Science.gov

Sample records for aquatic animal models

  1. Pharmacokinetic modeling in aquatic animals. 1. Models and concepts

    USGS Publications Warehouse

    Barron, M.G.; Stehly, Guy R.; Hayton, W.L.

    1990-01-01

    While clinical and toxicological applications of pharmacokinetics have continued to evolve both conceptually and experimentally, pharmacokinetics modeling in aquatic animals has not progressed accordingly. In this paper we present methods and concepts of pharmacokinetic modeling in aquatic animals using multicompartmental, clearance-based, non-compartmental and physiologically-based pharmacokinetic models. These models should be considered as alternatives to traditional approaches, which assume that the animal acts as a single homogeneous compartment based on apparent monoexponential elimination.

  2. Aquatic Animal Models – Not Just for Ecotox Anymore

    EPA Science Inventory

    A wide range of internationally harmonized toxicity test guidelines employing aquatic animal models have been established for regulatory use. For fish alone, there are over a dozen internationally harmonized toxicity test guidelines that have been, or are being, validated. To dat...

  3. Mathematical modeling and simulation of aquatic and aerial animal locomotion

    NASA Astrophysics Data System (ADS)

    Hou, T. Y.; Stredie, V. G.; Wu, T. Y.

    2007-08-01

    In this paper, we investigate the locomotion of fish and birds by applying a new unsteady, flexible wing theory that takes into account the strong nonlinear dynamics semi-analytically. We also make extensive comparative study between the new approach and the modified vortex blob method inspired from Chorin's and Krasny's work. We first implement the modified vortex blob method for two examples and then discuss the numerical implementation of the nonlinear analytical mathematical model of Wu. We will demonstrate that Wu's method can capture the nonlinear effects very well by applying it to some specific cases and by comparing with the experiments available. In particular, we apply Wu's method to analyze Wagner's result for a wing abruptly undergoing an increase in incidence angle. Moreover, we study the vorticity generated by a wing in heaving, pitching and bending motion. In both cases, we show that the new method can accurately represent the vortex structure behind a flying wing and its influence on the bound vortex sheet on the wing.

  4. Tool use by aquatic animals

    PubMed Central

    Mann, Janet; Patterson, Eric M.

    2013-01-01

    Tool-use research has focused primarily on land-based animals, with less consideration given to aquatic animals and the environmental challenges and conditions they face. Here, we review aquatic tool use and examine the contributing ecological, physiological, cognitive and social factors. Tool use among aquatic animals is rare but taxonomically diverse, occurring in fish, cephalopods, mammals, crabs, urchins and possibly gastropods. While additional research is required, the scarcity of tool use can likely be attributable to the characteristics of aquatic habitats, which are generally not conducive to tool use. Nonetheless, studying tool use by aquatic animals provides insights into the conditions that promote and inhibit tool-use behaviour across biomes. Like land-based tool users, aquatic animals tend to find tools on the substrate and use tools during foraging. However, unlike on land, tool users in water often use other animals (and their products) and water itself as a tool. Among sea otters and dolphins, the two aquatic tool users studied in greatest detail, some individuals specialize in tool use, which is vertically socially transmitted possibly because of their long dependency periods. In all, the contrasts between aquatic- and land-based tool users enlighten our understanding of the adaptive value of tool-use behaviour. PMID:24101631

  5. Tool use by aquatic animals.

    PubMed

    Mann, Janet; Patterson, Eric M

    2013-11-19

    Tool-use research has focused primarily on land-based animals, with less consideration given to aquatic animals and the environmental challenges and conditions they face. Here, we review aquatic tool use and examine the contributing ecological, physiological, cognitive and social factors. Tool use among aquatic animals is rare but taxonomically diverse, occurring in fish, cephalopods, mammals, crabs, urchins and possibly gastropods. While additional research is required, the scarcity of tool use can likely be attributable to the characteristics of aquatic habitats, which are generally not conducive to tool use. Nonetheless, studying tool use by aquatic animals provides insights into the conditions that promote and inhibit tool-use behaviour across biomes. Like land-based tool users, aquatic animals tend to find tools on the substrate and use tools during foraging. However, unlike on land, tool users in water often use other animals (and their products) and water itself as a tool. Among sea otters and dolphins, the two aquatic tool users studied in greatest detail, some individuals specialize in tool use, which is vertically socially transmitted possibly because of their long dependency periods. In all, the contrasts between aquatic- and land-based tool users enlighten our understanding of the adaptive value of tool-use behaviour. PMID:24101631

  6. VITELLOGENESIS IN AQUATIC ANIMALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vitellogenin (Vg) is the main precursor to egg yolk proteins (YPs) accumulated as nutrients for developing embryos of oviparous aquatic species. Recent gene cloning and immuno-biochemical analyses verified the presence of multiple Vgs in teleost fishes, similar to the case in chickens and Xenopus. ...

  7. CHOLINESTERASE OF AQUATIC ANIMALS

    EPA Science Inventory

    Due to increases organophosphate (OP) pesticide applications it has become necessary to evaluate their hazards and develop biological indicators of aquatic contamination. t has been hypothesized that suppression of ChE activity could be used as an indicator of contaminant stress ...

  8. The OIE's involvement in aquatic animal health.

    PubMed

    Bernoth, Eva-Maria

    2007-01-01

    The OIE develops normative documents relating to rules that Member Countries can use to protect themselves from diseases without setting up unjustified sanitary barriers. For aquatic animal disease, the Aquatic Animal Health Code and the Manual of Diagnostic Tests for Aquatic Animals are prepared by the Aquatic Animals Commission, with the assistance of internationally renowned experts, the OIE's other Specialist Commissions, and in consultation with OIE Member Countries. These standards are described in detail. There are currently 27 OIE Reference Laboratories and one Collaborating Centre for aquatic animal diseases, providing a network of expertise in aquatic animal health. The OIE is committed to raising awareness about aquatic animal health and assisting Member Countries to fulfill their international obligations. Members of the Aquatic Animals Commission regularly present on the activities of the Aquatic Animals Commission at the Conferences of the OIE Regional Commissions and at scientific venues. Regional initiatives conducted in concert with other organisations complement the OIE's involvement in aquatic animal health. A range of interesting challenges lies ahead. PMID:18306529

  9. Acid Toxicity and Aquatic Animals

    NASA Astrophysics Data System (ADS)

    Morris, R.; Taylor, E. W.; Brown, D. J. A.; Brown, J. A.

    1989-04-01

    This book reviews and presents recent research on acid waters and their effects on aquatic animals. Starting with the environment, in order to assess why the problems have arisen in particular areas, the volume then deals with field and survival studies on invertebrates and vertebrates; examines the extent of the biological problem and the attempts that have been made to relate water quality and the susceptibility of animals. The natural progression of environmental and field studies, toxicity, and survival tests provide the background information for the physiological studies that follow. These form the major component of the book and they seek to analyze the toxic effects of acid waters and trace metals with cardiovascular and endocrinological effects.

  10. Micronucleus assay in aquatic animals.

    PubMed

    Bolognesi, Claudia; Hayashi, Makoto

    2011-01-01

    Aquatic pollutants produce multiple consequences at organism, population, community and ecosystem level, affecting organ function, reproductive status, population size, species survival and thus biodiversity. Among these, carcinogenic and mutagenic compounds are the most dangerous as their effects may exert a damage beyond that of individual and may be active through several generations. The application of genotoxicity biomarkers in sentinel organisms allows for the assessment of mutagenic hazards and/or for the identification of the sources and fate of the contaminants. Micronucleus (MN) test as an index of accumulated genetic damage during the lifespan of the cells is one of the most suitable techniques to identify integrated response to the complex mixture of contaminants. MN assay is today widely applied in a large number of wild and transplanted aquatic species. The large majority of studies or programmes on the genotoxic effect of the polluted water environment have been carried out with the use of bivalves and fish. Haemocytes and gill cells are the target tissues most frequently considered for the MN determination in bivalves. The MN test was widely validated and was successfully applied in a large number of field studies using bivalves from the genera Mytilus. MN in fish can be visualised in different cell types: erythrocytes and gill, kidney, hepatic and fin cells. The use of peripheral erythrocytes is more widely used because it avoids the complex cell preparation and the killing of the animals. The MN test in fish erythrocytes was validated in laboratory with different species after exposure to a large number of genotoxic agents. The erythrocyte MN test in fish was also widely and frequently applied for genotoxicity assessment of freshwater and marine environment in situ using native or caged animals following different periods of exposure. Large interspecies differences in sensitivity for MN induction were observed. Further validation studies are

  11. SYNOPSIS OF HISTOTECHNIQUES FOR AQUATIC ANIMALS

    EPA Science Inventory

    This synopsis provides an overview of the necropsy, fixation, trimming, and processing of tissues from aquatic organisms for examination using light microscopy. The handling of animals, their tissues, uses of knives, and processing chemicals will be covered. Understanding the his...

  12. [Aquatic animals of medical importance in Brazil].

    PubMed

    Haddad Junior, Vidal

    2003-01-01

    The injuries caused by venomous and poisonous aquatic animals may provoke important morbidity in the victim. The cnidarians (jellyfishes, especially cubomedusas and Portuguese-Man-of-War) caused nearly 25% of 236 accidents by marine animals, while sea urchins were responsible for about 50% and catfish, stingrays and scorpionfish nearly 25%). In freshwater, stingrays and catfish cause injuries with a very similar mechanism to the poisoning and the effects of the toxins of marine species. In a series of about 200 injuries observed among freshwater fishermen, nearly 40% were caused by freshwater catfish, 5% freshwater stingrays and 55% by traumatogenic fish, such as piranhas and traíras. The author presents the aquatic animals that cause injuries to humans in Brazil, the clinical aspects of the envenoming and the first measures for the control of the severe pain observed mainly in the accidents caused by cnidarians and venomous fishes. PMID:14576874

  13. Lysosomes and autophagy in aquatic animals.

    PubMed

    Moore, Michael N; Kohler, Angela; Lowe, David; Viarengo, Aldo

    2008-01-01

    The lysosomal-autophagic system appears to be a common target for many environmental pollutants, as lysosomes accumulate many toxic metals and organic xenobiotics, which perturb normal function and damage the lysosomal membrane. In fact, autophagic reactions frequently involving reduced lysosomal membrane integrity or stability appear to be effective generic indicators of cellular well-being in eukaryotes: in social amoebae (slime mold), mollusks and fish, autophagy/membrane destabilization is correlated with many stress and toxicological responses and pathological reactions. Prognostic use of adverse lysosomal and autophagic reactions to environmental pollutants can be used for predicting cellular dysfunction and health in aquatic animals, such as shellfish and fish, which are extensively used as sensitive bioindicators in monitoring ecosystem health; and also represent a significant food resource for at least 20% of the global human population. Explanatory frameworks for prediction of pollutant impact on health have been derived encompassing a conceptual mechanistic model linking lysosomal damage and autophagic dysfunction with injury to cells and tissues. Methods are described for tracking in vivo autophagy of fluorescently labeled cytoplasmic proteins, measuring degradation of radiolabeled intracellular proteins and morphometric measurement of lysosomal/cytoplasmic volume ratio. Additional methods for the determination of lysosomal membrane stability in lower animals are also described, which can be applied to frozen tissue sections, protozoans and isolated cells in vivo. Experimental and simulated results have also indicated that nutritional deprivation (analogous in marine mussels to caloric restriction)-induced autophagy has a protective function against toxic effects mediated by reactive oxygen species (ROS). Finally, coupled measurement of lysosomal-autophagic reactions and simulation modelling is proposed as a practical toolbox for predicting toxic

  14. Development of aquatic animal experiment facility, Aquatic Habitat (AQH)

    NASA Astrophysics Data System (ADS)

    Uchida, S.; Kono, Y.; Sakimura, T.; Nishikawa, W.; Fujimoto, N.; Murakami, K.; Nakamura, T.

    We have been performing technical studies to develop aquatic animal experiment facility, Aquatic Habitat (AQH), for both of short-term experiments in the Space Shuttle middeck and long-term experiments in the Space Station including the Centrifuge Accommodation Module (CAM). The AQH will have the capabilities to accommodate three-generations of small freshwater fish (medaka and zebrafish) and egg through metamorphosis of amphibian (African clawed frog). For these purposes, the AQH will have the following brand-new capabilities that the previous facilities have never had; 90days experiment duration, automatic feeding according to specimen types and their developmental stages, separation of generations for fish, specimen sample collection in various developmental stages, air/water interface control for amphibian, continuous monitoring of specimen behavior even in dark condition, and so on. We have already performed preliminary breeding tests for medaka and zebrafish with a breeding system prototype. Their mating behavior was performed successfully in the small closed chamber and the hatched larvae grew and started spawning on the 45-47th day after hatching. These results demonstrated that three generational breeding of medaka and zebrafish within 90days would be possible based on this breeding system prototype. Also, we have developed almost of the above new mechanisms, that is, an automatic feeding system, an egg separation mechanism for fish, an air stabilizer to control air/water interface, and a continuous specimen monitoring system through light/dark cycle. Based on these results, we have manufactured a BBM of AQH water circulation system and performed biological compatibility tests as a next step. For African clawed frog breeding, some problems have been revealed through the preliminary tests with the breeding system prototype. Currently, we are performing the investigations to resolve the problems and preparing to proceed to the next step.

  15. Successful aquatic animal disease emergency programmes.

    PubMed

    Håstein, T; Hill, B J; Winton, J R

    1999-04-01

    The authors provide examples of emergency programmes which have been successful in eradicating or controlling certain diseases of aquatic animals. The paper is divided into four parts. The first part describes the initial isolation of viral haemorrhagic septicaemia (VHS) virus in North America in the autumn of 1988 from feral adult chinook (Oncorhynchus tshawytscha) and coho salmon (O. kisutch) returning for spawning. The fish disease control policies at both State and Federal levels in the United States of America required quarantine and emergency eradication measures upon the finding of certain exotic fish pathogens, including VHS virus. The procedures for emergency plans, destruction of stocks and disinfection of facilities are described, as well as challenge experiments with the North American strains of VHS virus and the detection of the virus in marine fish species (cod [Gadus macrocephalus] and herring [Clupea harengus pallasi]) in the Pacific Ocean. The second part of the paper outlines the aquatic animal legislation in Great Britain and within the European Union, in regard to contingency plans, initial investigations, action on the suspicion of notifiable disease and action on confirmation of infection. The legal description is followed by an account of an outbreak of viral haemorrhagic septicaemia in turbot (Scophthalmus maximus) in Great Britain, including the stamping-out process at the affected farm and investigations conducted to screen other farms in the vicinity for possible infection. The third part provides a historical review of the build-up of infectious salmon anaemia (ISA) in Norway and the attempts to control the disease using legal measures in the absence of detailed knowledge of the aetiology, epizootiology, pathogenesis, etc. of the disease. The measures taken show that the spread of ISA can be controlled using restrictions on the movement of fish, disinfection procedures, etc. However, acceptance and understanding of the chosen strategy

  16. Successful aquatic animal disease emergency programmes

    USGS Publications Warehouse

    Hastein, T.; Hill, B.J.; Winton, J.R.

    1999-01-01

    The authors provide examples of emergency programmes which have been successful in eradicating or controlling certain diseases of aquatic animals. The paper is divided into four parts. The first part describes the initial isolation of viral haemorrhagic septicaemia (VHS) virus in North America in the autumn of 1988 from feral adult chinook (Oncorhynchus tshawytscha) and coho salmon (O.kisutch) returning for spawning. The fish disease control policies at both State and Federal levels in the United States of America required quarantine and emergency eradication measures upon the finding of certain exotic fish pathogens, including VHS virus. The procedures for emergency plans, destruction of stocks and disinfection of facilities are described, as well as challenge experiments with the North American strains of VHS virus and the detection of the virus in marine fish species (cod [Gadus macrocephalus] and herring [Clupea harengus pallasi]) in the Pacific Ocean. The second part of the paper outlines the aquatic animal legislation in Great Britain and within the European Union, in regard to contingency plans, initial investigations, action on the suspicion of notifiable disease and action on confirmation of infection. The legal description is followed by an account of an outbreak of viral haemorrhagic septicaemia in turbot (Scophthalmus maximus) in Great Britain, including the stamping-out process at the affected farm and investigations conducted to screen other farms in the vicinity for possible infection. The third part provides a historical review of the build-up of infectious salmon anaemia (ISA) in Norway and the attempts to control the disease using legal measures in the absence of detailed knowledge of the aetiology, epizootiology, pathogenesis, etc. of the disease. The measures taken show that the spread of ISA can be controlled using restrictions on the movement of fish, disinfection procedures, etc. However, acceptance and understanding of the chosen strategy by

  17. EFFECTS OF CARCINOGENIC AGENTS ON AQUATIC ANIMALS: AN ENVIRONMENTAL AND EXPERIMENTAL OVERVIEW

    EPA Science Inventory

    A major underlying motivation for seriously studying carcinogenesis in aquatic animals is the concept of utilizing selected lower animal species as models in understanding neoplasia and the neoplastic process. Numerous examples may be cited which illustrate the contribution that ...

  18. Biotechnology and DNA vaccines for aquatic animals

    USGS Publications Warehouse

    Kurath, G.

    2008-01-01

    Biotechnology has been used extensively in the development of vaccines for aquaculture. Modern molecular methods such as polymerase chain reaction (PCR), cloning and microarray analysis have facilitated antigen discovery, construction of novel candidate vaccines, and assessments of vaccine efficacy, mode of action, and host response. This review focuses on DNA vaccines for finfish to illustrate biotechnology applications in this field. Although DNA vaccines for fish rhabdoviruses continue to show the highest efficacy, DNA vaccines for several other viral and bacterial fish pathogens have now been proven to provide significant protection against pathogen challenge. Studies of the fish rhabdovirus DNA vaccines have elucidated factors that affect DNA vaccine efficacy as well as the nature of the fish innate and adaptive immune responses to DNA vaccines. As tools for managing aquatic animal disease emergencies, DNA vaccines have advantages in speed, flexibility, and safety, and one fish DNA vaccine has been licensed.

  19. Virtual ethology of aquatic animal heterogeneous behaviours

    NASA Astrophysics Data System (ADS)

    Lim, ChenKim; Tan, KianLam

    2016-08-01

    In the virtual world, the simulation of flocking behaviour has been actively investigated since the 1980 through the boid models. However, ethology is a niche study of animal behaviour from the biological perspective that is rarely instil in the interest of the younger learners nowadays. The keystone of the research is to be able to disseminate the study of animal behaviours through the boid model with the aid of technology. Through the simulation, complex movement of animal behaviours are reproduced based on the extension of basic behaviours of boid algorithm. The techniques here are to (i) Analyse a high-level behavioural framework of motion in the animal behaviours and (ii) Evolves particles to other animal representations to portray more real-time examples of steering behaviours. Although the generality of the results is limited by the number of case study, it also supports the hypothesis that interactive simulation system of virtual ethology can aid the improvement of animal studies.

  20. Radiation-induced micronuclei in peripheral erythrocytes of Rana catesbeiana: an aquatic animal model for in vivo genotoxicity studies

    SciTech Connect

    Krauter, P.W.; Anderson, S.L.; Harrison, F.L.

    1987-01-01

    An in vivo micronucleus assay for peripheral erythrocytes of Rana catesbeiana tadpoles was developed and evaluated. The assay was used to determine the spontaneous frequency of micronuclei in circulating erythrocytes in tadpoles from two different populations, to define the time from administering the clastogen to the maximum micronucleus frequency in peripheral erythrocytes, and to determine the response to radiation. The spontaneous frequency of micronuclei in circulating erythrocytes of early-stage tadpoles was low, but higher than that of late-stage tadpoles. The time from the exposure of early-stage tadpoles to radiation (2.1 Gy) to the maximum micronucleus frequency was about 2 wk. The increase in frequency of micronuclei in peripheral erythrocytes of late-stage tadpoles receiving doses ranging from 0.5 to 3.0 Gy was linear with dose; a 3-fold increase was obtained with a dose of 3.0 Gy. The spontaneous frequency of micronuclei in erythrocytes and the increase in frequency induced by radiation appeared to differ in tadpoles from different populations. Quantification of micronuclei in the peripheral erythrocytes of R castesbeiana tadpoles provides a promising whole-animal system for studies of genotoxicity in aquatic environments.

  1. Radiation-induced micronuclei in peripheral erythrocytes of Rana catesbeiana: an aquatic animal model for in vivo genotoxicity studies

    SciTech Connect

    Krauter, P.W.; Anderson, S.L.; Harrison, F.L.

    1987-01-01

    An in vivo micronucleus assay for peripheral erythrocytes of Rana catesbeiana tadpoles was developed and evaluated. The assay was used to determine the spontaneous frequency of micronuclei in circulating erythrocytes in tadpoles from two different populations, to define the time from administering the clastogen to the maximum micronucleus frequency in peripheral erythrocytes, and to determine the response to radiation. The spontaneous frequency of micronuclei in circulating erythrocytes of early-stage tadpoles was low (3.6 +/- 2.8 micronuclei per 1,000 erythrocytes, MN o/oo), but higher than that of late-stage tadpoles (1.7 +/- 0.7 MN o/oo). The time from the exposure of early-stage tadpoles to radiation (2.1 Gy) to the maximum micronucleus frequency was about 2 wk. The increase in frequency of micronuclei in peripheral erythrocytes of late-stage tadpoles receiving doses ranging from 0.5 to 3.0 Gy was linear with dose; a 3-fold increase was obtained with a dose of 3.0 Gy. The spontaneous frequency of micronuclei in erythrocytes and the increase in frequency induced by radiation appeared to differ in tadpoles from different populations. Quantification of micronuclei in the peripheral erythrocytes of R catesbeiana tadpoles provides a promising whole-animal system for studies of genotoxicity in aquatic environments.

  2. Assessment of the safety of aquatic animal commodities for international trade: the OIE Aquatic Animal Health code.

    PubMed

    Oidtmann, B; Johnston, C; Klotins, K; Mylrea, G; Van, P T; Cabot, S; Martin, P Rosado; Ababouch, L; Berthe, F

    2013-02-01

    Trading of aquatic animals and aquatic animal products has become increasingly globalized during the last couple of decades. This commodity trade has increased the risk for the spread of aquatic animal pathogens. The World Organisation for Animal Health (OIE) is recognized as the international standard-setting organization for measures relating to international trade in animals and animal products. In this role, OIE has developed the Aquatic Animal Health Code, which provides health measures to be used by competent authorities of importing and exporting countries to avoid the transfer of agents pathogenic for animals or humans, whilst avoiding unjustified sanitary barriers. An OIE ad hoc group developed criteria for assessing the safety of aquatic animals or aquatic animal products for any purpose from a country, zone or compartment not declared free from a given disease 'X'. The criteria were based on the absence of the pathogenic agent in the traded commodity or inactivation of the pathogenic agent by the commercial processing used to produce the commodity. The group also developed criteria to assess the safety of aquatic animals or aquatic animal products for retail trade for human consumption from potentially infected areas. Such commodities were assessed considering the form and presentation of the product, the expected volume of waste tissues generated by the consumer and the likely presence of viable pathogenic agent in the waste. The ad hoc group applied the criteria to commodities listed in the individual disease chapters of the Aquatic Animal Health Code (2008 edition). Revised lists of commodities for which no additional measures should be required by the importing countries regardless of the status for disease X of the exporting country were developed and adopted by the OIE World Assembly of Delegates in May 2011. The rationale of the criteria and their application will be explained and demonstrated using examples. PMID:22335835

  3. The AquaDEB project: Physiological flexibility of aquatic animals analysed with a generic dynamic energy budget model (phase II)

    NASA Astrophysics Data System (ADS)

    Alunno-Bruscia, Marianne; van der Veer, Henk W.; Kooijman, Sebastiaan A. L. M.

    2011-11-01

    This second special issue of the Journal of Sea Research on development and applications of Dynamic Energy Budget (DEB) theory concludes the European Research Project AquaDEB (2007-2011). In this introductory paper we summarise the progress made during the running time of this 5 years' project, present context for the papers in this volume and discuss future directions. The main scientific objectives in AquaDEB were (i) to study and compare the sensitivity of aquatic species (mainly molluscs and fish) to environmental variability within the context of DEB theory for metabolic organisation, and (ii) to evaluate the inter-relationships between different biological levels (individual, population, ecosystem) and temporal scales (life cycle, population dynamics, evolution). AquaDEB phase I focussed on quantifying bio-energetic processes of various aquatic species ( e.g. molluscs, fish, crustaceans, algae) and phase II on: (i) comparing of energetic and physiological strategies among species through the DEB parameter values and identifying the factors responsible for any differences in bioenergetics and physiology; (ii) considering different scenarios of environmental disruption (excess of nutrients, diffuse or massive pollution, exploitation by man, climate change) to forecast effects on growth, reproduction and survival of key species; (iii) scaling up the models for a few species from the individual level up to the level of evolutionary processes. Apart from the three special issues in the Journal of Sea Research — including the DEBIB collaboration (see vol. 65 issue 2), a theme issue on DEB theory appeared in the Philosophical Transactions of the Royal Society B (vol 365, 2010); a large number of publications were produced; the third edition of the DEB book appeared (2010); open-source software was substantially expanded (over 1000 functions); a large open-source systematic collection of ecophysiological data and DEB parameters has been set up; and a series of DEB

  4. NASDA aquatic animal experiment facilities for space shuttle and ISS

    NASA Astrophysics Data System (ADS)

    Uchida, Satoko; Masukawa, Mitsuyo; Kamigaichi, Shigeki

    National Space Development Agency of Japan (NASDA) has developed aquatic animal experiment facilities for NASA Space Shuttle use. Vestibular Function Experiment Unit (VFEU) was firstly designed and developed for physiological research using carp in Spacelab-J (SL-J, STS-47) mission. It was modified as Aquatic Animal Experiment Unit (AAEU) to accommodate small aquatic animals, such as medaka and newt, for second International Microgravity Laboratory (IML-2, STS-65) mission. Then, VFEU was improved to accommodate marine fish and to perform neurobiological experiment for Neurolab (STS-90) and STS-95 missions. We have also developed and used water purification system which was adapted to each facility. Based on these experiences of Space Shuttle missions, we are studying to develop advanced aquatic animal experiment facility for both Space Shuttle and International Space Station (ISS).

  5. Application of Microbial Genomics to Improve Aquatic Animal Health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome sequencing and comparative genome analysis have greatly increased our understanding of microorganism gene content, pathogenesis, taxonomy, and evolution. Currently, there are over three hundred completed, publicly-available microbial genomes. To date, no genome of an aquatic animal pathogen...

  6. Role Models in Aquatic Occupations.

    ERIC Educational Resources Information Center

    Brown, Mabel C.

    1982-01-01

    Provided for each of 12 minority group role models in aquatic occupations are job responsibilities, educational requirements, comments on a typical day at the job, salary range, and recommendations for students wishing to enter the field described. (JN)

  7. Implications of aquatic animal health for human health.

    PubMed Central

    Dawe, C J

    1990-01-01

    Human health and aquatic animal health are organically related at three distinct interfaces. Aquatic animals serve as important contributors to the nutritional protein, lipid, and vitamin requirements of humans; as carriers and transmitters of many infectious and parasitic diseases to which humans are susceptible; and as indicators of toxic and carcinogenic substances that they can convey, in some part, from aquatic environments to man and other terrestrial animals. Transcending these relationships, but less visible and definable to many, is the role that aquatic animals play in the sustenance of our integrated planetary ecosystem. Up to the present, this ecosystem has been compatible with mankind's occupation of a niche within it at high but ultimately limited population levels. In the past century we have become clearly aware that human activities, particularly over-harvesting of aquatic animals together with chemical degradation of their habitats, can quite rapidly lead to perturbances that drastically shift aquatic ecosystems toward conditions of low productivity and impaired function as one of earth's vital organs. The negative values of aquatic animals as disease vectors are far outweighed by their positive values as nutritional sources and as sustainers of a relatively stable equilibrium in the global ecosystem. In the immediate future we can expect to see increased and improved monitoring of aquatic habitats to determine the extent to which aquatic animals cycle anthropogenic toxic and carcinogenic chemicals back to human consumers. In the long term, methods are particularly needed to assess the effects of these pollutants on reproductive success in aquatic communities and in human communities as well. As inputs of habitat-degrading substances change in quality and quantity, it becomes increasingly urgent to evaluate the consequences in advance, not in retrospect. A new, more realistic and comprehensive philosophy regarding aquatic environmental

  8. Aquatic models, genomics and chemical risk management.

    PubMed

    Cheng, Keith C; Hinton, David E; Mattingly, Carolyn J; Planchart, Antonio

    2012-01-01

    The 5th Aquatic Animal Models for Human Disease meeting follows four previous meetings (Nairn et al., 2001; Schmale, 2004; Schmale et al., 2007; Hinton et al., 2009) in which advances in aquatic animal models for human disease research were reported, and community discussion of future direction was pursued. At this meeting, discussion at a workshop entitled Bioinformatics and Computational Biology with Web-based Resources (20 September 2010) led to an important conclusion: Aquatic model research using feral and experimental fish, in combination with web-based access to annotated anatomical atlases and toxicological databases, yields data that advance our understanding of human gene function, and can be used to facilitate environmental management and drug development. We propose here that the effects of genes and environment are best appreciated within an anatomical context - the specifically affected cells and organs in the whole animal. We envision the use of automated, whole-animal imaging at cellular resolution and computational morphometry facilitated by high-performance computing and automated entry into toxicological databases, as anchors for genetic and toxicological data, and as connectors between human and model system data. These principles should be applied to both laboratory and feral fish populations, which have been virtually irreplaceable sentinals for environmental contamination that results in human morbidity and mortality. We conclude that automation, database generation, and web-based accessibility, facilitated by genomic/transcriptomic data and high-performance and cloud computing, will potentiate the unique and potentially key roles that aquatic models play in advancing systems biology, drug development, and environmental risk management. PMID:21763781

  9. Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals

    PubMed Central

    Ferrão-Filho, Aloysio da S.; Kozlowsky-Suzuki, Betina

    2011-01-01

    Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, feeding inhibition, paralysis), chronic effects (e.g., reduction in growth and fecundity), biochemical alterations (e.g., activity of phosphatases, GST, AChE, proteases), and behavioral alterations. Research has also focused on the potential for bioaccumulation and transferring of these toxins through the food chain. Although the herbivorous zooplankton is hypothesized as the main target of cyanotoxins, there is not unquestionable evidence of the deleterious effects of cyanobacteria and their toxins on these organisms. Also, the low toxin burden in secondary consumers points towards biodilution of microcystins in the food web as the predominant process. In this broad review we discuss important issues on bioaccumulation and the effects of cyanotoxins, with emphasis on microcystins, as well as drawbacks and future needs in this field of research. PMID:22363248

  10. Large-Scale Environmental Influences on Aquatic Animal Health

    EPA Science Inventory

    In the latter portion of the 20th century, North America experienced numerous large-scale mortality events affecting a broad diversity of aquatic animals. Short-term forensic investigations of these events have sometimes characterized a causative agent or condition, but have rare...

