Science.gov

Sample records for aquatic humic substances

  1. Molecular size of aquatic humic substances

    USGS Publications Warehouse

    Thurman, E.M.; Wershaw, R. L.; Malcolm, R.L.; Pinckney, D.J.

    1982-01-01

    Aquatic humic substances, which account for 30 to 50% of the organic carbon in water, are a principal component of aquatic organic matter. The molecular size of aquatic humic substances, determined by small-angle X-ray scattering, varies from 4.7 to 33 A?? in their radius of gyration, corresponding to a molecular weight range of 500 to greater than 10,000. The aquatic fulvic acid fraction contains substances with molecular weights ranging from 500 to 2000 and is monodisperse, whereas the aquatic humic acid fraction contains substances with molecular weights ranging from 1000 to greater than 10,000 and is generally polydisperse. ?? 1982.

  2. CHLORINATION OF AQUATIC HUMIC SUBSTANCES

    EPA Science Inventory

    This research program was initiated with the overall objective of increasing our understanding of the chemical structures of aquatic humic material and their behavior during chemical oxidation in particular with chlorine. Experimental methods were devised for the isolation of hum...

  3. Preparative isolation of aquatic humic substances

    USGS Publications Warehouse

    Thurman, E.M.; Malcolm, R.L.

    1981-01-01

    A useful procedure has been developed which utilizes adsorption chromatography followed by size-exclusion chromatography, hydrogen saturation by ion exchange, and lypholization to obtain low-ash aqueous humic substances. The preparative concentration of aquatic humic substances is done by multiple reconcentration procedures even though initial concentrations of aqueous humus may be less than 25 ??g/L. The procedure yields concentration factors of 25 000 times for both humic and fulvic acid in water.

  4. DBP formation of aquatic humic substances

    USGS Publications Warehouse

    Pomes, M.L.; Green, W.R.; Thurman, E.M.; Orem, W.H.; Lerch, H.E.

    1999-01-01

    Aquatic humic substances (AHSs) in water generate potentially harmful disinfection by-products (DBPs) such as haloacetic acids (HAAs) and trihalomethanes (THMs) during chlorination. AHSs from two Arkansas reservoirs were characterized to define source, identify meta-dihydroxybenzene (m-DHB) structures as probable DBP precursors, and evaluate predicted HAA and THM formation potentials. Elemental nitrogen content 0.5 ??eq/mg, ??13C values of -27???, and low yields of syringyl phenols found by cupric oxide (CuO) oxidation suggest a pine tree source for the AHSs found in the Maumelle and Winona reservoirs in Little Rock, Ark. CuO oxidation yielded fewer m-DHB structures in Maumelle AHSs than in Winona AHSs. A higher 3,5-dihydroxybenzoic acid (3,5-DHBA) content correlated with increased HAA and THM formation potential. The 3,5-DHBA concentration in Winona AHSs was similar to the range found in AHSs extracted from deciduous leaf litter, twigs, and grass leachates.

  5. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.; O'Loughlin, E.

    1994-01-01

    The number- and weight-averaged molecular weights of a number of aquatic fulvic acids, a commercial humic acid, and unfractionated organic matter from four natural water samples were measured by high-pressure size exclusion chromatography (HPSEC). Molecular weights determined in this manner compared favorably with those values reported in the literature. Both recent literature values and our data indicate that these substances are smaller and less polydisperse than previously believed. Moreover, the molecular weights of the organic matter from three of the four natural water samples compared favorably to the fulvic acid samples extracted from similar environments. Bulk spectroscopic properties of the fulvic substances such as molar absorptivity at 280 nm and the E4/E6 ratio were also measured. A strong correlation was observed between molar absorptivity, total aromaticity, and the weight average molecular weights of all the humic substances. This observation suggests that bulk spectroscopic properties can be used to quickly estimate the size of humic substances and their aromatic contents. Both parameters are important with respect to understanding humic substance mobility and their propensity to react with both organic and inorganic pollutants. ?? 1994 American Chemical Society.

  6. Photogeneration of singlet oxygen by humic substances: comparison of humic substances of aquatic and terrestrial origin.

    PubMed

    Paul, Andrea; Hackbarth, Steffen; Vogt, Rolf D; Röder, Beate; Burnison, B Kent; Steinberg, Christian E W

    2004-03-01

    The singlet oxygen (1(O2)) luminescence of 27 isolated humic substances (HS), natural organic matter, ultrafiltrates, and the synthetic fulvic acid HS1500 has been investigated by time-resolved spectroscopy in buffered D(2)O. The samples include both reverse osmosis isolates from lakes in Scandinavia, Canada, and Germany, and IHSS fulvic and humic acids of aquatic and terrestrial origin. The quantum yields of 1(O2) formation (PhiDelta) obtained on laser excitation at 480 nm ranged between 0.06 (HS1500) and 2.7%(fulvic acid from soil, IHSS). In our study, a general trend towards higher PhiDelta in terrestrial HS was observed. The comparison of reverse osmosis isolates from surface waters collected during fall 1999 and spring 2000 from five Scandinavian sites yielded, in all cases, higher PhiDelta for the spring samples. For the aquatic sampling sites Hietajarvi and Birkenes, PhiDelta even exceeded values of 0.6%, which were found to be typical for terrestrial or soil water material. Investigation of the excitation wavelength dependence of PhiDelta in the spectral range 355-550 nm yielded different spectral shapes for aquatic HS and "non-aquatic" HS, respectively. On the basis of these excitation spectra, 1(O2) production rates were calculated for eight representative HS. PMID:14993944

  7. Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.R.; Danielsen, K.M.

    1997-01-01

    The binding of pyrene to a number of humic substances isolated from various aquatic sources and a commercial humic acid was measured using the solubility enhancement method. The humic materials used in this study were characterized by various spectroscopic and liquid chromatography methods. A strong correlation was observed between the pyrene binding coefficient, K(doc), and the molecular weights, molar absorptivities at 280 nm, and aromaticity of the aquatic humic substances. Binding of pyrene to the commercial humic acid, however, was significantly stronger and did not obey the relationships observed between K(doc) and the chemical properties of the aquatic humic substrates. These results suggest that the molecular weight and the aromatic content of the humic substrates exert influences on the binding of nonpolar and planar aromatic molecules and that the physicochemical properties of both humic materials and organic solutes are important in controlling the speciation of nonpolar organic contaminants in natural waters.

  8. XANES studies of oxidation states of sulfur in aquatic and soil humic substances

    SciTech Connect

    Xia, K.; Weesner, F.; Bleam, W.F.; Helmke, P.A.; Bloom, P.R.; Skyllberg, U.L.

    1998-09-01

    Sulfur K-edge x-ray absorption near-edge structure spectroscopy (XANES) was used to identify multiple organic S oxidation states in aquatic and soil humic substances. The XANES results suggest that S in humic substances exists in four major oxidation groups similar to sulfate ester, sulfonate, sulfoxide, and thiol-sulfide. Thiol S cannot be separated from sulfide X and must be considered as a single thiol-sulfide peak. The second derivative spectra suggest the existence of thiophene and sulfone S. The relative quantities of each major S form in humic samples were estimated based on the integrated cross section of each s {r_arrow} p transition peak corresponding to different S oxidation states in the S K-edge XANES spectra. The XANES results of the four humic samples used in this study appear to reflect the environmental settings where the humic substances originally formed. The percentage of the most reduced organic S (thiol-sulfide and possibly thiophene) in humic substances follows the sequence:aquatic samples > organic soil sample > mineral soil sample. The percentage of most oxidized S (sulfate group) was the greatest in the humic substance from a mineral soil and the lowest in the aquatic humic substances.

  9. Order of functionality loss during photodegradation of aquatic humic substances

    USGS Publications Warehouse

    Thorn, Kevin A.; Younger, Steven J.; Cox, Larry G.

    2009-01-01

    The time course photodegradation of the Nordic aquatic fulvic and humic acids and Suwannee River XAD-4 acids subjected to UV irradiation with an unfiltered medium pressure mercury lamp was studied by liquid-state 13C nuclear magnetic resonance. Photodecarboxylation was a significant pathway in all cases. Decreases in ketone, aromatic, and O-alkyl carbons were observed throughout the course of the irradiations, whereas C-alkyl carbons resisted photodegradation. Peaks attributable to the low-molecular-weight photodegradation products bicarbonate, formate, acetate, and succinate grew in intensity with irradiation time. The final products of the irradiations were decarboxylated, hydrophobic, predominantly C-alkyl and O-alkyl materials that were resistant to further photodegradation. The total amount of carbon susceptible to loss appeared to be related mainly to the total concentration of carbonyl and aromatic carbons and partly to the concentration of O-alkyl carbons in the fulvic, humic, and XAD-4 acids. The carbon losses for Nordic fulvic, Nordic Humic, Suwannee fulvic, and Suwannee XAD-4 acids were estimated to be 75, 63, 56, and 17%, respectively. More detailed analyses of the effects of irradiation on the carbonyl functionality in Nordic humic acid and Laurentian soil fulvic acid through reaction with hydroxylamine in conjunction with 15N nuclear magnetic resonance analysis confirmed preferential photodegradation of the quinone/hydroquinone functionality over ketone groups and the loss of ester groups in Laurentian fulvic acid.

  10. Reconnaissance samplings and characterization of aquatic humic substances at the Yuma Desalting Test Facility, Arizona

    USGS Publications Warehouse

    Malcolm, R.L.; Wershaw, R. L.; Thurman, E.M.; Aiken, G.R.; Pinckney, D.J.; Kaakinen, J.

    1981-01-01

    Smectite clay minerals were found to be the principal compound on the surface of the cellulose-acetate, reverse-osmosis membranes at the Yuma Desalting Test Facility. These clay minerals were not present in the pumped ground water, but were blown into the conveyance canal from adjacent soils. Humic substances from the water and suspended sediments were associated with the clay films on the membrane, but no definitive results concerning their role in fouling were achieved. Microbial fouling is believed to be only a minor aspect of membrane fouling. Chemical and physical changes in humic substances were extensively studied at four points in the water-treatment process. Humic substances accounted for the largest component (over 25 percent) of organic constituents. Humic substances in the canal source water were similar to other aquatic humic substances present in natural waters. During the treatment process, these substances are brominated and decolorized. The effect of these halogenated humic substances on membrane fouling is unclear, but their presence in the reverse-osmosis product water and reverse-osmosis reject brine, along with volatile trihalomethanes, has led to environmental concerns. (USGS)

  11. Effects of molecular weight on the diffusion coefficient of aquatic dissolved organic matter and humic substances.

    PubMed

    Balch, J; Guéguen, C

    2015-01-01

    In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (∼500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments. PMID:25112575

  12. Presence and potential significance of aromatic-ketone groups in aquatic humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wilson, M.A.; Malcolm, R.L.

    1987-01-01

    Aquatic humic- and fulvic-acid standards of the International Humic Substances Society were characterized, with emphasis on carbonyl-group nature and content, by carbon-13 nuclear-magnetic-resonance spectroscopy, proton nuclear-magnetic-resonance spectroscopy, and infrared spectroscopy. After comparing spectral results of underivatized humic and fulvic acids with spectral results of chemically modified derivatives, that allow improved observation of the carbonyl group, the data clearly indicated that aromatic ketone groups comprised the majority of the carbonyl-group content. About one ketone group per monocyclic aromatic ring was determined for both humic and fulvic acids. Aromatic-ketone groups were hypothesized to form by photolytic rearrangements and oxidation of phenolic ester and hydrocarbon precursors; these groups have potential significance regarding haloform formation in water, reactivity resulting from active hydrogen of the methyl and methylene adjacent to the ketone groups, and formation of hemiketal and lactol structures. Aromatic-ketone groups also may be the point of attachment between aliphatic and aromatic moieties of aquatic humic-substance structure. ?? 1987.

  13. Comparison of structural features of dissolved organic matter isolated from rainwater with those of aquatic humic substances

    NASA Astrophysics Data System (ADS)

    Santos, P.; Santos, E.; Duarte, A.

    2012-04-01

    The complexity of rainwater dissolved organic matter (DOM), a large percentage of which remains uncharacterized, has made difficult to determine the role of rainwater DOM in regional and global carbon budgets. Recent studies have focused on determining the structural characteristics of the bulk DOM in rainwater, reporting the prevalence of DOM with characteristics resembling those of natural humic substances due to its polyacidic nature. However, it is important to investigate the structural features of humic-like DOM isolated from rainwater and to evaluate whether such features differ from those found in aquatic humic substances, namely in what concerns the relative content of aliphacity and aromaticity. In this work, rainwater samples were collected for about one year, in Aveiro (Portugal). Humic-like DOM was extracted from rainwater by a procedure based on adsorption onto DAX-8 resin. The International Humic Substance Society (IHSS) (http://www.ihss.gatech.edu) operationally defined dissolved humic substances (HSs) on the base of adsorption onto a XAD-8 like resin. The isolation and extraction procedure adopted in the present work for the extraction of DOM from rainwater was slightly modified from the procedure recommended by the IHSS as suggested by Santos et al. (2009). Then, humic-like DOM isolated from rainwater was analysed by 1H NMR spectroscopy. Due to the small amounts of DOM extracted from rainwater, the DOM fractions extracted from rainwater samples were combined for each sampling season, and the 1H NMR results were compared between seasons and also with spectra of aquatic humic substances from available literature. Similar structural characteristics were observed for extracted DOM from the different seasons: high content of aliphatic structures, of hydroxy and alkoxy groups, of carbonyl groups and unsaturated carbon atoms, and low content in aromatic structures when compared with aliphatic structures. Moreover, results suggest that the DOM extracted

  14. AQUATIC HUMIC SUBSTANCES AS SOURCES AND SINKS OF PHOTOCHEMICALLY PRODUCED TRANSIENT REACTIONS

    EPA Science Inventory

    In sunlit surface waters, aquatic humics and nitrate act as sensitizers or precursors for the production of photoreactants such as singlet oxygen, humic-derived peroxy radicals, hydrogen peroxide, and solvated electrons. ifetimes of the various reactants are controlled by their r...

  15. AQUATIC HUMIC SUBSTANCES AS SOURCES AND SINKS OF PHOTOCHEMICALLY PRODUCED TRANSIENT REACTANTS

    EPA Science Inventory

    In sunlit surface waters, aquatic humics and nitrate act as sensitzers or precursors for the production of photoreactants such as singlet oxygen, humic-derived peroxy radicals, hydrogen peroxide, and solvated electrons. ifetimes of the various reactants are controlled by their re...

  16. Reaction of vanadate with aquatic humic substances: An ESR and {sup 51}V NMR study

    SciTech Connect

    Lu, Xi.; Johnson, W.D.; Hook, J.

    1998-08-01

    Electron spin resonance (ESR) spectroscopy and {sup 51}V nuclear magnetic resonance (NMR) spectroscopy have been used to study the interaction of vanadate with aqueous solutions of humic substances (HS) at different pH values and at different concentrations. Under acidic pH conditions, ESR spectra show that humic substances reduce vanadium(V) to vanadium(IV) without further reduction to vanadium(III). The reduced vanadium(IV) ion is bound to oxygen donor atoms, probably at carboxylic acid sites in the humic substances. {sup 51}V NMR spectra show that the VO{sub 2}{sup +} cation is immediately reduced and that the decavanadate cation decomposes to the VO{sub 2}{sup +} cation prior to reduction. The overall rate of reduction depends on both concentration and pH. There is no reduction above pH 6, which suggests that the standard reduction potential of humic substances is about +0.65 V. Near pH 7, vanadate is stabilized by binding to humic substances. As the concentration of humic substances increases, the total vanadium NMR signal intensity decreases. This is due to the quadrupolar nature of the {sup 51}V nucleus that, when bound to humic substances, is invisible in NMR measurements. Quantitative models applied to intensity changes show that the vanadate monomer forms HS0V(V) complexes. The formation equilibrium constant is estimated to be 108 M{sup {minus}1}. At pH above 9, NMR signals appear at {minus}623.6 and at {minus}763.2 ppm when humic substances are added to vanadate solution. The intensities of the signals increase with increasing pH and with increasing concentration of humic substances. These signals appear to be associated with peroxyvanadate anions, which are not bound to humic substances.

  17. Factors to be considered in the isolation and characterization of aquatic humic substances

    NASA Astrophysics Data System (ADS)

    Malcolm, Ronald L.

    A detailed procedure using XAD-8 resin is presented for the isolation of dissolved fulvic acids and humic acids from water. The procedure entails pressure filtration to remove suspended sediment, sorption of humic substances onto XAD-8 resin at pH 2, desorption of humic substances in base, fulvic/humic separation at pH 1, desalting on XAD-8 resin, hydrogen saturation on cation exchange resin, and freeze-drying. Careful attention must be given to thorough resin cleaning and many procedural details in order to obtain relatively ash-free humic isolates. The equipment required for the procedure is expensive and the method is time consuming, but no other isolation method is known to produce quantitative and unaltered humic isolates from water. The procedure can be used to isolate small quantities (less than 100 mg) of humic substances from water, or it can be scaled to produce large quantities (100 g or more) of humic substances from water. Humic substances may be characterized by several methods. The more useful traditional characterization methods include elemental analysis, ash content, functional group analysis by titration and infrared spectroscopy, and molecular weight analysis. The new characterization methods of 1H-NMR, 13C-NMR, pyrolysis/mass spectroscopy, amino acid analysis, saccharide analysis, and carbon isotopic analysis (14C and 13C content) are usually more definitive than traditional characterizations.

  18. Membrane filtration studies of aquatic humic substances and their metal species: a concise overview Part 1. Analytical fractionation by means of sequential-stage ultrafiltration.

    PubMed

    Burba, P; Aster, B; Nifant'eva, T; Shkinev, V; Spivakov, B Y

    1998-03-01

    A concise overview (75 references) of the analytical fractionation of aquatic humic substances using sequential-stage ultrafiltration is presented. First, humic substances in aquatic environments and actual problems connected with their fractionation and analysis are briefly considered. The molecular size classification of dissolved humic substances by means of multistage ultrafiltration, with special emphasis on on-line techniques, is the focal point of the discussion. In particular, the capabilities of ultrafiltration for the size fractionation and characterization of species formed between colloidal humic substances and pollutants (e.g. metals) are stressed. PMID:18967087

  19. Binding of mercury(II) to aquatic humic substances: Influence of pH and source of humic substances

    USGS Publications Warehouse

    Haitzer, M.; Aiken, G.R.; Ryan, J.N.

    2003-01-01

    Conditional distribution coefficients (KDOM???) for Hg(II) binding to seven dissolved organic matter (DOM) isolates were measured at environmentally relevant ratios of Hg(II) to DOM. The results show that KDOM??? values for different types of samples (humic acids, fulvic acids, hydrophobic acids) isolated from diverse aquatic environments were all within 1 order of magnitude (1022.5??1.0-1023.5??1.0 L kg-1), suggesting similar Hg(II) binding environments, presumably involving thiol groups, for the different isolates. KDOM??? values decreased at low pHs (4) compared to values at pH 7, indicating proton competition for the strong Hg(II) binding sites. Chemical modeling of Hg(II)-DOM binding at different pH values was consistent with bidentate binding of Hg(II) by one thiol group (pKa = 10.3) and one other group (pKa = 6.3) in the DOM, which is in agreement with recent results on the structure of Hg(II)-DOM bonds obtained by extended X-ray absorption fine structure spectroscopy (EXAFS).

  20. Chitosan nanoparticles loaded the herbicide paraquat: the influence of the aquatic humic substances on the colloidal stability and toxicity.

    PubMed

    Grillo, Renato; Clemente, Zaira; de Oliveira, Jhones Luis; Campos, Estefânia Vangelie Ramos; Chalupe, Victor C; Jonsson, Claudio M; de Lima, Renata; Sanches, Gabriela; Nishisaka, Caroline S; Rosa, André H; Oehlke, Kathleen; Greiner, Ralf; Fraceto, Leonardo F

    2015-04-01

    Polymeric nanoparticles have been developed for several applications, among them as carrier system of pesticides. However, few studies have investigated the fate of these materials in the environment in relation to colloidal stability and toxicity. In nature, humic substances are the main agents responsible for complexation with metals and organic compounds, as well as responsible for the dynamics of these nanoparticles in aquatic and terrestrial environments. In this context, the evaluation of the influence of aquatic humic substances (AHS) on the colloidal stability and toxicity of polymeric nanoparticles of chitosan/tripolyphosphate with or without paraquat was performed. In this study, the nanoparticles were prepared by the ionic gelation method and characterized by size distribution measurements (DLS and NTA), zeta potential, infrared and fluorescence spectroscopy. Allium cepa genotoxicity studies and ecotoxicity assays with the alga Pseudokirchneriella subcapitata were used to investigate the effect of aquatic humic substances (AHS) on the toxicity of this delivery system. No changes were observed in the physical-chemical stability of the nanoparticles due to the presence of AHS using DLS and NTA techniques. However some evidence of interaction between the nanoparticles and AHS was observed by infrared and fluorescence spectroscopies. The ecotoxicity and genotoxicity assays showed that humic substances can decrease the toxic effects of nanoparticles containing paraquat. These results are interesting because they are important for understanding the interaction of these nanostructured carrier systems with species present in aquatic ecosystems such as humic substances, and in this way, opening new perspectives for studies on the dynamics of these carrier systems in the ecosystem. PMID:25636059

  1. Interaction of arsenic species with tropical river aquatic humic substances enriched with aluminum and iron.

    PubMed

    de Oliveira, Lilian Karla; Melo, Camila de Almeida; Fraceto, Leonardo Fernandes; Friese, Kurt; Rosa, André Henrique

    2016-04-01

    The mobility and bioavailability of arsenic (As) are strongly controlled by adsorption/precipitation processes involving metal oxides. However, the organic matter present in the environment, in combination with these oxides, can also play an important role in the cycle of arsenic. This work concerns the interaction between As and two samples of aquatic humic substances (AHS) from tropical rivers. The AHS were extracted as proposed by IHSS, and were characterized by (13)C NMR. The experiments were conducted with the AHS in natura and enriched with metal cations, with different concentrations of As, and complexation capacity was evaluated at three different pH levels (5.0, 7.0, and 9.0). The AHS samples showed similar chemical compositions. The results suggested that there was no interaction between As(III) and AHS in natura or enriched with Al. Low concentrations of As(V) were bound to AHS in natura. For As(III), the complexation capacity of the AHS enriched with Fe was approximately 48 μmol per g of C, while the values for As(V) were in the range 69-80 μmol per grams of C. Fluorescence spectra showed that changes in Eh affected the complexation reactions of As(V) species with AHS. PMID:26606934

  2. Analytical fractionation of aquatic humic substances and their metal species by means of multistage ultrafiltration.

    PubMed

    Aster, B; Burba, P; Broekaert, J A

    1996-03-01

    The molecular-size fractionation of aquatic humic substances (HS) and their metal species by means of a novel sequential-stage ultrafiltration (UF) device equipped with five appropriate ultramembranes (1, 5, 10, 50 and 100 kD) is described. First of all, the concentration dynamics of macromolecules, particulary HS, during five-stage UF and its subsequent washing step has been modelled. Based on these results, the fractionation of aquatic HS (from ground and bog water) by means of multistage UF has been optimized for an analytical scale (10 ml sample, 1 mg/ml HS, 10 ml washing solution, pH 6.0). The molecular size-distribution of selected aquatic HS (BOC 1/2 from the "DFG-Versuchsfeld Bocholt", VM 5 from "Venner Moor", Germany) studied by five-stage UF exhibited strong systematic influences of the procedure used for their isolation. The molecular-size distribution of HS obtained by on-line UF and gel permeation chromatography (GPC) showed a satisfactory agreement in the range 1-50 kD. Moreover, when interrupting multistage UF for > 48 h a slow transformation in the HS samples has been found as gradually additional HS fractions of < 1 kD have been formed. Besides unloaded HS molecules, the molecular-size distribution of freshly formed metal species of HS (1.0 mg metal/g HS of Al(III), Cd(II), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), Zn(II), each) has been characterized by multistage UF as a function of pH-value, degree of loading and complexation time. Metal determinations as carried out by flame AAS, showed that considerable metal fractions in HS especially are present in molecules > 50 kD, which seemed to be rather acid-inert. With complexation times of < 2 days a transient shift of the molecular size distribution of both HS and their metal species (e.g., Al(III), Fe(III) to higher values (> 10 kD) has been found. PMID:15067480

  3. Quantification of carbohydrate structures in size fractionated aquatic humic substances by two-dimensional nuclear magnetic resonance.

    PubMed

    Haiber, S; Herzog, H; Burba, P; Gosciniak, B; Lambert, J

    2001-03-01

    Two-dimensional phase sensitive C,H correlation spectra were successfully applied to the quantification of carbohydrate substructures in aquatic humic substance (HS) fractions obtained by tangential flow multistage ultrafiltration (TFMSTUF) of a selected bog water HS (HO13, German Research Program DFG-ROSIG) as well as a river HS (Suwannee River Fulvic Acid Reference of the International Humic Substances Society, IHSS). It turns out that after size fractionation the HS samples give very well resolved C,H-correlation spectra which offer a great potential for substructure quantification. Details of the combined substructure quantification technique, novel in HS characterization, are presented. The results of the combined procedure point out that carbohydrate moieties predominantly occur in higher molecular mass fractions (> 10 kDa) of isolated HS. PMID:11270229

  4. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  5. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    USGS Publications Warehouse

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  6. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    SciTech Connect

    Thorn, Kevin A.; Cox, Larry G.

    2009-02-28

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS ¹⁵N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by ¹⁵N NMR. Liquid state ¹⁵N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (¹H–¹⁵N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  7. Probing the pH dependent optical properties of aquatic, terrestrial and microbial humic substances by sodium borohydride reduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemically reducing humic (HA) and fulvic acids (FA) provides insight into spectroscopically identifiable structural moieties generating the optical properties of HA/FA from aquatic, microbial and terrestrial sources. Sodium borohydride reduction provides targeted reduction of carbonyl groups. The...

  8. Characterization of typical aquatic humic substances in areas of sugarcane cultivation in Brazil using tetramethylammonium hydroxide thermochemolysis.

    PubMed

    Tadini, A M; Constantino, I C; Nuzzo, A; Spaccini, R; Piccolo, A; Moreira, A B; Bisinoti, M C

    2015-06-15

    Aquatic humic substances (AHSs) differ from one environment to another depending on land use and occupation. In addition, the effects of planting sugarcane on AHSs are not well known. Thus, the aim of this study was to characterize AHSs extracted from a river in a typical region of sugarcane cultivation during dry and rainy seasons. The main characteristics of the AHSs were obtained using Fourier transformation infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and off-line pyrolysis coupled with gas chromatography and mass spectrometry (off-line tetramethylammonium hydroxide (TMAH)-GC-MS-thermochemolysis). The FTIR and NMR results were used to infer that no distinctions occurred between the sampling periods. The samples were composed of aromatic groups that were potentially associated with the presence of residual vegetable materials (lignin). The results of the off-line TMAH-GC-MS-thermochemolysis indicated that the structures of the AHSs had uniform compositions that were rich in fatty acid methyl esters (FAMEs), polysaccharide derivatives, aliphatic biopolymers derived from plants, long hydrocarbon chains, branched alkyl groups and methylene carbons. Thus, the results showed that the AHSs obtained from the sugarcane cultivation area during the crop period mainly consisted of resistant aliphatic hydrocarbons, which are derivatives of lignin and FAMEs in compounds rich in humic acid. Therefore, we concluded that sugarcane cultivation produces changes in AHSs because greater amounts of lignin derivatives were observed during the dry season, corresponding to sugarcane cultivation. PMID:25756675

  9. Sources and haloacetic acid/trihalomethane formation potentials of aquatic humic substances in the Wakarusa River and Clinton Lake near Lawrence, Kansas

    USGS Publications Warehouse

    Pomes, M.L.; Larive, C.K.; Thurman, E.M.; Green, W.R.; Orem, W.H.; Rostad, C.E.; Coplen, T.B.; Cutak, B.J.; Dixon, A.M.

    2000-01-01

    Gram quantities of aquatic humic substances (AHS) were extracted from the Wakarusa River-Clinton Lake Reservoir system, near Lawrence, KS, to support nuclear magnetic resonance (NMR) experimental studies, report concentrations of dissolved organic carbon (DOC) and AHS, define sources of the AHS, and determine if the AHS yield sufficient quantities of haloacetic acids (HAA5) and trihalomethanes (THM4) that exceed U.S. Environmental Protection Agency (EPA) Maximum Contaminant Levels (MCL) in drinking water. AHS from the Wakarusa River and Clinton Lake originated from riparian forest vegetation, reflected respective effects of soil organic matter and aquatic algal/bacterial sources, and bore evidence of biological degradation and photodegradation. AHS from the Wakarusa River showed the effect of terrestrial sources, whereas Clinton Lake humicacid also reflected aquatic algal/bacterial sources. Greater amounts of carbon attributable to tannin-derived chemical structures may correspond with higher HAA5 and THM4 yields for Clinton Lake fulvic acid. Prior to appreciable leaf-fall from deciduous trees, the combined (humic and fulvic acid) THM4 formation potentials for the Wakarusa River approached the proposed EPA THM4 Stage I MCL of 80 ??g/L, and the combined THM4 formation potential for Clinton Lake slightly exceeded the proposed THM4 Stage II MCL of 40 ??g/L. Finally, AHS from Clinton Lake could account for most (>70%) of the THM4 concentrations in finished water from the Clinton Lake Water Treatment Plant based on September 23, 1996, THM4 results.Gram quantities of aquatic humic substances (AHS) were extracted from the Wakarusa River-Clinton Lake Reservoir system, near Lawrence, KS, to support nuclear magnetic resonance (NMR) experimental studies, report concentrations of dissolved organic carbon (DOC) and AHS, define sources of the AHS, and determine if the AHS yield sufficient quantities of haloacetic acids (HAA5) and trihalomethanes (THM4) that exceed U

  10. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels.

