) in adults with demyelinating syndromes suspicious for neuromyelitis optica (NMO). Methods Samples from 174 patients (48 NMO, 84 longitudinally extensive myelitis (LETM), 39 optic neuritis (ON), and three acute disseminated encephalomyelitis (ADEM) who presented initially with isolated LETM) were retrospectively examined for AQP4-ab and MOG-ab using cell-based assays. Results MOG-ab were found in 17 (9.8%) patients, AQP4-ab in 59 (34%), and both antibodies in two (1.1%). Among the 17 patients with MOG-ab alone, seven (41%) had ON, five (29%) LETM, four (24%) NMO, and one (6%) ADEM. Compared with patients with AQP4-ab, those with MOG-ab were significantly younger (median: 27 vs. 40.5 years), without female predominance (53% vs. 90%), and the clinical course was more frequently monophasic (41% vs. 7%) with a benign outcome (median Expanded Disability Status Scale: 1.5 vs. 4.0). In eight patients with paired serum-cerebrospinal fluid (CSF) samples, five had MOG-ab in both samples and three only in serum. Antibody titres did not differ among clinical phenotypes or disease course. MOG-ab remained detectable in 12/14 patients (median follow-up: 23 months) without correlation between titres' evolution and outcome. Conclusion MOG-ab identify a subgroup of adult patients with NMO, LETM and ON that have better outcome than those associated with AQP4-ab. MOG-ab are more frequently detected in serum than CSF and the follow-up of titres does not correlate with outcome. PMID:25344373

  11. Mechanisms Underlying Activation of α1-Adrenergic Receptor-Induced Trafficking of AQP5 in Rat Parotid Acinar Cells under Isotonic or Hypotonic Conditions

    PubMed Central

    Bragiel, Aneta M.; Wang, Di; Pieczonka, Tomasz D.; Shono, Masayuki; Ishikawa, Yasuko

    2016-01-01

    Defective cellular trafficking of aquaporin-5 (AQP5) to the apical plasma membrane (APM) in salivary glands is associated with the loss of salivary fluid secretion. To examine mechanisms of α1-adrenoceptor (AR)-induced trafficking of AQP5, immunoconfocal microscopy and Western blot analysis were used to analyze AQP5 localization in parotid tissues stimulated with phenylephrine under different osmolality. Phenylephrine-induced trafficking of AQP5 to the APM and lateral plasma membrane (LPM) was mediated via the α1A-AR subtype, but not the α1B- and α1D-AR subtypes. Phenylephrine-induced trafficking of AQP5 was inhibited by ODQ and KT5823, inhibitors of nitric oxide (NO)-stimulated guanylcyclase (GC) and protein kinase (PK) G, respectively, indicating the involvement of the NO/ soluble (c) GC/PKG signaling pathway. Under isotonic conditions, phenylephrine-induced trafficking was inhibited by La3+, implying the participation of store-operated Ca2+ channel. Under hypotonic conditions, phenylephrine-induced trafficking of AQP5 to the APM was higher than that under isotonic conditions. Under non-stimulated conditions, hypotonicity-induced trafficking of AQP5 to the APM was inhibited by ruthenium red and La3+, suggesting the involvement of extracellular Ca2+ entry. Thus, α1A-AR activation induced the trafficking of AQP5 to the APM and LPM via the Ca2+/ cyclic guanosine monophosphate (cGMP)/PKG signaling pathway, which is associated with store-operated Ca2+ entry. PMID:27367668

  12. Hypoxia and hypoxia mimetics decrease aquaporin 5 (AQP5) expression through both hypoxia inducible factor-1α and proteasome-mediated pathways.

    PubMed

    Kawedia, Jitesh D; Yang, Fan; Sartor, Maureen A; Gozal, David; Czyzyk-Krzeska, Maria; Menon, Anil G

    2013-01-01

    The alveolar epithelium plays a central role in gas exchange and fluid transport, and is therefore critical for normal lung function. Since the bulk of water flux across this epithelium depends on the membrane water channel Aquaporin 5 (AQP5), we asked whether hypoxia had any effect on AQP5 expression. We show that hypoxia causes a significant (70%) decrease in AQP5 expression in the lungs of mice exposed to hypoxia. Hypoxia and the hypoxia mimetic, cobalt, also caused similar decreases in AQP5 mRNA and protein expression in the mouse lung epithelial cell line MLE-12. The action of hypoxia and cobalt on AQP5 transcription was demonstrated by directly quantifying heternonuclear RNA by real-time PCR. Dominant negative mutants of Hypoxia Inducible Factor (HIF-1α) and HIF-1α siRNA blocked the action of cobalt, showing that HIF-1α is a key component in this mechanism. The proteasome inhibitors, lactacystin or proteasome inhibitor-III completely abolished the effect of hypoxia and cobalt both at the protein and mRNA level indicating that the proteasome pathway is probably involved not only for the stability of HIF-1α protein, but for the stability of unidentified transcription factors that regulate AQP5 transcription. These studies reveal a potentially important physiological mechanism linking hypoxic stress and membrane water channels. PMID:23469202

  13. Negative impact of AQP-4 channel inhibition on survival of retinal ganglion cells and glutamate metabolism after crushing optic nerve.

    PubMed

    Nishikawa, Yuko; Oku, Hidehiro; Morishita, Seita; Horie, Taeko; Kida, Teruyo; Mimura, Masashi; Fukumoto, Masanori; Kojima, Shota; Ikeda, Tsunehiko

    2016-05-01

    The purpose of this study was to determine whether inhibition of aquaporin 4 (AQP4) is neuroprotective or neurodestructive after crushing the optic nerve of rats. The left optic nerves of rats were crushed, and TGN-020 (5.0 mg/kg, crush TGN-020) or its vehicle (DMSO, crush placebo) was injected intraperitoneally just after the crushing. As controls, the left optic nerves were exposed but not touched in other rats (sham controls). The retinal damages were determined by the density of retinal ganglion cells (RGCs) and the ratio of BAX/Bcl-2 on day 7. The glutamate level in the optic nerve on day 1 after the crushing was determined. The expressions of glutamine synthetase, glutamate-aspartate transporter (GLAST), and AQP4 were determined on day 3 by immunoblotting. The effects of AQP4 inhibition on the glutamate-induced changes of AQP4 expression and on the glutamate uptake were determined for optic nerve astrocytes in culture. The results showed that the density of RGCs was 2040 ± 91.3 cells/mm(2) (n = 6) in the sham control, and it was significantly decreased to 1072 ± 134.3 cells/mm(2) after crushing the optic nerve (P < 0.0001, crush placebo, n = 7; Fisher). An intraperitoneal injection of TGN-020 led to a further significant (P = 0.02, Fisher) decrease of the density of RGCs to 743 ± 371 cells/mm(2) (crush TGN-020, n = 7). The mRNA level of BAX/Bcl-2 ratio was 0.37 ± 0.05 in the sham control (n = 6) which was significantly increased to 0.88 ± 0.10 after crushing the optic nerve (placebo crush, n = 7; P = 0.0001, Scheffe). TGN-020 also significantly increased the BAX/Bcl-2 ratio to 1.29 ± 0.4 (n = 6) from the crush placebo group (P = 0.04, Scheffe). Immunoblotting showed similar changes in the protein levels. The glutamate level in the optic nerve was significantly increased to 53.7 ± 6.0 μM/mg/protein on day 1 (n = 4) from the sham control level of 45.9 ± 3.1 μM/mg/protein (n = 4; P = 0.04, t test). TGN

  14. Status of diagnostic approaches to AQP4-IgG seronegative NMO and NMO/MS overlap syndromes

    PubMed Central

    Weinshenker, Brian; Akman-Demir, Gulsen; Asgari, Nasrin; Barnes, David; Boggild, Mike; Chaudhuri, Abhijit; D’hooghe, Marie; Evangelou, Nikos; Geraldes, Ruth; Illes, Zsolt; Jacob, Anu; Kim, Ho Jin; Kleiter, Ingo; Levy, Michael; Marignier, Romain; McGuigan, Christopher; Murray, Katy; Nakashima, Ichiro; Pandit, Lekha; Paul, Friedemann; Pittock, Sean; Selmaj, Krzysztof; de Sèze, Jérôme; Siva, Aksel; Tanasescu, Radu; Vukusic, Sandra; Wingerchuk, Dean; Wren, Damian; Leite, Isabel

    2016-01-01

    Distinguishing aquaporin-4 IgG(AQP4-IgG)-negative neuromyelitis optica spectrum disorders (NMOSD) from opticospinal predominant multiple sclerosis (MS) is a clinical challenge with important treatment implications. The objective of the study was to examine whether expert clinicians diagnose and treat NMO/MS overlapping patients in a similar way. 12 AQP4-IgG-negative patients were selected to cover the range of clinical scenarios encountered in an NMO clinic. 27 NMO and MS experts reviewed their clinical vignettes, including relevant imaging and laboratory tests. Diagnoses were categorized into four groups (NMO, MS, indeterminate, other) and management into three groups (MS drugs, immunosuppression, no treatment). The mean proportion of agreement for the diagnosis was low (po = 0.51) and ranged from 0.25 to 0.73 for individual patients. The majority opinion was divided between NMOSD versus: MS (nine cases), monophasic longitudinally extensive transverse myelitis (LETM) (1), acute disseminated encephalomyelitis (ADEM) (1) and recurrent isolated optic neuritis (RION) (1). Typical NMO features (e.g., LETM) influenced the diagnosis more than features more consistent with MS (e.g., short TM). Agreement on the treatment of patients was higher (po = 0.64) than that on the diagnosis with immunosuppression being the most common choice not only in patients with the diagnosis of NMO (98 %) but also in those indeterminate between NMO and MS (74 %). The diagnosis in AQP4-IgG-negative NMO/MS overlap syndromes is challenging and diverse. The classification of such patients currently requires new diagnostic categories, which incorporate lesser degrees of diagnostic confidence. Long-term follow-up may identify early features or biomarkers, which can more accurately distinguish the underlying disorder. PMID:26530512

  15. Status of diagnostic approaches to AQP4-IgG seronegative NMO and NMO/MS overlap syndromes.

    PubMed

    Juryńczyk, Maciej; Weinshenker, Brian; Akman-Demir, Gulsen; Asgari, Nasrin; Barnes, David; Boggild, Mike; Chaudhuri, Abhijit; D'hooghe, Marie; Evangelou, Nikos; Geraldes, Ruth; Illes, Zsolt; Jacob, Anu; Kim, Ho Jin; Kleiter, Ingo; Levy, Michael; Marignier, Romain; McGuigan, Christopher; Murray, Katy; Nakashima, Ichiro; Pandit, Lekha; Paul, Friedemann; Pittock, Sean; Selmaj, Krzysztof; de Sèze, Jérôme; Siva, Aksel; Tanasescu, Radu; Vukusic, Sandra; Wingerchuk, Dean; Wren, Damian; Leite, Isabel; Palace, Jacqueline

    2016-01-01

    Distinguishing aquaporin-4 IgG(AQP4-IgG)-negative neuromyelitis optica spectrum disorders (NMOSD) from opticospinal predominant multiple sclerosis (MS) is a clinical challenge with important treatment implications. The objective of the study was to examine whether expert clinicians diagnose and treat NMO/MS overlapping patients in a similar way. 12 AQP4-IgG-negative patients were selected to cover the range of clinical scenarios encountered in an NMO clinic. 27 NMO and MS experts reviewed their clinical vignettes, including relevant imaging and laboratory tests. Diagnoses were categorized into four groups (NMO, MS, indeterminate, other) and management into three groups (MS drugs, immunosuppression, no treatment). The mean proportion of agreement for the diagnosis was low (p o = 0.51) and ranged from 0.25 to 0.73 for individual patients. The majority opinion was divided between NMOSD versus: MS (nine cases), monophasic longitudinally extensive transverse myelitis (LETM) (1), acute disseminated encephalomyelitis (ADEM) (1) and recurrent isolated optic neuritis (RION) (1). Typical NMO features (e.g., LETM) influenced the diagnosis more than features more consistent with MS (e.g., short TM). Agreement on the treatment of patients was higher (p o = 0.64) than that on the diagnosis with immunosuppression being the most common choice not only in patients with the diagnosis of NMO (98 %) but also in those indeterminate between NMO and MS (74 %). The diagnosis in AQP4-IgG-negative NMO/MS overlap syndromes is challenging and diverse. The classification of such patients currently requires new diagnostic categories, which incorporate lesser degrees of diagnostic confidence. Long-term follow-up may identify early features or biomarkers, which can more accurately distinguish the underlying disorder. PMID:26530512

  16. Challenging AQP4 druggability for NMO-IgG antibody binding using molecular dynamics and molecular interaction fields.

    PubMed

    Mangiatordi, Giuseppe Felice; Alberga, Domenico; Siragusa, Lydia; Goracci, Laura; Lattanzi, Gianluca; Nicolotti, Orazio

    2015-07-01

    Neuromyelitis optica (NMO) is a multiple sclerosis-like immunopathology disease affecting optic nerves and the spinal cord. Its pathological hallmark is the deposition of a typical immunoglobulin, called NMO-IgG, against the water channel Aquaporin-4 (AQP4). Preventing NMO-IgG binding would represent a valuable molecular strategy for a focused NMO therapy. The recent observation that aspartate in position 69 (D69) is determinant for the formation of NMO-IgG epitopes prompted us to carry out intensive Molecular Dynamics (MD) studies on a number of single-point AQP4 mutants. Here, we report a domino effect originating from the point mutation at position 69: we find that the side chain of T62 is reoriented far from its expected position leaning on the lumen of the pore. More importantly, the strength of the H-bond interaction between L53 and T56, at the basis of the loop A, is substantially weakened. These events represent important pieces of a clear-cut mechanistic rationale behind the failure of the NMO-IgG binding, while the water channel function as well as the propensity to aggregate into OAPs remains unaltered. The molecular interaction fields (MIF)-based analysis of cavities complemented MD findings indicating a putative binding site comprising the same residues determining epitope reorganization. In this respect, docking studies unveiled an intriguing perspective to address the future design of small drug-like compounds against NMO. In agreement with recent experimental observations, the present study is the first computational attempt to elucidate NMO-IgG binding at the molecular level, as well as a first effort toward a less elusive AQP4 druggability. PMID:25839357

  17. Administration of SB239063, a potent p38 MAPK inhibitor, alleviates acute lung injury induced by intestinal ischemia reperfusion in rats associated with AQP4 downregulation.

    PubMed

    Xiong, Liu-Lin; Tan, Yan; Ma, Hong-Yu; Dai, Ping; Qin, Yan-Xia; Yang, Rui-Ai; Xu, Yan-Yan; Deng, Zheng; Zhao, Wei; Xia, Qin-Jie; Wang, Ting-Hua; Zhang, Yun-Hui

    2016-09-01

    Acute lung injury (ALI), induced by intestinal ischemia reperfusion (II/R) injury, is characterized by pulmonary edema and inflammation. Aquaporin 4 (AQP4), has been pointed out recently involving in edema development. Previous studies have shown that p38 mitogen activated protein kinase (MAPK) activation resulted in lung inflammation, while p38 MAPK inhibitor can alleviate the pathology injury of lung tissue. However, the regulated mechanism of p38 MAPK in ALI induced by II/R is unclear. In this study, we established II/R rats' model by clamping the superior mesenteric artery (SMA) and coeliac artery (CA) for 40min and subsequent reperfusion for 16h, 24h, 48h. Subsequently, SB239063, a specific inhibitor of the activity of p38 MAPK, was injected (10mg/kg) intraperitoneally 60min before the operation. The severity of ALI was determined by histology analysis (HE staining and ALI scoring) and lung edema (lung wet/dry weight ratio) assessment. Western blot (WB) was applied to detect the expression level of AQP4 and phosphorylated (P)-p38 MAPK, and the localization of AQP4 was detected by immunofluorescent staining (IF). We found that AQP4 could express in the lung tissue. II/R could significantly induce lung injury, confirmed by lung injury scores and lung wet/dry weight ratios. The level of P-p38 MAPK and AQP4 were largely up-regulated in lung tissues. Moreover, inhibition of p38 MAPK activity could effectively down-regulate AQP4 expression and diminish the severity of II/R-induced ALI. These novel findings suggest that inhibition of p38 MAPK function should be a potential strategy for the prevention or treatment of ALI, by targeting AQP4 in future clinic trial. PMID:27236300

  18. Neuromyelitis Optica with NMO-IgG/Anti-AQP4 Antibody Positive: First Case Reported from Uttarakhand India

    PubMed Central

    Mittal, Garima

    2014-01-01

    Neuromyelitis optica (also known as Devic’s disease) is an idiopathic, severe, demyelinating disease of the central nervous system that preferentially affects the optic nerve and spinal cord. The presence of a highly specific serum autoantibody marker (NMO-IgG) further differentiates neuromyelitis optica from multiple sclerosis and has helped to define a neuromyelitis optica spectrum of disorders. We present a case of 37-year-old man who has initially presented with transverse myelitis from which he recovered partially after treatment but later presented with bilateral optic neuritis. MRI brain revealed hyperintensity in bilateral optic nerves, periventricular area and also in the thalamic region. Diagnosis was confirmed by positive NMO – IgG/anti-AQP4 antibody. PMID:25177594

  19. Gene expression and localization of two types of AQP5 in Xenopus tropicalis under hydration and dehydration.

    PubMed

    Shibata, Yuki; Sano, Takahiro; Tsuchiya, Nobuhito; Okada, Reiko; Mochida, Hiroshi; Tanaka, Shigeyasu; Suzuki, Masakazu

    2014-07-01

    Two types of aquaporin 5 (AQP5) genes (aqp-xt5a and aqp-xt5b) were identified in the genome of Xenopus tropicalis by synteny comparison and molecular phylogenetic analysis. When the frogs were in water, AQP-xt5a mRNA was expressed in the skin and urinary bladder. The expression of AQP-xt5a mRNA was significantly increased in dehydrated frogs. AQP-xt5b mRNA was also detected in the skin and increased in response to dehydration. Additionally, AQP-xt5b mRNA began to be slightly expressed in the lung and stomach after dehydration. For the pelvic skin of hydrated frogs, immunofluorescence staining localized AQP-xt5a and AQP-xt5b to the cytoplasm of secretory cells of the granular glands and the apical plasma membrane of secretory cells of the small granular glands, respectively. After dehydration, the locations of both AQPs in their respective glands did not change, but AQP-xt5a was visualized in the cytoplasm of secretory cells of the small granular glands. For the urinary bladder, AQP-xt5a was observed in the apical plasma membrane and cytoplasm of a number of granular cells under normal hydration. After dehydration, AQP-xt5a was found in the apical membrane and cytoplasm of most granular cells. Injection of vasotocin into hydrated frogs did not induce these changes in the localization of AQP-xt5a in the small granular glands and urinary bladder, however. The results suggest that AQP-xt5a might be involved in water reabsorption from the urinary bladder during dehydration, whereas AQP-xt5b might play a role in water secretion from the small granular gland. PMID:24717674

  20. Anti-edema action of thyroid hormone in MCAO model of ischemic brain stroke: Possible association with AQP4 modulation.

    PubMed

    Sadana, Prabodh; Coughlin, Lucy; Burke, Jamie; Woods, Robert; Mdzinarishvili, Alexander

    2015-07-15

    The use of neuroprotective strategies to mitigate the fatal consequences of ischemic brain stroke is a focus of robust research activity. We have previously demonstrated that thyroid hormone (T3; 3,3',5-triiodo-l-thyronine) possesses neuroprotective and anti-edema activity in pre-stroke treatment regimens when administered as a solution or as a nanoparticle formulation. In this study we have extended our evaluation of thyroid hormone use in animal models of brain stroke. We have used both transient middle cerebral artery occlusion (t-MCAO) and permanent (p-MCAO) models of ischemic brain stroke. A significant reduction of tissue infarction and a concurrent decrease in edema were observed in the t-MCAO model of brain stroke. However, no benefit of T3 was observed in p-MCAO stroke setting. Significant improvement of neurological outcomes was observed upon T3 treatment in t-MCAO mice. Further, we tested T2 (3,5-diiodo-l-thyronine) a natural deiodination metabolite of T3 in MCAO model of brain stroke. T2 potently decreased infarct size as well as edema formation. Additionally, we report here that T3 suppresses the expression of aquaporin-4 (AQP4) water channels which could be a likely mechanism of its anti-edema activity. Our studies provide evidence to stimulate clinical development of thyroid hormones for use in ischemic brain stroke. PMID:25963308

  1. S-allylmercapto-l-cysteine modulates MUC5AC and AQP5 secretions in a COPD model via NF-кB signaling pathway.

    PubMed

    Yang, Min; Wang, Yongjie; Zhang, Yongchun; Zhang, Fang; Zhao, Zhongxi; Li, Siying; Zhang, Jianqiang; Cao, Xinke; Zhang, Daizhou

    2016-10-01

    Garlic has shown versatile medicinal activities in the prevention and treatment of diseases such as chronic obstructive pulmonary disease (COPD). However, no individual garlic bioactive components have yet been determined in the COPD treatment effects. In this work, S-allylmercapto-l-cysteine (SAMC) identified in the aged garlic was selected as a model compound to determine its COPD therapeutic potential. The COPD model was established by using lipopolysaccharides (LPS) to stimulate the human airway submucosal gland cell line SPC-A1. Previous studies show that both MUC5AC up-regulation and AQP5 down-regulation play an important role in viscous COPD mucus secretions. The modulation effects of SAMC on LPS-induced MUC5AC and AQP5 productions in SPC-A1 cells were then evaluated. Pretreatment of the SPC-A1 cells with SAMC attenuated MUC5AC secretion and increased AQP5 expression in a dose-dependent manner in the non-cytotoxic concentration range of 20 to 100μM. Mechanistic studies suggested that SAMC could suppress the accumulation of MUC5AC mRNA and inhibit IкBα degradation and NF-кB p65 translocation. These results suggest that SAMC could be a promising candidate in the prevention and treatment of MUC5AC-associated disorders such as COPD. PMID:27517516

  2. Periplasmic Vestibule Determines the Ligand Selectivity in E.Coli AMTB

    NASA Astrophysics Data System (ADS)

    Akgun, Ugur; Khademi, Shahram

    2010-03-01

    The transport of ammonia, fundamental to the nitrogen metabolism in all domains of life, is carried out by the Rh/Amt/MEP membrane protein superfamily. The first structure of this family, AmtB from E.Coli shows a pathway for ammonia that includes two vestibules connected by a long and narrow hydrophobic lumen. The accepted mechanism for AmtB is to recruit NH4^+ and conduct neutral NH3 by deprotonation of NH4^+ at the end of periplasmic vestibule. Here we report from various MD simulations performed using a model of trimeric AmtB embedded into POPE lipid bilayer to determine the mechanism of ligands selectivity and conduction in the ammonia channels. Our total more than 500ns simulations reveal that the AmtB periplasmic vestibule prefers NH4^+ over NH3 and CO2. And the rate of ammonia conduction is regulated by the motion of the phenyl rings at the bottom of the vestibule. We also report that the conserved D160 is essential for ligand conduction by stabilizing the NH4^+ at the recruitment site through charge interactions. Our simulations also suggest NH4^+ most likely releases its proton to the bulk of water as it enters to the hydrophobic lumen.

  3. Meningoencephalitis-like onset of post-infectious AQP4-IgG-positive optic neuritis complicated by GM1-IgG-positive acute polyneuropathy.

    PubMed

    Benedetti, Luana; Franciotta, Diego; Beronio, Alessandro; Delucchi, Stefano; Capellini, Cesare; Del Sette, Massimo

    2015-02-01

    Fifteen days after a respiratory infection, a 45-year-old woman presented with paresthesias in the hands and feet, bilateral loss of vision, fever, headache, and impairment of consciousness. Magnetic resonance imaging (MRI) showed predominant lesions in the optic tracts, optic chiasm, and hypothalamus. Cerebrospinal fluid analysis revealed elevated protein level, and lymphocytic pleocytosis. Neurophysiological studies disclosed a demyelinating sensorimotor polyneuropathy. Serum anti-Mycoplasma pneumoniae immunoglobulin (Ig)M, anti-GM1 IgG, and anti-AQP4 IgG were positive. This case, which is remarkable for post-infectious meningoencephalitis-like onset, MRI picture, and dysimmunity to central and peripheral nervous system autoantigens, underpins the pivotal diagnostic role of anti-AQP4-IgG, and expands the list of clinico-pathological findings that can associate with neuromyelitis optica spectrum disorders. PMID:24557856

  4. AmtB Is Necessary for NH4+-Induced Nitrogenase Switch-Off and ADP-Ribosylation in Rhodobacter capsulatus‡

    PubMed Central

    Yakunin, Alexander F.; Hallenbeck, Patrick C.

    2002-01-01

    Rhodobacter capsulatus possesses two genes potentially coding for ammonia transporters, amtB and amtY. In order to better understand their role in the physiology of this bacterium and their possible significance in nitrogen fixation, we created single-knockout mutants. Strains mutated in either amtB or amtY did not show a growth defect under any condition tested and were still capable of taking up ammonia at nearly wild-type rates, but an amtB mutant was no longer capable of transporting methylamine. The amtB strain but not the amtY strain was also totally defective in carrying out ADP-ribosylation of Fe-protein or the switch-off of in vivo nitrogenase activity in response to NH4+ addition. ADP-ribosylation in response to darkness was unaffected in amtB and amtBY strains, and glutamine synthetase activity was normally regulated in these strains in response to ammonium addition, suggesting that one role of AmtB is to function as an ammonia sensor for the processes that regulate nitrogenase activity. PMID:12107124

  5. Selected cysteine point mutations confer mercurial sensitivity to the mercurial-insensitive water channel MIWC/AQP-4.

    PubMed

    Shi, L B; Verkman, A S

    1996-01-16

    The mercurial-insensitive water channel (MIWC or AQP-4) is a 30-32 kDA integral membrane protein expressed widely in fluid-transporting epithelia [Hasegawa et al. (1994) J. Biol. Chem. 269, 5497-5500]. To investigate the mercurial insensitivity and key residues involved in MIWC-mediated water transport, amino acids just proximal to the conserved NPA motifs (residues 69-74 and 187-190) were mutated individually to cysteine. Complementary RNAs were expressed in Xenopus oocytes for assay of osmotic water permeability (Pf) and HgCl2 inhibition dose-response. Oocytes expressing the cysteine mutants were highly water permeable, with Pf values (24-33 x 10(-3) cm/s) not different from that of wild-type (WT) MIWC. Pf was reversibly inhibited by HgCl2 in mutants S70C, G71C, G72C, H73C, and S189C but insensitive to HgCl2 in the other mutants. K1/2 values for 50% inhibition of Pf by HgCl2 were as follows (in millimolar): 0.40 (S70C), 0.36 (G71C), 0.14 (G72C), 0.45 (H73C), 0.24 (S189C), and > 1 for WT MIWC and the other mutants. To test the hypothesis that these residues are near the MIWC aqueous pore, residues 72 and 188 were mutated individually to the larger amino acid tryptophan. Pf in oocytes expressing mutants G72W or A188W (1.3-1.4 x 10(-3) cm/s) was not greater than that in water-injected oocytes even though these proteins were expressed at the oocyte plasma membrane as shown by quantitative immunofluorescence. Coinjection of cRNAs encoding WT MIWC and G72W or A188W indicated a dominant negative effect; Pf (x 10(-3) cm/s) was 22 (0.25 ng of WT), 10 (0.25 ng of WT + 0.25 ng of G72W), and 12 (0.25 ng of WT + 0.25 ng of A188W). Taken together, these results suggest the MIWC is mercurial-insensitive because of absence of a cysteine residue near the NPA motifs and that residues 70-73 and 189 are located at or near the MIWC aqueous pore. In contrast to previous data for the channel-forming integral protein of 28kDa (CHIP28), the finding of a dominant negative phenotype for

  6. Selective vasopressin-1a receptor antagonist prevents brain edema, reduces astrocytic cell swelling and GFAP, V1aR and AQP4 expression after focal traumatic brain injury.

    PubMed

    Marmarou, Christina R; Liang, Xiuyin; Abidi, Naqeeb H; Parveen, Shanaz; Taya, Keisuke; Henderson, Scott C; Young, Harold F; Filippidis, Aristotelis S; Baumgarten, Clive M

    2014-09-18

    A secondary and often lethal consequence of traumatic brain injury is cellular edema that we posit is due to astrocytic swelling caused by transmembrane water fluxes augmented by vasopressin-regulated aquaporin-4 (AQP4). We therefore tested whether vasopressin 1a receptor (V1aR) inhibition would suppress astrocyte AQP4, reduce astrocytic edema, and thereby diminish TBI-induced edematous changes. V1aR inhibition by SR49059 significantly reduced brain edema after cortical contusion injury (CCI) in rat 5h post-injury. Injured-hemisphere brain water content (n=6 animals/group) and astrocytic area (n=3/group) were significantly higher in CCI-vehicle (80.5±0.3%; 18.0±1.4 µm(2)) versus sham groups (78.3±0.1%; 9.5±0.9 µm(2)), and SR49059 blunted CCI-induced increases in brain edema (79.0±0.2%; 9.4±0.8µm(2)). CCI significantly up-regulated GFAP, V1aR and AQP4 protein levels and SR49059 suppressed injury induced up regulation (n=6/group). In CCI-vehicle, sham and CCI-SR49059 groups, GFAP was 1.58±0.04, 0.47±0.02, and 0.81±0.03, respectively; V1aR was 1.00±0.06, 0.45±0.05, and 0.46±0.09; and AQP4 was 2.03±0.34, 0.49±0.04, and 0.92±0.22. Confocal immunohistochemistry gave analogous results. In CCI-vehicle, sham and CCI-SR49059 groups, fluorescence intensity of GFAP was 349±38, 56±5, and 244±30, respectively, V1aR was 601±71, 117.8±14, and 390±76, and AQP4 was 818±117, 158±5, and 458±55 (n=3/group). The results support that edema was predominantly cellular following CCI and documented that V1aR inhibition with SR49059 suppressed injury-induced up regulation of GFAP, V1A and AQP4, blunting edematous changes. Our findings suggest V1aR inhibitors may be potential therapeutic tools to prevent cellular swelling and provide treatment for post-traumatic brain edema. PMID:24933327

  7. Influence of ammonium availability on expression of nifD and amtB genes during biostimulation of a U(VI) contaminated aquifer: implications for U(VI) removal and monitoring the metabolic state of Geobacteraceae

    SciTech Connect

    Mouser, Paula J.; N'Guessan, A. Lucie; Elifantz, Hila; Holmes, Dawn E.; Williams, Kenneth H; Wilkins, Michael J.; Long, Philip E.; Lovley, Derek R.

    2009-03-25

    The influence of ammonium availability on bacterial community structure and the physiological status of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by 2 orders of magnitude (<4 to 400 ?M) across the study site. Analysis of 16S rRNA sequences suggested that ammonium may have been one factor influencing the community composition prior to acetate amendment with Rhodoferax species predominating over Geobacter species with higher ammonium and Dechloromonas species dominating at the site with lowest ammonium. However, once acetate was added and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to acetate concentrations rather than ammonium levels. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium transporter gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during uranium reduction. The abundance of amtB was inversely correlated to ammonium levels, whereas nifD transcript levels were similar across all sites examined. These results suggest that nifD and amtB expression are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB transcript expression appears to be a useful approach for monitoring the nitrogen-related physiological status of subsurface Geobacter species. This study also emphasizes the need for more detailed analysis of geochemical and physiological interactions at the field scale in order to adequately model subsurface microbial processes during bioremediation.

  8. AQP4 autoantibody assay performance in clinical laboratory service

    PubMed Central

    Fryer, J.P.; Lennon, V.A.; Pittock, S.J.; Jenkins, S.M.; Fallier-Becker, P.; Clardy, S.L.; Horta, E.; Jedynak, E.A.; Lucchinetti, C.F.; Shuster, E.A.; Weinshenker, B.G.; Wingerchuk, D.M.

    2014-01-01

    Objective: To compare performance of contemporary aquaporin-4–immunoglobulin (Ig) G assays in clinical service. Methods: Sera from neurologic patients (4 groups) and controls were tested initially by service ELISA (recombinant human aquaporin-4, M1 isoform) and then by cell-based fluorescence assays: fixed (CBA, M1-aquaporin-4, observer-scored) and live (fluorescence-activated cell sorting [FACS], M1 and M23 aquaporin-4 isoforms). Group 1: all Mayo Clinic patients tested from January to May 2012; group 2: consecutive aquaporin-4-IgG–positive patients from September 2011 (Mayo and non-Mayo); group 3: suspected ELISA false-negatives from 2011 to 2013 (physician-reported, high likelihood of neuromyelitis optica spectrum disorders [NMOSDs] clinically); group 4: suspected ELISA false-positives (physician-reported, not NMOSD clinically). Results: Group 1 (n = 388): M1-FACS assay performed optimally (areas under the curves: M1 = 0.64; M23 = 0.57 [p = 0.02]). Group 2 (n = 30): NMOSD clinical diagnosis was confirmed by: M23-FACS, 24; M1-FACS, 23; M1-CBA, 20; and M1-ELISA, 18. Six results were suspected false-positive: M23-FACS, 2; M1-ELISA, 2; and M23-FACS, M1-FACS, and M1-CBA, 2. Group 3 (n = 31, suspected M1-ELISA false-negatives): results were positive for 5 sera: M1-FACS, 5; M23-FACS, 3; and M1-CBA, 2. Group 4 (n = 41, suspected M1-ELISA false-positives): all negative except 1 (positive only by M1-CBA). M1/M23-cotransfected cells expressing smaller membrane arrays of aquaporin-4 yielded fewer false- positive FACS results than M23-transfected cells. Conclusion: Aquaporin-4-transfected CBAs, particularly M1-FACS, perform optimally in aiding NMOSD serologic diagnosis. High-order arrays of M23-aquaporin-4 may yield false-positive results by binding IgG nonspecifically. PMID:25340055

  9. Aquaporins in Sensory and Pain Transmission

    PubMed Central

    Borsani, Elisa

    2010-01-01

    Recent data suggest a possible involvement of Aquaporins (AQPs) in pain transmission. AQPs are small membrane channel proteins involved in osmoregulation and, to date, AQP1, AQP2, AQP3, AQP4, AQP5, AQP8 and AQP9 have been found in the nervous system. Nevertheless only AQP1, AQP2 and AQP4 seem to be involved in nociception. In this review, direct and indirect evidences of the role of AQPs in pain processing will be reported. PMID:21119883

  10. Expression and Distribution Pattern of Aquaporin 4, 5 and 11 in Retinas of 15 Different Species.

    PubMed

    Amann, Barbara; Kleinwort, Kristina J H; Hirmer, Sieglinde; Sekundo, Walter; Kremmer, Elisabeth; Hauck, Stefanie M; Deeg, Cornelia A

    2016-01-01

    Aquaporins (AQPs) are small integral membrane proteins with 13 members in mammals and are essential for water transport across membranes. They are found in many different tissues and cells. Currently, there are conflicting results regarding retinal aquaporin expression and subcellular localization between genome and protein analyses and among various species. AQP4, 7, 9 and 11 were described in the retina of men; whereas AQP6, 8 and 10 were earlier identified in rat retinas and AQP4, 5 and 11 in horses. Since there is a lack of knowledge regarding AQP expression on protein level in retinas of different animal models, we decided to analyze retinal cellular expression of AQP4, 5 and 11 in situ with immunohistochemistry. AQP4 was detected in all 15 explored species, AQP5 and AQP11 in 14 out of 15. Interestingly, AQP4 was unambiguously expressed in Muller glial cells, whereas AQP5 was differentially allocated among the species analyzed. AQP11 expression was Muller glial cell-specific in 50% of the animals, whereas in the others, AQP11 was detected in ganglion cell layer and at photoreceptor outer segments. Our data indicate a disparity in aquaporin distribution in retinas of various animals, especially for AQP5 and 11. PMID:27438827

  11. Expression and Distribution Pattern of Aquaporin 4, 5 and 11 in Retinas of 15 Different Species

    PubMed Central

    Amann, Barbara; Kleinwort, Kristina J. H.; Hirmer, Sieglinde; Sekundo, Walter; Kremmer, Elisabeth; Hauck, Stefanie M.; Deeg, Cornelia A.

    2016-01-01

    Aquaporins (AQPs) are small integral membrane proteins with 13 members in mammals and are essential for water transport across membranes. They are found in many different tissues and cells. Currently, there are conflicting results regarding retinal aquaporin expression and subcellular localization between genome and protein analyses and among various species. AQP4, 7, 9 and 11 were described in the retina of men; whereas AQP6, 8 and 10 were earlier identified in rat retinas and AQP4, 5 and 11 in horses. Since there is a lack of knowledge regarding AQP expression on protein level in retinas of different animal models, we decided to analyze retinal cellular expression of AQP4, 5 and 11 in situ with immunohistochemistry. AQP4 was detected in all 15 explored species, AQP5 and AQP11 in 14 out of 15. Interestingly, AQP4 was unambiguously expressed in Muller glial cells, whereas AQP5 was differentially allocated among the species analyzed. AQP11 expression was Muller glial cell-specific in 50% of the animals, whereas in the others, AQP11 was detected in ganglion cell layer and at photoreceptor outer segments. Our data indicate a disparity in aquaporin distribution in retinas of various animals, especially for AQP5 and 11. PMID:27438827

  12. The Neuroepithelium Disruption Could Generate Autoantibodies against AQP4 and Cause Neuromyelitis Optica and Hydrocephalus

    PubMed Central

    Castañeyra-Ruiz, Leandro; González-Marrero, Ibrahim; Castañeyra-Ruiz, Agustín; González-Toledo, Juan M.; Castañeyra-Ruiz, María; Perez-Molto, Francisco J.; Carmona-Calero, Emilia M.; Castañeyra-Perdomo, Agustín

    2014-01-01

    Neuromyelitis optica is an inflammatory disease characterized by neuritis and myelitis of the optic nerve. Its physiopathology is connected with the aquaporin-4 water channel, since antibodies against aquaporin-4 have been found in the cerebrospinal fluid and blood of neuromyelitis optica patients. The seropositivity for aquaporin-4 antibodies is used for the diagnosis of neuromyelitis optica or neuromyelitis optica spectrum disease. On the other hand, aquaporin-4 is expressed in astrocyte feet in the brain-blood barrier and subventricular zones of the brain ventricles. Aquaporin-4 expression is high in cerebrospinal fluid in hydrocephalus. Furthermore, neuroepithelial denudation precedes noncommunicating hydrocephalus and this neuroepithelial disruption could allow aquaporin-4 to reach anomalous brain areas where it is unrecognized and induce the generation of aquaporin-4 antibodies which could cause the neuromyelitis optica and certain types of hydrocephalus. PMID:27379319

  13. Regulation of the perilymphatic-endolymphatic water shunt in the cochlea by membrane translocation of aquaporin-5.

    PubMed

    Eckhard, A; Dos Santos, A; Liu, W; Bassiouni, M; Arnold, H; Gleiser, C; Hirt, B; Harteneck, C; Müller, M; Rask-Andersen, H; Löwenheim, H

    2015-12-01

    Volume homeostasis of the cochlear endolymph depends on radial and longitudinal endolymph movements (LEMs). LEMs measured in vivo have been exclusively recognized under physiologically challenging conditions, such as experimentally induced alterations of perilymph osmolarity or endolymph volume. The regulatory mechanisms that adjust LEMs to the physiological requirements of endolymph volume homeostasis remain unknown. Here, we describe the formation of an aquaporin (AQP)-based "water shunt" during the postnatal development of the mouse cochlea and its regulation by different triggers. The final complementary expression pattern of AQP5 (apical membrane) and AQP4 (basolateral membrane) in outer sulcus cells (OSCs) of the cochlear apex is acquired at the onset of hearing function (postnatal day (p)8-p12). In vitro, hyperosmolar perfusion of the perilymphatic fluid spaces or the administration of the muscarinic agonist pilocarpine in cochlear explants (p14) induced the translocation of AQP5 channel proteins into the apical membranes of OSCs. AQP5 membrane translocation was blocked by the muscarinic antagonist atropine. The muscarinic M3 acetylcholine (ACh) receptor (M3R) was identified in murine OSCs via mRNA expression, immunolabeling, and in vitro binding studies using an M3R-specific fluorescent ligand. Finally, the water shunt elements AQP4, AQP5, and M3R were also demonstrated in OSCs of the human cochlea. The regulation of the AQP4/AQP5 water shunt in OSCs of the cochlear apex provides a molecular basis for regulated endolymphatic volume homeostasis. Moreover, its dysregulation or disruption may have pathophysiologic implications for clinical conditions related to endolymphatic hydrops, such as Ménière's disease. PMID:26208470

  14. Identification and Expression Analysis of Aquaporins in the Potato Psyllid, Bactericera cockerelli

    PubMed Central

    Ibanez, Freddy; Hancock, Joseph; Tamborindeguy, Cecilia

    2014-01-01

    Aquaporin (AQPs) proteins transport water and uncharged low molecular-weight solutes across biological membranes. Six to 8 AQP genes have been identified in many insect species, but presently only three aquaporins have been characterized in phloem feeding insects. The objective of this study was to identify candidate AQPs in the potato psyllid, Bactericera cockerelli. Herein, we identified four candidate aquaporin cDNAs in B. cockerelli transcriptome. Phylogenetic analysis showed that candidate BcAQP2-like had high similarity to PRIP aquaporins; while candidates BcAQP4-like, BcAQP5-like and BcAQP9-like clustered within clade B. In particular, candidates BcAQP4-like and BcAQP5-like clustered with functionally validated insect aquaglyceroporin proteins. Expression analyses using RT-qPCR showed that all candidates were expressed in all life stages and tissues. Candidates BcAQP4-like and BcAQP5-like were highly expressed in bacteriocytes, while BcAQP9-like appeared to be expressed at high levels in whole body but not in the assayed tissues. This study is the first global attempt to identify putative aquaporins in a phloem feeding insect. PMID:25354208

  15. Morphology and Aquaporin Immunohistochemistry of the Uterine Tube of Saanen Goats (Capra hircus): Comparison Throughout the Reproductive Cycle.

    PubMed

    Arrighi, S; Bosi, G; Frattini, S; Coizet, B; Groppetti, D; Pecile, A

    2016-06-01

    The expression of six different aquaporins (AQP1, 2, 3, 4, 5 and 9), integral membrane water channels that facilitate bi-directional passive movement of water, was investigated by immunohistochemistry in the uterine tube of pre-pubertal and adult Saanen goats (Capra hircus), comparing the different phases of the oestrous cycle. Regional morphology and secretory processes were markedly different during the goat oestrous cycle. The tested AQP molecules showed different expression patterns in comparison with already studied species. AQP1-immunoreactivity was evidenced at the endothelium of blood vessels and in nerve fibres, regardless of the tubal tract and cycle period. AQP4-immunoreactivity was shown on the lateral plasmalemma in the basal third of the epithelial cells at infundibulum and ampulla level in the cycling goats, more evidently during follicular than during luteal phase. No AQP4-immunoreactivity was noticed at the level of the isthmus region, regardless of the cycle phase. AQP5-immunoreactivity, localized at the apical surface of epithelial cells, increased from pre-puberty to adulthood. Thereafter, AQP5-immunoreactivity was prominent during the follicular phase, when it strongly decorated the apical plasmalemma of all epithelial cells at ampullary level. During luteal phase, immunoreactivity was discontinuous, being weak to strong at the apex of the secretory cells protruding into the lumen. In the isthmus region, the strongest AQP5-immunoreactivity was seen during follicular phase, with a clear localization in the apical plasmalemma of all the epithelial cells and also on the lateral plasmalemma. AQP2, 3 and 9 were undetectable all along the goat uterine tube. Likely, a collaboration of different AQP molecules sustains the fluid production in the goat uterine tube. AQP1-mediated transudation from the blood capillaries, together with permeation of the epithelium by AQP4 in the basal rim of the epithelial cells and final intervening of apical AQP5, could

  16. Expression and Function of Water Channels (Aquaporins) in Migrating Malignant Astrocytes

    PubMed Central

    McCOY, ERIC; SONTHEIMER, HARALD

    2008-01-01

    Aquaporins (AQP) constitute the principal pathway for water movement across biological membranes. Consequently, their expression and function is important for cell volume regulation. Glioma cells quickly adjust their cell volume in response to osmotic challenges or spontaneously as they invade into the narrow and tortuous extracellular spaces of the brain. These cell volume changes are likely to engage water movements across the cell membrane through AQP. AQP expression in glioma cells is poorly understood. In this study, we examined the expression of AQP in several commonly used human glioma cell lines (D54, D65, STTG1, U87, U251) and in numerous acute patient biopsies by PCR, Western blot, and immunocytochemistry and compared them to nonmalignant astrocytes and normal brain. All glioma patient biopsies expressed AQP1, AQP4 and some expressed AQP5. However, when isolated and grown as cell lines they lose all AQP proteins except a few cell lines that maintain expression of AQP1 (D65, U251, GBM62). Reintroducing either AQP1 or AQP4 stably into glioma cell lines allowed us to show that each AQP is sufficient to restore water permeability. Yet, only the presence of AQP1, but not AQP4, enhanced cell growth and migration, typical properties of gliomas, while AQP4 enhanced cell adhesion suggesting differential biological roles for AQP1 and AQP4 in glioma cell biology. PMID:17549682

  17. Interleukin-13 interferes with CFTR and AQP5 expression and localization during human airway epithelial cell differentiation

    SciTech Connect

    Skowron-zwarg, Marie; Boland, Sonja; Caruso, Nathalie; Coraux, Christelle; Marano, Francelyne; Tournier, Frederic . E-mail: f-tournier@paris7.jussieu.fr

    2007-07-15

    Interleukin-13 (IL-13) is a central regulator of Th2-dominated respiratory disorders such as asthma. Lesions of the airway epithelial barrier frequently observed in chronic respiratory inflammatory diseases are repaired through proliferation, migration and differentiation of epithelial cells. Our work is focused on the effects of IL-13 in human cellular models of airway epithelial cell regeneration. We have previously shown that IL-13 altered epithelial cell polarity during mucociliary differentiation of human nasal epithelial cells. In particular, the cytokine inhibited ezrin expression and interfered with its apical localization during epithelial cell differentiation in vitro. Here we show that CFTR expression is enhanced in the presence of the cytokine, that two additional CFTR protein isoforms are expressed in IL-13-treated cells and that part of the protein is retained within the endoplasmic reticulum. We further show that aquaporin 5 expression, a water channel localized within the apical membrane of epithelial cells, is completely abolished in the presence of the cytokine. These results show that IL-13 interferes with ion and water channel expression and localization during epithelial regeneration and may thereby influence mucus composition and hydration.