  11. 40 CFR Appendix C to Part 122 - Criteria for Determining a Concentrated Aquatic Animal Production Facility (§ 122.24)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aquatic animals in either of the following categories: (a) Cold water fish species or other cold water... (approximately 100,000 pounds) of aquatic animals per year. “Cold water aquatic animals” include, but are...

  12. Reviving a neglected celestial underwater polarization compass for aquatic animals.

    PubMed

    Waterman, Talbot H

    2006-02-01

    Substantial in situ measurements on clear days in a variety of marine environments at depths in the water down to 200 m have demonstrated the ubiquitous daytime presence of sun-related e-vector (=plane of polarization) patterns. In most lines of sight the e-vectors tilt from horizontal towards the sun at angles equal to the apparent underwater refracted zenith angle of the sun. A maximum tilt-angle of approximately 48.5 degrees , is reached in horizontal lines of sight at 90 degrees to the sun's bearing (the plane of incidence). This tilt limit is set by Snell's window, when the sun is on the horizon. The biological literature since the 1980s has been pervaded with assumptions that daytime aquatic e-vectors are mainly horizontal. This review attempts to set the record straight concerning the potential use of underwater e-vectors as a visual compass and to reopen the field to productive research on aquatic animals' orientation and navigation. PMID:16271158

  13. Ohio Aquatic Gap Analysis-An Assessment of the Biodiversity and Conservation Status of Native Aquatic Animal Species

    USGS Publications Warehouse

    Covert, S. Alex; Kula, Stephanie P.; Simonson, Laura A.

    2007-01-01

    The goal of the GAP Analysis Program is to keep common species common by identifying those species and habitats that are not yet adequately represented in the existing matrix of conservation lands. The Gap Analysis Program (GAP) is sponsored by the Biological Resources Discipline of the U.S. Geological Survey (USGS). The Ohio Aquatic GAP (OH-GAP) is a pilot project that is applying the GAP concept to aquatic-specifically, riverine-data. The mission of GAP is to provide regional assessments of the conservation status of native animal species and to facilitate the application of this information to land-management activities. OH-GAP accomplished this through * mapping aquatic habitat types, * mapping the predicted distributions of fish, crayfish, and bivalves, * documenting the presence of aquatic species in areas managed for conservation, * providing GAP results to the public, planners, managers, policy makers, and researchers, and * building cooperation with multiple organizations to apply GAP results to state and regional management activities. Gap analysis is a coarse-scale assessment of aquatic biodiversity and conservation; the goal is to identify gaps in the conservation of native aquatic species. It is not a substitute for biological field studies and monitoring programs. Gap analysis was conducted for the continuously flowing streams in Ohio. Lakes, reservoirs, wetlands, and the Lake Erie islands were not included in this analysis. The streams in Ohio are in the Lake Erie and Ohio River watersheds and pass through six of the level III ecoregions defined by Omernik: the Eastern Corn Belt Plains, Southern Michigan/Northern Indiana Drift Plains, Huron/Erie Lake Plain, Erie Drift Plains, Interior Plateau, and the Western Allegheny Plateau. To characterize the aquatic habitats available to Ohio fish, crayfish, and bivalves, a classification system needed to be developed and mapped. The process of classification includes delineation of areas of relative

  14. Toward a national animal telemetry network for aquatic observations in the United States

    USGS Publications Warehouse

    Block, Barbara A.; Holbrook, Christopher; Simmons, Samantha E; Holland, Kim N; Ault, Jerald S.; Costa, Daniel P.; Mate, Bruce R; Seitz, Andrew C; Arendt, Michael D.; Payne, John; Mahmoudi, Behzad; Moore, Peter L.; Price, James; J. J. Levenson; Wilson, Doug; Kochevar, Randall E

    2016-01-01

    Animal telemetry is the science of elucidating the movements and behavior of animals in relation to their environment or habitat. Here, we focus on telemetry of aquatic species (marine mammals, sharks, fish, sea birds and turtles) and so are concerned with animal movements and behavior as they move through and above the world’s oceans, coastal rivers, estuaries and great lakes. Animal telemetry devices (“tags”) yield detailed data regarding animal responses to the coupled ocean–atmosphere and physical environment through which they are moving. Animal telemetry has matured and we describe a developing US Animal Telemetry Network (ATN) observing system that monitors aquatic life on a range of temporal and spatial scales that will yield both short- and long-term benefits, fill oceanographic observing and knowledge gaps and advance many of the U.S. National Ocean Policy Priority Objectives. ATN has the potential to create a huge impact for the ocean observing activities undertaken by the U.S. Integrated Ocean Observing System (IOOS) and become a model for establishing additional national-level telemetry networks worldwide.

  15. Aquatic animals, cognitive ethology, and ethics: questions about sentience and other troubling issues that lurk in turbid water.

    PubMed

    Bekoff, Marc

    2007-05-01

    In this general, strongly pro-animal, and somewhat utopian and personal essay, I argue that we owe aquatic animals respect and moral consideration just as we owe respect and moral consideration to all other animal beings, regardless of the taxonomic group to which they belong. In many ways it is more difficult to convince some people of our ethical obligations to numerous aquatic animals because we do not identify or empathize with them as we do with animals with whom we are more familiar or to whom we are more closely related, including those species (usually terrestrial) to whom we refer as charismatic megafauna. Many of my examples come from animals that are more well studied but they can be used as models for aquatic animals. I follow Darwinian notions of evolutionary continuity to argue that if we feel pain, then so too do many other animals, including those that live in aquatic environs. Recent scientific data ('science sense') show clearly that many aquatic organisms, much to some people's surprise, likely suffer at our hands and feel their own sorts of pain. Throughout I discuss how cognitive ethology (the study of animal minds) is the unifying science for understanding the subjective, emotional, empathic, and moral lives of animals because it is essential to know what animals do, think, and feel as they go about their daily routines. Lastly, I argue that when we are uncertain if we are inflicting pain due to our incessant, annoying, and frequently unnecessary intrusions into the lives of other animals as we go about 'redecorating nature' (removing animals or moving them from place to place), we should err on the side of the animals and stop engaging in activities that cause pain and suffering. PMID:17578248

  16. Animal health and the trade in aquatic animals within and to the European Union.

    PubMed

    Daelman, W

    1996-06-01

    The creation of a single European market has significantly extended the scope of veterinary animal and public health legislation. This extension includes aquatic animals, and a comprehensive set of directives and decisions has been developed to ensure free circulation of aquaculture animals and their products, while guaranteeing a high level of animal health. At the same time, and in the same context, other directives have been adopted which organise checks on animals and products within and to the European Union (EU), as well as accompanying financial measures. Animal health legislation for the movement of aquaculture animals is also based on a number of principles, including the following: --the definition of important pathogens and their hosts --zoning (regionalisation)--the obligation for EU Member States to move animals only from areas or farms with high health status to and between areas and farms with equal or lower health status--the prescription of a testing regime to improve animal health status in zones or farms. In addition, disease control prescriptions have been established or are being considered for adoption. These include the establishment of national and EU reference laboratories, as well as the application of contingency plans and the measures to be taken in the event of a disease outbreak. PMID:8890390

  17. Using the Neptune project to benefit Australian aquatic animal health research.

    PubMed

    McNamara, M; Ernst, I; Adlard, R D

    2015-06-29

    Diseases of aquatic animals have had, and continue to have, a significant impact on aquatic animal health. In Australia, where fisheries and aquaculture are important industries, aquatic species have been subject to serious disease outbreaks, including pilchard herpesvirus, the cause of one of the largest wild fish kills ever recorded. At the same time, there is a consensus that Australia's parasite fauna are largely unknown, and that aquatic animal health information is difficult to access. Managing aquatic animal diseases is challenging because they may be entirely new, their hosts may be new to aquaculture, and specialist expertise and basic diagnostic tools may be lacking or absent. The Neptune project was created in response to these challenges, and it aims to increase awareness of aquatic animal diseases, improve disease management, and promote communication between aquatic animal health professionals in Australia. The project consists of an online database, a digital microscopy platform containing a whole-slide image library, a community space, and online communications technology. The database contains aquatic animal health information from published papers, government reports, and other sources, while the library contains slides of key diseases both endemic and exotic to Australia. These assets make Neptune a powerful resource for researchers, students, and biosecurity officials. PMID:26119294

  18. Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals.

    PubMed

    Bernardet, J F; Vancanneyt, M; Matte-Tailliez, O; Grisez, L; Tailliez, P; Bizet, C; Nowakowski, M; Kerouault, B; Swings, J

    2005-09-01

    Members of most Chryseobacterium species occur in aquatic environments or food products, while strains of some other species are pathogenic to humans and animals. A collection of 52 Chryseobacterium sp. strains isolated from diseased fish, one frog isolate and 22 reference strains were included in a polyphasic taxonomy study. Fourteen clusters of strains were delineated following the comparison of whole-cell protein profiles. Most of these clusters were confirmed when the phenotypic and RAPD profiles and the 16S rRNA gene sequences were compared. Fatty acid composition helped differentiate the Chryseobacterium strains from members of related genera. None of the fish isolates could be allocated to the two species previously reported from fish but two isolates belonged to C. joostei, while the frog isolate was identified as Elizabethkingia meningoseptica, a human pathogen previously included in the genus Chryseobacterium. Three clusters grouping from 3 to 13 isolates will probably constitute the core of new Chryseobacterium species but all other isolates occupied separate or uncertain positions in the genus. This study further demonstrated the overall high similarity displayed by most Chryseobacterium strains whatever the technique used and the resulting difficulty in delineating new species in the genus. Members of this bacterial group should be considered potential emergent pathogens in various fish and frog species, farming conditions and geographical areas. PMID:16156122

  19. Aquatic Environment, Housing, and Management in the Eighth Edition of the Guide for the Care and Use of Laboratory Animals: Additional Considerations and Recommendations

    PubMed Central

    Mason, Timothy J; Matthews, Monte

    2012-01-01

    The eighth edition of the Guide for the Care and Use of Laboratory Animals recognizes the widespread use of aquatic and semiaquatic research animals by including, among other references, an entire section on aquatic animals in its chapter on environment, housing, and management. Recognizing the large number of aquatic and semiaquatic species used in research and the inherent diversity in animal needs, the Guide refers the reader to texts and journal reviews for specific recommendations and suggests consultations with persons experienced in caring for aquatic species. Here we present considerations that may add to the basic information presented in the Guide and offer some recommendations that may be useful for aquatic animal model caregivers and researchers. PMID:22776190

  20. Refinement and use of Certificates of Veterinary Inspection (Health Certificates) for optimal assurance of disease freedom in aquatic animals.

    PubMed

    Starling, D E; Palić, D; Scarfe, A D

    2007-01-01

    Certificates of Veterinary Inspection (CVI), generally termed "Health Certificates", are pivotal for ensuring that translocated animals are not diseased or do not harbour significant pathogens. While used very successfully with terrestrial animal movement for decades, CVIs for aquatic animals are not well refined, understood or used, despite the availability of several aquatic animal "certification processes", "permits" and "health certificates", including the OIE model health certificates. Correctly designed CVIs provide the single most economical and effective assurance of disease status (generally freedom from specific diseases or pathogens) for individuals or lots of animals, at any point in time. When issued by a qualified independent third-party (typically a licensed and government accredited veterinarian) they provide the official level of assurance necessary for intrastate, interstate and international trade. Tailored modifications of CVIs are also useful for other purposes requiring the evaluation of animal health (e.g. specific pathogen-free (SPF) assurance for premises, risk-mitigating assurance necessary for insurance policies, breeding soundness assurance of broodstock, etc.). Here we discuss necessary information for aquatic animal CVIs: animal, ownership and location; standardized diagnostic results and their interpretation; and language contained in CVIs. Also addressed is the viability for use with multiple aquatic species and diseases/pathogens of interest, and their use in conjunction with established veterinary inspection procedures. A revised model aquatic CVI, with broad potential use for individual operations, states or countries, is offered for discussion, comment and refinement. In addition an optimally designed model CVI may be of use with electronic systems that are evolving in, for example, Europe, the USA and Australia/New Zealand (e.g. TRACES, e-CVI, e-Certs). PMID:18306523

  1. Development of the Gecko (Pachydactylus turneri) Animal Model during Foton M-2 to Study Comparative Effects of Microgravity in Terrestrial and Aquatic Organisms

    NASA Technical Reports Server (NTRS)

    Almeida, E. A.; Roden, C.; Phillips, J. A.; Globus, R. K.; Searby, N.; Vercoutere, W.; Morey-Holton, E.; Gulimova, V.; Saveliev, S.; Tairbekov, M.; Iwaniec, U. T.; McNamra, A. J.; Turner, R. T.

    2006-01-01

    Terrestrial organisms exposed to microgravity during spaceflight experience degeneration in bone, muscle, and possibly other tissues that require gravity-mediated mechanical stimulation for normal regenerative growth. In the Gecko experiment aboard Foton M-2, we flew for the first time, five terrestrial Pachydactylus turneri specimens to develop a model of microgravity effects comparable to the newt Pleurodeles waltl, a well-established model organism for spaceflight. These lower vertebrate species have similar body plans and size, are poikilothermic, have tissue regenerative ability, and are adapted to moderate periods of fasting. Furthermore the gecko (Pachydactylus) can also survive prolonged periods without water. In pre-flight control experiments and after a 16-day Foton M-2 spaceflight without food or water, the geckos were recovered and showed no apparent negative health effects. However, detailed analysis of bone mass and architecture by micro Computed Tomography { pCT), showed that both synchronous control and spaceflight animals lost significant amounts of cancellous bone in the distal femur and humerus relative to basal controls. In addition, cell cycle analysis of 30h post-flight liver tissue reveals a shift of DNA content from G2 and S to G1, both in spaceflight and synchronous controls. Together, these results suggest that housing conditions alone induce rapid catabolism of cancellous bone and reduced normal tissue regeneration. Further use of the gecko Puchydactylus turneri as a spaceflight model requires modification of housing conditions, possibly by including water and food, or changing other factors such as eliminating housing stresses to obtain stable bone structure and tissue regeneration during spaceflight experiments.

  2. 40 CFR Appendix C to Part 122 - Criteria for Determining a Concentrated Aquatic Animal Production Facility (§ 122.24)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Concentrated Aquatic Animal Production Facility (§ 122.24) C Appendix C to Part 122 Protection of Environment... Concentrated Aquatic Animal Production Facility (§ 122.24) A hatchery, fish farm, or other facility is a concentrated aquatic animal production facility for purposes of § 122.24 if it contains, grows, or...

  3. 40 CFR 122.24 - Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Concentrated aquatic animal production... § 122.24 Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123.25). (a) Permit requirement. Concentrated aquatic animal production facilities, as defined in...

  4. 40 CFR 122.24 - Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Concentrated aquatic animal production... § 122.24 Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123.25). (a) Permit requirement. Concentrated aquatic animal production facilities, as defined in...

  5. Toll-like receptors (TLRs) in aquatic animals: signaling pathways, expressions and immune responses.

    PubMed

    Rauta, Pradipta R; Samanta, Mrinal; Dash, Hirak R; Nayak, Bismita; Das, Surajit

    2014-01-01

    The innate system's recognition of non-self and danger signals is mediated by a limited number of germ-line encoded pattern recognition receptors (PRRs) that recognize pathogen associated molecular patterns (PAMPs). Toll-like receptors (TLRs) are single, non-catalytic, membrane-spanning PRRs present in invertebrates and vertebrates. They act by specifically recognizing PAMPs of a variety of microbes and activate signaling cascades to induce innate immunity. A large number of TLRs have been identified in various aquatic animals of phyla Cnidaria, Annelida, Mollusca, Arthropoda, Echinodermata and Chordata. TLRs of aquatic and warm-blooded higher animals exhibit some distinctive features due to their diverse evolutionary lineages. However, majority of them share conserve signaling pathways in pathogen recognition and innate immunity. Functional analysis of novel TLRs in aquatic animals is very important in understanding the comparative immunology between warm-blooded and aquatic animals. In additions to innate immunity, recent reports have highlighted the additional roles of TLRs in adaptive immunity. Therefore, vaccines against many critical diseases of aquatic animals may be made more effective by supplementing TLR activators which will stimulate dendritic cells. This article describes updated information of TLRs in aquatic animals and their structural and functional relationship with warm-blooded animals. PMID:24291116

  6. The hydrodynamic principle for the caudal fin shape of small aquatic animals

    NASA Astrophysics Data System (ADS)

    Lee, Jeongsu; Park, Yong-Jai; Cho, Kyu-Jin; Kim, Ho-Young

    2014-11-01

    The shape of caudal fins of small aquatic animals is completely different from that of large cruising animals like dolphin and tuna which have high aspect-ratio lunate tail. To unveil the physical principle behind natural selection of caudal fins of small aquatic animals, here we investigate the hydrodynamics of an angularly reciprocating plate as a model for the caudal fin oscillation. We find that the thrust production of a reciprocating plate at high Strouhal numbers is dominated by generation of two distinct vortical structures associated with the acceleration and deceleration of the plate regardless of their shape. Based on our observations, we construct a scaling law to predict the thrust of the flapping plate, which agrees well with the experimental data. We then seek the optimal aspect ratio to maximize thrust and efficiency of a flapping plate for fixed flapping frequency and amplitude. Thrust is maximized for the aspect ratio of approximately 0.7. We also theoretically explain the power law behaviors of the thrust and efficiency as a function of the aspect ratio.

  7. The application of epidemiology in aquatic animal health -opportunities and challenges

    PubMed Central

    2011-01-01

    Over recent years the growth in aquaculture, accompanied by the emergence of new and transboundary diseases, has stimulated epidemiological studies of aquatic animal diseases. Great potential exists for both observational and theoretical approaches to investigate the processes driving emergence but, to date, compared to terrestrial systems, relatively few studies exist in aquatic animals. Research using risk methods has assessed routes of introduction of aquatic animal pathogens to facilitate safe trade (e.g. import risk analyses) and support biosecurity. Epidemiological studies of risk factors for disease in aquaculture (most notably Atlantic salmon farming) have effectively supported control measures. Methods developed for terrestrial livestock diseases (e.g. risk-based surveillance) could improve the capacity of aquatic animal surveillance systems to detect disease incursions and emergence. The study of disease in wild populations presents many challenges and the judicious use of theoretical models offers some solutions. Models, parameterised from observational studies of host pathogen interactions, have been used to extrapolate estimates of impacts on the individual to the population level. These have proved effective in estimating the likely impact of parasite infections on wild salmonid populations in Switzerland and Canada (where the importance of farmed salmon as a reservoir of infection was investigated). A lack of data is often the key constraint in the application of new approaches to surveillance and modelling. The need for epidemiological approaches to protect aquatic animal health will inevitably increase in the face of the combined challenges of climate change, increasing anthropogenic pressures, limited water sources and the growth in aquaculture. Table of contents 1 Introduction 4 2 The development of aquatic epidemiology 7 3 Transboundary and emerging diseases 9 3.1 Import risk analysis (IRA) 10 3.2 Aquaculture and disease emergence 11 3.3 Climate

  8. Animal Model of Dermatophytosis

    PubMed Central

    Shimamura, Tsuyoshi; Kubota, Nobuo; Shibuya, Kazutoshi

    2012-01-01

    Dermatophytosis is superficial fungal infection caused by dermatophytes that invade the keratinized tissue of humans and animals. Lesions from dermatophytosis exhibit an inflammatory reaction induced to eliminate the invading fungi by using the host's normal immune function. Many scientists have attempted to establish an experimental animal model to elucidate the pathogenesis of human dermatophytosis and evaluate drug efficacy. However, current animal models have several issues. In the present paper, we surveyed reports about the methodology of the dermatophytosis animal model for tinea corporis, tinea pedis, and tinea unguium and discussed future prospects. PMID:22619489

  9. Animal models of atherosclerosis

    PubMed Central

    Kapourchali, Fatemeh Ramezani; Surendiran, Gangadaran; Chen, Li; Uitz, Elisabeth; Bahadori, Babak; Moghadasian, Mohammed H

    2014-01-01

    In this mini-review several commonly used animal models of atherosclerosis have been discussed. Among them, emphasis has been made on mice, rabbits, pigs and non-human primates. Although these animal models have played a significant role in our understanding of induction of atherosclerotic lesions, we still lack a reliable animal model for regression of the disease. Researchers have reported several genetically modified and transgenic animal models that replicate human atherosclerosis, however each of current animal models have some limitations. Among these animal models, the apolipoprotein (apo) E-knockout (KO) mice have been used extensively because they develop spontaneous atherosclerosis. Furthermore, atherosclerotic lesions developed in this model depending on experimental design may resemble humans’ stable and unstable atherosclerotic lesions. This mouse model of hypercholesterolemia and atherosclerosis has been also used to investigate the impact of oxidative stress and inflammation on atherogenesis. Low density lipoprotein (LDL)-r-KO mice are a model of human familial hypercholesterolemia. However, unlike apo E-KO mice, the LDL-r-KO mice do not develop spontaneous atherosclerosis. Both apo E-KO and LDL-r-KO mice have been employed to generate other relevant mouse models of cardiovascular disease through breeding strategies. In addition to mice, rabbits have been used extensively particularly to understand the mechanisms of cholesterol-induced atherosclerosis. The present review paper details the characteristics of animal models that are used in atherosclerosis research. PMID:24868511

  10. Development of a contact lens for refracting aquatic animals.

    PubMed

    Spielman, S L; Gruber, S H

    1983-01-01

    Development of a new technique for refracting the eye of unwieldy and large aquatic organisms in air is presented. The technique employs a contact lens to simulate underwater conditions. Refraction is performed through a flat front surface with an ophthalmoscope or a streak retinoscope. Data from 11 carcharhinid sharks (four species) indicate that the smaller eyes of inshore species are defocused relative to the eyes of offshore species. PMID:6646759

  11. Modelling Farm Animal Welfare

    PubMed Central

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  12. [Venomous and poisonous animals. IV. Envenomations by venomous aquatic vertebrates].

    PubMed

    Bédry, R; De Haro, L

    2007-04-01

    Epidemiological information on marine envenomation is generally less extensive in Europe than in tropical regions where these injuries are more severe and the need for medical advice is more frequent. For these reasons use of regional Poison Control Centers in the area where the injury occurs must be encouraged. The purpose of this review is to describe envenomation by bony fish (lion fish, stone fish, and catfish), cartilaginous fish (stingrays and poisonous sharks), or other venomous aquatic vertebrates (moray-eels and marine snakes). Understanding of these envenomation syndromes is important not only in tropical areas but also in Europe where importation of dangerous species has increased in recent years. PMID:17691425

  13. Submersed Aquatic Vegetation Modeling Output Online

    USGS Publications Warehouse

    Yin, Yao; Rogala, Jim; Sullivan, John; Rohweder, Jason J.

    2005-01-01

    Introduction The ability to predict the distribution of submersed aquatic vegetation in the Upper Mississippi River on the basis of physical or chemical variables is useful to resource managers. Wildlife managers have a keen interest in advanced estimates of food quantity such as American wildcelery (Vallisneria americana) population status to give out more informed advisories to hunters before the fall hunting season. Predictions for distribution of submerged aquatic vegetation beds can potentially increase hunter observance of voluntary avoidance zones where foraging birds are left alone to feed undisturbed. In years when submersed aquatic vegetation is predicted to be scarce in important wildlife habitats, managers can get the message out to hunters well before the hunting season (Jim Nissen, Upper Mississippi River National Wildlife and Fish Refuge, La Crosse District Manager, La Crosse, Wisconsin, personal communication). We developed a statistical model to predict the probability of occurrence of submersed aquatic vegetation in Pool 8 of the Upper Mississippi River on the basis of a few hydrological, physical, and geomorphic variables. Our model takes into consideration flow velocity, wind fetch, bathymetry, growing-season daily water level, and light extinction coefficient in the river (fig. 1) and calculates the probability of submersed aquatic vegetation existence in Pool 8 in individual 5- x 5-m grid cells. The model was calibrated using the data collected in 1998 (516 sites), 1999 (595 sites), and 2000 (649 sites) using a stratified random sampling protocol (Yin and others, 2000b). To validate the model, we chose the data from the Long Term Resource Monitoring Program (LTRMP) transect sampling in backwater areas (Rogers and Owens 1995; Yin and others, 2000a) and ran the model for each 5- x 5-m grid cell in every growing season from 1991 to 2001. We tallied all the cells and came up with an annual average percent frequency of submersed aquatic vegetation

  14. CAGE FOR USE WITH SMALL AQUATIC ANIMALS IN FIELD STUDIES

    EPA Science Inventory

    Various cages are frequently used in assessing the effects of pesticides on non-target animals. In some cases, small animals offer advantages over larger ones because they may be more economical to raise in the laboratory or to purchase; immature stages often are more sensitive t...

  15. Animal models for osteoporosis

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Maran, A.; Lotinun, S.; Hefferan, T.; Evans, G. L.; Zhang, M.; Sibonga, J. D.

    2001-01-01

    Animal models will continue to be important tools in the quest to understand the contribution of specific genes to establishment of peak bone mass and optimal bone architecture, as well as the genetic basis for a predisposition toward accelerated bone loss in the presence of co-morbidity factors such as estrogen deficiency. Existing animal models will continue to be useful for modeling changes in bone metabolism and architecture induced by well-defined local and systemic factors. However, there is a critical unfulfilled need to develop and validate better animal models to allow fruitful investigation of the interaction of the multitude of factors which precipitate senile osteoporosis. Well characterized and validated animal models that can be recommended for investigation of the etiology, prevention and treatment of several forms of osteoporosis have been listed in Table 1. Also listed are models which are provisionally recommended. These latter models have potential but are inadequately characterized, deviate significantly from the human response, require careful choice of strain or age, or are not practical for most investigators to adopt. It cannot be stressed strongly enough that the enormous potential of laboratory animals as models for osteoporosis can only be realized if great care is taken in the choice of an appropriate species, age, experimental design, and measurements. Poor choices will results in misinterpretation of results which ultimately can bring harm to patients who suffer from osteoporosis by delaying advancement of knowledge.

  16. Animal models for osteoporosis.

    PubMed

    Turner, R T; Maran, A; Lotinun, S; Hefferan, T; Evans, G L; Zhang, M; Sibonga, J D

    2001-01-01

    Animal models will continue to be important tools in the quest to understand the contribution of specific genes to establishment of peak bone mass and optimal bone architecture, as well as the genetic basis for a predisposition toward accelerated bone loss in the presence of co-morbidity factors such as estrogen deficiency. Existing animal models will continue to be useful for modeling changes in bone metabolism and architecture induced by well-defined local and systemic factors. However, there is a critical unfulfilled need to develop and validate better animal models to allow fruitful investigation of the interaction of the multitude of factors which precipitate senile osteoporosis. Well characterized and validated animal models that can be recommended for investigation of the etiology, prevention and treatment of several forms of osteoporosis have been listed in Table 1. Also listed are models which are provisionally recommended. These latter models have potential but are inadequately characterized, deviate significantly from the human response, require careful choice of strain or age, or are not practical for most investigators to adopt. It cannot be stressed strongly enough that the enormous potential of laboratory animals as models for osteoporosis can only be realized if great care is taken in the choice of an appropriate species, age, experimental design, and measurements. Poor choices will results in misinterpretation of results which ultimately can bring harm to patients who suffer from osteoporosis by delaying advancement of knowledge. PMID:11704974

  17. [Presence of terms for birds, aquatic animals and insects in medical language].

    PubMed

    Albou, Philippe

    2014-01-01

    After a first lecture, in April 2013, about the presence of mammals in medical language, the author gives another part of his panorama of animal metaphors used in medicine, focusing this time on the birds, aquatic animals and insects. The second part of this study confirms that animals, or at least the image of them in the past, were regularly present in medical nosology. PMID:25230529

  18. Disease-protective symbiosis among fishes and other aquatic animals

    USGS Publications Warehouse

    Snieszko, S.F.

    1962-01-01

    There have been numerous observations of one species of animal removing parasites from another. These are, however, generally regarded as biological curiosities rather than as significant factors in the control of parasites or disease.