    PubMed

    Wang, Zhuang; Quik, Joris T K; Song, Lan; Van Den Brandhof, Evert-Jan; Wouterse, Marja; Peijnenburg, Willie J G M

    2015-06-01

    The present study investigated how humic substances (HS) modify the aquatic toxicity of silver nanoparticles (AgNPs) as these particles agglomerate in water and interact with HS. An alga species (Raphidocelis subcapitata), a cladoceran species (Chydorus sphaericus), and a freshwater fish larva (Danio rerio), representing organisms of different trophic levels, were exposed to colloids of the polyvinylpyrrolidone-coated AgNPs in the presence and absence of HS. Results show that the presence of HS alleviated the aquatic toxicity of the AgNP colloids to all the organisms in a dose-dependent manner. The particle size distribution of the AgNPs' colloidal particles shifted to lower values due to the presence of HS, implying that the decrease in the toxicity of the AgNP colloids cannot be explained by the variation of agglomeration size. The surface charge of the AgNPs was found to be more negative in the presence of high concentrations of HS, suggesting an electrostatic barrier by which HS might limit interactions between particles and algae cells; indeed, this effect reduced the algae toxicity. Observations on silver ions (Ag(+)) release show that HS inhibit AgNP dissolution, depending on the concentrations of HS. When toxic effects were expressed as a function of each Ag-species, toxicity of the free Ag(+) was found to be much higher than that of the agglomerated particles. PMID:25683234

  11. HUMIC SUBSTANCES AND CONTAMINANT TRANSPORT

    EPA Science Inventory

    Humic substances are widely distributed in the environment, occurring in soils and waters. hey are the products of microbial degradation of dead vegetable and animal matter. hey account for the major portion of dissolved organic matter. hey are water soluble and have the ability ...

  12. Investigations on the conditional kinetic and thermodynamic stability of aquatic humic substance-metal complexes by means of EDTA exchange, ultrafiltration and atomic spectrometry.

    PubMed

    Van den Bergh, J; Jakubowski, B; Burba, P

    2001-09-13

    The conditional metal availability and the kinetic stability of humic substance-metal species in humic-rich waters (e.g. bog water) was characterized by means of EDTA exchange. For this purpose a combined procedure consisting of time-controlled ligand exchange by EDTA, species differentiation by a fast single-stage tangential-flow ultrafiltration (TF-UF) technique (cut-off 1 kDa) and sensitive atomic spectrometry methods (e.g. AAS, ICP-OES, TXRF) was developed. The kinetics and the yield of the EDTA exchange served as operational parameters for assessing the kinetic stability and EDTA availability of HS-metal species, respectively. Considerable fractions of natural HS-metal species studied were shown to be EDTA-inert (e.g. 31% of the total Fe, 44% of the total Al) even after long reaction times (48 h), in contrast to artificial ones formed in solutions of isolated HS. Moreover, the conditional thermodynamic stability of HS-metal complexes formed by successive loading of an aquatic reference HS (HO14) with a number of heavy metal ions (e.g. Cr(III), Cu(II), Fe(III), Mn(II), Zn(II)) was also evaluated discriminating the free metal concentrations by means of TF-UF. In addition, from the loading isotherms obtained conditional complexation capacities could be derived for the studied HS exhibiting the order Fe(III)>Cu(II)>Cr(III)>Co(II)>Mn(II). PMID:18968404

  13. Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction

    SciTech Connect

    Mobed, J.J.; Hemmingsen, S.L.; Autry, J.L.; Mcgown, L.B.

    1996-10-01

    Total luminescence spectroscopy was applied to the fluorescence characterization of humic substances obtained from the International Humic Substances Society (IHSS). Results show that total luminescence spectra, represented as excitation-emission matrices (EEMs), may be used to discriminate between soil-derived and aquatic-derived IHSS humic substances and between humic and fulvic acids derived from the same source (soil or aquatic). Ionic strength in the range of 0-1 M KCl and humic substance concentration in the range 5-100 mg/L had little effect on the fluorescence spectral characteristics of the humic substances, while pH had significant effects as expected. Absorbance correction was shown to be essential for accurate representation and comparison of the EEMs of the humic substances at high concentrations. 16 refs., 5 figs., 3 tabs.

  14. The interaction of humic substances with cationic polyelectrolytes.

    PubMed

    Kam, S K; Gregory, J

    2001-10-01

    The anionic charge carried by aquatic humic substances plays a major part in their interaction with metal ions and other cationic species. Removal of such substances by coagulation and flocculation can be, at least partly, determined by charge neutralisation. In this work, the charge densities of a commercial humic acid and an aquatic humic extract have been investigated by studying their interactions with a series of synthetic cationic polyelectrolytes. These covered a range of charge densities and molecular weights. The techniques used were colloid titration by spectrophotometry and streaming current detection, and flocculation determined by colour removal and by an optical monitoring method. For a given cationic polyelectrolyte, all four methods gave charge densities for humic substances which were in good agreement. However, systematic differences in the apparent humic charge density were found, depending on the charge density of the cationic polyelectrolyte used. With low charge density polyelectrolytes, the apparent anionic charge of the humic substances was found to be low. With higher polyelectrolyte charge densities, the apparent humic substance charge density increases and reaches a limiting value when the polyelectrolyte charge is greater than about 3 meq/g. This indicates a non-stoichiometric interaction between the anionic sites of the humic substances and the cationic charges of the low-charge polyelectrolytes. Optimum flocculation of humics occurred with less cationic charge in the case of low-charge polyelectrolytes than those with higher charge density. However, the degree of removal was considerably better in the latter case. In all cases, the molecular weight of the cationic polyelectrolytes (over a range from about 50,000 to 15 million) appeared to have no effect on the results. PMID:11561615

  15. Characterization of aquatic humic substances and their metal complexes by immobilized metal-chelate affinity chromatography on iron(III)-loaded ion exchangers.

    PubMed

    Burba, P; Jakubowski, B; Kuckuk, R; Küllmer, K; Heumann, K G

    2000-12-01

    The analytical fractionation of aquatic humic substances (HS) by means of immobilized metal-chelate affinity chromatography (IMAC) on metal-loaded chelating ion exchangers is described. The cellulose HYPHAN, loaded with different trivalent ions, and the chelate exchanger Chelex 100, loaded to 90% of its capacity with Fe(III), were used. The cellulose HYPHAN, loaded with 2% Fe(III), resulted in HS distribution coefficients Kd of up to 10(3.7) mL/g at pH 4.0 continuously decreasing down to 10(1.5) at pH 12, which were appropriate for HS fractionation by a pH-depending chromatographic procedure. Similar distribution coefficients Kd were obtained for HS sorption onto Fe(III)-loaded Chelex 100. On the basis of Fe-loaded HYPHAN both, a low-pressure and high-pressure IMAC technique, were developed for the fractionation of dissolved HS applying a buffer-based pH gradient for their gradual elution between pH 4.0 and 12.0. By coupling the Chelex 100 column under high-pressure conditions with an inductively coupled plasma mass spectrometer an on-line characterization of HS metal species could be achieved. Using these fractionation procedures a number of reference HS were characterized. Accordingly, the HA (humic acids) and FA (fulvic acids) studied could be discriminated into up to 6 fractions by applying cellulose HYPHAN, significantly differing in their Cu(II) complexation capacity but hardly in their substructures assessed by conventional FTIR. In the case of using Chelex 100 exchanger resin two major UV active HS fractions were obtained, which significantly differ in their complexation properties for Cu(II) and Pb(II), respectively. PMID:11227549

  16. Changes in optical properties caused by UV-irradiation of aquatic humic substances from the amazon river basin: seasonal variability evaluation.

    PubMed

    Rodríguez-Zúñiga, Ursula Fabiola; Milori, Débora Marcondes Bastos Pereira; da Silva, Wilson Tadeu Lopes; Martin-Neto, Ladislau; Oliveira, Luciana Camargo; Rocha, Julio Cesar

    2008-03-15

    Aquatic humic substances (AHS) isolated from two characteristic seasons of the Negro river, winter and summer corresponding to floody and dry periods, were structurally characterized by 13C nuclear magnetic ressonance. Subsequently, AHS aqueous solutions were irradiated with a polychromatic lamp (290-475 nm) and monitored by its total organic carbon (TOC) content, ultraviolet-visible (UV-vis) absorbance, fluorescence, and Fourier transformed infrared spectroscopy (FTIR). As a result, a photobleaching up to 80% after irradiation of 48 h was observed. Conformational rearrangements and formation of low molecular complexity structures were formed during the irradiation, as deduced from the pH decrement and the fluorescence shifting to lower wavelengths. Additionally a significant mineralization with the formation of CO2, CO, and inorganic carbon compounds was registered, as assumed by TOC losses of up to 70%. The differences in photodegradation between samples expressed by photobleaching efficiency were enhanced in the summer sample and related to its elevated aromatic content. Aromatic structures are assumed to have high autosensitization capacity effects mediated by the free radical generation from quinone and phenolic moieties. PMID:18409619

  17. Application of a membrane model to the sorptive interactions of humic substances.

    PubMed Central

    Wershaw, R L

    1989-01-01

    Humic substances, the dark-colored, natural organic polyelectrolytes that are found in practically all soils, sediments, and natural water, strongly interact with both inorganic and organic pollutants. Inorganic cationic species generally undergo complexation reactions with humic substances. The binding of cations, such as cupric ions, by humic substances often markedly reduces their toxicity to aquatic organisms. Some inorganic anionic species, in the presence of metal ions, are sorbed by humic substances. In these instances the metal ions appear to form bridges between the humic substances and the anions. Several different types of interactions take place between organic compounds and humic materials. Hydrophobic organic species partition into either insoluble or soluble humic substances. The insoluble humic substances will remove hydrophobic organic compounds from the aqueous phase, thereby rendering them less mobile. However, soluble humic substances will solubilize hydrophobic organics, increasing their mobility. Other types of interactions between humic substances and organic compounds, such as adsorption and ion exchange, also have been observed. These various interactions between humic substances and pollutants are important in governing their fate and movement in natural water systems, and, for this reason, a detailed understanding of the mechanisms of the interaction is important. A recently developed membrane model of the structure of humic substances is described; this model enables one to better understand the physical-chemical properties of these materials. Images FIGURE 2. FIGURE 3. PMID:2533555

  18. **1**5N-NMR INVESTIGATION OF HYDROXYLAMINE DERIVATIZED HUMIC SUBSTANCES.

    USGS Publications Warehouse

    Thorn, Kevin A.; Arterburn, Jeffrey B.; Mikita, Michael A.

    1986-01-01

    Humic substances are the most abundant naturally occurring refactory organic compounds in soils and water. They have a broad range of physical, chemical and physiological properties. In soils, humic substances contribute to the cation exchange capacity, help maintain the physical structure, and play a role in plant growth and nutrition. In aquatic systems, humic substances serve to regulate the levels of inorganic constituents, yield trihalomethanes upon chlorination, and transport or concentrate organic and inorganic pollutants. The oxygen containing functional groups of humic and fulvic acids are believed to play a key role in the chemical properties of humic substances. This study was undertaken to gain additional information on the specific types of oxygen functionalities in humic substances. Since the analysis of hydroxyl moieties had been earlier established, we focused our attention on the analysis of ketone and aldehyde functional groups in humic substances.

  19. Complexing of metal ions by humic substances

    SciTech Connect

    Bryan, N.D.; Zhang, Y.; Jones, M.N.

    1995-12-31

    The interaction of metal ions with humic substances is being studied using two different techniques. UV-scanning ultracentrifugation is being used to determine molecular weights and to investigate changes in aggregation brought about by metal ion complexation. The relationship between cation charge and conformation of the humic ligands is also being investigated. The complexation of actinide elements (U, Np, Pu, Am) by humic substances from soils contaminated by both natural processes and by low-level effluent releases is also being studied. Gel permeation chromatography has been used to show both that different fractions of humic substances vary greatly in their effectiveness as ligands and that different actinide elements associate with different fractions. These studies have also shown that uranium desorption is kinetically controlled by humic substances.

  20. Application of a membrane model to the sorptive interactions of humic substances

    SciTech Connect

    Wershaw, R.L. )

    1989-11-01

    Humic substances, the dark-colored, natural organic polyelectrolytes that are found in practically all soils, sediments, and natural water, strongly interact with both inorganic and organic pollutants. Inorganic cationic species generally undergo complexation reactions with humic substances. The binding of cations, such as cupric ions, by humic substances often markedly reduces their toxicity to aquatic organisms. Some inorganic anionic species, in the presence of metal ions, are sorbed by humic substances. In these instances the metal ions appear to form bridges between the humic substances and the anions. Several different types of interactions take place between organic compounds and humic materials. Hydrophobic organic species partition into either insoluble or soluble humic substances. The insoluble humic substances will remove hydrophobic organic compounds from the aqueous phase, thereby rendering them less mobile. However, soluble humic substances will solubilize hydrophobic organics, increasing their mobility. These various interactions between humic substances and pollutants are important in governing their fate and movement in natural water systems, and, for this reason, a detailed understanding of the mechanisms of the interaction is important. A recently developed membrane model of the structure of humic substances is described.

  1. Molecular aggregation of humic substances

    USGS Publications Warehouse

    Wershaw, R. L.

    1999-01-01

    Humic substances (HS) form molecular aggregates in solution and on mineral surfaces. Elucidation of the mechanism of formation of these aggregates is important for an understanding of the interactions of HS in soils arid natural waters. The HS are formed mainly by enzymatic depolymerization and oxidation of plant biopolymers. These reactions transform the aromatic and lipid plant components into amphiphilic molecules, that is, molecules that consist of separate hydrophobic (nonpolar) and hydrophilic (polar) parts. The nonpolar parts of the molecules are composed of relatively unaltered segments of plant polymers and the polar parts of carboxylic acid groups. These amphiphiles form membrane-like aggregates on mineral surfaces and micelle-like aggregates in solution. The exterior surfaces of these aggregates are hydrophilic, and the interiors constitute separate hydrophobic liquid-like phases.

  2. Photochemical aspects related to humic substances

    SciTech Connect

    Frimmel, F.H. )

    1994-01-01

    Dissolved humic substances (HS) show yellow color and relatively strong absorption in the UV range [a(254 nm) ca. 0.04 cm[sup [minus]1] for c(DOC) = 1 mg/L]. This is the basis for photochemical reactions in the photic zone of aquatic systems and in water treatment using IV sources. Even though understanding the mechanisms involved in the energy transfer and the resulting reactions is hampered by the poorly defined structure of HS, reliable information has been gathered on some typical aspects of their photochemistry. The luminescence of HS can be influenced and partly quenched by molecular interactions with other water constituents (e.g., heavy metals and organic micropollutants). The presence of oxygen may lead to the sensitized production of singlet oxygen (O[sub 2]), that can react specifically with substances containing diene structures or low valent sulfur. Because of the presence of these structures in HS, humic molecules will also react with the sensitized products. As a consequence, their biological, chemical, and physical properties are influenced. In addition, HS have a significant impact on the photochemical treatment of organic micropollutants in water. This has to be kept in mind when using photochemical steps for water treatment. The results from model experiments reflecting the conditions in surface water and in water treatment are given and discussed. In the presence of H[sub 2]O[sub 2], irradiation led to a transformation and partial degradation of HS. The rate of photochemical degradation of pesticides (e.g., atrazine) was decreased in the presence of HS. Fe and Mn quenched the luminescence. From this, a decrease of excited states of HS for sensitizing reactions can be deduced. The results suggest the manyfold and significant influences of HS on the photochemistry of aquatic systems. 66 refs., 9 figs., 7 tabs.

  3. COMPARISON OF PHOTOCHEMICAL BEHAVIOR OF VARIOUS HUMIC SUBSTANCES IN WATER: III. SPECTROSCOPIC PROPERTIES OF HUMIC SUBSTANCES

    EPA Science Inventory

    Spectral absorption coefficients and fluorescence quantum efficiencies were determined for humic substances from a variety of sources. Specific absorption coefficients, K(h), for humic substances at wavelengths lambda from 300 to 500 nm can be closely described by the relation Ae...

  4. Humic substance formation during wastewater infiltration

    SciTech Connect

    Siegrist, R.L. ); Hildmann-Smed, R.; Filip, Z.K. , Langen . Inst. fuer Wasser-, Boden- und Lufthygiene); Jenssen, P.D. . Centre for Soil and Environmental Research)

    1991-01-01

    Soil infiltration of wastewater effluents is a widely practiced method of treatment and disposal/reuse throughout the world. Renovation of the wastewater results from a wide variety of complex physicochemical and biological processes. One set of processes is speculated to involve the accumulation of organic matter by filtration and sorption followed by formation of humic substances. This humic substance formation can effect the performance of soil treatment systems by contributing to soil pore clogging and reduction in hydraulic capacity, and by yielding reactive substances and an enhancement of purification processes. While there has been a wealth of research into the nature and genesis of humic substances in terrestrial environments, there has been limited research of humic substance formation during soil infiltration of wastewater. The purpose of the research reported herein was to determine if humic substances can form under conditions typical of those present during wastewater infiltration into natural soil systems. This work was conducted during 1989 to 1990 as a collaborative effort between the Centre for Soil and Environmental Research, located in Aas, Norway and the Institute for Water, Soil and Air Hygiene located in Langen, West Germany. 11 refs., 3 figs., 6 tabs.

  5. EFFECTS OF ALUMINUM-INDUCED AGGREGATION ON THE FLUORESCENCE OF HUMIC SUBSTANCES. (R822251)

    EPA Science Inventory

    Aluminum-induced aggregates of terrestrial and aquatic humic acid standards from the International Humic Substances Society are shown to be fluorescent by means of a multiwavelength fluorescence anisotropy experiment in which the data was treated with a model for nonspherical ...

  6. Lanthanide--humic substances complexation. II. Calibration of humic ion-binding model V.

    PubMed

    Sonke, Jeroen E

    2006-12-15

    The experimental complexation of the lanthanides (Sc, Y, and rare earth elements) with Suwannee river fulvic acid, Leonardite coal humic acid, and Elliot soil humic acid is described with Humic Ion-Binding Model V. The fitted intrinsic equilibrium constants for metal-proton exchange, pKMHA, for Eu3+ are similar to previously published experimental fits, and linear free energy relationship (LFER) estimated values. The experimentally observed lanthanide contraction effect in REE-humic complex stability is reflected in the gradual decrease in pKMHA from La to Lu. In Model V, a decrease in pKMHA from La to Lu indicates an increase in complex stability. Fitted pKMHA values for heavy REE are lower than those estimated by LFERs. Consequently, REE fractionation by humic substances complexation could be more pronounced than previously thought. Recommended pKMHA values for lanthanide-fulvic and -humic acid complexation are derived by superimposing the fitted trends in pKMHA for all REE, i.e., the decrease in pKMHA from La to Lu, on the average Eu pKMHA value for all literature datasets. These results will allow modeling assessments of organic matter induced REE fractionation in aquatic environments, taking into account changes in pH, ionic strength, and ion competition. A simulation of dissolved REE speciation in an average world river suggests that organic matter outcompetes carbonate complexation, even under alkaline conditions. PMID:17256484

  7. On the nature of humic substances

    NASA Astrophysics Data System (ADS)

    Fedotov, G. N.; Shoba, S. A.

    2015-12-01

    It is argued that the isolation of low-molecular-weight compounds from humic substances does not prove their supramolecular nature, because small molecules can be sorbed on macromolecules by interacting with them due to noncovalent bonds. The relative mobility of molecular segments in humic substances has been proposed to be used as a criterion for the discrimination between the humic substances of supraand macromolecular nature. The macromolecules are characterized by mobility of their segments, whereas supramolecular systems have stiff structure. This difference between macroand supramolecules results in different behaviors of the matrices (gels) formed from them in the processes of segregation. In the macromolecules, the formations of a new phase appearing at the segregation (microphase separation) are of nano size, at least in one dimension. They are incapable of moving within the matrix and form a well-known, limited set of systems. In the supramolecular matrices, the new-phase formations should have higher mobility and ability to move within the matrix with the formation of particles and zones of not only nano, but also micro sizes, as well as a significantly larger set of systems, including fractal configurations. The experimental electron microscopic study of the humic matrices of soil gels shows that the new-phase formations in the matrix of humic substances have not only nano, but also micro sizes and are capable of moving within the matrix, which confirms the supramolecular nature of humic substances. The proposed method has allowed generalizing the supraand macromolecular approaches, because macromolecules can enter into the composition of supramolecular systems. It is no less important that the behavior of HSs can be perceived as the behavior of stiff impenetrable particles that may compose the structures of different types and sizes.

  8. MEASUREMENTS OF BINDING SITE CONCENTRATIONS IN HUMIC SUBSTANCES

    EPA Science Inventory

    The use of thermodynamic models to calculate the effects of humic substances on metal speciation requires that the complexation capacity (CC) of the humic substance be determined. If the CC of a humic substance is viewed as a compositional rather than a thermodynamic property, th...

  9. Involvement of humic substances in regrowth.

    PubMed

    Camper, Anne K

    2004-05-01

    There appear to be interactions in the distribution system that complicate the ability to use AOC/BDOC as an independent assessment of regrowth potential. Two such complications are the limitation of the assays themselves and the potential interaction between the organic carbon concentration with the presence of disinfectants and pipe materials. To address these interactions, a series of experiments spanning several years have been conducted in model distribution systems at the Center for Biofilm Engineering (CBE) using soil-derived humics. When compared to easily utilized organics, humic substances supported the same order of magnitude of biofilm organisms. As carbon concentration was increased from 500 to 1000 to 2000 ppb, there was no increase in growth rate of the organisms, suggesting zero-order kinetics. If the system was chlorinated, there was less biomass, but growth rates were higher. In the presence of corrosion products, humic-fed systems supported more organisms than a control system fed biologically treated water. When free chlorine was maintained at a residual of about 0.2 mg/l, biofilm numbers on the surfaces were reduced. Phosphate alone did not result in fewer bacteria, while a combination of chorine and phosphate had the best results (lowest biofilm numbers). Adjustment to pH 9 was not effective. Recently completed work compared increasing levels of humic substances in the presence of free chlorine and monochloramine on biofilm growth on a number of surfaces (PVC, epoxy, cement, ductile iron). As the concentration of humic substances was increased from 0, 0.5 to 2 mg/l, there was an increase in biofilm numbers on all surfaces. This effect was the most pronounced on iron surfaces. These results illustrate that carbon compounds not measured by the BDOC or AOC tests may profoundly influence biofilm numbers. In addition, iron surfaces are at much higher risk for elevated biofilm counts in the presence of humic substances, even if disinfection is

  10. Radiocarbon of dissolved humic substances in river waters from the Chernobyl area

    NASA Astrophysics Data System (ADS)

    Nagao, Seiya; Aramaki, Takafumi; Fujitake, Nobuhide; Matsunaga, Takeshi; Tkachenko, Yuri

    2004-08-01

    Radiocarbon (14C) was used to study the origin and transport of aquatic humic substances in river waters at the Chernobyl area, which received a pulse input of 14C as a consequence of the nuclear accident. Water samples were collected in April 1999 from the Pripyat and Sakhan Rivers, which flow through the radioactive contaminated area (30 km exclusion zone). The Δ14C values of humic and fulvic acids ranged from -68‰ to +75‰ and were ∼400‰ lower than those of non-contaminated environments. The aquatic humic substances may be derived mainly from those of bog, peat, and podzolic soil with older 14C age, and thereby reflect a larger proportion of older groundwater humic substances. Contribution of 14C by the Chernobyl accident appears to be small because of the long residence time of organic carbon at the surface soil.

  11. Identifying trends for understanding the role of humic substances in the environmental behavior of radionuclides

    SciTech Connect

    Czerwinski, K.R.; Buckau, G.

    1999-07-01

    Humic substances are expected to have a major role in the environmental speciation of radionuclides. If the speciation of the radionuclide humic complex can be adequately modeled, predictions of its fate and transport may be possible. Additionally, humic substances have been shown to adsorb to a variety of mineral surfaces. The humic coated surfaces also interact with aqueous radionuclides, complicating environmental behavior. Studies indicate the importance of pH, ionic strength, and humic substance concentration in understanding the impact of humic substances on radionuclide speciation. However, values obtained to describe complexation or sorption vary and are difficult to compare and incorporate into existing geochemical codes due to variations in humic complexation models or concepts. This obscures intercomparison and the utility of the resulting values. This work shows results based on different concepts can be evaluated with the charge neutralization model, yielding similar stability constant values. The consistent stability constants found with the charge neutralization model can be used for intercomparison and identification of behavioral trends. A speciation calculation of a contaminated site using identified trends between humic and fulvic acid are given. The results yield good agreement between calculation and environmental observations. Laboratory experiments validate the identified trend. Comparisons between aquatic and sorb humic acid are presented and similarities useful for modeling are given.

  12. Effects of humic substances on the bioconcentration of polycyclic aromatic hydrocarbons: Correlations with spectroscopic and chemical properties of humic substances

    SciTech Connect

    Haitzer, M.; Abbt-Braun, G.; Traunspurger, W.; Steinberg, C.E.W.

    1999-12-01

    The presence of dissolved humic substances (HS, fulvic and humic acids) generally reduces the uptake of hydrophobic organic compounds into aquatic organisms. The extent of this effect depends both on the concentration and on the origin of the HS. The aim of this study was to investigate the role of qualitative differences between HS from different origins. The effects of seven different HS on the bioconcentration of pyrene and benzo[a]pyrene (BaP) in the nematode Caenorhabditis elegans were related to the spectroscopic and chemical properties of the HS. The effect of each humic material on the bioconcentration of pyrene or BaP was quantified as a biologically determined partition coefficient K{sub DOC}. The authors observed significant linear relationships between K{sub DOC} and the atomic H/C ratio, the specific absorptivity at 254 nm, the content of aromatic carbons as determined by {sup 13}C nuclear magnetic resonance spectroscopy, the copper-complexing capacity, the content of phenolic OH groups, and the molecular weight of the HS. There was no discernible relationship of K{sub DOC} with the atomic (N + O)/C ratio, an indicator of the polarity of HS. Taken together, their results show that the variability in the effects of HS from different origins could be related to variations in bulk properties of the HS. Parameters describing the aromaticity of the humic materials seemed to be most useful for estimating effects of HS on the bioconcentration of pyrene and BaP.

  13. Effects of humic substances on the bioconcentration of polycyclic aromatic hydrocarbons: Correlations with spectroscopic and chemical properties of humic substances

    USGS Publications Warehouse

    Haitzer, M.; Abbt-Braun, G.; Traunspurger, W.; Steinberg, C.E.W.

    1999-01-01

    The presence of dissolved humic substances (HS, fulvic and humic acids) generally reduces the uptake of hydrophobic organic compounds into aquatic organisms. The extent of this effect depends both on the concentration and on the origin of the HS. The aim of this study was to investigate the role of qualitative differences between HS from different origins. The effects of seven different HS on the bioconcentration of pyrene and benzo[a]pyrene (BaP) in the nematode Caenorhabditis elegans were related to the spectroscopic and chemical properties of the HS. The effect of each humic material on the bioconcentration of pyrene or BaP was quantified as a 'biologically determined' partition coefficient K(DOC). We observed significant linear relationships between K(DOC) and the atomic H/C ratio, the specific absorptivity at 254 nm, the content of aromatic carbons (as determined by 13C nuclear magnetic resonance spectroscopy, the copper-complexing capacity, the content of phenolic OH groups, and the molecular weight of the HS. There was no discernible relationship of K(DOC) with the atomic (N + O)/C ratio, an indicator of the polarity of HS. Taken together, our results show that the variability in the effects of HS from different origins could be related to variations in bulk properties of the HS. Parameters describing the aromaticity of the humic materials seemed to be most useful for estimating effects of HS on the bioconcentration of pyrene and BaP.