  18. Effect of P2X7 receptor knockout on AQP-5 expression of type I alveolar epithelial cells.

    PubMed

    Ebeling, Georg; Bläsche, Robert; Hofmann, Falk; Augstein, Antje; Kasper, Michael; Barth, Kathrin

    2014-01-01

    P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis. PMID:24941004

  19. Effect of P2X7 Receptor Knockout on AQP-5 Expression of Type I Alveolar Epithelial Cells

    PubMed Central

    Ebeling, Georg; Bläsche, Robert; Hofmann, Falk; Augstein, Antje; Kasper, Michael; Barth, Kathrin

    2014-01-01

    P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis. PMID:24941004

  20. Water channel proteins in the inner ear and their link to hearing impairment and deafness.

    PubMed

    Eckhard, Andreas; Gleiser, Corinna; Arnold, Heinz; Rask-Andersen, Helge; Kumagami, Hidetaka; Müller, Marcus; Hirt, Bernhard; Löwenheim, Hubert

    2012-01-01

    The inner ear is a fluid-filled sensory organ that transforms mechanical stimuli into the senses of hearing and balance. These neurosensory functions depend on the strict regulation of the volume of the two major extracellular fluid domains of the inner ear, the perilymph and the endolymph. Water channel proteins, or aquaporins (AQPs), are molecular candidates for the precise regulation of perilymph and endolymph volume. Eight AQP subtypes have been identified in the membranous labyrinth of the inner ear. Similar AQP subtypes are also expressed in the kidney, where they function in whole-body water regulation. In the inner ear, AQP subtypes are ubiquitously expressed in distinct cell types, suggesting that AQPs have an important physiological role in the volume regulation of perilymph and endolymph. Furthermore, disturbed AQP function may have pathophysiological relevance and may turn AQPs into therapeutic targets for the treatment of inner ear diseases. In this review, we present the currently available knowledge regarding the expression and function of AQPs in the inner ear. We give special consideration to AQP subtypes AQP2, AQP4 and AQP5, which have been studied most extensively. The potential functions of AQP2 and AQP5 in the resorption and secretion of endolymph and of AQP4 in the equilibration of cell volume are described. The pathophysiological implications of these AQP subtypes for inner ear diseases, that appear to involve impaired fluid regulation, such as Menière's disease and Sjögren's syndrome, are discussed. PMID:22732097

  1. 1,3-propanediol binds deep inside the channel to inhibit water permeation through aquaporins.

    PubMed

    Yu, Lili; Rodriguez, Roberto A; Chen, L Laurie; Chen, Liao Y; Perry, George; McHardy, Stanton F; Yeh, Chih-Ko

    2016-02-01

    Aquaporins and aquaglyceroporins (AQPs) are membrane channel proteins responsible for transport of water and for transport of glycerol in addition to water across the cell membrane, respectively. They are expressed throughout the human body and also in other forms of life. Inhibitors of human AQPs have been sought for therapeutic treatment for various medical conditions including hypertension, refractory edema, neurotoxic brain edema, and so forth. Conducting all-atom molecular dynamics simulations, we computed the binding affinity of acetazolamide to human AQP4 that agrees closely with in vitro experiments. Using this validated computational method, we found that 1,3-propanediol (PDO) binds deep inside the AQP4 channel to inhibit that particular aquaporin efficaciously. Furthermore, we used the same method to compute the affinities of PDO binding to four other AQPs and one aquaglyceroporin whose atomic coordinates are available from the protein data bank (PDB). For bovine AQP1, human AQP2, AQP4, AQP5, and Plasmodium falciparum PfAQP whose structures were resolved with high resolution, we obtained definitive predictions on the PDO dissociation constant. For human AQP1 whose PDB coordinates are less accurate, we estimated the dissociation constant with a rather large error bar. Taking into account the fact that PDO is generally recognized as safe by the US FDA, we predict that PDO can be an effective diuretic which directly modulates water flow through the protein channels. It should be free from the serious side effects associated with other diuretics that change the hydro-homeostasis indirectly by altering the osmotic gradients. PMID:26481430

  2. Aquaporin expression and localization in the rabbit eye.

    PubMed

    Bogner, Barbara; Schroedl, Falk; Trost, Andrea; Kaser-Eichberger, Alexandra; Runge, Christian; Strohmaier, Clemens; Motloch, Karolina A; Bruckner, Daniela; Hauser-Kronberger, Cornelia; Bauer, Hans Christian; Reitsamer, Herbert A

    2016-06-01

    Aquaporins (AQPs) are important for ocular homeostasis and function. While AQP expression has been investigated in ocular tissues of human, mouse, rat and dog, comprehensive data in rabbits are missing. As rabbits are frequently used model organisms in ophthalmic research, the aim of this study was to analyze mRNA expression and to localize AQPs in the rabbit eye. The results were compared with the data published for other species. In cross sections of New Zealand White rabbit eyes AQP0 to AQP5 were labeled by immunohistology and analyzed by confocal microscopy. Immunohistological findings were compared to mRNA expression levels, which were analyzed by quantitative reverse transcription real time polymerase chain reaction (qRT-PCR). The primers used were homologous against conserved regions of AQPs. In the rabbit eye, AQP0 protein expression was restricted to the lens, while AQP1 was present in the cornea, the chamber angle, the iris, the ciliary body, the retina and, to a lower extent, in optic nerve vessels. AQP3 and AQP5 showed immunopositivity in the cornea. AQP3 was also present in the conjunctiva, which could not be confirmed for AQP5. However, at a low level AQP5 was also traceable in the lens. AQP4 protein was detected in the ciliary non-pigmented epithelium (NPE), the retina, optic nerve astrocytes and extraocular muscle fibers. For most tissues the qRT-PCR data confirmed the immunohistology results and vice versa. Although species differences exist, the AQP protein expression pattern in the rabbit eye shows that, especially in the anterior section, the AQP distribution is very similar to human, mouse, rat and dog. Depending on the ocular regions investigated in rabbit, different protein and mRNA expression results were obtained. This might be caused by complex gene regulatory mechanisms, post-translational protein modifications or technical limitations. However, in conclusion the data suggest that the rabbit is a useful in-vivo model to study AQP function

  3. Quaternary ammonium compounds as water channel blockers. Specificity, potency, and site of action.

    PubMed

    Detmers, Frank J M; de Groot, Bert L; Müller, E Matthias; Hinton, Andrew; Konings, Irene B M; Sze, Mozes; Flitsch, Sabine L; Grubmüller, Helmut; Deen, Peter M T

    2006-05-19

    Excessive water uptake through Aquaporins (AQP) can be life-threatening and reversible AQP inhibitors are needed. Here, we determined the specificity, potency, and binding site of tetraethylammonium (TEA) to block Aquaporin water permeability. Using oocytes, externally applied TEA blocked AQP1/AQP2/AQP4 with IC50 values of 1.4, 6.2, and 9.8 microM, respectively. Related tetraammonium compounds yielded some (propyl) or no (methyl, butyl, or pentyl) inhibition. TEA inhibition was lost upon a Tyr to Phe amino acid switch in the external water pore of AQP1/AQP2/AQP4, whereas the water permeability of AQP3 and AQP5, which lack a corresponding Tyr, was not blocked by TEA. Consistent with experimental data, multi-nanosecond molecular dynamics simulations showed one stable binding site for TEA, but not tetramethyl (TMA), in AQP1, resulting in a nearly 50% water permeability inhibition, which was reduced in AQP1-Y186F due to effects on the TEA inhibitory binding region. Moreover, in the simulation TEA interacted with charged residues in the C (Asp128) and E (Asp185) loop, and the A(Tyr37-Asn42-Thr44) loop of the neighboring monomer, but not directly with Tyr186. The loss of TEA inhibition in oocytes expressing properly folded AQP1-N42A or -T44A is in line with the computationally predicted binding mode. Our data reveal that the molecular interaction of TEA with AQP1 differs and is about 1000-fold more effective on AQPs than on potassium channels. Moreover, the observed experimental and simulated similarities open the way for rational design and virtual screening for AQP-specific inhibitors, with quaternary ammonium compounds in general, and TEA in particular as a lead compound. PMID:16551622

  4. Effects of the fusion design and immunization route on the immunogenicity of Ag85A-Mtb32 in adenoviral vectored tuberculosis vaccine.

    PubMed

    Zhang, Yiling; Feng, Liqiang; Li, Liang; Wang, Dimin; Li, Chufang; Sun, Caijun; Li, Pingchao; Zheng, Xuehua; Liu, Yichu; Yang, Wei; Niu, Xuefeng; Zhong, Nanshan; Chen, Ling

    2015-01-01

    Vaccines containing multiple antigens may induce broader immune responses and provide better protection against Mycobacterium tuberculosis (Mtb) infection as compared to a single antigen. However, strategies for incorporating multiple antigens into a single vector and the immunization routes may affect their immunogenicity. In this study, we utilized recombinant adenovirus type 5 (rAd5) as a model vaccine vector, and Ag85A (Rv3804c) and Mtb32 (Rv0125) as model antigens, to comparatively evaluate the influence of codon usage optimization, signal sequence, fusion linkers, and immunization routes on the immunogenicity of tuberculosis (TB) vaccine containing multiple antigens in C57BL/6 mice. We showed that codon-optimized Ag85A and Mtb32 fused with a GSG linker induced the strongest systemic and pulmonary cell-mediated immune (CMI) responses. Strong CMI responses were characterized by the generation of a robust IFN-γ ELISPOT response as well as antigen-specific CD4(+) T and CD8(+) T cells, which secreted mono-, dual-, or multiple cytokines. We also found that subcutaneous (SC) and intranasal (IN)/oral immunization with this candidate vaccine exhibited the strongest boosting effects for Mycobacterium bovis bacille Calmette-Guérin (BCG)-primed systemic and pulmonary CMI responses, respectively. Our results supported that codon optimized Ag85A and Mtb32 fused with a proper linker and immunized through SC and IN/oral routes can generate the strongest systemic and pulmonary CMI responses in BCG-primed mice, which may be particularly important for the design of TB vaccines containing multiple antigens. PMID:26076321

  5. A novel human aquaporin-4 splice variant exhibits a dominant-negative activity: a new mechanism to regulate water permeability

    PubMed Central

    De Bellis, Manuela; Pisani, Francesco; Mola, Maria Grazia; Basco, Davide; Catalano, Francesco; Nicchia, Grazia Paola; Svelto, Maria; Frigeri, Antonio

    2014-01-01

    Two major isoforms of aquaporin-4 (AQP4) have been described in human tissue. Here we report the identification and functional analysis of an alternatively spliced transcript of human AQP4, AQP4-Δ4, that lacks exon 4. In transfected cells AQP4-Δ4 is mainly retained in the endoplasmic reticulum and shows no water transport properties. When AQP4-Δ4 is transfected into cells stably expressing functional AQP4, the surface expression of the full-length protein is reduced. Furthermore, the water transport activity of the cotransfectants is diminished in comparison to transfectants expressing only AQP4. The observed down-regulation of both the expression and water channel activity of AQP4 is likely to originate from a dominant-negative effect caused by heterodimerization between AQP4 and AQP4-Δ4, which was detected in coimmunoprecipitation studies. In skeletal muscles, AQP4-Δ4 mRNA expression inversely correlates with the level of AQP4 protein and is physiologically associated with different types of skeletal muscles. The expression of AQP4-Δ4 may represent a new regulatory mechanism through which the cell-surface expression and therefore the activity of AQP4 can be physiologically modulated. PMID:24356448

  6. POST-GOLGI SUPRAMOLECULAR ASSEMBLY OF AQUAPORIN-4 IN ORTHOGONAL ARRAYS

    PubMed Central

    Rossi, Andrea; Baumgart, Florian; van Hoek, Alfred N.; Verkman, Alan S.

    2012-01-01

    The supramolecular assembly of aquaporin-4 (AQP4) in orthogonal arrays of particles (OAPs) involves N-terminus interactions of the M23-AQP4 isoform. We found AQP4 OAPs in cell plasma membranes but not in endoplasmic reticulum (ER) or Golgi, as shown by: (i) native gel electrophoresis of brain and AQP4-transfected cells; (ii) photobleaching recovery of GFP-AQP4 chimeras in live cells; and (iii) freeze-fracture electron microscopy (FFEM). We found that AQP4 OAP formation in plasma membranes but not Golgi was not related to AQP4 density, pH, membrane lipid composition, C-terminal PDZ-domain interactions or α-syntrophin expression. Remarkably, however, fusion of AQP4-containing Golgi vesicles with (AQP4-free) plasma membrane vesicles produced OAPs, suggesting the involvement of plasma membrane factor(s) in AQP4 OAP formation. In investigating additional possible determinants of OAP assembly we discovered membrane curvature-dependent OAP assembly, in which OAPs were disrupted by extrusion of plasma membrane vesicles to ~110 nm diameter, but not to ~220 nm diameter. We conclude that AQP4 supramolecular assembly in OAPs is a post-Golgi phenomenon involving plasma membrane-specific factor(s). Post-Golgi and membrane curvature-dependent OAP assembly may be important for vesicle transport of AQP4 in the secretory pathway and AQP4-facilitated astrocyte migration, and suggests a novel therapeutic approach for neuromyelitis optica (NMO). PMID:21981006

  7. Live-Cell Imaging of Aquaporin-4 Diffusion and Interactions in Orthogonal Arrays of Particles

    PubMed Central

    Crane, J. M.; Tajima, M.; Verkmanandast, A. S.

    2013-01-01

    Orthogonal arrays of particles (OAPs) have been visualized for many years by freeze-fracture electron microscopy. Our laboratory discovered that aquaporin-4 (AQP4) is the protein responsible for OAP formation by demonstrating OAPs in AQP4-transfected cells and absence of OAPs in AQP4 knockout mice. We recently developed live-cell, single-molecule imaging methods to study AQP4 diffusion and interactions in OAPs. The methods include single particle tracking of quantum-dot labeled AQP4, and total internal reflection fluorescence microscopy of green fluorescent protein (GFP) and small fluorophore-labeled AQP4. The full-length (M1) form of AQP4 diffuses freely in membranes and does not form OAPs, whereas the shorter (M23) form of AQP4 forms OAPs and is nearly immobile. Analysis of a series of AQP4 truncations, point mutants and chimeras revealed that OAP formation by AQP4-M23 is stabilized by hydrophobic tetramer-tetramer interactions involving N-terminus residues, and that absence of OAPs in AQP4-M1 results from blocking of this interaction by residues just upstream from Met23. These biophysical methods are being extended to identify the cellular site of AQP4 assembly, AQP4 isoform interactions, OAP size and dynamics, and the determinants of regulated OAP assembly. PMID:19699275

  8. Aquaporin 5 Expression in Mouse Mammary Gland Cells Is Not Driven by Promoter Methylation

    PubMed Central

    Römer, Winfried; Sonnleitner, Alois

    2015-01-01

    Several studies have revealed that aquaporins play a role in tumor progression and invasion. In breast carcinomas, high levels of aquaporin 5 (AQP5), a membrane protein involved in water transport, have been linked to increased cell proliferation and migration, thus facilitating tumor progression. Despite the potential role of AQP5 in mammary oncogenesis, the mechanisms controlling mammary AQP5 expression are poorly understood. In other tissues, AQP5 expression has been correlated with its promoter methylation, yet, very little is known about AQP5 promoter methylation in the mammary gland. In this work, we used the mouse mammary gland cell line EpH4, in which we controlled AQP5 expression via the steroid hormone dexamethasone (Dex) to further investigate mechanisms regulating AQP5 expression. In this system, we observed a rapid drop of AQP5 mRNA levels with a delay of several hours in AQP5 protein, suggesting transcriptional control of AQP5 levels. Yet, AQP5 expression was independent of its promoter methylation, or to the presence of negative glucocorticoid receptor elements (nGREs) in its imminent promoter region, but was rather influenced by the cell proliferative state or cell density. We conclude that AQP5 promoter methylation is not a universal mechanism for AQP5 regulation and varies on cell and tissue type. PMID:25767807

  9. Increased Differentiation Capacity of Bone Marrow-Derived Mesenchymal Stem Cells in Aquaporin-5 Deficiency

    PubMed Central

    Yi, Fei; Khan, Muhammad; Gao, Hongwen; Hao, Feng; Sun, Meiyan; Zhong, Lili; Lu, Changzheng; Feng, Xuechao

    2012-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with a self-renewal and multipotent capability and express extensively in multitudinous tissues. We found that water channel aquaporin-5 (AQP5) is expressed in bone marrow-derived MSCs (BMMSCs) in the plasma membrane pattern. BMMSCs from AQP5−/− mice showed significantly lower plasma membrane water permeability than those from AQP5+/+ mice. In characterizing the cultured BMMSCs from AQP5−/− and AQP5+/+ mice, we found no obvious differences in morphology and proliferation between the 2 genotypes. However, the multiple differentiation capacity was significantly higher in AQP5−/− than AQP5+/+ BMMSCs as revealed by representative staining by Oil Red O (adipogenesis); Alizarin Red S and alkaline phosphatase (ALP; osteogenesis); and type II collagen and Safranin O (chondrogenesis) after directional induction. Relative mRNA expression levels of 3 lineage differentiation markers, including PPARγ2, C/EBPα, adipsin, collagen 1a, osteopontin, ALP, collagen 11a, collagen 2a, and aggrecan, were significantly higher in AQP5−/− -differentiating BMMSCs, supporting an increased differentiation capacity of AQP5−/− BMMSCs. Furthermore, a bone-healing process was accelerated in AQP5−/− mice in a drill-hole injury model. Mechanistic studies indicated a significantly lower apoptosis rate in AQP5−/− than AQP5+/+ BMMSCs. Apoptosis inhibitor Z-VAD-FMK increased the differentiation capacity to a greater extent in AQP5+/+ than AQP5−/− BMMSCs. We conclude that AQP5-mediated high plasma membrane water permeability enhances the apoptosis rate of differentiating BMMSCs, thus decreasing their differentiation capacity. These data implicate AQP5 as a novel determinant of differentiation of BMMSCs and therefore a new molecular target for regulating differentiation of BMMSCs during tissue repair and regeneration. PMID:22420587

  10. Greatly improved survival and neuroprotection in aquaporin-4-knockout mice following global cerebral ischemia.

    PubMed

    Katada, Ryuichi; Akdemir, Gokhan; Asavapanumas, Nithi; Ratelade, Julien; Zhang, Hua; Verkman, A S

    2014-02-01

    Aquaporin-4 (AQP4), the principal water channel in astrocytes, is involved in brain water movement, inflammation, and neuroexcitation. In this study, there was strong neuroprotection in mice lacking AQP4 in a model of global cerebral ischemia produced by transient, bilateral carotid artery occlusion (BCAO). Survival and neurological outcome were greatly improved in the AQP4(-/-) vs. AQP4(+/+) mice after occlusion, with large and robust differences in both outbred (CD1) and inbred (C57bl/6) mouse strains without or with mechanical ventilation. Improved survival was also seen in mice lacking the scaffold protein α-syntrophin, which manifest reduced astrocyte water permeability secondary to defective AQP4 plasma membrane targeting. Intracranial pressure elevation and brain water accumulation were much reduced in the AQP4(-/-) vs. AQP4(+/+) mice after carotid artery occlusion, as were blood-brain barrier (BBB) disruption and neuronal loss. Brain slices from AQP4(-/-) mice showed significantly reduced cell swelling and cytotoxicity in response to oxygen-glucose deprivation, compared with slices from AQP4(+/+) mice. Our findings suggest that the neuroprotective effect of AQP4 deletion in global cerebral ischemia involves reduced astrocyte swelling and brain water accumulation, resulting in reduced BBB disruption, inflammation, and neuron death. AQP4 water transport inhibition may improve survival and neurological outcome after cardiac arrest and in other conditions associated with global cerebral ischemia. PMID:24186965

  11. [Roles of Aquaporins in Brain Disorders].

    PubMed

    Yasui, Masato

    2015-06-01

    Aquaporin (AQP) is a water channel protein that is expressed in the cell membranes. AQPs are related to several kinds of human diseases such as cataract. In the mammalian central nervous system (CNS), AQP4 is specifically expressed in the astrocyte membranes lining the perivascular and periventricular structures. AQP4 plays a role in the development of brain edema associated with certain brain disorders. Neuromyelitis optica (NMO) is a demyelinating disorder, and patients with NMO develop autoimmune antibodies against AQP4 in their serum. Therefore, AQP4 is involved in NMO pathogenesis. A new concept referred to as "glymphatic pathway" has been recently proposed to explain the lymphatic system in the CNS. Dysfunction of the "glymphatic pathway" may cause several neurodegenerative diseases and mood disorders. Importantly, AQP4 may play a role in the "glymphatic pathway". Further investigation of AQP4 in CNS disorders is necessary, and a new drug against AQP4 is expected. PMID:26062588

  12. New Findings on the Mechanism of Perspiration Including Aquaporin-5 Water Channel.

    PubMed

    Inoue, Risako

    2016-01-01

    Aquaporin-5 (AQP5) is a member of the water channel protein family. Although AQP5 has been shown to be present in sweat glands, the presence or absence of regulated intracellular translocation of AQP5 in sweat glands remains to be determined. In this article, recent findings on AQP5 in sweat glands are presented. (1) Immunoreactive AQP5 was detected in the apical membranes and the intercellular canaliculi of secretory coils, and in the basolateral membranes of the clear cells in human eccrine sweat glands. (2) AQP5 rapidly concentrated at the apical membranes during sweating in mouse sweat glands. (3) Treatment of human AQP5-expressing Madin-Darby canine kidney cells with calcium ionophore A23187 resulted in a twofold increase in the AQP5 level in the apical membranes within 5 min. (4) Anoctamin-1, a calcium-activated chloride channel was detected in the apical membranes and it completely colocalized with AQP5 in the apical membranes in mouse sweat glands. AQP5 may be involved in sweating and its translocation may help to increase the water permeability of the apical membranes of sweat glands. AQP5 is a potential target molecule for the design of a sweat-modulating drug. PMID:27584958

  13. The Role of Astrocytic Aquaporin-4 in Synaptic Plasticity and Learning and Memory.

    PubMed

    Szu, Jenny I; Binder, Devin K

    2016-01-01

    Aquaporin-4 (AQP4) is the predominant water channel expressed by astrocytes in the central nervous system (CNS). AQP4 is widely expressed throughout the brain, especially at the blood-brain barrier where AQP4 is highly polarized to astrocytic foot processes in contact with blood vessels. The bidirectional water transport function of AQP4 suggests its role in cerebral water balance in the CNS. The regulation of AQP4 has been extensively investigated in various neuropathological conditions such as cerebral edema, epilepsy, and ischemia, however, the functional role of AQP4 in synaptic plasticity, learning, and memory is only beginning to be elucidated. In this review, we explore the current literature on AQP4 and its influence on long term potentiation (LTP) and long term depression (LTD) in the hippocampus as well as the potential relationship between AQP4 and in learning and memory. We begin by discussing recent in vitro and in vivo studies using AQP4-null and wild-type mice, in particular, the impairment of LTP and LTD observed in the hippocampus. Early evidence using AQP4-null mice have suggested that impaired LTP and LTD is brain-derived neurotrophic factor dependent. Others have indicated a possible link between defective LTP and the downregulation of glutamate transporter-1 which is rescued by chronic treatment of β-lactam antibiotic ceftriaxone. Furthermore, behavioral studies may shed some light into the functional role of AQP4 in learning and memory. AQP4-null mice performances utilizing Morris water maze, object placement tests, and contextual fear conditioning proposed a specific role of AQP4 in memory consolidation. All together, these studies highlight the potential influence AQP4 may have on long term synaptic plasticity and memory. PMID:26941623

  14. Aquaporin-4 regulates the velocity and frequency of cortical spreading depression in mice.

    PubMed

    Yao, Xiaoming; Smith, Alex J; Jin, Byung-Ju; Zador, Zsolt; Manley, Geoffrey T; Verkman, A S

    2015-10-01

    The astrocyte water channel aquaporin-4 (AQP4) regulates extracellular space (ECS) K(+) concentration ([K(+)]e) and volume dynamics following neuronal activation. Here, we investigated how AQP4-mediated changes in [K(+)]e and ECS volume affect the velocity, frequency, and amplitude of cortical spreading depression (CSD) depolarizations produced by surface KCl application in wild-type (AQP4(+/+)) and AQP4-deficient (AQP4(-/-)) mice. In contrast to initial expectations, both the velocity and the frequency of CSD were significantly reduced in AQP4(-/-) mice when compared with AQP4(+/+) mice, by 22% and 32%, respectively. Measurement of [K(+)]e with K(+)-selective microelectrodes demonstrated an increase to ∼35 mM during spreading depolarizations in both AQP4(+/+) and AQP4(-/-) mice, but the rates of [K(+)]e increase (3.5 vs. 1.5 mM/s) and reuptake (t1/2 33 vs. 61 s) were significantly reduced in AQP4(-/-) mice. ECS volume fraction measured by tetramethylammonium iontophoresis was greatly reduced during depolarizations from 0.18 to 0.053 in AQP4(+/+) mice, and 0.23 to 0.063 in AQP4(-/-) mice. Analysis of the experimental data using a mathematical model of CSD propagation suggested that the reduced velocity of CSD depolarizations in AQP4(-/-) mice was primarily a consequence of the slowed increase in [K(+)]e during neuronal depolarization. These results demonstrate that AQP4 effects on [K(+)]e and ECS volume dynamics accelerate CSD propagation. PMID:25944186

  15. Aquaporin-4: orthogonal array assembly, CNS functions, and role in neuromyelitis optica

    PubMed Central

    Verkman, Alan S; Ratelade, Julien; Rossi, Andrea; Zhang, Hua; Tradtrantip, Lukmanee

    2011-01-01

    Aquaporin-4 (AQP4) is a water-selective transporter expressed in astrocytes throughout the central nervous system, as well as in kidney, lung, stomach and skeletal muscle. The two AQP4 isoforms produced by alternative spicing, M1 and M23 AQP4, form heterotetramers that assemble in cell plasma membranes in supramolecular structures called orthogonal arrays of particles (OAPs). Phenotype analysis of AQP4-null mice indicates the involvement of AQP4 in brain and spinal cord water balance, astrocyte migration, neural signal transduction and neuroinflammation. AQP4-null mice manifest reduced brain swelling in cytotoxic cerebral edema, but increased brain swelling in vasogenic edema and hydrocephalus. AQP4 deficiency also increases seizure duration, impairs glial scarring, and reduces the severity of autoimmune neuroinflammation. Each of these phenotypes is likely explicable on the basis of reduced astrocyte water permeability in AQP4 deficiency. AQP4 is also involved in the neuroinflammatory demyelinating disease neuromyelitis optica (NMO), where autoantibodies (NMO-IgG) targeting AQP4 produce astrocyte damage and inflammation. Mice administered NMO-IgG and human complement by intracerebral injection develop characteristic NMO lesions with neuroinflammation, demyelination, perivascular complement deposition and loss of glial fibrillary acidic protein and AQP4 immunoreactivity. Our findings suggest the potential utility of AQP4-based therapeutics, including small-molecule modulators of AQP4 water transport function for therapy of brain swelling, injury and epilepsy, as well as small-molecule or monoclonal antibody blockers of NMO-IgG binding to AQP4 for therapy of NMO. PMID:21552296

  16. The Role of Astrocytic Aquaporin-4 in Synaptic Plasticity and Learning and Memory

    PubMed Central

    Szu, Jenny I.; Binder, Devin K.

    2016-01-01

    Aquaporin-4 (AQP4) is the predominant water channel expressed by astrocytes in the central nervous system (CNS). AQP4 is widely expressed throughout the brain, especially at the blood-brain barrier where AQP4 is highly polarized to astrocytic foot processes in contact with blood vessels. The bidirectional water transport function of AQP4 suggests its role in cerebral water balance in the CNS. The regulation of AQP4 has been extensively investigated in various neuropathological conditions such as cerebral edema, epilepsy, and ischemia, however, the functional role of AQP4 in synaptic plasticity, learning, and memory is only beginning to be elucidated. In this review, we explore the current literature on AQP4 and its influence on long term potentiation (LTP) and long term depression (LTD) in the hippocampus as well as the potential relationship between AQP4 and in learning and memory. We begin by discussing recent in vitro and in vivo studies using AQP4-null and wild-type mice, in particular, the impairment of LTP and LTD observed in the hippocampus. Early evidence using AQP4-null mice have suggested that impaired LTP and LTD is brain-derived neurotrophic factor dependent. Others have indicated a possible link between defective LTP and the downregulation of glutamate transporter-1 which is rescued by chronic treatment of β-lactam antibiotic ceftriaxone. Furthermore, behavioral studies may shed some light into the functional role of AQP4 in learning and memory. AQP4-null mice performances utilizing Morris water maze, object placement tests, and contextual fear conditioning proposed a specific role of AQP4 in memory consolidation. All together, these studies highlight the potential influence AQP4 may have on long term synaptic plasticity and memory. PMID:26941623

  17. Aquaporin 5 Plays a Role in Estrogen-Induced Ectopic Implantation of Endometrial Stromal Cells in Endometriosis

    PubMed Central

    Jiang, Xiu Xiu; Fei, Xiang Wei; Zhao, Li; Ye, Xiao Lei; Xin, Liao Bin; Qu, Yang; Xu, Kai Hong; Wu, Rui Jin; Lin, Jun

    2015-01-01

    Aquaporin 5 (AQP5) participates in the migration of endometrial cells. Elucidation of the molecular mechanisms associated with AQP5-mediated, migration of endometrial cells may contribute to a better understanding of endometriosis. Our objectives included identifying the estrogen-response element (ERE) in the promoter region of the AQP5 gene, and, investigating the effects of AQP5 on ectopic implantation of endometrial cells. Luciferase reporter assays and electrophoretic mobility shift assay (EMSA) identified the ERE-like motif in the promoter region of the AQP5 gene. After blocking and up-regulating estradiol (E2) levels, we analysed the expression of AQP5 in endometrial stromal (ES) cells. After blocking E2 /or phosphatidylinositol 3 kinase(PI3K), we analysed the role of AQP5 in signaling pathways. We constructed an AQP5, shRNA, lentiviral vector to knock out the AQP5 gene in ES cells. After knock-out of the AQP5 gene, we studied the role of AQP5 in cell invasion, proliferation, and the formation of ectopic endometrial implants in female mice. We identified an estrogen-response element in the promoter region of the AQP5 gene. Estradiol (E2) increased AQP5 expression in a dose-dependent fashion, that was blocked by ICI182,780(an estrogen receptor inhibitor). E2 activated PI3K /protein kinase B(AKT) pathway (PI3K/AKT), that, in turn, increased AQP5 expression. LY294002(PI3K inhibitor) attenuated estrogen-enhanced, AQP5 expression. Knock-out of the AQP5 gene with AQP5 shRNA lentiviral vector significantly inhibited E2-enhanced invasion, proliferation of ES cells and formation of ectopic implants. Estrogen induces AQP5 expression by activating ERE in the promoter region of the AQP5gene, activates the PI3K/AKT pathway, and, promotes endometrial cell invasion and proliferation. These results provide new insights into some of the mechanisms that may underpin the development of deposits of ectopic endometrium. PMID:26679484

  18. Impaired olfaction in mice lacking aquaporin-4 water channels

    PubMed Central

    Lu, Daniel C.; Zhang, Hua; Zador, Zsolt; Verkman, A. S.

    2008-01-01

    Aquaporin-4 (AQP4) is a water-selective transport protein expressed in glial cells throughout the central nervous system. AQP4 deletion in mice produces alterations in several neuroexcitation phenomena, including hearing, vision, epilepsy, and cortical spreading depression. Here, we report defective olfaction and electroolfactogram responses in AQP4-null mice. Immunofluorescence indicated strong AQP4 expression in supportive cells of the nasal olfactory epithelium. The olfactory epithelium in AQP4-null mice had identical appearance, but did not express AQP4, and had ∼12-fold reduced osmotic water permeability. Behavioral analysis showed greatly impaired olfaction in AQP4-null mice, with latency times of 17 ± 0.7 vs. 55 ± 5 s in wild-type vs. AQP4-null mice in a buried food pellet test, which was confirmed using an olfactory maze test. Electroolfactogram voltage responses to multiple odorants were reduced in AQP4-null mice, with maximal responses to triethylamine of 0.80 ± 0.07 vs. 0.28 ± 0.03 mV. Similar olfaction and electroolfactogram defects were found in outbred (CD1) and inbred (C57/bl6) mouse genetic backgrounds. Our results establish AQP4 as a novel determinant of olfaction, the deficiency of which probably impairs extracellular space K+ buffering in the olfactory epithelium.—Lu, D. C., Zhang, H., Zador, Z., Verkman, A. S. Impaired olfaction in mice lacking aquaporin-4 water channels. PMID:18511552

  19. Impaired olfaction in mice lacking aquaporin-4 water channels.

    PubMed

    Lu, Daniel C; Zhang, Hua; Zador, Zsolt; Verkman, A S

    2008-09-01

    Aquaporin-4 (AQP4) is a water-selective transport protein expressed in glial cells throughout the central nervous system. AQP4 deletion in mice produces alterations in several neuroexcitation phenomena, including hearing, vision, epilepsy, and cortical spreading depression. Here, we report defective olfaction and electroolfactogram responses in AQP4-null mice. Immunofluorescence indicated strong AQP4 expression in supportive cells of the nasal olfactory epithelium. The olfactory epithelium in AQP4-null mice had identical appearance, but did not express AQP4, and had approximately 12-fold reduced osmotic water permeability. Behavioral analysis showed greatly impaired olfaction in AQP4-null mice, with latency times of 17 +/- 0.7 vs. 55 +/- 5 s in wild-type vs. AQP4-null mice in a buried food pellet test, which was confirmed using an olfactory maze test. Electroolfactogram voltage responses to multiple odorants were reduced in AQP4-null mice, with maximal responses to triethylamine of 0.80 +/- 0.07 vs. 0.28 +/- 0.03 mV. Similar olfaction and electroolfactogram defects were found in outbred (CD1) and inbred (C57/bl6) mouse genetic backgrounds. Our results establish AQP4 as a novel determinant of olfaction, the deficiency of which probably impairs extracellular space K(+) buffering in the olfactory epithelium. PMID:18511552

  20. Immunodominant T Cell Determinants of Aquaporin-4, the Autoantigen Associated with Neuromyelitis Optica

    PubMed Central

    Nelson, Patricia A.; Khodadoust, Mojgan; Prodhomme, Thomas; Spencer, Collin; Patarroyo, Juan Carlos; Varrin-Doyer, Michel; Ho, Joseph D.; Stroud, Robert M.; Zamvil, Scott S.

    2010-01-01

    Autoantibodies that target the water channel aquaporin-4 (AQP4) in neuromyelitis optica (NMO) are IgG1, a T cell-dependent Ig subclass. However, a role for AQP4-specific T cells in this CNS inflammatory disease is not known. To evaluate their potential role in CNS autoimmunity, we have identified and characterized T cells that respond to AQP4 in C57BL/6 and SJL/J mice, two strains that are commonly studied in models of CNS inflammatory diseases. Mice were immunized with either overlapping peptides or intact hAQP4 protein encompassing the entire 323 amino acid sequence. T cell determinants identified from examination of the AQP4 peptide (p) library were located within AQP4 p21-40, p91-110, p101-120, p166-180, p231-250 and p261-280 in C57BL/6 mice, and within p11-30, p21-40, p101-120, p126-140 and p261-280 in SJL/J mice. AQP4-specific T cells were CD4+ and MHC II-restricted. In recall responses to immunization with intact AQP4, T cells responded primarily to p21-40, indicating this region contains the immunodominant T cell epitope(s) for both strains. AQP4 p21-40-primed T cells secreted both IFN-γ and IL-17. The core immunodominant AQP4 21-40 T cell determinant was mapped to residues 24-35 in C57BL/6 mice and 23-35 in SJL/J mice. Our identification of the AQP4 T cell determinants and characterization of its immunodominant determinant should permit investigators to evaluate the role of AQP4-specific T cells in vivo and to develop AQP4-targeted murine NMO models. PMID:21151500

  1. An allograft glioma model reveals the dependence of aquaporin-4 expression on the brain microenvironment.

    PubMed

    Noell, Susan; Ritz, Rainer; Wolburg-Buchholz, Karen; Wolburg, Hartwig; Fallier-Becker, Petra

    2012-01-01

    Aquaporin-4 (AQP4), the main water channel of the brain, is highly expressed in animal glioma and human glioblastoma in situ. In contrast, most cultivated glioma cell lines don't express AQP4, and primary cell cultures of human glioblastoma lose it during the first passages. Accordingly, in C6 cells and RG2 cells, two glioma cell lines of the rat, and in SMA mouse glioma cell lines, we found no AQP4 expression. We confirmed an AQP4 loss in primary human glioblastoma cell cultures after a few passages. RG-2 glioma cells if grafted into the brain developed AQP4 expression. This led us consider the possibility of AQP4 expression depends on brain microenvironment. In previous studies, we observed that the typical morphological conformation of AQP4 as orthogonal arrays of particles (OAP) depended on the extracellular matrix component agrin. In this study, we showed for the first time implanted AQP4 negative glioma cells in animal brain or flank to express AQP4 specifically in the intracerebral gliomas but neither in the extracranial nor in the flank gliomas. AQP4 expression in intracerebral gliomas went along with an OAP loss, compared to normal brain tissue. AQP4 staining in vivo normally is polarized in the astrocytic endfoot membranes at the glia limitans superficialis and perivascularis, but in C6 and RG2 tumors the AQP4 staining is redistributed over the whole glioma cell as in human glioblastoma. In contrast, primary rat or mouse astrocytes in culture did not lose their ability to express AQP4, and they were able to form few OAPs. PMID:22590566

  2. An Allograft Glioma Model Reveals the Dependence of Aquaporin-4 Expression on the Brain Microenvironment

    PubMed Central

    Noell, Susan; Ritz, Rainer; Wolburg-Buchholz, Karen; Wolburg, Hartwig; Fallier-Becker, Petra

    2012-01-01

    Aquaporin-4 (AQP4), the main water channel of the brain, is highly expressed in animal glioma and human glioblastoma in situ. In contrast, most cultivated glioma cell lines don’t express AQP4, and primary cell cultures of human glioblastoma lose it during the first passages. Accordingly, in C6 cells and RG2 cells, two glioma cell lines of the rat, and in SMA mouse glioma cell lines, we found no AQP4 expression. We confirmed an AQP4 loss in primary human glioblastoma cell cultures after a few passages. RG-2 glioma cells if grafted into the brain developed AQP4 expression. This led us consider the possibility of AQP4 expression depends on brain microenvironment. In previous studies, we observed that the typical morphological conformation of AQP4 as orthogonal arrays of particles (OAP) depended on the extracellular matrix component agrin. In this study, we showed for the first time implanted AQP4 negative glioma cells in animal brain or flank to express AQP4 specifically in the intracerebral gliomas but neither in the extracranial nor in the flank gliomas. AQP4 expression in intracerebral gliomas went along with an OAP loss, compared to normal brain tissue. AQP4 staining in vivo normally is polarized in the astrocytic endfoot membranes at the glia limitans superficialis and perivascularis, but in C6 and RG2 tumors the AQP4 staining is redistributed over the whole glioma cell as in human glioblastoma. In contrast, primary rat or mouse astrocytes in culture did not lose their ability to express AQP4, and they were able to form few OAPs. PMID:22590566

  3. The role of CpG methylation in cell type-specific expression of the aquaporin-5 gene.

    PubMed

    Nomura, Johji; Hisatsune, Akinori; Miyata, Takeshi; Isohama, Yoichiro

    2007-02-23

    Aquaporin-5 (AQP5) is expressed in a cell type-specific manner. Here, we show that the AQP5 gene is regulated by CpG methylation. The AQP5 promoter containing a putative CpG island was highly methylated in NIH-3T3 or freshly isolated alveolar epithelial cells, correlating with the repression of this gene in these cells. In contrast, the AQP5 promoter was hypo-methylated in MLE-12 or cultured alveolar epithelial cells, which express high levels of AQP5. Repression of AQP5 transcription in NIH-3T3 cells could be relieved with 5-azacytidine, and in vitro methylation of the AQP5 promoter resulted in inhibition of transcription of the reporter gene in MLE-12 cells. Chromatin immunoprecipitation assays showed that endogenous Sp1 bound to the hypo-methylated, but not highly methylated, AQP5 promoter region. These results demonstrate that the hypo-methylated state of the AQP5 promoter leading to increased Sp1 binding may play a role in regulation of cell type-specific expression of the AQP5 gene. PMID:17198683

  4. Detection of autoantibodies against aquaporin-5 in the sera of patients with primary Sjögren's syndrome.

    PubMed

    Alam, Jehan; Koh, Jung Hee; Kim, Nahyun; Kwok, Seung-Ki; Park, Sung-Hwan; Song, Yeong Wook; Park, Kyungpyo; Choi, Youngnim

    2016-08-01

    The pathophysiology of exocrine dysfunction observed in Sjögren's syndrome (SS) is not fully understood. The purpose of this study was to investigate whether autoantibodies against human AQP5 are present in the sera of SS patients. Frozen sections of mouse submandibular salivary glands, CHO cells over-expressing a human AQP5-GFP fusion protein or GFP, and MDCK cells over-expressing AQP5 were used in the indirect immunofluorescence assay to detect anti-AQP5 autoantibodies in the sera from patients with primary SS. The lysates of HEK-293 cells over-expressing the AQP5-GFP fusion protein or GFP were used for immunoprecipitation. Serum IgG from the SS patients but not from the control subjects stained acinar cells in the mouse salivary glands, the signals of which colocalized with those of AQP5-specific antibodies. Serum IgG from the SS patients also selectively stained AQP5-GFP expressed in CHO cells. However, both the control and SS sera immunoprecipitated the AQP5-GFP, suggesting that autoantibodies against AQP5 were also present in the control sera. The screening of 53 control and 112 SS samples by indirect immunofluorescence assay using the AQP5-expressing MDCK cells revealed the presence of significantly higher levels of anti-AQP5 IgG in the SS samples than in the control samples with sensitivity of 0.73 and a specificity of 0.68. Furthermore, the presence of anti-AQP5 autoantibodies was associated with low resting salivary flow in SS patients. In conclusion, anti-AQP5 autoantibodies were detected in the sera from SS patients, which could be a novel biomarker of SS and provide new insight into the pathogenesis of SS. PMID:26786004

  5. Isolated new onset 'atypical' optic neuritis in the NMO clinic: serum antibodies, prognoses and diagnoses at follow-up.