  19. Animal models of tinnitus.

    PubMed

    Brozoski, Thomas J; Bauer, Carol A

    2016-08-01

    Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or

  20. Opportunities for public aquariums to increase the sustainability of the aquatic animal trade.

    PubMed

    Tlusty, Michael F; Rhyne, Andrew L; Kaufman, Les; Hutchins, Michael; Reid, Gordon McGregor; Andrews, Chris; Boyle, Paul; Hemdal, Jay; McGilvray, Frazer; Dowd, Scott

    2013-01-01

    The global aquatic pet trade encompasses a wide diversity of freshwater and marine organisms. While relying on a continual supply of healthy, vibrant aquatic animals, few sustainability initiatives exist within this sector. Public aquariums overlap this industry by acquiring many of the same species through the same sources. End users are also similar, as many aquarium visitors are home aquarists. Here we posit that this overlap with the pet trade gives aquariums significant opportunity to increase the sustainability of the trade in aquarium fishes and invertebrates. Improving the sustainability ethos and practices of the aquatic pet trade can carry a conservation benefit in terms of less waste, and protection of intact functioning ecosystems, at the same time as maintaining its economic and educational benefits and impacts. The relationship would also move forward the goal of public aquariums to advance aquatic conservation in a broad sense. For example, many public aquariums in North America have been instrumental in working with the seafood industry to enact positive change toward increased sustainability. The actions include being good consumers themselves, providing technical knowledge, and providing educational and outreach opportunities. These same opportunities exist for public aquariums to partner with the ornamental fish trade, which will serve to improve business, create new, more ethical and more dependable sources of aquatic animals for public aquariums, and perhaps most important, possibly transform the home aquarium industry from a threat, into a positive force for aquatic conservation. PMID:22549966

  1. Animal models of ADHD.

    PubMed

    Bari, A; Robbins, T W

    2011-01-01

    Studies employing animal models of attention-deficit/hyperactivity disorder (ADHD) present clear inherent advantages over human studies. Animal models are invaluable tools for the study of underlying neurochemical, neuropathological and genetic alterations that cause ADHD, because they allow relatively fast, rigorous hypothesis testing and invasive manipulations as well as selective breeding. Moreover, especially for ADHD, animal models with good predictive validity would allow the assessment of potential new therapeutics. In this chapter, we describe and comment on the most frequently used animal models of ADHD that have been created by genetic, neurochemical and physical alterations in rodents. We then discuss that an emerging and promising direction of the field is the analysis of individual behavioural differences among a normal population of animals. Subjects presenting extreme characteristics related to ADHD can be studied, thereby avoiding some of the problems that are found in other models, such as functional recovery and unnecessary assumptions about aetiology. This approach is justified by the theoretical need to consider human ADHD as the extreme part of a spectrum of characteristics that are distributed normally in the general population, as opposed to the predominant view of ADHD as a separate pathological category. PMID:21287324

  2. Animal models of fibromyalgia

    PubMed Central

    2013-01-01

    Animal models of disease states are valuable tools for developing new treatments and investigating underlying mechanisms. They should mimic the symptoms and pathology of the disease and importantly be predictive of effective treatments. Fibromyalgia is characterized by chronic widespread pain with associated co-morbid symptoms that include fatigue, depression, anxiety and sleep dysfunction. In this review, we present different animal models that mimic the signs and symptoms of fibromyalgia. These models are induced by a wide variety of methods that include repeated muscle insults, depletion of biogenic amines, and stress. All potential models produce widespread and long-lasting hyperalgesia without overt peripheral tissue damage and thus mimic the clinical presentation of fibromyalgia. We describe the methods for induction of the model, pathophysiological mechanisms for each model, and treatment profiles. PMID:24314231

  3. Animal models of scoliosis.

    PubMed

    Bobyn, Justin D; Little, David G; Gray, Randolph; Schindeler, Aaron

    2015-04-01

    Multiple techniques designed to induce scoliotic deformity have been applied across many animal species. We have undertaken a review of the literature regarding experimental models of scoliosis in animals to discuss their utility in comprehending disease aetiology and treatment. Models of scoliosis in animals can be broadly divided into quadrupedal and bipedal experiments. Quadrupedal models, in the absence of axial gravitation force, depend upon development of a mechanical asymmetry along the spine to initiate a scoliotic deformity. Bipedal models more accurately mimic human posture and consequently are subject to similar forces due to gravity, which have been long appreciated to be a contributing factor to the development of scoliosis. Many effective models of scoliosis in smaller animals have not been successfully translated to primates and humans. Though these models may not clarify the aetiology of human scoliosis, by providing a reliable and reproducible deformity in the spine they are a useful means with which to test interventions designed to correct and prevent deformity. PMID:25492698

  4. ECOLOGY. Aquatic animal telemetry: A panoramic window into the underwater world.

    PubMed

    Hussey, Nigel E; Kessel, Steven T; Aarestrup, Kim; Cooke, Steven J; Cowley, Paul D; Fisk, Aaron T; Harcourt, Robert G; Holland, Kim N; Iverson, Sara J; Kocik, John F; Mills Flemming, Joanna E; Whoriskey, Fred G

    2015-06-12

    The distribution and interactions of aquatic organisms across space and time structure our marine, freshwater, and estuarine ecosystems. Over the past decade, technological advances in telemetry have transformed our ability to observe aquatic animal behavior and movement. These advances are now providing unprecedented ecological insights by connecting animal movements with measures of their physiology and environment. These developments are revolutionizing the scope and scale of questions that can be asked about the causes and consequences of movement and are redefining how we view and manage individuals, populations, and entire ecosystems. The next advance in aquatic telemetry will be the development of a global collaborative effort to facilitate infrastructure and data sharing and management over scales not previously possible. PMID:26068859

  5. Animal Models of Glaucoma

    PubMed Central

    A. Bouhenni, Rachida; Dunmire, Jeffrey; Sewell, Abby; Edward, Deepak P.

    2012-01-01

    Glaucoma is a heterogeneous group of disorders that progressively lead to blindness due to loss of retinal ganglion cells and damage to the optic nerve. It is a leading cause of blindness and visual impairment worldwide. Although research in the field of glaucoma is substantial, the pathophysiologic mechanisms causing the disease are not completely understood. A wide variety of animal models have been used to study glaucoma. These include monkeys, dogs, cats, rodents, and several other species. Although these models have provided valuable information about the disease, there is still no ideal model for studying glaucoma due to its complexity. In this paper we present a summary of most of the animal models that have been developed and used for the study of the different types of glaucoma, the strengths and limitations associated with each species use, and some potential criteria to develop a suitable model. PMID:22665989

  6. AQUATIC ANIMAL RESPIRATION AND COUGH RESPONSE APPLIED TO INNOVATIVE ENVIRONMENTAL BIOMONITORING: A BIBLIOGRAPHY

    EPA Science Inventory

    This bibliography encompasses a body of in-depth technical information on the mechanics and physiology of respiration in aquatic animals (vertebrate and invertebrate). In compiling the bibliography, special emphasis was given to identifying studies that deal with responses of thi...

  7. 40 CFR 122.24 - Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123.25). 122.24 Section 122.24 Protection of... § 122.24 Concentrated aquatic animal production facilities (applicable to State NPDES programs,...

  8. 40 CFR 122.24 - Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123.25). 122.24 Section 122.24 Protection of... § 122.24 Concentrated aquatic animal production facilities (applicable to State NPDES programs,...

  9. 40 CFR 122.24 - Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123.25). 122.24 Section 122.24 Protection of... § 122.24 Concentrated aquatic animal production facilities (applicable to State NPDES programs,...

  10. 40 CFR Appendix C to Part 122 - Criteria for Determining a Concentrated Aquatic Animal Production Facility (§ 122.24)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... aquatic animals in ponds, raceways, or other similar structures which discharge at least 30 days per year... fish species or other warm water aquatic animals in ponds, raceways, or other similar structures which discharge at least 30 days per year, but does not include: (1) Closed ponds which discharge only...

  11. Detection and identification of Malassezia species in domestic animals and aquatic birds by PCR-RFLP

    PubMed Central

    Zia, M.; Mirhendi, H.; Toghyani, M.

    2015-01-01

    The present study aimed at detection and species-level identification of the Malassezia yeasts in domestic animals and aquatic birds by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Samples were collected using tape strips and swabs from 471 animals including 97 horses, 102 cattle, 105 sheep, 20 camels, 60 dogs, 30 cats, 1 hamster, 1 squirrel, 50 aquatic birds and 5 turkeys. Tape-strip samples were examined by direct microscopy. All samples were inoculated on modified Leeming and Notman agar medium. DNA extracted from the yeast colonies was amplified by PCR using primers specific for 26S rDNA. RFLP of the PCR products was performed using Hin6I enzyme, and PCR and RFLP products were visualized by agarose gel electrophoresis. Malassezia yeasts were detected at the following frequencies: 15.46% in horses, 12.74% in cattle, 12.38% in sheep, 28.33% in dogs, 26.66% in cats and 26% in aquatic birds. Eighty colonies of 6 species were isolated: Malassezia globosa 41.25%, Malassezia furfur 22.5%, Malassezia restricta 15%, Malassezia sympodialis 15%, Malassezia pachydermatis 5% and Malassezia slooffiae 1.25%. Therefore different lipophilic Malassezia species are found in a wide diversity of animals and aquatic birds. PCR-RFLP is a suitable technique for identification of different Malassezia species. PMID:27175148

  12. Detection and identification of Malassezia species in domestic animals and aquatic birds by PCR-RFLP.

    PubMed

    Zia, M; Mirhendi, H; Toghyani, M

    2015-01-01

    The present study aimed at detection and species-level identification of the Malassezia yeasts in domestic animals and aquatic birds by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Samples were collected using tape strips and swabs from 471 animals including 97 horses, 102 cattle, 105 sheep, 20 camels, 60 dogs, 30 cats, 1 hamster, 1 squirrel, 50 aquatic birds and 5 turkeys. Tape-strip samples were examined by direct microscopy. All samples were inoculated on modified Leeming and Notman agar medium. DNA extracted from the yeast colonies was amplified by PCR using primers specific for 26S rDNA. RFLP of the PCR products was performed using Hin6I enzyme, and PCR and RFLP products were visualized by agarose gel electrophoresis. Malassezia yeasts were detected at the following frequencies: 15.46% in horses, 12.74% in cattle, 12.38% in sheep, 28.33% in dogs, 26.66% in cats and 26% in aquatic birds. Eighty colonies of 6 species were isolated: Malassezia globosa 41.25%, Malassezia furfur 22.5%, Malassezia restricta 15%, Malassezia sympodialis 15%, Malassezia pachydermatis 5% and Malassezia slooffiae 1.25%. Therefore different lipophilic Malassezia species are found in a wide diversity of animals and aquatic birds. PCR-RFLP is a suitable technique for identification of different Malassezia species. PMID:27175148

  13. The impact of aquatic animals on bedload transport in gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Johnson, M.; Rice, S. P.

    2012-12-01

    Grain-scale processes are known to have large impacts on the transport of bed material in rivers. The structure, topography and distribution of grain sizes that make up a bed, all contribute to the mobility of fluvial substrates. Animals in rivers interact with the substrate in a multitude of ways, for example, when burrowing, moving and foraging for food. Alterations to the arrangement of grains that result from these activities have a demonstrable impact on particle stability and critical entrainment stresses. This raises the intriguing possibility that aquatic fauna have large, cumulative impacts on the structure of river bed material and, consequently, on the transport of bed material. The activities of signal crayfish (Pacifastacus leniusculus), a globally important invasive crustacean, alter the arrangement of surface grains in fluvial substrates. They also construct pits and mounds across surfaces within which they shelter. These structural and topographic alterations to surfaces were quantified using repeat laser scans to create Digital Elevation Models (DEMs) before and after crayfish activity. Crayfish moved grains up to 32 mm in diameter and with a submerged weight six times that of average adult crayfish. As a result of crayfish destroying grain-scale structures, 50% more material was entrained from disturbed fluvial substrates in comparison to control surfaces that had not been exposed to crayfish. Animals can also stabilise substrates. Hydropsychid caddisfly larvae bind grains together with silk, which is spun for a variety of purposes including the creation of nets to catch organic matter from the flow. Fine gravels (2-6 mm) that were colonised by natural densities of caddisfly, required 20% increases in shear stress to be mobilised in comparison to uncolonised, control gravels. Whilst these results demonstrate the potential for animals to affect grain-scale processes, their river-scale impact needs to be assessed in field environments, in the

  14. Animal Models of Hemophilia

    PubMed Central

    Sabatino, Denise E.; Nichols, Timothy C.; Merricks, Elizabeth; Bellinger, Dwight A.; Herzog, Roland W.; Monahan, Paul E.

    2013-01-01

    The X-linked bleeding disorder hemophilia is caused by mutations in coagulation factor VIII (hemophilia A) or factor IX (hemophilia B). Unless prophylactic treatment is provided, patients with severe disease (less than 1% clotting activity) typically experience frequent spontaneous bleeds. Current treatment is largely based on intravenous infusion of recombinant or plasma-derived coagulation factor concentrate. More effective factor products are being developed. Moreover, gene therapies for sustained correction of hemophilia are showing much promise in pre-clinical studies and in clinical trials. These advances in molecular medicine heavily depend on availability of well-characterized small and large animal models of hemophilia, primarily hemophilia mice and dogs. Experiments in these animals represent important early and intermediate steps of translational research aimed at development of better and safer treatments for hemophilia, such a protein and gene therapies or immune tolerance protocols. While murine models are excellent for studies of large groups of animals using genetically defined strains, canine models are important for testing scale-up and for longer-term follow-up as well as for studies that require larger blood volumes. PMID:22137432

  15. Animal models of schizophrenia

    PubMed Central

    Jones, CA; Watson, DJG; Fone, KCF

    2011-01-01

    Developing reliable, predictive animal models for complex psychiatric disorders, such as schizophrenia, is essential to increase our understanding of the neurobiological basis of the disorder and for the development of novel drugs with improved therapeutic efficacy. All available animal models of schizophrenia fit into four different induction categories: developmental, drug-induced, lesion or genetic manipulation, and the best characterized examples of each type are reviewed herein. Most rodent models have behavioural phenotype changes that resemble ‘positive-like’ symptoms of schizophrenia, probably reflecting altered mesolimbic dopamine function, but fewer models also show altered social interaction, and learning and memory impairment, analogous to negative and cognitive symptoms of schizophrenia respectively. The negative and cognitive impairments in schizophrenia are resistant to treatment with current antipsychotics, even after remission of the psychosis, which limits their therapeutic efficacy. The MATRICS initiative developed a consensus on the core cognitive deficits of schizophrenic patients, and recommended a standardized test battery to evaluate them. More recently, work has begun to identify specific rodent behavioural tasks with translational relevance to specific cognitive domains affected in schizophrenia, and where available this review focuses on reporting the effect of current and potential antipsychotics on these tasks. The review also highlights the need to develop more comprehensive animal models that more adequately replicate deficits in negative and cognitive symptoms. Increasing information on the neurochemical and structural CNS changes accompanying each model will also help assess treatments that prevent the development of schizophrenia rather than treating the symptoms, another pivotal change required to enable new more effective therapeutic strategies to be developed. LINKED ARTICLES This article is part of a themed issue on

  16. Modeling animal landscapes.

    PubMed

    Porter, W P; Ostrowski, S; Williams, J B

    2010-01-01

    There is an increasing need to assess the effects of climate and land-use change on habitat quality, ideally from a mechanistic basis. The symposium "Molecules to Migration: Pressures of Life" at the Fourth International Conference in Africa for Comparative Physiology and Biochemistry, Maasai Mara National Reserve, Kenya, 2008, illustrated how the principles of biophysical ecology can capture the mechanistic links between organisms, climate, and other habitat features. These principles provide spatially explicit assessments of habitat quality from a physiological perspective (i.e., "animal landscapes") that can be validated independently of the data used to derive and parameterize them. The contents of this symposium showcased how the modeling of animal landscapes can be used to assess key issues in applied and theoretical ecology. The presentations included applications to amphibians, reptiles, birds, and mammals. The rare Arabian oryx on the Arabian Peninsula is used as an example for energetic calculations and their implications for behavior on the landscape. PMID:20670170

  17. Animal Models of Narcolepsy

    PubMed Central

    Chen, Lichao; Brown, Ritchie E.; McKenna, James T.; McCarley, Robert W.

    2013-01-01

    Narcolepsy is a debilitating sleep disorder with excessive daytime sleepiness and cataplexy as its two major symptoms. Although this disease was first described about one century ago, an animal model was not available until the 1970s. With the establishment of the Stanford canine narcolepsy colony, researchers were able to conduct multiple neurochemical studies to explore the pathophysiology of this disease. It was concluded that there was an imbalance between monoaminergic and cholinergic systems in canine narcolepsy. In 1999, two independent studies revealed that orexin neurotransmission deficiency was pivotal to the development of narcolepsy with cataplexy. This scientific leap fueled the generation of several genetically engineered mouse and rat models of narcolepsy. To facilitate further research, it is imperative that researchers reach a consensus concerning the evaluation of narcoleptic behavioral and EEG phenomenology in these models. PMID:19689311

  18. GUIDELINES FOR FIELD TESTING AQUATIC FATE AND TRANSPORT MODELS

    EPA Science Inventory

    This guidance has been developed for those attempting to field validate aquatic fate and transport models. Included are discussions of the major steps in validating models and sections on the individual fate and transport processes: biodegradation, oxidation, hydrolysis, photolys...

  19. Methods for broth dilution susceptibility testing of bacteria isolated from aquatic animals; approved guideline-second edition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antimicrobial susceptibility testing is recommended to determine which antimicrobial agents should be considered for treating a bacterial pathogen. Many bacteria that cause disease in aquatic animals require growth conditions that vary substantially from routine terrestrial pathogens. It has thus ...

  20. Assessment of aquatic animal communities in the vicinity of the Palmerton, Pennsylvania, zinc smelters

    SciTech Connect

    Carline, R.F.; Jobsis, G.J. . Pennsylvania Cooperative Fish and Wildlife Research Unit)

    1993-09-01

    Emissions from zinc smelters in Palmerton, Pennsylvania, deposited large quantities of heavy metals, predominantly Zn, Pb, Cu, and Cd, on the surrounding landscape from 1898 to 1980. From 1986 to 1987 the authors studied four small headwater streams that were about 8 to 25 km downwind of the smelters to determine if long-term deposition of heavy metals had any pronounced effects on aquatic communities. Although metal concentrations in soils tended to decrease with increasing distance from the smelters, this trend was not particularly evident in stream sediments, insects, or fish. Diversities of macroinvertebrates and fish were similar among sites. Densities and growth of trout varied among streams, but no in relation to distance from the smelters. They concluded that long-term deposition of heavy metals has not had pronounced effects on aquatic animal communities six to seven years after cessation of primary smelting.

  1. Inhibitory effects of pain relief drugs on neurological enzymes: implications on their potential neurotoxicity to aquatic animals.

    PubMed

    Wu, Jui-Pin; Li, Mei-Hui

    2015-03-01

    Pain relief medications commonly occur in the aquatic environment at measurable levels. While the neurotoxicity of pain relievers to higher vertebrates is currently known, little is known about their effects on aquatic animals. This study investigated the neurotoxicity of pain relievers to aquatic animals. We used three neurological enzymes, cholinesterase (ChE), adenosine triphosphatase (ATPase), and monoamine oxidase (MAO), from a freshwater planarian (Dugesia japonica) and green neon shrimp (Neocaridina denticulata) as biomarkers to examine the effects of pain relievers on in vitro activity. The activity of MAO and ChE, but not ATPase, was significantly inhibited by acetaminophen, but not by other pain relievers examined. It was likely that the inhibitory effects of acetaminophen on shrimp neurological enzymes were more severe than on the planarian. These findings suggest that acetaminophen is potentially neurotoxic to aquatic animals, at least in terms of neurotransmission disturbance. PMID:25801321

  2. Epidemiology and Economics Support Decisions about Freedom from Aquatic Animal Disease.

    PubMed

    Peeler, E J; Otte, M J

    2016-06-01

    In this study, we review the application of epidemiology and economics to decision-making about freedom from aquatic animal disease, at national and regional level, and recent examples from Europe. Epidemiological data (e.g. pathogen prevalence and distribution) determine the technical feasibility and cost of eradication. The eradication of pathogens which exist in wild populations, or in a latent state, is technically difficult, uncertain and expensive. Notably, the eradication of diseases of molluscs is rarely attempted because host populations (farmed and wild) cannot be completely removed from open water systems. Doubt about the success of eradication translates into uncertain ex-ante cost estimates. Additionally, the benefits of an official disease-free status cannot be estimated with any accuracy. For example, in Europe, official freedom from epizootic ulcerative syndrome and white spot syndrome virus has not been pursued, arguably because the evidence does not exist for the benefits (reduced risk of disease in wild populations) to be estimated and thus weighed against the costs of maintaining disease freedom (e.g. restriction on imports). Economic analysis must assess not only whether the benefits of disease freedom outweigh costs, but whether it is the economically optimal disease control option. Government may also want to compare investment in aquatic animal health with other opportunities. As resources become scarce, governments have sought to share costs of disease control with industry, and thus to ensure equity, the distribution benefits must be known so costs can be borne by those who benefit. The economic principles to support decisions about disease freedom are well established, but their application is constrained by lack of epidemiological data, which may explain the lack of economic analysis in support of aquatic animal management in Europe. The integration of epidemiology and economics in disease control planning will identify research aimed at

  3. Advantages of using aquatic animals for biomedical research on reproductive toxicology

    SciTech Connect

    Mottet, N.K.; Landolt, M.L.

    1987-04-01

    Major advantages of the use of aquatic animals, such as trout, English sole, or sea urchins, for studying the mechanisms of reproductive toxicology are discussed. The remarkable synchrony of differentiation of gametes in large quantities for detailed morphologic and biochemical measurements enables research not readily done on mammalian nonseasonal breeders. Structural differences such as the absence of a fibrous sheath in the more simple structure of fish and sea urchin sperm flagella facilitates comparative study of the mechanism of action of microtubules in flagella movement and the coupling of mitochondrial energy production to microtubules movement.

  4. Advantages of using aquatic animals for biomedical research on reproductive toxicology.

    PubMed Central

    Mottet, N K; Landolt, M L

    1987-01-01

    Major advantages of the use of aquatic animals, such as trout, English sole, or sea urchins, for studying the mechanisms of reproductive toxicology are discussed. The remarkable synchrony of differentiation of gametes in large quantities for detailed morphologic and biochemical measurements enables research not readily done on mammalian nonseasonal breeders. Structural differences such as the absence of a fibrous sheath in the more simple structure of fish and sea urchin sperm flagella facilitates comparative study of the mechanism of action of microtubules in flagella movement and the coupling of mitochondrial energy production to microtubules movement. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 6. FIGURE 7. PMID:3297666

  5. Environmental dermatology: skin manifestations of injuries caused by invertebrate aquatic animals*

    PubMed Central

    Haddad Junior, Vidal

    2013-01-01

    Contact between humans and coastal areas has increased in recent decades, which has led to an increase in injuries from aquatic animals. The majority of these present dermatological manifestations, and some of them show typical lesions. The highest percentages of injuries that occur in marine environments are associated with invertebrates such as sea urchins, jellyfish and Portuguese men-of-war (echinoderms and cnidarians). In this review, we discuss the clinical, therapeutic and preventive aspects of injuries caused by marine and freshwater invertebrates, focusing on first aid measures and diagnosis for dermatologists and professionals in coastal areas. PMID:24068119

  6. [Meta-analysis of stable carbon and nitrogen isotopic enrichment factors for aquatic animals].

    PubMed

    Guo, Liang; Sun, Cui-ping; Ren, Wei-zheng; Zhang, Jian; Tang, Jian-iun; Hu, Liana-liang; Chen, Xin

    2016-02-01

    Isotopic enrichment factor (Δ, the difference between the δ value of food and a consumer tissue) is an important parameter in using stable isotope analysis (SIA) to reconstruct diets, characterize trophic relationships, elucidate patterns of resource allocation, and construct food webs. Isotopic enrichment factor has been considered as a constancy value across a broad range of animals. However, recent studies showed that the isotopic enrichment factor differed among various types of animals although the magnitude of variation was not clear. Here, we conducted a meta-analysis to synthesize and compare Δ13C and Δ15N among four types of aquatic animals (teleosts, crustaceans, reptiles and molluscs). We searched for papers published before 2014 on Web of Science and CNKI using the key words "stable isotope or isotopic fractionation or fractionation factor or isotopic enrichment or trophic enrichment". Forty-two publications that contain 140 studies on Δ13C and 159 studies on Δ15N were obtained. We conducted three parallel meta-analyses by using three types of weights (the reciprocal of variance as weights, the sample size as weights, and equal weights). The results showed that no significant difference in Δ13C among different animal types (teleosts 1.0 per thousand, crustaceans 1.3 per thousand, reptiles 0.5 per thousand, and molluscs 1.5 per thousand), while Δ15N values were significantly different (teleosts 2.4 per thousand, crustaceans 3.6 per thousand, reptiles 1.0 per thousand and molluscs 2.5 per thousand). Our results suggested that the overall mean of Δ13C could be used as a general enrichment factor, but Δ15N should be chosen according to the type of aquatic animals in using SIA to analyze trophic relationships, patterns of resource allocation and food webs. PMID:27396136

  7. Quantitative polymerase chain reaction (PCR) for detection of aquatic animal pathogens in a diagnostic laboratory setting

    USGS Publications Warehouse

    Purcell, Maureen K.; Getchell, Rodman G.; McClure, Carol A.; Weber, S.E.; Garver, Kyle A.

    2011-01-01

    Real-time, or quantitative, polymerase chain reaction (qPCR) is quickly supplanting other molecular methods for detecting the nucleic acids of human and other animal pathogens owing to the speed and robustness of the technology. As the aquatic animal health community moves toward implementing national diagnostic testing schemes, it will need to evaluate how qPCR technology should be employed. This review outlines the basic principles of qPCR technology, considerations for assay development, standards and controls, assay performance, diagnostic validation, implementation in the diagnostic laboratory, and quality assurance and control measures. These factors are fundamental for ensuring the validity of qPCR assay results obtained in the diagnostic laboratory setting.

  8. ANIMAL MODELS FOR IMMUNOTOXICITY

    EPA Science Inventory

    Greater susceptibility to infection is a hallmark of compromised immune function in humans and animals, and is often considered the benchmark against which the predictive value of immune function tests are compared. This focus of this paper is resistance to infection with the pa...

  9. Animal Models of Colorectal Cancer

    PubMed Central

    Johnson, Robert L.; Fleet, James C.

    2012-01-01

    Colorectal cancer is a heterogeneous disease that afflicts a large number of people in the United States. The use of animal models has the potential to increase our understanding of carcinogenesis, tumor biology, and the impact of specific molecular events on colon biology. In addition, animal models with features of specific human colorectal cancers can be used to test strategies for cancer prevention and treatment. In this review we provide an overview of the mechanisms driving human cancer, we discuss the approaches one can take to model colon cancer in animals, and we describe a number of specific animal models that have been developed for the study of colon cancer. We believe that there are many valuable animal models to study various aspects of human colorectal cancer. However, opportunities for improving upon these models exist. PMID:23076650

  10. Public Lakes, Private Lakeshore: Modeling Protection of Native Aquatic Plants

    NASA Astrophysics Data System (ADS)

    Schroeder, Susan A.; Fulton, David C.

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey ( n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  11. Public lakes, private lakeshore: modeling protection of native aquatic plants.

    PubMed

    Schroeder, Susan A; Fulton, David C

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey (n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property. PMID:23609308

  12. Animal Models for Therapeutic Embolization

    SciTech Connect

    Moreira, Patricia L.; An, Yuehuei H.

    2003-04-15

    Embolization techniques have been performed in different animals to accumulate basic data before a clinical trial.Choosing the right embolization model for a specific project is critical. However, there are several variables when defining the best model for embolization research such as the size of the animal to be used, the target organs, the route of introducing the embolization agent, and the feasible methods of evaluation. Commonly used research animals for endovascular embolization include rabbits, dogs, and rats. Frequently used target organs are the kidney and the liver. Most models use a transcatheter for introducing the embolus and occasionally open surgery and direct arterial injection are used. Basic methods of evaluation are straightforward, and commonly include macro observation of the embolized organs, angiogram, and histology. This article concisely reviews the available animal models and their evaluation for embolization research to help researchers to choose the appropriate model.

  13. Animal models in peritoneal dialysis

    PubMed Central

    Nikitidou, Olga; Peppa, Vasiliki I.; Leivaditis, Konstantinos; Eleftheriadis, Theodoros; Zarogiannis, Sotirios G.; Liakopoulos, Vassilios

    2015-01-01

    Peritoneal dialysis (PD) has been extensively used over the past years as a method of kidney replacement therapy for patients with end stage renal disease (ESRD). In an attempt to better understand the properties of the peritoneal membrane and the mechanisms involved in major complications associated with PD, such as inflammation, peritonitis and peritoneal injury, both in vivo and ex vivo animal models have been used. The aim of the present review is to briefly describe the animal models that have been used, and comment on the main problems encountered while working with these models. Moreover, the differences characterizing these animal models, as well as, the differences with humans are highlighted. Finally, it is suggested that the use of standardized protocols is a necessity in order to take full advantage of animal models, extrapolate their results in humans, overcome the problems related to PD and help promote its use. PMID:26388781

  14. Animal models of cerebral ischemia

    NASA Astrophysics Data System (ADS)

    Khodanovich, M. Yu.; Kisel, A. A.

    2015-11-01

    Cerebral ischemia remains one of the most frequent causes of death and disability worldwide. Animal models are necessary to understand complex molecular mechanisms of brain damage as well as for the development of new therapies for stroke. This review considers a certain range of animal models of cerebral ischemia, including several types of focal and global ischemia. Since animal models vary in specificity for the human disease which they reproduce, the complexity of surgery, infarct size, reliability of reproduction for statistical analysis, and adequate models need to be chosen according to the aim of a study. The reproduction of a particular animal model needs to be evaluated using appropriate tools, including the behavioral assessment of injury and non-invasive and post-mortem control of brain damage. These problems also have been summarized in the review.