  14. Effects of extracellular polymeric and humic substances on chlorpyrifos bioavailability to Chironomus riparius.

    PubMed

    Lundqvist, Anna; Bertilsson, Stefan; Goedkoop, Willem

    2010-04-01

    The role of sediment organic matter quality and quantity for chlorpyrifos bioavailability was studied in experiments with Chironomus riparius larvae and with four types of organic matter; (1) commercially available extracellular polymeric substances (EPS), (2) EPS produced by sediment microbes, (3) commercially available humic substances and, (4) humic substances extracted from a boreal lake. The effects of each type of organic matter were assessed at three concentrations. We used a (14)C-tracer approach to quantify uptake of chlorpyrifos in the larvae, and the partitioning of the insecticide within the microcosm. Carbon-normalised larval uptake was reduced both by EPS and humic substances. However, the reduction in uptake was much greater for EPS than for humic substances: uptake was reduced by 94 and 88% for commercial and complex EPS, and by 59 and 57% for commercial and complex humic substances, respectively. We also found differences in chlorpyrifos uptake, and sediment concentrations between treatments with commercially available and complex polymers, suggesting that minor differences in the quality of relatively simple organic molecules can affect contaminant behaviour in ecotoxicological studies. Passive uptake in dead controls was 40% of that in living larvae. Therefore, both passive and digestive uptake were important processes for chlorpyrifos uptake by larvae. Our results show that both EPS and humic substances affect chlorpyrifos bioavailability to sediment biota negatively and contribute to the understanding of the processes that regulate organic contaminant bioavailability in aquatic environments. PMID:19851864

  15. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments

    NASA Astrophysics Data System (ADS)

    Klüpfel, Laura; Piepenbrock, Annette; Kappler, Andreas; Sander, Michael

    2014-03-01

    Humic substances form through the degradation of microbial and plant precursors, and make up a significant fraction of natural organic matter in terrestrial and aquatic environments. Humic substances are redox-active and can act as terminal electron acceptors in anaerobic microbial respiration. Reduced humic substances may become re-oxidized during aeration of temporarily anoxic systems, such as wetlands, sediments and many soils. If the transfer of electrons from anaerobic respiration through humic substances to oxygen is sustained over many redox cycles, it may competitively suppress electron transfer to carbon dioxide, and thereby lower the formation of methane in temporarily anoxic systems. Here, we monitor changes in the redox states of four chemically distinct dissolved humic substances over successive cycles of reduction by the bacterium Shewanella oneidensis MR-1 and oxidation by oxygen, in a series of laboratory experiments. We show that electron transfer to and from these substances is fully reversible and sustainable over successive redox cycles. We suggest that redox cycling of humic substances may largely suppress methane production in temporarily anoxic systems.

  16. Tritium Enrichment in the Hydration Sphere of Humic Substances

    SciTech Connect

    Wierczinski, Birgit; Muellen, Guenther; Tuerler, Andreas

    2005-07-15

    Humic and fulvic acid can be combined under the term 'humic substances' and are natural substances with a complex structure. The structural details are not known, however, due to the functional groups present in these compounds the formation of hydrogen bonds is easily attained. Several humic substances were investigated for their potential use as compounds, which are applicable for tritium enrichment from aqueous solution. For comparison a simple compound, malonic acid, representing only few functional groups was investigated. The experiments were performed using a cryosublimation apparatus, which was run well below equilibrium vapor pressure to avoid any isotope fractionation of HTO and H{sub 2}O. A higher enrichment factor was found for natural humic acid compared to fulvic acid, however, no enrichment could be found for a synthetic humic acid and malonic acid. Interpretation of the results is difficult since no detailed information on the chemical structure of humic substances is known.

  17. Effects of aluminum-induced aggregation on the fluorescence of humic substances

    SciTech Connect

    Sharpless, C.M.; McGown, L.B.

    1999-09-15

    Aluminum-induced aggregates of terrestrial and aquatic humic acid standards from the International Humic Substances Society are shown to be fluorescent by means of a multiwavelength fluorescence anisotropy experiment in which the data were treated with a model for nonspherical particles. While aggregates of aquatic humic acids appear in the fluorescence signal at both short and long excitation wavelengths, aggregates of terrestrial humic acids are detected only at the long Wavelength. Furthermore, the results indicate that emission obtained at longer excitation wavelengths is representative of smaller particles. At pH 4, the aquatic humic acids appear to exist in an extended conformation, whereas the terrestrial humic acids show less extension. The size and shape of the fluorescent particles display a complex dependence on Al concentration. Both enhancement and quenching of fluorescence are observed in the total luminescence spectra upon Al addition. However, quenching is shown to be the result of decreased humic acid concentration due to precipitation by Al rather than photophysical processes.

  18. Effect of humic substances on the flotation response of coal

    SciTech Connect

    Lai, R.W.; Wen, W.W. ); Okoh, J.M. )

    1989-01-01

    This study investigated the generation of humic substances from the coal and the coal surface, and evaluated the effect of humic substances on the surface property of coal. The humic substances in aqueous solution were readily adsorbed on the surface of fresh coal. The adsorption affects the surface hydrophobicity of the coal and, hence, the flotation recovery of coal. The adsorption of humic substances is maximum at neutral pH and diminishes toward both the alkaline pH and the acid pH. This effect is reflected in the flotation responses of the fresh coal. Solutions of humic substances were oxidized with oxygen gas and ozone. The oxidation of humic substances in solution resulted in an adsorption that greatly enhanced the hydrophilicity of the coal and thus impaired the floatability of the coal. On the other hand, the ozonation of humic substances in solution resulted in the decomposition of humic substances and an improvement in the flotation response of the coal. Direct oxidation and ozonation of coal surface decreased the hydrophobicity of the coal, which resulted in a decrease in the flotation response.

  19. The influence of structural features of marine humic substances on the accumulation rates of cadmium by a blue mussel Mytilus edulis

    SciTech Connect

    Pempkowiak, J.; Kozuch, J. ); Southon, T. )

    1994-01-01

    Laboratory experiments revealed that both concentration and origin of humic substances (HS) influence the accumulation rates of cadmium by the blue mussel Mytilus edulis. In the concentration of humic substances typical of seawater, the increase is about 60% and 100%, respectively, for aquatic and sedimentary humic substances. The phenomenon was attributed to the stimulation of cadmium uptake due to complexing properties of the substances toward cadmium. Complexing capacity of sedimentary humic substances was found to be 0.57 [mu]g/mg HS, that of aquatic substances 0.41 [mu]g/mg HS. Cross Polarization Magic Angle Spinning (CP/MAS) [sup 13]C NMR of the investigated humic substances revealed differences in the spectra at about 175, 100, 55 and 32 ppm. This was attributed to the varying content of oxygen containing functional groups involved in formation of complexes with metal ions. 8 refs., 4 figs., 3 tabs.

  20. CHEMICAL REACTIONS OF AQUATIC HUMIC MATERIALS WITH SELECTED OXIDANTS

    EPA Science Inventory

    A study was conducted to identify the specific organic reaction products of natural aquatic humic materials with selected oxidants (KMnO4, HOCl, Cl02, O3 and monochloramine). Reaction products were identified by GC/MS after solvent extraction and derivatization. The two most reac...

  1. Humic substances biological activity at the plant-soil interface

    PubMed Central

    Trevisan, Sara; Francioso, Ornella; Nardi, Serenella

    2010-01-01

    Humic substances (HS) represent the organic material mainly widespread in nature. HS have positive effects on plant physiology by improving soil structure and fertility and by influencing nutrient uptake and root architecture. The biochemical and molecular mechanisms underlying these events are only partially known. HS have been shown to contain auxin and an “auxin-like” activity of humic substances has been proposed, but support to this hypothesis is fragmentary. In this review article, we are giving an overview of available data concerning molecular structures and biological activities of humic substances, with special emphasis on their hormone-like activities. PMID:20495384

  2. Molecular structure in soil humic substances: The new view

    SciTech Connect

    Sutton, Rebecca; Sposito, Garrison

    2005-04-21

    A critical examination of published data obtained primarily from recent nuclear magnetic resonance spectroscopy, X-ray absorption near-edge structure spectroscopy, electrospray ionization-mass spectrometry, and pyrolysis studies reveals an evolving new view of the molecular structure of soil humic substances. According to the new view, humic substances are collections of diverse, relatively low molecular mass components forming dynamic associations stabilized by hydrophobic interactions and hydrogen bonds. These associations are capable of organizing into micellar structures in suitable aqueous environments. Humic components display contrasting molecular motional behavior and may be spatially segregated on a scale of nanometers. Within this new structural context, these components comprise any molecules intimately associated with a humic substance, such that they cannot be separated effectively by chemical or physical methods. Thus biomolecules strongly bound within humic fractions are by definition humic components, a conclusion that necessarily calls into question key biogeochemical pathways traditionally thought to be required for the formation of humic substances. Further research is needed to elucidate the intermolecular interactions that link humic components into supramolecular associations and to establish the pathways by which these associations emerge from the degradation of organic litter.

  3. CAPILLARY ELECTROPHORESIS FOR THE CHARACTERIZATION OF HUMIC SUBSTANCES

    EPA Science Inventory

    The potential of high performance capillary electrophoresis (HPCE), especially in the free solution mode (FSCE), is demonstrated for the analysis/characterization of environmental humic substances (HUS). he very high efficiency of HPCE separations allows the production of electro...

  4. A unifying model of cation binding by humic substances

    SciTech Connect

    Tipping, E.; Hurley, M.A. )

    1992-10-01

    Humic substances (humic and fulvic acids) are recognized to interact extensively with cations in natural waters and soils, with important effects on chemical speciation. There have been numerous laboratory studies of the interactions-reviewed by Boggs et al. (1985), Buffle (1988) and Sposito (1986)-and these have yielded a considerable body of quantitative binding data. However, the information is difficult to apply to natural systems because of the lack of a suitable model that can take into account competition effects among cations, including protons, and the influence of ionic strength. Another problem, at least in principle, is that the humic samples studied have come from a variety of sources and, therefore, may be intrinsically different in their ion-binding properties. The purpose of the work described here was to formulate a model of ion-binding by humic substances that could be used over a range of conditions, and to obtain parameters by analyzing published data on proton-humic and metal-humic interactions. The study aims to place available data into a unifying framework in order to rationalize present knowledge and aid the iterative processes of further experimentation and consequent model improvement. In this study, the authors concentrate on data for fulvic-type material, but the model (Model V) is applicable to all humic substances.

  5. Humic substances enhance chlorothalonil phototransformation via photoreduction and energy transfer.

    PubMed

    Porras, Jazmín; Fernández, Jhon J; Torres-Palma, Ricardo A; Richard, Claire

    2014-02-18

    The photodegradation of chlorothalonil, a polychlorinated aromatic fungicide widely used in agriculture, was investigated under ultraviolet-visible irradiation in the presence and absence of different humic substances that significantly enhance the chlorothalonil phototransformation. On the basis of a kinetic model, an analytical study, the effect of scavengers, the chlorothalonil phosphorescence measurement, and varying irradiation conditions, it was possible to demonstrate that this accelerating effect is due to their capacity to reduce the chlorothalonil triplet state via H-donor reaction and to energy transfer from the triplet humic to ground state chlorothalonil. Energy transfer occurs at wavelengths below 450 nm and accounts for up to 30% of the reaction in deoxygenated medium upon irradiation with polychromatic light (300-450 nm). This process is more important with Elliott humic and fulvic acids and with humic acids extracted from natural carbonaceous material than with Nordic NOM and Pahokee peat humic acids. The obtained results are of high relevance to understanding the processes involved in chlorothalonil phototransformation and the photoreactivity of humic substances. Chlorothalonil is one of the rare molecules shown to react by energy transfer from excited humic substances. PMID:24455968

  6. The impact of humic acid on chromium phytoextraction by aquatic macrophyte Lemna minor.

    PubMed

    Kalčíková, Gabriela; Zupančič, Marija; Jemec, Anita; Gotvajn, Andreja Žgajnar

    2016-03-01

    Studies assessing chromium phytoextration from natural waters rarely consider potential implications of chromium speciation in the presence of ubiquitous humic substances. Therefore, the present study investigated the influence of environmentally relevant concentration of humic acid (TOC = 10 mg L(-1)) on chromium speciation (Cr = 0.15 mg L(-1)) and consequently on phytoextraction by aquatic macrophyte duckweed Lemna minor. In absence of humic acid, only hexavalent chromium was present in water samples and easily taken up by L. minor. Chromium uptake resulted in a significant reduction of growth rate by 22% and decrease of chlorophyll a and chlorophyll b contents by 48% and 43%, respectively. On the other hand, presence of humic acid significantly reduced chromium bioavailability (57% Cr uptake decrease) and consequently it did not cause any measurable effect to duckweed. Such effect was related to abiotic reduction of hexavalent chromium species to trivalent. Hence, findings of our study suggest that presence of humic acid and chromium speciation cannot be neglected during phytoextraction studies. PMID:26766370

  7. Mechanisms of humic substances degradation by fungi

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Hadar, Y.; Grinhut, T.

    2012-04-01

    Humic substances (HS) are formed by secondary synthesis reactions (humification) during the decay process and transformation of biomolecules originating from plants and other dead organisms. In nature, HS are extremely resistant to biological degradation. Thus, these substances are major components in the C cycle and in the biosphere and therefore, the understanding of the process leading to their formation and transformation and degradation is vital. Fungi active in the decomposition process of HS include mainly ascomycetes and basidiomycetes that are common in the upper layer of forest and grassland soils. Many basidiomycetes belong to the white-rot fungi (WRF) and litter-decomposing fungi (LDF). These fungi are considered to be the most efficient lignin degraders due to their nonspecific oxidizing enzymes: manganese peroxidase (MnP), lignin peroxidase (LiP) and laccase. Although bacteria dominate compost and participate in the turnover of HS, their ability to degrade stable macromolecules such as lignin and HS is limited. The overall objectives of this research were to corroborate biodegradation processes of HS by WRF. The specific objectives were: (i) To isolate, identify and characterize HS degrading WRF from biosolids (BS) compost; (ii) To study the biodegradation process of three types of HS, which differ in their structure, by WRF isolated from BS compost; and (iii) To investigate the mechanisms of HA degradation by WRF using two main approaches: (a) Study the physical and chemical analyses of the organic compounds obtained from direct fungal degradation of HA as well as elucidation of the relevant enzymatic reactions; and (b) Study the enzymatic and biochemical mechanisms involved during HA degradation. In order to study the capability of fungi to degrade HS, seventy fungal strains were isolated from biosolids (BS) compost. Two of the most active fungal species were identified based on rDNA sequences and designated Trametes sp. M23 and Phanerochaetesp., Y6

  8. Humic substances as a mediator for microbially catalyzed metal reduction

    USGS Publications Warehouse

    Lovley, D.R.; Fraga, J.L.; Blunt-Harris, E. L.; Hayes, L.A.; Phillips, E.J.P.; Coates, J.D.

    1998-01-01

    The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides was investigated. The Fe(III)-reducing microorganism Geobacter metallireducens conserved energy to support growth from electron transport to humics as evidenced by continued oxidation of acetate to carbon dioxide after as many as nine transfers in a medium with acetate as the electron donor and soil humic acids as the electron acceptor. Growth of G. metallireducens with poorly crystalline Fe(III) oxide as the electron acceptor was greatly stimulated by the addition of as little as 100 ??M of the humics analog, anthraquinone-2,6-disulfonate. Other quinones investigated, including lawsone, menadione, and anthraquinone-2-sulfonate, also stimulated Fe(III) oxide reduction. A wide phylogenetic diversity of microorganisms capable of Fe(III) reduction were also able to transfer electrons to humics. Microorganisms which can not reduce Fe(III) could not reduce humics. Humics stimulated the reduction of structural Fe(III) in clay and the crystalline Fe(III) forms, goethite and hematite. These results demonstrate that electron shuttling between Fe(III)-reducing microorganisms and Fe(III) via humics not only accelerates the microbial reduction of poorly crystalline Fe(III) oxide, but also can facilitate the reduction of Fe(III) forms that are not typically reduced by microorganisms in the absence of humics. Addition of humic substances to enhance electron shuttling between Fe(III)-reducing microorganisms and Fe(III) oxides may be a useful strategy to stimulate the remediation of soils and sediments contaminated with organic or metal pollutants.

  9. Humic substances interfere with detection of pathogenic prion protein

    USGS Publications Warehouse

    Smith, Christen B.; Booth, Clarissa J.; Wadzinski, Tyler J.; Legname, Giuseppe; Chappell, Rick; Johnson, Christopher J.; Pedersen, Joel A.

    2014-01-01

    Studies examining the persistence of prions (the etiological agent of transmissible spongiform encephalopathies) in soil require accurate quantification of pathogenic prion protein (PrPTSE) extracted from or in the presence of soil particles. Here, we demonstrate that natural organic matter (NOM) in soil impacts PrPTSE detection by immunoblotting. Methods commonly used to extract PrPTSE from soils release substantial amounts of NOM, and NOM inhibited PrPTSE immunoblot signal. The degree of immunoblot interference increased with increasing NOM concentration and decreasing NOM polarity. Humic substances affected immunoblot detection of prion protein from both deer and hamsters. We also establish that after interaction with humic acid, PrPTSE remains infectious to hamsters inoculated intracerebrally, and humic acid appeared to slow disease progression. These results provide evidence for interactions between PrPTSE and humic substances that influence both accurate measurement of PrPTSE in soil and disease transmission.

  10. Amino acid composition of humic substances in tundra soils

    NASA Astrophysics Data System (ADS)

    Vasilevich, R. S.; Beznosikov, V. A.

    2015-06-01

    Peripheral amino acid fragments of humic and fulvic acid molecules from tundra soils have been identified and quantified. A significant weight fraction of amino acids has been found in humic acid preparations, which exceeds their content in fulvic acids. Features of the amino acid composition of humic substances along the soil profile and depending on the degree of hydromorphism and the proportions of different (neutral, basic, acidic, cyclic) groups in amino acids have been revealed. The molar ratio between the hydroxy and heterocyclic amino acids reflects the degree of humification of the soil.

  11. Immobilized humic substances and immobilized aggregates of humic substances as sorbent for solid phase extraction.

    PubMed

    Erny, Guillaume L; Gonçalves, Bruna M; Esteves, Valdemar I

    2013-09-01

    In this work, humic substances (HS) immobilized, as a thin layer or as aggregates, on silica gel were tested as material for solid phase extraction. Some triazines (simazine, atrazine, therbutylazine, atrazine-desethyl-desisopropyl-2-hydroxy, ametryn and terbutryn), have been selected as test analytes due to their environmental importance and to span a large range of solubility and octanol/water partition coefficient (logP). The sorbent was obtained immobilizing a thin layer of HS via physisorption on a pre-coated silica gel with a cationic polymer (polybrene). While the sorbent could be used as it is, it was demonstrated that additional HS could be immobilized, via weak interactions, to form stable humic aggregates. However, while a higher quantity of HS could be immobilized, no significant differences were observed in the sorption parameters. This sorbent have been tested for solid phase extraction to concentrate triazines from aqueous matrixes. The sorbent demonstrated performances equivalent to commercial alternatives as a concentration factor between 50 and 200, depending on the type of triazines, was obtained. Moreover the low cost and the high flow rate of sample through the column allowed using high quantity of sorbent. The analytical procedure was tested with different matrixes including tap water, river water and estuarine water. PMID:23916952

  12. BDE-209: kinetic studies and effect of humic substances on photodegradation in water.

    PubMed

    Leal, J F; Esteves, V I; Santos, E B H

    2013-12-17

    BDE-209 is a brominated flame retardant and a priority contaminant, which has been found in several environmental matrices, namely, in water. To date, there are no quantum yield data for BDE-209 photodegradation by sunlight in water, to allow predicting half-life times in aquatic systems. In this work, the kinetics of BDE-209 photodegradation in water was studied and the influence of different fractions of aquatic humic substances (HS) was evaluated. Aqueous solutions of BDE-209 exposed for different periods of time to simulated sunlight were analyzed by HPLC-UV after being concentrated using dispersive liquid-liquid microextraction (DLLME) or solid-phase extraction (SPE). The photodegradation of BDE-209 in aqueous solution followed pseudo-first-order kinetics. The average quantum yield obtained of 0.010 ± 0.001 (about 20-fold lower than the quantum yield determined in ethanol) allow to predict an outdoor half-life time of 3.5 h. The photodegradation percentage of BDE-209 was not significantly affected by the XAD-4 fraction of HS, but it decreased substantially in the presence of humic and fulvic acids. Light screening by the humic substances could not explain this delay, which is probably the result of the association of the compound with the hydrophobic sites of the humic material. PMID:24245794

  13. Bromoform formation in ozonated groundwater containing bromide and humic substances

    SciTech Connect

    Cooper, W.J.; Amy, G.L.; Moore, C.A.; Zika, R.G.

    1986-01-01

    The effect of bromide ion, organic carbon concentration (natural aquatic humic substances), pH, and solar irradiation on the formation of bromoform in ozonated groundwater has been studied. The studies were conducted on four unique samples of groundwater taken from different regions of the Biscayne Aquifer in southern Florida. All other conditions being equal, increases in bromide ion concentrations resulted in increases in CHBr/sub 3/ formation. In three of the four samples, CHBr/sub 3/ formation decreased as the pH level increased from 5 to 9. The fourth sample exhibited an opposite trend whereby the CHBr/sub 3/ concentration increased with increasing pH. Bromoform concentration increased with increased O/sub 3/ concentration over an ozone dosage range of 3.4 to 6.7 mg/L. Ozonated samples placed in sunlight immediately after ozone addition showed a decrease in the formation of CHBr/sub 3/ presumably due to the photodecomposition of HOBr/OBr.

  14. FLUORESCENCE CHARACTERIZATION OF IHSS HUMIC SUBSTANCES: TOTAL LUMINESCENCE SPECTRA WITH ABSORBANCE CORRECTION. (R822251)

    EPA Science Inventory

    Total luminescence spectroscopy was applied to the fluorescence characterization of humic substances obtained from the International Humic Substances Society (IHSS). Results show that total luminescence spectra, represented as excitation-emission matrices (EEMs), may be used to d...

  15. QUANTITATIVE FOURIER TRANSFORM INFRARED SPECTROSCOPIC INVESTIGATION OF HUMIC SUBSTANCE FUNCTIONAL GROUP COMPOSITION

    EPA Science Inventory

    Infrared (IR) spectroscopy has been widely used for the structural investigation of humic substances. Although Fourier Transform Infrared (FTIR) instrumentation has been available for sometime, relatively little work with these instruments has been reported for humic substances,...

  16. TCE adsorption by GAC preloaded with humic substances

    SciTech Connect

    Kilduff, J.E.; Karanfil, T.; Weber, W.J. Jr.

    1998-05-01

    Adsorption of trichloroethylene (TCE) by activated carbon preloaded with humic and fulvic acids was studied under several conditions in completely mixed batch systems. The authors investigated how molecular weight and molecular-weight distribution of preloaded humic substances affected subsequent adsorption of TCE. The capacity of carbon to adsorb TCE was most greatly reduced in carbon that was preloaded with humic acid components having molecular weights less than about 1,400 g/mol as polystyrene sulfonate. The adsorption capacity was greatly reduced in carbon that was preloaded with whole humic mixtures in which lower molecular weights predominated. The energy distributions of adsorbent indicate that preloaded compounds preferentially occupy high-energy sites, making them inaccessible to subsequently encountered TCE.

  17. Trihalomethane formation potential of aquatic and terrestrial fulvic and humic acids: Sorption on activated carbon.

    PubMed

    Abouleish, Mohamed Y Z; Wells, Martha J M

    2015-07-15

    Humic substances (HSs) are precursors for the formation of hazardous disinfection by-products (DBPs) during chlorination of water. Various surrogate parameters have been used to investigate the generation of DBPs by HS precursors and the removal of these precursors by activated carbon treatment. Dissolved organic carbon (DOC)- and ultraviolet absorbance (UVA254)-based isotherms are commonly reported and presumed to be good predictors of the trihalomethane formation potential (THMFP). However, THMFP-based isotherms are rarely published such that the three types of parameters have not been compared directly. Batch equilibrium experiments on activated carbon were used to generate constant-initial-concentration sorption isotherms for well-characterized samples obtained from the International Humic Substances Society (IHSS). HSs representing type (fulvic acid [FA], humic acid [HA]), origin (aquatic, terrestrial), and geographical source (Nordic, Suwannee, Peat, Soil) were examined at pH6 and pH9. THMFP-based isotherms were generated and compared to determine if DOC- and UVA254-based isotherms were good predictors of the THMFP. The sorption process depended on the composition of the HSs and the chemical nature of the activated carbon, both of which were influenced by pH. Activated carbon removal of THM-precursors was pH- and HS-dependent. In some instances, the THMFP existed after UVA254 was depleted. PMID:25847173

  18. Nitrite fixation by humic substances: Nitrogen-15 nuclear magnetic resonance evidence for potential intermediates in chemodenitrification

    USGS Publications Warehouse

    Thorn, K.A.; Mikita, M.A.

    2000-01-01

    Studies have suggested that NO2/-, produced during nitrification and denitrification, can become incorporated into soil organic matter and, in one of the processes associated with chemodenitrification, react with organic matter to form trace N gases, including N2O. To gain an understanding of the nitrosation chemistry on a molecular level, soil and aquatic humic substances were reacted with 15N-labeled NaNO2, and analyzed by liquid phase 15N and 13C nuclear magnetic resonance (NMR). The International Humic Substances Society (IHSS) Pahokee peat and peat humic acid were also reacted with Na15NO2 and analyzed by solid-state 15N NMR. In Suwannee River, Armadale, and Laurentian fulvic acids, phenolic rings and activated methylene groups underwent nitrosation to form nitrosophenols (quinone monoximes) and ketoximes, respectively. The oximes underwent Beckmann rearrangements to 2??amides, and Beckmann fragmentations to nitriles. The nitriles in turn underwent hydrolysis to 1??amides. Peaks tentatively identified as imine, indophenol, or azoxybenzene nitrogens were clearly present in spectra of samples nitrosated at pH 6 but diminished at pH 3. The 15N NMR spectrum of the peat humic acid exhibited peaks corresponding with N-nitroso groups in addition to nitrosophenols, ketoximes, and secondary Beckmann reaction products. Formation of N-nitroso groups was more significant in the whole peat compared with the peat humic acid. Carbon-13 NMR analyses also indicated the occurrence of nitrosative demethoxylation in peat and soil humic acids. Reaction of 15N-NH3 fixated fulvic acid with unlabeled NO2/- resulted in nitrosative deamination of aminohydroquinone N, suggesting a previously unrecognized pathway for production of N2 gas in soils fertilized with NH3.Studies have suggested that NO2-, produced during nitrification and denitrification, can become incorporated into soil organic matter and, in one of the processes associated with chemodenitrification, react with organic

  19. Characterization of the International Humic Substances Society standard and reference fulvic and humic acids by solution state carbon-13 (13C) and hydrogen-1 (1H) nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Thorn, Kevin A.; Folan, Daniel W.; MacCarthy, Patrick

    1989-01-01

    Standard and reference samples of the International Humic Substances Society have been characterized by solution state carbon-13 and hydrogen-1 nuclear magnetic resonance (NMR) spectrometry. Samples included the Suwannee River, soil, and peat standard fulvic and humic acids, the Leonardite standard humic acid, the Nordic aquatic reference fulvic and humic acids, and the Summit Hill soil reference humic acid. Aqueous-solution carbon-13 NMR analyses included the measurement of spin-lattice relaxation times, measurement of nuclear Overhauser enhancement factors, measurement of quantitative carbon distributions, recording of attached proton test spectra, and recording of spectra under nonquantitative conditions. Distortionless enhancement by polarization transfer carbon-13 NMR spectra also were recorded on the Suwannee River fulvic acid in deuterated dimethyl sulfoxide. Hydrogen-1 NMR spectra were recorded on sodium salts of the samples in deuterium oxide. The carbon aromaticities of the samples ranged from 0.24 for the Suwannee River fulvic acid to 0.58 for the Leonardite humic acid.

  20. A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids

    USGS Publications Warehouse

    Chlou, C.T.; Kile, D.E.; Brinton, T.I.; Malcolm, R.L.; Leenheer, J.A.; MacCarthy, P.

    1987-01-01

    Water solubility enhancements of 1,1-bis(p-chloro-phenyl)-2,2,2-trichloroethane (p,p???-DDT), 2,4,5,2???,5???-pentachlorobiphenyl (2,4,5,2???,5???-PCB), and 2,4,4???-tri-chlorobiphenyl (2,4,4???-PCB) by dissolved organic matter have been studied with the following samples: (1) acidic water samples from the Suwannee River, Georgia, and the Sopchoppy River, Florida; (2) a humic extract of a nearly neutral pH water from the Calcasieu River, Louisiana; (3) commercial humic acids from the Aldrich Chemical Co. and Fluka-Tridom Chemical Corp. The calculated partition coefficients on a dissolved organic carbon basis (Kdoc) for organic solutes with water samples and aquatic humic extracts from this and earlier studies indicate that the enhancement effect varies with the molecular composition of the aquatic humic materials. The Kdoc values with water and aquatic humic samples are, however, far less than the observed Kdoc values obtained with the two commercial samples, by factors of about 4-20. In view of this finding, one should be cautious in interpreting the effects of the dissolved organic matter on solubility enhancement of organic solutes on the basis of the use of commercial humic acids.