    PubMed

    Piccolo, L; Woodhall, M; Tackley, G; Juryńczyk, M; Kong, Y; Domingos, J; Gore, R; Vincent, A; Waters, P; Leite, M I; Palace, J

    2016-02-01

    Severe, recurrent or bilateral optic neuritis (ON) often falls within the neuromyelitis optica spectrum disorders (NMOSD), but the diagnosis can be particularly challenging and has important treatment implications. We report the features, course and outcomes of patients presenting with atypical ON when isolated at onset. We retrospectively analyzed 69 sequential patients referred to a single UK NMO center with isolated ON at onset. Aquaporin-4 antibody (AQP4-Ab) assessment was performed in all patients and IgG1 myelin-oligodenrocyte glycoprotein (MOG-Ab) in AQP4-Ab(neg) patients. 37 AQP4-Ab positive (AQP4-Ab(pos)) and 32 AQP4-Ab negative (AQP4-Ab(neg)) patients (8 with MOG-Ab) were identified. The AQP4-Ab(neg) group included heterogeneous diagnoses: multiple sclerosis (MS), NMO, relapsing isolated ON (RION), monophasic isolated ON and relapsing acute disseminated encephalomyelitis (ADEM)-like syndromes. Compared to AQP4-Ab(neg) patients, AQP4-Ab(pos) patients had a worse residual visual outcome from first attack (median VFSS 4 vs. 0, p = 0.010) and at last assessment (median VFSS 5 versus 2, p = 0.005). However, AQP4-Ab(neg) patients with RION also had poor visual outcome. Up to 35% of AQP4-Ab(neg) patients developed a LETM and two developed low positivity for AQP4-Ab over time. Eight AQP4-Ab(neg) patients (25%) were MOG-Ab positive, covering a range of phenotypes excluding MS; the first ON attack was often bilateral and most had relapsing disease with a poor final visual outcome [VFSS 4, range (0-6)]. In conlcusion, AQP4-Ab positivity is confirmed as a predictor of poor visual outcome but AQP4-Ab(neg) RION also had a poor visual outcome. Of those without AQP4-Ab, 25% had MOG-Ab and another 25% developed MS; thus, MOG-Ab is associated with AQP4-Ab(neg) non-MS ON. PMID:26668077

  6. Orthogonal array formation by human aquaporin-4: Examination of neuromyelitis optica-associated aquaporin-4 polymorphisms

    PubMed Central

    Crane, Jonathan M.; Rossi, Andrea; Gupta, Tripta; Bennett, Jeffrey L.; Verkman, A.S.

    2013-01-01

    Pathogenic autoantibodies target aquaporin-4 (AQP4) water channels in individuals with neuromyelitis optica (NMO). Recently, allelic mutations were reported at residue 19 of AQP4 in three cases of NMO, and it was suggested that polymorphisms may influence disease by altering AQP4 supramolecular assembly into orthogonal arrays of particles (OAPs). We analyzed the determinants of OAP formation by human AQP4 to investigate the possible role of polymorphisms in NMO pathogenesis. NMO-associated mutations R19I and R19T in AQP4 did not affect OAP assembly, palmitoylation-dependent regulation of assembly, or NMO autoantibody binding. Residue-19 polymorphisms in AQP4 are thus unlikely to be disease relevant. PMID:21621278

  7. Reduction in Serum Aquaporin-4 Antibody Titers During Development of a Tumor-Like Brain Lesion in a Patient With Neuromyelitis Optica: A Serum Antibody–Consuming Effect?

    PubMed Central

    Aboulenein-Djamshidian, Fahmy; Höftberger, Romana; Waters, Patrick; Krampla, Wolfgang; Lassmann, Hans; Budka, Herbert; Vincent, Angela; Kristoferitsch, Wolfgang

    2015-01-01

    Abstract Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the CNS with severe involvement of the optic nerve and spinal cord. Highly specific serum IgG autoantibodies (NMO-IgG) that react with aquaporin-4 (AQP4), the most abundant CNS water channel protein, are found in patients with NMO. However, in vivo evidence combining the results of AQP4 antibody serum levels and brain pathology is lacking. We report a patient with NMO whose AQP4 antibody levels decreased simultaneously with clinical deterioration caused by the development of a tumor-like brain lesion. In the seminecrotic biopsied brain lesion, there was activated complement complex, whereas only very scattered immunoreactivity to AQP4 protein was detectable. The decrease in serum AQP4 antibody levels and the loss of AQP4 in the tumor-like lesion could represent a “serum antibody–consuming effect” during lesion formation. PMID:25668569

  8. The effect of aquaporin 5 overexpression on the Ras signaling pathway

    SciTech Connect

    Woo, Janghee; Lee, Juna; Kim, Myoung Sook; Jang, Se Jin; Sidransky, David; Moon, Chulso

    2008-03-07

    Human aquaporin 5 (AQP5) has been shown to be overexpressed in multiple cancers, such as pancreatic cancer and colon cancer. Furthermore, it has been reported that ectopic expression of AQP5 leads to many phenotypic changes characteristic of transformation. However, the biochemical mechanism leading to transformation in AQP5-overexpressing cells has not been clearly elucidated. In this report, the overexpression of AQP5 in NIH3T3 cells demonstrated a significant effect on Ras activity and, thus, cell proliferation. Furthermore, this influence was shown to be mediated by phosphorylation of the PKA consensus site of AQP5. This is the first evidence demonstrating an association between AQP5 and a signaling pathway, namely the Ras signal transduction pathway, which may be the basis of the oncogenic properties seen in AQP-overexpressing cells.

  9. Aquaporin 5 increases keratinocyte-derived chemokine expression and NF-κB activity through ERK activation.

    PubMed

    Sakamoto, Yuima; Hisatsune, Akinori; Katsuki, Hiroshi; Horie, Ichiro; Isohama, Yoichiro

    2014-06-13

    Aquaporin-5 (AQP5) is a water-selective channel protein that is expressed in submucosal glands and alveolar epithelial cells in the lungs. Recent studies have revealed that AQPs regulate not only water metabolism, but also some cellular functions such as cell growth and migration. Here, we report the role of AQP5 in inflammatory responses. In MLE-12 cells, knockdown of AQP5 using siRNA (10-50 nM) attenuated TNF-α-induced expression of keratinocyte chemoattractant (KC) mRNA and protein. Conversely, in NIH-3T3 cells, overexpression of AQP5 increased KC expression, NF-κB activation, and ERK phosphorylation. The AQP5-induced increase of KC expression was diminished by treatment with ERK inhibitors. Taken together, we propose a new function of AQP5 as an inflammatory signal potentiator, which may be mediated by increased activation of ERK and NF-κB. PMID:24747567

  10. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain.

    PubMed

    Hubbard, Jacqueline A; Hsu, Mike S; Seldin, Marcus M; Binder, Devin K

    2015-01-01

    Aquaporin-4 (AQP4) is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits. PMID:26489685

  11. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain

    PubMed Central

    Hubbard, Jacqueline A.; Hsu, Mike S.; Seldin, Marcus M.

    2015-01-01

    Aquaporin-4 (AQP4) is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits. PMID:26489685

  12. Aquaporin 4 is a Ubiquitously Expressed Isoform in the Dogfish (Squalus acanthias) Shark

    PubMed Central

    Cutler, Christopher P; MacIver, Bryce; Cramb, Gordon; Zeidel, Mark

    2012-01-01

    The dogfish ortholog of aquaporin 4 (AQP4) was amplified from cDNA using degenerate PCR followed by cloning and sequencing. The complete coding region was then obtained using 5′ and 3′ RACE techniques. Alignment of the sequence with AQP4 amino acid sequences from other species showed that dogfish AQP4 has high levels (up to 65.3%) of homology with higher vertebrate sequences but lower levels of homology to Agnathan (38.2%) or teleost (57.5%) fish sequences. Northern blotting indicated that the dogfish mRNA was approximately 3.2 kb and was highly expressed in the rectal gland (a shark fluid secretory organ). Semi-quantitative PCR further indicates that AQP4 is ubiquitous, being expressed in all tissues measured but at low levels in certain tissues, where the level in liver > gill >  intestine. Manipulation of the external environmental salinity of groups of dogfish showed that when fish were acclimated in stages to 120% seawater (SW) or 75% SW, there was no change in AQP4 mRNA expression in either rectal gland, kidney, or esophagus/cardiac stomach. Whereas quantitative PCR experiments using the RNA samples from the same experiment, showed a significant 63.1% lower abundance of gill AQP4 mRNA expression in 120% SW-acclimated dogfish. The function of dogfish AQP4 was also determined by measuring the effect of the AQP4 expression in Xenopus laevis oocytes. Dogfish AQP4 expressing-oocytes, exhibited significantly increased osmotic water permeability (Pf) compared to controls, and this was invariant with pH. Permeability was not significantly reduced by treatment of oocytes with mercury chloride, as is also the case with AQP4 in other species. Similarly AQP4 expressing-oocytes did not exhibit enhanced urea or glycerol permeability, which is also consistent with the water-selective property of AQP4 in other species. PMID:22291652

  13. (Methyl)ammonium Transport in the Nitrogen-Fixing Bacterium Azospirillum brasilense

    PubMed Central

    Van Dommelen, Anne; Keijers, Veerle; Vanderleyden, Jos; de Zamaroczy, Miklos

    1998-01-01

    An ammonium transporter of Azospirillum brasilense was characterized. In contrast to most previously reported putative prokaryotic NH4+ transporter genes, A. brasilense amtB is not part of an operon with glnB or glnZ which, in A. brasilense, encode nitrogen regulatory proteins PII and PZ, respectively. Sequence analysis predicts the presence of 12 transmembrane domains in the deduced AmtB protein and classifies AmtB as an integral membrane protein. Nitrogen regulates the transcription of the amtB gene in A. brasilense by the Ntr system. amtB is the first gene identified in A. brasilense whose expression is regulated by NtrC. The observation that ammonium uptake is still possible in mutants lacking the AmtB protein suggests the presence of a second NH4+ transport mechanism. Growth of amtB mutants at low ammonium concentrations is reduced compared to that of the wild type. This suggests that AmtB has a role in scavenging ammonium at low concentrations. PMID:9573149

  14. Attitudes and Motivations of American Students of Spanish.

    ERIC Educational Resources Information Center

    Muchnick, Arlene Goldberg; Wolfe, David E.

    1982-01-01

    Discusses Gardner and Lambert's Attitude and Motivation Test Battery (AMTB) and its application in Canada. Study's purpose was to test sociopsychological theory of second-language learning by validating an adapted AMTB in the U.S. with American students of Spanish. Sought to compare underlying structure of adapted ATMB with original ATMB and…

  15. Is Upregulation of Aquaporin 4-M1 Isoform Responsible for the Loss of Typical Orthogonal Arrays of Particles in Astrocytomas?

    PubMed

    Fallier-Becker, Petra; Nieser, Maike; Wenzel, Ulrike; Ritz, Rainer; Noell, Susan

    2016-01-01

    The astrocytic endfoot membranes of the healthy blood-brain barrier-contacting the capillary-are covered with a large number of the water channel aquaporin 4 (AQP4). They form orthogonal arrays of particles (OAPs), which consist of AQP4 isoform M1 and M23. Under pathologic conditions, AQP4 is distributed over the whole cell and no or only small OAPs are found. From cell culture experiments, it is known that cells transfected only with AQP4-M1 do not form OAPs or only small ones. We hypothesized that in astrocytomas the situation may be comparable to the in vitro experiments expecting an upregulation of AQP4-M1. Quantitative Real-time PCR (qRT-PCR) of different graded astrocytomas revealed an upregulation of both isoforms AQP4 M1 and M23 in all astrocytomas investigated. In freeze fracture replicas of low-grade malignancy astrocytomas, more OAPs than in high-grade malignancy astrocytomas were found. In vitro, cultured glioma cells did not express AQP4, whereas healthy astrocytes revealed a slight upregulation of both isoforms and only a few OAPs in freeze fracture analysis. Taken together, we found a correlation between the decrease of OAPs and increasing grade of malignancy of astrocytomas but this was not consistent with an upregulation of AQP4-M1 in relation to AQP4 M23. PMID:27483250

  16. Phosphorylation in the C-terminal domain of Aquaporin-4 is required for Golgi transition in primary cultured astrocytes

    SciTech Connect

    Kadohira, Ikuko; Abe, Yoichiro Nuriya, Mutsuo; Sano, Kazumi; Tsuji, Shoji; Arimitsu, Takeshi; Yoshimura, Yasunori; Yasui, Masato

    2008-12-12

    Aquaporin-4 (AQP4) is expressed in the perivascular and subpial astrocytes end-feet in mammalian brain, and plays a critical component of an integrated water and potassium homeostasis. Here we examine whether AQP4 is phosphorylated in primary cultured mouse astrocytes. Astrocytes were metabolically labeled with [{sup 32}P]phosphoric acid, then AQP4 was immunoprecipitated with anti-AQP4 antibody. We observed that AQP4 was constitutively phosphorylated, which is reduced by treatment with protein kinase CK2 inhibitors. To elucidate the phosphorylation of AQP4 by CK2, myc-tagged wild-type or mutant AQP4 was transiently transfected in primary cultured astrocytes. Substitution of Ala residues for four putative CK2 phosphorylation sites in the C terminus abolished the phosphorylation of AQP4. Immunofluorescent microscopy revealed that the quadruple mutant was localized in the Golgi apparatus. These observations indicate that the C-terminal domain of AQP4 is constitutively phosphorylated at least in part by protein kinase CK2 and it is required for Golgi transition.

  17. Protection of Vascular Endothelial Growth Factor to Brain Edema Following Intracerebral Hemorrhage and Its Involved Mechanisms: Effect of Aquaporin-4

    PubMed Central

    Dong, Qiang

    2013-01-01

    Vascular endothelial growth factor (VEGF) has protective effects on many neurological diseases. However, whether VEGF acts on brain edema following intracerebral hemorrhage (ICH) is largely unknown. Our previous study has shown aquaporin-4 (AQP4) plays an important role in brain edema elimination following ICH. Meanwhile, there is close relationship between VEGF and AQP4. In this study, we aimed to test effects of VEGF on brain edema following ICH and examine whether they were AQP4 dependent. Recombinant human VEGF165 (rhVEGF165) was injected intracerebroventricularly 1 d after ICH induced by microinjecting autologous whole blood into striatum. We detected perihemotomal AQP4 protein expression, then examined the effects of rhVEGF165 on perihemotomal brain edema at 1 d, 3 d, and 7 d after injection in wild type (AQP4+/+) and AQP4 knock-out (AQP4−/−) mice. Furthermore, we assessed the possible signal transduction pathways activated by VEGF to regulate AQP4 expression via astrocyte cultures. We found perihemotomal AQP4 protein expression was highly increased by rhVEGF165. RhVEGF165 alleviated perihemotomal brain edema in AQP4+/+ mice at each time point, but had no effect on AQP4−/− mice. Perihemotomal EB extravasation was increased by rhVEGF165 in AQP4−/− mice, but not AQP4+/+ mice. RhVEGF165 reduced neurological deficits and increased Nissl’s staining cells surrounding hemotoma in both types of mice and these effects were related to AQP4. RhVEGF165 up-regulated phospharylation of C-Jun amino-terminal kinase (p-JNK) and extracellular signal-regulated kinase (p-ERK) and AQP4 protein in cultured astrocytes. The latter was inhibited by JNK and ERK inhibitors. In conclusion, VEGF reduces neurological deficits, brain edema, and neuronal death surrounding hemotoma but has no influence on BBB permeability. These effects are closely related to AQP4 up-regulation, possibly through activating JNK and ERK pathways. The current study may present new insights to

  18. Is Upregulation of Aquaporin 4-M1 Isoform Responsible for the Loss of Typical Orthogonal Arrays of Particles in Astrocytomas?

    PubMed Central

    Fallier-Becker, Petra; Nieser, Maike; Wenzel, Ulrike; Ritz, Rainer; Noell, Susan

    2016-01-01

    The astrocytic endfoot membranes of the healthy blood-brain barrier—contacting the capillary—are covered with a large number of the water channel aquaporin 4 (AQP4). They form orthogonal arrays of particles (OAPs), which consist of AQP4 isoform M1 and M23. Under pathologic conditions, AQP4 is distributed over the whole cell and no or only small OAPs are found. From cell culture experiments, it is known that cells transfected only with AQP4-M1 do not form OAPs or only small ones. We hypothesized that in astrocytomas the situation may be comparable to the in vitro experiments expecting an upregulation of AQP4-M1. Quantitative Real-time PCR (qRT-PCR) of different graded astrocytomas revealed an upregulation of both isoforms AQP4 M1 and M23 in all astrocytomas investigated. In freeze fracture replicas of low-grade malignancy astrocytomas, more OAPs than in high-grade malignancy astrocytomas were found. In vitro, cultured glioma cells did not express AQP4, whereas healthy astrocytes revealed a slight upregulation of both isoforms and only a few OAPs in freeze fracture analysis. Taken together, we found a correlation between the decrease of OAPs and increasing grade of malignancy of astrocytomas but this was not consistent with an upregulation of AQP4-M1 in relation to AQP4 M23. PMID:27483250

  19. Diagnostic value of aquaporin 4 antibody in assessing idiopathic inflammatory demyelinating central nervous system diseases in Egyptian patients.

    PubMed

    Kishk, Nirmeen A; Abokrysha, Noha T; Rashed, Laila; Ahmed, Nagwa

    2015-04-01

    Neuromyelitis optica immunoglobulin G (NMO-IgG) binds selectively to aquaporin 4 (AQP4). We aimed to evaluate the frequency of AQP4 antibody in Egyptian patients. We retrospectively evaluated 39 consecutive Egyptian patients with suspected idiopathic inflammatory demyelinating central nervous system disease (IIDCD) who visited the multiple sclerosis clinic at Kaser Al-Aini Hospital. The patients were diagnosed with NMO, other NMO spectrum disorders, or multiple sclerosis using the respective current diagnostic criteria. For the anti-AQP4 antibody assays, serum samples from all patients and 16 healthy matched controls were evaluated. The coded sera were tested for AQP4 antibody using an enzyme-linked immunosorbent assay kit. The relations between the clinical diagnosis and the AQP4 antibody serologic status were studied. Among the 39 patients, 21 (53.85%) were AQP4 antibody-positive. NMO spectrum disorders patients had a significantly higher level of AQP4 antibody compared with MS patients and controls (p<0.001). Only eight patients (36.36%) met the Wingerchuk 2006 criteria for NMO diagnosis excluding AQP4 antibody-seropositive status. AQP4 antibody was highly prevalent (almost 54%) in Egyptian IIDCD patients. Our research revealed that we must maintain a high index of suspicion for NMO spectrum disorders. PMID:25677878

  20. Water permeability of the mammalian cochlea: functional features of an aquaporin-facilitated water shunt at the perilymph-endolymph barrier.

    PubMed

    Eckhard, A; Müller, M; Salt, A; Smolders, J; Rask-Andersen, H; Löwenheim, H

    2014-10-01

    The cochlear duct epithelium (CDE) constitutes a tight barrier that effectively separates the inner ear fluids, endolymph and perilymph, thereby maintaining distinct ionic and osmotic gradients that are essential for auditory function. However, in vivo experiments have demonstrated that the CDE allows for rapid water exchange between fluid compartments. The molecular mechanism governing water permeation across the CDE remains elusive. We computationally determined the diffusional (PD) and osmotic (Pf) water permeability coefficients for the mammalian CDE based on in silico simulations of cochlear water dynamics integrating previously derived in vivo experimental data on fluid flow with expression sites of molecular water channels (aquaporins, AQPs). The PD of the entire CDE (PD = 8.18 × 10(-5) cm s(-1)) and its individual partitions including Reissner's membrane (PD = 12.06 × 10(-5) cm s(-1)) and the organ of Corti (PD = 10.2 × 10(-5) cm s(-1)) were similar to other epithelia with AQP-facilitated water permeation. The Pf of the CDE (Pf = 6.15 × 10(-4) cm s(-1)) was also in the range of other epithelia while an exceptionally high Pf was determined for an epithelial subdomain of outer sulcus cells in the cochlear apex co-expressing AQP4 and AQP5 (OSCs; Pf = 156.90 × 10(-3) cm s(-1)). The Pf/PD ratios of the CDE (Pf/PD = 7.52) and OSCs (Pf/PD = 242.02) indicate an aqueous pore-facilitated water exchange and reveal a high-transfer region or "water shunt" in the cochlear apex. This "water shunt" explains experimentally determined phenomena of endolymphatic longitudinal flow towards the cochlear apex. The water permeability coefficients of the CDE emphasise the physiological and pathophysiological relevance of water dynamics in the cochlea in particular for endolymphatic hydrops and Ménière's disease. PMID:24385019

  1. Aquaporin 5 Interacts with Fluoride and Possibly Protects against Caries.

    PubMed

    Anjomshoaa, Ida; Briseño-Ruiz, Jessica; Deeley, Kathleen; Poletta, Fernardo A; Mereb, Juan C; Leite, Aline L; Barreta, Priscila A T M; Silva, Thelma L; Dizak, Piper; Ruff, Timothy; Patir, Asli; Koruyucu, Mine; Abbasoğlu, Zerrin; Casado, Priscila L; Brown, Andrew; Zaky, Samer H; Bayram, Merve; Küchler, Erika C; Cooper, Margaret E; Liu, Kai; Marazita, Mary L; Tanboğa, İlknur; Granjeiro, José M; Seymen, Figen; Castilla, Eduardo E; Orioli, Iêda M; Sfeir, Charles; Owyang, Hongjiao; Buzalaf, Marília A R; Vieira, Alexandre R

    2015-01-01

    Aquaporins (AQP) are water channel proteins and the genes coding for AQP2, AQP5, and AQP6 are clustered in 12q13. Since AQP5 is expressed in serous acinar cells of salivary glands, we investigated its involvement in caries. DNA samples from 1,383 individuals from six groups were studied. Genotypes of eight single nucleotide polymorphisms covering the aquaporin locus were tested for association with caries experience. Interaction with genes involved in enamel formation was tested. The association between enamel microhardness at baseline, after creation of artificial caries lesion, and after exposure to fluoride and the genetic markers in AQP5 was tested. Finally, AQP5 expression in human whole saliva, after exposure to fluoride in a mammary gland cell line, which is known to express AQP5, and in Wistar rats was also verified. Nominal associations were found between caries experience and markers in the AQP5 locus. Since these associations suggested that AQP5 may be inhibited by levels of fluoride in the drinking water that cause fluorosis, we showed that fluoride levels above optimal levels change AQP5 expression in humans, cell lines, and rats. We have shown that AQP5 is involved in the pathogenesis of caries and likely interacts with fluoride. PMID:26630491

  2. Aquaporin 5 Interacts with Fluoride and Possibly Protects against Caries

    PubMed Central

    Deeley, Kathleen; Poletta, Fernardo A.; Mereb, Juan C.; Leite, Aline L.; Barreta, Priscila A. T. M.; Silva, Thelma L.; Dizak, Piper; Ruff, Timothy; Patir, Asli; Koruyucu, Mine; Abbasoğlu, Zerrin; Casado, Priscila L.; Brown, Andrew; Zaky, Samer H.; Bayram, Merve; Küchler, Erika C.; Cooper, Margaret E.; Liu, Kai; Marazita, Mary L.; Tanboğa, İlknur; Granjeiro, José M.; Seymen, Figen; Castilla, Eduardo E.; Orioli, Iêda M.; Sfeir, Charles; Owyang, Hongjiao; Buzalaf, Marília A. R.; Vieira, Alexandre R.

    2015-01-01

    Aquaporins (AQP) are water channel proteins and the genes coding for AQP2, AQP5, and AQP6 are clustered in 12q13. Since AQP5 is expressed in serous acinar cells of salivary glands, we investigated its involvement in caries. DNA samples from 1,383 individuals from six groups were studied. Genotypes of eight single nucleotide polymorphisms covering the aquaporin locus were tested for association with caries experience. Interaction with genes involved in enamel formation was tested. The association between enamel microhardness at baseline, after creation of artificial caries lesion, and after exposure to fluoride and the genetic markers in AQP5 was tested. Finally, AQP5 expression in human whole saliva, after exposure to fluoride in a mammary gland cell line, which is known to express AQP5, and in Wistar rats was also verified. Nominal associations were found between caries experience and markers in the AQP5 locus. Since these associations suggested that AQP5 may be inhibited by levels of fluoride in the drinking water that cause fluorosis, we showed that fluoride levels above optimal levels change AQP5 expression in humans, cell lines, and rats. We have shown that AQP5 is involved in the pathogenesis of caries and likely interacts with fluoride. PMID:26630491

  3. Prognostic Value of Combined Aquaporin 3 and Aquaporin 5 Overexpression in Hepatocellular Carcinoma

    PubMed Central

    Guo, Xiaodong; Sun, Ting; Yang, Mei; Li, Zhiyan; Li, Zhiwei; Gao, Yuejuan

    2013-01-01

    Background. Aquaporin (AQP) 3 and AQP 5 are involved in tumorigenesis and tumor progression of several tumor types. Aim. To investigate expression patterns and clinical significance of AQP3 and AQP5 in hepatocellular carcinoma (HCC). Methods. Immunohistochemistry was performed to detect the expression of AQP3 and AQP5 in HCC tissues. Results. Immunohistochemistry analysis showed the increased expression of AQP3 and AQP5 protein levels in HCC tissues compared with their adjacent nonneoplastic tissues (both P < 0.001). In addition, combined AQP3 and AQP5 protein expression was significantly associated with serum AFP (P = 0.008), tumor stage (P = 0.006), and tumor grade (P = 0.006). Moreover, HCC patients highly expressing both AQP3 and AQP5 proteins had worse 5-year disease-free survival and 5-year overall survival (P = 0.002 and 0.005, resp.). Furthermore, the Cox proportional hazards model showed that combined AQP3 and AQP5 protein expression was an independent poor prognostic factor for both 5-year disease-free survival (P = 0.009) and 5-year overall survival (P = 0.01) in HCC. Conclusion. Our data suggest for the first time that the aberrant expression of AQP3 and AQP5 proteins may be strongly related to tumor progression and prognosis in patients with HCC. The overexpression of AQP3 in combination with upregulation of AQP5 may be an unfavorable prognostic factor for HCC. PMID:24224160

  4. Glio-vascular modifications caused by Aquaporin-4 deletion in the mouse retina.

    PubMed

    Nicchia, Grazia Paola; Pisani, Francesco; Simone, Laura; Cibelli, Antonio; Mola, Maria Grazia; Dal Monte, Massimo; Frigeri, Antonio; Bagnoli, Paola; Svelto, Maria

    2016-05-01

    Aquaporin-4 (AQP4) is the Central Nervous System water channel highly expressed at the perivascular glial domain. In the retina, two types of AQP4 expressing glial cells take part in the blood-retinal barrier (BRB), astrocytes and Müller cells. The aim of the present study is to investigate the effect of AQP4 deletion on the retinal vasculature by looking at typical pathological hallmark such as BRB dysfunction and gliotic condition. AQP4 dependent BRB properties were evaluated by measuring the number of extravasations in WT and AQP4 KO retinas by Evans blue injection assay. AQP4 deletion did not affect the retinal vasculature, as assessed by Isolectin B4 staining, but caused BRB impairment to the deep plexus capillaries while the superficial and intermediate capillaries were not compromised. To investigate for gliotic responses caused by AQP4 deletion, Müller cells and astrocytes were analysed by immunofluorescence and western blot, using the Müller cell marker Glutamine Synthetase (GS) and the astrocyte marker GFAP. While GS expression was not altered in AQP4 KO retinas, a strong GFAP upregulation was found at the level of AQP4 KO astrocytes at the superficial plexus and not at Müller cells at the intermediate and deep plexi. These data, together with the upregulation of inflammatory markers (TNF-α, IL-6, IL-1β and ICAM-1) in AQP4 KO retinas indicated AQP4 deletion as responsible for a gliotic phenotype. Interestingly, no GFAP altered expression was found in AQP4 siRNA treated astrocyte primary cultures. All together these results indicate that AQP4 deletion is directly responsible for BRB dysfunction and gliotic condition in the mouse retina. The selective activation of glial cells at the primary plexus suggests that different regulatory elements control the reaction of astrocytes and Müller cells. Finally, GFAP upregulation is strictly linked to gliovascular crosstalk, as it is absent in astrocytes in culture. This study is useful to understand the role

  5. Diagnostic utility of aquaporin-4 in the analysis of active demyelinating lesions

    PubMed Central

    Popescu, Bogdan F.G.; Guo, Yong; Jentoft, Mark E.; Parisi, Joseph E.; Lennon, Vanda A.; Pittock, Sean J.; Weinshenker, Brian G.; Wingerchuk, Dean M.; Giannini, Caterina; Metz, Imke; Brück, Wolfgang; Shuster, Elizabeth A.; Carter, Jonathan; Boyd, Clara D.; Clardy, Stacey Lynn; Cohen, Bruce A.

    2015-01-01

    Objective: To assess, in a surgical biopsy cohort of active demyelinating lesions, the diagnostic utility of aquaporin-4 (AQP4) immunohistochemistry in identifying neuromyelitis optica (NMO) or NMO spectrum disorder (NMOSD) and describe pathologic features that should prompt AQP4 immunohistochemical analysis and AQP4–immunoglobulin G (IgG) serologic testing. Methods: This was a neuropathologic cohort study of 20 surgical biopsies (19 patients; 11 cord/9 brain), performed because of diagnostic uncertainty, interpreted as active demyelinating disease and containing 2 or more of the following additional features: tissue vacuolation, granulocytic infiltrates, or astrocyte injury. Results: AQP4 immunoreactivity was lost in 18 biopsies and increased in 2. Immunopathologic features of the AQP4 loss cohort were myelin vacuolation (18), dystrophic astrocytes and granulocytes (17), vascular hyalinization (16), macrophages containing glial fibrillary acid protein (GFAP)–positive debris (14), and Creutzfeldt-Peters cells (0). All 14 cases with available serum tested positive for AQP4-IgG after biopsy. Diagnosis at last follow-up was NMO/NMOSD (15) and longitudinally extensive transverse myelitis (1 each relapsing and single). Immunopathologic features of the AQP4 increased cohort were macrophages containing GFAP-positive debris and granulocytes (2), myelin vacuolation (1), dystrophic astrocytes (1), Creutzfeldt-Peters cells (1), and vascular hyalinization (1). Diagnosis at last follow-up was multiple sclerosis (MS) and both tested AQP4-IgG seronegative after biopsy. Conclusions: AQP4 immunohistochemistry with subsequent AQP4-IgG testing has diagnostic utility in identifying cases of NMO/NMOSD. This study highlights the importance of considering NMOSD in the differential diagnosis of tumefactive brain or spinal cord lesions. AQP4-IgG testing may avert biopsy and avoid ineffective therapies if these patients are erroneously treated for MS. PMID:25503621

  6. Sex- and region-specific alterations of basal amino acid and monoamine metabolism in the brain of aquaporin-4 knockout mice.

    PubMed

    Fan, Yi; Zhang, Jing; Sun, Xiu-Lan; Gao, Lin; Zeng, Xiao-Ning; Ding, Jian-Hua; Cao, Cong; Niu, Ling; Hu, Gang

    2005-11-15

    Aquaporin-4 (AQP4), a predominant water channel of the brain, mediates transmembrane water movement at the blood-brain barrier and brain-cerebrospinal fluid interface. A broad pattern of evidence indicates that AQP4 and regulators of its expression are potential targets for treatment of brain swelling, but whether it participates in the regulation of neurotransmission has not been reported. We examined neurochemical differences between AQP4-knockout and wild-type mice with particular focus on neurotransmission. Basal tissue neurotransmitter and metabolite levels were measured by high-performance liquid chromatography. Significant sex- and region-specific differences of amino acids and monoamines were found in the brain of wild-type and AQP4-knockout mice. In cortex, striatum, and hippocampus of male AQP4-knockout mice, an increase of glutamine and decrease of aspartate were observed. Glutamate was increased only in female AQP4-knockout mice. The lack of AQP4 failed to affect the levels of gamma-aminobutyric acid and taurine. In the medial prefrontal cortex of AQP4-knockout mice, the levels of serotonin and norepinephrine were increased, but no significant change in dopamine level was found. In the striatum of male AQP4-knockout mice, the levels of dopamine and serotonin were remarkably increased, which was not found in female mice. In the hypothalamus of AQP4-knockout mice, only the serotonin level was altered. These results provide the first evidence that the lack of AQP4 expression is accompanied by sex- and region-specific alterations in brain amino acid and monoamine metabolism. PMID:16237719

  7. The Effects of Female Sexual Hormones on the Expression of Aquaporin 5 in the Late-Pregnant Rat Uterus.

    PubMed

    Csányi, Adrienn; Bóta, Judit; Falkay, George; Gáspár, Robert; Ducza, Eszter

    2016-01-01

    Thirteen mammalian aquaporin (AQP) water channels are known, and few of them play a role in the mammalian reproductive system. In our earlier study, the predominance of AQP5 in the late-pregnant rat uterus was proven. Our current aim was to investigate the effect of estrogen- and gestagen-related compounds on the expression of the AQP5 channel in the late-pregnant rat uterus. Furthermore, we examined the effect of hormonally-induced preterm delivery on the expression of AQP5 in the uterus. We treated pregnant Sprague-Dawley rats subcutaneously with 17β-estradiol, clomiphene citrate, tamoxifen citrate, progesterone, levonorgestrel, and medroxyprogesterone acetate. Preterm delivery was induced by subcutaneous mifepristone and intravaginal prostaglandin E2. Reverse-transcriptase PCR and Western blot techniques were used for the detection of the changes in AQP5 mRNA and protein expressions. The amount of AQP5 significantly increased after progesterone and progesterone analogs treatment on 18 and 22 days of pregnancy. The 17β-estradiol and estrogen receptor agonists did not influence the AQP5 mRNA level; however, estradiol induced a significant increase in the AQP5 protein level on the investigated days of gestation. Tamoxifen increased the AQP5 protein expression on day 18, while clomiphene citrate was ineffective. The hormonally-induced preterm birth significantly decreased the AQP5 level similarly to the day of delivery. We proved that AQP5 expression is influenced by both estrogen and progesterone in the late-pregnant rat uterus. The influence of progesterone on AQP5 expression is more predominant as compared with estrogen. PMID:27556454

  8. Transient receptor potential vanilloid 4 regulates aquaporin-5 abundance under hypotonic conditions.

    PubMed

    Sidhaye, Venkataramana K; Güler, Ali D; Schweitzer, Kelly S; D'Alessio, Franco; Caterina, Michael J; King, Landon S

    2006-03-21

    Aquaporin-5 (AQP5) is expressed in epithelia of lung, cornea, and various secretory glands, sites where extracellular osmolality is known to fluctuate. Hypertonic aquaporin (AQP) induction has been described, but little is known about the effects of a hypotonic environment on AQP abundance. We report that, when mouse lung epithelial cells were exposed to hypotonic medium, a dose-responsive decrease in AQP5 abundance was observed. Hypotonic reduction of AQP5 was blocked by ruthenium red, methanandamide, and miconazole, agents that inhibit the cation channel transient receptor potential vanilloid (TRPV) 4 present in lung epithelial cells. Several observations indicate that TRPV4 participates in hypotonic reduction of AQP5, including a requirement for extracellular calcium to achieve AQP5 reduction; an increase in intracellular calcium in mouse lung epithelial (MLE) cells after hypotonic stimulation; and reduction of AQP5 abundance after addition of the TRPV4 agonist 4alpha-Phorbol-12,13-didecanoate (4alpha-PDD). Similarly, addition of hypotonic PBS to mouse trachea in vivo decreased AQP5 within 1 h, an effect blocked by ruthenium red. To confirm a functional interaction, AQP5 was expressed in control or TRPV4-expressing human embryonic kidney (HEK) cells. Hypotonic reduction of AQP5 was observed only in the presence of TRPV4 and was blocked by ruthenium red. Combined with earlier studies, these observations indicate that AQP5 abundance is tightly regulated along a range of osmolalities and that AQP5 reduction by extracellular hypotonicity can be mediated by TRPV4. These findings have direct relevance to regulation of membrane water permeability and water homeostasis in epithelia of the lung and other organs. PMID:16537379

  9. Aquaporin-5: A Marker Protein for Proliferation and Migration of Human Breast Cancer Cells

    PubMed Central

    Jung, Hyun Jun; Park, Ji-Young; Jeon, Hyo-Sung; Kwon, Tae-Hwan

    2011-01-01

    Aquaporin (AQP) is a family of transmembrane proteins for water transport. Recent studies revealed that AQPs are likely to play a role in tumor progression and invasion. We aimed to examine the potential role of AQP5 in the progression of human breast cancer cells. Expression of AQP5 mRNA and protein was seen in human breast cancer cell line (both MCF7 and MDA-MB-231) by RT-PCR and immunoblotting analysis. Immunoperoxidase labeling of AQP5 was observed at ductal epithelial cells of human breast tissues. In benign tumor, AQP5 labeling was mainly seen at the apical domains of ductal epithelial cells. In contrast, in invasive ductal carcinoma, prominent AQP5 labeling was associated with cancer cells, whereas some ducts were unlabeled and apical polarity of AQP5 in ducts was lost. Cell proliferation (BrdU incorporation assay) and migration of MCF7 cells were significantly attenuated by lentivirus-mediated AQP5-shRNA transduction. Hyperosmotic stress induced by sorbitol treatment (100 mM, 24 h) reduced AQP5 expression in MCF7 cells, which was also associated with a significant reduction in cell proliferation and migration. Taken together, prominent AQP5 expression in breast cancer cells with the loss of polarity of ductal epithelial cells was seen during the progression of breast carcinoma. shRNA- or hyperosmotic stress-induced reduction in AQP5 expression of MCF7 cells was associated with significantly reduced cell proliferation and migration. In conclusion, AQP5 overexpression is likely to play a role in cell growth and metastasis of human breast cancer and could be a novel target for anti-breast cancer treatment. PMID:22145049

  10. The Effects of Female Sexual Hormones on the Expression of Aquaporin 5 in the Late-Pregnant Rat Uterus

    PubMed Central

    Csányi, Adrienn; Bóta, Judit; Falkay, George; Gáspár, Robert; Ducza, Eszter

    2016-01-01

    Thirteen mammalian aquaporin (AQP) water channels are known, and few of them play a role in the mammalian reproductive system. In our earlier study, the predominance of AQP5 in the late-pregnant rat uterus was proven. Our current aim was to investigate the effect of estrogen- and gestagen-related compounds on the expression of the AQP5 channel in the late-pregnant rat uterus. Furthermore, we examined the effect of hormonally-induced preterm delivery on the expression of AQP5 in the uterus. We treated pregnant Sprague-Dawley rats subcutaneously with 17β-estradiol, clomiphene citrate, tamoxifen citrate, progesterone, levonorgestrel, and medroxyprogesterone acetate. Preterm delivery was induced by subcutaneous mifepristone and intravaginal prostaglandin E2. Reverse-transcriptase PCR and Western blot techniques were used for the detection of the changes in AQP5 mRNA and protein expressions. The amount of AQP5 significantly increased after progesterone and progesterone analogs treatment on 18 and 22 days of pregnancy. The 17β-estradiol and estrogen receptor agonists did not influence the AQP5 mRNA level; however, estradiol induced a significant increase in the AQP5 protein level on the investigated days of gestation. Tamoxifen increased the AQP5 protein expression on day 18, while clomiphene citrate was ineffective. The hormonally-induced preterm birth significantly decreased the AQP5 level similarly to the day of delivery. We proved that AQP5 expression is influenced by both estrogen and progesterone in the late-pregnant rat uterus. The influence of progesterone on AQP5 expression is more predominant as compared with estrogen. PMID:27556454

  11. Neuroprotection of Sanhua Decoction against Focal Cerebral Ischemia/Reperfusion Injury in Rats through a Mechanism Targeting Aquaporin 4

    PubMed Central

    Lu, Lin; Li, Hui-qin; Li, Ji-huang; Liu, Ai-ju

    2015-01-01

    Sanhua decoction (SHD) is a famous classic Chinese herbal prescription for ischemic stroke, and aquaporin 4 (AQP4) is reported to play a key role in ischemic brain edema. This study aimed to investigate neuroprotection of SHD against focal cerebral ischemia/reperfusion (I/R) injury in rats and explore the hypothesis that AQP4 probably is the target of SHD neuroprotection against I/R rats. Lentiviral-mediated AQP4-siRNA was inducted into adult male Sprague-Dawley rats via intracerebroventricular injection. The focal cerebral ischemia/reperfusion model was established by occluding middle cerebral artery. Neurological examinations were performed according to Longa Scale. Brain water content, was determined by wet and dry weight measurement. Western blot was adopted to test the AQP4 expression in ipsilateral hippocampus. After the treatment, SHD alleviated neurological deficits, reduced brain water content and downregulated the expression of AQP4 at different time points following I/R injury. Furthermore, neurobehavioral function and brain edema after I/R were significantly attenuated via downregulation of AQP4 expression when combined with AQP4-siRNA technology. In conclusion, SHD exerted neuroprotection against focal cerebral I/R injury in rats mainly through a mechanism targeting AQP4. PMID:26089944

  12. Serum peptide reactivities may distinguish neuromyelitis optica subgroups and multiple sclerosis

    PubMed Central

    Metz, Imke; Beißbarth, Tim; Ellenberger, David; Pache, Florence; Stork, Lidia; Ringelstein, Marius; Aktas, Orhan; Jarius, Sven; Wildemann, Brigitte; Dihazi, Hassan; Friede, Tim; Ruprecht, Klemens; Paul, Friedemann

    2016-01-01

    Objective: To assess in an observational study whether serum peptide antibody reactivities may distinguish aquaporin-4 (AQP4) antibody (Ab)–positive and -negative neuromyelitis optica spectrum disorders (NMOSD) and relapsing-remitting multiple sclerosis (RRMS). Methods: We screened 8,700 peptides that included human and viral antigens of potential relevance for inflammatory demyelinating diseases and random peptides with pooled sera from different patient groups and healthy controls to set up a customized microarray with 700 peptides. With this microarray, we tested sera from 66 patients with AQP4-Ab-positive (n = 16) and AQP4-Ab-negative (n = 19) NMOSD, RRMS (n = 11), and healthy controls (n = 20). Results: Differential peptide reactivities distinguished NMOSD subgroups from RRMS in 80% of patients. However, the 2 NMOSD subgroups were not well-discriminated, although those patients are clearly separated by their antibody reactivities against AQP4 in cell-based assays. Elevated reactivities to myelin and Epstein-Barr virus peptides were present in RRMS and to AQP4 and AQP1 peptides in AQP4-Ab-positive NMOSD. Conclusions: While AQP4-Ab-positive and -negative NMOSD subgroups are not well-discriminated by peptide antibody reactivities, our findings suggest that peptide antibody reactivities may have the potential to distinguish between both NMOSD subgroups and MS. Future studies should thus concentrate on evaluating peptide antibody reactivities for the differentiation of AQP4-Ab-negative NMOSD and MS. PMID:26894206

  13. Aquaporin-4 and Cerebrovascular Diseases.

    PubMed

    Chu, Heling; Huang, Chuyi; Ding, Hongyan; Dong, Jing; Gao, Zidan; Yang, Xiaobo; Tang, Yuping; Dong, Qiang

    2016-01-01

    Cerebrovascular diseases are conditions caused by problems with brain vasculature, which have a high morbidity and mortality. Aquaporin-4 (AQP4) is the most abundant water channel in the brain and crucial for the formation and resolution of brain edema. Considering brain edema is an important pathophysiological change after stoke, AQP4 is destined to have close relation with cerebrovascular diseases. However, this relation is not limited to brain edema due to other biological effects elicited by AQP4. Till now, multiple studies have investigated roles of AQP4 in cerebrovascular diseases. This review focuses on expression of AQP4 and the effects of AQP4 on brain edema and neural cells injuries in cerebrovascular diseases including cerebral ischemia, intracerebral hemorrhage and subarachnoid hemorrhage. In the current review, we pay more attention to the studies of recent years directly from cerebrovascular diseases animal models or patients, especially those using AQP4 gene knockout mice. This review also elucidates the potential of AQP4as an excellent therapeutic target. PMID:27529222

  14. Aquaporin-4 Protein Is Stably Maintained in the Hypertrophied Muscles by Functional Overload

    PubMed Central

    Ishido, Minenori; Nakamura, Tomohiro

    2016-01-01

    Aquaporin-4 (AQP4) is a selective water channel that is located on the plasma membrane of myofibers in skeletal muscle and is bound to α1-syntrophin. It is considered that AQP4 is involved in the modulation of homeostasis in myofibers through the regulation of water transport and osmotic pressure. However, it remains unclear whether AQP4 expression is altered by skeletal muscle hypertrophy to modulate water homeostasis in myofibers. The present study investigated the effect of muscle hypertrophy on the changes in AQP4 and α1-syntrophin expression patterns in myofibers. Novel findings indicated in the present study were as follows: 1) Expression levels of AQP4 and α1-syntrophin were stably maintained in hypertrophied muscles, and 2) AQP4 was not expressed in the myofibers containing the slow-type myosin heavy chain isoform (MHC) with or without the presence of fast-type MHC. The present study suggests that AQP4 may regulate the efficiency of water transport in hypertrophied myofibers through its interaction with α1-syntrophin. In addition, this study suggests that AQP4 expression may be inhibited by a regulatory mechanism activated under physiological conditions that induces the expression of slow-type MHC in skeletal muscles. PMID:27462134

  15. Aquaporin-4 and Cerebrovascular Diseases

    PubMed Central

    Chu, Heling; Huang, Chuyi; Ding, Hongyan; Dong, Jing; Gao, Zidan; Yang, Xiaobo; Tang, Yuping; Dong, Qiang

    2016-01-01

    Cerebrovascular diseases are conditions caused by problems with brain vasculature, which have a high morbidity and mortality. Aquaporin-4 (AQP4) is the most abundant water channel in the brain and crucial for the formation and resolution of brain edema. Considering brain edema is an important pathophysiological change after stoke, AQP4 is destined to have close relation with cerebrovascular diseases. However, this relation is not limited to brain edema due to other biological effects elicited by AQP4. Till now, multiple studies have investigated roles of AQP4 in cerebrovascular diseases. This review focuses on expression of AQP4 and the effects of AQP4 on brain edema and neural cells injuries in cerebrovascular diseases including cerebral ischemia, intracerebral hemorrhage and subarachnoid hemorrhage. In the current review, we pay more attention to the studies of recent years directly from cerebrovascular diseases animal models or patients, especially those using AQP4 gene knockout mice. This review also elucidates the potential of AQP4as an excellent therapeutic target. PMID:27529222

  16. Reduced migration of Ishikawa cells associated with downregulation of aquaporin-5

    PubMed Central

    JIANG, XIU XIU; XU, KAI HONG; MA, JUN YAN; TIAN, YONG HONG; GUO, XIAO YAN; LIN, JUN; WU, RUI JIN

    2012-01-01

    Aquaporin (AQP)-dependent cell migration has broad implications in angiogenesis, tumor metastasis, wound healing, glial scarring and other events requiring cell movement. There are 13 isoforms of AQP (0–12) that have been identified in mammals. It is unclear whether AQP5 plays a role in the development of endometrial cancer. We recently demonstrated that ovarian steroids may affect the expression of AQP5 in the female genital tract. In this study, we considered whether AQP5 may affect cell migration in Ishikawa cells, an adenocarcinoma cell line derived from the endometrium. The results showed that the downregulation of AQP5 results in reduced Ishikawa cell migration. The estrogen (E2) receptor in the promoter of AQP5 mediated the regulation of AQP5 expression in the normal endometrium and endometrial cancer. By contrast, the upregulation of AQP5 by E2 increased cell migration, invasion and adhesion through increased annexin-2, which is responsible for F-actin remodeling and rearrangement. E2 regulates Ishikawa cell migration by regulating the AQP5 expression. PMID:22844365

  17. Detection of aquaporin-4 antibody using aquaporin-4 extracellular loop-based carbon nanotube biosensor for the diagnosis of neuromyelitis optica.