  15. Impact of Anthropogenic Noise on Aquatic Animals: From Single Species to Community-Level Effects.

    PubMed

    Sabet, Saeed Shafiei; Neo, Yik Yaw; Slabbekoorn, Hans

    2016-01-01

    Anthropogenic noise underwater is on the rise and may affect aquatic animals of marine and freshwater ecosystems. Many recent studies concern some sort of impact assessment of a single species. Few studies addressed the noise impact on species interactions underwater, whereas there are some studies that address community-level impact but only on land in air. Key processes such as predator-prey or competitor interactions may be affected by the masking of auditory cues, noise-related disturbance, or attentional interference. Noise-associated changes in these interactions can cause shifts in species abundance and modify communities, leading to fundamental ecosystem changes. To gain further insight into the mechanism and generality of earlier findings, we investigated the impact on both a predator and a prey species in captivity, zebrafish (Danio rerio) preying on waterfleas (Daphnia magna). PMID:26611055

  16. Gravity Related Research with Aquatic Animals - Overview and Perspectives towards Exploratory Missions

    NASA Astrophysics Data System (ADS)

    Slenzka, K.

    Gravity related research with aquatic animals has not only a long tradition in manned and unmanned space flight but also in ground based research using clinostats and centrifuges In this presentation an overview will be given starting from the early beginning with such experiments Skylab Apollo-Soyuz etc up to today s flight experiments and ground based studies In addition verification will be presented how this research contributes to Earth s benefits and application as well as an outlook will be given how potential follow-up studies may contribute in manned exploratory missions on Earth Moon Mars and maybe beyond This review will summarize results obtained and will try to transfer them into future perspectives in space exploration

  17. Animal models in burn research.

    PubMed

    Abdullahi, A; Amini-Nik, S; Jeschke, M G

    2014-09-01

    Burn injury is a severe form of trauma affecting more than 2 million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury, to elucidate the pathophysiology, and to explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  18. Animal Models in Burn Research

    PubMed Central

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury; to elucidate the pathophysiology and explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review paper aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  19. Mapping, Monitoring and Modeling Submersed Aquatic Vegetation Species and Communities

    NASA Astrophysics Data System (ADS)

    Hartis, Brett Michael

    Aquatic macrophyte communities are critically important habitat species in aquatic systems worldwide. None are more important than those found beneath the water's surface, commonly referred to as submersed aquatic vegetation (SAV). Although vital to such systems, many native submersed plants have shown near irreversible declines in recent decades as water quality impairment, habitat destruction, and encroachment by invasive species have increased. In the past, aquatic plant science has emphasized the restoration and protection of native species and the management of invasive species. Comparatively little emphasis has been directed toward adequately mapping and monitoring these resources to track their viability over time. Modeling the potential intrusion of certain invasive plant species has also been given little attention, likely because aquatic systems in general can be difficult to assess. In recent years, scientists and resource managers alike have begun paying more attention to mapping SAV communities and to address the spread of invasive species across various regions. This research attempts to provide new, cutting-edge techniques to improve SAV mapping and monitoring efforts in coastal regions, at both community and individual species levels, while also providing insights about the establishment potential of Hydrilla verticillata, a noxious, highly invasive submersed plant. Technological advances in satellite remote sensing, interpolation and spatial analysis in geographic information systems, and state-of-the-art climate envelope modeling techniques were used to further assess the dynamic nature of SAV on various scales. This work contributes to the growing science of mapping, monitoring, and modeling of SAV

  20. Developing an Interdisciplinary Curriculum Framework for Aquatic-Ecosystem Modeling

    ERIC Educational Resources Information Center

    Saito, Laurel; Segale, Heather M.; DeAngelis, Donald L.; Jenkins, Stephen H.

    2007-01-01

    This paper presents results from a July 2005 workshop and course aimed at developing an interdisciplinary course on modeling aquatic ecosystems that will provide the next generation of practitioners with critical skills for which formal training is presently lacking. Five different course models were evaluated: (1) fundamentals/general principles…

  1. Animal Models of Bacterial Keratitis

    PubMed Central

    Marquart, Mary E.

    2011-01-01

    Bacterial keratitis is a disease of the cornea characterized by pain, redness, inflammation, and opacity. Common causes of this disease are Pseudomonas aeruginosa and Staphylococcus aureus. Animal models of keratitis have been used to elucidate both the bacterial factors and the host inflammatory response involved in the disease. Reviewed herein are animal models of bacterial keratitis and some of the key findings in the last several decades. PMID:21274270

  2. Animal models for human diseases.

    PubMed

    Rust, J H

    1982-01-01

    The use of animal models for the study of human disease is, for the most part, a recent development. This discussion of the use of animal models for human diseases directs attention to the sterile period, early advances, some personal experiences, the human as the model, biological oddities among common laboratory animals, malignancies in laboratory animals, problems created by federal regulations, cancer tests with animals, and what the future holds in terms of the use of animal models as an aid to understanding human disease. In terms of early use of animal models, there was a school of rabbis, some of whom were also physicians, in Babylon who studied and wrote extensively on ritual slaughter and the suitability of birds and beasts for food. Considerable detailed information on animal pathology, physiology, anatomy, and medicine in general can be found in the Soncino Babylonian Talmudic Translations. The 1906 edition of the "Jewish Encyclopedia," has been a rich resource. Although it has not been possible to establish what diseases of animals were studied and their relationship to the diseases of humans, there are fascinating clues to pursue, despite the fact that these were sterile years for research in medicine. The quotation from the Talmud is of interest: "The medical knowledge of the Talmudist was based upon tradition, the dissection of human bodies, observation of disease and experiments upon animals." A bright light in the lackluster years of medical research was provided by Galen, considered the originator of research in physiology and anatomy. His dissection of animals and work on apes and other lower animals were models for human anatomy and physiology and the bases for many treatises. Yet, Galen never seemed to suggest that animals could serve as models for human diseases. Most early physicians who can be considered to have been students of disease developed their medical knowledge by observing the sick under their care. 1 early medical investigator

  3. Animal models in myopia research.

    PubMed

    Schaeffel, Frank; Feldkaemper, Marita

    2015-11-01

    Our current understanding of the development of refractive errors, in particular myopia, would be substantially limited had Wiesel and Raviola not discovered by accident that monkeys develop axial myopia as a result of deprivation of form vision. Similarly, if Josh Wallman and colleagues had not found that simple plastic goggles attached to the chicken eye generate large amounts of myopia, the chicken model would perhaps not have become such an important animal model. Contrary to previous assumptions about the mechanisms of myopia, these animal models suggested that eye growth is visually controlled locally by the retina, that an afferent connection to the brain is not essential and that emmetropisation uses more sophisticated cues than just the magnitude of retinal blur. While animal models have shown that the retina can determine the sign of defocus, the underlying mechanism is still not entirely clear. Animal models have also provided knowledge about the biochemical nature of the signal cascade converting the output of retinal image processing to changes in choroidal thickness and scleral growth; however, a critical question was, and still is, can the results from animal models be applied to myopia in children? While the basic findings from chickens appear applicable to monkeys, some fundamental questions remain. If eye growth is guided by visual feedback, why is myopic development not self-limiting? Why does undercorrection not arrest myopic progression even though positive lenses induce myopic defocus, which leads to the development of hyperopia in emmetropic animals? Why do some spectacle or contact lens designs reduce myopic progression and others not? It appears that some major differences exist between animals reared with imposed defocus and children treated with various optical corrections, although without the basic knowledge obtained from animal models, we would be lost in an abundance of untestable hypotheses concerning human myopia. PMID:26769177

  4. Animal Models of Bone Metastasis.

    PubMed

    Simmons, J K; Hildreth, B E; Supsavhad, W; Elshafae, S M; Hassan, B B; Dirksen, W P; Toribio, R E; Rosol, T J

    2015-09-01

    Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone. PMID:26021553

  5. Animal Models of Bone Metastasis

    PubMed Central

    Simmons, J. K.; Hildreth, B. E.; Supsavhad, W.; Elshafae, S. M.; Hassan, B. B.; Dirksen, W. P.; Toribio, R. E.; Rosol, T. J.

    2015-01-01

    Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone. PMID:26021553

  6. Trypanocidal and leishmanicidal activities of different antimicrobial peptides (AMPs) isolated from aquatic animals.

    PubMed

    Löfgren, S E; Miletti, L C; Steindel, M; Bachère, E; Barracco, M A

    2008-02-01

    Most of the available animal antimicrobial peptides (AMPs) have been tested against bacteria and fungi, but very few against protozoan parasites. In the present study, we investigated the antiparasitic activity of different AMPs isolated from aquatic animals: tachyplesin (Tach, from Tachypleus tridentatus), magainin (Mag, from Xenopus laevis), clavanin (Clav, from Styela clava), penaeidin (Pen, from Litopenaeus vannamei), mytilin (Myt, from Mytilus edulis) and anti-lipopolysaccharide factor (ALF, from Penaeus monodon). The antiparasitic activity was evaluated against the promastigote form of Leishmania braziliensis and epi and trypomastigote forms of Trypanosoma cruzi, through the MTT method. Tach was the most potent peptide, killing completely L. braziliensis and trypomastigote T. cruzi from 12.5microM, whereas Pen and Clav were weakly active against trypomastigotes and Myt against L. braziliensis, only at a high concentration (100microM). Tach and Mag were markedly hemolytic at high concentrations, whereas the other peptides caused only a slight hemolysis (<10% up to 50microM). Our results point to Tach as the only potential candidate for further investigation and potential application as a therapeutic agent. PMID:17888907

  7. Animal Models of Head Trauma

    PubMed Central

    Cernak, Ibolja

    2005-01-01

    Summary: Animal models of traumatic brain injury (TBI) are used to elucidate primary and secondary sequelae underlying human head injury in an effort to identify potential neuroprotective therapies for developing and adult brains. The choice of experimental model depends upon both the research goal and underlying objectives. The intrinsic ability to study injury-induced changes in behavior, physiology, metabolism, the blood/tissue interface, the blood brain barrier, and/or inflammatory- and immune-mediated responses, makes in vivo TBI models essential for neurotrauma research. Whereas human TBI is a highly complex multifactorial disorder, animal trauma models tend to replicate only single factors involved in the pathobiology of head injury using genetically well-defined inbred animals of a single sex. Although such an experimental approach is helpful to delineate key injury mechanisms, the simplicity and hence inability of animal models to reflect the complexity of clinical head injury may underlie the discrepancy between preclinical and clinical trials of neuroprotective therapeutics. Thus, a search continues for new animal models, which would more closely mimic the highly heterogeneous nature of human TBI, and address key factors in treatment optimization. PMID:16389305

  8. Aquatic toxicity of four veterinary drugs commonly applied in fish farming and animal husbandry.

    PubMed

    Kołodziejska, Marta; Maszkowska, Joanna; Białk-Bielińska, Anna; Steudte, Stephanie; Kumirska, Jolanta; Stepnowski, Piotr; Stolte, Stefan

    2013-08-01

    Doramectin (DOR), metronidazole (MET), florfenicol (FLO), and oxytetracycline (OXT) are among the most widely used veterinary drugs in animal husbandry or in aquaculture. Contamination of the environment by these pharmaceuticals has given cause for concern in recent years. Even though their toxicity has been thoroughly analyzed, knowledge of their ecotoxicity is still limited. We investigated their aquatic toxicity using tests with marine bacteria (Vibrio fischeri), green algae (Scenedesmus vacuolatus), duckweed (Lemna minor) and crustaceans (Daphnia magna). All the ecotoxicological tests were supported by chemical analyses to confirm the exposure concentrations of the pharmaceuticals used in the toxicity experiments, since deviations from the nominal concentration can result in underestimation of biological effects. It was found that OXT and FLO have a stronger adverse effect on duckweed (EC50=3.26 and 2.96mgL(-1) respectively) and green algae (EC50=40.4 and 18.0mgL(-1)) than on bacteria (EC50=108 and 29.4mgL(-1)) and crustaceans (EC50=114 and 337mgL(-1)), whereas MET did not exhibit any adverse effect in the tested concentration range. For DOR a very low EC50 of 6.37×10(-5)mgL(-1) towards D. magna was determined, which is five orders of magnitude lower than values known for the toxic reference compound K2Cr2O7. Our data show the strong influence of certain veterinary drugs on aquatic organisms and contribute to a sound assessment of the environmental hazards posed by commonly used pharmaceuticals. PMID:23689096

  9. Symptomatic animal models for dystonia

    PubMed Central

    Wilson, Bethany K.; Hess, Ellen J.

    2013-01-01

    Symptomatic animal models have clinical features consistent with human disorders and are often used to identify the anatomical and physiological processes involved in the expression of symptoms and to experimentally demonstrate causality where it would be infeasible in the patient population. Rodent and primate models of dystonia have identified basal ganglia abnormalities, including alterations in striatal GABAergic and dopaminergic transmission. Symptomatic animal models have also established the critical role of the cerebellum in dystonia, particularly abnormal glutamate signaling and aberrant Purkinje cell activity. Further, experiments suggest that the basal ganglia and cerebellum are nodes in an integrated network that is dysfunctional in dystonia. The knowledge gained from experiments in symptomatic animal models may serve as the foundation for the development of novel therapeutic interventions to treat dystonia. PMID:23893454

  10. Animal Models of Muscular Dystrophy

    PubMed Central

    Ng, Rainer; Banks, Glen B.; Hall, John K.; Muir, Lindsey A.; Ramos, Julian N.; Wicki, Jacqueline; Odom, Guy L.; Konieczny, Patryk; Seto, Jane; Chamberlain, Joel R.; Chamberlain, Jeffrey S.

    2016-01-01

    The muscular dystrophies (MDs) represent a diverse collection of inherited human disorders, which affect to varying degrees skeletal, cardiac, and sometimes smooth muscle (Emery, 20021). To date, more than 50 different genes have been implicated as causing one or more types of MD (Bansal et al., 20032). In many cases, invaluable insights into disease mechanisms, structure and function of gene products, and approaches for therapeutic interventions have benefited from the study of animal models of the different MDs (Arnett et al., 20093). The large number of genes that are associated with MD and the tremendous number of animal models that have been developed preclude a complete discussion of each in the context of this review. However, we summarize here a number of the more commonly used models together with a mixture of different types of gene and MD, which serves to give a general overview of the value of animal models of MD for research and therapeutic development. PMID:22137430

  11. Animal models of pituitary neoplasia

    PubMed Central

    Lines, K.E.; Stevenson, M.; Thakker, R.V.

    2016-01-01

    Pituitary neoplasias can occur as part of a complex inherited disorder, or more commonly as sporadic (non-familial) disease. Studies of the molecular and genetic mechanisms causing such pituitary tumours have identified dysregulation of >35 genes, with many revealed by studies in mice, rats and zebrafish. Strategies used to generate these animal models have included gene knockout, gene knockin and transgenic over-expression, as well as chemical mutagenesis and drug induction. These animal models provide an important resource for investigation of tissue-specific tumourigenic mechanisms, and evaluations of novel therapies, illustrated by studies into multiple endocrine neoplasia type 1 (MEN1), a hereditary syndrome in which ∼30% of patients develop pituitary adenomas. This review describes animal models of pituitary neoplasia that have been generated, together with some recent advances in gene editing technologies, and an illustration of the use of the Men1 mouse as a pre clinical model for evaluating novel therapies. PMID:26320859

  12. ANIMAL MODELS FOR FOOD ALLERGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal models have been used to provide insight into the complex immunological and pathophysioligical mechanisms of human Type 1 allergic diseases. Research efforts that include mechanistic studies in search of new therapies and screening models for hazard identification of potential allergens in a...

  13. Aquatic pathways model to predict the fate of phenolic compounds

    SciTech Connect

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.J.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. To better assess possible impacts, we developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The computer programs use compartmental analysis to simulate aquatic ecosystems. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The APM will consider any aquatic pathway for which the user has transport data. Additionally, APM will estimate transport rates from physical and chemical properties of chemicals between several key compartments. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. The properties of heavier molecular weight phenolics (indanols, naphthols) are not well enough understood at this time to make similar judgements. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation (using APM) of a spill of solvent refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor.

  14. Animal models of cardiac cachexia.

    PubMed

    Molinari, Francesca; Malara, Natalia; Mollace, Vincenzo; Rosano, Giuseppe; Ferraro, Elisabetta

    2016-09-15

    Cachexia is the loss of body weight associated with several chronic diseases including chronic heart failure (CHF). The cachectic condition is mainly due to loss of skeletal muscle mass and adipose tissue depletion. The majority of experimental in vivo studies on cachexia rely on animal models of cancer cachexia while a reliable and appropriate model for cardiac cachexia has not yet been established. A critical issue in generating a cardiac cachexia model is that genetic modifications or pharmacological treatments impairing the heart functionality and used to obtain the heart failure model might likely impair the skeletal muscle, this also being a striated muscle and sharing with the myocardium several molecular and physiological mechanisms. On the other hand, often, the induction of heart damage in the several existing models of heart failure does not necessarily lead to skeletal muscle loss and cachexia. Here we describe the main features of cardiac cachexia and illustrate some animal models proposed for cardiac cachexia studies; they include the genetic calsequestrin and Dahl salt-sensitive models, the monocrotaline model and the surgical models obtained by left anterior descending (LAD) ligation, transverse aortic constriction (TAC) and ascending aortic banding. The availability of a specific animal model for cardiac cachexia is a crucial issue since, besides the common aspects of cachexia in the different syndromes, each disease has some peculiarities in its etiology and pathophysiology leading to cachexia. Such peculiarities need to be unraveled in order to find new targets for effective therapies. PMID:27317993

  15. Animal Models of Ricin Toxicosis

    PubMed Central

    Song, Kejing; Sivasubramani, Satheesh K.; Gardner, Donald J.; Pincus, Seth H.

    2015-01-01

    Animal models of ricin toxicosis are necessary for testing the efficacy of therapeutic measures, as well studying the mechanisms by which ricin exerts its toxicity in intact animals. Because ricin can serve as a particularly well-characterized model of tissue damage, and the host response to that damage, studies of the mechanisms of ricin toxicity may have more general applicability. For example, our studies of the molecular mechanisms underlying the development of ricin-induced hypoglycemia may help elucidate the relationship of type II diabetes, insulin resistance, and inflammation. Studies in non-human primates are most relevant for testing and developing agents having clinical utility. But these animals are expensive and limited in quantity, and so rodents are used for most mechanistic studies. PMID:21956160

  16. Farm-level plans and husbandry measures for aquatic animal disease emergencies.

    PubMed

    Mohan, C V; Phillips, M J; Bhat, B V; Umesh, N R; Padiyar, P A

    2008-04-01

    Disease is one of the gravest threats to the sustainability of the aquaculture industry. A good understanding of biosecurity and disease causation is essential for developing and implementing farm-level plans and husbandry measures to respond to disease emergencies. Using epidemiological approaches, it is possible to identify pond- and farm-level risk factors for disease outbreaks and develop intervention strategies. Better management practices (BMPs) should be simple, science-based, cost-effective and appropriate to their context if farmers are to adopt and implement them. As part of a regional initiative by the Network of Aquaculture Centres in Asia-Pacific (NACA) to control aquatic animal diseases, effective extension approaches to promote the widespread adoption of BMPs have been developed in India, Indonesia, Vietnam and Thailand, and have proved their worth. A highly successful programme, which addresses rising concerns about the effect of disease on the sustainability of shrimp farming in India, is now in its seventh year. In this paper, the authors present a brief insight into the details of the programme, its outcomes and impact, the lessons learned and the way forward. PMID:18666486

  17. Animal models of drug craving.

    PubMed

    Markou, A; Weiss, F; Gold, L H; Caine, S B; Schulteis, G; Koob, G F

    1993-01-01

    Drug craving, the desire to experience the effect(s) of a previously experienced psychoactive substance, has been hypothesized to contribute significantly to continued drug use and relapse after a period of abstinence in humans. In more theoretical terms, drug craving can be conceptualized within the framework of incentive motivational theories of behavior and be defined as the incentive motivation to self-administer a psychoactive substance. The incentive-motivational value of drugs is hypothesized to be determined by a continuous interaction between the hedonic rewarding properties of drugs (incentive) and the motivational state of the organism (organismic state). In drug-dependent individuals, the incentive-motivational value of drugs (i.e., drug craving) is greater compared to non-drug-dependent individuals due to the motivational state (i.e., withdrawal) developed with repeated drug administration. In this conceptual framework, animal models of drug craving would reflect two aspects of the incentive motivation to self-administer a psychoactive substance. One aspect would be the unconditioned incentive (reinforcing) value of the drug itself. The other aspect would be relatively independent of the direct (unconditioned) incentive value of the drug itself and could be reflected in the ability of previously neutral stimuli to acquire conditioned incentive properties that could elicit drug-seeking and drug-taking behavior. Animal models of drug craving that permit the investigation of the behavioral and neurobiological components of these two aspects of drug craving are reviewed and evaluated. The models reviewed are the progressive ratio, choice, extinction, conditioned reinforcement and second-order schedule paradigms. These animal models are evaluated according to two criteria that are established herein as necessary and sufficient criteria for the evaluation of animal models of human psychopathology: reliability and predictive validity. The development of

  18. Animal models of CNS disorders.

    PubMed

    McGonigle, Paul

    2014-01-01

    There is intense interest in the development and application of animal models of CNS disorders to explore pathology and molecular mechanisms, identify potential biomarkers, and to assess the therapeutic utility, estimate safety margins and establish pharmacodynamic and pharmacokinetic parameters of new chemical entities (NCEs). This is a daunting undertaking, due to the complex and heterogeneous nature of these disorders, the subjective and sometimes contradictory nature of the clinical endpoints and the paucity of information regarding underlying molecular mechanisms. Historically, these models have been invaluable in the discovery of therapeutics for a range of disorders including anxiety, depression, schizophrenia, and Parkinson's disease. Recently, however, they have been increasingly criticized in the wake of numerous clinical trial failures of NCEs with promising preclinical profiles. These failures have resulted from a number of factors including inherent limitations of the models, over-interpretation of preclinical results and the complex nature of clinical trials for CNS disorders. This review discusses the rationale, strengths, weaknesses and predictive validity of the most commonly used models for psychiatric, neurodegenerative and neurological disorders as well as critical factors that affect the variability and reproducibility of these models. It also addresses how progress in molecular genetics and the development of transgenic animals has fundamentally changed the approach to neurodegenerative disorder research. To date, transgenic animal models\\have not been the panacea for drug discovery that many had hoped for. However continual refinement of these models is leading to steady progress with the promise of eventual therapeutic breakthroughs. PMID:23811310

  19. Animal models of polymicrobial pneumonia

    PubMed Central

    Hraiech, Sami; Papazian, Laurent; Rolain, Jean-Marc; Bregeon, Fabienne

    2015-01-01

    Pneumonia is one of the leading causes of severe and occasionally life-threatening infections. The physiopathology of pneumonia has been extensively studied, providing information for the development of new treatments for this condition. In addition to in vitro research, animal models have been largely used in the field of pneumonia. Several models have been described and have provided a better understanding of pneumonia under different settings and with various pathogens. However, the concept of one pathogen leading to one infection has been challenged, and recent flu epidemics suggest that some pathogens exhibit highly virulent potential. Although “two hits” animal models have been used to study infectious diseases, few of these models have been described in pneumonia. Therefore the aims of this review were to provide an overview of the available literature in this field, to describe well-studied and uncommon pathogen associations, and to summarize the major insights obtained from this information. PMID:26170617

  20. Animal Models of Subjective Tinnitus

    PubMed Central

    2014-01-01

    Tinnitus is one of the major audiological diseases, affecting a significant portion of the ageing society. Despite its huge personal and presumed economic impact there are only limited therapeutic options available. The reason for this deficiency lies in the very nature of the disease as it is deeply connected to elementary plasticity of auditory processing in the central nervous system. Understanding these mechanisms is essential for developing a therapy that reverses the plastic changes underlying the pathogenesis of tinnitus. This requires experiments that address individual neurons and small networks, something usually not feasible in human patients. However, in animals such invasive experiments on the level of single neurons with high spatial and temporal resolution are possible. Therefore, animal models are a very critical element in the combined efforts for engineering new therapies. This review provides an overview over the most important features of animal models of tinnitus: which laboratory species are suitable, how to induce tinnitus, and how to characterize the perceived tinnitus by behavioral means. In particular, these aspects of tinnitus animal models are discussed in the light of transferability to the human patients. PMID:24829805

  1. Extrapyramidal system neurotoxicity: animal models.

    PubMed

    Dorman, David

    2015-01-01

    The central nervous system's extrapyramidal system provides involuntary motor control to the muscles of the head, neck, and limbs. Toxicants that affect the extrapyramidal system are generally clinically characterized by impaired motor control, which is usually the result of basal ganglionic dysfunction. A variety of extrapyramidal syndromes are recognized in humans and include Parkinson's disease, secondary parkinsonism, other degenerative diseases of the basal ganglia, and clinical syndromes that result in dystonia, dyskinesia, essential tremor, and other forms of tremor and chorea. This chapter briefly reviews the anatomy of the extrapyramidal system and discusses several naturally occurring and experimental models that target the mammalian (nonhuman) extrapyramidal system. Topics discussed include extrapyramidal syndromes associated with antipsychotic drugs, carbon monoxide, reserpine, cyanide, rotenone, paraquat, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and manganese. In most cases, animals are used as experimental models to improve our understanding of the toxicity and pathogenesis of these agents. Another agent discussed in this chapter, yellowstar thistle poisoning in horses, however, represents an important spontaneous cause of parkinsonism that naturally occurs in animals. The central focus of the chapter is on animal models, especially the concordance between clinical signs, neurochemical changes, and neuropathology between animals and people. PMID:26563791

  2. Animal Models of Sleep Disorders

    PubMed Central

    Toth, Linda A; Bhargava, Pavan

    2013-01-01

    Problems with sleep affect a large part of the general population, with more than half of all people in the United States reporting difficulties with sleep or insufficient sleep at various times and about 40 million affected chronically. Sleep is a complex physiologic process that is influenced by many internal and environmental factors, and problems with sleep are often related to specific personal circumstances or are based on subjective reports from the affected person. Although human subjects are used widely in the study of sleep and sleep disorders, the study of animals has been invaluable in developing our understanding about the physiology of sleep and the underlying mechanisms of sleep disorders. Historically, the use of animals for the study of sleep disorders has arguably been most fruitful for the condition of narcolepsy, in which studies of dogs and mice revealed previously unsuspected mechanisms for this condition. The current overview considers animal models that have been used to study 4 of the most common human sleep disorders—insomnia, narcolepsy, restless legs syndrome, and sleep apnea—and summarizes considerations relevant to the use of animals for the study of sleep and sleep disorders. Animal-based research has been vital to the elucidation of mechanisms that underlie sleep, its regulation, and its disorders and undoubtedly will remain crucial for discovering and validating sleep mechanisms and testing interventions for sleep disorders. PMID:23582416

  3. Biliary atresia: the animal models.

    PubMed

    Petersen, Claus

    2012-08-01

    Biliary atresia (BA) is a progressive fibrosing process of the neonatal biliary tree and liver, of unknown origin, and an as-yet unexplained pathologic mechanism. The crucial point is to elucidate the origin of this rare disease to change palliative surgery to etiology-related procedures. Patient-based research can only begin at the time of the Kasai procedure and does not allow retracing of the pathology back to its origin. Basic research has focused on similar diseases in the veterinary literature and started to simulate BA in animal models. Unfortunately, even after 50 years of research, no knowledge has been gained from such models, which has led to a single clinical application. This article reviews BA in the context of the animal models available and discusses whether future studies are promising or futile. PMID:22800971

  4. The impact of aquatic animals on sediment transport in gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew; Rice, Stephen; Pledger, Andrew

    2014-05-01

    Invertebrate animals have an important and complex role in altering the physical and biochemical environment of marine and freshwater sediments. A database has been compiled which aims to include all published articles that consider how macroinvertebrates alter aquatic systems. The database contains 2300 entries spanning over 120 years of study and representing 800 species. However, only 24 studies focus on invertebrate animals altering geomorphic processes in streams. This is despite the fact that invertebrates are ubiquitous in temperate and tropical rivers; they regularly occur in high densities; and are known to interact with substrates in a multitude of ways; for example when burrowing, moving and foraging for food. Here, we present two examples that demonstrate the potential biogeomorphic significance of invertebrates in rivers. First, the activity of signal crayfish (Pacifastacus leniusculus), a globally widespread invasive crustacean, altered the structure and topography of fluvial substrates in flume experiments. As a result of crayfish destroying grain-scale structures, twice as much material was entrained from disturbed gravel substrates in comparison to control surfaces that had not been exposed to crayfish. Second, Hydropsychid caddisfly larvae bind grains together with silk, which is spun for a variety of purposes including the creation of nets to catch organic matter from the flow. Fine gravels (2-6 mm) that were colonised by natural densities of caddisfly, required significantly greater shear stresses to be mobilised in comparison to uncolonised, control gravels. Whilst these examples demonstrate the potential for invertebrates to alter sediment transport in rivers, their impacts need to be assessed in field environments and at larger scales in order to fully appreciate their significance. Long-term monitoring of radio-tagged crayfish and suspended sediment transport in the Brampton arm of the River Nene suggests that signal crayfish are important

  5. Animal models of source memory.

    PubMed

    Crystal, Jonathon D

    2016-01-01

    Source memory is the aspect of episodic memory that encodes the origin (i.e., source) of information acquired in the past. Episodic memory (i.e., our memories for unique personal past events) typically involves source memory because those memories focus on the origin of previous events. Source memory is at work when, for example, someone tells a favorite joke to a person while avoiding retelling the joke to the friend who originally shared the joke. Importantly, source memory permits differentiation of one episodic memory from another because source memory includes features that were present when the different memories were formed. This article reviews recent efforts to develop an animal model of source memory using rats. Experiments are reviewed which suggest that source memory is dissociated from other forms of memory. The review highlights strengths and weaknesses of a number of animal models of episodic memory. Animal models of source memory may be used to probe the biological bases of memory. Moreover, these models can be combined with genetic models of Alzheimer's disease to evaluate pharmacotherapies that ultimately have the potential to improve memory. PMID:26609644

  6. ESTIMATION OF AQUATIC SPECIES SENSITIVITY USING INTERSPECIES CORRELATION AND ACUTE TO CHRONIC TOXICITY MODELS

    EPA Science Inventory

    Abstract for presentation

    Estimation of aquatic species sensitivity using interspecies correlation and acute to chronic toxicity models

    Determining species sensitivity of aquatic organisms to contaminants is a critical component of criteria development and ecolog...