  1. Conformational arrangement of dissolved humic substances. Influence of solution composition on association of humic molecules

    SciTech Connect

    Conte, P.; Piccolo, A.

    1999-05-15

    The characteristics and quantity of humic substances greatly affects the environmental fate of organic pollutants in soils and natural waters. The authors studied the conformational changes of humic and fulvic acids of different chemical nature by high-pressure size-exclusion chromatography (HPSEC) after dissolution in mobile phases differing in composition but constant in ionic strength. Modification of a neutral mobile phase by addition of methanol, hydrochloric acid, and acetic acid produced, in the order, a progressive decrease in molecular size. Size diminishing was shown by increasingly larger elution volumes at a refractive index detector and by concomitant reductions of peaks absorbance at a UV-vis detector. The decrease of molecular absorptivity (the phenomenon of hypochromism) proved that size reduction of dissolved humic substances was due more to disruption of an only apparent high-molecular-size arrangement into several smaller molecular associations than to coiling down of a macromolecular structure. The most significant conformational changes occurred in acidic mobile phases where hydrogen bondings formation was induced, suggesting that the large and easily disruptable humic conformation was held together predominantly by weak hydrophobic forces.

  2. Removal of humic substances from water by brown coal sorbents

    SciTech Connect

    E.V. Veprikova; A.V. Rudkovskii; M.L. Shchipko

    2007-12-15

    Brown coal sorption materials with high activity toward humic substances were prepared using a larger scale laboratory unit with a spouted-bed system. The effect of thermal treatment conditions on the sorption properties of these materials was studied. It was found that the sorption activity of the resulting samples toward humates was closely related to the limiting sorption volume of the materials with respect to benzene.

  3. Experimental evidence of incomplete fluorescence quenching of pyrene bound to humic substances: implications for Koc measurements.

    PubMed

    Shirshin, E A; Budylin, G S; Grechischeva, N Yu; Fadeev, V V; Perminova, I V

    2016-07-01

    Fluorescence quenching (FQ) is extensively used for quantitative assessment of partition coefficients (KOC) of polycyclic aromatic hydrocarbons (PAHs) to natural organic materials - humic substances (HS). The presence of bound PAHs with incompletely quenched fluorescence would lead to underestimation of the KOC values measured by this technique. The goal of this work was to prove the validity of this assumption using an original experimental setup, which implied FQ measurements upon excitation into two distinct vibronically coupled electronic states. Pyrene was used as a fluorescent probe, and aquatic fulvic acid (SRFA) and leonardite humic acid (CHP) were used as the humic materials with low and high binding affinity for pyrene, respectively. Excitation of pyrene into the forbidden (S0-S1) and allowed (S0-S2) electronic states yielded two pairs of nonidentical FQ curves. This was indicative of incomplete quenching of the bound pyrene, and the divergence of the two FQ curves was much more pronounced for CHP as compared to SRFA. The two component model of fluorescence response formation was proposed to estimate the KOC values from the data obtained. The resulting pyrene KOC value for CHP (220 ± 20) g L(-1) was a factor 3 higher compared to the KOC value determined with the use of the Stern-Volmer formalism (68 ± 2) g L(-1). At the same time for aquatic FA the difference in FQ curves was almost negligible, which enables the use of the Stern-Volmer formalism for weakly interacting HS and PAHs. PMID:27279258

  4. Interactions of dissolved humic substances with oppositely charged fluorescent dyes for tracer techniques.

    PubMed

    Hafuka, Akira; Ding, Qing; Yamamura, Hiroshi; Yamada, Koji; Satoh, Hisashi

    2015-11-15

    To investigate interactions between oppositely charged fluorescent dyes and dissolved humic substances, fluorescence quenching of fluorescein and rhodamine 6G with dissolved humic substances was performed. Binding coefficients were obtained by the Stern-Volmer equation. The fluorescence of rhodamine 6G was largely quenched by the addition of humic acid and a non-linear Stern-Volmer plot was obtained. This strong quenching may be caused by the electrostatic interaction between cationic rhodamine 6G and humic acid and strengthened by the hydrophobic repulsion. In contrast, the quenching and interactive effects of dissolved humic substances for fluorescein were relatively weak. PMID:26318652

  5. Interactions of Tc(IV) with humic substances.

    PubMed

    Boggs, Mark A; Minton, Travis; Dong, Wenming; Lomasney, Samuel; Islam, Mohammed R; Gu, Baohua; Wall, Nathalie A

    2011-04-01

    To understand the key processes affecting 99Tc mobility in the subsurface and help with the remediation of contaminated sites, the binding constants of several humic substances (humic and fulvic acids) with Tc(IV) were determined, using a solvent extraction technique. The novelty of this paper lies in the determination of the binding constants of the complexes formed with the individual species TcO(OH)+ and TcO(OH)2(0). Binding constants were found to be 6.8 and between 3.9 and 4.3, for logβ1,-1,1 and logβ1,-2,1, respectively; these values were little modified by a change of ionic strength, in most cases, between 0.1 and 1.0 M, nor were they by the nature and origin of the humic substances. Modeling calculations based on these show TcO(OH)-HA to be the predominant complex in a system containing 20 ppm HA and in the 4-6 pH range, whereas TcO(OH)2(0) and TcO(OH)2-HA are the major species, in the pH 6-8 range. PMID:21366306

  6. Formation of humic substances in weathered MSWI bottom ash.

    PubMed

    Zhang, Haixia; Shimaoka, Takayuki

    2013-01-01

    The study aimed at evaluating the humic substances (HSs) content from municipal solid waste incinerator (MSWI) bottom ash and its variation with time and the effect of temperature on HSs formation. The process suggested by IHSS was applied to extract HSs from two different bottom ash samples, and the extracted efficiency with NaOH and Na4P2O7 was compared. MSWI bottom ash samples were incubated at 37°C and 50°C for 1 year. HSs and nonhumic substances were extracted from the bottom ash sample with different incubated period by 0.1 M NaOH/Na₄P₂O₇. Results show that the rate of humic acid formation increased originally with incubation time, reached a maximum at 12th week under 37°C and at 18th week under 50°C, and then decreased with time. More humic acid in MSWI bottom ash was formed under 50°C incubated condition compared with that incubated under 37°C. Also, the elemental compositions of HSs extracted from bottom ash are reported. PMID:23844394

  7. Formation of Humic Substances in Weathered MSWI Bottom Ash

    PubMed Central

    Zhang, Haixia; Shimaoka, Takayuki

    2013-01-01

    The study aimed at evaluating the humic substances (HSs) content from municipal solid waste incinerator (MSWI) bottom ash and its variation with time and the effect of temperature on HSs formation. The process suggested by IHSS was applied to extract HSs from two different bottom ash samples, and the extracted efficiency with NaOH and Na4P2O7 was compared. MSWI bottom ash samples were incubated at 37°C and 50°C for 1 year. HSs and nonhumic substances were extracted from the bottom ash sample with different incubated period by 0.1 M NaOH/Na4P2O7. Results show that the rate of humic acid formation increased originally with incubation time, reached a maximum at 12th week under 37°C and at 18th week under 50°C, and then decreased with time. More humic acid in MSWI bottom ash was formed under 50°C incubated condition compared with that incubated under 37°C. Also, the elemental compositions of HSs extracted from bottom ash are reported. PMID:23844394

  8. Interactions of Tc(IV) with humic substances

    SciTech Connect

    Boggs, M. A.; Minton, Travis; Lomasney, Samuel; Islam, Mohammed; Dong, Wenming; Gu, Baohua; Wall, Nathalie

    2011-01-01

    To understand the key processes affecting 99Tc mobility in the subsurface and help with the remediation of contaminated sites, the binding constants of several humic substances (humic and fulvic acids) with Tc(IV) were determined, using a solvent extraction technique. The novelty of this paper lies in the determination of the binding constants of the complexes formed with the individual species TcO(OH)+ and TcO(OH)20. Binding constants were found to be 6.8 and between 3.9 and 4.3, for log 1, 1,1 and log 1,-2,1, respectively; these values were little modified by a change of ionic strength, in most cases, between 0.1 M to 1.0 M, nor were they by the nature and origin of the humic substances. Modeling calculations based on these show TcO(OH)-HA to be the predominant complex in a system containing 20 ppm HA and in the 4-6 pH range, while TcO(OH)20 and TcO(OH)2-HA are the major species, in the pH 6-8 range.

  9. Spectral and temporal luminescent properties of Eu(III) in humic substance solutions from different origins

    NASA Astrophysics Data System (ADS)

    Brevet, Julien; Claret, Francis; Reiller, Pascal E.

    2009-10-01

    Although a high heterogeneity of composition is awaited for humic substances, their complexation properties do not seem to greatly depend on their origins. The information on the difference in the structure of these complexes is scarce. To participate in the filling of this lack, a study of the spectral and temporal evolution of the Eu(III) luminescence implied in humic substance (HS) complexes is presented. Seven different extracts, namely Suwannee River fulvic acid (SRFA) and humic acid (SRHA), and Leonardite HA (LHA) from the International Humic Substances Society (USA), humic acid from Gorleben (GohyHA), and from the Kleiner Kranichsee bog (KFA, KHA) from Germany, and purified commercial Aldrich HA (PAHA), were made to contact with Eu(III). Eu(III)-HS time-resolved luminescence properties were compared with aqueous Eu 3+ at pH 5. Using an excitation wavelength of 394 nm, the typical bi-exponential luminescence decay for Eu(III)-HS complexes is common to all the samples. The components τ1 and τ2 are in the same order of magnitude for all the samples, i.e., 40 ≤ τ1 (μs) ≤ 60, and 145 ≤ τ2 (μs) ≤ 190, but significantly different. It is shown that different spectra are obtained from the different groups of samples. Terrestrial extract on the one hand, i.e. LHA/GohyHA, plus PAHA, and purely aquatic extracts on the other hand, i.e., SRFA/SRHA/KFA/KHA, induce inner coherent luminescent properties of Eu(III) within each group. The 5D 0 → 7F 2 transition exhibits the most striking differences. A slight blue shift is observed compared to aqueous Eu 3+ ( λmax = 615.4 nm), and the humic samples share almost the same λmax ≈ 614.5 nm. The main differences between the samples reside in a shoulder around λ ≈ 612.5 nm, modelled by a mixed Gaussian-Lorentzian band around λ ≈ 612 nm. SRFA shows the most intense shoulder with an intensity ratio of I612.5/ I614.7 = 1.1, KFA/KHA/SRHA share almost the same ratio I612.5/ I614.7 = 1.2-1.3, whilst the LHA

  10. Spectral and temporal luminescent properties of Eu(III) in humic substance solutions from different origins.

    PubMed

    Brevet, Julien; Claret, Francis; Reiller, Pascal E

    2009-10-01

    Although a high heterogeneity of composition is awaited for humic substances, their complexation properties do not seem to greatly depend on their origins. The information on the difference in the structure of these complexes is scarce. To participate in the filling of this lack, a study of the spectral and temporal evolution of the Eu(III) luminescence implied in humic substance (HS) complexes is presented. Seven different extracts, namely Suwannee River fulvic acid (SRFA) and humic acid (SRHA), and Leonardite HA (LHA) from the International Humic Substances Society (USA), humic acid from Gorleben (GohyHA), and from the Kleiner Kranichsee bog (KFA, KHA) from Germany, and purified commercial Aldrich HA (PAHA), were made to contact with Eu(III). Eu(III)-HS time-resolved luminescence properties were compared with aqueous Eu(3+) at pH 5. Using an excitation wavelength of 394 nm, the typical bi-exponential luminescence decay for Eu(III)-HS complexes is common to all the samples. The components tau(1) and tau(2) are in the same order of magnitude for all the samples, i.e., 40 aquatic extracts on the other hand, i.e., SRFA/SRHA/KFA/KHA, induce inner coherent luminescent properties of Eu(III) within each group. The (5)D(0) --> (7)F(2) transition exhibits the most striking differences. A slight blue shift is observed compared to aqueous Eu(3+) (lambda(max) = 615.4 nm), and the humic samples share almost the same lambda(max) approximately 614.5 nm. The main differences between the samples reside in a shoulder around lambda approximately 612.5 nm, modelled by a mixed Gaussian-Lorentzian band around lambda approximately 612 nm. SRFA shows the most intense shoulder with an intensity ratio of I(612.5)/I(614.7) = 1.1, KFA

  11. Monitoring changes in the structure and properties of humic substances following ozonation using UV-Vis, FTIR and (1)H NMR techniques.

    PubMed

    Rodríguez, Francisco J; Schlenger, Patrick; García-Valverde, María

    2016-01-15

    The main objective of this work is to conduct a comprehensive structural characterization of humic substances using the following experimental techniques: FTIR, 1H NMR and several UV–Vis parameters (Specific UV Absorbance at 254 nm or SUVA254, SUVA280, A400, the absorbance ratios A210/254, A250/365, A254/203, A254/436, A265/465, A270/400, A280/350, A465/665, the Absorbance Slope Index (ASI), the spectral slopes S275–295, S350–400 and the slope ratio SR). These UV–Vis parameters have also been correlated with key properties of humic substances such as aromaticity, molecular weight (MW) and trihalomethane formation potential (THMFP). An additional objective of this work is also to evaluate the usefulness of these techniques to monitor structural changes in humic substances produced by the ozonation treatment. Four humic substances were studied in this work: three of them were provided by the International Humic Substances Society (Suwannee River Fulvic Acid Standard: SRFA, Suwannee River Humic Acid Standard: SRHA and Nordic Reservoir Fulvic Acid Reference: NLFA) and the other one was a terrestrial humic acid widely used as a surrogate for aquatic humic substances in various studies (Aldrich Humic Acid: AHA). The UV–Vis parameters showing the best correlations with aromaticity in this study were SUVA254, SUVA280, A280/A350 ratio and A250/A364 ratio. The best correlations with molecular weight were for SUVA254, SUVA280 and A280/A350 ratio. Finally, in the case of the THMFP it was STHMFP-per mol HS the parameter showing good correlations with most of the UV–Vis parameters studied (especially with A280/A350 ratio, A265/A465 ratio and A270/A400 ratio) whereas STHMFP-per mg C showed poor correlations in most cases. On the whole, the UV–Vis parameter showing the best results was A280/A350 ratio as it showed excellent correlations for the three properties studied (aromaticity, MW and THMFP). A decrease in aromaticity following ozonation of humic substances can

  12. The influence of mechanochemical modification on prevention of toxic ability of humic acids towards phenanthrene in aquatic environment

    NASA Astrophysics Data System (ADS)

    Shekhovtsova, N. S.; Maltseva, E. V.; Glyzina, T. S.; Ovchinnikova, I. S.

    2015-11-01

    The aim of the research work is to quantify interaction between phenanthrene with modified humic acids in aquatic environment. The changes in the structure and properties of humic acids after modifications were studied with 1H NMR spectroscopy and potentiometric titration methods. Our research demonstrates that the application of thiourea as a modified agent increases the binding capacity of humic acids towards phenanthrene.

  13. The uniqueness of humic substances in each of soil, stream and marine environments

    USGS Publications Warehouse

    Malcolm, R.L.

    1990-01-01

    Definitive compositional differences are shown to exist for both fulvic acids and humic acids from soil, stream and marine environments by five different methods (1H and 13C NMR spectroscopy, 14C age and ?? 13C isotopic analyses, amino acid analyses and pyrolysis-mass spectrometry). Definitive differences are also found between fulvic acids and humic acids within each environment. These differences among humic substances from various sources are more readily discerned because the method employed for the isolation of humic substances from all environments excludes most of the non-humic components and results in more purified humic isolates from water and soils. The major compositional aspects of fulvic acids and humic acids which determine the observed characteristic differences in each environment are the amounts and compositions of saccharide, phenolic, methoxyl, aromatic, hydrocarbon, amino acid and nitrogen moieties.

  14. Atmospheric So2 Emissions Since the Late 1800s Change Organic Sulfur Forms in Humic Substance Extracts of Soils

    SciTech Connect

    Lehmann,J.; Solomon, D.; Zhao, F.; McGrath, S.

    2008-01-01

    Atmospheric SO2 emissions in the UK and globally increased 6- and 20-fold, respectively, from the mid-1800s to the 1960s resulting in increased S deposition, acid rain, and concurrent acidification of terrestrial and aquatic ecosystems. Structural analyses using synchrotron-based X-ray near-edge spectroscopy (XANES) on humic substance extracts of archived samples from the Rothamsted Park Grass Experiment reveal a significant (R2 = -0.58; P < 0.05; N = 7) shift in soil organic sulfur (S) forms, from reduced to more oxidized organic S between 1876 and 1981, even though soil total S contents remained relatively constant. Over the last 30 years, a decrease in emissions and consequent S deposition has again corresponded with a change of organic S structures of humic extractsreverting in the direction of their early industrial composition. However, the observed reversal lagged behind reductions in emissions by 19 years, which was computed using cross correlations between time series data (R2 = 0.66; P = 0.0024; N = 11). Presently, the ratio of oxidized-to-reduced organic S in humic substance extracts is nearly double that of early industrial times at identical SO2 emission loads. The significant and persistent structural changes of organic S in humic substances as a response to SO2 emissions and S deposition may have effects on recuperation of soils and surface waters from acidification.

  15. Atmospheric SO2 emissions since the late 1800s change organic sulfur forms in humic substance extracts of soils.

    PubMed

    Lehmann, Johannes; Solomon, Dawit; Zhao, Fang-Jie; McGrath, Steve P

    2008-05-15

    Atmospheric SO2 emissions in the UK and globally increased 6- and 20-fold, respectively, from the mid-1800s to the 1960s resulting in increased S deposition, acid rain, and concurrent acidification of terrestrial and aquatic ecosystems. Structural analyses using synchrotron-based X-ray near-edge spectroscopy (XANES) on humic substance extracts of archived samples from the Rothamsted Park Grass Experiment reveal a significant (R2 = -0.58; P < 0.05; N = 7) shift in soil organic sulfur (S) forms, from reduced to more oxidized organic S between 1876 and 1981, even though soil total S contents remained relatively constant. Over the last 30 years, a decrease in emissions and consequent S deposition has again corresponded with a change of organic S structures of humic extracts-reverting in the direction of their early industrial composition. However, the observed reversal lagged behind reductions in emissions by 19 years, which was computed using cross correlations between time series data (R2 = 0.66; P = 0.0024; N = 11). Presently, the ratio of oxidized-to-reduced organic S in humic substance extracts is nearly double that of early industrial times at identical SO2 emission loads. The significant and persistent structural changes of organic S in humic substances as a response to SO2 emissions and S deposition may have effects on recuperation of soils and surface waters from acidification. PMID:18546688

  16. Effect of soil invertebrates on the formation of humic substances under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Frouz, J.; Li, X.; Brune, A.; Pizl, V.; Abakumov, E. V.

    2011-08-01

    The complete polymerization of phenols and proteins (one of the processes involved in the formation of humic substances) was explained. It was shown that fly ( Bibio marci) larvae and earthworms ( Aporrectodea caliginosa) participate in the complete polymerization of phenols and proteins. In a laboratory experiment, invertebrates participated in the degradation of organic matter and the synthesis of humic substances, which was proved in experiments with 14C-labeled phenols and proteins. The same organic substances (phenols and proteins) without the impact of invertebrates were used as the control substances. The distributions of the 14C isotope in alkaline extracts separated by solubility in acids (humic and fulvic acids) was compared to those of the control substances. The portion of the 14C isotope in the humic acids in the excrements of Bibio marci was higher than that in the control substances. The content of 14C-labeled humic substances in the excrements of the earthworm Aporrectodea caliginosa exceeded the control values only in the experiment with proteins. When clay material was added to the organic substances, the portion of the 14C isotope in the humic acids increased in both experiments with phenols and proteins. When these substrates passed through the digestive tracts of the invertebrates, the polymerization of organic substances and the inclusion of proteins and phenols into humic acids occurred.

  17. The contribution of humic substances to the acidity of colored natural waters

    USGS Publications Warehouse

    Oliver, B.G.; Thurman, E.M.; Malcolm, R.L.

    1983-01-01

    An operationally defined carboxyl content of humic substances extracted from rivers, streams, lakes, wetlands, and groundwaters throughout the United States and Canada is reported. Despite the diversity of the samples, only small variations were observed in this humic carboxyl content. The dissociation behavior of two combined fulvic/humic acid extracts was studied and it was found that the dissociation of the humics varied in a predictable manner with pH. Using a carboxyl content of 10 ??eq/ mg humic organic carbon, and mass action quotient calculated from sample pH, the ionic balances of three highly colored Nova Scotia rivers were estimated. ?? 1983.

  18. Oxidation of humic substances supports denitrification reactions in agricultural soils.

    NASA Astrophysics Data System (ADS)

    van Trump, J. I.; Coates, J. D.

    2007-12-01

    Humic substances (HS) are a ubiquitous, recalcitrant, and diverse class of compounds arising from degradation and condensation of plant and microbial biopolymers. Many bacteria oxidize hydroquinones within humic substances to their quinone analogs, providing electrons for respiratory processes such as nitrate reduction. Microbial hydroquinone oxidation contributes to the redox state of HS and supports denitrification, which may be of import to agricultural soils where nitrate retention is critical and HS are prevalent. Most probable number counts were performed on soils collected from a Nebraska farm, with the model humic hydroquinone 2,6- anthrahydroquinone disulfonate (AHDS) serving as an electron donor and nitrate as the electron acceptor. Results indicated that AHDS oxidizing, nitrate reducing bacteria were present in soils from bluegrass fields (104 cells/g) and aspen groves (106 cells/g), as well as in plots of corn (106 cells/g), and soybean treated (106 cells/g) and un-treated (105 cells/g) with pig slurry. These results demonstrate that microorganisms participating in the proposed metabolism are prevalent within agricultural soils. Upflow glass columns were constructed, containing a support matrix of glass beads amended with 10% w/w soil from the corn plot previously mentioned. All columns were subjected to a continual flow of phosphate-buffered water amended with sodium nitrate. Above the point source for nitrate injection, phosphate-buffered water containing electron donor treatments were continually injected. The impacts of electron donor treatments (no donor, oxidized HS, reduced HS, and acetate) on denitrification and other geochemical parameters were observed. Column studies were able to resolve effects of electron donor treatment both spatially as a function of distance from the injection point source, and temporally, as a function of time of donor treatment. Four sample ports in each column were routinely analyzed for concentrations of nitrate

  19. Production of humic substances through coal-solubilizing bacteria

    PubMed Central

    Valero, Nelson; Gómez, Liliana; Pantoja, Manuel; Ramírez, Ramiro

    2014-01-01

    In this paper, the production of humic substances (HS) through the bacterial solubilization of low rank coal (LRC) was evaluated. The evaluation was carried out by 19 bacterial strains isolated in microenvironments with high contents of coal wastes. The biotransformed LRC and the HS produced were quantified in vitro in a liquid growth medium. The humic acids (HA) obtained from the most active bacterial strain were characterized via elemental composition (C, H, N, O), IR analyses, and the E4/E6 ratio; they were then compared with the HA extracted chemically using NaOH. There was LRC biotransformation ranged from 25 to 37%, and HS production ranged from 127 to 3100 mg.L−1. More activity was detected in the isolated strains of Bacillus mycoides, Microbacterium sp, Acinetobacter sp, and Enterobacter aerogenes. The HA produced by B. mycoides had an IR spectrum and an E4/E6 ratio similar to those of the HA extracted with NAOH, but their elemental composition and their degree of aromatic condensation was different. Results suggest that these bacteria can be used to exploit the LRC resulting from coal mining activities and thus produce HS in order to improve the content of humified organic matter in soils. PMID:25477925

  20. Natural carbon-based dots from humic substances

    NASA Astrophysics Data System (ADS)

    Dong, Yongqiang; Wan, Lisi; Cai, Jianhua; Fang, Qingqing; Chi, Yuwu; Chen, Guonan

    2015-05-01

    For the first time, abundant natural carbon-based dots were found and studied in humic substances (HS). Four soluble HS including three humic acids (HA) from different sources and one fulvic acids (FA) were synthetically studied. Investigation results indicate that all the four HS contain large quantities of Carbon-based dots. Carbon-based dots are mainly small-sized graphene oxide nano-sheets or oxygen-containing functional group-modified graphene nano-sheets with heights less than 1 nm and lateral sizes less than 100 nm. Carbon-based nanomaterials not only contain abundant sp2-clusters but also a large quantity of surface states, exhibiting unique optical and electric properties, such as excitation-dependent fluorescence, surface states-originated electrochemiluminescence, and strong electron paramagnetic resonance. Optical and electric properties of these natural carbon-based dots have no obvious relationship to their morphologies, but affected greatly by their surface states. Carbon-based dots in the three HS have relative high densities of surface states whereas the FA has the lowest density of surface states, resulting in their different fluorescence properties. The finding of carbon-based dots in HS provides us new insight into HS, and the unique optical properties of these natural carbon-based dots may give HS potential applications in areas such as bio-imaging, bio-medicine, sensing and optoelectronics.

  1. Humic substances-enhanced electroremediation of heavy metals contaminated soil.

    PubMed

    Bahemmat, Mahdi; Farahbakhsh, Mohsen; Kianirad, Mehran

    2016-07-15

    The effects of catholyte conditioning and the use of humic acids (HAs) and fulvic acids (FAs) as chelating agents to improve electrokinetic (EK) remediation efficiency were investigated using a real and highly contaminated soil. By applying a constant voltage (2.0V/cm) to the soil, pH and current changes and heavy metals (HMs) concentration were investigated through a range of durations and positions. The observations demonstrated that both catholyte conditioning with 0.1N HNO3 and using humic substances (HSs) enhance remediation efficiency. After 20 days of EK treatment, the removal efficiency of HMs in HS-enhanced EK remediation was about 2.0-3.0 times greater than when unenhanced. The quantity of HMs moving toward the cathode exceeded the anode, from which it could be reasonably inferred that most negatively charged HM-HS complexes were moved by electroosmotic forces. Further, free HM cations and positively charged complexed HMs migrated to the catholyte compartment by electromigration. The results obtained in this study, demonstrate the suitability of HS-enhanced EK remediation in HMs contaminated soil. PMID:27058638

  2. Natural carbon-based dots from humic substances

    PubMed Central

    Dong, Yongqiang; Wan, Lisi; Cai, Jianhua; Fang, Qingqing; Chi, Yuwu; Chen, Guonan

    2015-01-01

    For the first time, abundant natural carbon-based dots were found and studied in humic substances (HS). Four soluble HS including three humic acids (HA) from different sources and one fulvic acids (FA) were synthetically studied. Investigation results indicate that all the four HS contain large quantities of Carbon-based dots. Carbon-based dots are mainly small-sized graphene oxide nano-sheets or oxygen-containing functional group-modified graphene nano-sheets with heights less than 1 nm and lateral sizes less than 100 nm. Carbon-based nanomaterials not only contain abundant sp2-clusters but also a large quantity of surface states, exhibiting unique optical and electric properties, such as excitation-dependent fluorescence, surface states-originated electrochemiluminescence, and strong electron paramagnetic resonance. Optical and electric properties of these natural carbon-based dots have no obvious relationship to their morphologies, but affected greatly by their surface states. Carbon-based dots in the three HS have relative high densities of surface states whereas the FA has the lowest density of surface states, resulting in their different fluorescence properties. The finding of carbon-based dots in HS provides us new insight into HS, and the unique optical properties of these natural carbon-based dots may give HS potential applications in areas such as bio-imaging, bio-medicine, sensing and optoelectronics. PMID:25944302

  3. Electrocoagulation treatment of peat bog drainage water containing humic substances.

    PubMed

    Kuokkanen, V; Kuokkanen, T; Rämö, J; Lassi, U

    2015-08-01

    Electrocoagulation (EC) treatment of 100 mg/L synthetic wastewater (SWW) containing humic acids was optimized (achieving 90% CODMn and 80% DOC removal efficiencies), after which real peat bog drainage waters (PBDWs) from three northern Finnish peat bogs were also treated. High pollutant removal efficiencies were achieved: Ptot, TS, and color could be removed completely, while Ntot, CODMn, and DOC/TOC removal efficiencies were in the range of 33-41%, 75-90%, and 62-75%, respectively. Al and Fe performed similarly as the anode material. Large scale experiments (1 m(3)) using cold (T = 10-11 °C) PBDWs were also conducted successfully, with optimal treatment times of 60-120 min (applying current densities of 60-75 A/m(2)). Residual values of Al and Fe (complete removal) were lower than their initial values in the EC-treated PBDWs. Electricity consumption and operational costs in optimum conditions were found to be low and similar for all the waters studied: 0.94 kWh/m(3) and 0.15 €/m(3) for SWW and 0.35-0.70 kWh/m(3) and 0.06-0.12 €/m(3) for the PBDWs (large-scale). Thus, e.g. solar cells could be considered as a power source for this EC application. In conclusion, EC treatment of PBDW containing humic substances was shown to be feasible. PMID:25973580

  4. NMR characterization and sorption behavior of agricultural and forest soil humic substances

    NASA Astrophysics Data System (ADS)

    Li, Chengliang; Berns, Anne E.; Séquaris, Jean-Marie; Klumpp, Erwin

    2010-05-01

    Humic substances are the predominant components of the organic matter in the terrestrial system, which are not only important for the physicochemical properties of soil but are also dominant factors for controlling the environmental behaviors and fates of some organic contaminants, such as hydrophobic compounds. Nonylphenol [4-(1-ethyl-1, 3 dimethylpentyl) phenol] (NP), a ubiquitous hydrophobic pollutant, has recently focused the attention owing to its endocrine disruptors property. Sorption behavior of NP on humic substances, which were isolated from agricultural and forest soils, was investigated by using the dialysis technique at room temperature. 14C-labeled NP was used to quantify the partitioning behavior. Humic substances were characterized by 13C Cross-Polarization/Magic-Angle-Spinning Nuclear Magnetic Resonance (CP/MAS NMR). The results showed that the partition parameters of NP on various humic acids were slightly different. Relationships between partition coefficients and the functional groups of humic substances identified by CP/MAS NMR were analyzed.