    PubMed

    Son, Manki; Kim, Daesan; Park, Kyung Seok; Hong, Seunghun; Park, Tai Hyun

    2016-04-15

    Here we propose a carbon nanotube (CNT) field-effect transistor (FET) functionalized with aquaporin-4 (AQP4) extracellular loop peptides for the rapid detection of AQP4 antibody without pretreatment. Neuromyelitis optica (NMO) is a rare disease of the central nerve system that affects the optic nerves and the spinal cord. NMO-IgG, a serum antibody in patients, is highly specific for NMO and targets AQP4. We synthesized AQP4 extracellular loop peptides, known as primary autoimmune target in NMO, and immobilized them onto CNT-FET. The sensor showed p-type FET characteristics after the functionalization of peptides. The sensor was able to detect antibody with a detection limit of 1 ng l(-1). Moreover, AQP4 antibody in human serum was detected without any pretreatment. These results indicate that the biosensor can be used for rapid and simple detection of NMO antibody. PMID:26594890

  18. Aquaporin 4 Molecular Mimicry and Implications for Neuromyelitis Optica

    PubMed Central

    Vaishnav, Radhika A.; Liu, Ruolan; Chapman, Joab; Roberts, Andrew M.; Ye, Hong; Rebolledo-Mendez, Jovan D.; Tabira, Takeshi; Fitzpatrick, Alicia H.; Achiron, Anat; Running, Mark P.; Friedland, Robert P.

    2013-01-01

    Neuromyelitis Optica (NMO) is associated with antibodies to aquaporin 4 (AQP4). We hypothesized that antibodies to AQP4 can be triggered by exposure to environmental proteins. We compared human AQP4 to plant and bacterial proteins to investigate the occurrence of significantly similar structures and sequences. High similarity to a known epitope for NMO-IgG, AQP4(207-232), was observed for corn ZmTIP4-1. NMO and non-NMO serum was assessed for reactivity to AQP4(207-232) and the corn peptide. NMO patient serum showed reactivity to both peptides as well as to plant tissue. These findings warrant further investigation into the role of the environment in NMO etiology. PMID:23664693

  19. Patient vs provider reports of aberrant medication-taking behavior among opioid-treated patients with chronic pain who report misusing opioid medication.

    PubMed

    Nikulina, Valentina; Guarino, Honoria; Acosta, Michelle C; Marsch, Lisa A; Syckes, Cassandra; Moore, Sarah K; Portenoy, Russell K; Cruciani, Ricardo A; Turk, Dennis C; Rosenblum, Andrew

    2016-08-01

    During long-term opioid therapy for chronic noncancer pain, monitoring medication adherence of patients with a history of aberrant opioid medication-taking behaviors (AMTB) is an essential practice. There is limited research, however, into the concordance among existing monitoring tools of self-report, physician report, and biofluid screening. This study examined associations among patient and provider assessments of AMTB and urine drug screening using data from a randomized trial of a cognitive-behavioral intervention designed to improve medication adherence and pain-related outcomes among 110 opioid-treated patients with chronic pain who screened positive for AMTB and were enrolled in a pain program. Providers completed the Aberrant Behavior Checklist (ABC) and patients completed the Current Opioid Misuse Measure (COMM) and the Chemical Coping Inventory (CCI). In multivariate analyses, ABC scores were compared with COMM and CCI scores, while controlling for demographics and established risk factors for AMTB, such as pain severity. Based on clinical cutoffs, 84% of patients reported clinically significant levels of AMTB and providers rated 36% of patients at elevated levels. Provider reports of AMTB were not correlated with COMM or CCI scores. However, the ABC ratings of experienced providers (nurse practitioners/attending physicians) were higher than those of less experienced providers (fellows) and were correlated with CCI scores and risk factors for AMTB. Associations between patient- and provider-reported AMTB and urine drug screening results were low and largely nonsignificant. In conclusion, concordance between patient and provider reports of AMTB among patients with chronic pain prescribed opioid medication varied by provider level of training. PMID:27082008

  20. Binding affinity and specificity of neuromyelitis optica autoantibodies to aquaporin-4 M1/M23 isoforms and orthogonal arrays.

    PubMed

    Crane, Jonathan M; Lam, Chiwah; Rossi, Andrea; Gupta, Tripta; Bennett, Jeffrey L; Verkman, A S

    2011-05-01

    Autoantibodies against astrocyte water channel aquaporin-4 (AQP4) are highly specific for the neuroinflammatory disease neuromyelitis optica (NMO). We measured the binding of NMO autoantibodies to AQP4 in human astrocyte-derived U87MG cells expressing M1 and/or M23 AQP4, or M23 mutants that do not form orthogonal array of particles (OAPs). Binding affinity was quantified by two-color fluorescence ratio imaging of cells stained with NMO serum or a recombinant monoclonal NMO autoantibody (NMO-rAb), together with a C terminus anti-AQP4 antibody. NMO-rAb titrations showed binding with dissociation constants down to 44 ± 7 nm. Different NMO-rAbs and NMO patient sera showed a wide variation in NMO-IgG binding to M1 versus M23 AQP4. Differences in binding affinity rather than stoichiometry accounted for M1 versus M23 binding specificity, with consistently greater affinity of NMO-IgG binding to M23 than M1 AQP4. Binding and OAP measurements in cells expressing different M1:M23 ratios or AQP4 mutants indicated that the differential binding of NMO-IgG to M1 versus M23 was due to OAP assembly rather than to differences in the M1 versus M23 N termini. Purified Fab fragments of NMO-IgG showed similar patterns of AQP4 isoform binding, indicating that structural changes in the AQP4 epitope upon array assembly, and not bivalent cross-linking of whole IgG, result in the greater binding affinity to OAPs. Our study establishes a quantitative assay of NMO-IgG binding to AQP4 and indicates remarkable, OAP-dependent heterogeneity in NMO autoantibody binding specificity. PMID:21454592

  1. Evidence for a role of dystroglycan regulating the membrane architecture of astroglial endfeet

    PubMed Central

    Noell, Susan; Wolburg-Buchholz, Karen; Mack, Andreas F; Beedle, Aaron M; Satz, Jakob S; Campbell, Kevin P; Wolburg, Hartwig; Fallier-Becker, Petra

    2011-01-01

    The dystrophin–dystroglycan complex (DDC) is a molecular array of proteins in muscle and brain cells. The central component of the DDC is dystroglycan, which comprises α- and β-subunits. α-Dystroglycan (α-DG) binds to extracellular matrix components such as agrin, whereas β-dystroglycan (β-DG) is a membrane-spanning protein linking α-DG to the cytoskeleton and other intracellular components such as α-syntrophin. In astrocytes, α-syntrophin binds to the water channel protein aquaporin-4 (AQP4). Recently, it has been shown that AQP4 expression is unaltered in agrin-knockout mice, but that formation of orthogonal arrays of particles (OAPs), consisting of AQP4, is abnormal. As the brain-selective deletion of the DG gene causes a disorganization of the astroglial endfeet, we investigated whether DG deletion has an impact on AQP4. Western blotting revealed reduced AQP4 in the parenchymal but not in the superficial compartment of the astrocyte-conditioned DG-knockout mouse brain. Accordingly, immunohistochemical stainings of AQP4 revealed a selective loss of AQP4 in perivascular but not in superficial astroglial endfeet. In both superficial and perivascular endfeet of the DG-knockout brain, we observed a loss of OAPs. We conclude that in the absence of DG the majority of superficial AQP4 molecules did not form OAPs, and that expression of AQP4 in perivascular endfeet is compromised. However, the decreased number of perivascular AQP4 molecules obviously did form a few OAPs, even in the absence of DG. PMID:21501259

  2. Evidence for a role of dystroglycan regulating the membrane architecture of astroglial endfeet.

    PubMed

    Noell, Susan; Wolburg-Buchholz, Karen; Mack, Andreas F; Beedle, Aaron M; Satz, Jakob S; Campbell, Kevin P; Wolburg, Hartwig; Fallier-Becker, Petra

    2011-06-01

    The dystrophin-dystroglycan complex (DDC) is a molecular array of proteins in muscle and brain cells. The central component of the DDC is dystroglycan, which comprises α- and β-subunits. α-Dystroglycan (α-DG) binds to extracellular matrix components such as agrin, whereas β-dystroglycan (β-DG) is a membrane-spanning protein linking α-DG to the cytoskeleton and other intracellular components such as α-syntrophin. In astrocytes, α-syntrophin binds to the water channel protein aquaporin-4 (AQP4). Recently, it has been shown that AQP4 expression is unaltered in agrin-knockout mice, but that formation of orthogonal arrays of particles (OAPs), consisting of AQP4, is abnormal. As the brain-selective deletion of the DG gene causes a disorganization of the astroglial endfeet, we investigated whether DG deletion has an impact on AQP4. Western blotting revealed reduced AQP4 in the parenchymal but not in the superficial compartment of the astrocyte-conditioned DG-knockout mouse brain. Accordingly, immunohistochemical stainings of AQP4 revealed a selective loss of AQP4 in perivascular but not in superficial astroglial endfeet. In both superficial and perivascular endfeet of the DG-knockout brain, we observed a loss of OAPs. We conclude that in the absence of DG the majority of superficial AQP4 molecules did not form OAPs, and that expression of AQP4 in perivascular endfeet is compromised. However, the decreased number of perivascular AQP4 molecules obviously did form a few OAPs, even in the absence of DG. PMID:21501259

  3. Aquaporin 4-Specific T Cells in Neuromyelitis Optica Exhibit a Th17 Bias and Recognize Clostridium ABC Transporter

    PubMed Central

    Varrin-Doyer, Michel; Spencer, Collin M; Schulze-Topphoff, Ulf; Nelson, Patricia A; Stroud, Robert M; C Cree, Bruce A; Zamvil, Scott S

    2012-01-01

    Objective Aquaporin 4 (AQP4)-specific autoantibodies in neuromyelitis optica (NMO) are immunoglobulin (Ig)G1, a T cell-dependent Ig subclass, indicating that AQP4-specific T cells participate in NMO pathogenesis. Our goal was to identify and characterize AQP4-specific T cells in NMO patients and healthy controls (HC). Methods Peripheral blood T cells from NMO patients and HC were examined for recognition of AQP4 and production of proinflammatory cytokines. Monocytes were evaluated for production of T cell-polarizing cytokines and expression of costimulatory molecules. Results T cells from NMO patients and HC proliferated to intact AQP4 or AQP4 peptides (p11–30, p21–40, p61–80, p131–150, p156–170, p211–230, and p261–280). T cells from NMO patients demonstrated greater proliferation to AQP4 than those from HC, and responded most vigorously to p61–80, a naturally processed immunodominant determinant of intact AQP4. T cells were CD4+, and corresponding to association of NMO with human leukocyte antigen (HLA)-DRB1*0301 and DRB3, AQP4 p61–80-specific T cells were HLA-DR restricted. The T-cell epitope within AQP4 p61–80 was mapped to 63–76, which contains 10 residues with 90% homology to a sequence within Clostridium perfringens adenosine triphosphate-binding cassette (ABC) transporter permease. T cells from NMO patients proliferated to this homologous bacterial sequence, and cross-reactivity between it and self-AQP4 was observed, supporting molecular mimicry. In NMO, AQP4 p61–80-specific T cells exhibited Th17 polarization, and furthermore, monocytes produced more interleukin 6, a Th17-polarizing cytokine, and expressed elevated CD40 and CD80 costimulatory molecules, suggesting innate immunologic dysfunction. Interpretation AQP4-specific T-cell responses are amplified in NMO, exhibit a Th17 bias, and display cross-reactivity to a protein of an indigenous intestinal bacterium, providing new perspectives for investigating NMO pathogenesis. ANN

  4. Aquaporin 4 knockdown exacerbates streptozotocin-induced diabetic retinopathy through aggravating inflammatory response.

    PubMed

    Cui, Bei; Sun, Jin-Hua; Xiang, Fen-Fen; Liu, Lin; Li, Wen-Jie

    2012-05-01

    Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Diabetes is known to alter the amount of retinal expression of the water-selective channels aquaporin 4 (AQP4). However, the function and impact of AQP4 in diabetic retinopathy is not well understood. In the present work, diabetes was induced by intraperitoneal injection of streptozotocin in Sprague-Dawley rats. Two weeks later, AQP4 shRNA (r) lentiviral particles or negative lentiviral particles were delivered by intravitreal injection to the eyes. Gene delivery was confirmed by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blotting analysis. Eight weeks later, BRB breakdown was measured using Evans blue dye. Images of retinal sections were obtained and the thicknesses of the retinas were determined. Retinal leukostasis measurement was performed using acridine orange leukocyte fluorography. The mRNA levels of IL-1β, IL-6, intercellular adhesion molecule 1 (ICAM-1), glial fibrillary acidic protein (GFAP) and vascular endothelial growth factor (VEGF) were determined using qRT-PCR method. AQP4 shRNA (r) lentiviral particles or negative lentiviral particles were transfected into rMC-1 cells to investigate its effect on inflammation induced by high glucose. Incubation with IL-1β or IL-6 was performed to test their effect on AQP4 expression in rMC-1 cells. In the current work, it was found that AQP4 expression was enhanced in the retina of diabetic rats. AQP4 knockdown led to exacerbation of retinopathy including enhancing retinal vascular permeability, retinal thickness, pro-inflammatory factors expression, and VEGF and GFAP expression in retinas of diabetic rats. AQP4 knockdown enhanced the expression of pro-inflammatory cytokines induced by high glucose in rMC-1 cells. In addition, AQP4 knockdown enhanced the release of IL-6 and VEGF from rMC-1 cells into the medium. Moreover, it was found that incubation with IL-1β or IL-6 suppressed AQP4

  5. Aquaporin 4 IgG Serostatus and Outcome in Recurrent Longitudinally Extensive Transverse Myelitis

    PubMed Central

    Jiao, Yujuan; Fryer, James P.; Lennon, Vanda A.; McKeon, Andrew; Jenkins, Sarah M.; Smith, Carin Y.; Quek, Amy M. L.; Weinshenker, Brian G.; Wingerchuk, Dean M.; Shuster, Elizabeth A.; Lucchinetti, Claudia F.; Pittock, Sean J.

    2014-01-01

    IMPORTANCE Studies focused on recurrent longitudinally extensive transverse myelitis (rLETM) are lacking. OBJECTIVES To determine the aquaporin 4 (AQP4) IgG detection rate using recombinant human APQ4-based assays in sequential serum specimens collected from patients with rLETM categorized as negative by first-generation tissue-based indirect immunofluorescence (IIF) assay and to define the clinical characteristics and motor disability outcomes in AQP4-IgG–positive rLETM. DESIGN, SETTING, AND PARTICIPANTS A search of the Mayo Clinic computerized central diagnostic index (October 1, 2005, through November 30, 2011), cross-linked with the Neuroimmunology Laboratory database, identified 48 patients with rLETM, of whom 36 (75%) were positive and 12 (25%) negative for neuromyelitis optica (NMO) IgG (per IIF of serial serum specimens). Stored serum specimens from “seronegative” patients were retested with recombinant human AQP4-based assays, including enzyme-linked immunosorbent, transfected cell-based, and fluorescence-activated cell-sorting assays. Control patients included 140 AQP4-IgG–positive patients with NMO, of whom a subgroup of 20 initially presented with 2 attacks of transverse myelitis (rLETM-onset NMO). MAIN OUTCOMES AND MEASURES AQP4-IgG serostatus, clinical characteristics, and Expanded Disability Status Scale score. RESULTS Six patients with negative IIF results were reclassified as AQP4-IgG positive, yielding an overall AQP4-IgG seropositivity rate of 89%. Fluorescence-activated cell-sorting, cell-based, and enzyme-linked immunosorbent assays improved the detection rate to 89%, 85%, and 81%, respectively. The female to male ratio was 2:3 for AQP4-IgG–negative rLETM and 5:1 for AQP4-IgG–positive patients. The AQP4-IgG–positive patients with rLETM or rLETM-onset NMO were similar in age at onset, sex ratio, attack severity, relapse rate, and motor disability. From Kaplan-Meier analyses, 36% of AQP4-IgG–positive patients with rLETM are

  6. Expression of aquaporin-4 and pathological characteristics of brain injury in a rat model of traumatic brain injury

    PubMed Central

    ZHANG, CHENGCHENG; CHEN, JIANQIANG; LU, HONG

    2015-01-01

    Aquaporin 4 (AQP4) is a widely distributed membrane protein, which is found in glial cells, ependymocytes and capillary endothelial cells in the brain, and particularly in the choroid plexus. AQP4 is a key regulator of water metabolism, and changes in its expression following brain injury are associated with pathological changes in the damaged side of the brain; however, the effects of brain injury on AQP4 and injury-induced pathological changes in the contralateral non-damaged side of the brain remain to be fully elucidated. In the present study, male Sprague-Dawley rats were subjected to traumatic brain injury (TBI) and changes in brain water content, the expression of AQP4 expression and pathological characteristics in the damaged and contralateral non-damaged sides of the brain were examined. In the damaged side of the brain, vasogenic edema appeared first, followed by cellular edema. The aggravated cellular edema in the damaged side of the brain resulted in two periods of peak edema severity. Pathological changes in the contralateral non-damaged side of the brain occurred later than those in the damaged side; cellular edema appeared first, followed by vasogenic edema, which was alleviated earlier than the cellular edema. AQP4 was downregulated during vasogenic edema, and upregulated during cellular edema. Taken together, these results suggested that the downregulation of AQP4 was a result of vasogenic edema and that the upregulation of AQP4 may have induced cellular edema. PMID:26459070

  7. Effects of Different Doses of Levetiracetam on Aquaporin 4 Expression in Rats with Brain Edema Following Fluid Percussion Injury.

    PubMed

    Jin, Hongbo; Li, Wenling; Dong, Changzheng; Ma, Li; Wu, Jiang; Zhao, Wenqing

    2016-01-01

    BACKGROUND This study was designed to investigate the effects of different doses of levetiracetam on aquaporin 4 (AQP4) expression in rats after fluid percussion injury. MATERIAL AND METHODS Sprague-Dawley rats were randomly divided into 4 groups: sham operation group, traumatic brain injury group, low-dose levetiracetam group, and high-dose levetiracetam group. Brain edema models were established by fluid percussion injury, and intervened by the administration of levetiracetam. Samples from the 4 groups were collected at 2, 6, 12, and 24 h, and at 3 and 7 days after injury. Histological observation was performed using hematoxylin-eosin staining and immunohistochemical staining. AQP4 and AQP4 mRNA expression was detected using Western blot assay and RT-PCR. Brain water content was measured by the dry-wet method. RESULTS Compared with the traumatic brain injury group, brain water content, AQP4 expression, and AQP4 mRNA expression were lower in the levetiracetam groups at each time point and the differences were statistically significant (P<0.05). The intervention effects of high-dose levetiracetam were more apparent. CONCLUSIONS Levetiracetam can lessen brain edema from fluid percussion injury by down-regulating AQP4 and AQP4 mRNA expression. There is a dose-effect relationship in the preventive effect of levetiracetam within a certain extent. PMID:26927633

  8. The Neuroprotective Effect of the Association of Aquaporin-4/Glutamate Transporter-1 against Alzheimer's Disease

    PubMed Central

    Lan, Yu-Long; Zou, Shuang; Chen, Jian-Jiao; Zhao, Jie; Li, Shao

    2016-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by memory loss and cognitive dysfunction. Aquaporin-4 (AQP4), which is primarily expressed in astrocytes, is the major water channel expressed in the central nervous system (CNS). This protein plays an important role in water and ion homeostasis in the normal brain and in various brain pathological conditions. Emerging evidence suggests that AQP4 deficiency impairs learning and memory and that this may be related to the expression of glutamate transporter-1 (GLT-1). Moreover, the colocalization of AQP4 and GLT-1 has long been studied in brain tissue; however, far less is known about the potential influence that the AQP4/GLT-1 complex may have on AD. Research on the functional interaction of AQP4 and GLT-1 has been demonstrated to be of great significance in the study of AD. Here, we review the interaction of AQP4 and GLT-1 in astrocytes, which might play a pivotal role in the regulation of distinct cellular responses that involve neuroprotection against AD. The association of AQP4 and GLT-1 could greatly supplement previous research regarding neuroprotection against AD. PMID:27057365

  9. Immunopathology: autoimmune glial diseases and differentiation from multiple sclerosis.

    PubMed

    Popescu, Bogdan F Gh; Lucchinetti, Claudia F

    2016-01-01

    While multiple sclerosis (MS) is often referred to as an autoimmune inflammatory demyelinating disease, neuromyelitis optica (NMO) is currently the only proven and well-characterized autoimmune disease affecting the glial cells. The target antigen is the water channel aquaporin-4 (AQP4), expressed on astrocytes, and antibodies against AQP4 (AQP4-IgG) are present in the serum of NMO patients. Clinical, serologic, cerebrospinal fluid, and neuroimaging criteria help differentiate NMO from other central nervous system inflammatory demyelinating disorders. Pathologically, the presence of dystrophic astrocytes, myelin vacuolation, granulocytic inflammatory infiltrates, vascular hyalinization, macrophages containing glial fibrillary acidic protein-positive debris and/or the absence of Creutzfeldt-Peters cells is more characteristic, but not specific, for NMO. These findings should prompt the neuropathologist to perform AQP4 immunohistochemistry, and recommend serologic testing for AQP4-IgG to exclude a diagnosis of NMO/NMO spectrum disorder (NMOSD). Loss of AQP4 on biopsied active demyelinating lesions and/or seropositivity for AQP4-IgG may confirm the diagnosis of NMO/NMOSD, which is important because treatments that are suitable for MS can aggravate NMO. Few other putative glial antigens have been postulated, but their pathogenic role remains to be demonstrated. PMID:27112673

  10. Onset of aquaporin-4 expression in the developing mouse brain.

    PubMed

    Fallier-Becker, Petra; Vollmer, Jörg P; Bauer, Hans-C; Noell, Susan; Wolburg, Hartwig; Mack, Andreas F

    2014-08-01

    The main water channel in the brain, aquaporin-4 (AQP4) is involved in maintaining homeostasis and water exchange in the brain. In adult mammalian brains, it is expressed in astrocytes, mainly, and in high densities in the membranes of perivascular and subpial endfeet. Here, we addressed the question how this polarized expression is established during development. We used immunocytochemistry against AQP4, zonula occludens protein-1, glial fibrillary acidic protein, and β-dystroglycan to follow astrocyte development in E15 to P3 NMRI mouse brains, and expression of AQP4. In addition we used freeze-fracture electron microscopy to detect AQP4 in the form of orthogonal arrays of particles (OAPs) on the ultrastructural level. We analyzed ventral, lateral, and dorsal regions in forebrain sections and found AQP4 immunoreactivity to emerge at E16 ventrally before lateral (E17) and dorsal (E18) areas. AQP4 staining was spread over cell processes including radial glial cells in developing cortical areas and became restricted to astroglial endfeet at P1-P3. This was confirmed by double labeling with GFAP. In freeze-fracture replicas OAPs were found with a slight time delay but with a similar ventral to dorsal gradient. Thus, AQP4 is expressed in the embryonic mouse brain starting at E16, earlier than previously reported. However a polarized expression necessary for homeostatic function and water balance emerges at later stages around and after birth. PMID:24915007

  11. Effects of Different Doses of Levetiracetam on Aquaporin 4 Expression in Rats with Brain Edema Following Fluid Percussion Injury

    PubMed Central

    Jin, Hongbo; Li, Wenling; Dong, Changzheng; Ma, Li; Wu, Jiang; Zhao, Wenqing

    2016-01-01

    Background This study was designed to investigate the effects of different doses of levetiracetam on aquaporin 4 (AQP4) expression in rats after fluid percussion injury. Material/Methods Sprague-Dawley rats were randomly divided into 4 groups: sham operation group, traumatic brain injury group, low-dose levetiracetam group, and high-dose levetiracetam group. Brain edema models were established by fluid percussion injury, and intervened by the administration of levetiracetam. Samples from the 4 groups were collected at 2, 6, 12, and 24 h, and at 3 and 7 days after injury. Histological observation was performed using hematoxylin-eosin staining and immunohistochemical staining. AQP4 and AQP4 mRNA expression was detected using Western blot assay and RT-PCR. Brain water content was measured by the dry-wet method. Results Compared with the traumatic brain injury group, brain water content, AQP4 expression, and AQP4 mRNA expression were lower in the levetiracetam groups at each time point and the differences were statistically significant (P<0.05). The intervention effects of high-dose levetiracetam were more apparent. Conclusions Levetiracetam can lessen brain edema from fluid percussion injury by down-regulating AQP4 and AQP4 mRNA expression. There is a dose-effect relationship in the preventive effect of levetiracetam within a certain extent. PMID:26927633

  12. Treatment of neuromyelitis optica: state-of-the-art and emerging therapies

    PubMed Central

    Papadopoulos, Marios C.; Bennett, Jeffrey L.; Verkman, Alan S.

    2014-01-01

    Neuromyelitis optica (NMO) is an autoimmune disease of the CNS that is characterized by inflammatory demyelinating lesions in the spinal cord and optic nerve, potentially leading to paralysis and blindness. NMO can usually be distinguished from multiple sclerosis (MS) on the basis of seropositivity for IgG antibodies against the astrocytic water channel aquaporin-4 (AQP4). Differentiation from MS is crucial, because some MS treatments can exacerbate NMO. NMO pathogenesis involves AQP4-IgG antibody binding to astrocytic AQP4, which causes complement-dependent cytotoxicity and secondary inflammation with granulocyte and macrophage infiltration, blood–brain barrier disruption and oligodendrocyte injury. Current NMO treatments include general immunosuppressive agents, B-cell depletion, and plasma exchange. Therapeutic strategies targeting complement proteins, the IL-6 receptor, neutrophils, eosinophils and CD19—all initially developed for other indications—are under clinical evaluation for repurposing for NMO. Therapies in the preclinical phase include AQP4-blocking antibodies and AQP4-IgG enzymatic inactivation. Additional, albeit currently theoretical, treatment options include reduction of AQP4 expression, disruption of AQP4 orthogonal arrays, enhancement of complement inhibitor expression, restoration of the blood–brain barrier, and induction of immune tolerance. Despite the many therapeutic options in NMO, no controlled clinical trials in patients with this condition have been conducted to date. PMID:25112508

  13. Treatment of neuromyelitis optica: state-of-the-art and emerging therapies.

    PubMed

    Papadopoulos, Marios C; Bennett, Jeffrey L; Verkman, Alan S

    2014-09-01

    Neuromyelitis optica (NMO) is an autoimmune disease of the CNS that is characterized by inflammatory demyelinating lesions in the spinal cord and optic nerve, potentially leading to paralysis and blindness. NMO can usually be distinguished from multiple sclerosis (MS) on the basis of seropositivity for IgG antibodies against the astrocytic water channel aquaporin-4 (AQP4). Differentiation from MS is crucial, because some MS treatments can exacerbate NMO. NMO pathogenesis involves AQP4-IgG antibody binding to astrocytic AQP4, which causes complement-dependent cytotoxicity and secondary inflammation with granulocyte and macrophage infiltration, blood-brain barrier disruption and oligodendrocyte injury. Current NMO treatments include general immunosuppressive agents, B-cell depletion, and plasma exchange. Therapeutic strategies targeting complement proteins, the IL-6 receptor, neutrophils, eosinophils and CD19--all initially developed for other indications--are under clinical evaluation for repurposing for NMO. Therapies in the preclinical phase include AQP4-blocking antibodies and AQP4-IgG enzymatic inactivation. Additional, albeit currently theoretical, treatment options include reduction of AQP4 expression, disruption of AQP4 orthogonal arrays, enhancement of complement inhibitor expression, restoration of the blood-brain barrier, and induction of immune tolerance. Despite the many therapeutic options in NMO, no controlled clinical trials in patients with this condition have been conducted to date. PMID:25112508

  14. Aquaporin-4 in Astroglial Cells in the CNS and Supporting Cells of Sensory Organs-A Comparative Perspective.

    PubMed

    Gleiser, Corinna; Wagner, Andreas; Fallier-Becker, Petra; Wolburg, Hartwig; Hirt, Bernhard; Mack, Andreas F

    2016-01-01

    The main water channel of the brain, aquaporin-4 (AQP4), is one of the classical water-specific aquaporins. It is expressed in many epithelial tissues in the basolateral membrane domain. It is present in the membranes of supporting cells in most sensory organs in a specifically adapted pattern: in the supporting cells of the olfactory mucosa, AQP4 occurs along the basolateral aspects, in mammalian retinal Müller cells it is highly polarized. In the cochlear epithelium of the inner ear, it is expressed basolaterally in some cells but strictly basally in others. Within the central nervous system, aquaporin-4 (AQP4) is expressed by cells of the astroglial family, more specifically, by astrocytes and ependymal cells. In the mammalian brain, AQP4 is located in high density in the membranes of astrocytic endfeet facing the pial surface and surrounding blood vessels. At these locations, AQP4 plays a role in the maintenance of ionic homeostasis and volume regulation. This highly polarized expression has not been observed in the brain of fish where astroglial cells have long processes and occur mostly as radial glial cells. In the brain of the zebrafish, AQP4 immunoreactivity is found along the radial extent of astroglial cells. This suggests that the polarized expression of AQP4 was not present at all stages of evolution. Thus, a polarized expression of AQP4 as part of a control mechanism for a stable ionic environment and water balanced occurred at several locations in supporting and glial cells during evolution. This initially basolateral membrane localization of AQP4 is shifted to highly polarized expression in astrocytic endfeet in the mammalian brain and serves as a part of the neurovascular unit to efficiently maintain homeostasis. PMID:27571065

  15. Aquaporin-4 Dynamics in Orthogonal Arrays in Live Cells Visualized by Quantum Dot Single Particle Tracking

    PubMed Central

    Crane, Jonathan M.; Van Hoek, Alfred N.; Skach, William R.

    2008-01-01

    Freeze-fracture electron microscopy (FFEM) indicates that aquaporin-4 (AQP4) water channels can assemble in cell plasma membranes in orthogonal arrays of particles (OAPs). We investigated the determinants and dynamics of AQP4 assembly in OAPs by tracking single AQP4 molecules labeled with quantum dots at an engineered external epitope. In several transfected cell types, including primary astrocyte cultures, the long N-terminal “M1” form of AQP4 diffused freely, with diffusion coefficient ∼5 × 10−10 cm2/s, covering ∼5 μm in 5 min. The short N-terminal “M23” form of AQP4, which by FFEM was found to form OAPs, was relatively immobile, moving only ∼0.4 μm in 5 min. Actin modulation by latrunculin or jasplakinolide did not affect AQP4-M23 diffusion, but deletion of its C-terminal postsynaptic density 95/disc-large/zona occludens (PDZ) binding domain increased its range by approximately twofold over minutes. Biophysical analysis of short-range AQP4-M23 diffusion within OAPs indicated a spring-like potential, with a restoring force of ∼6.5 pN/μm. These and additional experiments indicated that 1) AQP4-M1 and AQP4-M23 isoforms do not coassociate in OAPs; 2) OAPs can be imaged directly by total internal reflection fluorescence microscopy; and 3) OAPs are relatively fixed, noninterconvertible assemblies that do not require cytoskeletal or PDZ-mediated interactions for formation. Our measurements are the first to visualize OAPs in live cells. PMID:18495865

  16. Atomic force microscopy on plasma membranes from Xenopus laevis oocytes containing human aquaporin 4.

    PubMed

    Orsini, Francesco; Santacroce, Massimo; Cremona, Andrea; Gosvami, Nitya N; Lascialfari, Alessandro; Hoogenboom, Bart W

    2014-11-01

    Atomic force microscopy (AFM) is a unique tool for imaging membrane proteins in near-native environment (embedded in a membrane and in buffer solution) at ~1 nm spatial resolution. It has been most successful on membrane proteins reconstituted in 2D crystals and on some specialized and densely packed native membranes. Here, we report on AFM imaging of purified plasma membranes from Xenopus laevis oocytes, a commonly used system for the heterologous expression of membrane proteins. Isoform M23 of human aquaporin 4 (AQP4-M23) was expressed in the X. laevis oocytes following their injection with AQP4-M23 cRNA. AQP4-M23 expression and incorporation in the plasma membrane were confirmed by the changes in oocyte volume in response to applied osmotic gradients. Oocyte plasma membranes were then purified by ultracentrifugation on a discontinuous sucrose gradient, and the presence of AQP4-M23 proteins in the purified membranes was established by Western blotting analysis. Compared with membranes without over-expressed AQP4-M23, the membranes from AQP4-M23 cRNA injected oocytes showed clusters of structures with lateral size of about 10 nm in the AFM topography images, with a tendency to a fourfold symmetry as may be expected for higher-order arrays of AQP4-M23. In addition, but only infrequently, AQP4-M23 tetramers could be resolved in 2D arrays on top of the plasma membrane, in good quantitative agreement with transmission electron microscopy analysis and the current model of AQP4. Our results show the potential and the difficulties of AFM studies on cloned membrane proteins in native eukaryotic membranes. PMID:25277091

  17. The central role of aquaporins in the pathophysiology of ischemic stroke

    PubMed Central

    Vella, Jasmine; Zammit, Christian; Di Giovanni, Giuseppe; Muscat, Richard; Valentino, Mario

    2015-01-01

    Stroke is a complex and devastating neurological condition with limited treatment options. Brain edema is a serious complication of stroke. Early edema formation can significantly contribute to infarct formation and thus represents a promising target. Aquaporin (AQP) water channels contribute to water homeostasis by regulating water transport and are implicated in several disease pathways. At least 7 AQP subtypes have been identified in the rodent brain and the use of transgenic mice has greatly aided our understanding of their functions. AQP4, the most abundant channel in the brain, is up-regulated around the peri-infarct border in transient cerebral ischemia and AQP4 knockout mice demonstrate significantly reduced cerebral edema and improved neurological outcome. In models of vasogenic edema, brain swelling is more pronounced in AQP4-null mice than wild-type providing strong evidence of the dual role of AQP4 in the formation and resolution of both vasogenic and cytotoxic edema. AQP4 is co-localized with inwardly rectifying K+-channels (Kir4.1) and glial K+ uptake is attenuated in AQP4 knockout mice compared to wild-type, indicating some form of functional interaction. AQP4-null mice also exhibit a reduction in calcium signaling, suggesting that this channel may also be involved in triggering pathological downstream signaling events. Associations with the gap junction protein Cx43 possibly recapitulate its role in edema dissipation within the astroglial syncytium. Other roles ascribed to AQP4 include facilitation of astrocyte migration, glial scar formation, modulation of inflammation and signaling functions. Treatment of ischemic cerebral edema is based on the various mechanisms in which fluid content in different brain compartments can be modified. The identification of modulators and inhibitors of AQP4 offer new therapeutic avenues in the hope of reducing the extent of morbidity and mortality in stroke. PMID:25904843

  18. Aquaporin 4 as a NH3 Channel.

    PubMed

    Assentoft, Mette; Kaptan, Shreyas; Schneider, Hans-Peter; Deitmer, Joachim W; de Groot, Bert L; MacAulay, Nanna

    2016-09-01

    Ammonia is a biologically potent molecule, and the regulation of ammonia levels in the mammalian body is, therefore, strictly controlled. The molecular paths of ammonia permeation across plasma membranes remain ill-defined, but the structural similarity of water and NH3 has pointed to the aquaporins as putative NH3-permeable pores. Accordingly, a range of aquaporins from mammals, plants, fungi, and protozoans demonstrates ammonia permeability. Aquaporin 4 (AQP4) is highly expressed at perivascular glia end-feet in the mammalian brain and may, with this prominent localization at the blood-brain-interface, participate in the exchange of ammonia, which is required to sustain the glutamate-glutamine cycle. Here we observe that AQP4-expressing Xenopus oocytes display a reflection coefficient <1 for NH4Cl at pH 8.0, at which pH an increased amount of the ammonia occurs in the form of NH3 Taken together with an NH4Cl-mediated intracellular alkalization (or lesser acidification) of AQP4-expressing oocytes, these data suggest that NH3 is able to permeate the pore of AQP4. Exposure to NH4Cl increased the membrane currents to a similar extent in uninjected oocytes and in oocytes expressing AQP4, indicating that the ionic NH4 (+) did not permeate AQP4. Molecular dynamics simulations revealed partial pore permeation events of NH3 but not of NH4 (+) and a reduced energy barrier for NH3 permeation through AQP4 compared with that of a cholesterol-containing lipid bilayer, suggesting AQP4 as a favored transmembrane route for NH3 Our data propose that AQP4 belongs to the growing list of NH3-permeable water channels. PMID:27435677

  19. Physiological role of aquaporin 5 in salivary glands.

    PubMed

    Hosoi, Kazuo

    2016-04-01

    Regarding the 13 known mammalian aquaporins (AQPs), their functions in their expressing tissues, effects of their mutation/polymorphisms in humans, and effects of knockout of their genes are summarized in this review article. The roles of AQP5, an exocrine gland-type water channel, in the salivary gland under normal and pathophysiological conditions are reviewed in detail. First, the involvement of AQP5 in water secretion from acinar cells was demonstrated by measuring volume changes of acini/acinar cells, as well as activation energy (E a) in transepithelial water movement by NMR spectrometry, and a functional linkage between AQP5 and TRPV4 was suggested. Next, involvement of the parasympathetic nervous system on the AQP5 levels in the acinar cells of the submandibular and that of a β-adrenergic agonist on those in the parotid gland are described. That is, chorda tympani denervation induces autophagy of the submandibular gland, causing AQP5 degradation/metabolism, whereas isoproterenol, a β-adrenergic agonist, causes first an increase then decrease in AQP5 levels in the parotid gland, which action is coupled with the secretory-restoration cycle of amylase-containing secretory granules. The PG also responded to endotoxin, a lipopolysaccharide that activates NF-κB and MAPK pathways. Elevated NF-κB and AP-1 (c-Fos/c-Jun) form a complex that can bind to the NF-κB-responsive element on the AQP5 promoter and thus potentially downregulate AQP5 transcription. Salivary gland pathologies and conditions involving AQP5 and possible treatments are described as well. PMID:26537593

  20. Aquaporin water channels in the nervous system

    PubMed Central

    Papadopoulos, Marios C.; Verkman, Alan S.