  7. Animal models for human sexuality.

    PubMed

    Beach, F A

    The value of animal models in biomedical research is firmly established, and many basic principles of human psychology have been explicated as the result of comparative studies. There is pressing need for non-human models in the behavioural sciences as represented by psychiatry, psychology and ethology; and such models should be constructed, provided their validity can be assured. Valid models cannot be based exclusively on similarity in the formal properties of behaviour. Commonality of descriptive terms as applied to different species does not guarantee identity of the concepts to which the terms apply. Model builders must evaluate interspecific similarities and differences in the causes, mediating mechanisms and functional outcomes of behaviour. The validity of interspecific generalization can never exceed the reliability of intraspecific analysis; and the latter is an indispensable antecedent of the former. Existing and potential models for homosexuality and other psychosexual characteristics of human beings are evaluated within the perspective provided by the foregoing generalizations. PMID:256826

  8. Animal models for microbicide studies

    PubMed Central

    Veazey, Ronald S.; Shattock, Robin J; Klasse, Per Johan; Moore, John P.

    2013-01-01

    There have been encouraging recent successes in the development of safe and effective topical microbicides to prevent vaginal or rectal HIV-1 transmission, based on the use of anti-retroviral drugs. However, much work remains to be accomplished before a microbicide becomes a standard element of prevention science strategies. Animal models should continue to play an important role in pre-clinical testing, with emphasis on safety, pharmacokinetic and efficacy testing. PMID:22264049

  9. Chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against systemic bacteria of aquatic animals

    PubMed Central

    Wei, Lee Seong; Wee, Wendy

    2013-01-01

    Background & Objectives This paper describes chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against Edwardsiella spp. (n = 21), Vibrio spp. (n = 6), Aeromonas spp. (n = 2), Escherichia coli (n = 2), Salmonella spp. (n = 2), Flavobacterium spp. (n = 1), Pseudomonas spp. (n = 1) and Streptococcus spp. (n = 1) isolated from internal organs of aquatic animals. Due to the ban of antibiotics for aquaculture use, this study was carried out to evaluate the potential of citronella essential oil as alternative to commercial antibiotic use against systemic bacteria in cultured aquatic animals. Materials & Methods The essential oil of C. nardus was prepared by using the steam distillation method and the chemical composition of the essential oil was analyzed by gas chromatography–mass spectroscopy (GC–MS). Minimum inhibitory concentration (MIC) of the essential oil tested against bacterial isolates from various aquatic animals and ATCC type strains were determined using two-fold broth micro dilution method with kanamycin and eugenol as positive controls. Results A total of 22 chemical compounds were detected in C. nardus essential oil with 6-octenal, 3, 7-dimethyl- or citronellal representing the major compounds (29.6%). The MIC values of the citronella oil ranged from 0.244 µg/ml to 0.977 µg/ml when tested against the bacterial isolates. Conclusion The results of the present study revealed the potential of C. nardus essential oil as alternative to commercial antibiotics for aquaculture use. PMID:23825733

  10. Animal models of serotonergic psychedelics.

    PubMed

    Hanks, James B; González-Maeso, Javier

    2013-01-16

    The serotonin 5-HT(2A) receptor is the major target of psychedelic drugs such as lysergic acid diethylamide (LSD), mescaline, and psilocybin. Serotonergic psychedelics induce profound effects on cognition, emotion, and sensory processing that often seem uniquely human. This raises questions about the validity of animal models of psychedelic drug action. Nonetheless, recent findings suggest behavioral abnormalities elicited by psychedelics in rodents that predict such effects in humans. Here we review the behavioral effects induced by psychedelic drugs in rodent models, discuss the translational potential of these findings, and define areas where further research is needed to better understand the molecular mechanisms and neuronal circuits underlying their neuropsychological effects. PMID:23336043

  11. Model simulation of atrazine exposure to aquatic nontarget organisms

    SciTech Connect

    Williams, W.M.; Cheplick, J.M.; Balu, K.

    1996-10-01

    Pesticide fate and transport models have been identified by a number of regulatory work groups, including the Aquatic Risk Assessment and Mitigation Dialogue Group (ARAMDG) and the FIFRA Exposure Modeling Work Group (EMWG), as potential valuable tools in improving regulatory decisions for pesticide registration. To date, models uses have been limited to preliminary screening evaluations because the predictive capabilities of candidate models have not been adequately characterized and because procedures for scenario identification have not been tested. This paper presents an overview of a comprehensive modeling study that was conducted to evaluate exposure concentrations of atrazine to nontarget organisms and their ecosystems that may result from usage patterns of the herbicide throughout the United States. Simulations were conducted using the Pesticide Root Zone Model (PRZM-2.3) and the Riverine Environments Water Quality Model (RIVWQ-2.0). Included are procedures used for scenario identification, model comparisons to field runoff and aquatic monitoring studies, and the statistical compilation of results for risk assessment use.

  12. Software Validation via Model Animation

    NASA Technical Reports Server (NTRS)

    Dutle, Aaron M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Butler, Ricky W.

    2015-01-01

    This paper explores a new approach to validating software implementations that have been produced from formally-verified algorithms. Although visual inspection gives some confidence that the implementations faithfully reflect the formal models, it does not provide complete assurance that the software is correct. The proposed approach, which is based on animation of formal specifications, compares the outputs computed by the software implementations on a given suite of input values to the outputs computed by the formal models on the same inputs, and determines if they are equal up to a given tolerance. The approach is illustrated on a prototype air traffic management system that computes simple kinematic trajectories for aircraft. Proofs for the mathematical models of the system's algorithms are carried out in the Prototype Verification System (PVS). The animation tool PVSio is used to evaluate the formal models on a set of randomly generated test cases. Output values computed by PVSio are compared against output values computed by the actual software. This comparison improves the assurance that the translation from formal models to code is faithful and that, for example, floating point errors do not greatly affect correctness and safety properties.

  13. Understanding carbon regulation in aquatic systems - Bacteriophages as a model.

    PubMed

    Sanmukh, Swapnil; Khairnar, Krishna; Paunikar, Waman; Lokhande, Satish

    2015-01-01

    The bacteria and their phages are the most abundant constituents of the aquatic environment, and so represent an ideal model for studying carbon regulation in an aquatic system. The microbe-mediated interconversion of bioavailable organic carbon (OC) into dissolved organic carbon (DOC) by the microbial carbon pump (MCP) has been suggested to have the potential to revolutionize our view of carbon sequestration. It is estimated that DOC is the largest pool of organic matter in the ocean and, though a major component of the global carbon cycle, its source is not yet well understood. A key element of the carbon cycle is the microbial conversion of DOC into inedible forms. The primary aim of this study is to understand the phage conversion from organic to inorganic carbon during phage-host interactions. Time studies of phage-host interactions under controlled conditions reveal their impact on the total carbon content of the samples and their interconversion of organic and inorganic carbon compared to control samples. A total organic carbon (TOC) analysis showed an increase in inorganic carbon content by 15-25 percent in samples with bacteria and phage compared to samples with bacteria alone. Compared to control samples, the increase in inorganic carbon content was 60-70-fold in samples with bacteria and phage, and 50-55-fold for samples with bacteria alone. This study indicates the potential impact of phages in regulating the carbon cycle of aquatic systems. PMID:26213615

  14. Understanding carbon regulation in aquatic systems - Bacteriophages as a model

    PubMed Central

    Sanmukh, Swapnil; Khairnar, Krishna; Paunikar, Waman; Lokhande, Satish

    2015-01-01

    The bacteria and their phages are the most abundant constituents of the aquatic environment, and so represent an ideal model for studying carbon regulation in an aquatic system. The microbe-mediated interconversion of bioavailable organic carbon (OC) into dissolved organic carbon (DOC) by the microbial carbon pump (MCP) has been suggested to have the potential to revolutionize our view of carbon sequestration. It is estimated that DOC is the largest pool of organic matter in the ocean and, though a major component of the global carbon cycle, its source is not yet well understood. A key element of the carbon cycle is the microbial conversion of DOC into inedible forms. The primary aim of this study is to understand the phage conversion from organic to inorganic carbon during phage-host interactions. Time studies of phage-host interactions under controlled conditions reveal their impact on the total carbon content of the samples and their interconversion of organic and inorganic carbon compared to control samples. A total organic carbon (TOC) analysis showed an increase in inorganic carbon content by 15-25 percent in samples with bacteria and phage compared to samples with bacteria alone. Compared to control samples, the increase in inorganic carbon content was 60-70-fold in samples with bacteria and phage, and 50-55-fold for samples with bacteria alone. This study indicates the potential impact of phages in regulating the carbon cycle of aquatic systems. PMID:26213615

  15. Modeling the interaction between flow and highly flexible aquatic vegetation

    NASA Astrophysics Data System (ADS)

    Dijkstra, J. T.; Uittenbogaard, R. E.

    2010-12-01

    Aquatic vegetation has an important role in estuaries and rivers by acting as bed stabilizer, filter, food source, and nursing area. However, macrophyte populations worldwide are under high anthropogenic pressure. Protection and restoration efforts will benefit from more insight into the interaction between vegetation, currents, waves, and sediment transport. Most aquatic plants are very flexible, implying that their shape and hence their drag and turbulence production depend on the flow conditions. We have developed a numerical simulation model that describes this dynamic interaction between very flexible vegetation and a time-varying flow, using the sea grass Zostera marina as an example. The model consists of two parts: an existing 1DV k-ɛ turbulence model simulating the flow combined with a new model simulating the bending of the plants, based on a force balance that takes account of both vegetation position and buoyancy. We validated this model using observations of positions of flexible plastic strips and of the forces they are subjected to, as well as hydrodynamic measurements. The model predicts important properties like the forces on plants, flow velocity profiles, and turbulence characteristics well. Although the validation data are limited, the results are sufficiently encouraging to consider our model to be of generic value in studying flow processes in fields of flexible vegetation.

  16. Animal models of erectile dysfunction

    PubMed Central

    Gajbhiye, Snehlata V.; Jadhav, Kshitij S.; Marathe, Padmaja A.; Pawar, Dattatray B.

    2015-01-01

    Animal models have contributed to a great extent to understanding and advancement in the field of sexual medicine. Many current medical and surgical therapies in sexual medicine have been tried based on these animal models. Extensive literature search revealed that the compiled information is limited. In this review, we describe various experimental models of erectile dysfunction (ED) encompassing their procedures, variables of assessment, advantages and disadvantages. The search strategy consisted of review of PubMed based articles. We included original research work and certain review articles available in PubMed database. The search terms used were “ED and experimental models,” “ED and nervous stimulation,” “ED and cavernous nerve stimulation,” “ED and central stimulation,” “ED and diabetes mellitus,” “ED and ageing,” “ED and hypercholesteremia,” “ED and Peyronie's disease,” “radiation induced ED,” “telemetric recording,” “ED and mating test” and “ED and non-contact erection test.” PMID:25624570

  17. Animal models of adrenocortical tumorigenesis

    PubMed Central

    Beuschlein, Felix; Galac, Sara; Wilson, David B.

    2011-01-01

    Over the past decade, research on human adrenocortical neoplasia has been dominated by gene expression profiling of tumor specimens and by analysis of genetic disorders associated with a predisposition to these tumors. Although these studies have identified key genes and associated signaling pathways that are dysregulated in adrenocortical neoplasms, the molecular events accounting for the frequent occurrence of benign tumors and low rate of malignant transformation remain unknown. Moreover, the prognosis for patients with adrenocortical carcinoma remains poor, so new medical treatments are needed. Naturally occurring and genetically engineered animal models afford a means to investigate adrenocortical tumorigenesis and to develop novel therapeutics. This comparative review highlights adrenocortical tumor models useful for either mechanistic studies or preclinical testing. Three model species – mouse, ferret, and dog – are reviewed, and their relevance to adrenocortical tumors in humans is discussed. PMID:22100615

  18. An animal model of fetishism.

    PubMed

    Köksal, Falih; Domjan, Michael; Kurt, Adnan; Sertel, Ozlem; Orüng, Sabiha; Bowers, Rob; Kumru, Gulsen

    2004-12-01

    An animal model of sexual fetishism was developed with male Japanese quail based on persistence of conditioned sexual responding during extinction to an inanimate object made of terrycloth (Experiments 1 and 3). This persistent responding occurred only in subjects that came to copulate with the terrycloth object, suggesting that the copulatory behavior served to maintain the fetishistic behavior. Sexual conditioning was carried out by pairing a conditioned stimulus (CS) with the opportunity to copulate with a female (the unconditioned stimulus or US). Copulation with the CS object and persistent responding did not develop if the CS was a light (Experiment 1) or if conditioning was carried out with a food US (Experiment 2). In addition, subjects that showed persistence in responding to the terrycloth CS did not persist in their responding to a light CS (Experiment 3). The results are consistent with the hypothesis that conditioned copulatory behavior creates a form of self-maintenance that leads to persistent responding to an inanimate object. The development of an animal model of such fetishistic behavior should facilitate experimental analysis of the phenomenon. PMID:15500813

  19. Animal models of cartilage repair

    PubMed Central

    Cook, J. L.; Hung, C. T.; Kuroki, K.; Stoker, A. M.; Cook, C. R.; Pfeiffer, F. M.; Sherman, S. L.; Stannard, J. P.

    2014-01-01

    Cartilage repair in terms of replacement, or regeneration of damaged or diseased articular cartilage with functional tissue, is the ‘holy grail’ of joint surgery. A wide spectrum of strategies for cartilage repair currently exists and several of these techniques have been reported to be associated with successful clinical outcomes for appropriately selected indications. However, based on respective advantages, disadvantages, and limitations, no single strategy, or even combination of strategies, provides surgeons with viable options for attaining successful long-term outcomes in the majority of patients. As such, development of novel techniques and optimisation of current techniques need to be, and are, the focus of a great deal of research from the basic science level to clinical trials. Translational research that bridges scientific discoveries to clinical application involves the use of animal models in order to assess safety and efficacy for regulatory approval for human use. This review article provides an overview of animal models for cartilage repair. Cite this article: Bone Joint Res 2014;4:89–94. PMID:24695750

  20. Animal Models of Autoimmune Neuropathy

    PubMed Central

    Soliven, Betty

    2014-01-01

    The peripheral nervous system (PNS) comprises the cranial nerves, the spinal nerves with their roots and rami, dorsal root ganglia neurons, the peripheral nerves, and peripheral components of the autonomic nervous system. Cell-mediated or antibody-mediated immune attack on the PNS results in distinct clinical syndromes, which are classified based on the tempo of illness, PNS component(s) involved, and the culprit antigen(s) identified. Insights into the pathogenesis of autoimmune neuropathy have been provided by ex vivo immunologic studies, biopsy materials, electrophysiologic studies, and experimental models. This review article summarizes earlier seminal observations and highlights the recent progress in our understanding of immunopathogenesis of autoimmune neuropathies based on data from animal models. PMID:24615441

  1. Animal models and conserved processes

    PubMed Central

    2012-01-01

    Background The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? Methods We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. Results Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. Conclusion We conclude that even the presence of conserved processes is insufficient for inter

  2. Animal models of recurrent or bipolar depression.

    PubMed

    Kato, T; Kasahara, T; Kubota-Sakashita, M; Kato, T M; Nakajima, K

    2016-05-01

    Animal models of mental disorders should ideally have construct, face, and predictive validity, but current animal models do not always satisfy these validity criteria. Additionally, animal models of depression rely mainly on stress-induced behavioral changes. These stress-induced models have limited validity, because stress is not a risk factor specific to depression, and the models do not recapitulate the recurrent and spontaneous nature of depressive episodes. Although animal models exhibiting recurrent depressive episodes or bipolar depression have not yet been established, several researchers are trying to generate such animals by modeling clinical risk factors as well as by manipulating a specific neural circuit using emerging techniques. PMID:26265551

  3. Parathyroid diseases and animal models.

    PubMed

    Imanishi, Yasuo; Nagata, Yuki; Inaba, Masaaki

    2012-01-01

    CIRCULATING CALCIUM AND PHOSPHATE ARE TIGHTLY REGULATED BY THREE HORMONES: the active form of vitamin D (1,25-dihydroxyvitamin D), fibroblast growth factor (FGF)-23, and parathyroid hormone (PTH). PTH acts to stimulate a rapid increment in serum calcium and has a crucial role in calcium homeostasis. Major target organs of PTH are kidney and bone. The oversecretion of the hormone results in hypercalcemia, caused by increased intestinal calcium absorption, reduced renal calcium clearance, and mobilization of calcium from bone in primary hyperparathyroidism. In chronic kidney disease, secondary hyperparathyroidism of uremia is observed in its early stages, and this finally develops into the autonomous secretion of PTH during maintenance hemodialysis. Receptors in parathyroid cells, such as the calcium-sensing receptor, vitamin D receptor, and FGF receptor (FGFR)-Klotho complex have crucial roles in the regulation of PTH secretion. Genes such as Cyclin D1, RET, MEN1, HRPT2, and CDKN1B have been identified in parathyroid diseases. Genetically engineered animals with these receptors and the associated genes have provided us with valuable information on the patho-physiology of parathyroid diseases. The application of these animal models is significant for the development of new therapies. PMID:22754549

  4. Appendix C. Analyses of Sensitivity Distributions for Estimation of Acute Hazard Concentrations to Aquatic Animals

    EPA Science Inventory

    USEPA’s Office of Water (OW) and Office of Pesticide Programs (OPP) are both charged with assessing risks of chemicals to aquatic species. The offices have developed scientifically defensible methods to assess chemicals under the Clean Water Act (CWA) and the Federal Insecticide...

  5. GLOBAL CLIMATE AND LARGE-SCALE INFLUENCES ON AQUATIC ANIMAL HEALTH

    EPA Science Inventory

    The last 3 decades have witnessed numerous large-scale mortality events of aquatic organisms in North America. Affected species range from ecologically-important sea urchins to commercially-valuable American lobsters and protected marine mammals. Short-term forensic investigation...

  6. Animal Models of Williams Syndrome

    PubMed Central

    OSBORNE, LUCY R.

    2010-01-01

    In recent years, researchers have generated a variety of mouse models in an attempt to dissect the contribution of individual genes to the complex phenotype associated with Williams syndrome (WS). The mouse genome is easily manipulated to produce animals that are copies of humans with genetic conditions, be it with null mutations, hypomorphic mutations, point mutations, or even large deletions encompassing many genes. The existing mouse models certainly seem to implicate hemizygosity for ELN, BAZ1B, CLIP2, and GTF2IRD1 in WS, and new mice with large deletions of the WS region are helping us to understand both the additive and potential combinatorial effects of hemizygosity for specific genes. However, not all genes that are haploinsufficient in humans prove to be so in mice and the effect of genetic background can also have a significant effect on the penetrance of many phenotypes. Thus although mouse models are powerful tools, the information garnered from their study must be carefully interpreted. Nevertheless, mouse models look set to provide a wealth of information about the neuroanatomy, neurophysiology and molecular pathways that underlie WS and in the future will act as essential tools for the development and testing of therapeutics. PMID:20425782

  7. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya

    PubMed Central

    Braun, David R.; Harris, John W. K.; Levin, Naomi E.; McCoy, Jack T.; Herries, Andy I. R.; Bamford, Marion K.; Bishop, Laura C.; Richmond, Brian G.; Kibunjia, Mzalendo

    2010-01-01

    The manufacture of stone tools and their use to access animal tissues by Pliocene hominins marks the origin of a key adaptation in human evolutionary history. Here we report an in situ archaeological assemblage from the Koobi Fora Formation in northern Kenya that provides a unique combination of faunal remains, some with direct evidence of butchery, and Oldowan artifacts, which are well dated to 1.95 Ma. This site provides the oldest in situ evidence that hominins, predating Homo erectus, enjoyed access to carcasses of terrestrial and aquatic animals that they butchered in a well-watered habitat. It also provides the earliest definitive evidence of the incorporation into the hominin diet of various aquatic animals including turtles, crocodiles, and fish, which are rich sources of specific nutrients needed in human brain growth. The evidence here shows that these critical brain-growth compounds were part of the diets of hominins before the appearance of Homo ergaster/erectus and could have played an important role in the evolution of larger brains in the early history of our lineage. PMID:20534571

  8. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya.

    PubMed

    Braun, David R; Harris, John W K; Levin, Naomi E; McCoy, Jack T; Herries, Andy I R; Bamford, Marion K; Bishop, Laura C; Richmond, Brian G; Kibunjia, Mzalendo

    2010-06-01

    The manufacture of stone tools and their use to access animal tissues by Pliocene hominins marks the origin of a key adaptation in human evolutionary history. Here we report an in situ archaeological assemblage from the Koobi Fora Formation in northern Kenya that provides a unique combination of faunal remains, some with direct evidence of butchery, and Oldowan artifacts, which are well dated to 1.95 Ma. This site provides the oldest in situ evidence that hominins, predating Homo erectus, enjoyed access to carcasses of terrestrial and aquatic animals that they butchered in a well-watered habitat. It also provides the earliest definitive evidence of the incorporation into the hominin diet of various aquatic animals including turtles, crocodiles, and fish, which are rich sources of specific nutrients needed in human brain growth. The evidence here shows that these critical brain-growth compounds were part of the diets of hominins before the appearance of Homo ergaster/erectus and could have played an important role in the evolution of larger brains in the early history of our lineage. PMID:20534571

  9. National biosecurity approaches, plans and programmes in response to diseases in farmed aquatic animals: evolution, effectiveness and the way forward.

    PubMed

    Håstein, T; Binde, M; Hine, M; Johnsen, S; Lillehaug, A; Olesen, N J; Purvis, N; Scarfe, A D; Wright, B

    2008-04-01

    The rapid increase in aquaculture production and trade, and increased attention to the negative effects of disease, are becoming stimuli for developing national biosecurity strategies for farmed fisheries, for which the World Organisation for Animal Health (OIE) Aquatic Animal Health Code and Manual of Diagnostic Tests for Aquatic Animals serve as an excellent framework. Using examples from a few countries and selected diseases, this paper provides a general overview of the development of approaches to implementing biosecurity strategies, including those emerging in the national legislation and regulations of some countries, and those being initiated by industries themselves. The determination of disease status in different epidemiological units (from a farm to a nation), appropriate approaches for preventing the introduction of disease and developing contingencies for disease control and eradication are also discussed. Important to the effectiveness of such strategies are provision of financial, personnel and other resources to implement them, including incentives such as indemnification or compensation in eradication programmes, and practical linkage to regulatory or government policy initiatives. PMID:18666484

  10. The formation of adipocere in model aquatic environments.

    PubMed

    Stuart, B H; Notter, S J; Dent, B; Selvalatchmanan, J; Fu, S

    2016-01-01

    An examination of the chemistry of adipocere formation in aquatic systems provides insight into how environmental factors affect the decomposition processes of human remains. Gas chromatography–mass spectrometry (GC-MS) and inductively coupled plasma–mass spectrometry (ICPMS) have been employed to monitor the changes to the chemistry of adipocere formed in aquatic environments used to model seawater, river and chlorinated water systems. Seawater was shown to inhibit adipocere formation, and a distinctively different elemental composition was produced in this environment due to the high concentrations of salts. By comparison, river water has been shown to accelerate the formation of adipocere. Chlorinated water appears to significantly enhance adipocere formation, based on a comparison with established fatty acid concentration values. However, a competing reaction to form chlorohydrins in chlorinated water is believed to be responsible for the unusual findings in this environment. The application of the chemical characterization of adipocere to an understanding of how this particular decomposition product forms in different water environments has been demonstrated, and there is potential to utilise this approach to identify the environment in which a body has been immersed. PMID:26493693

  11. Animal Models of Stress Urinary Incontinence

    PubMed Central

    Jiang, Hai-Hong

    2011-01-01

    Stress urinary incontinence (SUI) is a common health problem significantly affecting the quality of life of women worldwide. Animal models that simulate SUI enable the assessment of the mechanism of risk factors for SUI in a controlled fashion, including childbirth injuries, and enable preclinical testing of new treatments and therapies for SUI. Animal models that simulate childbirth are presently being utilized to determine the mechanisms of the maternal injuries of childbirth that lead to SUI with the goal of developing prophylactic treatments. Methods of assessing SUI in animals that mimic diagnostic methods used clinically have been developed to evaluate the animal models. Use of these animal models to test innovative treatment strategies has the potential to improve clinical management of SUI. This chapter provides a review of the available animal models of SUI, as well as a review of the methods of assessing SUI in animal models, and potential treatments that have been tested on these models. PMID:21290221

  12. Animal models to evaluate bacterial biofilm development.

    PubMed

    Thomsen, Kim; Trøstrup, Hannah; Moser, Claus

    2014-01-01

    Medical biofilms have attracted substantial attention especially in the past decade. Animal models are contributing significantly to understand the pathogenesis of medical biofilms. In addition, animal models are an essential tool in testing the hypothesis generated from clinical observations in patients and preclinical testing of agents showing in vitro antibiofilm effect. Here, we describe three animal models - two non-foreign body Pseudomonas aeruginosa biofilm models and a foreign body Staphylococcus aureus model. PMID:24664830

  13. Potency of Animal Models in KANSEI Engineering

    NASA Astrophysics Data System (ADS)

    Ozaki, Shigeru; Hisano, Setsuji; Iwamoto, Yoshiki

    Various species of animals have been used as animal models for neuroscience and provided critical information about the brain functions. Although it seems difficult to elucidate a highly advanced function of the human brain, animal models have potency to clarify the fundamental mechanisms of emotion, decision-making and social behavior. In this review, we will pick up common animal models and point to both the merits and demerits caused by the characteristics. We will also mention that wide-ranging approaches from animal models are advantageous to understand KANSEI as well as mind in humans.

  14. Laboratory Animal Models for Brucellosis Research

    PubMed Central

    Silva, Teane M. A.; Costa, Erica A.; Paixão, Tatiane A.; Tsolis, Renée M.; Santos, Renato L.

    2011-01-01

    Brucellosis is a chronic infectious disease caused by Brucella spp., a Gram-negative facultative intracellular pathogen that affects humans and animals, leading to significant impact on public health and animal industry. Human brucellosis is considered the most prevalent bacterial zoonosis in the world and is characterized by fever, weight loss, depression, hepato/splenomegaly, osteoarticular, and genital infections. Relevant aspects of Brucella pathogenesis have been intensively investigated in culture cells and animal models. The mouse is the animal model more commonly used to study chronic infection caused by Brucella. This model is most frequently used to investigate specific pathogenic factors of Brucella spp., to characterize the host immune response, and to evaluate therapeutics and vaccines. Other animal species have been used as models for brucellosis including rats, guinea pigs, and monkeys. This paper discusses the murine and other laboratory animal models for human and animal brucellosis. PMID:21403904

  15. Animal Models and Integrated Nested Laplace Approximations

    PubMed Central

    Holand, Anna Marie; Steinsland, Ingelin; Martino, Sara; Jensen, Henrik

    2013-01-01

    Animal models are generalized linear mixed models used in evolutionary biology and animal breeding to identify the genetic part of traits. Integrated Nested Laplace Approximation (INLA) is a methodology for making fast, nonsampling-based Bayesian inference for hierarchical Gaussian Markov models. In this article, we demonstrate that the INLA methodology can be used for many versions of Bayesian animal models. We analyze animal models for both synthetic case studies and house sparrow (Passer domesticus) population case studies with Gaussian, binomial, and Poisson likelihoods using INLA. Inference results are compared with results using Markov Chain Monte Carlo methods. For model choice we use difference in deviance information criteria (DIC). We suggest and show how to evaluate differences in DIC by comparing them with sampling results from simulation studies. We also introduce an R package, AnimalINLA, for easy and fast inference for Bayesian Animal models using INLA. PMID:23708299

  16. Remote Sensing and Modeling for Improving Operational Aquatic Plant Management

    NASA Technical Reports Server (NTRS)

    Bubenheim, Dave

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California’s water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  17. Animal models of tuberculosis for vaccine development.

    PubMed

    Gupta, U D; Katoch, V M

    2009-01-01

    Animal models for testing different vaccine candidates have been developed since a long time for studying tuberculosis. Mice, guinea pigs and rabbits are animals most frequently used. Each model has its own merits for studying human tuberculosis, and none completely mimics the human disease. Different animal models are being used depending upon the availability of the space, trained manpower as well as other resources. Efforts should continue to develop a vaccine which can replace/outperform the presently available vaccine BCG. PMID:19287053

  18. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals

    PubMed Central

    Tresguerres, Martin; Barott, Katie L.; Barron, Megan E.; Roa, Jinae N.

    2014-01-01

    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3−, and sAC has been confirmed to be a HCO3− sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3−-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H+ absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved. PMID:24574382

  19. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals.