  5. Soil humic substances hinder the propagation of prions

    NASA Astrophysics Data System (ADS)

    Leita, Liviana; Giachin, Gabriele; Margon, Alja; Narkiewicz, Joanna; Legname, Giuseppe

    2013-04-01

    capacity of clay minerals; however the contribution of soil organic components in adsorption has so far been neglected, as they represent a minor soil fraction on a weight basis. Among organic molecules, humic substances (HSs) are natural polyanions that result among the most reactive compounds in the soil and possess the largest specific surface area. Humic substances make up a large portion of the dark matter in humus and consist of heterogeneous mixtures of transformed biomolecules exhibiting a supramolecular structure. HSs are classified as humic acids (HAs), which are soluble only in alkaline solutions, and fulvic acids (FAs), which are soluble in both alkaline and acid solutions. The amphiphilic characteristics confer to HAs and FAs great versatility to interact with xenobiotics and reasonably also with prion proteins and/or prions too, leading to the formation of adducts with peculiar chemical and biophysical characteristics, thus affecting the transport, fixation and toxicity of prion. Results from our chemical, biophysical and biochemical investigation will be presented and results on anti-prion activity exerted by HAs and FAs will be provided, thus suggesting that amendment of contaminated soil with humic substances could be a strategy to contrast prion diffusion.

  6. Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens.

    PubMed

    Wolf, Manfred; Kappler, Andreas; Jiang, Jie; Meckenstock, Rainer U

    2009-08-01

    Humic substances (HS) and quinones can accelerate dissimilatory Fe(III) reduction by electron shuttling between microorganisms and poorly soluble iron(III) (hydr)oxides. The mechanism of electron shuttling for HS is not fully understood, but it is suggested that the most important redox-active components in HS are also quinones. Here we studied the influence of HS and different quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens. The aquatic HS used were humic and fulvic acids (HA and FA) isolated from groundwater of a deep aquifer in Gorleben (Niedersachsen, Germany). HA stimulated iron reduction stronger than FA down to total HA concentrations as low as 1 mg/L. The quinones studied showed large differences: some had strong accelerating effects, whereas others showed only small effects, no effects, or even inhibitory effects on the kinetics of iron reduction. We found that the redox potentials of the most active quinones fall in a narrow range of -137 to -225 mV vs NHE at pH 7. These results give evidence that the kinetic of microbial iron reduction mediated by electron shuttles is mainly controlled by thermodynamic parameters, i.e., by the redox potential of the shuttle compound, rather than by the proportion of dissolved vs adsorbed compound. PMID:19731662

  7. Capillary Electrophoresis and Fluorescence Excitation-Emission Matrix Spectroscopy for Characterization of Humic Substances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capillary electrophoresis (CE) and fluorescence spectroscopy have been used in natural organic matter (NOM) studies. In this study, we characterized five fulvic acids, six humic acids and two unprocessed NOM samples obtained from the International Humic Substances Society (IHSS) using these two ana...

  8. Distinguishing Black Carbon from Biogenic Humic Substances in Soil Clay Fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most models of soil humic substances include a substantial component of aromatic carbon (C) either as the backbone of humic heteropolymers or as a significant component of supramolecular aggregates of degraded biopolymers. Here we report that most of the aromatic C in the clay fraction of three stud...

  9. Comparative studies of the reduction behavior of chromium(VI) by humic substances and their precursors

    SciTech Connect

    Nakayasu, Ken; Sasaki, Keiko; Tanaka, Shunitz; Nakamura, Hiroshi ); Fukushima, Masami )

    1999-06-01

    Hexavalent chromium (Cr[VI]) is reduced by dissolved organic carbons (DOCs) such as humic substances, tannic acid (TA), and gallic acid (GA). The kinetic constants and the resulting chemical species after the reduction were compared with each other. The kinetic constants for GA and TA, which are model precursors of humic substances, were two to three orders of magnitude larger than those for the humic substances when these kinetic constants were expressed as a function of the molar concentration of the reductive functional group (F[sub red]) in various DOCs. After the reduction of Cr(VI), the percentages of the species complexed with GA and TA were higher than those with the humic substances. This appears to be due to the formation of high molecular weight compounds by polymerization during the reduction of Cr(VI) and complexation of Cr(III) with the polymerized compounds. The UV-vis spectrophotometric data and gel permeation chromatography support this view.

  10. CAPILLARY ELECTROPHORESIS IN THE ANALYSIS OF HUMIC SUBSTANCES FACTS AND ARTIFACTS

    EPA Science Inventory

    Humic substances, extracted as mixtures from soil and surface waters according to their solubility in acids and bases, are relatively high-molecular-mass polyelectrolytes containing aromatic, aliphatic and heterocyclic subunits. The degree of ionization of their phenolic and carb...

  11. River-derived humic substances as iron chelators in seawater

    PubMed Central

    Krachler, Regina; Krachler, Rudolf F.; Wallner, Gabriele; Hann, Stephan; Laux, Monika; Cervantes Recalde, Maria F.; Jirsa, Franz; Neubauer, Elisabeth; von der Kammer, Frank; Hofmann, Thilo; Keppler, Bernhard K.

    2015-01-01

    The speciation of iron(III) in oxic seawater is dominated by its hydrolysis and sedimentation of insoluble iron(III)-oxyhydroxide. As a consequence, many oceanic areas have very low iron levels in surface seawater which leads to iron deficiency since phytoplankton require iron as a micronutrient in order to grow. Fortunately, iron solubility is not truly as low as Fe(III) solubility measurements in inorganic seawater would suggest, since oceanic waters contain organic molecules which tend to bind the iron and keep it in solution. Various iron-binding organic ligands which combine to stabilize dissolved iron have been detected and thoroughly investigated in recent years. However, the role of iron-binding ligands from terrestrial sources remains poorly constrained. Blackwater rivers supply large amounts of natural organic material (NOM) to the ocean. This NOM (which consists mainly of vascular plant-derived humic substances) is able to greatly enhance iron bioavailability in estuaries and coastal regions, however, breakdown processes lead to a rapid decrease of river-derived NOM concentrations with increasing distance from land. It has therefore been argued that the influence of river-derived NOM on iron biogeochemistry in offshore seawater does not seem to be significant. Here we used a standard method based on 59Fe as a radiotracer to study the solubility of Fe(III)-oxyhydroxide in seawater in the presence of riverine NOM. We aimed to address the question how effective is freshwater NOM as an iron chelator under open ocean conditions where the concentration of land-derived organic material is about 3 orders of magnitude smaller than in coastal regions, and does this iron chelating ability vary between NOM from different sources and between different size fractions of the river-borne NOM. Our results show that the investigated NOM fractions were able to substantially enhance Fe(III)-oxyhydroxide solubility in seawater at concentrations of the NOM ≥ 5

  12. Character of Humic Substances as a Predictor for Goethite Nanoparticle Reactivity and Aggregation.

    PubMed

    Vindedahl, Amanda M; Stemig, Melissa S; Arnold, William A; Penn, R Lee

    2016-02-01

    Natural organic matter (NOM) is ubiquitous in surface water and groundwater and interacts strongly with mineral surfaces. The details of these interactions, as well as their impacts on mineral surface reactivity, are not well understood. In this work, both the reactivity and aggregation of goethite (α-FeOOH) nanoparticles were quantified in the presence of well-characterized humic substances. Results from monitoring the kinetics of reductive degradation of 4-chloronitrobenzene (4-ClNB) by Fe(II) adsorbed onto the goethite nanoparticles with and without added humic substances demonstrates that, in all cases, humic substances suppressed Fe(II)-goethite reactivity. The ranking of the standards from the least to most inhibitive was Pahokee Peat humic acid, Elliot Soil humic acid, Suwannee River humic acid, Suwannee River NOM, Suwannee River fulvic acid I, Suwannee River fulvic acid II, and Pahokee Peat fulvic acid. Correlations between eight characteristics (molecular weight, carboxyl concentration, and carbon, oxygen, nitrogen, aliphatic, heteroaliphatic, and aromatic content) and 4-ClNB degradation rate constants were observed. Faster kinetic rates of reductive degradation were observed with increased molecular weight and nitrogen, carbon, and aromatic content, and slower rates were observed with increased carboxyl concentration and oxygen, heteroaliphatic, and aliphatic content. With these correlations, improved predictions of the reactivity of Fe(II)-goethite with pollutants based on properties of the humic substances are possible. PMID:26790005

  13. Investigating the mechanism of phenol photooxidation by humic substances.

    PubMed

    Golanoski, Kelli S; Fang, Shuo; Del Vecchio, Rossana; Blough, Neil V

    2012-04-01

    To probe the mechanism of the photosensitized loss of phenols by humic substances (HS), the dependence of the initial rate of 2,4,6-trimethylphenol (TMP) loss (R(TMP)) on dioxygen concentration was examined both for a variety of untreated as well as borohydride-reduced HS and C(18) extracts from the Delaware Bay and Mid-Atlantic Bight. R(TMP) was inversely proportional to dioxygen concentration at [O(2)] > 50 μM, a dependence consistent with reaction with triplet excited states, but not with (1)O(2) or RO(2). Modeling the dependence of R(TMP) on [O(2)] provided rate constants for TMP reaction, O(2) quenching, and lifetimes compatible with a triplet intermediate. Borohydride reduction significantly reduced TMP loss, supporting the role of aromatic ketone triplets in this process. However, for most samples, the incomplete loss of sensitization following borohydride reduction, as well as the inverse dependence of R(TMP) on [O(2)] for these samples, suggests that there remains another class of oxidizing triplet sensitizer, perhaps quinones. PMID:22394372

  14. Effect of humic substances on phosphorus removal by struvite precipitation.

    PubMed

    Zhou, Zhen; Hu, Dalong; Ren, Weichao; Zhao, Yuzeng; Jiang, Lu-Man; Wang, Luochun

    2015-12-01

    Humic substances (HS) are a major fraction of dissolved organic matters in wastewater. The effect of HS on phosphorus removal by struvite precipitation was investigated using synthetic wastewater under different initial pH values, Mg/P molar ratios and HS concentrations. The composition, morphology and thermal properties of harvested precipitates were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and thermo-gravimetric analysis (TGA), respectively. It showed that inhibition effect of HS reached its maximum value of 48.9% at pH 8.0, and decreased to below 10% at pH>9.0. The increase of Mg/P ratio enhanced phosphorus removal efficiency, and thus reduced the influence of HS on struvite precipitation. At pH 9.0, the inhibitory effect of initial HS concentration matched the modified Monod model with half maximum inhibition concentration of 356mgL(-1), and 29% HS was removed in conjunction with struvite crystallisation. XRD analysis revealed that the crystal form of struvite precipitates was changed in the presence of HS. The morphology of harvested struvite was transformed from prismatic to pyramid owing to the coprecipitation of HS on crystal surface. TGA results revealed that the presence of HS could compromise struvite purity. PMID:26151483

  15. Prion Protein Interaction with Soil Humic Substances: Environmental Implications

    PubMed Central

    Giachin, Gabriele; Narkiewicz, Joanna; Scaini, Denis; Ngoc, Ai Tran; Margon, Alja; Sequi, Paolo; Leita, Liviana; Legname, Giuseppe

    2014-01-01

    Transmissible spongiform encephalopathies (TSE) are fatal neurodegenerative disorders caused by prions. Animal TSE include scrapie in sheep and goats, and chronic wasting disease (CWD) in cervids. Effective management of scrapie in many parts of the world, and of CWD in North American deer population is complicated by the persistence of prions in the environment. After shedding from diseased animals, prions persist in soil, withstanding biotic and abiotic degradation. As soil is a complex, multi-component system of both mineral and organic components, it is important to understand which soil compounds may interact with prions and thus contribute to disease transmission. Several studies have investigated the role of different soil minerals in prion adsorption and infectivity; we focused our attention on the interaction of soil organic components, the humic substances (HS), with recombinant prion protein (recPrP) material. We evaluated the kinetics of recPrP adsorption, providing a structural and biochemical characterization of chemical adducts using different experimental approaches. Here we show that HS act as potent anti-prion agents in prion infected neuronal cells and in the amyloid seeding assays: HS adsorb both recPrP and prions, thus sequestering them from the prion replication process. We interpreted our findings as highly relevant from an environmental point of view, as the adsorption of prions in HS may affect their availability and consequently hinder the environmental transmission of prion diseases in ruminants. PMID:24937266

  16. Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles

    USGS Publications Warehouse

    Deonarine, A.; Lau, B.L.T.; Aiken, G.R.; Ryan, J.N.; Hsu-Kim, H.

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn-S-NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn-S-NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment. ?? 2011 American Chemical Society.

  17. Effects of humic substance on precipitation and aggregation of zinc sulfide nanoparticles

    USGS Publications Warehouse

    Deonarine, Amrika; Lau, Boris L.T.; Aiken, George R.; Ryan, Joseph N.; Hsu-Kim, Heileen

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn-S-NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn-S-NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment.

  18. Covalent binding of aniline to humic substances and whole soil organic matter

    SciTech Connect

    Thorn, K.A.; Goldenberg, W.S.; Younger, S.J.

    1995-12-31

    Aromatic amines enter the environment from the chemical or microbial degradation of dyes, explosives, and the acylanilide, phenylcarbamate, and phenylurea classes of herbicides. One possible fate of aromatic amines in soils is covalent binding to naturally occurring organic matter. The binding of {sup 15}N-labelled aniline to the fulvic and humic acids extracted from an Elliot silt loam soil with and without catalysis by peroxidase or birnessite has been examined by a combination of liquid and solid state {sup 15}N NMR. In the absence of catalysts, aniline undergoes a complex series of nucleophilic addition reactions with the carbonyl functionality of the humic substances to form both heterocyclic and nonheterocyclic condensation products. In the presence of the catalysts, aniline undergoes free radical coupling reactions together with nucleophilic addition reactions with the humic substances. Reaction of aniline with the whole soil most closely resembled the noncatalyzed reactions with the humic substances, as determined by solid state {sup 15}N NMR.

  19. Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water.

    PubMed

    Porras, Jazmín; Bedoya, Cristina; Silva-Agredo, Javier; Santamaría, Alexander; Fernández, Jhon J; Torres-Palma, Ricardo A

    2016-05-01

    This study focuses on the photo-transformation, in presence of humic substances (HSs), of ciprofloxacin (CIP), a commonly-used fluoroquinolone antibiotic whose presence in aquatic ecosystems is a health hazard for humans and other living organisms. HSs from the International Humic Substances Society (Elliott humic acid and fulvic acid, Pahokee peat humic acid and Nordic lake) and a humic acid extracted from modified coal (HACM) were tested for their ability to photodegrade CIP. Based on kinetic and analytical studies, it was possible to establish an accelerating effect on the rate of CIP decomposition caused by the humic substances. This effect was associated with the photosensitized capacity of the HSs to facilitate energy transfer from an excited humic state to the ground state of ciprofloxacin. Except for Nordic lake, which experienced a lower positive effect, no significant differences in the CIP transformation were found among the different humic acids examined. The photochemistry of CIP can be modified by parameters such as pH, CIP or oxygen concentration. The irradiation of this antibiotic in the presence of HACM showed that antimicrobial activity was negligible after 14 h for E. coli and 24 h for S. aureus. In contrast, the antimicrobial activity was only slightly decreased after 24 h of irradiation by direct photolysis. Although mineralization of CIP irradiation in the presence of a HACM solution was not achieved, biodegradability was achieved after 12 h of irradiation, indicating that microorganisms within the environment can easily degrade CIP photochemical by-products. PMID:26921708

  20. Synthetic humic substances and their use for remediation of contaminated environments

    NASA Astrophysics Data System (ADS)

    Dudare, Diana; Klavins, Maris

    2014-05-01

    Soils are increasingly subjected to different chemical stresses, because of increasing industrialization process and other factors. Different anthropogenic compounds (organic or inorganic in nature) upon entering the soil, may not only influence its productivity potential, but may also affect the quality of groundwater and food chain. Consequently, soils of different environments contain a complex mixture of contaminants, such as oil products, metals, organic solvents, acids, bases and radionuclides. Thereby greater focus should be paid to risk assessment and evaluation of remedial techniques in order to restore the quality of the soil and groundwater. The treatment technologies presently used to remove contaminants are physical, chemical and biological technologies. Many functional groups in the structure of humic substances determine their ability to interact with metal ions forming stable complexes and influencing speciation of metal ions in the environment, as well mobility, behaviour and speciation forms in the environment. Humic substances are suggested for use in the remediation of environments contaminated with metals, owing to complex forming properties. Several efforts have been undertaken with respect to synthesize humic substances for their structural studies. At the same time the real number of methods suggested for synthesis of humic substances is highly limited and their synthesis in general has been used mostly for their structural analysis. The present study deals with development of approaches for synthesis of humic substances with increased complex forming ability in respect to metal ions. Industrially produced humic substances (TEHUM) were used for comparison and after their modification their properties were analyzed for their elemental composition; functional group content changes in spectral characteristics. Synthetic humic substances showed significant differences in the number of functional groups and in ability to interact with the metal

  1. Persistent toxic substances in Mediterranean aquatic species.

    PubMed

    Miniero, Roberto; Abate, Vittorio; Brambilla, Gianfranco; Davoli, Enrico; De Felip, Elena; De Filippis, Stefania P; Dellatte, Elena; De Luca, Silvia; Fanelli, Roberto; Fattore, Elena; Ferri, Fabiola; Fochi, Igor; Rita Fulgenzi, Anna; Iacovella, Nicola; Iamiceli, Anna Laura; Lucchetti, Dario; Melotti, Paolo; Moret, Ivo; Piazza, Rossano; Roncarati, Alessandra; Ubaldi, Alessandro; Zambon, Stefano; di Domenico, Alessandro

    2014-10-01

    Fish and fishery products may represent one of the main sources of dietary exposure to persistent toxic substances (PTSs) such as polychlorinated dibenzodioxins, dibenzofurans, and biphenyls; polybromodiphenyl ethers; organochlorine pesticides; perfluorooctanoic acid and perfluorooctane sulfonate; and inorganic mercury and methyl mercury. In this study, PTS contamination of Mediterranean fish and crustaceans caught in Italian coastal waters was investigated in order to increase the representativeness of the occurrence database for wild species. The objectives were to verify the suitability of regulatory limits for PTSs, identify background concentrations values, if any, and examine the possible sources of variability when assessing the chemical body burdens of aquatic species. Twelve wild species of commercial interest and two farmed fish species were chosen. Excluding methyl mercury, chemical concentrations found in wild species fell generally towards the low ends of the concentration ranges found in Europe according to EFSA database and were quite lower than the tolerable maximum levels established in the European Union; farmed fish always showed contamination levels quite lower than those detected in wild species. The data obtained for wild species seemed to confirm the absence of local sources of contamination in the chosen sampling areas; however, species contamination could exceed regulatory levels even in the absence of specific local sources of contamination as a result of the position in the food web and natural variability in species' lifestyle. A species-specific approach to the management of contamination in aquatic organisms is therefore suggested as an alternative to a general approach based only on contaminant body burden. A chemical-specific analysis performed according to organism position in the food chain strengthened the need to develop this approach. PMID:25020099

  2. Organic Geochemistry and Sources of Natural Aquatic Foams

    USGS Publications Warehouse

    Mills, M.S.; Thurman, E.M.; Ertel, J.; Thorn, K.A.

    1996-01-01

    Aquatic foams and stream-water samples were collected from two pristine sites for humic substances isolation and characterization. Biomarker compounds identified in foam and stream humic substances included phospholipid fatty acids, steroids, and lignin. Results showed that foams had a 10 to 20 fold greater DOC concentration and were enriched in humic substances (90% by weight of DOC) that showed increased hydrophobicity, aliphatic character, and compositional complexity compared to host stream humic substances (55 to 81% by weight of DOC). Foam humic substances also were enriched in humic acid (36 to 83% by weight) compared to host stream humic substances (10 to 14% by weight). Biomarkers, which contributed less than 5% by weight to the DOC pool, indicated higher plants, bacteria, algae, fungi, and diatoms as DOC sources. It is proposed that aquatic foams may be important media for the concentration and transport of organic substances in the aquatic environment.

  3. Role of dissolved humic substances surrogates on phthalate esters migration from sewage sludge.

    PubMed

    Zheng, Z; He, P J; Zhang, H; Shao, L M

    2008-01-01

    The facilitated transport of dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP), the priority endocrine disrupting chemicals in sludge, by dissolved humic substances (HS) was evaluated by batch extraction. The DBP, much less hydrophobic than DEHP, was inclined to migrate from sludge matrix into humic substances solutions, while the DEHP could not migrate facilitated by most humic and fulvic acids solutions, except the humic acid surrogate of high humification. This result revealed that the affinity of DEHP in sludge matrix exceeded DBP and was not susceptible by weak HS. The hydrophobic property controlled the association of phthalic acid esters on sludge residual phases. Migration rate of DBP was positively correlated to the weight-average molecular weight of HS surrogates and the aromatic extents of HA. Some functional groups in HS molecules benefited to the facilitated transport of DBP. PMID:18360003

  4. Effect of humic substance photodegradation on bacterial growth and respiration in lake water.

    PubMed

    Anesio, Alexandre M; Granéli, Wilhelm; Aiken, George R; Kieber, David J; Mopper, Kenneth

    2005-10-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-microm-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by approximately 18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed approximately 10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates. PMID:16204548

  5. Effect of Humic Substance Photodegradation on Bacterial Growth and Respiration in Lake Water

    PubMed Central

    Anesio, Alexandre M.; Granéli, Wilhelm; Aiken, George R.; Kieber, David J.; Mopper, Kenneth

    2005-01-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-μm-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by ∼18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed ∼10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates. PMID:16204548

  6. Humic substances increase survival of freshwater shrimp Caridina sp. D to acid mine drainage.

    PubMed

    Holland, Aleicia; Duivenvoorden, Leo J; Kinnear, Susan H W

    2013-02-01

    Humic substances (HS) are known to decrease the toxicity of heavy metals to aquatic organisms, and it has been suggested that they can provide buffering protection in low pH conditions. Despite this, little is known about the ability for HS to increase survival to acid mine drainage (AMD). In this study, the ability of HS to increase survival of the freshwater shrimp (Caridina sp. D sensu Page et al. in Biol Lett 1:139-142, 2005) to acid mine drainage was investigated using test waters collected from the Mount Morgan open pit in Central Queensland with the addition of Aldrich humic acid (AHA). The AMD water from the Mount Morgan open pit is highly acidic (pH 2.67) as well as contaminated with heavy metals (1780 mg/L aluminum, 101 mg/L copper [Cu], 173 mg/L manganese, 51.8 mg/L zinc [Zn], and 51.8 mg/L iron). Freshwater shrimp were exposed to dilutions in the range of 0.5 % to 5 % AMD water with and without the addition of 10 or 20 mg/L AHA. In the absence of HS, all shrimp died in the 2.5 % AMD treatment. In contrast, addition of HS increased survival in the 2.5 % AMD treatment by ≤66 % as well as significantly decreased the concentration of dissolved Cu, cobalt, cadmium, and Zn. The decreased toxicity of AMD in the presence of HS is likely to be due to complexation and precipitation of heavy metals with the HS; it is also possible that HS caused changes to the physiological condition of the shrimp, thus increasing their survival. These results are valuable in contributing to an improved understanding of potential role of HS in ameliorating the toxicity of AMD environments. PMID:23135152

  7. Effect of humic substance photodegradation on bacterial growth and respiration in lake water

    USGS Publications Warehouse

    Anesio, A.M.; Graneli, W.; Aiken, G.R.; Kieber, D.J.; Mopper, K.

    2005-01-01

    This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-??m-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H 2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by ???18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed ???10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.

  8. Identification and characterization of humic substances-degrading bacterial isolates from an estuarine environment.

    PubMed

    Esham; Ye; Moran

    2000-12-01

    Bacterial isolates were obtained from enrichment cultures containing humic substances extracted from estuarine water using an XAD-8 resin. Eighteen isolates were chosen for phylogenetic and physiological characterization based on numerical importance in serial dilutions of the enrichment culture and unique colony morphology. Partial sequences of the 16S rRNA genes indicated that six of the isolates were associated with the alpha subclass of Proteobacteria, three with the gamma-Proteobacteria, and nine with the Gram-positive bacteria. Ten isolates degraded at least one (and up to six) selected aromatic single-ring compounds. Six isolates showed ability to degrade [(14)C]humic substances derived from the dominant salt marsh grass in the estuary from which they were isolated (Spartina alterniflora), mineralizing 0.4-1.1% of the humic substances over 4 weeks. A mixture of all 18 isolates did not degrade humic substances significantly faster than any of the individual strains, however, and no isolate degraded humic substances to the same extent as the natural marine bacterial community (3.0%). Similar studies with a radiolabeled synthetic lignin ([beta-(14)C]dehydropolymerisate) showed measurable levels of degradation by all 18 bacteria (3.0-8.8% in 4 weeks), but mineralization levels were again lower than that observed for the natural marine bacterial community (28.2%). Metabolic capabilities of the 18 isolates were highly variable and generally did not map to phylogenetic affiliation. PMID:11102687

  9. On-the-fly fluorescence lifetime detection of humic substances in capillary electrophoresis.

    PubMed

    Hewitt, Joseph D; McGown, Linda B

    2003-03-01

    On-the-fly fluorescence lifetime detection was investigated as a tool for studying humic substances in capillary zone electrophoresis (CZE). Humic substances are complex, heterogeneous mixtures of natural products that tend to migrate in a single, broad CZE peak. The intrinsic fluorescence lifetime of five humic substances from the International Humic Substances Society (IHSS) was monitored using excitation at 488 or 364 nm to produce intensity-lifetime electropherograms for each of the substances. Each frequency-domain lifetime measurement, collected at subsecond intervals during the CZE run, contains the equivalent of a complete decay profile. Lifetime analysis of each decay profile was used to construct a lifetime-resolved electropherogram for each lifetime component, from which the variation in relative intensity contributions of each lifetime across the broad CZE peak could be determined. Absorption spectra, fluorescence excitation-emission spectra, and lifetime profiles of batch solutions of the samples were determined as well. It was found that, whereas absorption and fluorescence spectral characteristics tended to discriminate between humic acids and fulvic acids, the batch solution lifetime profiles discriminated instead between samples from different sources, regardless of fraction. On-the-fly lifetime detection provided a more detailed view of the fluorescence decay of the samples, including greater resolution of lifetimes for two of the fulvic acids and greater discrimination among samples based on lifetime profiles across the CZE peaks. PMID:14658616

  10. Fluorescence spectroscopy as a means of distinguishing fulvic and humic acids from dissolved and sedimentary aquatic sources and terrestrial sources

    NASA Astrophysics Data System (ADS)

    Senesi, Nicola; Miano, Teodoro M.; Provenzano, Maria Rosaria

    Thirteen fulvic acids (FA) and humic acids (HA) isolated from river waters and sediment, marine sediments, leonardite, soils, and paleosol, have been investigated by fluorescence spectroscopy in the emission, excitation and, partly, synchronous scan excitation modes. Emission spectra are generally characterized by a unique broad band, whereas excitation spectra exhibit a variable number of peaks or shoulders of various intensity; these peaks are particularly well-resolved for sedimentary HA samples. A decrease in the relative intensity of fluorescence, which is associated with a red-shift (longer wavelengths) of both the emission maximum and the main excitation peaks, is observed when passing from dissolved aquatic and soil FA to river and marine sedimentary HA, to leonardite and soil HA, and, finally, to paleosol HA. Evident differences are shown in the relative intensity and wavelength maxima, measured in any mode, between soil FA and HA from the same source. For FA and HA of various nature and origin, the fluorescence is suggested to be caused by chemically different structural units. These units fluoresce from the blue-violet to the green and consist of variously extended, condensed, aromatic and/or heterocyclic ring systems, with a high degree of electronic conjugation and bearing suitable hydroxyl, alkoxyl and carbonyl groups (e.g. salicyl, cinnamic and hydroxybenzoic derivatives, naphtols, naphtoquinones, coumarin), and quinoline-derivatives, flavonoids and Schiffbase derivatives. Fluorescence properties of humic substances may represent an additional diagnostic criterium useful in distinguishing between FA and HA from the same or various natural sources.