    2013-01-01

    The aquaporins (AQPs) are plasma membrane water-transporting proteins. AQP4 is the principal member of this protein family in the CNS, where it is expressed in astrocytes and is involved in water movement, cell migration and neuroexcitation. AQP1 is expressed in the choroid plexus, where it facilitates cerebrospinal fluid secretion, and in dorsal root ganglion neurons, where it tunes pain perception. The AQPs are potential drug targets for several neurological conditions. Astrocytoma cells strongly express AQP4, which may facilitate their infiltration into the brain, and the neuroinflammatory disease neuromyelitis optica is caused by AQP4-specific autoantibodies that produce complement-mediated astrocytic damage. PMID:23481483

  1. Structural Alterations of Segmented Macular Inner Layers in Aquaporin4-Antibody-Positive Optic Neuritis Patients in a Chinese Population

    PubMed Central

    Peng, Chunxia; Wang, Wei; Xu, Quangang; Zhao, Shuo; Li, Hongyang; Yang, Mo; Cao, Shanshan; Zhou, Huanfen; Wei, Shihui

    2016-01-01

    Objectives This study aimed to analyse the structural injury of the peripapillary retinal nerve fibre layer (pRNFL) and segmented macular layers in optic neuritis (ON) in aquaporin4-antibody (AQP4-Ab) seropositivity(AQP4-Ab-positiveON) patients and in AQP4-Ab seronegativity (AQP4-Ab-negative ON) patients in order to evaluate their correlations with the best-corrected visual acuity (BCVA) and the value of the early diagnosis of neuromyelitis optica (NMO). Design This is a retrospective, cross-sectional and control observational study. Methods In total, 213 ON patients (291 eyes) and 50 healthy controls (HC) (100 eyes) were recruited in this study. According to a serum AQP4-Ab assay, 98 ON patients (132 eyes) were grouped as AQP4-Ab-positive ON and 115 ON patients (159 eyes) were grouped as AQP4-Ab-negative ON cohorts. All subjects underwent scanning with spectralis optical coherence tomography (OCT) and BCVA tests. pRNFL and segmented macular layer measurements were analysed. Results The pRNFL thickness in AQP4-Ab-positive ON eyes showed a more serious loss during 0–2 months (-27.61μm versus -14.47 μm) and ≥6 months (-57.91μm versus -47.19μm) when compared with AQP4-Ab-negative ON eyes. AQP4-Ab-positive ON preferentially damaged the nasal lateral pRNFL. The alterations in the macular ganglion cell layer plus the inner plexiform layer (GCIP) in AQP4-Ab-positive ON eyes were similar to those in AQP4-Ab-negative ON eyes. AQP4-Ab-positive ON eyes had entirely different injury patterns in the inner nuclear layer (INL) compared with AQP4-Ab-negative ON eyes during the first 6 months after the initial ON attack. These differences were as follows: the INL volume of AQP4-Ab-positive ON eyes had a gradual growing trend compared with AQP4-Ab-negative ON eyes, and it increased rapidly during 0–2 months, reached its peak during 2–4 months, and then decreased gradually. The pRNFL and GCIP in AQP4-Ab-positive ON eyes had positive correlations with BCVA. When the p

  2. γ-Aminobutyric A Receptor (GABAAR) Regulates Aquaporin 4 Expression in the Subependymal Zone

    PubMed Central

    Li, Yuting; Schmidt-Edelkraut, Udo; Poetz, Fabian; Oliva, Ilaria; Mandl, Claudia; Hölzl-Wenig, Gabriele; Schönig, Kai; Bartsch, Dusan; Ciccolini, Francesca

    2015-01-01

    Activation of γ-aminobutyric A receptors (GABAARs) in the subependymal zone (SEZ) induces hyperpolarization and osmotic swelling in precursors, thereby promoting surface expression of the epidermal growth factor receptor (EGFR) and cell cycle entry. However, the mechanisms underlying the GABAergic modulation of cell swelling are unclear. Here, we show that GABAARs colocalize with the water channel aquaporin (AQP) 4 in prominin-1 immunopositive (P+) precursors in the postnatal SEZ, which include neural stem cells. GABAAR signaling promotes AQP4 expression by decreasing serine phosphorylation associated with the water channel. The modulation of AQP4 expression by GABAAR signaling is key to its effect on cell swelling and EGFR expression. In addition, GABAAR function also affects the ability of neural precursors to swell in response to an osmotic challenge in vitro and in vivo. Thus, the regulation of AQP4 by GABAARs is involved in controlling activation of neural stem cells and water exchange dynamics in the SEZ. PMID:25540202

  3. Myopathy associated with neuromyelitis optica spectrum disorders.

    PubMed

    He, Dian; Li, Ya; Dai, Qingqing; Zhang, Yifan; Xu, Zhu; Li, Yuan; Cai, Gang; Chu, Lan

    2016-10-01

    Neuromyelitis optica spectrum disorders (NMOSD) were generally thought to affect only central nervous system and spare peripheral aquaporin-4 (AQP4)-expressing organs. In recent years, however, increasing evidence has shown that skeletal muscle is involved in NMOSD. We provided a comprehensive review of the relevant literature and summarized the clinical and pathological characteristics of myopathy associated with NMOSD. NMOSD-associated myopathy seems to be characterized by mild muscle symptoms with prominent hyperCKemia and minimal changes on conventional pathological staining. Loss of AQP4 and deposition of IgG and activated complement products on sarcolemma of type II fibers are diagnostic features on immunohistochemical examinations. Creatine kinase leakage as a result of AQP4-IgG-induced, complement-mediated sarcolemmal injury may be a potential mechanism for hyperCKemia. Myopathy should be considered a component of NMOSD unified by AQP4-IgG seropositivity. PMID:26514543

  4. Structural Determinants of Oligomerization of the Aquaporin-4 Channel.

    PubMed

    Kitchen, Philip; Conner, Matthew T; Bill, Roslyn M; Conner, Alex C

    2016-03-25

    The aquaporin (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization, and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3, and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family. PMID:26786101

  5. Structural Determinants of Oligomerization of the Aquaporin-4 Channel*

    PubMed Central

    Kitchen, Philip; Conner, Matthew T.; Bill, Roslyn M.; Conner, Alex C.

    2016-01-01

    The aquaporin (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization, and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3, and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family. PMID:26786101

  6. Enhanced expression levels of aquaporin-1 and aquaporin-4 in A549 cells exposed to silicon dioxide.

    PubMed

    Hao, Xiaohui; Wang, Hongli; Liu, Wei; Liu, Shupeng; Peng, Zihe; Sun, Yue; Zhao, Jinyuan; Jiang, Qiujie; Liu, Heliang

    2016-09-01

    Aquaporins (AQPs), water channel proteins in the cell membranes of mammals, have been reported to be important in maintaining the water balance of the respiratory system. However, little is known regarding the role of AQP in occupational pulmonary diseases such as silicosis. The present study investigated the expression of AQP1 and AQP4 in the human A549 alveolar epithelial cell line stimulated by silica (SiO2). A549 cells were cultured and divided into four groups: Control, SiO2‑stimulated, AQP1 inhibitor and AQP4 inhibitor. The cells of the SiO2‑stimulated group were stimulated with SiO2 dispersed suspension (50 mg/ml). The cells of the inhibitor group were pretreated with mercury (II) chloride (HgCl2; a specific channel inhibitor of AQP1) and 2‑(nicotinamide)‑1,3,4‑thiadiazole (TGN‑020; a specific channel inhibitor of AQP4) and stimulated with SiO2. The mRNA expression levels of AQP1 and AQP4 were detected by reverse transcription‑quantitative polymerase chain reaction, and the protein expression levels of AQP1 and AQP4 were detected by western blotting and immunocytochemistry. Compared with the control group, the expression levels of AQP1 and AQP4 mRNA and protein in SiO2‑stimulated groups increased and subsequently decreased (AQP1 peaked at 2 h and AQP4 at 1h; both P<0.001 compared with control group). In the inhibitor group, expression levels were increased compared with controls; however, they were significantly decreased compared with the SiO2‑stimulated group at 2 h (AQP1; P<0.001) and 1 h (AQP4; P<0.001). The expression of AQP1 and AQP4 increased when exposed to SiO2, and this was inhibited by HgCl2 and TGN‑020, suggesting that AQP1 and AQP4 may contribute to A549 cell damage induced by SiO2. AQP1 and AQP4 may thus be involved in the initiation and development of silicosis. PMID:27431275

  7. Fluoxetine Requires the Endfeet Protein Aquaporin-4 to Enhance Plasticity of Astrocyte Processes.

    PubMed

    Di Benedetto, Barbara; Malik, Victoria A; Begum, Salina; Jablonowski, Lena; Gómez-González, Gabriela B; Neumann, Inga D; Rupprecht, Rainer

    2016-01-01

    Morphological alterations in astrocytes are characteristic for post mortem brains of patients affected by major depressive disorder (MDD). Recently, a significant reduction in the coverage of blood vessels (BVs) by aquaporin-4 (AQP-4)-positive astrocyte endfeet has been shown in the prefrontal cortex (PFC) of MDD patients, suggesting that either alterations in the morphology of endfeet or in AQP-4 distribution might be responsible for the disease phenotype or constitute a consequence of its progress. Antidepressant drugs (ADs) regulate the expression of several proteins, including astrocyte-specific ones. Thus, they may target AQP-4 to induce morphological changes in astrocytes and restore their proper shape or relocate AQP-4 to endfeet. Using an animal model of depression, rats selectively bred for high anxiety-like behavior (HAB), we confirmed a reduced coverage of BVs in the adult PFC by AQP-4-immunoreactive (AQP-4-IR) astrocyte processes with respect to non-selected Wistar rats (NAB), thereby validating it for our study. A further evaluation of the morphology of astrocyte in brain slices (ex vivo) and in vitro using an antibody against the astrocyte-specific cytoskeletal protein glial fibrillary acidic protein (GFAP) revealed that HAB astrocytes extended less processes than NAB cells. Furthermore, short-term drug treatment in vitro with the AD fluoxetine (FLX) was sufficient to increase the plasticity of astrocyte processes, enhancing their number in NAB-derived cells and recovering their basal number in HAB-derived cells. This enhanced FLX-dependent plasticity occurred, however, only in the presence of intact AQP-4, as demonstrated by the lack of effect after the downregulation of AQP-4 with RNAi in both NAB and HAB cells. Nonetheless, a similar short-term treatment did neither modulate the coverage of BVs with AQP-4-positive astrocyte endfeet in NAB nor in HAB rats, although dosage and time of treatment were sufficient to fully recover GFAP expression in HAB

  8. Aquaporin 5 expression is frequent in prostate cancer and shows a dichotomous correlation with tumor phenotype and PSA recurrence.

    PubMed

    Pust, Alexandra; Kylies, Dominik; Hube-Magg, Claudia; Kluth, Martina; Minner, Sarah; Koop, Christina; Grob, Tobias; Graefen, Markus; Salomon, Georg; Tsourlakis, Maria Christina; Izbicki, Jakob; Wittmer, Corinna; Huland, Hartwig; Simon, Ronald; Wilczak, Waldemar; Sauter, Guido; Steurer, Stefan; Krech, Till; Schlomm, Thorsten; Melling, Nathaniel

    2016-02-01

    Aquaporin 5 (AQP5) is an androgen-regulated member of a family of small hydrophobic integral transmembrane water channel proteins regulating cellular water homeostasis and growth signaling. To evaluate its clinical impact and relationship with key genomic alterations in prostate cancer, AQP5 expression was analyzed by immunohistochemistry on a tissue microarray containing 12427 prostate cancers. The analysis revealed weak to moderate immunostaining in normal prostate epithelium. In prostate cancers AQP5 staining levels were more variable and also included completely negative and highly overexpressing cases. Negative, weak, moderate, and strong AQP5 staining was found in 25.0%, 32.5%, 32.5%, and 10.0% of 10239 interpretable tumors. Comparison of AQP5 expression levels with tumor characteristics showed a dichotomous pattern with both high and low staining levels being linked to unfavorable tumor phenotype. AQP5 was negative in 28%, 23%, 24%, and 35% of tumors with Gleason score ≤3 + 3, 3 + 4, 4 + 3 and ≥4 + 4, while the rate of strongly positive cases continuously increased from 7.0% over 10.0% and 12.0% to 13.0% in cancers with Gleason score ≤3 + 3, 3 + 4, 4 + 3 and ≥4 + 4. AQP5 expression was also related to ERG positivity and phosphatase and tensin homolog (PTEN) deletion (P < .0001 each). Strong AQP5 positivity was seen in 15.5% of ERG-positive and 5.8% of ERG-negative cancers (P < .0001) as well as in 14.7% of cancers with PTEN deletion and 9.4% of cancers without PTEN deletion. Remarkably, both negativity and strong positivity of AQP5 were linked to unfavorable disease outcome. This was however only seen in subgroups defined by TMPRSS2-ERG fusion and/or PTEN deletion. In summary, AQP5 can be both overexpressed and lost in subgroups of prostate cancers. Both alterations are linked to unfavorable outcome in molecularly defined cancer subgroups. It is hypothesized that this dichotomous role of AQP5 is due to two highly different mechanisms as to how the

  9. Modulatory effects of steroid hormones, oxytocin, arachidonic acid, forskolin and cyclic AMP on the expression of aquaporin 1 and aquaporin 5 in the porcine uterus during placentation.

    PubMed

    Skowronska, A; Mlotkowska, P; Okrasa, S; Nielsen, S; Skowronski, M T

    2016-04-01

    Aquaporins (AQPs) are proteins forming trans-membrane channels responsible for water transport. AQP1 and AQP5 are present in structures of the female reproductive system. In the uterus, these AQPs are involved in water movement between the intraluminal, interstitial and capillary compartments and their uterine expression is essential throughout the pregnancy, including its early stages. Thus, the study aimed to assess the influence of P4 (progesterone), E2 (estradiol), OT (oxytocin), AA (arachidonic acid), cAMP and FSK (forskolin) on the AQP1 and AQP5 mRNA and protein expression in the uterine tissue of gilts on Days 30 - 32 of gestation (the placentation period), following short (3 h) and long (24 h) incubations. Steroid hormones influenced the expression of AQP1 and AQP5; E2 up-regulated, but P4 down-regulated mRNAs of these AQPs, whereas the protein level of studied AQPs was increased by both steroids. OT treatment decreased AQP1 (after 24 h), but increased AQP5 (after 3 h) mRNA expression. Treatment with AA significantly reduced the AQP1 expression at the mRNA level, but stimulated at the protein level. The expression of AQP5 mRNA and protein was stimulated by AA. FSK markedly decreased AQP1 mRNA, but increased of AQP5 after 3-h incubation. In turn, cAMP stimulated and inhibited transcription of AQP5 after 3- and 24-h incubations, respectively. Immunohistochemical analysis confirmed the uterine localization of AQP1 in the apical and basal membranes of endothelial cells and AQP5 in the apical membranes of epithelial cells under control condition. Treatments with P4, E2, AA, cAMP or FSK have caused additional appearance of AQP5 labeling in the basolateral membranes of epithelial cells. These results suggest a participation of steroid hormones (P4 and E2), AA derivatives and cAMP in controlling the expression of AQP1 and AQP5 as well as the distribution of AQP5 in the uterine tissue of pregnant gilts during placentation (Days 30 - 32 of gestation). PMID:27226190

  10. Water permeability of aquaporin-4 channel depends on bilayer composition, thickness, and elasticity.

    PubMed

    Tong, Jihong; Briggs, Margaret M; McIntosh, Thomas J

    2012-11-01

    Aquaporin-4 (AQP4) is the primary water channel in the mammalian brain, particularly abundant in astrocytes, whose plasma membranes normally contain high concentrations of cholesterol. Here we test the hypothesis that the water permeabilities of two naturally occurring isoforms (AQP4-M1 and AQP4-M23) depend on bilayer mechanical/structural properties modulated by cholesterol and phospholipid composition. Osmotic stress measurements were performed with proteoliposomes containing AQP4 and three different lipid mixtures: 1), phosphatidylcholine (PC) and phosphatidylglycerol (PG); 2), PC, PG, with 40 mol % cholesterol; and 3), sphingomyelin (SM), PG, with 40 mol % cholesterol. The unit permeabilities of AQP4-M1 were 3.3 ± 0.4 × 10(-13) cm(3)/s (mean ± SE), 1.2 ± 0.1 × 10(-13) cm(3)/s, and 0.4 ± 0.1 × 10(-13) cm(3)/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. The unit permeabilities of AQP4-M23 were 2.1 ± 0.2 × 10(-13) cm(3)/s, 0.8 ± 0.1 × 10(-13) cm(3)/s, and 0.3 ± 0.1 × 10(-13) cm(3)/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. Thus, for each isoform the unit permeabilities strongly depended on bilayer composition and systematically decreased with increasing bilayer compressibility modulus and bilayer thickness. These observations suggest that altering lipid environment provides a means of regulating water channel permeability. Such permeability changes could have physiological consequences, because AQP4 water permeability would be reduced by its sequestration into SM:cholesterol-enriched raft microdomains. Conversely, under ischemic conditions astrocyte membrane cholesterol content decreases, which could increase AQP4 permeability. PMID:23199918

  11. Aquaporin-4–dependent K+ and water transport modeled in brain extracellular space following neuroexcitation

    PubMed Central

    Jin, Byung-Ju; Zhang, Hua; Binder, Devin K.

    2013-01-01

    Potassium (K+) ions released into brain extracellular space (ECS) during neuroexcitation are efficiently taken up by astrocytes. Deletion of astrocyte water channel aquaporin-4 (AQP4) in mice alters neuroexcitation by reducing ECS [K+] accumulation and slowing K+ reuptake. These effects could involve AQP4-dependent: (a) K+ permeability, (b) resting ECS volume, (c) ECS contraction during K+ reuptake, and (d) diffusion-limited water/K+ transport coupling. To investigate the role of these mechanisms, we compared experimental data to predictions of a model of K+ and water uptake into astrocytes after neuronal release of K+ into the ECS. The model computed the kinetics of ECS [K+] and volume, with input parameters including initial ECS volume, astrocyte K+ conductance and water permeability, and diffusion in astrocyte cytoplasm. Numerical methods were developed to compute transport and diffusion for a nonstationary astrocyte–ECS interface. The modeling showed that mechanisms b–d, together, can predict experimentally observed impairment in K+ reuptake from the ECS in AQP4 deficiency, as well as altered K+ accumulation in the ECS after neuroexcitation, provided that astrocyte water permeability is sufficiently reduced in AQP4 deficiency and that solute diffusion in astrocyte cytoplasm is sufficiently low. The modeling thus provides a potential explanation for AQP4-dependent K+/water coupling in the ECS without requiring AQP4-dependent astrocyte K+ permeability. Our model links the physical and ion/water transport properties of brain cells with the dynamics of neuroexcitation, and supports the conclusion that reduced AQP4-dependent water transport is responsible for defective neuroexcitation in AQP4 deficiency. PMID:23277478

  12. [Evolution of Devic's neuromyelitis optica spectrum disorders].

    PubMed

    Bernard-Valnet, Raphaël; Marignier, Romain

    2015-04-01

    Neuromyelitis optica (NMO) is a rare inflammatory disorder of the central nervous system affecting mostly the optic nerve and the spinal cord. These last few years have been characterized by a dramatic improvement of NMO knowledge and care. A unique feature of NMO is the presence of autoantibodies directed against aquaporin-4 (AQP4-Ab). Identification of this biomarker has enlarged the clinical spectrum of the disease to a broad variety of symptoms and syndromes including brain, brainstem and hypothalamus involvement. This modifies the acknowledged definition of NMO, switching from a clinical phenotype to a biological one and introducing the concept of "aquaporinopathy" or "autoimmune AQP4 channelopathy". AQP4-Ab plays an important role in NMO pathophysiology. In vitro and ex vivo experiments showed that AQP4-Ab can induce either direct astrocyte loss through complement activation (neuroinflammation) or astrocyte changes via internalization of AQP4 (neuromodulation). Recently, T cell involvement in NMO has been suggested. Based on relatively small retrospective and prospective case series, several treatments appear to be likely effective in preventing attacks and stabilizing disability in NMO patients. Relapse prevention in NMO is based on early and maintenance immunosuppressive treatments. Considering the antibody-driven hypothesis, treatment should target B-cells. MS-approved therapies are not currently recommended for NMO patients, several series suggesting poor efficacy or harmful effects. Despite recent improvement of the detection method, some patients remain seronegative for AQP4-Ab. This group expresses specific demographic and disease-related features different for AQP4-Ab positive ones. This raises the question of the place of seronegative AQP4-Ab NMO patients in the spectrum, of their intimate physiopathology and finally of the therapeutic strategy to adopt in such patients. PMID:25535163

  13. Aquaporin-4 Inhibition Mediates Piroxicam-Induced Neuroprotection against Focal Cerebral Ischemia/Reperfusion Injury in Rodents

    PubMed Central

    Paul, Sudip; Patnaik, Ranjana

    2013-01-01

    Background and Purpose Aquaporin-4(AQP4) is an abundant water channel protein in brain that regulates water transport to maintain homeostasis. Cerebral edema resulting from AQP4 over expression is considered to be one of the major determinants for progressive neuronal insult during cerebral ischemia. Although, both upregulation and downregulation of AQP4 expression is associated with brain pathology, over expression of AQP4 is one of the chief contributors of water imbalance in brain during ischemic pathology. We have found that Piroxicam binds to AQP4 with optimal binding energy value. Thus, we hypothesized that Piroxicam is neuroprotective in the rodent cerebral ischemic model by mitigating cerebral edema via AQP4 regulation. Methods Rats were treated with Piroxicam OR placebo at 30 min prior, 2 h post and 4 h post 60 minutes of MCAO followed by 24 hour reperfusion. Rats were evaluated for neurological deficits and motor function just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, biochemical analysis, RT-PCR and western blot experiments. Results Piroxicam pretreatment thirty minutes prior to ischemia and four hour post reperfusion afforded neuroprotection as evident through significant reduction in cerebral infarct volume, improvement in motor behavior, neurological deficit and reduction in brain edema. Furthermore, ischemia induced surge in levels of nitrite and malondialdehyde were also found to be significantly reduced in ischemic brain regions in treated animals. This neuroprotection was found to be associated with inhibition of acid mediated rise in intracellular calcium levels and also downregulated AQP4 expression. Conclusions Findings of the present study provide significant evidence that Piroxicam acts as a potent AQP4 regulator and renders neuroprotection in focal cerebral ischemia. Piroxicam could be clinically exploited for the treatment of brain stroke along with other anti-stroke therapeutics in

  14. Hypertonic saline reduces lipopolysaccharide-induced mouse brain edema through inhibiting aquaporin 4 expression

    PubMed Central

    2012-01-01

    Introduction Three percent sodium chloride (NaCl) treatment has been shown to reduce brain edema and inhibited brain aquaporin 4 (AQP4) expression in bacterial meningitis induced by Escherichia coli. Lipopolysaccharide (LPS) is the main pathogenic component of E. coli. We aimed to explore the effect of 3% NaCl in mouse brain edema induced by LPS, as well as to elucidate the potential mechanisms of action. Methods Three percent NaCl was used to treat cerebral edema induced by LPS in mice in vivo. Brain water content, IL-1β, TNFα, immunoglobulin G (IgG), AQP4 mRNA and protein were measured in brain tissues. IL-1β, 3% NaCl and calphostin C (a specific inhibitor of protein kinase C) were used to treat the primary astrocytes in vitro. AQP4 mRNA and protein were measured in astrocytes. Differences in various groups were determined by one-way analysis of variance. Results Three percent NaCl attenuated the increase of brain water content, IL-1β, TNFα, IgG, AQP4 mRNA and protein in brain tissues induced by LPS. Three percent NaCl inhibited the increase of AQP4 mRNA and protein in astrocytes induced by IL-1β in vitro. Calphostin C blocked the decrease of AQP4 mRNA and protein in astrocytes induced by 3% NaCl in vitro. Conclusions Osmotherapy with 3% NaCl ameliorated LPS-induced cerebral edema in vivo. In addition to its osmotic force, 3% NaCl exerted anti-edema effects possibly through down-regulating the expression of proinflammatory cytokines (IL-1β and TNFα) and inhibiting the expression of AQP4 induced by proinflammatory cytokines. Three percent NaCl attenuated the expression of AQP4 through activation of protein kinase C in astrocytes. PMID:23036239

  15. Water Permeability of Aquaporin-4 Channel Depends on Bilayer Composition, Thickness, and Elasticity

    PubMed Central

    Tong, Jihong; Briggs, Margaret M.; McIntosh, Thomas J.

    2012-01-01

    Aquaporin-4 (AQP4) is the primary water channel in the mammalian brain, particularly abundant in astrocytes, whose plasma membranes normally contain high concentrations of cholesterol. Here we test the hypothesis that the water permeabilities of two naturally occurring isoforms (AQP4-M1 and AQP4-M23) depend on bilayer mechanical/structural properties modulated by cholesterol and phospholipid composition. Osmotic stress measurements were performed with proteoliposomes containing AQP4 and three different lipid mixtures: 1), phosphatidylcholine (PC) and phosphatidylglycerol (PG); 2), PC, PG, with 40 mol % cholesterol; and 3), sphingomyelin (SM), PG, with 40 mol % cholesterol. The unit permeabilities of AQP4-M1 were 3.3 ± 0.4 × 10−13 cm3/s (mean ± SE), 1.2 ± 0.1 × 10−13 cm3/s, and 0.4 ± 0.1 × 10−13 cm3/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. The unit permeabilities of AQP4-M23 were 2.1 ± 0.2 × 10−13 cm3/s, 0.8 ± 0.1 × 10−13 cm3/s, and 0.3 ± 0.1 × 10−13 cm3/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. Thus, for each isoform the unit permeabilities strongly depended on bilayer composition and systematically decreased with increasing bilayer compressibility modulus and bilayer thickness. These observations suggest that altering lipid environment provides a means of regulating water channel permeability. Such permeability changes could have physiological consequences, because AQP4 water permeability would be reduced by its sequestration into SM:cholesterol-enriched raft microdomains. Conversely, under ischemic conditions astrocyte membrane cholesterol content decreases, which could increase AQP4 permeability. PMID:23199918

  16. Differential Expression of Aquaporins and Its Diagnostic Utility in Thyroid Cancer

    PubMed Central

    Niu, Dongfeng; Kondo, Tetsuo; Nakazawa, Tadao; Kawasaki, Tomonori; Yamane, Tetsu; Mochizuki, Kunio; Kato, Yohichiro; Matsuzaki, Toshiyuki; Takata, Kuniaki; Katoh, Ryohei

    2012-01-01

    Background Aquaporin3 (AQP3) and Aquaporin4 (AQP4) play a major role in transcellular and transepithelial water movement as water channel membrane proteins. Little is known of their expression and significance in human thyroid tissues. Thus, we examined the expression of AQP3 and AQP4 in normal, hyperplastic and neoplastic thyroid tissues in conjunction with human thyroid cancer cell lines. Methods and Results Immunohistochemical analyses demonstrated AQP3 in the cytoplasmic membrane of normal C cells, but not in follicular cells. In contrast, AQP4 was not found in C cells but was identified in normal follicular cells. AQP4 was positive in 92% of Graves’ disease thyroids and 97% of multinodular goiters, and we failed to demonstrate AQP3 in these hyperplastic tissues. In neoplastic thyroid lesions, we observed AQP3 in 91% of medullary thyroid carcinomas but in no other follicular cell tumors. AQP4 was demonstrated in 100% of follicular adenomas, 90% of follicular carcinomas, and 85% of papillary carcinomas, while it was negative in all medullary carcinomas and undifferentiated carcinomas. Reverse transcriptase polymerase chain reaction (RT-PCR) analyses revealed AQP3 mRNA expression only in medullary carcinomas and AQP4 mRNA expression in follicular cell-derived tumors except for undifferentiated carcinomas. In thyroid cancer cell lines, using RT-PCR and western blotting, AQP3 mRNA and protein were only identified in the TT cell line (human medullary carcinoma cell line) and AQP4 in the other cell lines. In addition, AQP3 mRNA expression was up-regulated by FBS and calcium administration in both a dose and time dependent manner in TT cells. Conclusion The differential expressions of AQP3 and AQP4 may reflect the biological nature and/or function of normal, hyperplastic, and neoplastic thyroid cells and additionally may have value in determining differential diagnoses of thyroid tumors. PMID:22808259

  17. Mechanisms of Astrocyte-Mediated Cerebral Edema

    PubMed Central

    Stokum, Jesse A.; Kurland, David B.; Gerzanich, Volodymyr; Simard, J. Marc

    2014-01-01

    Cerebral edema formation stems from disruption of blood brain barrier (BBB) integrity and occurs after injury to the CNS. Due to the restrictive skull, relatively small increases in brain volume can translate into impaired tissue perfusion and brain herniation. In excess, cerebral edema can be gravely harmful. Astrocytes are key participants in cerebral edema by virtue of their relationship with the cerebral vasculature, their unique compliment of solute and water transport proteins, and their general role in brain volume homeostasis. Following the discovery of aquaporins, passive conduits of water flow, aquaporin 4 (AQP4) was identified as the predominant astrocyte water channel. Normally, AQP4 is highly enriched at perivascular endfeet, the outermost layer of the BBB, whereas after injury, AQP4 expression disseminates to the entire astrocytic plasmalemma, a phenomenon termed dysregulation. Arguably, the most important role of AQP4 is to rapidly neutralize osmotic gradients generated by ionic transporters. In pathological conditions, AQP4 is believed to be intimately involved in the formation and clearance of cerebral edema. In this review, we discuss aquaporin function and localization in the BBB during health and injury, and we examine post-injury ionic events that modulate AQP4- dependent edema formation. PMID:24996934

  18. Aquaporin-4 deficiency diminishes the differential degeneration of midbrain dopaminergic neurons in experimental Parkinson's disease.

    PubMed

    Zhang, Ji; Yang, Beibei; Sun, Hongbin; Zhou, Yan; Liu, Mengdi; Ding, Jianhua; Fang, Feng; Fan, Yi; Hu, Gang

    2016-02-12

    Parkinson's disease (PD) is primarily due to the progressive, selective and irreversible loss of dopaminergic (DA) neurons in the substantia nigra (SN). Interestingly, DA neurons in the ventral and lateral SN are much more susceptible than adjacent dopamine neurons in the ventral tegmental area (VTA) not only in human PD but in many PD model systems. However, the molecular causes of regional vulnerability in PD remain unknown. In our previous studies, we established acute PD animal models by administration of MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine), and found that AQP4 knockout mice were significantly more prone to MPTP-induced neurotoxicity. Here, we further observe that AQP4 deficiency resulted in the same susceptible to MPTP between SN DA neuron and VTA neurons both in acute and chronic PD model. Moreover, we show that AQP4 deficiency increased the numbers of reactive astrocytes and microglias not only in the SN and but also in the VTA under basal and MPTP-induced situations. Meanwhile, AQP4 deficiency disrupted the balance of the pro-inflammatory cytokine/neurotrophin in midbrain. Taken together, these results demonstrate that glial AQP4 is involved in the susceptibility differences of DA neurons between SN and VTA, although the precise mechanism of AQP4 remains to be explored. Moreover, these findings also suggest that these susceptibility differences are not only due to intrinsic neuronal factors, but also attribute to differences in astrocytes of these regions. PMID:26748031

  19. Evaluation of Clinical Interest of Anti-Aquaporin-4 Autoantibody Followup in Neuromyelitis Optica

    PubMed Central

    Chanson, Jean-Baptiste; Alame, Melissa; Collongues, Nicolas; Blanc, Frédéric; Fleury, Marie; Rudolf, Gabrielle; de Seze, Jérôme; Vincent, Thierry

    2013-01-01

    Neuromyelitis optica (NMO) is an autoimmune disease in which a specific biomarker named NMO-IgG and directed against aquaporin-4 (AQP4) has been found. A correlation between disease activity and anti-AQP4 antibody (Ab) serum concentration or complement-mediated cytotoxicity has been reported, but the usefulness of longitudinal evaluation of these parameters remains to be evaluated in actual clinical practice. Thirty serum samples from 10 NMO patients positive for NMO-IgG were collected from 2006 to 2011. Anti-AQP4 Ab serum concentration and complement-mediated cytotoxicity were measured by flow cytometry using two quantitative cell-based assays (CBA) and compared with clinical parameters. We found a strong correlation between serum anti-AQP4 Ab concentration and complement-mediated cytotoxicity (P < 0.0001). Nevertheless, neither relapse nor worsening of impairment level was closely associated with a significant increase in serum Ab concentration or cytotoxicity. These results suggest that complement-mediated serum cytotoxicity assessment does not provide extra insight compared to anti-AQP4 Ab serum concentration. Furthermore, none of these parameters appears closely related to disease activity and/or severity. Therefore, in clinical practice, serum anti-AQP4 reactivity seems not helpful as a predictive biomarker in the followup of NMO patients as a means of predicting the onset of a relapse and adapting the treatment accordingly. PMID:23710199

  20. An immunoassay that distinguishes real neuromyelitis optica signals from a labeling detected in patients receiving natalizumab

    PubMed Central

    2014-01-01

    Background Cell-based assays for neuromyelitis optica (NMO) diagnosis are the most sensitive and specific methods to detect anti-aquaporin 4 (AQP4) antibodies in serum, but some improvements in their quantitative and specificity capacities would be desirable. Thus the aim of the present work was to develop a sensitive quantitative method for detection of anti-AQP4 antibodies that allows clear diagnosis of NMO and distinction of false labeling produced by natalizumab treatment. Methods Sera from 167 individuals, patients diagnosed with NMO (16), multiple sclerosis (85), optic neuritis (24), idiopathic myelitis (21), or other neurological disorders (13) and healthy controls (8), were used as the primary antibody in an immunofluorescence assay on HEK cells transfected with the M23 isoform of human AQP4 fused with enhanced green fluorescent protein. Cells used were freshly transfected or stored frozen and then thawed just before adding the serum. Results Microscopic observation and fluorescence quantification produced similar results in fresh and frozen samples. Serum samples from patients diagnosed with NMO were 100% positive for anti-AQP4 antibodies, while all the other sera were negative. Using serum from patients treated with natalizumab, a small and unspecific fluorescent signal was produced from all HEK cells, regardless of AQP4 expression. Conclusions Our cell-based double-label fluorescence immunoassay protocol significantly increases the signal specificity and reduces false diagnosis of NMO patients, especially in those receiving natalizumab treatment. Frozen pretreated cells allow faster detection of anti-AQP4 antibodies. PMID:24980919

  1. Brain water mobility decreases after astrocytic aquaporin-4 inhibition using RNA interference

    PubMed Central

    Badaut, Jérôme; Ashwal, Stephen; Adami, Arash; Tone, Beatriz; Recker, Rebecca; Spagnoli, David; Ternon, Béatrice; Obenaus, Andre

    2011-01-01

    Neuroimaging with diffusion-weighted imaging is routinely used for clinical diagnosis/prognosis. Its quantitative parameter, the apparent diffusion coefficient (ADC), is thought to reflect water mobility in brain tissues. After injury, reduced ADC values are thought to be secondary to decreases in the extracellular space caused by cell swelling. However, the physiological mechanisms associated with such changes remain uncertain. Aquaporins (AQPs) facilitate water diffusion through the plasma membrane and provide a unique opportunity to examine the molecular mechanisms underlying water mobility. Because of this critical role and the recognition that brain AQP4 is distributed within astrocytic cell membranes, we hypothesized that AQP4 contributes to the regulation of water diffusion and variations in its expression would alter ADC values in normal brain. Using RNA interference in the rodent brain, we acutely knocked down AQP4 expression and observed that a 27% AQP4-specific silencing induced a 50% decrease in ADC values, without modification of tissue histology. Our results demonstrate that ADC values in normal brain are modulated by astrocytic AQP4. These findings have major clinical relevance as they suggest that imaging changes seen in acute neurologic disorders such as stroke and trauma are in part due to changes in tissue AQP4 levels. PMID:20877385

  2. A research update on the potential roles of aquaporin 4 in neuroinflammation.

    PubMed

    Lan, Yu-Long; Fang, Deng-Yang; Zhao, Jie; Ma, Tong-Hui; Li, Shao

    2016-06-01

    The presence of aquaporins (AQPs) in the brain has led to intense research on the underlying roles of this family of proteins under both normal and pathological conditions. Aquaporin 4 (AQP4) is the major water-channel membrane protein expressed in the central nervous system (CNS), primarily in astrocytes. Emerging evidence suggests that AQP4 could play an important role in water and ion homeostasis in the brain, and it has been studied in various brain pathological conditions. However, far less is known about the potential for AQP4 to influence neuroinflammation and, furthermore, its potential role in neurodegenerative disorders such as Alzheimer's disease (AD). It has been suggested that the pathogenesis of many clinical diseases, such as neuromyelitis optica (NMO), multiple sclerosis (MS) and brain injuries, is related to the regulation of AQP4 expression. Investigating the effects of AQP4 on microglia and astrocytes could be important to understand its role in the pathogenesis of neuroinflammation. Although the exact roles of non-steroidal anti-inflammatory drugs (NSAIDs) in protection against the detrimental effects of neuroinflammation remain unclear, research into the possible neuroprotective effects of AQP4 against neuroinflammation regulation seems to be important for future investigations. PMID:26259614

  3. H95 Is a pH-Dependent Gate in Aquaporin 4.

    PubMed

    Kaptan, Shreyas; Assentoft, Mette; Schneider, Hans Peter; Fenton, Robert A; Deitmer, Joachim W; MacAulay, Nanna; de Groot, Bert L

    2015-12-01

    Aquaporin 4 (AQP4) is a transmembrane protein from the aquaporin family and is the predominant water channel in the mammalian brain. The regulation of permeability of this protein could be of potential therapeutic use to treat various forms of damage to the nervous tissue. In this work, based on data obtained from in silico and in vitro studies, a pH sensitivity that regulates the osmotic water permeability of AQP4 is demonstrated. The results indicate that AQP4 has increased water permeability at conditions of low pH in atomistic computer simulations and experiments carried out on Xenopus oocytes expressing AQP4. With molecular dynamics simulations, this effect was traced to a histidine residue (H95) located in the cytoplasmic lumen of AQP4. A mutant form of AQP4, in which H95 was replaced with an alanine (H95A), loses sensitivity to cytoplasmic pH changes in in vitro osmotic water permeability, thereby substantiating the in silico work. PMID:26585511

  4. Lost Polarization of Aquaporin4 and Dystroglycan in the Core Lesion after Traumatic Brain Injury Suggests Functional Divergence in Evolution

    PubMed Central

    Liu, Hui; Qiu, Gou ping; Zhuo, Fei; Yu, Wei hua; Sun, Shan quan; Li, Fen hong; Yang, Mei

    2015-01-01

    Objective. To understand how aquaporin4 (AQP4) and dystroglycan (DG) polarized distribution change and their roles in brain edema formation after traumatic brain injury (TBI). Methods. Brain water content, Evans blue detection, real-time PCR, western blot, and immunofluorescence were used. Results. At an early stage of TBI, AQP4 and DG maintained vessel-like pattern in perivascular endfeet; M1, M23, and M1/M23 were increased in the core lesion. At a later stage of TBI, DG expression was lost in perivascular area, accompanied with similar but delayed change of AQP4 expression; expression of M1, M23, and DG and the ratio of M1/M2 were increased. Conclusion. At an early stage, AQP4 and DG maintained the polarized distribution. Upregulated M1 and M23 could retard the cytotoxic edema formation. At a later stage AQP4 and DG polarized expression were lost from perivascular endfeet and induced the worst cytotoxic brain edema. The alteration of DG expression could regulate that of AQP4 expression after TBI. PMID:26583111

  5. Structure and functions of aquaporin-4-based orthogonal arrays of particles.

    PubMed

    Wolburg, Hartwig; Wolburg-Buchholz, Karen; Fallier-Becker, Petra; Noell, Susan; Mack, Andreas F

    2011-01-01

    Orthogonal arrays or assemblies of intramembranous particles (OAPs) are structures in the membrane of diverse cells which were initially discovered by means of the freeze-fracturing technique. This technique, developed in the 1960s, was important for the acceptance of the fluid mosaic model of the biological membrane. OAPs were first described in liver cells, and then in parietal cells of the stomach, and most importantly, in the astrocytes of the brain. Since the discovery of the structure of OAPs and the identification of OAPs as the morphological equivalent of the water channel protein aquaporin-4 (AQP4) in the 1990s, a plethora of morphological work on OAPs in different cells was published. Now, we feel a need to balance new and old data on OAPs and AQP4 to elucidate the interrelationship of both structures and molecules. In this review, the identity of OAPs as AQP4-based structures in a diversity of cells will be described. At the same time, arguments are offered that under pathological or experimental circumstances, AQP4 can also be expressed in a non-OAP form. Thus, we attempt to project classical work on OAPs onto the molecular biology of AQP4. In particular, astrocytes and glioma cells will play the major part in this review, not only due to our own work but also due to the fact that most studies on structure and function of AQP4 were done in the nervous system. PMID:21414585

  6. Overactivation of corticotropin-releasing factor receptor type 1 and aquaporin-4 by hypoxia induces cerebral edema

    PubMed Central

    Chen, Shao-Jun; Yang, Jia-Fang; Kong, Fan-Ping; Ren, Ji-Long; Hao, Ke; Li, Min; Yuan, Yuan; Chen, Xin-Can; Yu, Ri-Sheng; Li, Jun-Fa; Leng, Gareth; Chen, Xue-Qun; Du, Ji-Zeng

    2014-01-01

    Cerebral edema is a potentially life-threatening illness, but knowledge of its underlying mechanisms is limited. Here we report that hypobaric hypoxia induces rat cerebral edema and neuronal apoptosis and increases the expression of corticotrophin releasing factor (CRF), CRF receptor type 1 (CRFR1), aquaporin-4 (AQP4), and endothelin-1 (ET-1) in the cortex. These effects, except for the increased expression of CRF itself, could all be blocked by pretreatment with an antagonist of the CRF receptor CRFR1. We also show that, in cultured primary astrocytes: (i) both CRFR1 and AQP4 are expressed; (ii) exogenous CRF, acting through CRFR1, triggers signaling of cAMP/PKA, intracellular Ca2+, and PKCε; and (iii) the up-regulated cAMP/PKA signaling contributes to the phosphorylation and expression of AQP4 to enhance water influx into astrocytes and produces an up-regulation of ET-1 expression. Finally, using CHO cells transfected with CRFR1+ and AQP4+, we show that transfected CRFR1+ contributes to edema via transfected AQP4+. In conclusion, hypoxia triggers cortical release of CRF, which acts on CRFR1 to trigger signaling of cAMP/PKA in cortical astrocytes, leading to activation of AQP4 and cerebral edema. PMID:25146699

  7. All-trans retinoic acid increases expression of aquaporin-5 and plasma membrane water permeability via transactivation of Sp1 in mouse lung epithelial cells.

    PubMed

    Nomura, Johji; Horie, Ichiro; Seto, Mayumi; Nagai, Kazufumi; Hisatsune, Akinori; Miyata, Takeshi; Isohama, Yoichiro

    2006-12-29

    Aquaporin-5 (AQP5) is a water-selective channel protein that is expressed in lacrimal glands, salivary glands, and distal lung. Several studies using AQP5 knockout mice have revealed that AQP5 plays an important role in maintaining water homeostasis in the lung. We report here that all-trans retinoic acid (atRA) increases plasma membrane water permeability, AQP5 mRNA and protein expression, and AQP5 promoter activity in MLE-12 cells. The promoter activation induced by atRA was diminished by mutation at the Sp1/Sp3 binding element (SBE), suggesting that the SBE mediates the effects of atRA. In addition, atRA increased the binding of Sp1 to the SBE without changing the levels of Sp1 in the nucleus. Taken together, our data indicate that atRA increases AQP5 expression through transactivation of Sp1, leading to an increase in plasma membrane water permeability. PMID:17097063

  8. Plasma Membrane Abundance of Human Aquaporin 5 Is Dynamically Regulated by Multiple Pathways.

    PubMed

    Kitchen, Philip; Öberg, Fredrik; Sjöhamn, Jennie; Hedfalk, Kristina; Bill, Roslyn M; Conner, Alex C; Conner, Matthew T; Törnroth-Horsefield, Susanna

    2015-01-01

    Aquaporin membrane protein channels mediate cellular water flow. Human aquaporin 5 (AQP5) is highly expressed in the respiratory system and secretory glands where it facilitates the osmotically-driven generation of pulmonary secretions, saliva, sweat and tears. Dysfunctional trafficking of AQP5 has been implicated in several human disease states, including Sjögren's syndrome, bronchitis and cystic fibrosis. In order to investigate how the plasma membrane expression levels of AQP5 are regulated, we studied real-time translocation of GFP-tagged AQP5 in HEK293 cells. We show that AQP5 plasma membrane abundance in transfected HEK293 cells is rapidly and reversibly regulated by at least three independent mechanisms involving phosphorylation at Ser156, protein kinase A activity and extracellular tonicity. The crystal structure of a Ser156 phosphomimetic mutant indicates that its involvement in regulating AQP5 membrane abundance is not mediated by a conformational change of the carboxy-terminus. We suggest that together these pathways regulate cellular water flow. PMID:26569106

  9. Plasma Membrane Abundance of Human Aquaporin 5 Is Dynamically Regulated by Multiple Pathways

    PubMed Central

    Kitchen, Philip; Öberg, Fredrik; Sjöhamn, Jennie; Hedfalk, Kristina; Bill, Roslyn M.; Conner, Alex C.; Conner, Matthew T.; Törnroth-Horsefield, Susanna

    2015-01-01

    Aquaporin membrane protein channels mediate cellular water flow. Human aquaporin 5 (AQP5) is highly expressed in the respiratory system and secretory glands where it facilitates the osmotically-driven generation of pulmonary secretions, saliva, sweat and tears. Dysfunctional trafficking of AQP5 has been implicated in several human disease states, including Sjögren’s syndrome, bronchitis and cystic fibrosis. In order to investigate how the plasma membrane expression levels of AQP5 are regulated, we studied real-time translocation of GFP-tagged AQP5 in HEK293 cells. We show that AQP5 plasma membrane abundance in transfected HEK293 cells is rapidly and reversibly regulated by at least three independent mechanisms involving phosphorylation at Ser156, protein kinase A activity and extracellular tonicity. The crystal structure of a Ser156 phosphomimetic mutant indicates that its involvement in regulating AQP5 membrane abundance is not mediated by a conformational change of the carboxy-terminus. We suggest that together these pathways regulate cellular water flow. PMID:26569106

  10. The intrinsic pathogenic role of autoantibodies to aquaporin 4 mediating spinal cord disease in a rat passive-transfer model

    PubMed Central

    Geis, Christian; Ritter, Christian; Ruschil, Christoph; Weishaupt, Andreas; Grünewald, Benedikt; Stoll, Guido; Holmoy, Trygve; Misu, Tatsuro; Fujihara, Kazuo; Hemmer, Bernhard; Stadelmann, Christine; Bennett, Jeffrey L.; Sommer, Claudia; Toyka, Klaus V.