    PubMed

    Tresguerres, Martin; Barott, Katie L; Barron, Megan E; Roa, Jinae N

    2014-03-01

    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3(-), and sAC has been confirmed to be a HCO3(-) sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3(-)-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H(+) absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved. PMID:24574382

  20. Pain assessment in animal models of osteoarthritis.

    PubMed

    Piel, Margaret J; Kroin, Jeffrey S; van Wijnen, Andre J; Kc, Ranjan; Im, Hee-Jeong

    2014-03-10

    Assessment of pain in animal models of osteoarthritis is integral to interpretation of a model's utility in representing the clinical condition, and enabling accurate translational medicine. Here we describe behavioral pain assessments available for small and large experimental osteoarthritic pain animal models. PMID:24333346

  1. Development of a multiplex polymerase chain reaction to detect five common Gram-negative bacteria of aquatic animals.

    PubMed

    Tsai, M-A; Ho, P-Y; Wang, P-C; E, Y-J; Liaw, L-L; Chen, S-C

    2012-07-01

    A multiplex polymerase chain reaction (m-PCR) technique was developed as a rapid and accurate diagnostic tool for identifying five major Gram-negative bacilli -Vibrio vulnificus, V. parahaemolyticus, Aeromonas hydrophila, Chryseobacterium meningosepticum and Edwardsiella tarda- that cause major diseases in cultured aquatic animals in Taiwan. The expected amplicons for V. vulnificus, V. parahaemolyticus, A. hydrophila, C. meningosepticum and E. tarda were 410, 368, 685, 180 and 230bp, respectively. The assay was shown to be specific for the target pathogens. The sensitivities of detection were estimated to be 20.5fg∼200pg of genomic DNA or 10(2) ∼10(4) colony-forming units (cfu) of bacterial isolates when adopted as PCR templates. The m-PCR was capable of simultaneously amplifying target fragments from bacterial genome DNA mixed with the DNA extracted from viscera and tissues taken from fish without affecting the performance of the method. PMID:22571515

  2. A P-type ATPase from the aquatic fungus Blastocladiella emersonii similar to animal Na,K-ATPases.

    PubMed

    de Souza, F S; Gomes, S L

    1998-04-01

    We have cloned a P-type ATPase gene from the aquatic fungus Blastocladiella emersonii (BePAT1) using a probe obtained with degenerate oligonucleotides, corresponding to two amino acid sequences highly conserved among all P-type ATPase isoforms, and the polymerase chain reaction technique. Nucleotide sequence analysis revealed a 3.4 kb open reading frame encoding a putative peptide of 1080 amino acid residues with a calculated molecular mass of 119 kDa, which presents all diagnostic features of P-type transporting ATPases. Comparison to other members of the family and phylogenetic analyses have shown that the BePAT1 protein belongs to the subfamily of Na,K- and H,K-ATPases, indicating that the divergence between the alpha-subunit of the Na,K-ATPase and other members of the P-type ATPase family has occurred before the divergence between the animal and fungal lineages in evolution. PMID:9602120

  3. Eutrophication assessment and bioremediation strategy using seaweeds co-cultured with aquatic animals in an enclosed bay in China.

    PubMed

    Wu, Hailong; Huo, Yuanzi; Hu, Ming; Wei, Zhangliang; He, Peimin

    2015-06-15

    Intensive mariculture results in a rise in nutrient concentrations, then leads to serious eutrophication in coastal waters. Based on the sampling data obtained between August 2012 and July 2013, the eutrophication status in Yantian Bay was assessed, and the proportion of marine animals co-cultured with seaweeds was evaluated. The nutritional quality index (NQI) ranged from 4.37 to 13.20, indicating serious eutrophication conditions. The annual average ratio of nitrogen/phosphorus (N/P) was 25.19, indicating a nitrogen surplus in this system. DIN was selected as the best parameter to balance seaweed absorption and marine animal DIN production. Gracilaria lemaneiformis and Laminaria japonica were selected as co-cultured seaweeds. The optimal proportion of G. lemaneiformis production was assessed as 20074.14 tonnes. The optimal proportion of L. japonica production was evaluated as 15890.68 tonnes. High-temperature adapted seaweeds should be introduced for removing nutrients releasing by farmed aquatic animals in the summer in Yantian Bay. PMID:25913794

  4. Evaluation of spinal cord injury animal models

    PubMed Central

    Zhang, Ning; Fang, Marong; Chen, Haohao; Gou, Fangming; Ding, Mingxing

    2014-01-01

    Because there is no curative treatment for spinal cord injury, establishing an ideal animal model is important to identify injury mechanisms and develop therapies for individuals suffering from spinal cord injuries. In this article, we systematically review and analyze various kinds of animal models of spinal cord injury and assess their advantages and disadvantages for further studies. PMID:25598784

  5. CONCEPTUAL MODELS AND METHODS TO GUIDE DIAGNOSTIC RESEARCH INTO CAUSES OF IMPAIRMENT TO AQUATIC ECOSYSTEMS

    EPA Science Inventory

    Methods and conceptual models to guide the development of tools for diagnosing the causes of biological impairment within aquatic ecosystems of the United States are described in this report. The conceptual models developed here address nutrients, suspended and bedded sediments (...

  6. Experimental Animal Models in Periodontology: A Review

    PubMed Central

    Struillou, Xavier; Boutigny, Hervé; Soueidan, Assem; Layrolle, Pierre

    2010-01-01

    In periodontal research, animal studies are complementary to in vitro experiments prior to testing new treatments. Animal models should make possible the validation of hypotheses and prove the safety and efficacy of new regenerating approaches using biomaterials, growth factors or stem cells. A review of the literature was carried out by using electronic databases (PubMed, ISI Web of Science). Numerous animal models in different species such as rats, hamsters, rabbits, ferrets, canines and primates have been used for modeling human periodontal diseases and treatments. However, both the anatomy and physiopathology of animals are different from those of humans, making difficult the evaluation of new therapies. Experimental models have been developed in order to reproduce major periodontal diseases (gingivitis, periodontitis), their pathogenesis and to investigate new surgical techniques. The aim of this review is to define the most pertinent animal models for periodontal research depending on the hypothesis and expected results. PMID:20556202

  7. Animal models for the study of tendinopathy

    PubMed Central

    Warden, S J

    2007-01-01

    Tendinopathy is a common and significant clinical problem characterised by activity‐related pain, focal tendon tenderness and intratendinous imaging changes. Recent histopathological studies have indicated the underlying pathology to be one of tendinosis (degeneration) as opposed to tendinitis (inflammation). Relatively little is known about tendinosis and its pathogenesis. Contributing to this is an absence of validated animal models of the pathology. Animal models of tendinosis represent potential efficient and effective means of furthering our understanding of human tendinopathy and its underlying pathology. By selecting an appropriate species and introducing known risk factors for tendinopathy in humans, it is possible to develop tendon changes in animal models that are consistent with the human condition. This paper overviews the role of animal models in tendinopathy research by discussing the benefits and development of animal models of tendinosis, highlighting potential outcome measures that may be used in animal tendon research, and reviewing current animal models of tendinosis. It is hoped that with further development of animal models of tendinosis, new strategies for the prevention and treatment of tendinopathy in humans will be generated. PMID:17127722

  8. The FAO/NACA Asia Regional Technical Guidelines on Health Management for the Responsible Movement of Live Aquatic Animals: lessons learned from their development and implementation.

    PubMed

    Subasinghe, R P; Bondad-Reantaso, M G

    2008-04-01

    Aquaculture is the fastest growing food producing sector in the world and it is expected to produce significant quantities of fish in the coming years to meet the growing global demand for aquatic animal products. The expansion and diversification of the sector, along with globalisation and trade liberalisation have resulted in aquatic animals and animal products moving around the world rapidly, causing serious disease outbreaks stemming from incursions of pathogens through unregulated transboundary movements. It has become necessary to develop appropriate guidelines for establishing national regulatory frameworks to improve responsibility in transboundary movement of live aquatic animals. In 2000, the Food and Agriculture Organization of the United Nations (FAO), in collaboration with the Network of Aquaculture Centres in Asia-Pacific (NACA) and in partnership with 21 Asian countries, developed the Asia Regional Technical Guidelines on Health Management for the Responsible Movement of Live Aquatic Animals. The present article outlines the development process of the guidelines, the lessons learned from their implementation at national level and the way forward. PMID:18666478

  9. Carcinogenesis studies in rodents for evaluating risks associated with chemical carcinogens in aquatic food animals.

    PubMed Central

    Huff, J; Bucher, J; Yang, R

    1991-01-01

    Fish and shellfish caught in polluted waters contain potentially dangerous amounts of toxic and carcinogenic chemicals. Public concern was heightened when a large percentage of winter flounder taken from Boston Harbor was found to have visible cancer of the liver; winter flounder outside the estuary area had no liver lesions. Long-term chemical carcinogenesis studies could be easily and feasibly designed using laboratory rodents offered diets containing fish caught in polluted waters. Induced cancers in rodents would corroborate field observations in fish; positive results from these studies would provide further evidence about potential human health hazards from eating substantial amounts of chemically contaminated fish. Nonetheless, fish and aquatic organisms should be viewed as environmental biological monitors of pollution or of potential human health hazards, and authorities responsible for assuring clean and safe rivers, bodies of water, and biota should give more attention to these valid biological indicators or sentinels of environmental pollution. Consequently, fish and other sea creatures alone should serve as alarms regarding whether water areas constitute public health hazards. PMID:2050050

  10. Carcinogenesis studies in rodents for evaluating risks associated with chemical carcinogens in aquatic food animals

    SciTech Connect

    Huff, J.; Bucher, J.; Yang, R. )

    1991-01-01

    Fish and shellfish caught in polluted waters contain potentially dangerous amounts of toxic and carcinogenic chemicals. Public concern was heightened when a large percentage of winter flounder taken from Boston Harbor was found to have visible cancer of the liver; winter flounder outside the estuary area had no liver lesions. Long-term chemical carcinogenesis studies could be easily and feasibly designed using laboratory rodents offered diets containing fish caught in polluted waters. Induced cancers in rodents would corroborate field observations in fish; positive results from these studies would provide further evidence about potential human health hazards from eating substantial amounts of chemically contaminated fish. Nonetheless, fish and aquatic organisms should be viewed as environmental biological monitors of pollution or of potential human health hazards, and authorities responsible for assuring clean and safe rivers, bodies of water, and biota should give more attention to these valid biological indicators or sentinels of environmental pollution. Consequently, fish and other sea creatures alone should serve as alarms regarding whether water areas constitute public health hazards. 101 refs.

  11. Animal Models in Studying Cerebral Arteriovenous Malformation

    PubMed Central

    Xu, Ming; Xu, Hongzhi; Qin, Zhiyong

    2015-01-01

    Brain arteriovenous malformation (AVM) is an important cause of hemorrhagic stroke. The etiology is largely unknown and the therapeutics are controversial. A review of AVM-associated animal models may be helpful in order to understand the up-to-date knowledge and promote further research about the disease. We searched PubMed till December 31, 2014, with the term “arteriovenous malformation,” limiting results to animals and English language. Publications that described creations of AVM animal models or investigated AVM-related mechanisms and treatments using these models were reviewed. More than 100 articles fulfilling our inclusion criteria were identified, and from them eight different types of the original models were summarized. The backgrounds and procedures of these models, their applications, and research findings were demonstrated. Animal models are useful in studying the pathogenesis of AVM formation, growth, and rupture, as well as in developing and testing new treatments. Creations of preferable models are expected. PMID:26649296

  12. Engineering large animal models of human disease.

    PubMed

    Whitelaw, C Bruce A; Sheets, Timothy P; Lillico, Simon G; Telugu, Bhanu P

    2016-01-01

    The recent development of gene editing tools and methodology for use in livestock enables the production of new animal disease models. These tools facilitate site-specific mutation of the genome, allowing animals carrying known human disease mutations to be produced. In this review, we describe the various gene editing tools and how they can be used for a range of large animal models of diseases. This genomic technology is in its infancy but the expectation is that through the use of gene editing tools we will see a dramatic increase in animal model resources available for both the study of human disease and the translation of this knowledge into the clinic. Comparative pathology will be central to the productive use of these animal models and the successful translation of new therapeutic strategies. PMID:26414877

  13. Animal models of external traumatic wound infections

    PubMed Central

    Dai, Tianhong; Kharkwal, Gitika B; Tanaka, Masamitsu; Huang, Ying-Ying; Bil de Arce, Vida J

    2011-01-01

    Background: Despite advances in traumatic wound care and management, infections remain a leading cause of mortality, morbidity and economic disruption in millions of wound patients around the world. Animal models have become standard tools for studying a wide array of external traumatic wound infections and testing new antimicrobial strategies. Results: Animal models of external traumatic wound infections reported by different investigators vary in animal species used, microorganism strains, the number of microorganisms applied, the size of the wounds and for burn infections, the length of time the heated object or liquid is in contact with the skin. Methods: This review covers experimental infections in animal models of surgical wounds, skin abrasions, burns, lacerations, excisional wounds and open fractures. Conclusions: As antibiotic resistance continues to increase, more new antimicrobial approaches are urgently needed. These should be tested using standard protocols for infections in external traumatic wounds in animal models. PMID:21701256

  14. Hazard evaluation of soil contaminants with aquatic animals and plant toxicity tests

    SciTech Connect

    Ramanathan, A.; Burks, S.L.

    1996-12-31

    Deleterious effects upon the biota should be one of the principal characteristics used to perform the initial assessment of contamination and the acceptable level of clean-up at hazardous waste sites. Acute toxicity tests are probably the best means for conducting rapid preliminary assessment of distribution and extent of toxic conditions at a site. On the other hand acute toxicity tests may not be adequate indicators of potential effects at critical life stages or responses to longer term exposure to contaminants. Chronic toxicity tests are generally more sensitive than acute tests, and can be used to predict {open_quotes}no effect{close_quotes} or {open_quotes}safe{close_quotes} levels of contamination. In addition, chronic tests provide a better index of field population responses and more closely mimic actual exposure in the field. Partial chronic tests such as the 7 d Ceriodaphnia sp. survival and reproduction test and 7 d fathead minnow survival and growth test are widely used to predict effects upon critical stages in the life cycle of chemical and mixtures. The overall objective of this project was to evaluate the potential hazard of contaminants at an abandoned oil refinery upon aquatic ecosystems within the vicinity. A battery of acute and partial chronic toxicity tests were used to evaluate potential effects of contaminated soil and leachates of soil upon rice seed germination and root growth, Ceriodaphnia acute survival, fathead minnow acute survival, Microtox acute response, 7 d Ceriodaphnia survival and reproduction, and 7 d fathead minnow survival and growth. The specific tests used to accomplish the overall objective included; (1) To estimate phytotoxicity of the soil at the selected contaminated areas within the refinery, (2) to determine potential for leaching at the selected contaminated areas within the refinery, and (3) to assess the relative toxicity of each of the six contaminated areas in the refinery. 13 refs., 3 tabs.

  15. Animal Models of Human Granulocyte Diseases

    PubMed Central

    Schäffer, Alejandro A.; Klein, Christoph

    2012-01-01

    In vivo animal models have proven very useful to understand basic biological pathways of the immune system, a prerequisite for the development of innovate therapies. This manuscript addresses currently available models for defined human monogenetic defects of neutrophil granulocytes, including murine, zebrafish and larger mammalian species. Strengths and weaknesses of each system are summarized, and clinical investigators may thus be inspired to develop further lines of research to improve diagnosis and therapy by use of the appropriate animal model system. PMID:23351993

  16. Influence of Taxonomic Relatedness and Chemical Mode of Action in Acute Interspecies Estimation Models for Aquatic species

    EPA Science Inventory

    Ecological risks to aquatic organisms are typically assessed using toxicity data for relatively few species and with limited understanding of relative species sensitivity. We developed a comprehensive set of interspecies correlation estimation (ICE) models for aquatic organisms a...

  17. Animal protein production modules in biological life support systems: Novel combined aquaculture techniques based on the closed equilibrated biological aquatic system (C.E.B.A.S.)

    NASA Astrophysics Data System (ADS)

    Blüm, V.; Andriske, M.; Kreuzberg, K.; Schreibman, M. P.

    Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.

  18. Animal models for SARS and MERS coronaviruses

    PubMed Central

    Gretebeck, Lisa M; Subbarao, Kanta

    2015-01-01

    The emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), two strains of animal coronaviruses that crossed the species barrier to infect and cause severe respiratory infections in humans within the last 12 years, have taught us that coronaviruses represent a global threat that does not recognize international borders. We can expect to see other novel coronaviruses emerge in the future. An ideal animal model should reflect the clinical signs, viral replication and pathology seen in humans. In this review, we present factors to consider in establishing an animal model for the study of novel coronaviruses and compare the different animal models that have been employed to study SARS-CoV and MERS-CoV. PMID:26184451

  19. Progress With Nonhuman Animal Models of Addiction.

    PubMed

    Crabbe, John C

    2016-09-01

    Nonhuman animals have been major contributors to the science of the genetics of addiction. Given the explosion of interest in genetics, it is fair to ask, are we making reasonable progress toward our goals with animal models? I will argue that our goals are changing and that overall progress has been steady and seems likely to continue apace. Genetics tools have developed almost incredibly rapidly, enabling both more reductionist and more synthetic or integrative approaches. I believe that these approaches to making progress have been unbalanced in biomedical science, favoring reductionism, particularly in animal genetics. I argue that substantial, novel progress is also likely to come in the other direction, toward synthesis and abstraction. Another area in which future progress with genetic animal models seems poised to contribute more is the reconciliation of human and animal phenotypes, or consilience. The inherent power of the genetic animal models could be more profitably exploited. In the end, animal research has continued to provide novel insights about how genes influence individual differences in addiction risk and consequences. The rules of the genetics game are changing so fast that it is hard to remember how comparatively little we knew even a generation ago. Rather than worry about whether we have been wasting time and resources asking the questions we have been, we should look to the future and see if we can come up with some new ones. The valuable findings from the past will endure, and the sidetracks will be forgotten. PMID:27588527

  20. Determining the availability of sediment-bound trace metals to aquatic deposit-feeding animals

    USGS Publications Warehouse

    Luoma, Samuel N.; Cain, D.J.; Thomson, E.A.; Johansson, C.; Jenne, E.A.; Bryan, G.W.

    1980-01-01

    Physicochemical form affects, by as much as 1000 fold, the uptake rate by deposit-feeding clams of metals bound to sediments. The strength of metal binding to the different sedimentary binding substrates controls this effect. Statistical studies that were spatially intensive (comparing 35 stations in 17 estuaries) and temporally intensive (2 stations through 2 years time) indicate that sediments control the availability of Ag, Cd, Co, Pb, Zn, Fe, and Mn, and possibly Cu to clams and polychaete worms in nature. Metal concentrations removed from sediments by chemical extractants generally follow availability better than do total metal concentrations, but the specific extractant differs among different metals. Concentrations of binding substrates (Fe, Mn, organic carbon, humic substances) also statistically explain a proportion of the variance of metal concentrations in the animals, suggesting that metal partitioning among substrates in sediments is an important control on metal availability. The specific substrates which contribute to availability also differ among metals. Statistical assessment of metal form in sediments suggested that different substrates compete for the partitioning of metals, that each metal is partitioned among a variety of forms in an oxidized sediment, and that partitioning will vary with the physicochemical characteristics of the sediments. (USGS)

  1. Animal models in motion sickness research

    NASA Technical Reports Server (NTRS)

    Daunton, Nancy G.

    1990-01-01

    Practical information on candidate animal models for motion sickness research and on methods used to elicit and detect motion sickness in these models is provided. Four good potential models for use in motion sickness experiments include the dog, cat, squirrel monkey, and rat. It is concluded that the appropriate use of the animal models, combined with exploitation of state-of-the-art biomedical techniques, should generate a great step forward in the understanding of motion sickness mechanisms and in the development of efficient and effective approaches to its prevention and treatment in humans.

  2. Animal models of monogenic migraine.

    PubMed

    Chen, Shih-Pin; Tolner, Else A; Eikermann-Haerter, Katharina

    2016-06-01

    Migraine is a highly prevalent and disabling neurological disorder with a strong genetic component. Rare monogenic forms of migraine, or syndromes in which migraine frequently occurs, help scientists to unravel pathogenetic mechanisms of migraine and its comorbidities. Transgenic mouse models for rare monogenic mutations causing familial hemiplegic migraine (FHM), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and familial advanced sleep-phase syndrome (FASPS), have been created. Here, we review the current state of research using these mutant mice. We also discuss how currently available experimental approaches, including epigenetic studies, biomolecular analysis and optogenetic technologies, can be used for characterization of migraine genes to further unravel the functional and molecular pathways involved in migraine. PMID:27154999

  3. Animal models of acute lung injury

    PubMed Central

    Matute-Bello, Gustavo; Frevert, Charles W.; Martin, Thomas R.

    2008-01-01

    Acute lung injury in humans is characterized histopathologically by neutrophilic alveolitis, injury of the alveolar epithelium and endothelium, hyaline membrane formation, and microvascular thrombi. Different animal models of experimental lung injury have been used to investigate mechanisms of lung injury. Most are based on reproducing in animals known risk factors for ARDS, such as sepsis, lipid embolism secondary to bone fracture, acid aspiration, ischemia-reperfusion of pulmonary or distal vascular beds, and other clinical risks. However, none of these models fully reproduces the features of human lung injury. The goal of this review is to summarize the strengths and weaknesses of existing models of lung injury. We review the specific features of human ARDS that should be modeled in experimental lung injury and then discuss specific characteristics of animal species that may affect the pulmonary host response to noxious stimuli. We emphasize those models of lung injury that are based on reproducing risk factors for human ARDS in animals and discuss the advantages and disadvantages of each model and the extent to which each model reproduces human ARDS. The present review will help guide investigators in the design and interpretation of animal studies of acute lung injury. PMID:18621912

  4. PHB-degrading bacteria isolated from the gastrointestinal tract of aquatic animals as protective actors against luminescent vibriosis.

    PubMed

    Liu, Yiying; De Schryver, Peter; Van Delsen, Bart; Maignien, Loïs; Boon, Nico; Sorgeloos, Patrick; Verstraete, Willy; Bossier, Peter; Defoirdt, Tom

    2010-10-01

    The use of poly-β-hydroxybutyrate (PHB) was shown to be successful in increasing the resistance of brine shrimp against pathogenic infections. In this study, we isolated for the first time PHB-degrading bacteria from a gastrointestinal environment. Pure strains of PHB-degrading bacteria were isolated from Siberian sturgeon, European sea bass and giant river prawn. The capability of selected isolates to degrade PHB was confirmed in at least two of three setups: (1) growth in minimal medium containing PHB as the sole carbon (C) source, (2) production of clearing zones on minimal agar containing PHB as the sole C source and (3) degradation of PHB (as determined by HPLC analysis) in 10% Luria-Bertani medium containing PHB. Challenge tests showed that the PHB-degrading activity of the selected isolates increased the survival of brine shrimp larvae challenged to a pathogenic Vibrio campbellii strain by a factor 2-3. Finally, one of the PHB-degrading isolates from sturgeon showed a double biocontrol effect because it was also able to inactivate acylhomoserine lactones, a type of quorum-sensing molecule that regulates the virulence of different pathogenic bacteria. Thus, the combined supplementation of a PHB-degrading bacterium and PHB as a synbioticum provides perspectives for improving the gastrointestinal health of aquatic animals. PMID:20597982

  5. Lysosomal and autophagic reactions as predictive indicators of environmental impact in aquatic animals.

    PubMed

    Moore, Michael N; Allen, J Icarus; McVeigh, Allan; Shaw, Jenny

    2006-01-01

    The lysosomal-autophagic system appears to be a common target for many environmental pollutants as lysosomes accumulate many toxic metals and organic xenobiotics, which perturb normal function and damage the lysosomal membrane. In fact, lysosomal membrane integrity or stability appears to be an effective generic indicator of cellular well-being in eukaryotes: in bivalve molluscs and fish, stability is correlated with many toxicological responses and pathological reactions. Prognostic use of adverse lysosomal and autophagic reactions to environmental pollutants has been explored in relation to predicting cellular dysfunction and health in marine mussels, which are extensively used as sensitive bioindicators in monitoring ecosystem health. Derivation of explanatory frameworks for prediction of pollutant impact on health is a major goal; and we have developed a conceptual mechanistic model linking lysosomal damage and autophagic dysfunction with injury to cells and tissues. This model has also complemented the creation of a cell-based computational model for molluscan hepatopancreatic cells that simulates lysosomal, autophagic and other cellular reactions to pollutants. Experimental and simulated results have also indicated that nutritional deprivation-induced autophagy has a protective function against toxic effects mediated by reactive oxygen species (ROS). Finally, coupled measurement of lysosomal-autophagic reactions and modelling is proposed as a practical toolbox for predicting toxic environmental risk. PMID:16874099

  6. Animal Eye Models for Uveal Melanoma.

    PubMed

    Cao, Jinfeng; Jager, Martine J

    2015-04-01

    Animal models play an important role in understanding tumor growth and may be used to develop novel therapies against human malignancies. The significance of the results from animal experiments depends on the selection of the proper model. Many attempts have been made to create appropriate animal models for uveal melanoma and its characteristic metastatic behavior. One approach is to use transgenic animal models or to implant tumor cells. A variety of tumor types have been used for this purpose: tumor cells, such as Greene melanoma, murine B16 melanoma, and human uveal melanoma cells, may be implanted in the eyes of hamsters, rats, rabbits, and mice, among others. Various inoculation routes, including into the anterior chamber and posterior compartment, and retro-orbitally, have been applied to obtain tumor growth mimicking ocular uveal melanoma. However, when we choose animal models, we must be conscious of many disadvantages, such as variable tumor growth, or the need for immunosuppression in xenogeneic grafts. In this paper, we will discuss the various eye models. PMID:27172424

  7. Animal Eye Models for Uveal Melanoma

    PubMed Central

    Cao, Jinfeng; Jager, Martine J.

    2015-01-01

    Animal models play an important role in understanding tumor growth and may be used to develop novel therapies against human malignancies. The significance of the results from animal experiments depends on the selection of the proper model. Many attempts have been made to create appropriate animal models for uveal melanoma and its characteristic metastatic behavior. One approach is to use transgenic animal models or to implant tumor cells. A variety of tumor types have been used for this purpose: tumor cells, such as Greene melanoma, murine B16 melanoma, and human uveal melanoma cells, may be implanted in the eyes of hamsters, rats, rabbits, and mice, among others. Various inoculation routes, including into the anterior chamber and posterior compartment, and retro-orbitally, have been applied to obtain tumor growth mimicking ocular uveal melanoma. However, when we choose animal models, we must be conscious of many disadvantages, such as variable tumor growth, or the need for immunosuppression in xenogeneic grafts. In this paper, we will discuss the various eye models. PMID:27172424

  8. Animal models of human response to dioxins.

    PubMed Central

    Grassman, J A; Masten, S A; Walker, N J; Lucier, G W

    1998-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most potent member of a class of chlorinated hydrocarbons that interact with the aryl hydrocarbon receptor (AhR). TCDD and dioxinlike compounds are environmentally and biologically stable and as a result, human exposure is chronic and widespread. Studies of highly exposed human populations show that dioxins produce developmental effects, chloracne, and an increase in all cancers and suggest that they may also alter immune and endocrine function. In contrast, the health effects of low-level environmental exposure have not been established. Experimental animal models can enhance the understanding of the effects of low-level dioxin exposure, particularly when there is evidence that humans respond similarly to the animal models. Although there are species differences in pharmacokinetics, experimental animal models demonstrate AhR-dependent health effects that are similar to those found in exposed human populations. Comparisons of biochemical changes show that humans and animal models have similar degrees of sensitivity to dioxin-induced effects. The information gained from animal models is important for developing mechanistic models of dioxin toxicity and critical for assessing the risks to human populations under different circumstances of exposure. PMID:9599728

  9. Animal Models for Adipose Tissue Engineering

    PubMed Central

    Uthamanthil, Rajesh; Beahm, Elisabeth; Frye, Cindy

    2008-01-01

    Abstract There is a critical need for adequate reconstruction of soft tissue defects resulting from tumor resection, trauma, and congenital abnormalities. To be sure, adipose tissue engineering strategies offer promising solutions. However, before clinical translation can occur, efficacy must be proven in animal studies. The aim of this review is to provide an overview of animal models currently employed for adipose tissue engineering. PMID:18544014

  10. Predicting the resilience and recovery of aquatic systems: A framework for model evolution within environmental observatories

    NASA Astrophysics Data System (ADS)

    Hipsey, Matthew R.; Hamilton, David P.; Hanson, Paul C.; Carey, Cayelan C.; Coletti, Janaine Z.; Read, Jordan S.; Ibelings, Bas W.; Valesini, Fiona J.; Brookes, Justin D.

    2015-09-01

    Maintaining the health of aquatic systems is an essential component of sustainable catchment management, however, degradation of water quality and aquatic habitat continues to challenge scientists and policy-makers. To support management and restoration efforts aquatic system models are required that are able to capture the often complex trajectories that these systems display in response to multiple stressors. This paper explores the abilities and limitations of current model approaches in meeting this challenge, and outlines a strategy based on integration of flexible model libraries and data from observation networks, within a learning framework, as a means to improve the accuracy and scope of model predictions. The framework is comprised of a data assimilation component that utilizes diverse data streams from sensor networks, and a second component whereby model structural evolution can occur once the model is assessed against theoretically relevant metrics of system function. Given the scale and transdisciplinary nature of the prediction challenge, network science initiatives are identified as a means to develop and integrate diverse model libraries and workflows, and to obtain consensus on diagnostic approaches to model assessment that can guide model adaptation. We outline how such a framework can help us explore the theory of how aquatic systems respond to change by bridging bottom-up and top-down lines of enquiry, and, in doing so, also advance the role of prediction in aquatic ecosystem management.