  11. High Pressure Size Exclusion Chromatography (HPSEC) of humic substances: molecular sizes, analytical parameters, and column performance

    PubMed

    Conte; Piccolo

    1999-02-01

    High Pressure Size Exclusion chromatography (HPSEC) is increasingly used to evaluate molecular sizes of humic substances from different sources. Asymmetry factors (As), number of theoretical plates (N), coefficient of distribution (k(d)), and column resolution (Rs) were determined for two different HPSEC columns (TSK G3000SW and Biosep S2000) and polysaccharides of known molecular weights were used as standards. Calibration curves were equivalent for both columns whereas analytical parameters revealed that the TSK column was only slightly more efficient in separating polysaccharide standards. Mw and Mn values for humic substances differed according to the molecular weight range of each column but relative standard deviation never exceeded 5% for both columns. Variations between columns were attributed to intrinsic humic properties such as the stability of conformational structures. These results suggested that humic substances in solutions are loosely-bound association of small molecules that may be consistently dispersed by diffusion through size-exclusion pores. HPSEC is confirmed to represent a highly precise method to evaluate the relative molecular-size distribution of dissolved humic substances. PMID:10901671

  12. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Aiken, G.R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (?? = 4.5), P(CO2) (10-3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not. Copyright (C) 1999 Elsevier Science Ltd.

  13. Photoreduction of Terrigenous Fe‐Humic Substances Leads to Bioavailable Iron in Oceans

    PubMed Central

    Blazevic, Amir; Orlowska, Ewelina; Kandioller, Wolfgang; Jirsa, Franz; Keppler, Bernhard K.; Tafili‐Kryeziu, Myrvete; Linert, Wolfgang; Krachler, Rudolf F.; Krachler, Regina

    2016-01-01

    Abstract Humic substances (HS) are important iron chelators responsible for the transport of iron from freshwater systems to the open sea, where iron is essential for marine organisms. Evidence suggests that iron complexed to HS comprises the bulk of the iron ligand pool in near‐coastal waters and shelf seas. River‐derived HS have been investigated to study their transport to, and dwell in oceanic waters. A library of iron model compounds and river‐derived Fe‐HS samples were probed in a combined X‐ray absorption spectroscopy (XAS) and valence‐to‐core X‐ray emission spectroscopy (VtC‐XES) study at the Fe K‐edge. The analyses performed revealed that iron complexation in HS samples is only dependent on oxygen‐containing HS functional groups, such as carboxyl and phenol. The photoreduction mechanism of FeIII‐HS in oceanic conditions into bioavailable aquatic FeII forms, highlights the importance of river‐derived HS as an iron source for marine organisms. Consequently, such mechanisms are a vital component of the upper‐ocean iron biogeochemistry cycle.

  14. Photoreduction of Terrigenous Fe‐Humic Substances Leads to Bioavailable Iron in Oceans

    PubMed Central

    Blazevic, Amir; Orlowska, Ewelina; Kandioller, Wolfgang; Jirsa, Franz; Keppler, Bernhard K.; Tafili‐Kryeziu, Myrvete; Linert, Wolfgang; Krachler, Rudolf F.; Krachler, Regina

    2016-01-01

    Abstract Humic substances (HS) are important iron chelators responsible for the transport of iron from freshwater systems to the open sea, where iron is essential for marine organisms. Evidence suggests that iron complexed to HS comprises the bulk of the iron ligand pool in near‐coastal waters and shelf seas. River‐derived HS have been investigated to study their transport to, and dwell in oceanic waters. A library of iron model compounds and river‐derived Fe‐HS samples were probed in a combined X‐ray absorption spectroscopy (XAS) and valence‐to‐core X‐ray emission spectroscopy (VtC‐XES) study at the Fe K‐edge. The analyses performed revealed that iron complexation in HS samples is only dependent on oxygen‐containing HS functional groups, such as carboxyl and phenol. The photoreduction mechanism of FeIII‐HS in oceanic conditions into bioavailable aquatic FeII forms, highlights the importance of river‐derived HS as an iron source for marine organisms. Consequently, such mechanisms are a vital component of the upper‐ocean iron biogeochemistry cycle. PMID:27100573

  15. Development of an automated system for isolation and purification of humic substances.

    PubMed

    van Zomeren, André; van der Weij-Zuiver, Esther; Comans, Rob N J

    2008-07-01

    Characterization of humic substances (HS) in environmental samples generally involves labor-intensive and time-consuming isolation and purification procedures. In this paper, the development of an automated system for HS isolation and purification is described. The novelty of the developed system lies in the way the multiple liquids and columns used in the isolation/purification procedure are handled in both forward and back-elution mode by solenoid valves. The automated procedure significantly reduces the total throughput time needed, from 6-7 days to 48 h, and the amount of labor to obtain purified HS for further characterization. Chemical characterization of purified HS showed that results were in good agreement with previously published values for HS from a variety of sources, including the IHSS standard HS collection. It was also shown that the general properties of HS were consistent among the different source materials (soil, waste, aquatic) used in this study. The developed system greatly facilitates isolation and characterization of HS and reduces the risk of potential (time-dependent) alteration of HS properties in the manual procedure. PMID:18488204

  16. Photoreduction of Terrigenous Fe-Humic Substances Leads to Bioavailable Iron in Oceans.

    PubMed

    Blazevic, Amir; Orlowska, Ewelina; Kandioller, Wolfgang; Jirsa, Franz; Keppler, Bernhard K; Tafili-Kryeziu, Myrvete; Linert, Wolfgang; Krachler, Rudolf F; Krachler, Regina; Rompel, Annette

    2016-05-23

    Humic substances (HS) are important iron chelators responsible for the transport of iron from freshwater systems to the open sea, where iron is essential for marine organisms. Evidence suggests that iron complexed to HS comprises the bulk of the iron ligand pool in near-coastal waters and shelf seas. River-derived HS have been investigated to study their transport to, and dwell in oceanic waters. A library of iron model compounds and river-derived Fe-HS samples were probed in a combined X-ray absorption spectroscopy (XAS) and valence-to-core X-ray emission spectroscopy (VtC-XES) study at the Fe K-edge. The analyses performed revealed that iron complexation in HS samples is only dependent on oxygen-containing HS functional groups, such as carboxyl and phenol. The photoreduction mechanism of Fe(III) -HS in oceanic conditions into bioavailable aquatic Fe(II) forms, highlights the importance of river-derived HS as an iron source for marine organisms. Consequently, such mechanisms are a vital component of the upper-ocean iron biogeochemistry cycle. PMID:27100573

  17. Complexation of transuranic ions by humic substances: Application of laboratory results to the natural system

    SciTech Connect

    Czerwinski, K.; Kim, J.

    1997-12-31

    Environmental investigations show transuranic ions sorb to humic substances. The resulting species are often mobile and are expected to be important vectors in the migration of transuranic ions in natural systems. However, these environmental studies yield no quantitative data useful for modeling. Laboratory complexation experiments with transuranic ions and humic substances generate thermodynamic data required for complexation modeling. The data presented in this work are based on the metal ion charge neutralization model, which is briefly described. When a consistent complexation model is used, similar results are obtained from different experimental conditions, techniques, and laboratories. Trivalent transuranic ions (Cm(III), Am(III)) have been extensively studied with respect to pH, ionic strength, origin of humic acid, and mixed species formation. The complexation of Np(V) has been examined over a large pH and metal ion concentration range with different humic acids. Some data does exist on the complexation ion concentration range with different humic acids. Some data does exist on the complexation of plutonium with humic acid, however further work is needed. Calculations on the Gorleben aquifer system using the thermodynamic data are presented. Critical information lacking from the thermodynamic database is identified. 55 refs., 2 figs., 3 tabs.

  18. Determination of molecular weights of humic substances by analytical (UV scanning) ultracentrifugation

    SciTech Connect

    Reid, P.M.; Wilkinson, A.E.; Tipping, E.; Jones, M.N. Freshwater Biological Association, Ambleside, Cumbria )

    1990-01-01

    Samples of peat humic acid (PHA) and surface water humic (WBHA) and fulvic (WBFA) acids have been extracted from Whitray Beck in North Yorkshire, U.K. The molecular weights of the extracts have been investigated by sedimentation equilibrium using an analytical ultracentrifuge equipped with a UV scanning system. The system allows measurements to be made at low concentrations of humic substances, comparable to those existing in natural humic-rich water. A method is described for correcting UV scanning data for changes in the optical properties of the materials with changing molecular weight. Measurements have also been made on reference samples of Suwannee river humic (SRHA) and fulvic (SRFA) acids from the International Humic Substances Society (IHSS). The weight-average moleuclar weights of the extracted samples range from approximately 2,000 to 17,000 and follow a series PHA > WBHA > WBFA. Apparent specific volumes of these materials were in a range from 0.45 to 0.58 cm{sup 3} g{sup {minus}1} as measured by digital densimetry. Al the samples studied were analysed by gel filtration, but the molecular weights determined by this method based on a globular protein calibration are not in good accord with the absolute determinations by the sedimentation-equilibrium technique. The molecular weight of the SRHA determined by sedimentation equilibrium is in good agreement with that reported by BECKETT (1987) et al., based on flow field-flow fractionation.

  19. Determination of molecular weights of humic substances by analytical (UV scanning) ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Reid, Patrick M.; Wilkinson, Alan E.; Tipping, Edward; Jones, Malcolm N.

    1990-01-01

    Samples of peat humic acid (PHA) and surface water humic (WBHA) and fulvic (WBFA) acids have been extracted from Whitray Beck in North Yorkshire, U.K. The molecular weights of the extracts have been investigated by sedimentation equilibrium using an analytical ultracentrifuge equipped with a UV scanning system. The system allows measurements to be made at low concentrations of humic substances, comparable to those existing in natural humic-rich water. A method is described for correcting UV scanning data for changes in the optical properties of the materials with changing molecular weight. Measurements have also been made on reference samples of Suwannee river humic (SRHA) and fulvic (SRFA) acids from the International Humic Substances Society (IHSS). The weight-average molecular weights of the extracted samples range from approximately 2000 to 17000 and follow a series PHA > WBHA > WBFA. Apparent specific volumes of these materials were in a range from 0.45 to 0.58 cm 3 g -1 as measured by digital densimetry. All the samples studied were analysed by gel filtration, but the molecular weights determined by this method based on a globular protein calibration are not in good accord with the absolute determinations by the sedimentation-equilibrium technique. The molecular weight of the SRHA determined by sedimentation equilibrium is in good agreement with that reported by BECKETT (1987) et al., based on flow field-flow fractionation.

  20. Fouling of enhanced biological phosphorus removal-membrane bioreactors by humic-like substances.

    PubMed

    Poorasgari, Eskandar; König, Katja; Fojan, Peter; Keiding, Kristian; Christensen, Morten Lykkegaard

    2014-12-01

    Fouling by free extracellular polymeric substances was studied in an enhanced biological phosphorus removal-membrane bioreactor. It was demonstrated that the free extracellular polymeric substances, primarily consisting of humic-like substances, were adsorbed to the membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant. Infrared analyses indicated the presence of the humic-like substances on the membrane's active surface after filtration of the free extracellular polymeric substances suspension. Scanning electron microscopy showed the presence of a gel layer on the membrane surface after filtration of the free extracellular polymeric substances suspension. The gel layer caused a significant decline in water flux. This layer was not entirely removed by a backwashing, and the membrane's water flux could not be re-established. The membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant showed infrared spectra similar to that fouled by the free extracellular polymeric substances suspension in the laboratory. Thus, the results of this study show the importance of humic-like substances in irreversible fouling of enhanced biological phosphorus removal-membrane bioreactor systems. PMID:25014564

  1. Formation and loss of humic substances during decomposition in a pine forest floor

    USGS Publications Warehouse

    Qualls, R.G.; Takiyama, A.; Wershaw, R. L.

    2003-01-01

    Since twice as much C is sequestered in soils as is contained in the atmosphere, the factors controlling the decomposition rate of soil C are important to the assessment of the effects of climatic change. The formation of chemically resistant humic substances might be an important process controlling recycling of CO2 to the atmosphere. Our objectives were to measure the rate of formation and loss of humic substances during 13 yr of litter decomposition. We placed nets on the floor of a white pine (Pinus strobus) forest to separate each annual layer of litter for 13 yr and measured humic substance concentration using NaOH extraction followed by chromatographic fractionation. The humic acid fraction increased from 2.1% of the C in litterfall to 15.7% after 1 yr. On a grams per square meter (g m-2) basis the humic substance fraction increased during the first year and then declined, with a half decay time (t1/2) of 5.1 yr, which was significantly slower than the bulk litter (t1/2 = 3.9 yr). The carboxylic C concentration estimated from 13C nuclear magnetic resonance (NMR) increased in the litter over time, though total mass of carboxylic acid C in the forest floor also declined over the 13-yr period (t1/2 = 4.6 yr). While humic substances in the forest floor decomposed at a somewhat slower rate than bulk litter during Years 1 to 13, they decomposed much faster than has been calculated from 14C dating of the refractory fraction of organic matter in the mineral soil.

  2. Mechanisms for the suppression of methane production in peatland soils by a humic substance analog

    NASA Astrophysics Data System (ADS)

    Ye, R.; Keller, J. K.; Jin, Q.; Bohannan, B. J. M.; Bridgham, S. D.

    2014-01-01

    Methane (CH4) production is often impeded in many northern peatland soils, although inorganic terminal electron acceptors (TEAs) are usually present in low concentrations in these soils. Recent studies suggest that humic substances in wetland soils can be utilized as organic TEAs for anaerobic respiration and may directly inhibit CH4 production. Here we utilize the humic analog anthraquinone-2, 6-disulfonate (AQDS) to explore the importance of humic substances, and their effects on the temperature sensitivity of anaerobic decomposition, in two peatland soils. In a bog peat, AQDS was not instantly utilized as a TEA, but greatly inhibited the fermentative production of acetate, carbon dioxide (CO2), and hydrogen (H2), as well as CH4 production. When added together with glucose, AQDS was partially reduced after a lag period of 5 to 10 days. In contrast, no inhibitory effect of AQDS on fermentation was found in a fen peat and AQDS was readily reduced as an organic TEA. The addition of glucose and AQDS to both bog and fen peats caused complicated temporal dynamics in the temperature sensitivity of CH4 production, reflecting temporal changes in the temperature responses of other carbon processes with effects on methanogenesis. Our results show that the humic analog AQDS can act both as an inhibitory agent and a TEA in peatland soils. The high concentrations of humic substances in northern peatlands may greatly influence the effect of climate change on soil carbon cycling in these ecosystems.

  3. Characteristics of Soil Humic Substances as Determined by Conventional and Synchrotron Fourier Transform Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, S.; Song, X. Y.; Wang, N.; Li, C. X.; Wang, W.; Zhang, J. J.

    2014-11-01

    Humic substances (HS) play an important role in soil fertility and carbon sequestration in soil. The structural characteristics of soil HS, extracted from two natural soils and a laboratory-incubated soil, were investigated by conventional beamline-based Fourier transform infrared radiation (CB-FTIR), a common FTIR technique based on a conventional thermal source, and synchrotron radiation-based (SR-FTIR) spectroscopy. The relative area of absorbance peaks that appeared at 2930, 2860, 1711, and 1635 cm-1 were calculated to make a comparison of the absorbance intensities. The absorption of aromatic functional groups of HS was stronger in SR-FTIR spectroscopy than in CB-FTIR spectroscopy. Compared with humic acid extracted with a 0.1 mol/l Na4P2O7 solution, the level of aliphaticity in humic acid extracted with a 0.1 mol/l NaOH solution was higher. The aliphaticity of humin associated with clay (HMc) was higher than that of humin associated with iron (HMi). These results suggest that SR-FTIR spectroscopy is a useful and nondestructive technique to study the structural characteristics of soil humic substances. Sequential extraction of soil humic substances with NaOH and Na4P2O7 solutions may be helpful in providing additional information in cases where differences in the material obtained from different extraction solutions occur. The aliphaticity and complexity of HMc were higher than those of HMi.

  4. Investigation of metal ions binding of humic substances using fluorescence emission and synchronous-scan spectroscopy.

    PubMed

    Piana, M J; Zahir, K O

    2000-01-01

    The binding site interactions of IHSS humic substances, Suwannee River Humic Acid, Suwannee River Fulvic Acid, Nordic Fulvic Acid, and Aldrich Humic Acid with various metals ions and a herbicide, methyl viologen were investigated using fluorescence emission and synchronous-scan spectroscopy. The metal ions used were, Fe(III), Cr(III), Cr(VI), Pb(II), Cu(II) and Ni(II). Stern-Volmer constants, Ksv for these quenchers were determined at pH 4 and 8 using an ionic strength of 0.1 M. For all four humic substances, and at both pH studied, Fe(III) was found to be the most efficient quencher. Quenching efficiency was found to be 3-10 times higher at pH 8. The bimolecular quenching rate constants were found to exceed the maximum considered for diffusion controlled interactions, and indicate that the fluorophore and quencher are in close physical association. Synchronous-scan spectra were found to change with pH and provided useful information on binding site interactions between humic substances and these quenchers. PMID:10693057

  5. Modeling electrostatic and heterogeneity effects on proton dissociation from humic substances

    USGS Publications Warehouse

    Tipping, E.; Reddy, M.M.; Hurley, M.A.

    1990-01-01

    The apparent acid dissociation constant of humic substances increases by 2-4 pK units as ionization of the humic carboxylate groups proceeds. This change in apparent acid strength is due in part to the increase in electrical charge on the humic molecules as protons are shed. In addition, proton dissociation reactions are complicated because humic substances are heterogeneous with respect to proton dissociating groups and molecular size. In this paper, we use the Debye-Hu??ckel theory to describe the effects of electrostatic interactions on proton dissociation of humic substances. Simulations show that, for a size-heterogeneous system of molecules, the weight-average molecular weight is preferable to the number-average value for averaging the effects of electrostatic interactions. Analysis of published data on the proton dissociation of fulvic acid from the Suwannee River shows that the electrostatic interactions can be satisfactorily described by a hypothetical homogeneous compound having a molecular weight of 1000 (similar to the experimentally determined weight-average value). Titration data at three ionic strengths, for several fulvic acid concentrations, and in the pH range from 2.9 to 6.4 can be fitted with three adjustable parameters (pK??int values), given information on molecular size and carboxylate group content. ?? 1990 American Chemical Society.

  6. Dissolution and Mobilization of Uranium in a Reduced Sediment by Natural Humic Substances under Anaerobic Conditions

    SciTech Connect

    Gu, Baohua; Luo, Wensui

    2009-01-01

    Biological reduction and precipitation of uranium (U) has been proposed as a remedial option for immobilizing uranium at contaminated sites, but the long-term stability and mobility of uranium remain a concern because it is neither removed nor destroyed. In this study, the dissolution and mobilization of reduced and oxidized forms of uranium [U(IV) and U(VI)] by natural humic substances were investigated in batch and column flow systems using a bioreduced sediment containing both U(IV) and U(VI). The addition of humic substances significantly increased the dissolution of U(IV) under anaerobic conditions. Humic acid (HA) was found to be more effective than fulvic acid (FA) in dissolving U(IV) in either 1 mM KCl or KHCO3 background solution. However, more U(VI) was dissolved in 1 mM KHCO3 than in 1 mM KCl background electrolytes. The HA also was found to be more effective than FA in mobilizing uranium under reducing and column flow conditions, although an accumulative amount of eluted U(VI) and U(IV) was relatively low (<60 g) after leaching with ~97 pore volumes of the humic solution in 1 mM KHCO3. These observations suggest that natural humic substances could potentially influence the long-term stability of bioreduced U(IV) even under strong reducing environments.

  7. Isotope-Filtered 4D NMR Spectroscopy for Structure Determination of Humic Substances**

    PubMed Central

    Bell, Nicholle G A; Michalchuk, Adam A L; Blackburn, John W T; Graham, Margaret C; Uhrín, Dušan

    2015-01-01

    Humic substances, the main component of soil organic matter, could form an integral part of green and sustainable solutions to the soil fertility problem. However, their global-scale application is hindered from both scientific and regulatory perspectives by the lack of understanding of the molecular make-up of these chromatographically inseparable mixtures containing thousands of molecules. Here we show how multidimensional NMR spectroscopy of isotopically tagged molecules enables structure characterization of humic compounds. We illustrate this approach by identifying major substitution patterns of phenolic aromatic moieties of a peat soil fulvic acid, an operational fraction of humic substances. Our methodology represents a paradigm shift in the use of NMR active tags in structure determination of small molecules in complex mixtures. Unlike previous tagging methodologies that focused on the signals of the tags, we utilize tags to directly probe the identity of the molecules they are attached to. PMID:26036217

  8. Influence of humic substances on plant-microbes interactions in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Puglisi, Edoardo; Pascazio, Silvia; Spaccini, Riccardo; Crecchio, Carmine; Trevisan, Marco; Piccolo, Alessandro

    2013-04-01

    Humic substances are known to play a wide range of effects on the physiology of plant and microbes. This is of particular relevance in the rhizosphere of terrestrial environments, where the reciprocal interactions between plants roots, soil constituents and microorganisms strongly influence the plants acquisition of nutrients. Chemical advances are constantly improving our knowledge on humic substances: their supra-molecular architecture, as well as the moltitude of their chemical constituents, many of which are biologically active. An approach for linking the structure of humic substances with their biological activity in the rhizosphere is the use of rhizoboxes, which allow applying a treatment (e.g., an amendment with humic substances) in an upper soil-plant compartment and take measurements in a lower isolated rhizosphere compartment that can be sampled at desired distances from the rhizoplane. This approach can be adopted to assess the effects of several humic substances, as well as composted materials, on maize plants rhizodeposition of carbon, and in turn on the structure and activity of rhizosphere microbial communities. In order to gain a complete understanding of processes occurring in the complex soil-plant-microorganisms tripartite system, rhizobox experiments can be coupled with bacterial biosensors for the detection and quantification of bioavailable nutrients, chemical analyses of main rhizodeposits constituents, advanced chemical characterizations of humic substances, DNA-fingerprinting of microbial communities, and multivariate statistical approaches to manage the dataset produced and to infer general conclusions. By such an approach it was found that humic substances are significantly affecting the amount of carbon deposited by plant roots. This induction effect is more evident for substances with more hydrophobic and complex structure, thus supporting the scientific hypothesis of the "microbial loop model", which assumes that plants feed

  9. Reactions of hydroxyl radical with humic substances: bleaching, mineralization, and production of bioavailable carbon substrates.

    PubMed

    Goldstone, J V; Pullin, M J; Bertilsson, S; Voelker, B M

    2002-02-01

    In this study, we examine the role of the hydroxyl (OH*) radical as a mechanism for the photodecomposition of chromophoric dissolved organic matter (CDOM) in sunlit surface waters. Using gamma-radiolysis of water, OH* was generated in solutions of standard humic substances in quantities comparable to those produced on time scales of days in sunlit surface waters. The second-order rate coefficients of OH* reaction with Suwannee River fulvic (SRFA; 2.7 x 10(4) s(-1) (mg of C/L)(-1)) and humic acids (SRHA; 1.9 x 10(4) s(-1) (mg of C/L)(-1)) are comparable to those observed for DOM in natural water samples and DOM isolates from other sources but decrease slightly with increasing OH* doses. OH* reactions with humic substances produced dissolved inorganic carbon (DIC) with a high efficiency of approximately 0.3 mol of CO2/mol of OH*. This efficiency stayed approximately constant from early phases of oxidation until complete mineralization of the DOM. Production rates of low molecular weight (LMW) acids including acetic, formic, malonic, and oxalic acids by reaction of SRFA and SRHA with OH* were measured using HPLC. Ratios of production rates of these acids to rates of DIC production for SRHA and for SRFA were similar to those observed upon photolysis of natural water samples. Bioassays indicated that OH* reactions with humic substances do not result in measurable formation of bioavailable carbon substrates other than the LMW acids. Bleaching of humic chromophores by OH* was relatively slow. Our results indicate that OH* reactions with humic substances are not likely to contribute significantly to observed rates of DOM photomineralization and LMW acid production in sunlit waters. They are also not likely to be a significant mechanism of photobleaching except in waters with very high OH* photoformation rates. PMID:11871550

  10. Covalent binding of aniline to humic substances. 1. Kinetic studies

    USGS Publications Warehouse

    Weber, E.J.; Spidle, D.L.; Thorn, K.A.

    1996-01-01

    The reaction kinetics for the covalent binding of aniline with reconstituted IHSS humic and fulvic acids, unfractionated DOM isolated from Suwannee River water, and whole samples of Suwannee River water have been investigated. The reaction kinetics in each of these systems can be adequately described by a simple second-order rate expression. The effect of varying the initial concentration of aniline on reaction kinetics suggested that approximately 10% of the covalent binding sites associated with Suwannee River fulvic acid are highly reactive sites that are quickly saturated. Based on the kinetic parameters determined for the binding of aniline with the Suwannee River fulvic and humic acid isolates, it was estimated that 50% of the aniline concentration decrease in a Suwannee River water sample could be attributed to reaction with the fulvic and humic acid components of the whole water sample. Studies with Suwannee River fulvic acid demonstrated that the rate of binding decreased with decreasing pH, which parallels the decrease in the effective concentration of the neutral form, or reactive nucleophilic species of aniline. The covalent binding of aniline with Suwannee River fulvic acid was inhibited by prior treatment of the fulvic acid with hydrogen sulfide, sodium borohydride, or hydroxylamine. These observations are consistent with a reaction pathway involving nucleophilic addition of aniline to carbonyl moieties present in the fulvic acid.

  11. A new application of humic substances: activation of supports for invertase immobilization.

    PubMed

    Rosa, A H; Vicente, A A; Rocha, J C; Trevisan, H C

    2000-12-01

    Invertase was immobilized on aminopropyl silica (APTS-SiO2) activated with humic substances (APTS-SiO2-HS) and on aminopropyl silica activated with glutaraldehyde (APTS-SiO2-GA). The resulting activity of both systems was compared. Humic substances (HS) used for the activation of the silica were extracted from soil of Cananéia, São Paulo State, Brazil, according to the procedure recommended by the International Humic Substances Society. Activity was determined by measuring the rate of formation of reduced sugars using the reaction with dinitrosalicylic acid (DNS). The amount of HS bound on the APTS-SiO2 was equal to 50 mg. The maximum amount of invertase immobilized on APTS-SiO2-HS was 15,200 U/g while in the system APTS-SiO2-GA it was 13,400 U/g. The experimental enzymatic activity was 3,700 and 3,300 U/g, for the systems APTS-SiO2-HS and APTS-SiO2-GA, respectively. Considering the increased amount and activity of immobilized enzyme compared with the glutaraldehyde method, it was concluded that this technique opens a new perspective in the preparation of supports for enzyme immobilization employing humic substances. PMID:11227556

  12. EFFECTS OF HUMIC SUBSTANCES ON ATTENUATION OF METALS: BIOAVAILABILITY AND MOBILITY IN SOIL

    EPA Science Inventory

    Humic substances play vastly important roles in metal behavior in a wide variety of environments. They can affect the mobility and bioavailability of metals by binding and sequestration thereby decreasing the mobility of a metal. They can also transport metals into solution or ...

  13. COMPARISON OF PHOTOCHEMICAL BEHAVIOR OF VARIOUS HUMIC SUBSTANCES IN WATER: II. PHOTOSENSITIZED OXYGENATIONS

    EPA Science Inventory

    The photochemical oxygenation of 2, 5-dimethylfuran (DMF) in water was studied under a variety of reaction conditions employing various humic substances as photosensitizers. As predicted by theory, the reactions at low DMF concentrations were first order with respect to DMF, and ...

  14. TRICHLOROETHYLENE ADSORPTION BY ACTIVATED CARBON PRELOADED WITH HUMIC SUBSTANCES: EFFECTS OF SOLUTION CHEMISTRY. (R828157)

    EPA Science Inventory

    Abstract

    Trichloroethylene (TCE) adsorption by activated carbon previously loaded ("preloaded") with humic substances was found to decrease with increasing concentrations of monovalent ions (NaCl), calcium (until solubility was exceeded), or dissolved oxygen in...

  15. Clay surface catalysis of formation of humic substances: potential role of maillard reactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms of the formation of humic substances are poorly understood, especially the condensation of amino acids and reducing sugars products (Maillard reaction) in soil environments. Clay minerals behave as Lewis and Brönsted acids and catalyze several reactions and likely to catalyze the Mai...