    2015-01-01

    Neuromyelitis optica (NMO) is causally linked to autoantibodies (ABs) against aquaporin 4 (AQP4). Here, we focused on the pathogenic effects exclusively mediated by human ABs to AQP4 in vivo. We performed cell-free intrathecal (i.th.) passive transfer experiments in Lewis rats using purified patient NMO immunoglobulin G (IgG) and various recombinant human anti-AQP4 IgG-ABs via implanted i.th. catheters. Repetitive application of patient NMO IgG fractions and of recombinant human anti-AQP4 ABs induced signs of spinal cord disease. Magnetic resonance imaging (MRI) revealed longitudinal spinal cord lesions at the site of application of anti-AQP4 IgG. Somatosensory evoked potential amplitudes were reduced in symptomatic animals corroborating the observed functional impairment. Spinal cord histology showed specific IgG deposition in the grey and white matter in the affected areas. We did not find inflammatory cell infiltration nor activation of complement in spinal cord areas of immunoglobulin deposition. Moreover, destructive lesions showing axon or myelin damage and loss of astrocytes and oligodendrocytes were all absent. Immunoreactivity to AQP4 and to the excitatory amino acid transporter 2 (EAAT2) was markedly reduced whereas immunoreactivity to the astrocytic marker glial fibrillary acid protein (GFAP) was preserved. The expression of the NMDA-receptor NR1 subunit was down-regulated in areas of IgG deposition possibly induced by sustained glutamatergic overexcitation. Disease signs and histopathology were reversible within weeks after stopping injections. We conclude that in vivo application of ABs directed at AQP 4 can induce a reversible spinal cord disease in recipient rats by inducing distinct histopathological abnormalities. These findings may be the experimental correlate of “penumbra-like” lesions recently reported in NMO patients adjacent to effector-mediated tissue damage. PMID:25542977

  11. Non-specific inhibitors of aquaporin-4 stimulate S100B secretion in acute hippocampal slices of rats.

    PubMed

    Zanotto, Caroline; Abib, Renata Torres; Batassini, Cristiane; Tortorelli, Lucas Silva; Biasibetti, Regina; Rodrigues, Letícia; Nardin, Patrícia; Hansen, Fernanda; Gottfried, Carmem; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2013-01-23

    Aquaporin-4 (AQP-4) is the principal brain water channel and is predominantly expressed in astrocytes suggesting its dynamic involvement in water homeostasis in brain tissue. Due to the co-localization of AQP-4 and inward rectifier K(+) channels Kir 4.1, a functional coupling between these proteins has been proposed. AQP-4 has a putative role in the physiopathology of brain disorders including epilepsy and trauma. S100B is a calcium-binding protein expressed and secreted by astrocytes, and commonly used as a parameter of astroglial activation. Here, we investigate a possible link between AQP-4 activity (and Kir 4.1) and S100B secretion in hippocampal slices of rats of different ages using non-specific inhibitors of AQP-4 (AZA, acetazolamide and TEA, tetraethylammonium) and Kir 4.1 (barium chloride). We found that blockade of AQP-4 with TEA and AZA produced an increase in S100B secretion in young rats, compatible with an astroglial activation observed in many conditions of brain injury. On the other hand, BaCl(2) induced Kir 4.1 inhibition caused a decrease in S100B secretion. Both channels, AQP-4 and Kir 4.1, exhibited a similar ontogenetic profile, in spite of the functional uncoupling, in relation to S100B secretion. Moreover, we found a significant increase in the S100B secretion basal levels with the increasing of animal age and the incubation with high levels of potassium resulted in a decrease of S100B secretion in 30 and 90-day old rats. These data, together with previous observations from gap junctions and glutamate transport of astrocytes, contribute to characterize the operational system involving astroglial activation, particularly on S100B secretion, in brain disorders. PMID:23142267

  12. Aquaporin-4 antibody isoform binding specificities do not explain clinical variations in NMO

    PubMed Central

    Kitley, Joanna; Woodhall, Mark; Leite, M. Isabel; Palace, Jackie; Waters, Patrick

    2015-01-01

    Objective: To assess the clinical relevance of the differential binding of antibodies against the 2 main aquaporin-4 (AQP4) isoforms in neuromyelitis optica (NMO) patient sera using stably transfected human embryonic kidney cells. Methods: Flow cytometry of human embryonic kidney cells stably transfected with either M23 or M1 AQP4 was used to measure antibody endpoint titers in 52 remission samples and 26 relapse samples from 34 patients with clinically well-characterized AQP4 antibody–positive NMO/NMO spectrum disorder. Results: The AQP4 M23 (40–61,440) and AQP4 M1 (<20–20,480) titers varied widely between patients, as did the M23:M1 antibody ratio (1–192). In 76 of 78 samples, binding to M23 was higher than binding to M1, including during relapses and remissions (p < 0.0001), and the M23:M1 ratio was relatively constant within an individual patient. Titers usually fell after immunosuppression, but the titers at which relapses occurred varied markedly; no threshold level for relapses could be identified, and relapses could occur without a rise in titers. Relapse severity did not correlate with M23 or M1 antibody titers, although there was a correlation between the earliest M23 titers and annualized relapse rates. The M23:M1 ratio and absolute M23 and M1 titers did not relate to age at disease onset, ethnicity, disease severity, phenotype, or relapses at different anatomical sites. Conclusion: Relative AQP4 antibody binding to M23 and M1 isoforms differs between patients but there is no consistent association between these differences and clinical characteristics of disease. Nevertheless, the M23 isoform provided a slightly more sensitive substrate for AQP4-antibody assays, particularly for follow-up studies. PMID:26140280

  13. Reversible, Temperature-Dependent Supramolecular Assembly of Aquaporin-4 Orthogonal Arrays in Live Cell Membranes

    PubMed Central

    Crane, Jonathan M.; Verkman, A.S.

    2009-01-01

    Abstract The shorter “M23” isoform of the glial cell water channel aquaporin-4 (AQP4) assembles into orthogonal arrays of particles (OAPs) in cell plasma membranes, whereas the full-length “M1” isoform does not. N-terminal residues are responsible for OAP formation by AQP4-M23 and for blocking of OAP formation in AQP4-M1. In investigating differences in OAP formation by certain N-terminus mutants of AQP4, as measured by freeze-fracture electron microscopy versus live-cell imaging, we discovered reversible, temperature-dependent OAP assembly of certain weakly associating AQP4 mutants. Single-particle tracking of quantum-dot-labeled AQP4 in live cells and total internal reflection fluorescence microscopy showed >80% of M23 in OAPs at 10–50°C compared to <10% of M1. However, OAP formation by N-terminus cysteine-substitution mutants of M1, which probe palmitoylation-regulated OAP assembly, was strongly temperature-dependent, increasing from <10% at 37°C to >70% at 10°C for the double mutant M1-C13A/C17A. OAP assembly by this mutant, but not by native M23, could also be modulated by reducing its membrane density. Exposure of native M1 and single cysteine mutants to 2-bromopalmitate confirmed the presence of regulated OAP assembly by S-palmitoylation. Kinetic studies showed rapid and reversible OAP formation during cooling and OAP disassembly during heating. Our results provide what to our knowledge is the first information on the energetics of AQP4 OAP assembly in plasma membranes. PMID:19948131

  14. Association Between the Single Nucleotide Polymorphism and the Level of Aquaporin-4 Protein Expression in Han and Minority Chinese with Inflammatory Demyelinating Diseases of the Central Nervous System.

    PubMed

    Chu, Lan; Dai, Qingqing; Xu, Zhu; He, Dian; Wang, Hao; Wang, Qingsong; Zhang, Yifan; Zhu, Yingwu; Li, Yuan; Cai, Gang; Slavica, Krantic; Allan, Kermode

    2016-07-01

    The purpose of this study was to determine whether or not aquaporin-4 (AQP4) gene mutations are related to the pathogenesis of inflammatory demyelinating diseases in the central nervous system. Polymorphisms of AQP4 exons 1-5 were determined by sequencing DNA from 67 patients with central nervous system inflammatory demyelinating diseases, including neuromyelitis optica (NMO), multiple sclerosis, recurrent or simultaneous bilateral optic neuritis, and longitudinally extensive transverse myelitis. A plasmid with the identified new missense mutation was constructed, and human embryonic kidney cells (HEK293A) were transfected with either the pEGFP-N1-AQP4-M23 vector (bearing the identified mutated cDNA sequence) or with the plasmid bearing the wild-type AQP4 gene sequence. AQP4 protein expression was analyzed in both experimental groups using Western Blot analysis following protein extraction from transfected cells. A synonymous mutation (rs1839318) was detected on exon 3, and an additional synonymous mutation was detected on the exon 2-2 (rs72557968). Most importantly, a new missense mutation was detected on exon 2-1. According to Western blot analysis, the mutated cDNA sequence yielded increased AQP4 protein expression in comparison with the wild-type cDNA sequence (P < 0.05). AQP4 gene mutations are uncommon, occurring in only 3 out of 67 patients. Although it is possible that the mutations contributed to an increased risk of inflammatory central nervous system disease in these individuals, it is unlikely that mutations are a significant contributor to most patients with NMO spectrum disorders in China. PMID:25895050

  15. Effects of agrin on the expression and distribution of the water channel protein aquaporin-4 and volume regulation in cultured astrocytes.

    PubMed

    Noell, Susan; Fallier-Becker, Petra; Beyer, Cordian; Kröger, Stephan; Mack, Andreas F; Wolburg, Hartwig

    2007-10-01

    Agrin is a heparan sulfate proteoglycan of the extracellular matrix and is known for organizing the postsynaptic differentiation of the neuromuscular junction. Increasing evidence also suggests roles for agrin in the developing CNS, including the formation and maintenance of the blood-brain barrier. Here we describe effects of agrin on the expression and distribution of the water channel protein aquaporin-4 (AQP4) and on the swelling capacity of cultured astrocytes of newborn mice. If astrocytes were cultured on a substrate containing poly DL-ornithine, anti-AQP4 immunoreactivity was evenly and diffusely distributed. If, however, astrocytes were cultured in the presence of agrin-conditioned medium, we observed an increase in the intensity of AQP4-specific membrane-associated staining. Freeze-fracture studies revealed a clustering of orthogonal arrays of particles, representing a structural equivalent of AQP4, when exogenous agrin was present in the astrocyte cultures. Neuronal and non-neuronal agrin isoforms (agrin A0B0 and agrin A4B8, respectively) were able to induce membrane-associated AQP4 staining. Water transport capacity as well as the density of orthogonal arrays of intramembranous particles was increased in astrocytes cultured with the neuronal agrin isoform A4B8, but not with the endothelial and meningeal isoform A0B0. RT-PCR demonstrated that agrin A4B8 increased the level of the M23 splice variant of AQP4 and decreased the level of the M1 splice variant of AQP4. Implications for the regulation and maintenance of the blood-brain barrier including oedema formation under pathological conditions are discussed. PMID:17927773

  16. Small-molecule inhibitors of NMO-IgG binding to aquaporin-4 reduce astrocyte cytotoxicity in neuromyelitis optica

    PubMed Central

    Tradtrantip, Lukmanee; Zhang, Hua; Anderson, Marc O.; Saadoun, Samira; Phuan, Puay-Wah; Papadopoulos, Marios C.; Bennett, Jeffrey L.; Verkman, A. S.

    2012-01-01

    Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of spinal cord and optic nerve caused by pathogenic autoantibodies (NMO-IgG) against astrocyte aquaporin-4 (AQP4). We developed a high-throughput screen to identify blockers of NMO-IgG binding to human AQP4 using a human recombinant monoclonal NMO-IgG and transfected Fisher rat thyroid cells stably expressing human M23-AQP4. Screening of ∼60,000 compounds yielded the antiviral arbidol, the flavonoid tamarixetin, and several plant-derived berbamine alkaloids, each of which blocked NMO-IgG binding to AQP4 without affecting AQP4 expression, array assembly, or water permeability. The compounds inhibited NMO-IgG binding to AQP4 in NMO patient sera and blocked NMO-IgG-dependent complement- and cell-mediated cytotoxicity with IC50 down to ∼5 μM. Docking computations identified putative sites of blocker binding at the extracellular surface of AQP4. The blockers did not affect complement-dependent cytotoxicity caused by anti-GD3 antibody binding to ganglioside GD3. The blockers reduced by >80% the severity of NMO lesions in an ex vivo spinal cord slice culture model of NMO and in mice in vivo. Our results provide proof of concept for a small-molecule blocker strategy to reduce NMO pathology. Small-molecule blockers may also be useful for other autoimmune diseases caused by binding of pathogenic autoantibodies to defined targets.—Tradtrantip, L., Zhang, H., Anderson, M. O., Saadoun, S., Phuan, P.-W., Papadopoulos, M. C., Bennett, J. L., Verkman, A. S. Small-molecule inhibitors of NMO-IgG binding to aquaporin-4 reduce astrocyte cytotoxicity in neuromyelitis optica. PMID:22319008

  17. Pain in patients with transverse myelitis and its relationship to aquaporin 4 antibody status.

    PubMed

    Kong, Yazhuo; Okoruwa, Helen; Revis, Jon; Tackley, George; Leite, Maria Isabel; Lee, Michael; Tracey, Irene; Palace, Jacqueline

    2016-09-15

    Pain in transverse myelitis has been poorly studied. The aim of the study was to investigate the relationship between transverse myelitis related pain and disability, quality of life, anxiety and depression, cognitive-affective states in neuromyelitis optica (NMO) patients and aquaporin4 antibody status (AQP4-Ab +ve as positive and AQP4-Ab -ve as negative). Transverse myelitis patients (44 in total; 29 AQP4-Ab +ve and 15 AQP4-Ab -ve) completed questionnaires including Pain Severity Index (PSI), Pain Catastrophising Scale (PCS), Hospital Anxiety and Depression Scale (HADS), Short Form-36 quality of life (SF-36 QOL). Clinical details such as disability, gender, age and spinal cord lesion type (short or long lesion) were noted. Correlation and multiple linear regression tests were performed using these clinical scores. Pain was found to be correlated strongly with quality of life in both groups but only correlated with disability in the AQP4-Ab +ve group. PCS, HADS and EDMUS were found to be highly correlated with pain severity using partial correlation, however, a stronger relationship between pain severity and PCS was found in the AQP4-Ab -ve group. Multiple regression analysis showed that pain severity was the most important factor for quality of life but not disability or anxiety and depression symptoms in the whole patient group. We confirm that pain is an important symptom of transverse myelitis and has more influence on quality of life than disability despite health services being predominantly focused on the latter. There may be different factors associated with pain between AQP4-Ab +ve and -ve patients. PMID:27538606

  18. Oxytocin regulates the expression of aquaporin 5 in the late-pregnant rat uterus.

    PubMed

    Ducza, Eszter; Seres, Adrienn B; Hajagos-Tóth, Judit; Falkay, George; Gáspár, Róbert

    2014-06-01

    Aquaporins (AQPs) are integral membrane channels responsible for the transport of water across a cell membrane. Based on reports that AQPs are present and accumulate in the female reproductive tract late in pregnancy, our aim was to study the expression of AQP isoforms (AQP1, 2, 3, 5, 8, and 9) at the end of pregnancy in rat in order to determine if they play a role in parturition. Reverse-transcriptase PCR revealed that specific Aqp mRNAs were detectable in the myometrium of non-pregnant and late-pregnancy (Days 18, 20, 21, and 22 of pregnancy) rat uteri. The expression of Aqp5 mRNA and protein were most pronounced on Days 18-21, and were dramatically decreased on Day 22 of pregnancy. In contrast, a significant increase was found in the level of Aqp5 transcript in whole-blood samples on the last day of pregnancy. The effect of oxytocin on myometrial Aqp5 expression in an organ bath was also investigated. The level of Aqp5 mRNA significantly decreased 5 min after oxytocin (10(-8) M) administration, similarly to its profile on the day of delivery; this effect was sensitive to the oxytocin antagonist atosiban. The vasopressin analog desmopressin (3.7 × 10(-8) M), on the other hand, did not alter the expression of Aqp5, but did increased the amount of Aqp2 mRNA, an effect that was atosiban-resistant. These results lead us to propose that oxytocin selectively influences the expression of Aqp5 at the end of pregnancy, and may participate in events that lead to parturition in the rat. The sudden increase of AQP5 in the blood on the last day of pregnancy may serve as a marker that indicates the initiation of delivery. PMID:24644013

  19. Free energy calculation of permeation through aquaporin-5

    NASA Astrophysics Data System (ADS)

    Bastien, David

    The work of this paper continues upon the large area of research being done on aquaporins (AQPs). AQPs are proteins that take on the role of facilitating the transfer of substances, mainly water, across cell membranes. There are many different types of AQPs, with each of these highly selective proteins conducting only certain solutes, along with unique permeability rates. The permeation characteristics of aquaporins rely mostly on the residue hydrophobicity and steric restraints of the aromatic arginine (ar/R) region of the protein channel. The purpose of this paper is to analyze the structures of aquaporin-5 (AQP5) and aquaglycerolporin (Glpf), including a radius profile of the respective protein channels, and to compare them to permeation events using steered molecular dynamics (SMD) pulling simulations. Two in silico experiments are performed in order to achieve the free Energy landscape of a single water molecule permeating through the four channels of both Aqp5 and GlpF. The equilibrium free energy curves are calculated from the non-equilibrium, irreversible work measurements using the fluctuation-dissipation theorem (FDT) of Brownian dynamicis (BD). The free energy profiles are then compared and related to the structural profiles of AQP5 and GlpF. The change in free energy across the ar/R region in AQP5 is found to be reasonably larger than that of GlpF. The free energy profiles of AQP5 and GlpF agree with the diameter profile of the channels respectively. Furthermore, free energy calculations are computed for the permeation of Na+ and Cl- ions through the central pore of Aqp5, which provide some insight into the structural mechanisms of AQP5. The free energy barrier for ion transport through the central pore is found to be very large, peaking at around 11 Kcal/mol for chloride and 20 Kcal/mol for sodium.

  20. Steady state growth of E. Coli in low ammonium environment

    NASA Astrophysics Data System (ADS)

    Kim, Minsu; Deris, Barret; Zhang, Zhongge; Hwa, Terry

    2011-03-01

    Ammonium is the preferred nitrogen source for many microorganisms. In medium with low ammonium concentrations, enteric bacteria turn on the nitrogen responsive (ntr) genes to assimilate ammonium. Two proteins in E. coli, Glutamine synthetase (GS) and the Ammonium/methylammonium transporter AmtB play crucial roles in this regard. GS is the major ammonium assimilation enzyme below 1mM of NH4 + . AmtB is an inner membrane protein that transports NH4 + across the cell membrane against a concentration gradient. In order to study ammonium uptake at low NH4 + concentration at neutral pH, we developed a microfluidic flow chamber that maintains a homogenous nutrient environment during the course of exponential cell growth, even at very low concentration of nutrients. Cell growth can be accurately monitored using time-lapse microscopy. We followed steady state growth down to micro-molar range of NH4 + for the wild type and Δ amtB strains. The wild type strain is able to maintain the growth rate from 10mM down to a few uM of NH4 + , while the mutant exhibited reduced growth below ~ 20 ~uM of NH4 + . Simultaneous characterization of the expression levels of GS and AmtB using fluorescence reporters reveals that AmtB is turned on already at 1mM, but contributes to function only below ~ 30 ~uM in the wild-type. Down to ~ 20 ~uM of NH4 + , E.~coli can compensate the loss of AmtB by GS alone.

  1. Hyperosmotic stress induces cisplatin sensitivity in ovarian cancer cells by stimulating aquaporin-5 expression

    PubMed Central

    CHEN, XUEJUN; ZHOU, CHUNXIA; YAN, CHUNXIAO; MA, JIONG; ZHENG, WEI

    2015-01-01

    Aquaporins (AQPs) are important mediators of water permeability and are closely associated with tumor cell proliferation, migration, angiogenesis and chemoresistance. Moreover, the chemosensitivity of tumor cells to cisplatin (CDDP) is potentially affected by osmotic pressure. The present study was undertaken to determine whether hyperosmosis regulates ovarian cancer cell sensitivity to CDDP in vitro and to explore whether this is associated with AQP expression. The hyperosmotic stress was induced by D-sorbitol. 3AO ovarian cancer cells were treated with different concentrations of hypertonic medium and/or CDDP for various times, followed by measuring the inhibition rate of cell proliferation using an MTT assay. In addition, AQP expression in response to osmotic pressure and/or CDDP was measured by reverse transcription-quantitative polymerase chain reaction and western blotting. Cell proliferation in response to hypertonic stress was also measured when AQP5 was knocked down by small interfering (si)RNA. 3AO cell proliferation was inhibited by hyperosmotic stress, while the expression of AQP5, but not that of AQP1, AQP3 or AQP9, was increased in a dose- and time-dependent manner in hypertonic sorbitol-containing medium. When AQP5 was silenced by siRNA, cells were susceptible to hypertonic stress. MTT analyses showed that the inhibition of cell proliferation by a low dose of CDDP increased significantly with exposure to a hyperosmotic stimulus, and this effect was reduced when a high dose of CDDP was used. AQP5 expression was induced by a low dose of CDDP, but was reduced by a high dose of CDDP. However, hyperosmosis enhanced AQP5 mRNA expression at every dose of CDDP tested, compared with isotonic medium. With prolonged treatment time, AQP5 expression was reduced by CDDP in hypertonic and isotonic culture medium. Thus, the effects of hyperosmosis on cell sensitivity to CDDP were associated with AQP5 expression. These results suggest that AQP5 expression in ovarian

  2. ENZYMATIC DEGLYCOSYLATION CONVERTS PATHOGENIC NEUROMYELITIS OPTICA ANTI-AQUAPORIN-4 IgG INTO THERAPEUTIC ANTIBODY

    PubMed Central

    Tradtrantip, Lukmanee; Ratelade, Julien; Zhang, Hua; Verkman, A.S.

    2013-01-01

    Objective Neuromyelitis optica (NMO) is caused by binding of pathogenic autoantibodies (NMO-IgG) to aquaporin-4 (AQP4) on astrocytes, which initiates complement-dependent cytotoxicity (CDC) and inflammation. We recently introduced mutated antibody (aquaporumab) and small-molecule blocker strategies for therapy of NMO, based on prevention of NMO-IgG binding to AQP4. Here, we investigated an alternative strategy involving neutralization of NMO-IgG effector function by selective IgG heavy-chain deglycosylation with bacteria-derived endoglycosidase S (EndoS). Methods Cytotoxicity and NMO pathology were measured in cell and spinal cord slice cultures, and in mice exposed to control or EndoS-treated NMO-IgG. Results EndoS treatment of NMO patient serum reduced by >95 % CDC and antibody-dependent cell-mediated cytotoxicity (ADCC), without impairment of NMO-IgG binding to AQP4. Cytotoxicity was also prevented by addition of EndoS after NMO-IgG binding to AQP4. The EndoS-treated, non-pathogenic NMO-IgG competitively displaced pathogenic NMO-IgG bound to AQP4, and prevented NMO pathology in spinal cord slice culture and mouse models of NMO. Interpretation EndoS deglycosylation converts pathogenic NMO-IgG autoantibodies into therapeutic blocking antibodies. EndoS treatment of blood may be beneficial in NMO, which may be accomplished, for example, by therapeutic apheresis using surface-immobilized EndoS. PMID:23055279

  3. Hydrocephalus: the role of cerebral aquaporin-4 channels and computational modeling considerations of cerebrospinal fluid.

    PubMed

    Desai, Bhargav; Hsu, Ying; Schneller, Benjamin; Hobbs, Jonathan G; Mehta, Ankit I; Linninger, Andreas

    2016-09-01

    Aquaporin-4 (AQP4) channels play an important role in brain water homeostasis. Water transport across plasma membranes has a critical role in brain water exchange of the normal and the diseased brain. AQP4 channels are implicated in the pathophysiology of hydrocephalus, a disease of water imbalance that leads to CSF accumulation in the ventricular system. Many molecular aspects of fluid exchange during hydrocephalus have yet to be firmly elucidated, but review of the literature suggests that modulation of AQP4 channel activity is a potentially attractive future pharmaceutical therapy. Drug therapy targeting AQP channels may enable control over water exchange to remove excess CSF through a molecular intervention instead of by mechanical shunting. This article is a review of a vast body of literature on the current understanding of AQP4 channels in relation to hydrocephalus, details regarding molecular aspects of AQP4 channels, possible drug development strategies, and limitations. Advances in medical imaging and computational modeling of CSF dynamics in the setting of hydrocephalus are summarized. Algorithmic developments in computational modeling continue to deepen the understanding of the hydrocephalus disease process and display promising potential benefit as a tool for physicians to evaluate patients with hydrocephalus. PMID:27581320

  4. Neuromyelitis optica spectrum disorder (NMOSD): A new concept.

    PubMed

    de Sèze, J; Kremer, L; Collongues, N

    2016-01-01

    The relationship between neuromyelitis optica (NMO) and multiple sclerosis (MS) has long been controversial. NMO was previously considered a form of MS involving predominantly the spinal cord and optic nerve. However, since the discovery of NMO-IgG/aquaporin-4 (AQP4) antibody, an NMO-specific autoantibody to AQP4, some unique clinical features, and magnetic resonance imaging (MRI) and other laboratory findings in NMO, have been further clarified. AQP4 antibody is now the most important laboratory finding for the diagnosis of NMO. Besides typical NMO, some patients with recurrent optic neuritis or recurrent longitudinally extensive transverse myelitis alone are also often positive for AQP4 antibody. Moreover, studies of AQP4 antibody-positive patients have revealed that brain and brainstem lesions are not uncommon in NMO, and some patterns appear to be unique to NMO. All these findings have expanded the NMO concept into 'NMO spectrum disorder' (NMOSD), and new criteria have recently been published. A new antigenic target, myelin oligodendrocyte glycoprotein (MOG), has also been discovered recently. This new antibody seems to correspond to around 20% of seronegative patients, but its specificity needs to be evaluated more precisely, especially in pediatric populations. These recent findings may also have therapeutic impact, as it has been demonstrated that many MS drugs can exacerbate NMO. This report provides an overview of the clinical and neuroimaging features of NMOSD, followed by its treatment. PMID:27157418

  5. Neuromyelitis optica: a positive appraisal of seronegative cases.

    PubMed

    Bernard-Valnet, R; Liblau, R S; Vukusic, S; Marignier, R

    2015-12-01

    Neuromyelitis optica (NMO) is a rare inflammatory disorder of the central nervous system. The hallmark of NMO is the presence of specific autoantibodies directed against aquaporin 4 (AQP4-IgG). AQP4-IgG, included in diagnostic criteria, has enlarged the clinical spectrum of NMO and serves to predict relapses. Moreover AQP4-IgG has provided unprecedented insight in the immunopathology of NMO, representing a rationale for therapeutic intervention with relevant novel treatment strategies specific for NMO. However, some patients remain seronegative for AQP4-IgG despite a definite diagnosis of NMO and the use of the finest methods for antibody detection. Interestingly, seronegative NMO (NMO(neg)) patients exhibit different demographic and disease-related characteristics in comparison to seropositive patients. The recent association with autoantibodies specific for myelin oligodendrocyte glycoprotein (MOG) is the main indication that disease mechanisms might differ in NMO(pos) and NMO(neg), challenging the position of NMO(neg) patients in the spectrum of demyelinating diseases and therapeutic strategies to be adopted. Thus, a reappraisal of the NMO(neg) population is needed to improve NMO care. Here the current knowledge regarding NMO(neg) is reviewed and hypotheses on its pathogenesis are made including a comprehensive description of detection methods and the prevalence of AQP4-IgG and a review of the epidemiological, clinical and paraclinical characteristics of NMO(neg); finally an integrated view of the general pathophysiological mechanisms underlying NMO(neg) is provided. PMID:25689634

  6. Expression of Aquaporin 4 and Breakdown of the Blood-Brain Barrier after Hypoglycemia-Induced Brain Edema in Rats

    PubMed Central

    Deng, Jiangshan; Zhao, Fei; Yu, Xiaoyan; Zhao, Yuwu; Li, Dawei; Shi, Hong; Sun, Yongning

    2014-01-01

    Background Hypoglycemia-induced brain edema is a severe clinical event that often results in death. The mechanisms by which hypoglycemia induces brain edema are unclear. Methods In a hypoglycemic injury model established in adult rats, brain edema was verified by measuring brain water content and visualizing water accumulation using hematoxylin and eosin staining. Temporal expression of aquaporin 4 (AQP4) and the integrity of the blood-brain barrier (BBB) were evaluated. We assessed the distribution and expression of AQP4 following glucose deprivation in astrocyte cultures. Results Brain edema was induced immediately after severe hypoglycemia but continued to progress even after recovery from hypoglycemia. Upregulation of AQP4 expression and moderate breakdown of the BBB were observed 24 h after recovery. In vitro, significant redistribution of AQP4 to the plasma membrane was induced following 6 h glucose deprivation. Conclusion Hypoglycemia-induced brain edema is caused by cytotoxic and vasogenic factors. Changes in AQP4 location and expression may play a protective role in edema resolution. PMID:25264602

  7. Phosphorylation of Ser-180 of rat aquaporin-4 shows marginal affect on regulation of water permeability: molecular dynamics study.

    PubMed

    Sachdeva, Ruchi; Singh, Balvinder

    2014-04-01

    Water permeation through rat aquaporin-4 (rAQP4), predominantly found in mammalian brain is regulated by phosphorylation of Ser-180. The present study has been carried out to understand the structural mechanism of regulation of water permeability across the channel. Molecular dynamics (MD) simulations have been carried out to investigate the structural changes caused due to phosphorylation of Ser-180 in the tetrameric assembly of rAQP4 along with predicted C-terminal region (255-323). The interactions involving opposite charges are observed between cytoplasmic loops and the C-terminal region during MD simulations. This results in movement of C-terminal region of rAQP4 towards the cytoplasmic mouth of water channel. Despite this movement, there was a gap between C-terminal region and cytoplasmic mouth of the channel through which water molecules were able to gain entry into the channel. The interactions between C-terminus and loop D of neighboring monomers in a tetrameric assembly appear to prevent the complete closure of cytoplasmic mouth of the water channel. Further, the rates of water permeation through phosphorylated and unphosphorylated rAQP4 have also been compared. The simulation studies showed a continuous movement of water in a single file across pore of unphosphorylated as well as phosphorylated rAQP4. PMID:23651078

  8. A Small-molecule Screen Yields Idiotype-specific Blockers of Neuromyelitis Optica Immunoglobulin G Binding to Aquaporin-4*

    PubMed Central

    Phuan, Puay-Wah; Anderson, Marc O.; Tradtrantip, Lukmanee; Zhang, Hua; Tan, Joseph; Lam, Chiwah; Bennett, Jeffrey L.; Verkman, A. S.

    2012-01-01

    Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system caused by binding of anti-aquaporin-4 (AQP4) autoantibodies (NMO-IgG) to AQP4 on astrocytes. A screen was developed to identify inhibitors of NMO-IgG-dependent, complement-dependent cytotoxicity. Screening of 50,000 synthetic small molecules was done using CHO cells expressing human AQP4 and a human NMO recombinant monoclonal antibody (rAb-53). The screen yielded pyrano[2,3-c]pyrazoles that blocked rAb-53 binding to AQP4 and prevented cytotoxicity in cell culture and spinal cord slice models of NMO. Structure-activity analysis of 82 analogs yielded a blocker with IC50 ∼ 6 μm. Analysis of the blocker mechanism indicated idiotype specificity, as (i) pyrano[2,3-c]pyrazoles did not prevent AQP4 binding or cytotoxicity of other NMO-IgGs, and (ii) surface plasmon resonance showed specific rAb-53 binding. Antibody structure modeling and docking suggested a putative binding site near the complementarity-determining regions. Small molecules with idiotype-specific antibody targeting may be useful as research tools and therapeutics. PMID:22989877

  9. Aquaporin-4 knockout enhances astrocyte toxicity induced by 1-methyl-4-phenylpyridinium ion and Lipopolysaccharide via increasing the expression of cytochrome P4502E1

    PubMed Central

    Hao, Chunshu; Liu, Wei; Luan, Xiaofei; Li, Yang; Gui, Haiyan; Peng, Yan; Shen, Jianping; Hu, Gang; Yang, Jian

    2010-01-01

    The role of aquaporin-4 (AQP4) in the regulation of astrocytes function has been widely investigated. However, there is little information about its contribution to the drug metabolism enzymes such as Cytochrome P4502E1. In the present study, we investigated whether AQP4 is involved in the process of the cell damage caused by MPP+ and LPS through regulating the expression of CYP2E1 in astrocytes. Compared to the wild-type, in primary astrocytes, AQP4 knockout increased the cell damage and the reactive oxygen species (ROS) production which were induced by MPP+, LPS and ethanol. Notably, AQP4 knockout enhanced the up-regulation of the expression of CYP2E1 in astrocytes exposed to MPP+, LPS and ethanol. Furthermore, Diallylsulphide (DAS), a CYP2E1 inhibitor, partially or almost abolished the cell injury and the ROS production of the astrocytes induced by MPP+ and LPS. These findings indicate AQP4 protects astrocytes from the damage caused by MPP+ and LPS through reducing the ROS production correlation to the diminished expression of CYP2E1. PMID:20615459

  10. Increased aquaporin 1 and 5 membrane expression in the lens epithelium of cataract patients.

    PubMed

    Barandika, Olatz; Ezquerra-Inchausti, Maitane; Anasagasti, Ander; Vallejo-Illarramendi, Ainara; Llarena, Irantzu; Bascaran, Lucia; Alberdi, Txomin; De Benedetti, Giacomo; Mendicute, Javier; Ruiz-Ederra, Javier

    2016-10-01

    In this work we have analyzed the expression levels of the main aquaporins (AQPs) expressed in human lens epithelial cells (HLECs) using 112 samples from patients treated with cataract surgery and 36 samples from individuals treated with refractive surgery, with transparent lenses as controls. Aquaporin-1 (AQP1) is the main AQP, representing 64.1% of total AQPs in HLECs, with aquaporin-5 (AQP5) representing 35.9% in controls. A similar proportion of each AQP in cataract was found. Although no differences were found at the mRNA level compared to controls, a significant 1.65-fold increase (p=0.001) in AQP1protein expression was observed in HLECs from cataract patients, with the highest differences being found for nuclear cataracts (2.1-fold increase; p<0.001). A similar trend was found for AQP5 (1.47-fold increase), although the difference was not significant (p=0.161). Moreover we have shown increased membrane AQP5 protein expression in HLECs of patients with cataracts. No association of AQP1 or AQP5 expression levels with age or sex was observed in either group. Our results suggest regulation of AQP1 and AQP5 at the post-translational level and support previous observations on the implication of AQP1 and 5 in maintenance of lens transparency in animal models. Our results likely reflect a compensatory response of the crystalline lens to delay cataract formation by increasing the water removal rate. PMID:27497833

  11. Water influx into cerebrospinal fluid is significantly reduced in senile plaque bearing transgenic mice, supporting beta-amyloid clearance hypothesis of Alzheimer's disease.

    PubMed

    Igarashi, Hironaka; Suzuki, Yuji; Kwee, Ingrid L; Nakada, Tsutomu

    2014-12-01

    Recent studies on cerebrospinal fluid (CSF) homeostasis emphasize the importance of water influx into the peri-capillary (Virchow-Robin) space through aquaporin 4 (AQP-4). This water flow is believed to have the functionality equivalent to the systemic lymphatic system and plays a critical role in beta-amyloid clearance. Using a newly developed molecular imaging technique capable of tracing water molecules, in vivo, water influx into the CSF was quantitatively analyzed in senile plaque (SP) bearing transgenic Alzheimer's disease (AD) model mice. The results unequivocally demonstrated that water influx into CSF is significantly impaired in SP-bearing transgenic mice, the degree of which being virtually identical to that previously observed in AQP-4 knockout mice. The study strongly indicates that disturbance in AQP-4-based water flow and, hence, impairment in beta-amyloid clearance play a significant role in SP formation. PMID:25082552

  12. Update on biomarkers in neuromyelitis optica

    PubMed Central

    Melamed, Esther; Levy, Michael; Waters, Patrick J.; Sato, Douglas Kazutoshi; Bennett, Jeffrey L.; John, Gareth R.; Hooper, Douglas C.; Saiz, Albert; Bar-Or, Amit; Kim, Ho Jin; Pandit, Lakha; Leite, Maria Isabel; Asgari, Nasrin; Kissani, Najib; Hintzen, Rogier; Marignier, Romain; Jarius, Sven; Marcelletti, John; Smith, Terry J.; Yeaman, Michael R.

    2015-01-01

    Neuromyelitis optica (NMO) (and NMO spectrum disorder) is an autoimmune inflammatory disease of the CNS primarily affecting spinal cord and optic nerves. Reliable and sensitive biomarkers for onset, relapse, and progression in NMO are urgently needed because of the heterogeneous clinical presentation, severity of neurologic disability following relapses, and variability of therapeutic response. Detecting aquaporin-4 (AQP4) antibodies (AQP4-IgG or NMO-IgG) in serum supports the diagnosis of seropositive NMO. However, whether AQP4-IgG levels correlate with disease activity, severity, response to therapy, or long-term outcomes is unclear. Moreover, biomarkers for patients with seronegative NMO have yet to be defined and validated. Collaborative international studies hold great promise for establishing and validating biomarkers that are useful in therapeutic trials and clinical management. In this review, we discuss known and potential biomarkers for NMO. PMID:26236760

  13. Update on biomarkers in neuromyelitis optica.

    PubMed

    Melamed, Esther; Levy, Michael; Waters, Patrick J; Sato, Douglas Kazutoshi; Bennett, Jeffrey L; John, Gareth R; Hooper, Douglas C; Saiz, Albert; Bar-Or, Amit; Kim, Ho Jin; Pandit, Lakha; Leite, Maria Isabel; Asgari, Nasrin; Kissani, Najib; Hintzen, Rogier; Marignier, Romain; Jarius, Sven; Marcelletti, John; Smith, Terry J; Yeaman, Michael R; Han, May H; Aktas, Orhan; Apiwattanakul, Metha; Banwell, Brenda; Bichuetti, Denis; Broadley, Simon; Cabre, Philippe; Chitnis, Tanuja; De Seze, Jerome; Fujihara, Kazuo; Greenberg, Benjamin; Hellwig, Kerstin; Iorio, Raffaele; Jarius, Sven; Klawiter, Eric; Kleiter, Ingo; Lana-Peixoto, Marco; Nakashima; O'Connor, Kevin; Palace, Jacqueline; Paul, Friedman; Prayoonwiwat, Naraporn; Ruprecht, Klemens; Stuve, Olaf; Tedder, Thomas; Tenembaum, Silvia; Garrahan, Juan P; Aires, Buenos; van Herle, Katja; van Pelt, Danielle; Villoslada, Pablo; Waubant, Emmanuelle; Weinshenker, Brian; Wingerchuk, Dean; Würfel, Jens; Zamvil, Scott

    2015-08-01

    Neuromyelitis optica (NMO) (and NMO spectrum disorder) is an autoimmune inflammatory disease of the CNS primarily affecting spinal cord and optic nerves. Reliable and sensitive biomarkers for onset, relapse, and progression in NMO are urgently needed because of the heterogeneous clinical presentation, severity of neurologic disability following relapses, and variability of therapeutic response. Detecting aquaporin-4 (AQP4) antibodies (AQP4-IgG or NMO-IgG) in serum supports the diagnosis of seropositive NMO. However, whether AQP4-IgG levels correlate with disease activity, severity, response to therapy, or long-term outcomes is unclear. Moreover, biomarkers for patients with seronegative NMO have yet to be defined and validated. Collaborative international studies hold great promise for establishing and validating biomarkers that are useful in therapeutic trials and clinical management. In this review, we discuss known and potential biomarkers for NMO. PMID:26236760

  14. Light inactivation of water transport and protein–protein interactions of aquaporin–Killer Red chimeras

    PubMed Central

    Baumgart, Florian; Rossi, Andrea

    2012-01-01

    Aquaporins (AQPs) have a broad range of cellular and organ functions; however, nontoxic inhibitors of AQP water transport are not available. Here, we applied chromophore-assisted light inactivation (CALI) to inhibit the water permeability of AQP1, and of two AQP4 isoforms (M1 and M23), one of which (M23) forms aggregates at the cell plasma membrane. Chimeras containing Killer Red (KR) and AQPs were generated with linkers of different lengths. Osmotic water permeability of cells expressing KR/AQP chimeras was measured from osmotic swelling–induced dilution of cytoplasmic chloride, which was detected using a genetically encoded chloride-sensing fluorescent protein. KR-AQP1 red fluorescence was bleached rapidly (∼10% per second) by wide-field epifluorescence microscopy. After KR bleaching, KR-AQP1 water permeability was reduced by up to 80% for the chimera with the shortest linker. Remarkably, CALI-induced reduction in AQP4-KR water permeability was approximately twice as efficient for the aggregate-forming M23 isoform; this suggests intermolecular CALI, which was confirmed by native gel electrophoresis on cells coexpressing M23-AQP4-KR and myc-tagged M23-AQP4. CALI also disrupted the interaction of AQP4 with a neuromyelitis optica autoantibody directed against an extracellular epitope on AQP4. CALI thus permits rapid, spatially targeted and irreversible reduction in AQP water permeability and interactions in live cells. Our data also support the utility of CALI to study protein–protein interactions as well as other membrane transporters and receptors. PMID:22200949

  15. Features of anti-aquaporin 4 antibody-seropositive Chinese patients with neuromyelitis optica spectrum optic neuritis.

    PubMed

    Li, Hongyang; Wang, Yanling; Xu, Quangang; Zhang, Aidi; Zhou, Huanfen; Zhao, Shuo; Kang, Hao; Peng, Chunxia; Cao, Shanshan; Wei, Shihui

    2015-10-01

    The detection of anti-aquaporin-4 autoantibody (AQP-4 Ab) is crucial to detect patients who will develop neuromyelitis optica (NMO); however, there are few studies on the AQP-4 Ab serostatus of patients with neuromyelitis optica spectrum ON. We analyzed the clinical and paraclinical features of neuromyelitis optica spectrum ON patients in China according to the patients' AQP4-Ab serostatus. 125 patients with recurrent and bilateral ON with simultaneous attacks were divided into AQP-4 Ab-seropositive and -seronegative groups. Demographic, clinical, serum autoantibody data, connective tissue disorders (CTDs), visual performance were compared. A Visual Acuity (VA) of less than 0.1 during acute ON attacks occurred more frequently in the seropositive group (p = 0.023); however, there was not a significant difference between groups on VA recovery after the first attack. The seropositive group experienced the worst outcome during the last attack (p = 0.017). Other co-existing autoimmunity antibodies (p < 0.001) and CTDs (p < 0.001) were more prevalent in seropositive patients. There were no significant differences on VA recovery and RNFLT combined with other autoantibodies or CTDs. The two groups did not differ significantly with regard to time to relapse, annualized relapse rates, time of diagnosis NMO, or RNFL. There were no significant differences on VA recovery and RNFLT combined with other autoantibodies or CTDs. RNFLT was thinner in NMO seropositive patients. Although AQP-4 Ab expression predicted poor visual outcome, positive patients were usually associated with mild symptoms at first onset. Anti-SSA/SSB antibody or Sjögren syndrome may be associated with AQP-4 Ab in neuromyelitis optica spectrum ON. PMID:26162715

  16. Development of an Aquaporin-4 Orthogonal Array of Particle-Based ELISA for Neuromyelitis Optica Autoantibodies Detection

    PubMed Central

    Pisani, Francesco; Settanni, Paolo; Rosito, Stefania; Mola, Maria Grazia; Iorio, Raffaele; Tortorella, Carla; Ruggieri, Maddalena; Trojano, Maria; Svelto, Maria; Frigeri, Antonio; Nicchia, Grazia Paola

    2015-01-01

    Serological markers of Nuromyelitis Optica (NMO), an autoimmune disorder of the central nervous system, are autoantibodies targeting the astrocytic water channel aquaporin-4 (AQP4). We have previously demonstrated that the main epitopes for these autoantibodies (AQP4-IgG) are generated by the supramolecular arrangement of AQP4 tetramers into an Orthogonal Array of Particles (OAPs). Many tests have been developed to detect AQP4-IgG in patient sera but several procedural issues affect OAP assembly and consequently test sensitivity. To date, the protein based ELISA test shows the lowest sensitivity while representing a valid alternative to the more sensitive cell based assay (CBA), which, however, shows economic, technical and interpretation problems. Here we have developed a high perfomance ELISA in which native OAPs are used as the molecular target. To this aim a native size exclusion chromatography method has been developed to isolate integral, highly pure and AQP4-IgG-recognized OAPs from rat brain. These OAPs were immobilized and oriented on a plastic plate by a sandwich approach and 139 human sera were tested, including 67 sera from NMO patients. The OAP-ELISA showed a 99% specificity and a higher sensitivity (91%) compared to the CBA test. A comparative analysis revealed an end-point titer three orders of magnitude higher than the commercial ELISA and six times higher than our in-house CBA test. We show that CNS-extracted OAPs are crucial elements in order to perform an efficient AQP4-IgG test and the OAP-ELISA developed represents a valid alternative to the CBA currently used. PMID:26599905

  17. Development of an Aquaporin-4 Orthogonal Array of Particle-Based ELISA for Neuromyelitis Optica Autoantibodies Detection.