  11. Current status: Animal models of nausea

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    The advantages, and possible benefits of a valid, reliable animal model for nausea are discussed, and difficulties inherent to the development of a model are considered. A principle problem for developing models arises because nausea is a subjective sensation that can be identified only in humans. Several putative measures of nausea in animals are considered, with more detailed consideration directed to variation in cardiac rate, levels of vasopressin, and conditioned taste aversion. Demonstration that putative measures are associated with reported nausea in humans is proposed as a requirement for validating measures to be used in animal models. The necessity for a 'real-time' measure of nausea is proposed as an important factor for future research; and the need for improved understanding of the neuroanatomy underlying the emetic syndrome is discussed.

  12. Animal models of human granulocyte diseases.

    PubMed

    Schäffer, Alejandro A; Klein, Christoph

    2013-02-01

    In vivo animal models have proven very useful to the understanding of basic biologic pathways of the immune system, a prerequisite for the development of innovate therapies. This article addresses currently available models for defined human monogenetic defects of neutrophil granulocytes, including murine, zebrafish, and larger mammalian species. Strengths and weaknesses of each system are summarized, and clinical investigators may thus be inspired to develop further lines of research to improve diagnosis and therapy by use of the appropriate animal model system. PMID:23351993

  13. Retinal Cell Degeneration in Animal Models

    PubMed Central

    Niwa, Masayuki; Aoki, Hitomi; Hirata, Akihiro; Tomita, Hiroyuki; Green, Paul G.; Hara, Akira

    2016-01-01

    The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage. PMID:26784179

  14. Optogenetics in animal model of alcohol addiction

    NASA Astrophysics Data System (ADS)

    Nalberczak, Maria; Radwanska, Kasia

    2014-11-01

    Our understanding of the neuronal and molecular basis of alcohol addiction is still not satisfactory. As a consequence we still miss successful therapy of alcoholism. One of the reasons for such state is the lack of appropriate animal models which would allow in-depth analysis of biological basis of addiction. Here we will present our efforts to create the animal model of alcohol addiction in the automated learning device, the IntelliCage setup. Applying this model to optogenetically modified mice with remotely controlled regulation of selected neuronal populations by light may lead to very precise identification of neuronal circuits involved in coding addiction-related behaviors.

  15. Animal models of gastrointestinal inflammation and cancer.

    PubMed

    Lu, L; Chan, Ruby L Y; Luo, X M; Wu, William K K; Shin, Vivian Y; Cho, C H

    2014-07-11

    Inflammation and cancer are the two major disorders in the gastrointestinal tract. They are causally related in their pathogenesis. It is important to study animal models' causal relationship and, in particular, to discover new therapeutic agents for such diseases. There are several criteria for these models in order to make them useful in better understanding the etiology and treatment of the said diseases in humans. In this regard, animal models should be similar as possible to human diseases and also be easy to produce and reproducible and also economic to allow a continuous replication in different laboratories. In this review, we summarize the various animal models for inflammatory and cancerous disorders in the upper and lower gastrointestinal tract. Experimental approaches are as simple as by giving a single oral dose of alcohol or other noxious agents or by injections of multiple dosages of ulcer inducing agents or by parenteral administration or in drinking water of carcinogens or by modifying the genetic makeups of animals to produce relatively long-term pathological changes in particular organs. With these methods they could induce consistent inflammatory responses or tumorigenesis in the gastrointestinal mucosa. These animal models are widely used in laboratories in understanding the pathogenesis as well as the mechanisms of action for therapeutic agents in the treatment of gastrointestinal inflammation and cancer. PMID:24825611

  16. Animal Models for HIV Cure Research

    PubMed Central

    Policicchio, Benjamin B.; Pandrea, Ivona; Apetrei, Cristian

    2016-01-01

    The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal. PMID:26858716

  17. Animal Models for HIV Cure Research.

    PubMed

    Policicchio, Benjamin B; Pandrea, Ivona; Apetrei, Cristian

    2016-01-01

    The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal. PMID:26858716

  18. Lessons from Animal Models of Arterial Aneurysm

    PubMed Central

    Gertz, S. David; Mintz, Yoav; Beeri, Ronen; Rubinstein, Chen; Gilon, Dan; Gavish, Leah; Berlatzky, Yacov; Appelbaum, Liat; Gavish, Lilach

    2013-01-01

    We review the results from the most common animal models of arterial aneurysm, including recent findings from our novel, laparoscopy-based pig model of abdominal aortic aneurysm, that contribute important insights into early pathogenesis. We emphasize the relevance of these findings for evaluation of treatment protocols and novel device prototypes for mechanism-based prevention of progression and rupture. PMID:26798701

  19. Predicting the resilience and recovery of aquatic systems: a framework for model evolution within environmental observatories

    USGS Publications Warehouse

    Hipsey, Matthew R.; Hamilton, David P.; Hanson, Paul C.; Carey, Cayelan C; Coletti, Janaine Z; Read, Jordan S.; Ibelings, Bas W; Valensini, Fiona J; Brookes, Justin D

    2015-01-01

    Maintaining the health of aquatic systems is an essential component of sustainable catchmentmanagement, however, degradation of water quality and aquatic habitat continues to challenge scientistsand policy-makers. To support management and restoration efforts aquatic system models are requiredthat are able to capture the often complex trajectories that these systems display in response to multiplestressors. This paper explores the abilities and limitations of current model approaches in meeting this chal-lenge, and outlines a strategy based on integration of flexible model libraries and data from observationnetworks, within a learning framework, as a means to improve the accuracy and scope of model predictions.The framework is comprised of a data assimilation component that utilizes diverse data streams from sensornetworks, and a second component whereby model structural evolution can occur once the model isassessed against theoretically relevant metrics of system function. Given the scale and transdisciplinarynature of the prediction challenge, network science initiatives are identified as a means to develop and inte-grate diverse model libraries and workflows, and to obtain consensus on diagnostic approaches to modelassessment that can guide model adaptation. We outline how such a framework can help us explore thetheory of how aquatic systems respond to change by bridging bottom-up and top-down lines of enquiry,and, in doing so, also advance the role of prediction in aquatic ecosystem management.

  20. Large animal models for stem cell therapy

    PubMed Central

    2013-01-01

    The field of regenerative medicine is approaching translation to clinical practice, and significant safety concerns and knowledge gaps have become clear as clinical practitioners are considering the potential risks and benefits of cell-based therapy. It is necessary to understand the full spectrum of stem cell actions and preclinical evidence for safety and therapeutic efficacy. The role of animal models for gaining this information has increased substantially. There is an urgent need for novel animal models to expand the range of current studies, most of which have been conducted in rodents. Extant models are providing important information but have limitations for a variety of disease categories and can have different size and physiology relative to humans. These differences can preclude the ability to reproduce the results of animal-based preclinical studies in human trials. Larger animal species, such as rabbits, dogs, pigs, sheep, goats, and non-human primates, are better predictors of responses in humans than are rodents, but in each case it will be necessary to choose the best model for a specific application. There is a wide spectrum of potential stem cell-based products that can be used for regenerative medicine, including embryonic and induced pluripotent stem cells, somatic stem cells, and differentiated cellular progeny. The state of knowledge and availability of these cells from large animals vary among species. In most cases, significant effort is required for establishing and characterizing cell lines, comparing behavior to human analogs, and testing potential applications. Stem cell-based therapies present significant safety challenges, which cannot be addressed by traditional procedures and require the development of new protocols and test systems, for which the rigorous use of larger animal species more closely resembling human behavior will be required. In this article, we discuss the current status and challenges of and several major directions

  1. Medaka (Oryzias latipes) as a sentinel species for aquatic animals: Medaka cells exhibit a similar genotoxic response as North Atlantic right whale cells★

    PubMed Central

    Wise, John Pierce; Wise, Sandra S.; Goodale, Britton C.; Shaffiey, Fariba; Kraus, Scott; Walter, Ronald B.

    2015-01-01

    Hexavalent chromium (Cr(VI)) is emerging as a major concern for aquatic environments, particularly marine environments. Medaka (Oryzias latipes) has been used as a model species for human and aquatic health, including the marine environment, though few studies have directly compared toxicological responses in medaka to humans or other aquatic species. We used a medaka fin cell line to compare the genotoxic response of medaka to Cr(VI) to the response observed in North Atlantic right whale cells to see if responses in medaka were similar to those of other aquatic species, particularly aquatic mammals. We used the production of chromosomal aberrations as a measure of genotoxicity. We found that in medaka cells, concentrations of 1, 5 and 10 μM sodium chromate damaged 17, 32 and 43% of metaphases, respectively and these same concentrations 1, 2.5, 5 and 10 μM sodium chromate damaged 14, 24 and 49% of metaphases, respectively, in North Atlantic right whale lung cells and 11, 32 and 41% of metaphases, respectively, in North Atlantic right whale testes cells. These data show that genotoxic responses in medaka are comparable to those seen in North Atlantic right whale cells, consistent with the hypothesis that medaka are a useful model for other aquatic species. PMID:18930840

  2. Medaka (Oryzias latipes) as a sentinel species for aquatic animals: Medaka cells exhibit a similar genotoxic response as North Atlantic right whale cells.

    PubMed

    Wise, John Pierce; Wise, Sandra S; Goodale, Britton C; Shaffiey, Fariba; Kraus, Scott; Walter, Ronald B

    2009-03-01

    Hexavalent chromium (Cr(VI)) is emerging as a major concern for aquatic environments, particularly marine environments. Medaka (Oryzias latipes) has been used as a model species for human and aquatic health, including the marine environment, though few studies have directly compared toxicological responses in medaka to humans or other aquatic species. We used a medaka fin cell line to compare the genotoxic response of medaka to Cr(VI) to the response observed in North Atlantic right whale cells to see if responses in medaka were similar to those of other aquatic species, particularly aquatic mammals. We used the production of chromosomal aberrations as a measure of genotoxicity. We found that in medaka cells, concentrations of 1, 5 and 10 microM sodium chromate damaged 17, 32 and 43% of metaphases, respectively and these same concentrations 1, 2.5, 5 and 10 microM sodium chromate damaged 14, 24 and 49% of metaphases, respectively, in North Atlantic right whale lung cells and 11, 32 and 41% of metaphases, respectively, in North Atlantic right whale testes cells. These data show that genotoxic responses in medaka are comparable to those seen in North Atlantic right whale cells, consistent with the hypothesis that medaka are a useful model for other aquatic species. PMID:18930840

  3. Uncertainty Modeling of Pollutant Transport in Atmosphere and Aquatic Route Using Soft Computing

    SciTech Connect

    Datta, D.

    2010-10-26

    Hazardous radionuclides are released as pollutants in the atmospheric and aquatic environment (ATAQE) during the normal operation of nuclear power plants. Atmospheric and aquatic dispersion models are routinely used to assess the impact of release of radionuclide from any nuclear facility or hazardous chemicals from any chemical plant on the ATAQE. Effect of the exposure from the hazardous nuclides or chemicals is measured in terms of risk. Uncertainty modeling is an integral part of the risk assessment. The paper focuses the uncertainty modeling of the pollutant transport in atmospheric and aquatic environment using soft computing. Soft computing is addressed due to the lack of information on the parameters that represent the corresponding models. Soft-computing in this domain basically addresses the usage of fuzzy set theory to explore the uncertainty of the model parameters and such type of uncertainty is called as epistemic uncertainty. Each uncertain input parameters of the model is described by a triangular membership function.

  4. Animal models for motor neuron disease.

    PubMed

    Green, S L; Tolwani, R J

    1999-10-01

    Motor neuron disease is a general term applied to a broad class of neurodegenerative diseases that are characterized by fatally progressive muscular weakness, atrophy, and paralysis attributable to loss of motor neurons. At present, there is no cure for most motor neuron diseases, including amyotrophic lateral sclerosis (ALS), the most common human motor neuron disease--the cause of which remains largely unknown. Animal models of motor neuron disease (MND) have significantly contributed to the remarkable recent progress in understanding the cause, genetic factors, and pathologic mechanisms proposed for this class of human neurodegenerative disorders. Largely driven by ALS research, animal models of MND have proven their usefulness in elucidating potential causes and specific pathogenic mechanisms, and have helped to advance promising new treatments from "benchside to bedside." This review summarizes important features of selected established animal models of MND: genetically engineered mice and inherited or spontaneously occurring MND in the murine, canine, and equine species. PMID:10551448

  5. Differential Paradigms in Animal Models of Sepsis.

    PubMed

    Kingsley, S Manoj Kumar; Bhat, B Vishnu

    2016-09-01

    Sepsis is a serious clinical problem involving complex mechanisms which requires better understanding and insight. Animal models of sepsis have played a major role in providing insight into the complex pathophysiology of sepsis. There have been various animal models of sepsis with different paradigms. Endotoxin, bacterial infusion, cecal ligation and puncture, and colon ascendens stent peritonitis models are the commonly practiced methods at present. Each of these models has their own advantages and also confounding factors. We have discussed the underlying mechanisms regulating each of these models along with possible reasons why each model failed to translate into the clinic. In animal models, the timing of development of the hemodynamic phases and the varied cytokine patterns could not accurately resemble the progression of clinical sepsis. More often, the exuberant and transient pro-inflammatory cytokine response is only focused in most models. Immunosuppression and apoptosis in the later phase of sepsis have been found to cause more damage than the initial acute phase of sepsis. Likewise, better understanding of the existing models of sepsis could help us create a more relevant model which could provide solution to the currently failed clinical trials in sepsis. PMID:27432263

  6. Animal and cellular models of Friedreich ataxia.

    PubMed

    Perdomini, Morgane; Hick, Aurore; Puccio, Hélène; Pook, Mark A

    2013-08-01

    The development and use of animal and cellular models of Friedreich ataxia (FRDA) are essential requirements for the understanding of FRDA disease mechanisms and the investigation of potential FRDA therapeutic strategies. Although animal and cellular models of lower organisms have provided valuable information on certain aspects of FRDA disease and therapy, it is intuitive that the most useful models are those of mammals and mammalian cells, which are the closest in physiological terms to FRDA patients. To date, there have been considerable efforts put into the development of several different FRDA mouse models and relevant FRDA mouse and human cell line systems. We summarize the principal mammalian FRDA models, discuss the pros and cons of each system, and describe the ways in which such models have been used to address two of the fundamental, as yet unanswered, questions regarding FRDA. Namely, what is the exact pathophysiology of FRDA and what is the detailed genetic and epigenetic basis of FRDA? PMID:23859342

  7. Hierarchical models of animal abundance and occurrence

    USGS Publications Warehouse

    Royle, J. Andrew; Dorazio, R.M.

    2006-01-01

    Much of animal ecology is devoted to studies of abundance and occurrence of species, based on surveys of spatially referenced sample units. These surveys frequently yield sparse counts that are contaminated by imperfect detection, making direct inference about abundance or occurrence based on observational data infeasible. This article describes a flexible hierarchical modeling framework for estimation and inference about animal abundance and occurrence from survey data that are subject to imperfect detection. Within this framework, we specify models of abundance and detectability of animals at the level of the local populations defined by the sample units. Information at the level of the local population is aggregated by specifying models that describe variation in abundance and detection among sites. We describe likelihood-based and Bayesian methods for estimation and inference under the resulting hierarchical model. We provide two examples of the application of hierarchical models to animal survey data, the first based on removal counts of stream fish and the second based on avian quadrat counts. For both examples, we provide a Bayesian analysis of the models using the software WinBUGS.

  8. Animal models of cavitation in pulmonary tuberculosis.

    PubMed

    Helke, Kris L; Mankowski, Joseph L; Manabe, Yukari C

    2006-09-01

    Transmission of tuberculosis occurs with the highest frequency from patients with extensive, cavitary, pulmonary disease and positive sputum smear microscopy. In animal models of tuberculosis, the development of caseous necrosis is an important prerequisite for the formation of cavities although the immunological triggers for liquefaction are unknown. We review the relative merits and the information gleaned from the available animal models of pulmonary cavitation. Understanding the host-pathogen interaction important to the formation of cavities may lead to new strategies to prevent cavitation and thereby, block transmission. PMID:16359922

  9. Animal models of gene-nutrient interactions.

    PubMed

    Reed, Danielle R

    2008-12-01

    Food intake of humans is governed by the food's nutritional value and pleasing taste, but also by other factors such as food cost and availability, cultural imperatives, and social status. The biological determinants of human food intake are not easily parsed from these other factors, making them hard to study against the whirligig aspects of human life in a modern age. The study of animals provides a useful alternative. Humans have a history of studying animal food intake, for agricultural reasons (e.g., pigs and cows), and for personal reasons (e.g., dogs and cats), and these practical concerns have been joined with the appreciation that other models can teach us the principles of behavior, genetics, and nutrition. Thus there is a steady use of the traditional animal models in this type of research, as well as growth in the use of other systems such as worms and flies. Rats and mice occupy a special niche as animal models for two reasons; first, they share with humans a love of the same types of food, and second, they are the target of a number of well-developed genetic tools. The available genetic tools that make mice a popular model include a well-annotated genome (Mouse Build 37), profiles of RNA expression from many tissues, a diverse panel of inbred strains, and the ability to manipulate genes in the whole animal, including removing a gene only in specific tissues (e.g., Cre-lox system). Mice have been harnessed to find genotypes that contribute to sweet-liking, and other studies are underway to understand how genetic variation might at least partially explain other puzzles of human appetites. Animal models provide a way to study the genetic determinants of food selection with experimental rigor and therefore complement human genetics studies. PMID:19037208

  10. Are animal models predictive for humans?

    PubMed Central

    2009-01-01

    It is one of the central aims of the philosophy of science to elucidate the meanings of scientific terms and also to think critically about their application. The focus of this essay is the scientific term predict and whether there is credible evidence that animal models, especially in toxicology and pathophysiology, can be used to predict human outcomes. Whether animals can be used to predict human response to drugs and other chemicals is apparently a contentious issue. However, when one empirically analyzes animal models using scientific tools they fall far short of being able to predict human responses. This is not surprising considering what we have learned from fields such evolutionary and developmental biology, gene regulation and expression, epigenetics, complexity theory, and comparative genomics. PMID:19146696

  11. [Diabetes mellitus and its animal models].

    PubMed

    Duhault, J; Koenig-Berard, E

    1997-01-01

    This review presents the major animal models usually used for the study of the pathological processes related to insulin-dependent diabetes mellitus (IDDM), non-insulin-dependent diabetes mellitus (NIDDM) and to the main diabetic complications. These models can be observed spontaneously or can be obtained by selective cross-breeding or toxic exposure (chemical or viral), as well as genetically induced. They reproduce some aspects of the human pathology without combining them all in a single model. Consequently, a pertinent pharmacological approach may compare the results obtained with several models. The examination of the recent results obtained with transgenesis does not allow these animal models to replace more classical ones but they may constitute a future challenge for gene therapy despite the multifactorial aspect of diabetic disease. PMID:9501560

  12. Animal models for photodynamic therapy (PDT)

    PubMed Central

    Silva, Zenildo Santos; Bussadori, Sandra Kalil; Fernandes, Kristianne Porta Santos; Huang, Ying-Ying; Hamblin, Michael R.

    2015-01-01

    Photodynamic therapy (PDT) employs non-toxic dyes called photosensitizers (PSs), which absorb visible light to give the excited singlet state, followed by the long-lived triplet state that can undergo photochemistry. In the presence of ambient oxygen, reactive oxygen species (ROS), such as singlet oxygen and hydroxyl radicals are formed that are able to kill cancer cells, inactivate microbial pathogens and destroy unwanted tissue. Although there are already several clinically approved PSs for various disease indications, many studies around the world are using animal models to investigate the further utility of PDT. The present review will cover the main groups of animal models that have been described in the literature. Cancer comprises the single biggest group of models including syngeneic mouse/rat tumours that can either be subcutaneous or orthotopic and allow the study of anti-tumour immune response; human tumours that need to be implanted in immunosuppressed hosts; carcinogen-induced tumours; and mice that have been genetically engineered to develop cancer (often by pathways similar to those in patients). Infections are the second biggest class of animal models and the anatomical sites include wounds, burns, oral cavity, ears, eyes, nose etc. Responsible pathogens can include Gram-positive and Gram-negative bacteria, fungi, viruses and parasites. A smaller and diverse group of miscellaneous animal models have been reported that allow PDT to be tested in ophthalmology, atherosclerosis, atrial fibrillation, dermatology and wound healing. Successful studies using animal models of PDT are blazing the trail for tomorrow's clinical approvals. PMID:26415497

  13. An animated model of reticulorumen motility.

    PubMed

    Gookin, Jody L; Foster, Derek M; Harvey, Alice M; McWhorter, Dan

    2009-01-01

    Understanding reticulorumen motility is important to the assessment of ruminant health and optimal production, and in the recognition, diagnosis, and treatment of disease. Accordingly, the teaching of reticulorumen motility is a staple of all veterinary curricula. This teaching has historically been based on written descriptions, line drawings, or pressure tracings obtained during contraction sequences. We developed an animated model of reticulorumen motility and hypothesized that veterinary students would prefer use of the model over traditional instructional methods. First-year veterinary students were randomly allocated to one of two online learning exercises: with the animated model (Group A) or with text and line drawings (Group B) depicting reticulorumen motility. Learning was assessed with a multiple-choice quiz and feedback on the learning alternatives was obtained by survey. Seventy-four students participated in the study, including 38/42 in Group A and 36/36 in Group B. Sixty-four out of 72 students (89%) responded that they would prefer use of the animated model if only one of the two learning methods was available. A majority of students agreed or strongly agreed that the animated model was easy to understand and improved their knowledge and appreciation of the importance of reticulorumen motility, and would recommend the model to other veterinary students. Interestingly, students in Group B achieved higher scores on examination than students in Group A. This could be speculatively attributed to the inclusion of an itemized list of contraction sequences in the text provided to Group B and failure of Group A students to read the text associated with the animations. PMID:20054084

  14. Henipavirus infections: lessons from animal models.

    PubMed

    Dhondt, Kévin P; Horvat, Branka

    2013-01-01

    The Henipavirus genus contains two highly lethal viruses, the Hendra and Nipah viruses and one, recently discovered, apparently nonpathogenic member; Cedar virus. These three, negative-sense single-stranded RNA viruses, are hosted by fruit bats and use EphrinB2 receptors for entry into cells. The Hendra and Nipah viruses are zoonotic pathogens that emerged in the middle of 90s and have caused severe, and often fatal, neurologic and/or respiratory diseases in both humans and different animals; including spillover into equine and porcine species. Development of relevant models is critical for a better understanding of viral pathogenesis, generating new diagnostic tools, and assessing anti-viral therapeutics and vaccines. This review summarizes available data on several animal models where natural and/or experimental infection has been demonstrated; including pteroid bats, horses, pigs, cats, hamsters, guinea pigs, ferrets, and nonhuman primates. It recapitulates the principal features of viral pathogenesis in these animals and current knowledge on anti-viral immune responses. Lastly it describes the recently characterized murine animal model, which provides the possibility to use numerous and powerful tools available for mice to further decipher henipaviruses immunopathogenesis, prophylaxis, and treatment. The utility of different models to analyze important aspects of henipaviruses-induced disease in humans, potential routes of transmission, and therapeutic approaches are equally discussed. PMID:25437037

  15. Animation of finite element models and results

    NASA Technical Reports Server (NTRS)

    Lipman, Robert R.

    1992-01-01

    This is not intended as a complete review of computer hardware and software that can be used for animation of finite element models and results, but is instead a demonstration of the benefits of visualization using selected hardware and software. The role of raw computational power, graphics speed, and the use of videotape are discussed.

  16. Animal models for genetic neuromuscular diseases.

    PubMed

    Vainzof, Mariz; Ayub-Guerrieri, Danielle; Onofre, Paula C G; Martins, Poliana C M; Lopes, Vanessa F; Zilberztajn, Dinorah; Maia, Lucas S; Sell, Karen; Yamamoto, Lydia U

    2008-03-01

    The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse

  17. Animal models of chronic obstructive pulmonary disease.

    PubMed

    Pérez-Rial, Sandra; Girón-Martínez, Álvaro; Peces-Barba, Germán

    2015-03-01

    Animal models of disease have always been welcomed by the scientific community because they provide an approach to the investigation of certain aspects of the disease in question. Animal models of COPD cannot reproduce the heterogeneity of the disease and usually only manage to represent the disease in its milder stages. Moreover, airflow obstruction, the variable that determines patient diagnosis, not always taken into account in the models. For this reason, models have focused on the development of emphysema, easily detectable by lung morphometry, and have disregarded other components of the disease, such as airway injury or associated vascular changes. Continuous, long-term exposure to cigarette smoke is considered the main risk factor for this disease, justifying the fact that the cigarette smoke exposure model is the most widely used. Some variations on this basic model, related to exposure time, the association of other inducers or inhibitors, exacerbations or the use of transgenic animals to facilitate the identification of pathogenic pathways have been developed. Some variations or heterogeneity of this disease, then, can be reproduced and models can be designed for resolving researchers' questions on disease identification or treatment responses. PMID:25201221

  18. The modelling cycle for collective animal behaviour

    PubMed Central

    Sumpter, David J. T.; Mann, Richard P.; Perna, Andrea

    2012-01-01

    Collective animal behaviour is the study of how interactions between individuals produce group level patterns, and why these interactions have evolved. This study has proved itself uniquely interdisciplinary, involving physicists, mathematicians, engineers as well as biologists. Almost all experimental work in this area is related directly or indirectly to mathematical models, with regular movement back and forth between models, experimental data and statistical fitting. In this paper, we describe how the modelling cycle works in the study of collective animal behaviour. We classify studies as addressing questions at different levels or linking different levels, i.e. as local, local to global, global to local or global. We also describe three distinct approaches—theory-driven, data-driven and model selection—to these questions. We show, with reference to our own research on species across different taxa, how we move between these different levels of description and how these various approaches can be applied to link levels together. PMID:23173077

  19. Traumatic Brain Injury Models in Animals.

    PubMed

    Rostami, Elham

    2016-01-01

    Traumatic brain injury (TBI) is the leading cause of death in young adults in industrialized nations and in the developing world the WHO considers TBI a silent epidemic caused by an increasing number of traffic accidents. Despite the major improvement of TBI outcome in the acute setting in the past 20 years, the assessment, therapeutic interventions, and prevention of long-term complications remain a challenge. In order to get a deeper insight into the pathology of TBI and advancement of medical understanding and clinical progress experimental animal models are an essential requirement. This chapter provides an overview of most commonly used experimental animal TBI models and the pathobiological findings based on current data. In addition, limitations and advantages of each TBI model are mentioned. This will hopefully give an insight into the possibilities of each model and be of value in choosing one when designing a study. PMID:27604712

  20. Animal models for meniscus repair and regeneration.

    PubMed

    Deponti, Daniela; Di Giancamillo, Alessia; Scotti, Celeste; Peretti, Giuseppe M; Martin, Ivan

    2015-05-01

    The meniscus plays an important role in knee function and mechanics. Meniscal lesions, however, are common phenomena and this tissue is not able to achieve spontaneous successful repair, particularly in the inner avascular zone. Several animal models have been studied and proposed for testing different reparative approaches, as well as for studying regenerative methods aiming to restore the original shape and function of this structure. This review summarizes the gross anatomy, function, ultrastructure and biochemical composition of the knee meniscus in several animal models in comparison with the human meniscus. The relevance of the models is discussed from the point of view of basic research as well as of clinical translation for meniscal repair, substitution and regeneration. Finally, the advantages and disadvantages of each model for various research directions are critically discussed. PMID:23712959

  1. Fuzzy model for risk assessment of persistent organic pollutants in aquatic ecosystems.

    PubMed

    Seguí, X; Pujolasus, E; Betrò, S; Agueda, A; Casal, J; Ocampo-Duque, W; Rudolph, I; Barra, R; Páez, M; Barón, E; Eljarrat, E; Barceló, D; Darbra, R M

    2013-07-01

    We developed a model for evaluating the environmental risk of persistent organic pollutants (POPs) to aquatic organisms. The model is based on fuzzy theory and uses information provided by international experts through a questionnaire. It has been tested in two case studies for a particular type of POPs: brominated flame retardants (BFRs). The first case study is related to the EU-funded AQUATERRA project, with sampling campaigns carried out in two Ebro tributaries in Spain (the Cinca and Vero Rivers). The second one, named the BROMACUA project, assessed different aquatic ecosystems in Chile (San Vicente Bay) and Colombia (Santa Marta Marsh). In both projects, the BFRs under study were polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD). However, the model can be extrapolated to other POPs and to different aquatic ecosystems to provide useful results for decision-makers. PMID:23524177

  2. Evaluation of Surrogate Animal Models of Melioidosis

    PubMed Central

    Warawa, Jonathan Mark

    2010-01-01

    Burkholderia pseudomallei is the Gram-negative bacterial pathogen responsible for the disease melioidosis. B. pseudomallei establishes disease in susceptible individuals through multiple routes of infection, all of which may proceed to a septicemic disease associated with a high mortality rate. B. pseudomallei opportunistically infects humans and a wide range of animals directly from the environment, and modeling of experimental melioidosis has been conducted in numerous biologically relevant models including mammalian and invertebrate hosts. This review seeks to summarize published findings related to established animal models of melioidosis, with an aim to compare and contrast the virulence of B. pseudomallei in these models. The effect of the route of delivery on disease is also discussed for intravenous, intraperitoneal, subcutaneous, intranasal, aerosol, oral, and intratracheal infection methodologies, with a particular focus on how they relate to modeling clinical melioidosis. The importance of the translational validity of the animal models used in B. pseudomallei research is highlighted as these studies have become increasingly therapeutic in nature. PMID:21772830