  16. Humic substances and nitrogen-containing compounds from low rank brown coals

    SciTech Connect

    Demirbas, A.; Kar, Y.; Deveci, H.

    2006-03-15

    Coal is one of the sources of nitrogen-containing compounds (NCCs). Recovery of NCCs from brown coals in high yield was carried out from tars of stepwise semicoking of brown coals. Humic acids have been shown to contain many types of nitrogen compounds. Humic acids are thought to be complex aromatic macromolecules with amino acids, amino sugars, peptides, and aliphatic compounds that are involved in the linkages between the aromatic groups. Humic acids extracted from peats, brown coals, and lignites, are characterized using different techniques. Humic substances (HSs) have several known benefits to agriculture. The properties of humic substances vary from source to source, because they are heterogeneous mixtures of biochemical degradation products from plant and animal residues, and synthesis activities of microorganisms. HSs have been considered to be a significant floculant in surface water filtration plants for the production of drinking water as well as the processing of water. HSs are produced from chemical and biological degradation of plant and animal residues and from synthetic activities of microorganisms.

  17. Determination of electrophoretic mobilities and hydrodynamic radii of three humic substances as a function of pH and ionic strength.

    PubMed

    Hosse, M; Wilkinson, K J

    2001-11-01

    Capillary electrophoresis (CE) and fluorescence correlation spectroscopy (FCS) were employed to determine electrophoretic mobilities and hydrodynamic sizes of three humic substances (IHSS aquatic fulvic acid (FA), IHSS aquatic humic acid (HA), and IHSS peat humic acid (PHA)) as a function of pH and ionic strength. A slight aggregation corresponding to the formation of dimers and trimers was observed at low pH using fluorescence correlation spectroscopy (FCS). For example, for the peat humic acid, diffusion coefficients decreased from 2.1 x 10(-10) m2 s(-1) at pH 4 to 2.4 x 10(-10) m2 s(-1) at pH 11. For all three humic substances, electrophoretic mobilities were also shown to decrease significantly below pH 6. Calculated zeta potentials observed at high pH of -69 mV (FA), -62 mV (HA), and -63 mV (PHA) decreased to -39, -50, and -47 mV, respectively, under slightly acidic pH (4.5-4.8) conditions. No evidence of ionic strength induced aggregation was found using fluorescence correlation spectroscopy (FCS); diffusion coefficients increased slightly (<25%) with increasing ionic strength (up to 1 M). Negative electrophoretic mobilities decreased to a maximum measured ionic strength of 0.18 M. Above this ionic strength, no peaks were observed due to an increased HS adsorption to the capillary wall and an important decrease in electroosmotic flow. Interpretation of electrophoretic mobilities determined by CE is complicated by the fact that under certain conditions, HS appeared to be complexed by CE buffer systems, including MES, BES, and AMPSO. PMID:11718346

  18. Coating of AFM probes with aquatic humic and non-humic NOM to study their adhesion properties.

    PubMed

    Aubry, Cyril; Gutierrez, Leonardo; Croue, Jean Philippe

    2013-06-01

    Atomic force microscopy (AFM) was used to study interaction forces between four Natural Organic Matter (NOM) samples of different physicochemical characteristics and origins and mica surface at a wide range of ionic strength. All NOM samples were strongly adsorbed on positively charged iron oxide-coated silica colloidal probe. Cross-sectioning by focused ion beam milling technique and elemental mapping by energy-filtered transmission electron microscopy indicated coating completeness of the NOM-coated colloidal probes. AFM-generated force-distance curves were analyzed to elucidate the nature and mechanisms of these interacting forces. Electrostatics and steric interactions were important contributors to repulsive forces during approach, although the latter became more influential with increasing ionic strength. Retracting force profiles showed a NOM adhesion behavior on mica consistent with its physicochemical characteristics. Humic-like substances, referred as the least hydrophilic NOM fraction, i.e., so called hydrophobic NOM, poorly adsorbed on hydrophilic mica due to their high content of ionized carboxyl groups and aromatic/hydrophobic character. However, adhesion force increased with increasing ionic strength, suggesting double layer compression. Conversely, polysaccharide-like substances showed high adhesion to mica. Hydrogen-bonding between hydroxyl groups on polysaccharide-like substances and highly electronegative elements on mica was suggested as the main adsorption mechanism, where the adhesion force decreased with increasing ionic strength. Results from this investigation indicated that all NOM samples retained their characteristics after the coating procedure. The experimental approach followed in this study can potentially be extended to investigate interactions between NOM and clean or fouled membranes as a function of NOM physicochemical characteristics and solution chemistry. PMID:23587263

  19. Effect of compost amendment on soil organic matter and humic substances

    NASA Astrophysics Data System (ADS)

    Roca-Pérez, L.; Gil, C.; Jurado, M.; Pons, V.; Boluda, R.

    2009-04-01

    Organic soil amendments are increasingly being examined for their potential use to improve soil functions and quality. We studied the effect of compost amendment on soil organic matter (SOM) and humic substances. The study was carried out on Luvic Calcisol in the Valencian Community (East Spain) used as a citrus fruit orchard. Four plots were amended at dose 0, 6, 12 and 36 Mg ha-1 of rice residue and sewage sludge compost. Seven soil samples for each treatment at depths of 0-10 and 10-20 cm were taken in the first seven months after application. Soil characteristics, SOM, mineral nitrogen, total nitrogen, NH4+-N, and fulvic and humic acids were determined. The results demonstrated that the use of organic compost considerably increases SOM, total nitrogen and the humic substances such as the applied dose. The level of humic substances remained without significant variations during the experimental period. The dose of 36 Mg ha-1 proved the most efficient. We would like to thank Spanish government-MICINN for partial funding and support (MIMAN project 4.3-141/2005/3-B and MICINN project CGL2006-09776).

  20. Sorption of metal ions on lignite and the derived humic substances.

    PubMed

    Havelcová, Martina; Mizera, Jirí; Sýkorová, Ivana; Pekar, Miloslav

    2009-01-15

    The study presents results of sorption of metal ions (Pb2+, Zn2+, Cu2+, and Cd2+) onto lignite mined in South Moravia, Czech Republic, and solid humic substances (humin and humic acid) derived from it. The efficiency of these sorbents has been studied as a function of contact time, solution pH, and metal concentration. The sorption efficiencies were higher for humin and lower for humic acid samples than for the original lignite. With its high sorption capacities of several mmol/g, particularly for Pb2+ and Cd2+, the South Moravian lignite can provide a cheap source material for preparation of sorbents utilizable in removal of toxic metals from wastewaters. PMID:18490104

  1. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants

    PubMed Central

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-01-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established. PMID:26862010

  2. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants.

    PubMed

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-01-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established. PMID:26862010

  3. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants

    NASA Astrophysics Data System (ADS)

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-02-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established.

  4. Distinguishing black carbon from biogenic humic substances in soil clay fractions

    USGS Publications Warehouse

    Laird, D.A.; Chappell, M.A.; Martens, D.A.; Wershaw, R. L.; Thompson, M.

    2008-01-01

    Most models of soil humic substances include a substantial component of aromatic C either as the backbone of humic heteropolymers or as a significant component of supramolecular aggregates of degraded biopolymers. We physically separated coarse (0.2-2.0????m e.s.d.), medium (0.02-0.2????m e.s.d.), and fine (> 0.02????m e.s.d.) clay subfractions from three Midwestern soils and characterized the organic material associated with these subfractions using 13C-CPMAS-NMR, DTG, SEM-EDX, incubations, and radiocarbon age. Most of the C in the coarse clay subfraction was present as discrete particles (0.2-5????m as seen in SEM images) of black carbon (BC) and consisted of approximately 60% aromatic C, with the remainder being a mixture of aliphatic, anomeric and carboxylic C. We hypothesize that BC particles were originally charcoal formed during prairie fires. As the BC particles aged in soil their surfaces were oxidized to form carboxylic groups and anomeric and aliphatic C accumulated in the BC particles either by adsorption of dissolved biogenic compounds from the soil solution or by direct deposition of biogenic materials from microbes living within the BC particles. The biogenic soil organic matter was physically separated with the medium and fine clay subfractions and was dominated by aliphatic, anomeric, and carboxylic C. The results indicate that the biogenic humic materials in our soils have little aromatic C, which is inconsistent with the traditional heteropolymer model of humic substances.

  5. How humic substances dominate mercury geochemistry in contaminated floodplain soils and sediments

    SciTech Connect

    Wallschlaeger, D.; Desai, M.V.M.; Spengler, M.; Windmoeller, C.C.; Wilken, R.D.

    1998-09-01

    The interaction of mercury (Hg) and humic substances (hs) was studied in floodplain topsoils and surface sediments of the contaminated German river Elbe. An intimate coupling exists between the geochemical cycles of Hg and organic carbon (OC) in this ecosystem. Humic substances exert a dominant influence on several important parallel geochemical pathways of Hg, including binding, transformation, and transport processes. Significant differences exist between the Hg-hs associations in floodplains and sediments. Both humic acids (ha) and fulvic acids (fa) contribute to Hg binding in the sediments. In contrast, ultrafiltration experiments proved that Hg in the floodplain soils is almost exclusively bound to very large humic acids (ha) with a nominal molecular weight (MW) > 300,000. Successive cation and anion exchange experiments demonstrated that those Hg-ha complexes are inert toward competition by other cations, and also apparently predominantly electroneutral. Speciation transformation reactions in the solid phase were investigated by sequential extraction and thermal release experiments. Upon addition of Hg model compounds to a sediment matrix, all species were transformed to the same new speciation pattern, regardless of their original speciation. The accompanying alterations in availability and solubility were partially due to interconversion between the different Hg redox states, including Hg(I). Simultaneously, partial transformation of added Hg{sup 2+} into volatile Hg compounds (35% in 10 d) was observed. Finally, Hg association with water-soluble ha continuously increased downstream, indicating that hs play a key role in both lateral and longitudinal Hg transport in the Elbe ecosystem.

  6. Comparative evaluation of humic substances in oral drug delivery.

    PubMed

    Mirza, Mohd Aamir; Ahmad, Niyaz; Agarwal, Suraj Prakash; Mahmood, Danish; Khalid Anwer, M; Iqbal, Z

    2011-05-01

    Major and biologically most explored components of natural organic matter (NOM) are humic acid (HA) and fulvic acid (FA). We have explored rock shilajit as a source of NOM. On the other hand carbamazepine (CBZ) is a well known anticonvulsant drug and has a limited accessibility to brain. Bioavailability and pharmacokinetic profiles of CBZ have been improved by complexation and different techniques also. Present study has assessed the comparative abilities of FA and HA as complexing agent for CBZ in order to enhance pharmacokinetic profile of CBZ and accessibility to the brain. These two complexing agents have been compared on various indices such as their abilities to cause complexation and enhance solubility, permeability and dissolution. The present study also compared pharmacodynamic and biochemical profiles after oral administration of complexes. With the help of various pharmaceutical techniques such as freeze drying, physical mixture, kneading and solvent evaporation, two molar ratios (1:1 and 1:2) were selected for complexation and evaluated for conformational analysis (molecular modeling). Complex formed was further characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), mass spectroscopy and X-ray diffraction (XRD). Preclinical study on rodents with CBZ-HA and CBZ-FA has yielded appreciable results in terms of their anticonvulsant and antioxidants activities. However, CBZ-HA (1:2) demonstrated better result than any other complex. PMID:25755978

  7. Comparative evaluation of humic substances in oral drug delivery

    PubMed Central

    Mirza, Mohd. Aamir; Ahmad, Niyaz; Agarwal, Suraj Prakash; Mahmood, Danish; Khalid Anwer, M.; Iqbal, Z.

    2011-01-01

    Major and biologically most explored components of natural organic matter (NOM) are humic acid (HA) and fulvic acid (FA). We have explored rock shilajit as a source of NOM. On the other hand carbamazepine (CBZ) is a well known anticonvulsant drug and has a limited accessibility to brain. Bioavailability and pharmacokinetic profiles of CBZ have been improved by complexation and different techniques also. Present study has assessed the comparative abilities of FA and HA as complexing agent for CBZ in order to enhance pharmacokinetic profile of CBZ and accessibility to the brain. These two complexing agents have been compared on various indices such as their abilities to cause complexation and enhance solubility, permeability and dissolution. The present study also compared pharmacodynamic and biochemical profiles after oral administration of complexes. With the help of various pharmaceutical techniques such as freeze drying, physical mixture, kneading and solvent evaporation, two molar ratios (1:1 and 1:2) were selected for complexation and evaluated for conformational analysis (molecular modeling). Complex formed was further characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), mass spectroscopy and X-ray diffraction (XRD). Preclinical study on rodents with CBZ–HA and CBZ–FA has yielded appreciable results in terms of their anticonvulsant and antioxidants activities. However, CBZ–HA (1:2) demonstrated better result than any other complex. PMID:25755978

  8. The molecular properties of humic substances isolated from a UK upland peat system: a temporal investigation.

    PubMed

    Scott, M J; Jones, M N; Woof, C; Simon, B; Tipping, E

    2001-12-01

    The study concerns the possible changes in the molecular characteristics of humic materials isolated from the same source as a function of time. A great deal of data has been reported concerning the contrast in molecular characteristics of humic substances isolated from different environments. This has primarily been an attempt to identify source-specific molecular characteristics. However, data presented in this paper suggests that humic substances isolated from a single catchment have significant changes in molecular characteristics over time. Two naturally occurring peat pools (X and Y) situated upon a small organic catchment on Great Dun Fell, Cumbria, UK were sampled monthly between November 1994 and November 1996. Dissolved organic matter (DOM) from the pool water samples was fractionated using macroporous nonionic resins (XAD8 and 4), and the humic, fulvic and hydrophilic acids were collected. These fractions were analysed for elemental composition (C, H and N), weight average molecular weight, functional group content and adsorption (340 nm) of a 1 g l(-1) solution measured in a 1-cm spectrophotometer cell. The molecular characteristics were compared to those of natural DOM described by Scott et al. (1998). Scott et al. reported that drought conditions and seasonal climatic changes could have appreciable effects upon molecular characteristics of natural DOM. Results showed that the atomic H/C ratio of the humic substances increased immediately after strong drought conditions experienced in the summer of 1995. This change was temporary with atomic H/C ratio decreasing gradually over the following months. A similar decrease was observed in the carboxyl group content of the isolated compounds. The data set suggested that atomic H/C ratio in the fulvic and hydrophilic fractions exhibited seasonal characteristics of higher ratios during the late summer/early autumn months. This was not observed in the humic fraction. Humic acids exhibited a seasonal pattern of

  9. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration.

    PubMed

    Coates, John D; Cole, Kimberly A; Chakraborty, Romy; O'Connor, Susan M; Achenbach, Laurie A

    2002-05-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 x 10(1) in aquifer sediments to a high of 9.33 x 10(6) in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N(2). Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included

  10. Chemistry and potential mutagenicity of humic substances in waters from different watersheds in Britain and Ireland

    USGS Publications Warehouse

    Watt, B.E.; Malcolm, R.L.; Hayes, M.H.B.; Clark, N.W.E.; Chipman, J.K.

    1996-01-01

    Humic substances are amorphous organic macromolecules responsible for the hue of natural waters. They are also known to be precursors of mutagens formed on chlorination prior to distribution of drinking water. In this study humic substances from the waters of primary streams, from major rivers, and from reservoirs were isolated and fractionated into humic acids (HA), fulvic acids (FA) and XAD-4 acids using columns of XAD-8 and of XAD-4 resins in tandem, and the fractions from the different sources were chlorinated and assayed for mutagenicity. CPMAS 13C NMR spectroscopy showed marked differences in compositions not only between HA, FA, and XAD-4 acids from the same water samples, but also between the same fractions from water samples from different watersheds. There were found to be strong similarities between the fractions from watersheds which had closely related soil types. Aromaticity was greatest in HAs, and lowest in XAD-4 acids, and carboxyl contents and aliphatic character were greatest in the XAD-4 acids. Carbon content decreased in the order HA > FA > XAD-4 acids, and amino acids and neutral sugars contents decreased in the order HA > XAD-4 > FA. Titration data complemented aspects of the NMR data, demonstrating that carboxyl content decreased in the order XAD-4 acids > FA > HA, and indicated that phenolic character was highest in HAs and lowest in the XAD-4 acids. All samples tested gave rise to bacterial mutagens on chlorination. Although the mutagenicities were of the same order of magnitude for the chlorinated humic samples from the different sources, the samples which showed the greatest number of revertant bacterial colonies were from the Thames and Trent, large rivers with humic materials from diverse environments, and relatively high in amino acid contents.

  11. A comparison of dissolved humic substances from seawater with Amazon River counterparts by sup 13 C-NMR spectrometry

    SciTech Connect

    Hedges, J.I. ); Hatcher, P.G. ); Ertel, J.R. ); Meyers-Schulte, K.J. )

    1992-04-01

    Although dissolved organic matter (DOM) in seawater constitutes one of the major reservoirs of reduced carbon on earth, the biochemical and geographic origins of this material and its hydrophobic humic component remain unclear. Rivers have been suggested as a potentially important source of marine DOM, but this implication has not yet been systematically tested by direct comparisons of the bulk structural characteristics of DOM isolated from representative ocean reservoirs and their major river sources. The authors report here such a comparison and find that dissolved humic substances isolated from surface and deep seawater in the East Equatorial and north Central Pacific are enriched in nitrogen and {sup 13}C and depleted in unsaturated carbon with respect to counterparts from the Amazon River system. Based on these observations, riverine dissolved humic substances appear to comprise a small fraction of seawater humic substances and therefore must be efficiently and rapidly removed from the ocean.

  12. Metal distribution and spectroscopic analysis after soil washing with chelating agents and humic substances.

    PubMed

    Tsang, Daniel C W; Hartley, Neil R

    2014-03-01

    Biodegradable chelating agents ([S,S]-ethylenediamine-N,N-disuccinic acid (EDDS) and glutamic-N,N-diacetic acid (GLDA)) and natural humic substances (lignite-derived, standard, and commercially available humic acids) are potentially useful for enhancing soil remediation of timber treatment sites. This study integrated macroscopic and spectroscopic analyses to assess their influence on the distribution and chemical speciation of the remaining metals as well as their interaction with the soil surface after 48-h washing of a field-contaminated soil. The results demonstrated that EDDS and GLDA were an appealing alternative to non-biodegradable ethylenediamine-tetraacetic acid, but the three humic substances were less effective. As shown by sequential extractions, Cu was primarily extracted from the carbonate fraction while Cr and As extraction resulted from (co-)dissolution of the oxide fraction. As a result, the relative proportion of strongly bound organic matter and residual fractions increased by 7-16 %. However, it was noteworthy that the exchangeable fraction also increased by 5-11 %, signifying that a portion of the remaining metals was destabilized by chelating agents and transformed to be more labile in the treated soil. The X-ray photoelectron spectroscopy spectra confirmed the substantial removal of readily accessible Cu from the soil surface, but Cr maintained its original chemical forms of trivalent chromium oxides and iron-chromium coprecipitates, whereas As remained as arsenic trioxide/pentoxide and copper arsenate precipitates. On the other hand, the absence of characteristic peaks of adsorbed carboxylate groups in the Fourier-transform infrared (FTIR) spectra inferred that the extent of adsorption of chelating agents and humic substances on the bulk soil was insufficient to be characterized by FTIR analysis. These results suggested that attention should be paid to the exchangeable fraction of Cu and oxides/coprecipitates of As prior to possible on

  13. Use of solid-state 13C NMR in structural studies of humic acids and humin from Holocene sediments

    USGS Publications Warehouse

    Hatcher, P.G.; VanderHart, D.L.; Earl, W.L.

    1980-01-01

    13C NMR spectra of solid humic substances in Holocene sediments have been obtained using cross polarization with magic-angle sample spinning techniques. The results demonstrate that this technique holds great promise for structural characterizations of complex macromolecular substances such as humin and humic acids. Quantifiable distinctions can be made between structural features of aquatic and terrestrial humic substances. The aliphatic carbons of the humic substances are dominant components suggestive of input from lipid-like materials. An interesting resemblance is also noted between terrestrial humic acid and humin spectra. ?? 1980.

  14. Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions

    USGS Publications Warehouse

    Thorn, K.A.; Pettigrew, P.J.; Goldenberg, W.S.; Weber, E.J.

    1996-01-01

    Aromatic amines are known to undergo covalent binding with humic substances in the environment. Although previous studies have examined reaction conditions and proposed mechanisms, there has been no direct spectroscopic evidence for the covalent binding of the amines to the functional groups in humic substances. In order to further elucidate the reaction mechanisms, the Suwannee River and IHSS soil fulvic and humic acids were reacted with 15N-labeled aniline at pH 6 and analyzed using 15N NMR spectrometry. Aniline underwent nucleophilic addition reactions with the quinone and other carbonyl groups in the samples and became incorporated in the form of anilinohydroquinone, anilinoquinone, anilide, imine, and heterocyclic nitrogen, the latter comprising 50% or more of the bound amine. The anilide and anilinohydroquinone nitrogens were determined to be susceptible to chemical exchange by ammonia. In the case of Suwannee River fulvic acid, reaction under anoxic conditions and pretreatment with sodium borohydride or hydroxylamine prior to reaction under oxic conditions resulted in a decrease in the proportion of anilinohydroquinone nitrogen incorporated. The relative decrease in the incorporation of anilinohydroquinone nitrogen with respect to anilinoquinone nitrogen under anoxic conditions suggested that inter- or intramolecular redox reactions accompanied the nucleophilic addition reactions.

  15. In Situ Formation of Humic-like Substances In Model Cloud Water

    NASA Astrophysics Data System (ADS)

    Gelencsér, A.; Hoffer, A.; Kiss, G.; Tombácz, E.; Blazsó, M.; Bencze, L.

    It is now widely established that humic-like substances (HULIS) are ubiquitous con- stituents in continental fine aerosol. Several studies have confirmed that HULIS are abundant organic species in the aqueous extract of rural, urban and biomass burn- ing aerosol. We have recently suggested that such compounds may be secondary (ternary?) aerosol constituents which are formed in the condensed phase from a vast array of low volatility organic precursors of primary or secondary origin. However, no experimental evidence has ever confirmed that such polymerisation reactions can indeed take place within the limited residence time of the accumulation mode aerosol. Normally, humification processes are generally assumed to take years and require spe- cial microbial environment which is barely available aloft. We studied polymerisation reactions of aromatic hydroxy-acids in the laboratory in solutions modelling the condi- tions prevalent in cloud water. In the solutions OH radicals were generated in Fenton- type reactions. The course of the reaction was monitored by UV-VIS spectrophotom- etry and liquid chromatography. The reaction products were characterised by fluo- rescence spectrometry, liquid chromatography-mass spectrometry and pyrolysis- gas chromatography-mass spectrometry. By monitoring the absorbance of the simulated cloud solution we demonstrated that chemical reactions took place in the solution pro- ducing measurable concentrations of chromophoric substances within the order of a few hours. The recorded UV-VIS spectra of the reaction products were very similar to those which had been observed in aqueous extracts of rural fine aerosol as well as in aqueous solutions of terrestrial humic and fulvic acids. Electrospray-mass spectra of the reaction products revealed that they consisted of an array of molecular species with a continuous molecular weight distribution peaking at a few hundred Dalton. Such spectra were also found to be typical of terrestrial humic and

  16. Influence of biochar addition on the humic substances of composting manures.

    PubMed

    Jindo, Keiji; Sonoki, Tomonori; Matsumoto, Kazuhiro; Canellas, Luciano; Roig, Asunción; Sanchez-Monedero, Miguel A

    2016-03-01

    Application of biochar (10% v/v) to a manure composting matrix was investigated to evaluate its effect on the chemical composition of humic substances during the composting process. The characteristics of the humic acid (HA) and fulvic acid (FA) fractions were analyzed in compost mixtures originating from two different manures (poultry manure (PM) and cow manure (CM)). The C contents of HA and FA from the manure compost/biochar blends (PM+B and CM+B) were higher than those from PM and CM, with an enhanced recalcitrant fraction, as determined by thermogravimetric analysis. Spectroscopic analysis showed that enrichment of aromatic-C and carboxylic-C occurred in the FA fractions of PM+B and CM+B to a greater extent than in PM and CM. Biochar addition into the composting mixture improved the final compost quality, especially for the light humified fraction (FA). PMID:26786401

  17. Comparison of humic substances isolated from peatbog water by sorption on DEAE-cellulose and amberlite XAD-2

    USGS Publications Warehouse

    Hejzlar, J.; Szpakowska, B.; Wershaw, R. L.

    1994-01-01

    Aquatic humic substances (AHS) were isolated from peatbog water by adsorption (1) on diethylaminoethyl cellulose (DEAE-C) and (2) on Amberlite XAD-2 (XAD) to compare yields of the methods and the composition of the isolated AHS. To provide a detailed comparison, the isolates were fractionated using size-exclusion and hydrophobic-interaction chromatography on Sephadex G-50. The fractions were characterized by ultraviolet-visible, infrared and 13C-nuclear magnetic spectroscopies and analyzed for elemental, functional-group, carbohydrate and amino acid compositions. More AHS adsorbed onto DEAE-C than onto XAD-2 (94 and 74%, respectively). However, only 76% of the AHS adsorbed onto DEAE-C was recovered using 0.1 M NaOH, whereas 98% of the AHS adsorbed onto XAD was released by consecutive elution with 1 M NH4OH (91%) and methanol (7%). Four main fractions of different composition were obtained from each of the alkali-desorbed AHS samples by Sephadex-gel chromatography. General agreement was found in relative amounts, spectroscopic characteristics and composition of corresponding fractions of both isolates except nitrogen content, which was significantly higher in AHS isolated with XAD, apparently due to the reaction of AHS with NH4OH used for the desorption from the resin.Aquatic humic substances (AHS) were isolated from peatbog water by adsorption (1) on diethylaminoethyl cellulose (DEAE-C) and (2) on Amberlite XAD-2 (XAD) to compare yields of the methods and the composition of the isolated AHS. To provide a detailed comparison, the isolates were fractionated using size-exclusion and hydrophobic-interaction chromatography on Sephadex G-50. The fractions were characterized by ultraviolet-visible, infrared and 13C-nuclear magnetic spectroscopies and analyzed for elemental, functional-group, carbohydrate and amino acid compositions. More AHS adsorbed onto DEAE-C than onto XAD-2 (94 and 74%, respectively). However, only 76% of the AHS adsorbed onto DEAE-C was recovered

  18. Investigating Nitrate-Dependent Humic Substance Oxidation and In-Service K-12 Teachers' Understanding of Microbiology

    ERIC Educational Resources Information Center

    Jones, Nastassia N.

    2011-01-01

    Humic substances (HS) are the humified portions of totally decomposed soil organic matter that are ubiquitous in nature. Although these substances have been studied for more than 200 years, neither their metabolic capabilities nor a specific chemical structure has yet to be determined. HS have been studied as a carbon source in many environments…

  19. Anaerobic decomposition of humic substances by Clostridium from the deep subsurface

    PubMed Central

    Ueno, Akio; Shimizu, Satoru; Tamamura, Shuji; Okuyama, Hidetoshi; Naganuma, Takeshi; Kaneko, Katsuhiko

    2016-01-01

    Decomposition of humic substances (HSs) is a slow and cryptic but non-negligible component of carbon cycling in sediments. Aerobic decomposition of HSs by microorganisms in the surface environment has been well documented; however, the mechanism of anaerobic microbial decomposition of HSs is not completely understood. Moreover, no microorganisms capable of anaerobic decomposition of HSs have been isolated. Here, we report the anaerobic decomposition of humic acids (HAs) by the anaerobic bacterium Clostridium sp. HSAI-1 isolated from the deep terrestrial subsurface. The use of 14C-labelled polycatechol as an HA analogue demonstrated that the bacterium decomposed this substance up to 7.4% over 14 days. The decomposition of commercial and natural HAs by the bacterium yielded lower molecular mass fractions, as determined using high-performance size-exclusion chromatography. Fourier transform infrared spectroscopy revealed the removal of carboxyl groups and polysaccharide-related substances, as well as the generation of aliphatic components, amide and aromatic groups. Therefore, our results suggest that Clostridium sp. HSAI-1 anaerobically decomposes and transforms HSs. This study improves our understanding of the anaerobic decomposition of HSs in the hidden carbon cycling in the Earth’s subsurface. PMID:26743007

  20. The physico-chemical properties and biostimulative activities of humic substances regenerated from lignite.

    PubMed

    David, Jan; Smejkalová, Daniela; Hudecová, Sárka; Zmeškal, Oldřich; von Wandruszka, Ray; Gregor, Tomáš; Kučerík, Jiří

    2014-01-01

    The positive effect of humic acids on the growth of plant roots is well known, however, the mechanisms and role of their physical structure in these processes have not been fully explained yet. In this work, South-Moravian lignite was oxidized by means of nitric acid and hydrogen peroxide to produce a set of regenerated humic acids. The elemental composition, solid state stability and solution characteristics were determined and correlated in vitro with their biological activity. A modified hydroponic method was applied to determine the effects of their potassium salts on Zea mays seedlings roots with respect to the plant weight, root length, root division, and starch and protein content. The relations between the determined parameters were evaluated through Principal Component Analysis and Pearson's correlation coefficients. The results indicated that the most important factor determining the biological activity of South-Moravian lignite potassium humates is related to the nature of self-assemblies, while the chemical composition had no direct connection with the root growth of Zea mays seedlings. It was demonstrated a controlled processing that provided humic substances with different chemical and physicochemical properties and variable biological activity. PMID:24790812

  1. Fouling of a microfiltration membrane by humic-like substances: a mathematical approach to modelling permeate flux and membrane retention.