    PubMed

    Pisani, Francesco; Settanni, Paolo; Rosito, Stefania; Mola, Maria Grazia; Iorio, Raffaele; Tortorella, Carla; Ruggieri, Maddalena; Trojano, Maria; Svelto, Maria; Frigeri, Antonio; Nicchia, Grazia Paola

    2015-01-01

    Serological markers of Nuromyelitis Optica (NMO), an autoimmune disorder of the central nervous system, are autoantibodies targeting the astrocytic water channel aquaporin-4 (AQP4). We have previously demonstrated that the main epitopes for these autoantibodies (AQP4-IgG) are generated by the supramolecular arrangement of AQP4 tetramers into an Orthogonal Array of Particles (OAPs). Many tests have been developed to detect AQP4-IgG in patient sera but several procedural issues affect OAP assembly and consequently test sensitivity. To date, the protein based ELISA test shows the lowest sensitivity while representing a valid alternative to the more sensitive cell based assay (CBA), which, however, shows economic, technical and interpretation problems. Here we have developed a high perfomance ELISA in which native OAPs are used as the molecular target. To this aim a native size exclusion chromatography method has been developed to isolate integral, highly pure and AQP4-IgG-recognized OAPs from rat brain. These OAPs were immobilized and oriented on a plastic plate by a sandwich approach and 139 human sera were tested, including 67 sera from NMO patients. The OAP-ELISA showed a 99% specificity and a higher sensitivity (91%) compared to the CBA test. A comparative analysis revealed an end-point titer three orders of magnitude higher than the commercial ELISA and six times higher than our in-house CBA test. We show that CNS-extracted OAPs are crucial elements in order to perform an efficient AQP4-IgG test and the OAP-ELISA developed represents a valid alternative to the CBA currently used. PMID:26599905

  18. Agrin defines polarized distribution of orthogonal arrays of particles in astrocytes.

    PubMed

    Noell, Susan; Fallier-Becker, Petra; Deutsch, Urban; Mack, Andreas F; Wolburg, Hartwig

    2009-08-01

    Accumulating evidence indicates that agrin, a heparan sulphate proteoglycan of the extracellular matrix, plays a role in the organization and maintenance of the blood-brain barrier. This evidence is based on the differential effects of agrin isoforms on the expression and distribution of the water channel protein, aquaporin-4 (AQP4), on the swelling capacity of cultured astrocytes of neonatal mice and on freeze-fracture data revealing an agrin-dependent clustering of orthogonal arrays of particles (OAPs), the structural equivalent of AQP4. Here, we show that the OAP density in agrin-null mice is dramatically decreased in comparison with wild-types, by using quantitative freeze-fracture analysis of astrocytic membranes. In contrast, anti-AQP4 immunohistochemistry has revealed that the immunoreactivity of the superficial astrocytic endfeet of the agrin-null mouse is comparable with that in wild-type mice. Moreover, in vitro, wild-type and agrin-null astrocytes cultured from mouse embryos at embryonic day 19.5 differ neither in AQP4 immunoreactivity, nor in OAP density in freeze-fracture replicas. Analyses of brain tissue samples and cultured astrocytes by reverse transcription with the polymerase chain reaction have not demonstrated any difference in the level of AQP4 mRNA between wild-type astrocytes and astrocytes from agrin-null mice. Furthermore, we have been unable to detect any difference in the swelling capacity between wild-type and agrin-null astrocytes. These results clearly demonstrate, for the first time, that agrin plays a pivotal role for the clustering of OAPs in the endfoot membranes of astrocytes, whereas the mere presence of AQP4 is not sufficient for OAP clustering. PMID:19449033

  19. Mutagenesis of the aquaporin 4 extracellular domains defines restricted binding patterns of pathogenic neuromyelitis optica IgG.

    PubMed

    Owens, Gregory P; Ritchie, Alanna; Rossi, Andrea; Schaller, Kristin; Wemlinger, Scott; Schumann, Hannah; Shearer, Andrew; Verkman, Alan S; Bennett, Jeffrey L

    2015-05-01

    Neuromyelitis optica-immunoglobulin G (NMO-IgG) binds to aquaporin-4 (AQP4) water channels in the central nervous system leading to immune-mediated injury. We have previously demonstrated that a high proportion of CSF plasma cells of NMO patients produce antibody to the extracellular domains of the AQP4 protein and that recombinant IgG (rAb) derived from these cells recapitulate pathogenic features of disease. We performed a comprehensive mutational analysis of the three extracellular loops of the M23 isoform of human AQP4 using both serial and single point mutations, and we evaluated the effects on binding of NMO AQP4-reactive rAbs by quantitative immunofluorescence. Whereas all NMO rAbs required conserved loop C ((137)TP(138) and Val(150)) and loop E ((230)HW(231)) amino acids for binding, two broad patterns of NMO-IgG recognition could be distinguished based on differential sensitivity to loop A amino acid changes. Pattern 1 NMO rAbs were insensitive to loop A mutations and could be further discriminated by differential sensitivity to amino acid changes in loop C ((148)TM(149) and His(151)) and loop E (Asn(226) and Glu(228)). Alternatively, pattern 2 NMO rAbs showed significantly reduced binding following amino acid changes in loop A ((63)EKP(65) and Asp(69)) and loop C (Val(141), His(151), and Leu(154)). Amino acid substitutions at (137)TP(138) altered loop C conformation and abolished the binding of all NMO rAbs and NMO-IgG, indicating the global importance of loop C conformation to the recognition of AQP4 by pathogenic NMO Abs. The generation of human NMO rAbs has allowed the first high resolution mapping of extracellular loop amino acids critical for NMO-IgG binding and identified regions of AQP4 extracellular structure that may represent prime targets for drug therapy. PMID:25792738

  20. AQP and the control of fluid transport in a salivary gland.

    PubMed

    Murakami, M; Murdiastuti, K; Hosoi, K; Hill, A E

    2006-03-01

    Experiments were performed with the perfused rat submandibular gland in vitro to investigate the nature of the coupling between transported salt and water by varying the osmolarity of the source bath and observing the changes in secretory volume flow. Glands were submitted to hypertonic step changes by changing the saline perfusate to one containing different levels of sucrose. The flow rate responded by falling to a lower value, establishing a new steady-state flow. The rate changes did not correspond to those expected from a system in which fluid production is due to simple osmotic equilibration, but were much larger. The changes were fitted to a model in which fluid production is largely paracellular, the rate of which is controlled by an osmosensor system in the basal membrane. The same experiments were done with glands from rats that had been bred to have very low levels of AQP5 (the principal aquaporin of the salivary acinar cell) in which little AQP5 is expressed at the basal membrane. In these rats, salivary secretion rates after hypertonic challenges were small and best modelled by simple osmotic equilibration. In rats which had intermediate AQP5 levels the changes in flow rate were similar to those of normal rats although their AQP5 levels were reduced.Finally, perfused normal glands were subject to retrograde ductal injection of salines containing different levels of Hg(2+) ions (0, 10 and 100 microM: ) which would act as inhibitors of AQP5 at the apical acinar membrane. The overall flow rates were progressively diminished with rising Hg(2+) concentration, but after hypertonic challenge the changes in flow rates were unchanged and similar to those of normal rats. All these results are difficult to explain by a cellular osmotic model but can be explained by a model in which paracellular flow is controlled by an osmosensor (presumably AQP5) present on the basal membrane. PMID:16868676

  1. Characterization of the glnK-amtB operon of Azotobacter vinelandii.

    PubMed

    Meletzus, D; Rudnick, P; Doetsch, N; Green, A; Kennedy, C

    1998-06-01

    To determine whether in Azotobacter vinelandii the PII protein influences the regulation of nif gene expression in response to fluxes in the ammonium supply, the gene encoding PII was isolated and characterized. Its deduced translation product was highly similar to PII proteins from other organisms, with the greatest degree of relatedness being exhibited to the Escherichia coli glnK gene product. A gene designated amtB was found downstream of and was contranscribed with glnK as in E. coli. The AmtB protein is similar to functionally characterized ammonium transport proteins from a few other eukaryotes and one other prokaryote. glnK and amtB comprise an operon. Attempts to isolate a stable glnK mutant strain were unsuccessful, suggesting that glnK, like glnA, is an essential gene in A. vinelandii. amtB mutants were isolated, and although growth on limiting amounts of ammonium was similar in the mutant and wild-type strains, the mutants were unable to transport [14C]methylammonium. PMID:9620984

  2. "Why Are College Foreign Language Students' Self-Efficacy, Attitude, and Motivation so Different?"

    ERIC Educational Resources Information Center

    Hsieh, Pei-Hsuan

    2008-01-01

    Simply taking foreign language courses and being exposed to the language does not guarantee successful and positive learning experiences. When examining factors that influence foreign language learning, motivation should be considered. To extend current foreign language literature, this study integrated self-efficacy and Gardners' AMTB variables…

  3. Characterization of the glnK-amtB Operon of Azotobacter vinelandii

    PubMed Central

    Meletzus, Dietmar; Rudnick, Paul; Doetsch, Natalie; Green, Andrew; Kennedy, Christina

    1998-01-01

    To determine whether in Azotobacter vinelandii the PII protein influences the regulation of nif gene expression in response to fluxes in the ammonium supply, the gene encoding PII was isolated and characterized. Its deduced translation product was highly similar to PII proteins from other organisms, with the greatest degree of relatedness being exhibited to the Escherichia coli glnK gene product. A gene designated amtB was found downstream of and was cotranscribed with glnK as in E. coli. The AmtB protein is similar to functionally characterized ammonium transport proteins from a few other eukaryotes and one other prokaryote. glnK and amtB comprise an operon. Attempts to isolate a stable glnK mutant strain were unsuccessful, suggesting that glnK, like glnA, is an essential gene in A. vinelandii. amtB mutants were isolated, and although growth on limiting amounts of ammonium was similar in the mutant and wild-type strains, the mutants were unable to transport [14C]methylammonium. PMID:9620984

  4. Discovery Of Peptoid Ligands For Anti-Aquaporin 4 Antibodies

    PubMed Central

    Raveendra, Bindu; Hao, Wu; Baccala, Roberto; Reddy, M. Muralidhar; Schilke, Jessica; Bennett, Jeffrey L.; Theofilopoulos, Argyrios N.; Kodadek, Thomas

    2013-01-01

    Summary Neuromyelitis optica (NMO) is an autoimmune inflammatory disorder of the central nervous system. In most NMO patients, autoantibodies to the water channel protein Aquaporin 4 (AQP4) are present at high levels and are thought to drive pathology by mediating complement-dependent destruction of astrocytes. Here we apply recently developed chemical library screening technology to identify a synthetic peptoid that binds anti-AQP4 antibodies in the serum of NMO patients. This finding validates, in a well-defined human disease, that synthetic, unnatural ligands for the antigen-binding site of a disease-linked antibody can be isolated by high-throughput screening. PMID:23521793

  5. The Water Permeability and Pore Entrance Structure of Aquaporin-4 Depend on Lipid Bilayer Thickness.

    PubMed

    Tong, Jihong; Wu, Zhe; Briggs, Margaret M; Schulten, Klaus; McIntosh, Thomas J

    2016-07-12

    Aquaporin-4 (AQP4), the primary water channel in glial cells of the mammalian brain, plays a critical role in water transport in the central nervous system. Previous experiments have shown that the water permeability of AQP4 depends on the cholesterol content in the lipid bilayer, but it was not clear whether changes in permeability were due to direct cholesterol-AQP4 interactions or to indirect effects caused by cholesterol-induced changes in bilayer elasticity or bilayer thickness. To determine the effects resulting only from bilayer thickness, here we use a combination of experiments and simulations to analyze AQP4 in cholesterol-free phospholipid bilayers with similar elastic properties but different hydrocarbon core thicknesses previously determined by x-ray diffraction. The channel (unit) water permeabilities of AQP4 measured by osmotic-gradient experiments were 3.5 ± 0.2 × 10(-13) cm(3)/s (mean ± SE), 3.0 ± 0.3 × 10(-13) cm(3)/s, 2.5 ± 0.2 × 10(-13) cm(3)/s, and 0.9 ± 0.1 × 10(-13) cm(3)/s in bilayers containing (C22:1)(C22:1)PC, (C20:1)(C20:1)PC, (C16:0)(C18:1)PC, and (C13:0)(C13:0)PC, respectively. Channel permeabilities obtained by molecular dynamics (MD) simulations were 3.3 ± 0.1 × 10(-13) cm(3)/s and 2.5 ± 0.1 × 10(-13) cm(3)/s in (C22:1)(C22:1)PC and (C14:0)(C14:0)PC bilayers, respectively. Both the osmotic-gradient and MD-simulation results indicated that AQP4 channel permeability decreased with decreasing bilayer hydrocarbon thickness. The MD simulations also suggested structural modifications in AQP4 in response to changes in bilayer thickness. Although the simulations showed no appreciable changes to the radius of the pore located in the hydrocarbon region of the bilayers, the simulations indicated that there were changes in both pore length and α-helix organization near the cytoplasmic vestibule of the channel. These structural changes, caused by mismatch between the hydrophobic length of AQP4 and the bilayer hydrocarbon

  6. Antibodies to Aquaporin 4, Myelin-Oligodendrocyte Glycoprotein, and the Glycine Receptor α1 Subunit in Patients With Isolated Optic Neuritis

    PubMed Central

    Martinez-Hernandez, Eugenia; Sepulveda, Maria; Rostásy, Kevin; Höftberger, Romana; Graus, Francesc; Harvey, Robert J.; Saiz, Albert; Dalmau, Josep

    2016-01-01

    IMPORTANCE In patients with isolated optic neuritis (ON), the presence of antibodies to aquaporin 4 (AQP4) has diagnostic and prognostic value. In the same clinical setting, the significance of antibodies to myelin-oligodendrocyte glycoprotein (MOG) or the glycine receptor α1 subunit (GlyR) is unclear. OBJECTIVES To investigate the frequency of antibodies to AQP4, MOG, and GlyR in patients with unilateral or bilateral, severe, or recurrent isolated ON and to determine their clinical and prognostic correlates. DESIGN, SETTING, AND PARTICIPANTS Retrospective case-control study from November 1, 2005, through May 30, 2014 with the detection of autoantibodies in a neuroimmunology referral center. We included 51 patients with ON but without clinical and magnetic resonance imaging findings outside the optic nerves and 142 controls (30 healthy individuals, 48 patients with neuromyelitis optica, and 64 patients with multiple sclerosis). MAIN OUTCOMES AND MEASURES Clinicoimmunologic analysis. We determined the presence of antibodies to AQP4, MOG, and GlyR using cell-based assays. RESULTS The median age of the patients at the onset of ON symptoms was 28 (range, 5–65) years; 36 patients (71%) were female. Antibodies were identified in 23 patients (45%), including MOG in 10 patients, AQP4 in 6 patients, and GlyR in 7 patients (concurrent with MOG in 3 and concurrent with AQP4 in 1). Patients with AQP4 antibodies (median visual score, 3.5 [range, 1–9]) had a worse visual outcome than patients with MOG antibodies alone (median visual score, 0 [range, 0–5]; P = .007), patients with seronegative findings (n = 28) (median visual score, 1.0 [range, 0–14]; P = .08), and patients with GlyR antibodies alone (n = 3) (median visual score, 0 [range, 0–2]; P = .10). The median age of the 7 patients with GlyR antibodies was 27 (range, 11–38) years; 5 (71%) of these were female. Among the 3 patients with GlyR antibodies alone, 1 patient had monophasic ON, 1 had recurrent isolated

  7. Anti-aquaporin-4 antibodies in Devic’s neuromyelitis optica: therapeutic implications

    PubMed Central

    Marignier, Romain; Giraudon, Pascale; Vukusic, Sandra; Confavreux, Christian; Honnorat, Jérôme

    2010-01-01

    Devic’s neuromyelitis optica (DNMO) is a demyelinating and inflammatory disease of the central nervous system (CNS) essentially restricted to the spinal cord and the optic nerves. It is a rare disorder with a prevalence estimated at less than 1/100,000 in Western countries. Since the first description by Eugène Devic in 1894, the relationship between DNMO and multiple sclerosis (MS) has been controversial. Recent clinical, epidemiological, pathological and immunological data demonstrate that MS and DNMO are distinct entities. This distinction between DNMO and MS is crucial, as prognosis and treatment are indeed different. DNMO is now considered to be an autoimmune, antibody-mediated disease especially since the identification of a specific serum autoantibody, named NMO-IgG and directed against the main water channel of the CNS, aquaporin-4 (AQP4). The assessment of AQP4 antibodies (Abs) has initially been proposed to differentiate DNMO and MS. It has also enlarged the clinical spectrum of DNMO and proved to be helpful in predicting relapses and conversion to DNMO after a first episode of longitudinally extensive transverse myelitis or isolated optic neuritis. Lastly, the discovery of the pathogenic role of AQP4 Abs in DNMO leads to a better understanding of detailed DNMO immunopathology and the elaboration of relevant novel treatment strategies specific to DNMO. In this review, we summarize the present and future therapeutic implications generated by the discovery of the various pathogenic mechanisms of AQP4 Abs in DNMO pathophysiology. PMID:21179621

  8. Regional registration of [6-14C]glucose metabolism during brain activation of α-syntrophin knockout mice

    PubMed Central

    Cruz, Nancy F.; Ball, Kelly K.; Froehner, Stanley C.; Adams, Marvin E.; Dienel, Gerald A.

    2013-01-01

    α-Syntrophin is a component of the dystrophin scaffold-protein complex that serves as an adaptor for recruitment of key proteins to the cytoplasmic side of plasma membranes. α-Syntrophin knockout (KO) causes loss of the polarized localization of aquaporin4 (AQP4) at astrocytic endfeet and interferes with water and K+ homeostasis. During brain activation, release of ions and metabolites from endfeet is anticipated to increase perivascular fluid osmolarity, AQP4-mediated osmotic water flow from endfeet, and metabolite washout from brain. This study tests the hypothesis that reduced levels of endfoot AQP4 increase retention of [14C]metabolites during sensory stimulation. Conscious KO and wildtype mice were pulse-labeled with [6-14C]glucose during unilateral acoustic stimulation or bilateral acoustic plus whisker stimulation, and label retention was assayed by computer-assisted brain imaging or analysis of [14C]metabolites in extracts, respectively. High-resolution autoradiographic assays detected a 17% side-to-side difference (P<0.05) in inferior colliculus of KO mice, not wildtype mice. However, there were no labeling differences between KO and wildtype mice for five major HPLC fractions from four dissected regions, presumably due to insufficient anatomical resolution. The results suggest a role for AQP4-mediated water flow in support of washout of metabolites, and underscore the need for greater understanding of astrocytic water and metabolite fluxes. PMID:23346911

  9. Fluoxetin Upregulates Connexin 43 Expression in Astrocyte

    PubMed Central

    Mostafavi, Hossein; Khaksarian, Mojtaba; Joghataei, Mohammad Taghi; Hassanzadeh, Gholamreza; Soleimani, Masoud; Eftekhari, Sanaz; Soleimani, Mansooreh; Mousavizadeh, Kazem; Hadjighassem, Mahmoud Reza

    2014-01-01

    Introduction Recent studies have shown that astrocytes play major roles in normal and disease condition of the central nervous system including multiple sclerosis (MS). Molecular target therapy studies in MS have revealed that connexin-43 (Cx43) and Aquaporin-4 (AQP4) contents of astrocytes undergo expression alteration. Fluoxetine had some effects in MS patients unrelated to its known antidepressant effects. Some of fluoxetine effects were attributed to its capability of cAMP signaling pathway stimulation. This study aimed to investigate possible acute effects of fluoxetine on Cx43 and AQP4 expression in astrocyte. Methods Astrocytoma cells were treated for 24 hours with fluoxetine (10 and 20 µg/ml) with or without adenyl cyclase (AC) and protein kinase A (PKA) inhibition. Cx43 expression at both mRNA and protein levels and AQP4 expression at mRNA level were evaluated. Results Acquired results showed that fluoxetine with and without AC and PKA inhibition resulted in Cx43 up-regulation both in mRNA and protein levels, whereas AQP4 expression have not changed. Discussion In conclusion, data showed that fluoxetine alone and in the absence of serotonin acutely up-regulated Cx43 expression in astrocytes that can be assumed in molecular target therapy of MS patients. It seems that cAMP involvement in fluoxetine effects need more researches. PMID:25436087

  10. Bilateral optic neuritis in a boy - More than the eyes.

    PubMed

    Loh, M A; Alex Khoo, P C; Chong, M F

    2016-04-01

    Neuromyelitis optica (NMO) is a rare disorder in children with variable presentation. We report a 7-year-old boy who presented with bilateral retrobulbar optic neuritis and responded very well to treatment. He was also positive for aquaporin 4 (AQP4) antibodies, which is part of an emerging endophenotype within autoimmune neurological disorders in childhood. PMID:27326949

  11. Comparative Analysis for the Presence of IgG Anti-Aquaporin-1 in Patients with NMO-Spectrum Disorders.

    PubMed

    Sánchez Gomar, Ismael; Díaz Sánchez, María; Uclés Sánchez, Antonio José; Casado Chocán, José Luis; Suárez-Luna, Nela; Ramírez-Lorca, Reposo; Villadiego, Javier; Toledo-Aral, Juan José; Echevarría, Miriam

    2016-01-01

    Detection of IgG anti-Aquaporin-4 (AQP4) in serum of patients with Neuromyelitis optica syndrome disorders (NMOSD) has improved diagnosis of these processes and differentiation from Multiple sclerosis (MS). Recent findings also claim that a subgroup of patients with NMOSD, serum negative for IgG-anti-AQP4, present antibodies anti-AQP1 instead. Explore the presence of IgG-anti-AQP1 using a previously developed cell-based assay (CBA) highly sensitive to IgG-anti-AQP4. Serum of 205 patients diagnosed as NMOSD (8), multiple sclerosis (94), optic neuritis (39), idiopathic myelitis (29), other idiopathic demyelinating disorders of the central nervous system (9), other neurological diseases (18) and healthy controls (8), were used in a CBA over fixed HEK cells transfected with hAQP1-EGFP or hM23-AQP4-EGFP, treated with Triton X-100 and untreated. ELISA was also performed. Analysis of serum with our CBA indicated absence of anti-AQP1 antibodies, whereas in cells pretreated with detergent, noisy signal made reliable detection impossible. ELISA showed positive results in few serums. The low number of NMOSD serums included in our study reduces its power to conclude the specificity of AQP1 antibodies as new biomarkers of NMOSD. Our study does not sustain detection of anti-AQP1 in serum of NMOSD patients but further experiments are expected. PMID:27455255

  12. Anti-aquaporin-4 autoantibodies in systemic lupus erythematosus persist for years and induce astrocytic cytotoxicity but not CNS disease.

    PubMed

    Alexopoulos, Harry; Kampylafka, Eleni I; Fouka, Penelope; Tatouli, Ioanna; Akrivou, Sofia; Politis, Panagiotis K; Moutsopoulos, Haralampos M; Tzioufas, Athanasios G; Dalakas, Marinos C

    2015-12-15

    Anti-aquaporin-4 autoantibodies are specific for the neuromyelitis optica spectrum disorders (NMOSD) and they have also been described in patients with systemic lupus erythematosus (SLE) with neurological signs consistent with NMOSD. Our objective was to test for the presence and pathogenicity of anti-AQP4 antibodies in SLE patients without neurological disease. Sera from 89 non-CNS-SLE patients were screened for anti-AQP4 autoantibodies. Two of the 89 patients were positive. Archived samples dating back 11 years were also positive. A brain and spinal cord MRI did not reveal any NMOSD-compatible lesions. An in vitro cytotoxicity assay showed that either sera or purified IgG from these patients induced a complement-mediated damage in cultured astrocytes comparable to antibodies obtained from typical NMO patients. We conclude that AQP4-antibodies can be present in SLE patients and persist for many years, without concurrent clinical or radiological NMOSD signs. It is unclear why the anti-AQP4 antibodies did not induce CNS disease. PMID:26616866

  13. Comparative Analysis for the Presence of IgG Anti-Aquaporin-1 in Patients with NMO-Spectrum Disorders

    PubMed Central

    Sánchez Gomar, Ismael; Díaz Sánchez, María; Uclés Sánchez, Antonio José; Casado Chocán, José Luis; Suárez-Luna, Nela; Ramírez-Lorca, Reposo; Villadiego, Javier; Toledo-Aral, Juan José; Echevarría, Miriam

    2016-01-01

    Detection of IgG anti-Aquaporin-4 (AQP4) in serum of patients with Neuromyelitis optica syndrome disorders (NMOSD) has improved diagnosis of these processes and differentiation from Multiple sclerosis (MS). Recent findings also claim that a subgroup of patients with NMOSD, serum negative for IgG-anti-AQP4, present antibodies anti-AQP1 instead. Explore the presence of IgG-anti-AQP1 using a previously developed cell-based assay (CBA) highly sensitive to IgG-anti-AQP4. Serum of 205 patients diagnosed as NMOSD (8), multiple sclerosis (94), optic neuritis (39), idiopathic myelitis (29), other idiopathic demyelinating disorders of the central nervous system (9), other neurological diseases (18) and healthy controls (8), were used in a CBA over fixed HEK cells transfected with hAQP1-EGFP or hM23-AQP4-EGFP, treated with Triton X-100 and untreated. ELISA was also performed. Analysis of serum with our CBA indicated absence of anti-AQP1 antibodies, whereas in cells pretreated with detergent, noisy signal made reliable detection impossible. ELISA showed positive results in few serums. The low number of NMOSD serums included in our study reduces its power to conclude the specificity of AQP1 antibodies as new biomarkers of NMOSD. Our study does not sustain detection of anti-AQP1 in serum of NMOSD patients but further experiments are expected. PMID:27455255

  14. Longstanding spastic paraparesis in a patient infected with hepatitis C virus and seropositive for aquaporin-4 antibody - Case report and review of the literature.

    PubMed

    Ferreira, João Dias; Caldas, Ana Castro; de Sá, João Correia; Geraldes, Ruth

    2016-07-01

    Nervous system involvement in Hepatitis C virus infection (HCV) has been associated to neuro-immunological deregulation, particularly in interferon-alpha treated patients. We present a case of optic and brainstem demyelinating disorder associated with aquaporin-4 (AQP4) antibodies. A 48 year-old woman, with previous diagnosis of non-treated hepatitis C, presented with a 10-year history of long-standing gait disturbance. Neurological examination disclosed a grade 4 spastic paraparesis, lower limb hyperreflexia, right positive Hoffmann sign, bilateral Babinski sign and spastic gait only possible with bilateral support. Spinal cord magnetic resonance imaging (MRI) was normal. Brain MRI showed an asymmetric, bilateral pontine and left mesencephalic hypersignal in T2 and FLAIR, with no gadolinium enhancement. Visual evoked potential revealed bilateral pre-chiasmatic conduction delay. Blood tests showed a positive anti-HCV antibody and a positive AQP4 antibody. Cerebrospinal fluid (CSF) analysis was normal, with no oligoclonal bands. The patient started intravenous (IV) methylprednisolone followed by oral prednisolone; simultaneously, interferon-alpha and ribavirin. There was a slight clinical improvement within the first weeks. There are 7 cases describing association between HCV infection and central nervous system (CNS) demyelination with positive AQP4 antibody, 4 patients under interferon-α. AQP4 antibodies should be tested in patients infected with HCV and CNS demyelination. PMID:27456886

  15. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders

    PubMed Central

    Banwell, Brenda; Bennett, Jeffrey L.; Cabre, Philippe; Carroll, William; Chitnis, Tanuja; de Seze, Jérôme; Fujihara, Kazuo; Greenberg, Benjamin; Jacob, Anu; Jarius, Sven; Lana-Peixoto, Marco; Levy, Michael; Simon, Jack H.; Tenembaum, Silvia; Traboulsee, Anthony L.; Waters, Patrick; Wellik, Kay E.

    2015-01-01

    Neuromyelitis optica (NMO) is an inflammatory CNS syndrome distinct from multiple sclerosis (MS) that is associated with serum aquaporin-4 immunoglobulin G antibodies (AQP4-IgG). Prior NMO diagnostic criteria required optic nerve and spinal cord involvement but more restricted or more extensive CNS involvement may occur. The International Panel for NMO Diagnosis (IPND) was convened to develop revised diagnostic criteria using systematic literature reviews and electronic surveys to facilitate consensus. The new nomenclature defines the unifying term NMO spectrum disorders (NMOSD), which is stratified further by serologic testing (NMOSD with or without AQP4-IgG). The core clinical characteristics required for patients with NMOSD with AQP4-IgG include clinical syndromes or MRI findings related to optic nerve, spinal cord, area postrema, other brainstem, diencephalic, or cerebral presentations. More stringent clinical criteria, with additional neuroimaging findings, are required for diagnosis of NMOSD without AQP4-IgG or when serologic testing is unavailable. The IPND also proposed validation strategies and achieved consensus on pediatric NMOSD diagnosis and the concepts of monophasic NMOSD and opticospinal MS. PMID:26092914

  16. Aquaporin-4 autoimmunity

    PubMed Central

    Zekeridou, Anastasia

    2015-01-01

    Neuromyelitis optica (NMO) and a related spectrum of inflammatory CNS disorders are unified by detection of a serum autoantibody specific for the aquaporin-4 (AQP4) water channel, which is abundant in astrocytic foot processes. The classic clinical manifestations of NMO are optic neuritis and longitudinally extensive transverse myelitis. Newly recognized manifestations of AQP4 autoimmunity include lesions of circumventricular organs and skeletal muscle. NMO is commonly relapsing, is frequently accompanied by other autoimmune disorders, and sometimes occurs in a paraneoplastic context. The goals of treatment are to minimize neurologic disability in the acute attack and thereafter to prevent relapses and cumulative disability. The disease specificity of AQP4 immunoglobulin (Ig) G approaches 100% using optimized molecular-based detection assays. Clinical, immunohistopathologic, and in vitro evidence support this antibody being central to NMO pathogenesis. Current animal models yield limited histopathologic characteristics of NMO, with no clinical deficits to date. Recent descriptions of a myelin oligodendrocyte glycoprotein autoantibody in a minority of patients with NMO spectrum phenotype who lack AQP4-IgG predict serologic delineation of additional distinctive disease entities. PMID:26185772

  17. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders.

    PubMed

    Wingerchuk, Dean M; Banwell, Brenda; Bennett, Jeffrey L; Cabre, Philippe; Carroll, William; Chitnis, Tanuja; de Seze, Jérôme; Fujihara, Kazuo; Greenberg, Benjamin; Jacob, Anu; Jarius, Sven; Lana-Peixoto, Marco; Levy, Michael; Simon, Jack H; Tenembaum, Silvia; Traboulsee, Anthony L; Waters, Patrick; Wellik, Kay E; Weinshenker, Brian G

    2015-07-14

    Neuromyelitis optica (NMO) is an inflammatory CNS syndrome distinct from multiple sclerosis (MS) that is associated with serum aquaporin-4 immunoglobulin G antibodies (AQP4-IgG). Prior NMO diagnostic criteria required optic nerve and spinal cord involvement but more restricted or more extensive CNS involvement may occur. The International Panel for NMO Diagnosis (IPND) was convened to develop revised diagnostic criteria using systematic literature reviews and electronic surveys to facilitate consensus. The new nomenclature defines the unifying term NMO spectrum disorders (NMOSD), which is stratified further by serologic testing (NMOSD with or without AQP4-IgG). The core clinical characteristics required for patients with NMOSD with AQP4-IgG include clinical syndromes or MRI findings related to optic nerve, spinal cord, area postrema, other brainstem, diencephalic, or cerebral presentations. More stringent clinical criteria, with additional neuroimaging findings, are required for diagnosis of NMOSD without AQP4-IgG or when serologic testing is unavailable. The IPND also proposed validation strategies and achieved consensus on pediatric NMOSD diagnosis and the concepts of monophasic NMOSD and opticospinal MS. PMID:26092914

  18. Intrapulmonary aquaporin-5 expression as a possible biomarker for discriminating smothering and choking from sudden cardiac death: a pilot study.

    PubMed

    Wang, Qi; Ishikawa, Takaki; Michiue, Tomomi; Zhu, Bao-Li; Guan, Da-Wei; Maeda, Hitoshi

    2012-07-10

    The diagnosis of mechanical asphyxia as a cause of death, especially smothering and choking lacking evident injury, is one of the most difficult tasks in forensic pathology. The present study investigated the intrapulmonary expressions of aquaporins (AQPs; AQP-1 and AQP-5), as markers of water homeostasis, in forensic autopsy cases (total n=64, within 48 h postmortem) of mechanical asphyxiation due to neck compression (strangulation, n=24), including manual/ligature strangulation (n=12) and atypical hanging (n=12), smothering (n=7) and choking (n=8), compared with sudden cardiac death (n=14) and acute brain injury (n=11). Quantification of mRNA using a Taqman real-time PCR assay system demonstrated suppressed expression of AQP-5, but not AQP-1, in smothering and choking, compared with that in strangulation as well as sudden cardiac death and acute brain injury death. Immunostaining of AQP-5 was weakly detected in a linear pattern in the type I alveolar epithelial cells in smothering and choking cases, while cardiac and brain injury death showed marked positivity, and most strangulation cases had AQP-5-positive granular aggregates and fragments in intra-alveolar spaces. These observations indicate a partial difference in pulmonary molecular pathology among these causes of death, suggesting a procedure for possible discrimination of smothering and choking from sudden cardiac death. PMID:22421325

  19. Botulinum toxin A inhibits salivary secretion of rabbit submandibular gland.

    PubMed

    Shan, Xiao-Feng; Xu, Hui; Cai, Zhi-Gang; Wu, Li-Ling; Yu, Guang-Yan

    2013-12-01

    Botulinum toxin A (BTXA) has been used in several clinical trials to treat excessive glandular secretion; however, the precise mechanism of its action on the secretory function of salivary gland has not been fully elucidated. In this study, we aimed to investigate the effect of BTXA on secretion of submandibular gland in rabbits and to identify its mechanism of action on the secretory function of salivary gland. At 12 weeks after injection with 5 units of BTXA, we found a significant decrease in the saliva flow from submandibular glands, while the salivary amylase concentration increased. Morphological analysis revealed reduction in the size of acinar cells with intracellular accumulation of secretory granules that coalesced to form a large ovoid structure. Expression of M3-muscarinic acetylcholine receptor (M3 receptor) and aquaporin-5 (AQP5) mRNA decreased after BTXA treatment, and distribution of AQP5 in the apical membrane was reduced at 1, 2 and 4 weeks after BTXA injection. Furthermore, BTXA injection was found to induce apoptosis of acini. These results indicate that BTXA decreases the fluid secretion of submandibular glands and increases the concentration of amylase in saliva. Decreased expression of M3 receptor and AQP5, inhibition of AQP5 translocation, and cell apoptosis might involve in BTXA-reduced fluid secretion of submandibular glands. PMID:24158141

  20. Aquaporin-5: from structure to function and dysfunction in cancer.

    PubMed

    Direito, Inês; Madeira, Ana; Brito, Maria Alexandra; Soveral, Graça

    2016-04-01

    Aquaporins, a highly conserved group of membrane proteins, are involved in the bidirectional transfer of water and small solutes across cell membranes taking part in many biological functions all over the human body. In view of the wide range of cancer malignancies in which aquaporin-5 (AQP5) has been detected, an increasing interest in its implication in carcinogenesis has emerged. Recent publications suggest that this isoform may enhance cancer cell proliferation, migration and survival in a variety of malignancies, with strong evidences pointing to AQP5 as a promising drug target and as a novel biomarker for cancer aggressiveness with high translational potential for therapeutics and diagnostics. This review addresses the structural and functional features of AQP5, detailing its tissue distribution and functions in human body, its expression pattern in a variety of tumors, and highlighting the underlying mechanisms involved in carcinogenesis. Finally, the actual progress of AQP5 research, implications in cancer biology and potential for cancer detection and prognosis are discussed. PMID:26837927

  1. The expression of aquaporins 1 and 5 in rat lung after thoracic irradiation

    PubMed Central

    Sun, Cheng-Ying; Zhao, Yu-Xia; Zhong, Wen; Liu, Da-Wei; Chen, Yan-Zhi; Qin, Li-Li; Bai, Lu; Liu, Dan

    2014-01-01

    Radiation-induced lung toxicity (RILT), leading to radiation pneumonia or fibrosis, is a primary problem of radiation therapy. The pathogenesis of RILT remains unclear. In this study, we used a rat model of RILT to examine the expression of aquaporins (AQPs) after radiation injury. Sprague Dawley rats were given a single dose of 17 Gy (dose rate of 3.0 Gy/min) of X-irradiation to the thorax. Rats that survived acute pneumonitis (at 1–4 weeks) were evaluated weekly for the expression of AQP1 and AQP5 in the lung by immunohistochemical and reverse transcription polymerase chain reaction (RT-PCR) analyses. Immunohistochemical analysis showed that AQP1 protein was expressed in the capillary endothelium, and its level was significantly decreased after irradiation. AQP5 protein was expressed in the alveolar epithelium, and its level was increased between Days 7 and 14 after irradiation but decreased at Day 28, compared with the sham group. The RT-PCR results were consistent with the immunohistochemical analysis results. In summary, this study provides the first report of AQP1 and AQP5 expression in a model of radiation-induced pulmonary inflammation and edema. Decreased levels of AQP1 and AQP5 after irradiation suggest that these proteins play a role in the pathogenesis of RILT. PMID:24570172

  2. A Single Amino Acid Substitution Prevents Recognition of a Dominant Human Aquaporin-4 Determinant in the Context of HLA-DRB1*03:01 by a Murine TCR

    PubMed Central

    Arellano, Benjamine; Hussain, Rehana; Miller-Little, William A.; Herndon, Emily; Lambracht-Washington, Doris; Eagar, Todd N.; Lewis, Robert; Healey, Don; Vernino, Steven; Greenberg, Benjamin M.; Stüve, Olaf

    2016-01-01

    Background Aquaporin 4 (AQP4) is considered a putative autoantigen in patients with Neuromyelitis optica (NMO), an autoinflammatory disorder of the central nervous system (CNS). HLA haplotype analyses of patients with NMO suggest a positive association with HLA-DRB1* 03:01. We previously showed that the human (h) AQP4 peptide 281–300 is the dominant immunogenic determinant of hAQP4 in the context of HLA-DRB1*03:01. This immunogenic peptide stimulates a strong Th1 and Th17 immune response. AQP4281-300-specific encephalitogenic CD4+ T cells should initiate CNS inflammation that results in a clinical phenotype in HLA-DRB1*03:01 transgenic mice. Methods Controlled study with humanized experimental animals. HLA-DRB1*03:01 transgenic mice were immunized with hAQP4281-300, or whole-length hAQP4 protein emulsified in complete Freund’s adjuvant. Humoral immune responses to both antigens were assessed longitudinally. In vivo T cell frequencies were assessed by tetramer staining. Mice were followed clinically, and the anterior visual pathway was tested by pupillometry. CNS tissue was examined histologically post-mortem. Flow cytometry was utilized for MHC binding assays and to immunophenotype T cells, and T cell frequencies were determined by ELISpot assay. Results Immunization with hAQP4281-300 resulted in an in vivo expansion of antigen-specific CD4+ T cells, and an immunoglobulin isotype switch. HLA-DRB1*03:01 TG mice actively immunized with hAQP4281-300, or with whole-length hAQP4 protein were resistant to developing a neurological disease that resembles NMO. Experimental mice show no histological evidence of CNS inflammation, nor change in pupillary responses. Subsequent analysis reveals that a single amino acid substitution from aspartic acid in hAQP4 to glutamic acid in murine (m)AQP4 at position 290 prevents the recognition of hAQP4281-300 by the murine T cell receptor (TCR). Conclusion Induction of a CNS inflammatory autoimmune disorder by active immunization of

  3. Neuromyelitis optica spectrum disorders

    PubMed Central

    Sepúlveda, Maria; Armangué, Thaís; Sola-Valls, Nuria; Arrambide, Georgina; Meca-Lallana, José E.; Oreja-Guevara, Celia; Mendibe, Mar; Alvarez de Arcaya, Amaya; Aladro, Yolanda; Casanova, Bonaventura; Olascoaga, Javier; Jiménez-Huete, Adolfo; Fernández-Fournier, Mireya; Ramió-Torrentà, Lluis; Cobo-Calvo, Alvaro; Viñals, Montserrat; de Andrés, Clara; Meca-Lallana, Virginia; Cervelló, Angeles; Calles, Carmen; Rubio, Manuel Barón; Ramo-Tello, Cristina; Caminero, Ana; Munteis, Elvira; Antigüedad, Alfredo R.; Blanco, Yolanda; Villoslada, Pablo; Montalban, Xavier; Graus, Francesc

    2016-01-01

    Objective: To (1) determine the value of the recently proposed criteria of neuromyelitis optica (NMO) spectrum disorder (NMOSD) that unify patients with NMO and those with limited forms (NMO/LF) with aquaporin-4 immunoglobulin G (AQP4-IgG) antibodies; and (2) investigate the clinical significance of the serologic status in patients with NMO. Methods: This was a retrospective, multicenter study of 181 patients fulfilling the 2006 NMO criteria (n = 127) or NMO/LF criteria with AQP4-IgG (n = 54). AQP4-IgG and myelin oligodendrocyte glycoprotein immunoglobulin G (MOG-IgG) antibodies were tested using cell-based assays. Results: Patients were mainly white (86%) and female (ratio 6.5:1) with median age at onset 39 years (range 10–77). Compared to patients with NMO and AQP4-IgG (n = 94), those with NMO/LF presented more often with longitudinally extensive transverse myelitis (LETM) (p < 0.001), and had lower relapse rates (p = 0.015), but similar disability outcomes. Nonwhite ethnicity and optic neuritis presentation doubled the risk for developing NMO compared with white race (p = 0.008) or LETM presentation (p = 0.008). Nonwhite race (hazard ratio [HR] 4.3, 95% confidence interval [CI] 1.4–13.6) and older age at onset were associated with worse outcome (for every 10-year increase, HR 1.7, 95% CI 1.3–2.2). Patients with NMO and MOG-IgG (n = 9) had lower female:male ratio (0.8:1) and better disability outcome than AQP4-IgG-seropositive or double-seronegative patients (p < 0.001). Conclusions: In patients with AQP4-IgG, the similar outcomes regardless of the clinical phenotype support the unified term NMOSD; nonwhite ethnicity and older age at onset are associated with worse outcome. Double-seronegative and AQP4-IgG-seropositive NMO have a similar clinical outcome. The better prognosis of patients with MOG-IgG and NMO suggests that phenotypic and serologic classification is useful. PMID:27144216

  4. Changes in aquaporin-4 and Kir4.1 expression in rats with inherited retinal dystrophy.

    PubMed

    Lassiale, S; Valamanesh, F; Klein, C; Hicks, D; Abitbol, M; Versaux-Botteri, C

    2016-07-01

    Muller glial cells (MGC) are essential for normal functioning of retina. They are especially involved in potassium (K+) and water homeostasis, via inwardly rectifying K+ (Kir 4.1) and aquaporin-4 (AQP4) channels respectively. Because MGC appear morphologically and functionally altered in most retinal pathologies, we studied the expression of AQP 4 and Kir 4.1 during the time course of progressive retinal degeneration in Royal College of Surgeons (RCS) rats, an animal model for the hereditary human retinal degenerative disease Retinitis pigmentosa. Simultaneous detection of AQP4 and Kir 4.1 was performed by quantitative real-time polymerase chain reaction (QRT-PCR), Western blot and immunohistochemistry at birth and during progression of the pathology. Although small quantities of AQP4 and Kir 4.1 mRNA were detected at birth (postnatal day (PNd) 0) in both control and dystrophic rat retinas, proteins could not be detected at this age. Detectable proteins appeared in the second week of postnatal life. From PNd15 onwards, the time course in the expression of both AQP4 and Kir 4.1 mRNAs and protein was similar in dystrophic and control rats, with a progressive increase peaking at PNd60 and a subsequent decrease by one year. AQP4 protein and mRNA content were significantly lowered in dystrophic compared to control rats. Kir 4.1 protein levels were also lower in dystrophic retinas, while mRNA concentrations were unchanged and/or slightly higher in dystrophic rats. The discrepancies between Kir4.1 mRNA and protein suggest perturbation in protein translation due to the pathology. AQP4 and Kir 4.1/vimentin co-immunolabeling showed that: 1) apical radial processes of some MGC invaded the subretinal zone, and 2) MGC morphology was distorted in advanced pathology. MGC became hypertrophic both during the pathology and also with age in control rats. In conclusion, our results confirm that this inherited photoreceptor degeneration also leads to progressive alterations in