  3. Nonmurine animal models of food allergy.

    PubMed Central

    Helm, Ricki M; Ermel, Richard W; Frick, Oscar L

    2003-01-01

    Food allergy can present as immediate hypersensitivity [manifestations mediated by immunoglobulin (Ig)E], delayed-type hypersensitivity (reactions associated with specific T lymphocytes), and inflammatory reactions caused by immune complexes. For reasons of ethics and efficacy, investigations in humans to determine sensitization and allergic responses of IgE production to innocuous food proteins are not feasible. Therefore, animal models are used a) to bypass the innate tendency to develop tolerance to food proteins and induce specific IgE antibody of sufficient avidity/affinity to cause sensitization and upon reexposure to induce an allergic response, b) to predict allergenicity of novel proteins using characteristics of known food allergens, and c) to treat food allergy by using immunotherapeutic strategies to alleviate life-threatening reactions. The predominant hypothesis for IgE-mediated food allergy is that there is an adverse reaction to exogenous food proteins or food protein fragments, which escape lumen hydrolysis, and in a polarized helper T cell subset 2 (Th2) environment, immunoglobulin class switching to allergen-specific IgE is generated in the immune system of the gastrointestinal-associated lymphoid tissues. Traditionally, the immunologic characterization and toxicologic studies of small laboratory animals have provided the basis for development of animal models of food allergy; however, the natural allergic response in large animals, which closely mimic allergic diseases in humans, can also be useful as models for investigations involving food allergy. PMID:12573913

  4. Fantastic animals as an experimental model to teach animal adaptation

    PubMed Central

    Guidetti, Roberto; Baraldi, Laura; Calzolai, Caterina; Pini, Lorenza; Veronesi, Paola; Pederzoli, Aurora

    2007-01-01

    Background Science curricula and teachers should emphasize evolution in a manner commensurate with its importance as a unifying concept in science. The concept of adaptation represents a first step to understand the results of natural selection. We settled an experimental project of alternative didactic to improve knowledge of organism adaptation. Students were involved and stimulated in learning processes by creative activities. To set adaptation in a historic frame, fossil records as evidence of past life and evolution were considered. Results The experimental project is schematized in nine phases: review of previous knowledge; lesson on fossils; lesson on fantastic animals; planning an imaginary world; creation of an imaginary animal; revision of the imaginary animals; adaptations of real animals; adaptations of fossil animals; and public exposition. A rubric to evaluate the student's performances is reported. The project involved professors and students of the University of Modena and Reggio Emilia and of the "G. Marconi" Secondary School of First Degree (Modena, Italy). Conclusion The educational objectives of the project are in line with the National Indications of the Italian Ministry of Public Instruction: knowledge of the characteristics of living beings, the meanings of the term "adaptation", the meaning of fossils, the definition of ecosystem, and the particularity of the different biomes. At the end of the project, students will be able to grasp particular adaptations of real organisms and to deduce information about the environment in which the organism evolved. This project allows students to review previous knowledge and to form their personalities. PMID:17767729

  5. Animal models of HIV peripheral neuropathy

    PubMed Central

    Burdo, Tricia H; Miller, Andrew D

    2014-01-01

    The use of animal models in the study of HIV and AIDS has advanced our understanding of the underlying pathophysiologic mechanisms of infection. Of the multitude of HIV disease manifestations, peripheral neuropathy remains one of the most common long-term side effects. Several of the most important causes of peripheral neuropathy in AIDS patients include direct association with HIV infection with or without antiretroviral medication and infection with opportunistic agents. Because the pathogeneses of these diseases are difficult to study in human patients, animal models have allowed for significant advancement in the understanding of the role of viral infection and the immune system in disease genesis. This review focuses on rodent, rabbit, feline and rhesus models used to study HIV-associated peripheral neuropathies, focusing specifically on sensory neuropathy and antiretroviral-associated neuropathies. PMID:25214880

  6. Pathogenesis of Epilepsy: Challenges in Animal Models

    PubMed Central

    Hui Yin, Yow; Ahmad, Nurulumi; Makmor-Bakry, Mohd

    2013-01-01

    Epilepsy is one of the most common chronic disorders affecting individuals of all ages. A greater understanding of pathogenesis in epilepsy will likely provide the basis fundamental for development of new antiepileptic therapies that aim to prevent the epileptogenesis process or modify the progression of epilepsy in addition to treatment of epilepsy symptomatically. Therefore, several investigations have embarked on advancing knowledge of the mechanism underlying epileptogenesis, understanding in mechanism of pharmacoresistance and discovering antiepileptogenic or disease-modifying therapy. Animal models play a crucial and significant role in providing additional insight into mechanism of epileptogenesis. With the help of these models, epileptogenesis process has been demonstrated to be involved in various molecular and biological pathways or processes. Hence, this article will discuss the known and postulated mechanisms of epileptogenesis and challenges in using the animal models. PMID:24494063

  7. Animal models of antimuscle specific kinase myasthenia

    PubMed Central

    Richman, David P.; Nishi, Kayoko; Ferns, Michael J.; Schnier, Joachim; Pytel, Peter; Maselli, Ricardo A.; Agius, Mark A.

    2014-01-01

    Antimuscle specific kinase (anti-MuSK) myasthenia (AMM) differs from antiacetylcholine receptor myasthenia gravis in exhibiting more focal muscle involvement (neck, shoulder, facial, and bulbar muscles) with wasting of the involved, primarily axial, muscles. AMM is not associated with thymic hyperplasia and responds poorly to anticholinesterase treatment. Animal models of AMM have been induced in rabbits, mice, and rats by immunization with purified xenogeneic MuSK ectodomain, and by passive transfer of large quantities of purified serum IgG from AMM patients into mice. The models have confirmed the pathogenic role of the MuSK antibodies in AMM and have demonstrated the involvement of both the presynaptic and postsynaptic components of the neuromuscular junction. The observations in this human disease and its animal models demonstrate the role of MuSK not only in the formation of this synapse but also in its maintenance. PMID:23252909

  8. Matrix Population Model for Estimating Effects from Time-Varying Aquatic Exposures: Technical Documentation

    EPA Science Inventory

    The Office of Pesticide Programs models daily aquatic pesticide exposure values for 30 years in its risk assessments. However, only a fraction of that information is typically used in these assessments. The population model employed herein is a deterministic, density-dependent pe...

  9. Towards an animal model of food addiction.

    PubMed

    de Jong, Johannes W; Vanderschuren, Louk J M J; Adan, Roger A H

    2012-01-01

    The dramatically increasing prevalence of obesity, associated with potentially life-threatening health problems, including cardiovascular diseases and type II diabetes, poses an enormous public health problem. It has been proposed that the obesity epidemic can be explained by the concept of 'food addiction'. In this review we focus on possible similarities between binge eating disorder (BED), which is highly prevalent in the obese population, and drug addiction. Indeed, both behavioral and neural similarities between addiction and BED have been demonstrated. Behavioral similarities are reflected in the overlap in DSM-IV criteria for drug addiction with the (suggested) criteria for BED and by food addiction-like behavior in animals after prolonged intermittent access to palatable food. Neural similarities include the overlap in brain regions involved in food and drug craving. Decreased dopamine D2 receptor availability in the striatum has been found in animal models of binge eating, after cocaine self-administration in animals as well as in drug addiction and obesity in humans. To further explore the neurobiological basis of food addiction, it is essential to have an animal model to test the addictive potential of palatable food. A recently developed animal model for drug addiction involves three behavioral characteristics that are based on the DSM-IV criteria: i) extremely high motivation to obtain the drug, ii) difficulty in limiting drug seeking even in periods of explicit non-availability, iii) continuation of drug-seeking despite negative consequences. Indeed, it has been shown that a subgroup of rats, after prolonged cocaine self-administration, scores positive on these three criteria. If food possesses addictive properties, then food-addicted rats should also meet these criteria while searching for and consuming food. In this review we discuss evidence from literature regarding food addiction-like behavior. We also suggest future experiments that could

  10. Integration of geographic information systems and logistic multiple regression for aquatic macrophyte modeling

    SciTech Connect

    Narumalani, S.; Jensen, J.R.; Althausen, J.D.; Burkhalter, S.; Mackey, H.E. Jr.

    1994-06-01

    Since aquatic macrophytes have an important influence on the physical and chemical processes of an ecosystem while simultaneously affecting human activity, it is imperative that they be inventoried and managed wisely. However, mapping wetlands can be a major challenge because they are found in diverse geographic areas ranging from small tributary streams, to shrub or scrub and marsh communities, to open water lacustrian environments. In addition, the type and spatial distribution of wetlands can change dramatically from season to season, especially when nonpersistent species are present. This research, focuses on developing a model for predicting the future growth and distribution of aquatic macrophytes. This model will use a geographic information system (GIS) to analyze some of the biophysical variables that affect aquatic macrophyte growth and distribution. The data will provide scientists information on the future spatial growth and distribution of aquatic macrophytes. This study focuses on the Savannah River Site Par Pond (1,000 ha) and L Lake (400 ha) these are two cooling ponds that have received thermal effluent from nuclear reactor operations. Par Pond was constructed in 1958, and natural invasion of wetland has occurred over its 35-year history, with much of the shoreline having developed extensive beds of persistent and non-persistent aquatic macrophytes.

  11. Animal Models of Depression: Molecular Perspectives

    PubMed Central

    Krishnan, Vaishnav; Nestler, Eric J.

    2012-01-01

    Much of the current understanding about the pathogenesis of altered mood, impaired concentration and neurovegetative symptoms in major depression has come from animal models. However, because of the unique and complex features of human depression, the generation of valid and insightful depression models has been less straightforward than modeling other disabling diseases like cancer or autoimmune conditions. Today’s popular depression models creatively merge ethologically valid behavioral assays with the latest technological advances in molecular biology and automated video-tracking. This chapter reviews depression assays involving acute stress (e.g., forced swim test), models consisting of prolonged physical or social stress (e.g., social defeat), models of secondary depression, genetic models, and experiments designed to elucidate the mechanisms of antidepressant action. These paradigms are critically evaluated in relation to their ease, validity and replicability, the molecular insights that they have provided, and their capacity to offer the next generation of therapeutics for depression. PMID:21225412

  12. Animal models of epilepsy: use and limitations

    PubMed Central

    Kandratavicius, Ludmyla; Balista, Priscila Alves; Lopes-Aguiar, Cleiton; Ruggiero, Rafael Naime; Umeoka, Eduardo Henrique; Garcia-Cairasco, Norberto; Bueno-Junior, Lezio Soares; Leite, Joao Pereira

    2014-01-01

    Epilepsy is a chronic neurological condition characterized by recurrent seizures that affects millions of people worldwide. Comprehension of the complex mechanisms underlying epileptogenesis and seizure generation in temporal lobe epilepsy and other forms of epilepsy cannot be fully acquired in clinical studies with humans. As a result, the use of appropriate animal models is essential. Some of these models replicate the natural history of symptomatic focal epilepsy with an initial epileptogenic insult, which is followed by an apparent latent period and by a subsequent period of chronic spontaneous seizures. Seizures are a combination of electrical and behavioral events that are able to induce chemical, molecular, and anatomic alterations. In this review, we summarize the most frequently used models of chronic epilepsy and models of acute seizures induced by chemoconvulsants, traumatic brain injury, and electrical or sound stimuli. Genetic models of absence seizures and models of seizures and status epilepticus in the immature brain were also examined. Major uses and limitations were highlighted, and neuropathological, behavioral, and neurophysiological similarities and differences between the model and the human equivalent were considered. The quest for seizure mechanisms can provide insights into overall brain functions and consciousness, and animal models of epilepsy will continue to promote the progress of both epilepsy and neurophysiology research. PMID:25228809

  13. Pediatric Epileptic Encephalopathies: Pathophysiology and Animal Models.

    PubMed

    Shao, Li-Rong; Stafstrom, Carl E

    2016-05-01

    Epileptic encephalopathies are syndromes in which seizures or interictal epileptiform activity contribute to or exacerbate brain function, beyond that caused by the underlying pathology. These severe epilepsies begin early in life, are associated with poor lifelong outcome, and are resistant to most treatments. Therefore, they represent an immense challenge for families and the medical care system. Furthermore, the pathogenic mechanisms underlying the epileptic encephalopathies are poorly understood, hampering attempts to devise novel treatments. This article reviews animal models of the three classic epileptic encephalopathies-West syndrome (infantile spasms), Lennox-Gastaut syndrome, and continuous spike waves during sleep or Landau-Kleffner syndrome-with discussion of how animal models are revealing underlying pathophysiological mechanisms that might be amenable to targeted therapy. PMID:27544466

  14. Standardised animal models of host microbial mutualism

    PubMed Central

    Macpherson, A J; McCoy, K D

    2015-01-01

    An appreciation of the importance of interactions between microbes and multicellular organisms is currently driving research in biology and biomedicine. Many human diseases involve interactions between the host and the microbiota, so investigating the mechanisms involved is important for human health. Although microbial ecology measurements capture considerable diversity of the communities between individuals, this diversity is highly problematic for reproducible experimental animal models that seek to establish the mechanistic basis for interactions within the overall host-microbial superorganism. Conflicting experimental results may be explained away through unknown differences in the microbiota composition between vivaria or between the microenvironment of different isolated cages. In this position paper, we propose standardised criteria for stabilised and defined experimental animal microbiotas to generate reproducible models of human disease that are suitable for systematic experimentation and are reproducible across different institutions. PMID:25492472

  15. Modeling interdependent animal movement in continuous time.

    PubMed

    Niu, Mu; Blackwell, Paul G; Skarin, Anna

    2016-06-01

    This article presents a new approach to modeling group animal movement in continuous time. The movement of a group of animals is modeled as a multivariate Ornstein Uhlenbeck diffusion process in a high-dimensional space. Each individual of the group is attracted to a leading point which is generally unobserved, and the movement of the leading point is also an Ornstein Uhlenbeck process attracted to an unknown attractor. The Ornstein Uhlenbeck bridge is applied to reconstruct the location of the leading point. All movement parameters are estimated using Markov chain Monte Carlo sampling, specifically a Metropolis Hastings algorithm. We apply the method to a small group of simultaneously tracked reindeer, Rangifer tarandus tarandus, showing that the method detects dependency in movement between individuals. PMID:26812666

  16. Experimental Diabetes Mellitus in Different Animal Models.

    PubMed

    Al-Awar, Amin; Kupai, Krisztina; Veszelka, Médea; Szűcs, Gergő; Attieh, Zouhair; Murlasits, Zsolt; Török, Szilvia; Pósa, Anikó; Varga, Csaba

    2016-01-01

    Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF) rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. PMID:27595114

  17. Animal models of age related macular degeneration

    PubMed Central

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  18. Experimental Diabetes Mellitus in Different Animal Models

    PubMed Central

    Al-awar, Amin; Veszelka, Médea; Szűcs, Gergő; Attieh, Zouhair; Murlasits, Zsolt; Török, Szilvia; Pósa, Anikó; Varga, Csaba

    2016-01-01

    Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF) rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. PMID:27595114

  19. Diabetic Retinopathy: Animal Models, Therapies, and Perspectives

    PubMed Central

    Cai, Xue; McGinnis, James F.

    2016-01-01

    Diabetic retinopathy (DR) is one of the major complications of diabetes. Although great efforts have been made to uncover the mechanisms underlying the pathology of DR, the exact causes of DR remain largely unknown. Because of multifactor involvement in DR etiology, currently no effective therapeutic treatments for DR are available. In this paper, we review the pathology of DR, commonly used animal models, and novel therapeutic approaches. Perspectives and future directions for DR treatment are discussed. PMID:26881246

  20. Animal models of smoke inhalation induced injuries.

    PubMed

    David, Poon; Dunsford, Denny; Lu, Jia; Moochhala, Shabbir

    2009-01-01

    Smoke inhalation injury is the leading cause of mortality from structural fires, as a result of complications such as systemic inflammatory response syndrome and chronic obstructive pulmonary disease, which can be caused by a localized or systemic response. In this review, the pathophysiology of smoke inhalation injury, along with the characteristics found in clinical settings, common animal models, current treatment methods and future potential therapeutics are discussed. PMID:19273376

  1. Animal models of human microsporidial infections.

    PubMed

    Snowden, K F; Didier, E S; Orenstein, J M; Shadduck, J A

    1998-12-01

    Two new models have been described for Enterocytozoon bieneusi, non-human primates and immuno-suppressed gnotobiotic pigs, but there still is no successful cell culture system. The intestinal xenograft system holds promise as an animal model for Encephalitozoon intestinalis. Encephalitozoon hellem is easily propagated in mice, and also may be an important cause of spontaneous disease of psittacine birds. Encephalitozoon cuniculi occurs spontaneously in a wide variety of animals and can be induced experimentally in athymic mice. This is a useful experimental system and animal model, but the infection is relatively rare in man. Mammalian microsporidioses first were recognized as spontaneous diseases of animals that later confounded studies intended to elucidate the nature of diseases of humans. Much was learned about both experimental and spontaneous animal microsporidial infections that subsequently has been applied to the human diseases. In addition, new diseases have appeared, in both animals and humans, for which models are being developed. Since there are now animal models for almost all the known human microsporidioses, information on pathogenesis, host defenses, and effective treatments may become available soon. The microsporidioses provide a good example of the value of comparative pathology. Dr. Payne: Joe Payne. How much accidental infection has occurred with adjacent laboratory animals? Dr. Shadduck: A hard question. The organisms are thought to spread horizontally, and there is some pretty good evidence for that in rabbits. One assumes that this also is the explanation for the occurrence in infected kennels. Horizontal transmission probably occurs via contaminated urine, at least in the case of rabbits and dogs. Experimentally, horizontal transmission has been difficult to demonstrate in mice. Relative to the danger in people, I don't know how to answer that. I have always treated this as one of those things where you should be careful, but you shouldn

  2. Animal Models of Compulsive Eating Behavior

    PubMed Central

    Di Segni, Matteo; Patrono, Enrico; Patella, Loris; Puglisi-Allegra, Stefano; Ventura, Rossella

    2014-01-01

    Eating disorders are multifactorial conditions that can involve a combination of genetic, metabolic, environmental, and behavioral factors. Studies in humans and laboratory animals show that eating can also be regulated by factors unrelated to metabolic control. Several studies suggest a link between stress, access to highly palatable food, and eating disorders. Eating “comfort foods” in response to a negative emotional state, for example, suggests that some individuals overeat to self-medicate. Clinical data suggest that some individuals may develop addiction-like behaviors from consuming palatable foods. Based on this observation, “food addiction” has emerged as an area of intense scientific research. A growing body of evidence suggests that some aspects of food addiction, such as compulsive eating behavior, can be modeled in animals. Moreover, several areas of the brain, including various neurotransmitter systems, are involved in the reinforcement effects of both food and drugs, suggesting that natural and pharmacological stimuli activate similar neural systems. In addition, several recent studies have identified a putative connection between neural circuits activated in the seeking and intake of both palatable food and drugs. The development of well-characterized animal models will increase our understanding of the etiological factors of food addiction and will help identify the neural substrates involved in eating disorders such as compulsive overeating. Such models will facilitate the development and validation of targeted pharmacological therapies. PMID:25340369

  3. Neuroteratology and Animal Modeling of Brain Disorders.

    PubMed

    Archer, Trevor; Kostrzewa, Richard M

    2016-01-01

    Over the past 60 years, a large number of selective neurotoxins were discovered and developed, making it possible to animal-model a broad range of human neuropsychiatric and neurodevelopmental disorders. In this paper, we highlight those neurotoxins that are most commonly used as neuroteratologic agents, to either produce lifelong destruction of neurons of a particular phenotype, or a group of neurons linked by a specific class of transporter proteins (i.e., dopamine transporter) or body of receptors for a specific neurotransmitter (i.e., NMDA class of glutamate receptors). Actions of a range of neurotoxins are described: 6-hydroxydopamine (6-OHDA), 6-hydroxydopa, DSP-4, MPTP, methamphetamine, IgG-saporin, domoate, NMDA receptor antagonists, and valproate. Their neuroteratologic features are outlined, as well as those of nerve growth factor, epidermal growth factor, and that of stress. The value of each of these neurotoxins in animal modeling of human neurologic, neurodegenerative, and neuropsychiatric disorders is discussed in terms of the respective value as well as limitations of the derived animal model. Neuroteratologic agents have proven to be of immense importance for understanding how associated neural systems in human neural disorders may be better targeted by new therapeutic agents. PMID:26857462

  4. Neurologic autoimmunity: mechanisms revealed by animal models.

    PubMed

    Bradl, Monika; Lassmann, Hans

    2016-01-01

    Over the last decade, neurologic autoimmunity has become a major consideration in the diagnosis and management of patients with many neurologic presentations. The nature of the associated antibodies and their targets has led to appreciation of the importance of the accessibility of the target antigen to antibodies, and a partial understanding of the different mechanisms that can follow antibody binding. This chapter will first describe the basic principles of autoimmune inflammation and tissue damage in the central and peripheral nervous system, and will then demonstrate what has been learnt about neurologic autoimmunity from circumstantial clinical evidence and from passive, active, and occasionally spontaneous or genetic animal models. It will cover neurologic autoimmune diseases ranging from disorders of neuromuscular transmission, peripheral and ganglionic neuropathy, to diseases of the central nervous system, where autoantibodies are either pathogenic and cause destruction or changes in function of their targets, where they are harmless bystanders of T-cell-mediated tissue damage, or are not involved at all. Finally, this chapter will summarize the relevance of current animal models for studying the different neurologic autoimmune diseases, and it will identify aspects where future animal models need to be improved to better reflect the disease reality experienced by affected patients, e.g., the chronicity or the relapsing/remitting nature of their disease. PMID:27112675

  5. Colon Preneoplastic Lesions in Animal Models

    PubMed Central

    Suzui, Masumi; Morioka, Takamitsu; Yoshimi, Naoki

    2013-01-01

    The animal model is a powerful and fundamental tool in the field of biochemical research including toxicology, carcinogenesis, cancer therapeutics and prevention. In the carcinogenesis animal model system, numerous examples of preneoplastic lesions have been isolated and investigated from various perspectives. This may indicate that several options of endpoints to evaluate carcinogenesis effect or therapeutic outcome are presently available; however, classification of preneoplastic lesions has become complicated. For instance, these lesions include aberrant crypt foci (ACF), dysplastic ACF, flat ACF, β-catenin accumulated crypts, and mucin-depleted foci. These lesions have been induced by commonly used chemical carcinogens such as azoxymethane (AOM), 1,2-dimethylhydrazine (DMH), methylnitrosourea (MUN), or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Investigators can choose any procedures or methods to examine colonic preneoplastic lesions according to their interests and the objectives of their experiments. Based on topographical, histopathological, and biological features of colon cancer preneoplastic lesions in the animal model, we summarize and discuss the character and implications of these lesions. PMID:24526805

  6. Animal model for anaerobic lung abscess.

    PubMed Central

    Kannangara, D W; Thadepalli, H; Bach, V T; Webb, D

    1981-01-01

    There are no satisfactory animal models for the study of anaerobic lung abscess. Aspiration of food, gastric mucin, or hydrochloric acid, or any combination of these, along with oropharyngeal bacteria, is commonly believed to cause aspiration pneumonia and lung abscess. In the animal model described, none of the adjuvants was effective in producing anaerobic lung abscesses. Anaerobic bacteria derived from dental scrapings of a healthy adult (Peptococcus morbillorum, Fusobacterium nucleatum, Eubacterium lentum, and Bacteroides fragilis), when inoculated transtracheally without any adjuvants into New Zealand male white rabbits, consistently produced lung abscesses. Neither B fragilis by itself nor a mixture of P. morbillorum, F. nucleatum, and E. lentum without the addition of B. fragilis produced lung abscesses. The bacterial isolates used in this study were stored in prereduced chopped-meat-glucose medium and subcultured several times and were found effective in reproducing anaerobic lung abscesses repeatedly. This animal model is suitable for the study of pathogenesis, diagnosis, and treatment of B. fragilis-associated anaerobic lung abscess. Images PMID:7216463

  7. Animal models of compulsive eating behavior.

    PubMed

    Di Segni, Matteo; Patrono, Enrico; Patella, Loris; Puglisi-Allegra, Stefano; Ventura, Rossella

    2014-10-01

    Eating disorders are multifactorial conditions that can involve a combination of genetic, metabolic, environmental, and behavioral factors. Studies in humans and laboratory animals show that eating can also be regulated by factors unrelated to metabolic control. Several studies suggest a link between stress, access to highly palatable food, and eating disorders. Eating "comfort foods" in response to a negative emotional state, for example, suggests that some individuals overeat to self-medicate. Clinical data suggest that some individuals may develop addiction-like behaviors from consuming palatable foods. Based on this observation, "food addiction" has emerged as an area of intense scientific research. A growing body of evidence suggests that some aspects of food addiction, such as compulsive eating behavior, can be modeled in animals. Moreover, several areas of the brain, including various neurotransmitter systems, are involved in the reinforcement effects of both food and drugs, suggesting that natural and pharmacological stimuli activate similar neural systems. In addition, several recent studies have identified a putative connection between neural circuits activated in the seeking and intake of both palatable food and drugs. The development of well-characterized animal models will increase our understanding of the etiological factors of food addiction and will help identify the neural substrates involved in eating disorders such as compulsive overeating. Such models will facilitate the development and validation of targeted pharmacological therapies. PMID:25340369

  8. Proliferative retinopathies: animal models and therapeutic opportunities.

    PubMed

    Villacampa, Pilar; Haurigot, Virginia; Bosch, Fatima

    2015-01-01

    Proliferative retinopathies are the leading causes of blindness in Western societies. The development of new, more efficacious treatments that take advantage of recent advances in the fields of gene and cell therapy requires further investigations on the mechanisms underlying disease onset and progression, and adequate animal models that recapitulate the pathogenesis of human proliferative retinopathy and allow evaluation of the long-term therapeutic benefits that these therapies can offer. Unfortunately, most models of retinal neovascularization have short-term evolution and diabetic rodents show a very mild retinal phenotype, limited to non-proliferative changes, and do not develop proliferative retinopathy at all. Transgenic mice overexpressing Insulin-like Growth Factor-I (IGF-I) in the retina (TgIGF-I) constitute the only rodent model currently available that develops most of the retinal alterations observed in diabetic eyes, with a temporal evolution that resembles that of the human disease. TgIGF-I have retinal vascular alterations that progress as animals age from non-proliferative to proliferative disease, making these mice an excellent model of proliferative retinopathy that, due to its slow progression, allows long-term evaluation of novel antiangiogenic therapies. At the molecular level, transgenic retinas recapitulate a variety of changes that are also observed in diabetic retinas, which reinforces the validity of this model. In addition to vascular and glial alterations, Tg-IGF-I mice show progressive neurodegeneration that leads to blindness in old animals. Thus, TgIGF-I are a useful model for testing the long-term efficacy and safety of innovative antiangiogenic, glial-modulating and neuroprotective therapies for the treatment of diabetic retinopathy and other retinal proliferative disorders. PMID:25760215

  9. Animal Models in Pressure Ulcer Research

    PubMed Central

    Salcido, Richard; Popescu, Adrian; Ahn, Chulhyun

    2007-01-01

    Background/Objective: Research targeting the pathophysiology, prevention, and treatment of pressure ulcers (PrUs) continue to be a significant priority for clinical and basic science research. Spinal cord injury patients particularly benefit from PrU research, because the prevalence of chronic wounds in this category is increasing despite standardized medical care. Because of practical, ethical, and safety considerations, PrUs in the human environment are limited to studies involving patients with pre-existing ulcers. Therefore, we are limited in our basic knowledge pertaining to the development, progression, and healing environment in this devastating disease. Methods: This review provides a synopsis of literature and a discussion of techniques used to induce PrUs in animal models. The question of what animal model best mimics the human PrU environment has been a subject of debate by investigators, peer review panels, and editors. The similarities in wound development and healing in mammalian tissue make murine models a relevant model for understanding the causal factors as well as the wound healing elements. Although we are beginning to understand some of the mechanisms of PrU development, a key dilemma of what makes an apparently healthy tissue develop a PrU waits to be solved. Results and Conclusions: No single method of induction and exploring PrUs in animals can address all the aspects of the pathology of chronic wounds. Each model has its particular strengths and weaknesses. Certain types of models can selectively identify specific aspects of wound development, quantify the extent of lesions, and assess outcomes from interventions. The appropriate interpretation of these methods is significant for proper study design, an understanding of the results, and extrapolation to clinical relevance. PMID:17591222

  10. Predicting aquatic macrophyte modeling of a new freshwater lake using remote sensing

    SciTech Connect

    Jensen, J.R.; Narumalani, S.; Weatherbee, O.; Morris, K.S. Jr.; Mackey, H.E. Jr.

    1992-07-01

    Par Pond and L Lake are reservoirs on the Savannah River Site in South Carolina. Beds of aquatic macrophytes (primarily cattail and waterlilies) exist in Par Pond and are now beginning to develop in L Lake. Biophysical knowledge about Par Pond was used to develop `environmental constraint criteria` to predict the future spatial distribution of aquatic macrophytes in L Lake. The L Lake biophysical data were placed in a 5 {times} 5 m raster geographic information system (GIS) and analyzed using Boolean logic. Areas in L Lake which were {le}4 m in depth, {le}10% slope, had a fetch of {le}500 m, and on suitable soil were identified. The final GIS model predicted the spatial distribution of 37.30 ha of aquatic macrophytes which met the environmental constraint criteria (cattails = 12.29 ha and waterlilies = 25.01 ha).