  5. Optic neuritis: a 5-year follow-up study of Chinese patients based on aquaporin-4 antibody status and ages.

    PubMed

    Zhou, Huanfen; Zhao, Shuo; Yin, Dongfang; Chen, Xiaofei; Xu, Quangang; Chen, Tingjun; Li, Xiaoyan; Wang, Junqing; Li, Hongyang; Peng, Chunxia; Lin, Dahe; Wei, Shihui

    2016-07-01

    Little work has been performed on the long-term outcome of optic neuritis (ON) according to the status of aquaporin-4 antibody (AQP4-Ab) and long-term prognosis in older patients in China. This study retrospectively analyzed medical records in a cohort of Chinese patients with 5-year follow-up according to AQP4-Ab status and ages from January 2009 to December 2010. The clinical features, laboratory findings and risk factors for prognosis were analyzed. A total of 128 ON patients were included, 66.4 % of whom were female. The median age at onset was 36.8 years (range 18-73). Serum AQP4-Ab was positive in 45 (35.2 %) patients, with greater frequency in the female, bilateral, and recurrent ON groups (48.2, 42.5 and 53.6 %, respectively). Seropositive AQP4-Ab ON patients had worse visual recovery compared to seronegative patients (p = 0.033). The average and four quadrants of retinal nerve fiber layer (RNFL) thickness were significantly thinner in the seropositive group than in the seronegative group (p < 0.05). At 5-year follow-up, the ON recurrence rate was higher in the seropositive AQP4-Ab patients (37/45, 82.3 %) than in the seronegative patients (35/83, 42.2 %, p < 0.001). Among the seropositive patients, 40 % (18/45) developed neuromyelitis optica (NMO). Only 1.2 % (1/83) of the seronegative patients developed NMO and 4.8 % (4/83) developed to MS. Further, the multivariate analysis in seropositive AQP4-Ab patients showed that two risk factors for transverse myelitis (TM) episode were ocular pain and recurrence within 1 year. The older patients had worse visual outcome after the first episode of ON than the younger patients (p = 0.007). However, the two groups did not differ significantly with regard to prevalence of AQP4-Ab, long-term visual recovery and the risk of developing to NMO/MS. PMID:27159992

  6. Expression of aquaporins in bronchial tissue and lung parenchyma of patients with chronic obstructive pulmonary disease

    PubMed Central

    2014-01-01

    Background Aquaporins AQP1 and AQP5 are highly expressed in the lung. Recent studies have shown that the expression of these proteins may be mechanistically involved in the airway inflammation and in the pathogenesis of chronic obstructive pulmonary disease (COPD). The aim of this study was to investigate the expression of AQP1 and AQP5 in the bronchial tissue and the lung parenchyma of patients with COPD and COPD-resistant smokers. Methods Using a case–control design, we selected a group of 15 subjects with COPD and 15 resistant smokers (smokers without COPD) as a control, all of whom were undergoing lung resection surgery due to a lung neoplasm. We studied the expression of AQP1 and AQP5 in the bronchial tissue and the lung parenchyma by means of immunohistochemistry and reverse-transcription real-time polymerase chain reaction. Tissue expression of AQP1 and AQP5 was semi-quantitatively assessed in terms of intensity and expression by immunohistochemistry using a 4-point scale ranging from 0 (none) to 3 (maximum). Results There were no significant differences in gene expression between COPD patients and resistant smokers both in the bronchial tissue and in the lung parenchyma. However, AQP1 gene expression was 2.41-fold higher in the parenchyma of smokers with COPD compared to controls, whereas the AQP5 gene showed the opposite pattern, with a 7.75-fold higher expression in the bronchus of smokers with COPD compared with controls. AQP1 and AQP5 proteins were preferentially expressed in endothelial cells, showing a higher intensity for AQP1 (66.7% of cases with an intensity of 3, and 93.3% of subjects with an extension of 3 among patients with COPD). Subtle interstitial disease was associated with type II pneumocyte hyperplasia and an increased expression of AQP1. Conclusions This study provides pilot observations on the differences in AQP1 and AQP5 expression between COPD patients and COPD-resistant smokers. Our findings suggest a potential role for AQP1 in the

  7. Anti-aquaporin-4 IgG in Patients Presenting with Unilateral Optic Neuritis: A Cohort Study

    PubMed Central

    Etemadifar, Masoud; Abtahi, Mohammad-Ali; Razmjoo, Hassan; Abtahi, Seyed-Hossein; Dehghani, Ali-Reza; Abtahi, Zahra-Alsadat; Akbari, Mojtaba; Mazaheri, Shahir; Maghzi, Amir-Hadi

    2012-01-01

    Background: Optic neuritis (ON) can be the first presentation of multiple sclerosis (MS) or neuromyelitis optica (NMO). Anti-aquaporin-4 IgG (AQP4 IgG) is a highly specific and moderately sensitive biomarker for NMO. This study was designed to assess the rate of seropositivity for AQP4 IgG, and the short-term outcome of patients presenting with single isolated ON (SION). Methods: A cohort of 41 consecutive patients experiencing severe (< 20 / 200) SION (not fulfilling the diagnostic criteria for MS or NMO), was prospectively recruited. Blood sampling was carried out immediately after the diagnosis of ON, and AQP4 IgG was tested qualitatively, using an indirect immunofluorescence kit. After clinical and paraclinical investigations, all the patients were followed up for a short-term period of at least 18 months. Results: The seroprevalence among the initial ON patients was 9.7% (4 / 41). The short-term conversion rate to MS and NMO was estimated to be about 7.3 and 4.9%, respectively. The conversion rate to NMO in initially seropositive patients was greater than that for the whole cohort [2 / 4 (50%) vs. 2 / 41 (4.9%); P = 0.035; Odds ratio: 19.5, 95% confidence interval: 1.73 to 219.50]. Conclusion: AQP4 IgG seropositive SION patients were more likely to develop NMO in comparison to the total SION population. Further studies, with a longer follow-up period and larger sample sizes are warranted to assess the clinical and prognostic value of assessing AQP4 IgG in SION. PMID:23024849

  8. Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes

    PubMed Central

    Hinson, Shannon R.; Romero, Michael F.; Popescu, Bogdan F. Gh.; Lucchinetti, Claudia F.; Fryer, James P.; Wolburg, Hartwig; Fallier-Becker, Petra; Noell, Susan; Lennon, Vanda A.

    2012-01-01

    The astrocytic aquaporin-4 (AQP4) water channel is the target of pathogenic antibodies in a spectrum of relapsing autoimmune inflammatory central nervous system disorders of varying severity that is unified by detection of the serum biomarker neuromyelitis optica (NMO)-IgG. Neuromyelitis optica is the most severe of these disorders. The two major AQP4 isoforms, M1 and M23, have identical extracellular residues. This report identifies two novel properties of NMO-IgG as determinants of pathogenicity. First, the binding of NMO-IgG to the ectodomain of astrocytic AQP4 has isoform-specific outcomes. M1 is completely internalized, but M23 resists internalization and is aggregated into larger-order orthogonal arrays of particles that activate complement more effectively than M1 when bound by NMO-IgG. Second, NMO-IgG binding to either isoform impairs water flux directly, independently of antigen down-regulation. We identified, in nondestructive central nervous system lesions of two NMO patients, two previously unappreciated histopathological correlates supporting the clinical relevance of our in vitro findings: (i) reactive astrocytes with persistent foci of surface AQP4 and (ii) vacuolation in adjacent myelin consistent with edema. The multiple molecular outcomes identified as a consequence of NMO-IgG interaction with AQP4 plausibly account for the diverse pathological features of NMO: edema, inflammation, demyelination, and necrosis. Differences in the nature and anatomical distribution of NMO lesions, and in the clinical and imaging manifestations of disease documented in pediatric and adult patients, may be influenced by regional and maturational differences in the ratio of M1 to M23 proteins in astrocytic membranes. PMID:22128336

  9. Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes.

    PubMed

    Hinson, Shannon R; Romero, Michael F; Popescu, Bogdan F Gh; Lucchinetti, Claudia F; Fryer, James P; Wolburg, Hartwig; Fallier-Becker, Petra; Noell, Susan; Lennon, Vanda A

    2012-01-24

    The astrocytic aquaporin-4 (AQP4) water channel is the target of pathogenic antibodies in a spectrum of relapsing autoimmune inflammatory central nervous system disorders of varying severity that is unified by detection of the serum biomarker neuromyelitis optica (NMO)-IgG. Neuromyelitis optica is the most severe of these disorders. The two major AQP4 isoforms, M1 and M23, have identical extracellular residues. This report identifies two novel properties of NMO-IgG as determinants of pathogenicity. First, the binding of NMO-IgG to the ectodomain of astrocytic AQP4 has isoform-specific outcomes. M1 is completely internalized, but M23 resists internalization and is aggregated into larger-order orthogonal arrays of particles that activate complement more effectively than M1 when bound by NMO-IgG. Second, NMO-IgG binding to either isoform impairs water flux directly, independently of antigen down-regulation. We identified, in nondestructive central nervous system lesions of two NMO patients, two previously unappreciated histopathological correlates supporting the clinical relevance of our in vitro findings: (i) reactive astrocytes with persistent foci of surface AQP4 and (ii) vacuolation in adjacent myelin consistent with edema. The multiple molecular outcomes identified as a consequence of NMO-IgG interaction with AQP4 plausibly account for the diverse pathological features of NMO: edema, inflammation, demyelination, and necrosis. Differences in the nature and anatomical distribution of NMO lesions, and in the clinical and imaging manifestations of disease documented in pediatric and adult patients, may be influenced by regional and maturational differences in the ratio of M1 to M23 proteins in astrocytic membranes. PMID:22128336

  10. Combinations of differentiation markers distinguish subpopulations of alveolar epithelial cells in adult lung.

    PubMed

    Liebler, Janice M; Marconett, Crystal N; Juul, Nicholas; Wang, Hongjun; Liu, Yixin; Flodby, Per; Laird-Offringa, Ite A; Minoo, Parviz; Zhou, Beiyun

    2016-01-15

    Distal lung epithelium is maintained by proliferation of alveolar type II (AT2) cells and, for some daughter AT2 cells, transdifferentiation into alveolar type I (AT1) cells. We investigated if subpopulations of alveolar epithelial cells (AEC) exist that represent various stages in transdifferentiation from AT2 to AT1 cell phenotypes in normal adult lung and if they can be identified using combinations of cell-specific markers. Immunofluorescence microscopy showed that, in distal rat and mouse lungs, ∼ 20-30% of NKX2.1(+) (or thyroid transcription factor 1(+)) cells did not colocalize with pro-surfactant protein C (pro-SP-C), a highly specific AT2 cell marker. In distal rat lung, NKX2.1(+) cells coexpressed either pro-SP-C or the AT1 cell marker homeodomain only protein x (HOPX). Not all HOPX(+) cells colocalize with the AT1 cell marker aquaporin 5 (AQP5), and some AQP5(+) cells were NKX2.1(+). HOPX was expressed earlier than AQP5 during transdifferentiation in rat AEC primary culture, with robust expression of both by day 7. We speculate that NKX2.1 and pro-SP-C colocalize in AT2 cells, NKX2.1 and HOPX or AQP5 colocalize in intermediate or transitional cells, and HOPX and AQP5 are expressed without NKX2.1 in AT1 cells. These findings suggest marked heterogeneity among cells previously identified as exclusively AT1 or AT2 cells, implying the presence of subpopulations of intermediate or transitional AEC in normal adult lung. PMID:26545903

  11. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

    SciTech Connect

    Mouser, P.J.; N'Guessan, A.L.; Elifantz, H.; Holmes, D.E.; Williams, K.H.; Wilkins, M.J.; Long, P.E.; Lovley, D.R.

    2009-04-01

    The impact of ammonium availability on microbial community structure and the physiological status and activity of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by as much as two orders of magnitude (<4 to 400 {micro}M) across the study site. Analysis of 16S rRNA gene sequences suggested that ammonium influenced the composition of the microbial community prior to acetate addition with Rhodoferax species predominating over Geobacter species at the site with the highest ammonium, and Dechloromonas species dominating at sites with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to the concentration of acetate that was delivered to each location rather than the amount of ammonium available in the groundwater. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium importer gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during in situ uranium reduction, and that the abundance of amtB transcripts was inversely correlated to ammonium levels across all sites examined. These results suggest that nifD and amtB expression by subsurface Geobacter species are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB expression appears to be a useful approach for monitoring the nitrogen-related physiological status of Geobacter species in subsurface environments during bioremediation. This study also emphasizes the need for more detailed analysis of geochemical/physiological interactions at the field scale, in order to adequately model subsurface microbial processes.

  12. Membrane Sequestration of PII Proteins and Nitrogenase Regulation in the Photosynthetic Bacterium Rhodobacter capsulatus▿

    PubMed Central

    Tremblay, Pier-Luc; Drepper, Thomas; Masepohl, Bernd; Hallenbeck, Patrick C.

    2007-01-01

    Both Rhodobacter capsulatus PII homologs GlnB and GlnK were found to be necessary for the proper regulation of nitrogenase activity and modification in response to an ammonium shock. As previously reported for several other bacteria, ammonium addition triggered the AmtB-dependent association of GlnK with the R. capsulatus membrane. Native polyacrylamide gel electrophoresis analysis indicates that the modification/demodification of one PII homolog is aberrant in the absence of the other. In a glnK mutant, more GlnB was found to be membrane associated under these conditions. In a glnB mutant, GlnK fails to be significantly sequestered by AmtB, even though it appears to be fully deuridylylated. Additionally, the ammonium-induced enhanced sequestration by AmtB of the unmodifiable GlnK variant GlnK-Y51F follows the wild-type GlnK pattern with a high level in the cytoplasm without the addition of ammonium and an increased level in the membrane fraction after ammonium treatment. These results suggest that factors other than PII modification are driving its association with AmtB in the membrane in R. capsulatus. PMID:17586647

  13. Neuroinflammation and Neurodegeneration in Adult Rat Brain from Binge Ethanol Exposure: Abrogation by Docosahexaenoic Acid

    PubMed Central

    Tajuddin, Nuzhath; Moon, Kwan-Hoon; Marshall, S. Alex; Nixon, Kimberly; Neafsey, Edward J.; Kim, Hee-Yong; Collins, Michael A.

    2014-01-01

    Evidence that brain edema and aquaporin-4 (AQP4) water channels have roles in experimental binge ethanol-induced neurodegeneration has stimulated interest in swelling/edema-linked neuroinflammatory pathways leading to oxidative stress. We report here that neurotoxic binge ethanol exposure produces comparable significant effects in vivo and in vitro on adult rat brain levels of AQP4 as well as neuroinflammation-linked enzymes: key phospholipase A2 (PLA2) family members and poly (ADP-ribose) polymerase-1 (PARP-1). In adult male rats, repetitive ethanol intoxication (3 gavages/d for 4 d, ∼9 g/kg/d, achieving blood ethanol levels ∼375 mg/dl; “Majchrowicz” model) significantly increased AQP4, Ca+2-dependent PLA2 GIVA (cPLA2), phospho-cPLA2 GIVA (p-cPLA2), secretory PLA2 GIIA (sPLA2) and PARP-1 in regions incurring extensive neurodegeneration in this model—hippocampus, entorhinal cortex, and olfactory bulb—but not in two regions typically lacking neurodamage, frontal cortex and cerebellum. Also, ethanol reduced hippocampal Ca+2-independent PLA2 GVIA (iPLA2) levels and increased brain “oxidative stress footprints” (4-hydroxynonenal-adducted proteins). For in vitro studies, organotypic cultures of rat hippocampal-entorhinocortical slices of adult age (∼60 d) were ethanol-binged (100 mM or ∼450 mg/dl) for 4 d, which augments AQP4 and causes neurodegeneration (Collins et al. 2013). Reproducing the in vivo results, cPLA2, p-cPLA2, sPLA2 and PARP-1 were significantly elevated while iPLA2 was decreased. Furthermore, supplementation with docosahexaenoic acid (DHA; 22:6n-3), known to quell AQP4 and neurodegeneration in ethanol-treated slices, blocked PARP-1 and PLA2 changes while counteracting endogenous DHA reduction and increases in oxidative stress footprints (3-nitrotyrosinated proteins). Notably, the PARP-1 inhibitor PJ-34 suppressed binge ethanol-dependent neurodegeneration, indicating PARP upstream involvement. The results with corresponding models

  14. MOG cell-based assay detects non-MS patients with inflammatory neurologic disease

    PubMed Central

    Woodhall, Mark; O'Connor, Kevin C.; Reindl, Markus; Lang, Bethan; Sato, Douglas K.; Juryńczyk, Maciej; Tackley, George; Rocha, Joao; Takahashi, Toshiyuki; Misu, Tatsuro; Nakashima, Ichiro; Palace, Jacqueline; Fujihara, Kazuo; Leite, M. Isabel; Vincent, Angela

    2015-01-01

    Objective: To optimize sensitivity and disease specificity of a myelin oligodendrocyte glycoprotein (MOG) antibody assay. Methods: Consecutive sera (n = 1,109) sent for aquaporin-4 (AQP4) antibody testing were screened for MOG antibodies (Abs) by cell-based assays using either full-length human MOG (FL-MOG) or the short-length form (SL-MOG). The Abs were initially detected by Alexa Fluor goat anti-human IgG (H + L) and subsequently by Alexa Fluor mouse antibodies to human IgG1. Results: When tested at 1:20 dilution, 40/1,109 sera were positive for AQP4-Abs, 21 for SL-MOG, and 180 for FL-MOG. Only one of the 40 AQP4-Ab–positive sera was positive for SL-MOG-Abs, but 10 (25%) were positive for FL-MOG-Abs (p = 0.0069). Of equal concern, 48% (42/88) of sera from controls (patients with epilepsy) were positive by FL-MOG assay. However, using an IgG1-specific secondary antibody, only 65/1,109 (5.8%) sera were positive on FL-MOG, and AQP4-Ab– positive and control sera were negative. IgM reactivity accounted for the remaining anti-human IgG (H + L) positivity toward FL-MOG. The clinical diagnoses were obtained in 33 FL-MOG–positive patients, blinded to the antibody data. IgG1-Abs to FL-MOG were associated with optic neuritis (n = 11), AQP4-seronegative neuromyelitis optica spectrum disorder (n = 4), and acute disseminated encephalomyelitis (n = 1). All 7 patients with probable multiple sclerosis (MS) were MOG-IgG1 negative. Conclusions: The limited disease specificity of FL-MOG-Abs identified using Alexa Fluor goat anti-human IgG (H + L) is due in part to detection of IgM-Abs. Use of the FL-MOG and restricting to IgG1-Abs substantially improves specificity for non-MS demyelinating diseases. Classification of evidence: This study provides Class II evidence that the presence of serum IgG1- MOG-Abs in AQP4-Ab–negative patients distinguishes non-MS CNS demyelinating disorders from MS (sensitivity 24%, 95% confidence interval [CI] 9%–45%; specificity 100%, 95% CI 88%

  15. Short myelitis lesions in aquaporin-4-IgG-positive neuromyelitis optica spectrum

    PubMed Central

    Flanagan, Eoin P.; Weinshenker, Brian G.; Krecke, Karl N.; Lennon, Vanda A.; Lucchinetti, Claudia F.; McKeon, Andrew; Wingerchuk, Dean M.; Shuster, Elizabeth A.; Jiao, Yujuan; Horta, Erika S.; Pittock, Sean J.

    2015-01-01

    Importance Short transverse myelitis (STM, <3 vertebral segments) is considered non-characteristic of neuromyelitis optica spectrum disorders (NMOSD). Poor recognition of the potential for STM to occur in NMOSD may lead to increased disability from delay in diagnosis and appropriate treatment. Objectives To determine the frequency of short lesions at the initial myelitis manifestation of NMOSD, and to compare the demographic, clinical and radiological characteristics of aquaporin-4-IgG (AQP4-IgG) seropositive and seronegative STM. Design, Setting, Participants We reviewed the records and images of Mayo Clinic AQP4-IgG positive NMOSD patients identified from 1996-2014. Inclusion criteria were: 1) first TM episode; 2) MRI performed ≤90 days from symptom onset; 3) Spinal cord T2-hyperintense lesion <3 vertebral segments; 4) AQP4-IgG seropositivity; 5) final diagnosis NMO or NMOSD. Patients with an initial longitudinally extensive transverse myelitis (LETM) were excluded (n=151). Patients with STM, seronegative for AQP4-IgG, among an Olmsted County population-based cohort of inflammatory demyelinating disorders of the central nervous system were used as a control group. Main Outcomes and Measures Delay to diagnosis in months, clinical and radiological characteristics and disability measured by ambulatory status. Results Twenty-five AQP4-IgG seropositive patients with an initial STM were included, representing 14% of initial myelitis episodes among NMOSD patients. The STM episode was: the first manifestation of NMOSD in 10 patients (40%); preceded by optic neuritis in 13 patients (52%); and preceded by a nausea and vomiting episode in 2 (8%). In comparison to the excluded NMOSD patients with an initial LETM, delay to diagnosis/treatment was greater when initial lesions were short (p=0.016). In AQP4-IgG positive STM cases subsequent myelitis episodes were longitudinally extensive in 92%. Attributes more common in aquaporin-4-IgG-positive STM patients than in 27

  16. Identification and Molecular Mechanisms of the Rapid Tonicity-induced Relocalization of the Aquaporin 4 Channel.

    PubMed

    Kitchen, Philip; Day, Rebecca E; Taylor, Luke H J; Salman, Mootaz M; Bill, Roslyn M; Conner, Matthew T; Conner, Alex C

    2015-07-01

    The aquaporin family of integral membrane proteins is composed of channels that mediate cellular water flow. Aquaporin 4 (AQP4) is highly expressed in the glial cells of the central nervous system and facilitates the osmotically driven pathological brain swelling associated with stroke and traumatic brain injury. Here we show that AQP4 cell surface expression can be rapidly and reversibly regulated in response to changes of tonicity in primary cortical rat astrocytes and in transfected HEK293 cells. The translocation mechanism involves PKA activation, influx of extracellular calcium, and activation of calmodulin. We identify five putative PKA phosphorylation sites and use site-directed mutagenesis to show that only phosphorylation at one of these sites, serine 276, is necessary for the translocation response. We discuss our findings in the context of the identification of new therapeutic approaches to treating brain edema. PMID:26013827

  17. Seronegative Neuromyelitis Optica Spectrum--the challenges on disease definition and pathogenesis.

    PubMed

    Sato, Douglas Kazutoshi; Callegaro, Dagoberto; Lana-Peixoto, Marco Aurélio; Nakashima, Ichiro; Fujihara, Kazuo

    2014-06-01

    Neuromyelitis optica spectrum disorders (NMOSD) are characterized by severe optic neuritis and/or longitudinally extensive transverse myelitis, and some brain lesions are also unique to NMOSD. Serum autoantibodies against aquaporin-4 (AQP4) are detected in most cases of NMOSD. However, some patients with NMOSD remain seronegative despite repetitive testing during attacks with highly sensitive cell-based assays. The differential diagnosis of NMOSD is not restricted to multiple sclerosis and it includes many diseases that can produce longitudinally extensive myelitis and/or optic neuritis. We review the clinical features, imaging, and laboratory findings that can be helpful on the diagnostic work-up, discuss the differences between AQP4 antibody positive and negative patients with NMOSD, including features of NMOSD with antibodies against myelin oligodendrocyte glycoprotein. PMID:24964112

  18. Insect glycerol transporters evolved by functional co-option and gene replacement

    PubMed Central

    Finn, Roderick Nigel; Chauvigné, François; Stavang, Jon Anders; Belles, Xavier; Cerdà, Joan

    2015-01-01

    Transmembrane glycerol transport is typically facilitated by aquaglyceroporins in Prokaryota and Eukaryota. In holometabolan insects however, aquaglyceroporins are absent, yet several species possess polyol permeable aquaporins. It thus remains unknown how glycerol transport evolved in the Holometabola. By combining phylogenetic and functional studies, here we show that a more efficient form of glycerol transporter related to the water-selective channel AQP4 specifically evolved and multiplied in the insect lineage, resulting in the replacement of the ancestral branch of aquaglyceroporins in holometabolan insects. To recapitulate this evolutionary process, we generate specific mutants in distantly related insect aquaporins and human AQP4 and show that a single mutation in the selectivity filter converted a water-selective channel into a glycerol transporter at the root of the crown clade of hexapod insects. Integration of phanerozoic climate models suggests that these events were associated with the emergence of complete metamorphosis and the unparalleled radiation of insects. PMID:26183829

  19. Identification and Molecular Mechanisms of the Rapid Tonicity-induced Relocalization of the Aquaporin 4 Channel*

    PubMed Central

    Kitchen, Philip; Day, Rebecca E.; Taylor, Luke H. J.; Salman, Mootaz M.; Bill, Roslyn M.; Conner, Matthew T.; Conner, Alex C.

    2015-01-01

    The aquaporin family of integral membrane proteins is composed of channels that mediate cellular water flow. Aquaporin 4 (AQP4) is highly expressed in the glial cells of the central nervous system and facilitates the osmotically driven pathological brain swelling associated with stroke and traumatic brain injury. Here we show that AQP4 cell surface expression can be rapidly and reversibly regulated in response to changes of tonicity in primary cortical rat astrocytes and in transfected HEK293 cells. The translocation mechanism involves PKA activation, influx of extracellular calcium, and activation of calmodulin. We identify five putative PKA phosphorylation sites and use site-directed mutagenesis to show that only phosphorylation at one of these sites, serine 276, is necessary for the translocation response. We discuss our findings in the context of the identification of new therapeutic approaches to treating brain edema. PMID:26013827

  20. Insect glycerol transporters evolved by functional co-option and gene replacement.

    PubMed

    Finn, Roderick Nigel; Chauvigné, François; Stavang, Jon Anders; Belles, Xavier; Cerdà, Joan

    2015-01-01

    Transmembrane glycerol transport is typically facilitated by aquaglyceroporins in Prokaryota and Eukaryota. In holometabolan insects however, aquaglyceroporins are absent, yet several species possess polyol permeable aquaporins. It thus remains unknown how glycerol transport evolved in the Holometabola. By combining phylogenetic and functional studies, here we show that a more efficient form of glycerol transporter related to the water-selective channel AQP4 specifically evolved and multiplied in the insect lineage, resulting in the replacement of the ancestral branch of aquaglyceroporins in holometabolan insects. To recapitulate this evolutionary process, we generate specific mutants in distantly related insect aquaporins and human AQP4 and show that a single mutation in the selectivity filter converted a water-selective channel into a glycerol transporter at the root of the crown clade of hexapod insects. Integration of phanerozoic climate models suggests that these events were associated with the emergence of complete metamorphosis and the unparalleled radiation of insects. PMID:26183829

  1. How astrocyte networks may contribute to cerebral metabolite clearance

    PubMed Central

    Asgari, Mahdi; de Zélicourt, Diane; Kurtcuoglu, Vartan

    2015-01-01

    The brain possesses an intricate network of interconnected fluid pathways that are vital to the maintenance of its homeostasis. With diffusion being the main mode of solute transport in cerebral tissue, it is not clear how bulk flow through these pathways is involved in the removal of metabolites. In this computational study, we show that networks of astrocytes may contribute to the passage of solutes between tissue and paravascular spaces (PVS) by serving as low resistance pathways to bulk water flow. The astrocyte networks are connected through aquaporin-4 (AQP4) water channels with a parallel, extracellular route carrying metabolites. Inhibition of the intracellular route by deletion of AQP4 causes a reduction of bulk flow between tissue and PVS, leading to reduced metabolite clearance into the venous PVS or, as observed in animal studies, a reduction of tracer influx from arterial PVS into the brain tissue. PMID:26463008

  2. How astrocyte networks may contribute to cerebral metabolite clearance.

    PubMed

    Asgari, Mahdi; de Zélicourt, Diane; Kurtcuoglu, Vartan

    2015-01-01

    The brain possesses an intricate network of interconnected fluid pathways that are vital to the maintenance of its homeostasis. With diffusion being the main mode of solute transport in cerebral tissue, it is not clear how bulk flow through these pathways is involved in the removal of metabolites. In this computational study, we show that networks of astrocytes may contribute to the passage of solutes between tissue and paravascular spaces (PVS) by serving as low resistance pathways to bulk water flow. The astrocyte networks are connected through aquaporin-4 (AQP4) water channels with a parallel, extracellular route carrying metabolites. Inhibition of the intracellular route by deletion of AQP4 causes a reduction of bulk flow between tissue and PVS, leading to reduced metabolite clearance into the venous PVS or, as observed in animal studies, a reduction of tracer influx from arterial PVS into the brain tissue. PMID:26463008

  3. Neuromyelitis optica: potential roles for intravenous immunoglobulin.

    PubMed

    Wingerchuk, Dean M

    2013-01-01

    Neuromyelitis optica (NMO) is an idiopathic central nervous system inflammatory demyelinating disease that causes optic neuritis, transverse myelitis, and other CNS syndromes. It is distinct from multiple sclerosis and is associated with autoantibodies that target aquaporin-4 (AQP4), an astrocyte water channel. Evidence indicating antibody-mediated immune injury in NMO includes its association with other autoimmune diseases, lesional pathology that reveals prominent complement activation and immunoglobulin deposition, pathogenic potential of AQP4 autoantibodies based on in vitro studies, and reports of putative animal models of the disease. The rationale and potential role for intravenous immunoglobulin in NMO will be discussed in the context of both relapse treatment and relapse prevention. PMID:22976554

  4. [A case of anti-aquaporin 4 antibody-positive Sjögren syndrome associated with a relapsed myelitis in pregnancy].

    PubMed

    Tsugawa, Jun; Tsuboi, Yoshio; Inoue, Hirosato; Baba, Yasuhiko; Yamada, Tatsuo

    2010-01-01

    It is known that pregnancy influences the relapsing rate of multiple sclerosis (MS); however, interaction between pregnancy and relapse of neuromyelitis optica (NMO), a distinct disease from MS, remains unclear. A 34-year-old woman who 1 year previously had clinical history of Sjögren syndrome complicated by myelitis with the presence of anti-AQP4 antibody in her serum, although there was no optic neuritis involvement, was neurologically normal at time of becoming pregnant. In the 22nd week of her pregnancy, however, she developed abdominal belt-shaped numbness and sensory impairment followed by weakness of bilateral lower limb leading to difficulty of her gait. MR imaging revealed hyperintense lesions within the spinal cord extending from C2 to T2 vertebral level with marked spinal cord swelling, indicating relapse of myelitis associated with anti-AQP4 antibody. She was treated with intravenous corticosteroid with marked benefits for her neurological status; she was able to walk without assistance after the treatment. However, in the 30th week she relapsed with myelitis at T2 to T9 vertebral level on MR imaging. Intravenous steroid administration again elicited improvement. She delivered a baby via Caesarean section at 34 weeks of pregnancy. After delivery, she started taking oral corticosteroid as preventive therapy for further relapse of myelitis; thus far she has had no relapse at 7 months of follow-up. There are few reports regarding the influence of pregnancy on anti-AQP4 antibody-positive myelitis. Although further investigation should be done to clarify the difference of immunological changes during pregnancy between NMO and conventional MS, our case together with previous reports indicate increased risk of relapse during pregnancy in NMO. It is necessary to remain vigilant against possible risk of relapse during pregnancy in patients with NMO and/or positive anti-AQP4 antibody. Intravenous steroid administration seems safe and effective against relapse of

  5. Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica

    PubMed Central

    Waters, Patrick; Reindl, Markus; Saiz, Albert; Schanda, Kathrin; Tuller, Friederike; Kral, Vlastimil; Nytrova, Petra; Sobek, Ondrej; Nielsen, Helle Hvilsted; Barington, Torben; Lillevang, Søren T; Illes, Zsolt; Rentzsch, Kristin; Berthele, Achim; Berki, Tímea; Granieri, Letizia; Bertolotto, Antonio; Giometto, Bruno; Zuliani, Luigi; Hamann, Dörte; van Pelt, E Daniëlle; Hintzen, Rogier; Höftberger, Romana; Costa, Carme; Comabella, Manuel; Montalban, Xavier; Tintoré, Mar; Siva, Aksel; Altintas, Ayse; Deniz, Günnur; Woodhall, Mark; Palace, Jacqueline; Paul, Friedemann; Hartung, Hans-Peter; Aktas, Orhan; Jarius, Sven; Wildemann, Brigitte; Vedeler, Christian; Ruiz, Anne; Leite, M Isabel; Trillenberg, Peter; Probst, Monika; Saschenbrecker, Sandra; Vincent, Angela; Marignier, Romain

    2016-01-01

    Objective Antibodies to cell surface central nervous system proteins help to diagnose conditions which often respond to immunotherapies. The assessment of antibody assays needs to reflect their clinical utility. We report the results of a multicentre study of aquaporin (AQP) 4 antibody (AQP4-Ab) assays in neuromyelitis optica spectrum disorders (NMOSD). Methods Coded samples from patients with neuromyelitis optica (NMO) or NMOSD (101) and controls (92) were tested at 15 European diagnostic centres using 21 assays including live (n=3) or fixed cell-based assays (n=10), flow cytometry (n=4), immunohistochemistry (n=3) and ELISA (n=1). Results Results of tests on 92 controls identified 12assays as highly specific (0–1 false-positive results). 32 samples from 50 (64%) NMO sera and 34 from 51 (67%) NMOSD sera were positive on at least two of the 12 highly specific assays, leaving 35 patients with seronegative NMO/spectrum disorder (SD). On the basis of a combination of clinical phenotype and the highly specific assays, 66 AQP4-Ab seropositive samples were used to establish the sensitivities (51.5–100%) of all 21 assays. The specificities (85.8–100%) were based on 92 control samples and 35 seronegative NMO/SD patient samples. Conclusions The cell-based assays were most sensitive and specific overall, but immunohistochemistry or flow cytometry could be equally accurate in specialist centres. Since patients with AQP4-Ab negative NMO/SD require different management, the use of both appropriate control samples and defined seronegative NMOSD samples is essential to evaluate these assays in a clinically meaningful way. The process described here can be applied to the evaluation of other antibody assays in the newly evolving field of autoimmune neurology. PMID:27113605

  6. Treadmill exercise ameliorates ischemia-induced brain edema while suppressing Na⁺/H⁺ exchanger 1 expression.

    PubMed

    Nishioka, Ryutaro; Sugimoto, Kana; Aono, Hitomi; Mise, Ayano; Choudhury, Mohammed E; Miyanishi, Kazuya; Islam, Afsana; Fujita, Takahiro; Takeda, Haruna; Takahashi, Hisaaki; Yano, Hajime; Tanaka, Junya

    2016-03-01

    Exercise may be one of the most effective and sound therapies for stroke; however, the mechanisms underlying the curative effects remain unclear. In this study, the effects of forced treadmill exercise with electric shock on ischemic brain edema were investigated. Wistar rats were subjected to transient (90 min) middle cerebral artery occlusion (tMCAO). Eighty nine rats with substantially large ischemic lesions were evaluated using magnetic resonance imaging (MRI) and were randomly assigned to exercise and non-exercise groups. The rats were forced to run at 4-6m/s for 10 min/day on days 2, 3 and 4. Brain edema was measured on day 5 by MRI, histochemical staining of brain sections and tissue water content determination (n=7, each experiment). Motor function in some rats was examined on day 30 (n=6). Exercise reduced brain edema (P<0.05-0.001, varied by the methods) and ameliorated motor function (P<0.05). The anti-glucocorticoid mifepristone or the anti-mineralocorticoid spironolactone abolished these effects, but orally administered corticosterone mimicked the ameliorating effects of exercise. Exercise prevented the ischemia-induced expression of mRNA encoding aquaporin 4 (AQP4) and Na(+)/H(+) exchangers (NHEs) (n=5 or 7, P<0.01). Microglia and NG2 glia expressed NHE1 in the peri-ischemic region of rat brains and also in mixed glial cultures. Corticosterone at ~10nM reduced NHE1 and AQP4 expression in mixed glial and pure microglial cultures. Dexamethasone and aldosterone at 10nM did not significantly alter NHE1 and AQP4 expression. Exposure to a NHE inhibitor caused shrinkage of microglial cells. These results suggest that the stressful short-period and slow-paced treadmill exercise suppressed NHE1 and AQP4 expression resulting in the amelioration of brain edema at least partly via the moderate increase in plasma corticosterone levels. PMID:26724742

  7. Neutrophil Protease Inhibition Reduces Neuromyelitis Optica–Immunoglobulin G–Induced Damage in Mouse Brain

    PubMed Central

    Saadoun, Samira; Waters, Patrick; MacDonald, Claire; Bell, B. Anthony; Vincent, Angela; Verkman, A.S.; Papadopoulos, Marios C.

    2013-01-01

    Objective Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system associated with pathogenic autoantibodies against the astrocyte water channel protein aquaporin-4 (AQP4). The presence of neutrophils is a characteristic feature in NMO lesions in humans. Neutrophils are not generally found in multiple sclerosis lesions. We evaluated the role of neutrophils in a mouse NMO model. Methods NMO lesions were produced in mice by intracerebral injection of immunoglobulin G (IgG) isolated from NMO patient serum and human complement. We previously reported that this mouse model produces the characteristic histological features of NMO, including perivascular complement activation, inflammatory cell infiltration, and loss of myelin, AQP4, and glial fibrillary acidic protein. Lesions are absent when AQP4 null mice are used or when IgG from non-NMO patients is injected. Results We found remarkably reduced neuroinflammation, myelin loss, and AQP4 loss in brains of neutropenic mice at 24 hours and 7 days, and increased severity of NMO lesions in mice made neutrophilic by granulocyte colony stimulating factor. NMO lesions were greatly reduced by intracerebral administration of the neutrophil protease inhibitors Sivelestat and cathepsin G inhibitor I or by intraperitoneal injection of Sivelestat alone. Immunostaining of human NMO lesions for neutrophil elastase revealed many degranulating perivascular neutrophils, with no equivalent perivascular neutrophils in human multiple sclerosis lesions. Interpretation Our data implicate a central role of neutrophils in the pathogenesis of early NMO lesions and suggest the potential utility of neutrophil protease inhibitors such as Sivelestat in NMO therapy. PMID:22374891

  8. Early disruption of glial communication via connexin gap junction in multiple sclerosis, Baló's disease and neuromyelitis optica.

    PubMed

    Masaki, Katsuhisa

    2015-10-01

    Multiple sclerosis (MS), neuromyelitis optica (NMO), and Baló's disease (BD) are inflammatory demyelinating diseases of the CNS. We previously reported anti-aquaporin-4 (anti-AQP4) antibody-dependent AQP4 loss occurs in some NMO patients, while antibody-independent AQP4 astrocytopathy can occur in heterogeneous demyelinating conditions, including MS, NMO and BD. To investigate the relationship between astrocytopathy and demyelination, we focused on connexins (Cxs), which form gap junctions (GJs) between astrocytes and oligodendrocytes and maintain homeostasis in the CNS. We evaluated expression of astrocytic Cx43/Cx30 and oligodendrocytic Cx47/Cx32 in autopsied materials from MS, NMO and BD patients. Astrocytic Cx43 and oligodendrocytic Cx32/Cx47 expressions were significantly diminished in both demyelinated and preserved myelin layers in all BD samples. In the leading edge of BD lesions, Cx43 and AQP4 loss preceded Cx32/Cx47 loss. Half of the NMO and MS samples showed preferential loss of astrocytic Cx43 expression in actively demyelinating and chronic active lesions, where heterotypic Cx43/Cx47 astrocyte-oligodendrocyte GJs were lost. Cases with Cx43 loss were significantly associated with rapid disease progression, regardless of the disease phenotype. Pathologically, Cx43 loss was frequently accompanied by distal oligodendrogliopathy. Our findings suggest that Cx43 astrocytopathy can occur in MS, BD and NMO. Moreover, astrocytic Cx43 loss may be associated with disease aggressiveness and distal oligodendrogliopathy in demyelinating conditions. Early disruption of glial communications via GJs may cause loss of glia syncytium, thereby inducing oligodendroglial damage and myelin loss. Inhibition of Cx hemichannels and restoration of GJs may be a possible therapeutic target for demyelinating disorders. PMID:26016402

  9. The impact of agrin on the formation of orthogonal arrays of particles in cultured astrocytes from wild-type and agrin-null mice.

    PubMed

    Fallier-Becker, Petra; Sperveslage, Jan; Wolburg, Hartwig; Noell, Susan

    2011-01-01

    Astrocytic endfeet membranes are studded with aquaporin-4 (AQP4) containing orthogonal arrays of particles (OAP) which can be visualized exclusively by the freeze-fracturing method. They are predominantly expressed where the astroglial membrane is in contact with the superficial and perivascular basal lamina. This polarity seems to be essential for the integrity of the blood-brain barrier (BBB). The basal lamina containing many extracellular matrix (ECM) components such as collagen, laminin and heparansulfate proteoglycans like agrin is thought to influence this OAP-related polarity of astrocytes. Recently, we have shown that agrin, in particular the neuronal isoform A4B8, is capable of influencing the formation of OAPs in astrocytes when cultured in the presence of agrin-conditioned media. In this paper we wanted to investigate whether coating with exogenous agrin compared to coating with other ECM components would induce OAP formation in astrocytes of the agrin-null mouse. For this purpose, we cultured astrocytes from agrin-null and wild-type mice on agrin- or ECM-coated surfaces. Immunofluorescent cytochemical staining of AQP4 indicated a higher AQP4 expression level in cultures with agrin- or ECM-coated than in cultures with uncoated surfaces, whereas western blot analyses and PCR showed no differences. α-Dystroglycan is thought to be a potential receptor of agrin and was immunostained in wild-type as well as in agrin-null astrocytes. In freeze-fracture replicas, we observed an increase in OAP density in astrocytes when growing on agrin- and ECM-coatings. These results concurred with other experiments in which changes in volume were measured following hypotonic stress, which supported the positive influence of exogenous agrin on AQP4 insertion into the membrane, on OAP formation and on water transport. PMID:20920487

  10. Antibodies to MOG in adults with inflammatory demyelinating disease of the CNS

    PubMed Central

    Woodhall, Mark R.; Kim, Ji-Sun; Kim, Seong-Joon; Park, Kyung Seok; Vincent, Angela; Lee, Kwang-Woo

    2015-01-01

    Objective: To evaluate the clinical relevance of myelin oligodendrocyte glycoprotein antibody (MOG-Ab) in a cohort of adults with inflammatory demyelinating disease (IDD) of the CNS. Methods: Live cell-based assays for MOG-Ab (IgG1 subset) and antibody to aquaporin-4 (AQP4-Ab) were performed in a cohort of 270 adult patients with IDD and 72 controls. Patients were first grouped by positive antibody result as MOG-Ab or AQP4-Ab, and the remainder were grouped by published diagnostic criteria. Results: Seventeen patients with IDD (6.3%) had MOG-Abs and 49 patients (18.1%) had AQP4-Abs; none had both antibodies. The MOG-Ab patients predominantly manifested with isolated symptoms of optic neuritis (83%). One-third of these patients experienced relapses, which involved only the optic nerve, and all relapsed within 1 year of disease onset. At onset, MRI in the MOG-Ab group uniquely demonstrated perineural enhancement, extending to the soft tissues around the optic nerves (33%). Although about 30% of MOG-Ab patients had brain MRI lesions, they had fewer periventricular lesions than the 26 patients with relapsing-remitting multiple sclerosis (MS); none of these lesions were ovoid or perpendicular to the ventricle. Moreover, MOG-Ab patients did not meet the diagnostic criteria for definite neuromyelitis optica (NMO) and had less spinal cord involvement than the AQP4-Ab group. Four patients (23.5%) had poor visual outcomes (<0.2) or paraplegia. Conclusions: MOG-Abs may be a disease-specific biomarker in adult patients with IDD who have a disease distinct from NMO or MS. The radiologic as well as clinical manifestations of MOG-Ab patients can be useful in their differential diagnosis. PMID:26516628