    PubMed

    Poorasgari, Eskandar; Farsi, Ali; Christensen, Morten Lykkegaard

    2016-01-01

    Membrane retention of the humic-like substances present in a soluble microbial products (SMP) suspension was studied by using a dead-end filtration system. The SMP suspension was extracted from the sludge of an enhanced biological phosphorus removal-membrane bioreactor. Our results showed that both adsorption and steric retention of the humic-like substances governed their transport through the membrane during the filtration. The adsorption, which followed pseudo-first order kinetics, did not cause substantial decline of permeate flux. The steric retention, on the other hand, formed a gel layer, which in turn led to a major decrease in the flux. The reduction of permeate flux was well predicted by cake filtration theory. Based on the adsorption and the steric retention, a new model was developed for predicting the overall membrane retention of the humic-like substances. The general trend of the modelled overall retention was in partial agreement with the experimental results. PMID:27332850

  2. Quantitative and mid-infrared changes of humic substances from burned soils.

    PubMed

    Vergnoux, A; Guiliano, M; Di Rocco, R; Domeizel, M; Théraulaz, F; Doumenq, P

    2011-02-01

    The humic substances are an abundant and important part of soil organic matter which plays many roles in ecosystems. On the other hand, forest fires are known to have a potential impact on the soil organic matter. Consequently, we chose to study the impact of forest fires on humic substances and the three relevant fractions, e.g. humic acids (HA), fulvic acids (FA) and non-humified fraction (NHF), NHF being the fulvic acids not adsorbed on XAD-8 resins. The studied site is a Mediterranean forest called "Maures Mountains", in France, where 30 sites were sampled in two layers: 0-5 and -5 to 15 cm. In order to validate the method, the 2 horizons from 5 sites randomly chosen were analyzed in triplicates. The extraction and fractionation procedures were achieved using alkali- and acid-solutions. The measurement of total organic carbon (TOC) using the TOC-meter and the use of Fourier transform infra-red (FTIR) spectroscopy gave us quantitative and qualitative results to evaluate the impact of forest fires and the role of their repetition. The results show that the fires led to significant decreases (Student test, P=0.05) of humic substances (HS), HA and of the fulvic fractions (FF=FA+NHF) in surface layers, corresponding to 40%, 34% and 35%, respectively. Moreover, the significant HA/FF ratio increases (Student test, P=0.05), as a result of the fire, indicate that NHF was probably transformed in FA-like compounds. About the qualitative impact, the results showed a significant decrease of alkyl and hydroxyl groups (OH), carboxylic acids and carbohydrates in HA after a wildfire, whereas the decrease was significant only for alkyl groups and carboxylic acids in FA. Lastly, the design of this work (control and burned sites, number of samples, time elapsed after fires, etc.) enables one to show the recovery of the Mediterranean forest ecosystem. FA quality and OH groups in HA are recovered between 3 and 16 years after the fire whereas alkyl groups, carboxylic acids and

  3. Study the properties of activated carbon and oxyhydroxide aluminum as sorbents for removal humic substances from natural waters

    NASA Astrophysics Data System (ADS)

    Shiyan, L. N.; Machekhina, K. I.; Gryaznova, E. N.

    2016-02-01

    The present work relates to the problem of high-quality drinking water supply using processes of adsorption on activated carbon and aluminum oxyhydroxide for removal humic- type organic substances. Also the paper reports on sorbtion properties of the activeted carbon Norit SA UF and oxyhydroxide aluminum for removal humic substances. It was found out that the maximum adsorption capacity of activated carbon to organic substances is equal to 0.25 mg/mg and aluminum oxyhydroxide is equal to 0.3 mg/mg. It is shown that the maximum adsorption capacity of activated carbon Norit SA UF to iron (III) ions is equal to 0.0045 mg/mg and to silicon ions is equal to 0.024 mg/mg. Consequently, the aluminum oxyhydroxide has better adsorption characteristics in comparison with the activated carbon for removal of humic substances, iron and silicon ions. It is associated with the fact that activated carbon has a large adsorption surface, and this is due to its porous structure, but not all molecules can enter into these pores. Therefore, the fibrous structure of aluminum oxyhydroxide promotes better sorption capacity. The presented results suggest that activated carbon Norit SA UF and aluminum oxyhydroxide can be used as sorbents for removal humic substances or other organic substances from groundwater and natural waters.

  4. Humic preperations from Russian lignites

    SciTech Connect

    Rodeh, V.V.; Ryzhkov, O.G.

    1994-12-31

    THe objective of this work was to study lignites as the precursor materials to humic substances. Lignites contain humic substances primarily as humic acids. Their extraction requires the processing of coals with alkali.

  5. Characterization and diagenesis of strong-acid carboxyl groups in humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, G.K.; Reddy, M.M.

    2003-01-01

    A small fraction of carboxylic acid functional groups in humic substances are exceptionally acidic with pKa values as low as 0.5. A review of acid-group theory eliminated most models and explanations for these exceptionally acidic carboxyl groups. These acidic carboxyl groups in Suwannee River fulvic acid were enriched by a 2-stage fractionation process and the fractions were characterized by elemental, molecular-weight, and titrimetric analyses, and by infrared and 13C- and 1H-nuclear magnetic resonance spectrometry. An average structural model of the most acidic fraction derived from the characterization data indicated a high density of carboxyl groups clustered on oxygen-heterocycle alicyclic rings. Intramolecular H-bonding between adjacent carboxyl groups in these ring structures enhanced stabilization of the carboxylate anion which results in low pKa1 values. The standard, tetrahydrofuran tetracarboxylic acid, was shown to have similar acidity characteristics to the highly acidic fulvic acid fraction. The end products of 3 known diagenetic pathways for the formation of humic substances were shown to result in carboxyl groups clustered on oxygen-heterocycle alicyclic rings.

  6. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    PubMed

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials. PMID:25977938

  7. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    PubMed Central

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials. PMID:25977938

  8. Fluorescence spectroscopy as a tool for quality assessment of humic substances

    NASA Astrophysics Data System (ADS)

    Boguta, Patrycja

    2016-04-01

    *The studies were partly carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545. Fluorescence spectroscopy belongs to modern, non-destructive, rapid and relatively cheap methods, as well as for many years it was successfully used in studies of organic compounds in the fields of medicine, biology and chemistry. On the other hand, soil organic matter is a group of compounds with a complex spatial structure showing a large number of groups with different kinds of fluorophores. This could suggest the possibility of application of fluorescence spectroscopy in assessing the quality of humic substances as well as in monitoring of their chemical transformations. The aim of study was chemical description of humic and fulvic acids based on fluorescence spectra, as well as an attempt of evaluation of changes occurring under the influence of different pH and during interactions with various concentrations of metal. The humic and fulvic acids were isolated from chemically different soils. The measurements were carried out on Hitachi fluorescence spectrometer in solutions with a concentration of humic acids 40mg dm-3, at pH from 3 to 7, and for the evaluation of the metal impact: with increasing Zn concentrations (0-50mg dm-3). The fluorescence spectra were recorded in the form of synchronous and emission-excitation matrices (EEM). Studies have shown the presence of different groups of fluorophores. Synchronous spectra were characterized by a well-separated bands showing fluorescence in the area of low, medium and high wavelengths, suggesting the presence of structures, both weakly and strongly humified. EEM spectra revealed map of fluorophores within wide ranges of emission and excitation. Fluorophores differed in both position and intensity. The highest intensity was observed for compounds with the lowest humification degree which might be due to high amount

  9. X-ray absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil humic substances

    SciTech Connect

    Xia, K.; Skyllberg, U.L.; Bleam, W.F.; Helmke, P.A.; Bloom, P.R.; Nater, E.A.

    1999-01-15

    Analysis of Hg(II) complexed by a soil humic acid (HA) using synchrotron-based X-ray absorption spectroscopy (XAS) revealed the importance of reduces sulfur functional groups (thiol (R-SH) and disulfide (R-SS-R)/disulfane (R-SSH)) in humic substances in the complexation of Hg(II). A two-coordinate binding environment with one oxygen atom and one sulfur atom at distances of 2.02 and 2.38 {angstrom}, respectively, was found in the first coordination shell of Hg(II) complexed by humic acid. Model calculations show that a second coordination sphere could contain one carbon atom and a second sulfur atom at 2.78 and 2.93 {angstrom}, respectively. This suggests that in addition to thiol S, disulfide/disulfane S may be involved with the complexation of Hg(II) in soil organic matter. The appearance of carbon atom in the second coordination shell suggests that one O-containing ligand such as carboxyl and phenol ligands rather than H{sub 2}O molecule is bound to the Hg(II). The involvement of oxygen ligand in addition to the reduced S ligands in the complexation of Hg(II) is due to the low density of reduced S ligands in humic substances. The XAS results from this experiment provided direct molecular level evidence for the preference of reduced S functional groups over oxygen ligands by Hg(II) in the complexation with humic substances.

  10. Humic substances in natural waters and their complexation with trace metals and radionuclides: a review. [129 references

    SciTech Connect

    Boggs, S. Jr.; Livermore, D.; Seitz, M.G.

    1985-07-01

    Dissolved humic substances (humic and fulvic acids) occur in surface waters and groundwaters in concentrations ranging from less than 1 mg(C)/L to more than 100 mg(C)/L. Humic substances are strong complexing agents for many trace metals in the environment and are also capable of forming stable soluble complexes or chelates with radionuclides. Concentrations of humic materials as low as 1 mg(C)/L can produce a detectable increase in the mobility of some actinide elements by forming soluble complexes that inhibit sorption of the radionuclides onto rock materials. The stability of trace metal- or radionuclide-organic complexes is commonly measured by an empirically determined conditional stability constant (K'), which is based on the ratio of complexed metal (radionuclide) in solution to the product concentration of uncomplexed metal and humic complexant. Larger values of stability constants indicate greater complex stability. The stability of radionuclide-organic complexes is affected both by concentration variables and envionmental factors. In general, complexing is favored by increased of radionuclide, increased pH, and decreased ionic strength. Actinide elements are generally most soluble in their higher oxidation states. Radionuclides can also form stable, insoluble complexes with humic materials that tend to reduce radionuclide mobility. These insoluble complexes may be radionuclide-humate colloids that subsequently precipitate from solution, or complexes of radionuclides and humic substances that sorb to clay minerals or other soil particulates strongly enough to immobilize the radionuclides. Colloid formation appears to be favored by increased radionuclide concentration and lowered pH; however, the conditions that favor formation of insoluble complexes that sorb to particulates are still poorly understood. 129 refs., 25 figs., 19 tabs.

  11. Lanthanide humic substances complexation. I. Experimental evidence for a lanthanide contraction effect

    NASA Astrophysics Data System (ADS)

    Sonke, Jeroen E.; Salters, Vincent J. M.

    2006-03-01

    The interaction of the lanthanides (Ln) with humic substances (HS) was investigated with a novel chemical speciation tool, Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry (CE-ICP-MS). By using an EDTA-ligand competition method, a bi-modal species distribution of LnEDTA and LnHS is attained, separated by CE, and detected online by sector field ICP-MS. We quantified the binding of all 14 rare earth elements (REEs), Sc and Y with Suwannee river fulvic acid, Leonardite coal humic acid, and Elliot soil humic acid under environmental conditions (pH 6-9, 0.001-0.1 mol L -1 NaNO 3, 1-1000 nmol L -1 Ln, 10-20 mg L -1 HS). Conditional binding constants for REE-HS interaction ( Kc) ranged from 8.9 < log Kc < 16.5 under all experimental conditions, and display a lanthanide contraction effect, ΔLKc: a gradual increase in Kc from La to Lu by 2-3 orders of magnitude as a function of decreasing ionic radius. HS polyelectrolyte effects cause Kc to increase with increasing pH and decreasing ionic strength. ΔLKc increases significantly with increasing pH, and likely with decreasing ionic strength. Based on a strong correlation between ΔLKc values and denticity for organic acids, we suggest that HS form a range of tri- to tetra-dentate complexes under environmental conditions. These results confirm HS to be a strong complexing agent for Ln, and show rigorous experimental evidence for potential REE fractionation by HS complexation.

  12. PREDICTING CHEMICAL REACTIVITY OF HUMIC SUBSTANCES FOR MINERALS AND XENOBIOTICS: USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY AND VIRTUAL REALITY

    EPA Science Inventory

    In this chapter we review the literature on scanning probe microscopy (SPM), virtual reality (VR), and computational chemistry and our earlier work dealing with modeling lignin, lignin-carbohydrate complexes (LCC), humic substances (HSs) and non-bonded organo-mineral interactions...

  13. MODELING OF METAL BINDING ON HUMIC SUBSTANCES USING THE NIST DATABASE: AN A PRIORI FUNCTIONAL GROUP APPROACH

    EPA Science Inventory

    Various modeling approaches have been developed for metal binding on humic substances. However, most of these models are still curve-fitting exercises-- the resulting set of parameters such as affinity constants (or the distribution of them) is found to depend on pH, ionic stren...

  14. A humic substance analogue AQDS stimulates Geobacter sp. abundance and enhances pentachlorophenol transformation in a paddy soil.

    PubMed

    Chen, Manjia; Tong, Hui; Liu, Chengshuai; Chen, Dandan; Li, Fangbai; Qiao, Jiangtao

    2016-10-01

    Soil humic substances can be used as redox mediators in accelerating the biotransformation of organic pollutants, and humus-respiring bacteria are widely distributed in soils. However, the impact of humic substances on the soil microbial community during the biotransformation of organic pollutants is expected to be crucial while remains to be unclear. In this study, the biostimulation of indigenous microbial communities and the consequent effects on anaerobic transformation of pentachlorophenol (PCP) by a model humic substance, anthraquinone-2,6-disulfonate (AQDS), were systematically investigated in a paddy soil. The addition of AQDS was observed to increase the production of HCl-extractable Fe(II) and enhance the PCP transformation rates consequently. The pseudo-first-order rate constants of the PCP transformation showed a positive exponential relationship with the AQDS dosage. The terminal restriction fragment length polymorphism (T-RFLP) results indicated the substantial effect of added AQDS on soil microbial community. The enhanced abundance of Geobacter sp. was disclosed to be most critical for accelerated PCP transformation when with AQDS, in which Geobacter sp. functioned for promoting the generation of active Fe(II) and consequently enhancing the PCP transformation rates. The transformation rates of PCP were exponentially correlated with the abundance of Geobacter sp. positively. The findings are expected to improve the understanding of diversity and ubiquity of microorganisms in humic substances-rich soils for accelerating the transformations of soil chlorinated pollutants. PMID:27372263

  15. Mitigation of Fe(0) nanoparticles toxicity to Trichosporon cutaneum by humic substances.

    PubMed

    Pádrová, Karolína; Maťátková, Olga; Šiková, Michaela; Füzik, Tibor; Masák, Jan; Čejková, Alena; Jirků, Vladimír

    2016-01-25

    Zero-valent iron nanoparticles (nZVI) are a relatively new option for the treatment of contaminated soil and groundwater. However, because of their apparent toxicity, nZVI in high concentrations are known to interfere with many autochthonous microorganisms and, thus, impact their participation in the remediation process. The effect of two commercially available nZVI products, Nanofer 25 (non-stabilized) and Nanofer 25S (stabilized), was examined. Considerable toxicity to the soil yeast Trichosporon cutaneum was observed. Two chemically different humic substances (HSs) were studied as a possible protection agent that mitigates nZVI toxicity: oxidized oxyhumolite X6 and humic acid X3A. The effect of addition of HSs was studied in different phases of the experiment to establish the effect on cells and nZVI. SEM and TEM images revealed an ability of both types of nZVI and HSs to adsorb on surface of the cells. Changes in cell surface properties were also observed by zeta potential measurements. Our results indicate that HSs can act as an electrosteric barrier, which hinders mutual interaction between nZVI and treated cell. Thus, the application of HS seems to be a promising solution to mitigating the toxic action of nZVI. PMID:26455640

  16. Reducing capacities and redox potentials of humic substances extracted from sewage sludge.

    PubMed

    Yang, Zhen; Du, Mengchan; Jiang, Jie

    2016-02-01

    Humic substances (HS) are redox active organic materials that can be extracted from sewage sludge generated in wastewater treatment processes. Due to the poor understanding of reducing capacity, redox potentials and redox active functional groups of HS in sewage sludge, the potential contribution of sludge HS in transformation of wastewater contaminants is unclear. In the present study, the number of electrons donated or accepted by sewage sludge HS were quantified before and after reduction by iron compounds that possess different redox potentials and defined as the reducing capacity of the sewage sludge. In contrast to previous studies of soil and commercial humic acids (HA), reduced sludge HA showed a lower reducing capacity than that of native HA, which implies formation of semiquinone radicals since the semiquinone radical/hydroquinone pair has a much higher redox potential than the quinone/hydroquinone pair. It is novel that reducing capacities of sludge HA were determined in the redox potential range from -314 to 430 mV. The formation of semiquinone radicals formed during the reduction of quinone moieties in sludge HA is shown by three-dimensional excitation/emission matrix fluorescence spectroscopies information, increasing fluorescence intensities and blue-shifting of the excitation/emission peak of reduced sludge HA. Knowledge of sludge HS redox potentials and corresponding reducing capacities makes it possible to predict the transformation of redox active pollutants and facilitate manipulation and optimization of sludge loading wastewater treatment processes. PMID:26432531

  17. Characterization of humic substances in salt marsh soils under sea rush ( Juncus maritimus)

    NASA Astrophysics Data System (ADS)

    Santín, C.; González-Pérez, M.; Otero, X. L.; Vidal-Torrado, P.; Macías, F.; Álvarez, M. Á.

    2008-09-01

    Humic substances (HS) from salt marsh soils were characterized and the relationships among HS composition and some geochemical factors were analysed. For this, three salt marshes with the same vegetation cover ( Juncus maritimus), but with different geochemical characteristics, were selected. The qualitative characterization of the soil humic acids and fulvic acids was carried out by elemental analysis, FTIR spectroscopy, fluorescence spectroscopy and VACP/MAS 13C NMR spectroscopy. HS from salt marsh soils under sea rush ( Juncus maritimus) displayed some shared characteristics such as low degree of humification, low aromatic content and high proportion of labile compounds, mainly polysaccharides and proteins. However, although the three salt marsh soils under study were covered by the same type of vegetation, the HS showed some important differences. HS composition was found to be determined not only by the nature of the original organic material, but also by environmental factors such as soil texture, redox conditions and tidal influence. In general, an increase in the humification process appeared to be related to aerobic conditions and predominance of sand in the mineral fraction of the soil, while the preservation of labile organic compounds may be associated with low redox potential values and fine soil texture.

  18. Multidimensional fluorescence studies of the phenolic content of dissolved organic carbon in humic substances.

    PubMed

    Pagano, Todd; Ross, Annemarie D; Chiarelli, Joseph; Kenny, Jonathan E

    2012-03-01

    Indicators suggest that the amount of dissolved organic carbon (DOC) in natural waters may be increasing. Climate change has been proposed as a potential contributor to the trend, and under such a mechanism, the phenolic content of DOC may also be increasing. This study explores the assessment of the phenolic character of DOC using multidimensional fluorescence spectroscopy as a more convenient alternative to traditional wet chemistry methods. Parallel factor analysis (PARAFAC) is applied to fluorescence excitation emission matrices (EEMs) of humic samples to analyze inherent phenolic content. The PARAFAC results are correlated with phenol concentrations derived from the Folin-Ciocalteau reagent-based method. The reagent-based method reveals that the phenolic content of five International Humic Substance Society (IHSS) samples varies from approximately 5.2 to 22 ppm Tannic Acid Equivalents (TAE). A four-component PARAFAC fit is applied to the EEMs of the IHSS sample dataset and it is determined by PARAFAC score correlations with phenol concentrations from the reagent-based method that components C2, C3, and C4 have the highest probability of containing phenolic groups. The results show the potential for PARAFAC analysis of multidimensional fluorescence data for monitoring the phenolic content of DOC. PMID:22278717

  19. Effects of humic substances on the heavy metal removal and the phytotoxicity of pesticide

    SciTech Connect

    Yang, J.E.; Shin, Y.K.; Rhee, H.I.; Kim, J.J.

    1995-12-31

    Efficiency of humic (HA) or fulvic acid (FA) on the removal of Cu or Pb from aqueous solution and phytotoxicity of Paraquat were assessed using the principle of contaminant-ligand complexation. Increasing HA concentrations enhanced the efficiency of Cu or Pb removal, up to a critical ligand concentration capable of forming a maximum HA-metal complex. Removal efficiency ranged from 70 to 95% for Pb, but only 13 to 65% for Cu. HA of 100mg was estimated to complex with 7.5 mg of Cu and 34.1 mg of Pb. Fulvic acid removed nearly 100% of Pb, but only 13 to 29% of Cu. The reactions followed the first- or multiple first-order kinetics depending on the concentrations of metal and ligand, pH and temperature. Paraquat alone exerted a high degree of phytotoxicity at low concentration to the hydroponically grown rye (Secale cereale L.), but the presence of HA or FA decreased the Paraquat toxicity up to 40% and enhanced the yield and growth of rye up to 20% indicating that humic substances reduced the bioavailability of paraquat to rye due to the complexation.

  20. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York

    USGS Publications Warehouse

    Cronan, C.S.; Aiken, G.R.

    1985-01-01

    Studies were conducted in conjunction with the Integrated Lake-Watershed Acidification Study (ILWAS) to examine the chemistry and leaching patterns of soluble humic substances in forested watersheds of the Adirondack region. During the summer growing season, mean dissolved organic carbon (DOC) concentrations in the ILWAS watersheds ranged from 21-32 mg C l-1 in O/A horizon leachates, from 5-7 mg C l-1 in B horizon leachates, from 2-4 mg C l-1 in groundwater solutions, from 6-8 mg C l-1 in first order streams, from 3-8 mg C l-1 in lake inlets, and from 2-7 mg C l-1 in lake outlets. During the winter, mean DOC concentrations dropped significantly in the upper soil profile. Soil solutions from mixed and coniferous stands contained as much as twice the DOC concentration of lysimeter samples from hardwood stands. Results of DOC fractionation analysis showed that hydrophobia and hydrophilic acids dominate the organic solute composition of natural waters in these watersheds. Charge balance and titration results indicated that the general acid-base characteristics of the dissolved humic mixture in these natural waters can be accounted for by a model organic acid having an averagepKa of 3.85, an average charge density of 4-5 ??eq mg-1 C at ambient pH, and a total of 6-7 meq COOH per gram carbon. ?? 1985.

  1. Monitoring transitory profiles of leachate humic substances in landfill aeration reactors in mesophilic and thermophilic conditions.

    PubMed

    Tong, Huanhuan; Yin, Ke; Ge, Liya; Giannis, Apostolos; Chuan, Valerie W L; Wang, Jing-Yuan

    2015-04-28

    The presence of humic substances (HS) in landfill leachate is of great interest because of their structural stability and potential toxicity. This study examined the effects of temperature and waste age on the transformation of HS during in situ aeration of bioreactor landfills. By establishing aerobic conditions, dissolved organic carbon (DOC) rapidly accumulated in the bioreactor leachate. Fractional analysis showed that the elevated concentration of humic acids (HAs) was primarily responsible for the increment of leachate strength. Further structural characterization indicated that the molecular weight (MW) and aromacity of HS were enhanced by aeration in conjunction with thermophilic temperature. Interestingly, elevation of HAs concentration was not observed in the aeration reactor with a prolonged waste age, as the mobility of HAs was lowered by the high MW derived from extended waste age. Based on these results, aeration may be more favorable in aged landfills, since dissolution of HAs could be minimized by the evolution to larger MW compared to young landfills. Moreover, increased operation temperature during aeration likely offers benefits for the rapid maturation of HS. PMID:25682368

  2. Novel electrochemical approach to assess the redox properties of humic substances.

    PubMed

    Aeschbacher, Michael; Sander, Michael; Schwarzenbach, René P

    2010-01-01

    Two electrochemical methods to assess the redox properties of humic substances (HS) are presented: direct electrochemical reduction (DER) on glassy carbon working electrodes (WE) and mediated electrochemical reduction (MER) and oxidation (MEO) using organic radicals to facilitate electron transfer between HS and the WE. DER allows for continuous monitoring of electron and proton transfer to HS by chronocoulometry and automated acid titration, respectively, and of changes in bulk HS redox potential E(h). Leonardite Humic Acid (LHA) showed an H(+)/e(-) ratio of unity and a decrease in potential from E(h) = +0.18 to -0.23 V upon transfer of 822 mumol(e-) g(LHA)(-1) at pH 7, consistent with quinones as major redox-active functional moieties in LHA. MER and MEO quantitatively detected electrons in LHA samples that were prereduced by DER to different extents. MER and MEO therefore accurately quantify the redox state of HS. Cyclic DER and O(2)-reoxidation revealed that electron transfer to LHA was largely reversible. However, LHA contained a small pool of moieties that were not reoxidized, likely due to endergonic first electron transfer to O(2). Electron accepting capacities of 13 different HS, determined by MER, strongly correlated with their C/H ratios and aromaticities and with previously published values, which, however, were a factor of 3 smaller due to methodological limitations. PMID:19950897

  3. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York

    NASA Astrophysics Data System (ADS)

    Cronan, Christopher S.; Aiken, George R.

    1985-08-01

    Studies were conducted in conjunction with the Integrated Lake-Watershed Acidification Study (ILWAS) to examine the chemistry and leaching patterns of soluble humic substances in forested watersheds of the Adirondack region. During the summer growing season, mean dissolved organic carbon (DOC) concentrations in the ILWAS watersheds ranged from 21-32 mg C l-1 in O/A horizon leachates, from 5-7 mg C l-1 in B horizon leachates, from 2-4 mg C l-1 in groundwater solutions, from 6-8 mg C l-1 in first order streams, from 3-8 mg C l-1 in lake inlets, and from 2-7 mg C l-1 in lake outlets. During the winter, mean DOC concentrations dropped significantly in the upper soil profile. Soil solutions from mixed and coniferous stands contained as much as twice the DOC concentration of lysimeter samples from hardwood stands. Results of DOC fractionation analysis showed that hydrophobia and hydrophilic acids dominate the organic solute composition of natural waters in these watersheds. Charge balance and titration results indicated that the general acid-base characteristics of the dissolved humic mixture in these natural waters can be accounted for by a model organic acid having an averagepKa of 3.85, an average charge density of 4-5 μeq mg-1 C at ambient pH, and a total of 6-7 meq COOH per gram carbon.

  4. Investigation of humic substance photosensitized reactions via carbon and hydrogen isotope fractionation.

    PubMed

    Zhang, Ning; Schindelka, Janine; Herrmann, Hartmut; George, Christian; Rosell, Mònica; Herrero-Martín, Sara; Klán, Petr; Richnow, Hans H

    2015-01-01

    Humic substances (HS) acting as photosensitizers can generate a variety of reactive species, such as OH radicals and excited triplet states ((3)HS*), promoting the degradation of organic compounds. Here, we apply compound-specific stable isotope analysis (CSIA) to characterize photosensitized mechanisms employing fuel oxygenates, such as methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE), as probes. In oxygenated aqueous media, Λ (Δδ(2)H/Δδ(13)C) values of 23 ± 3 and 21 ± 3 for ETBE obtained by photosensitization by Pahokee Peat Humic Acid (PPHA) and Suwannee River Fulvic Acid (SRFA), respectively, were in the range typical for H-abstraction by OH radicals generated by photolysis of H2O2 (Λ = 24 ± 2). However, (3)HS* may become a predominant reactive species upon the quenching of OH radicals (Λ = 14 ± 1), and this process can also play a key role in the degradation of ETBE by PPHA photosensitization in deoxygenated media (Λ = 11 ± 1). This is in agreement with a model photosensitization by rose bengal (RB(2-)) in deoxygenated aqueous solutions resulting in one-electron oxidation of ETBE (Λ = 14 ± 1). Our results demonstrate that the use of CSIA could open new avenues for the assessment of photosensitization pathways. PMID:25427194

  5. NEW APPROACHES TO ESTIMATING INDIRECT PHOTOLYSIS RATES IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Indirect photoreactions in aquatic environments are driven by reactive species, most of which are oxygen centered. Humic substances play an important role in photosensitizing the production of these reactive species, which include singlet molecular oxygen, superoxide ions, hydrog...

  6. INFLUENCE OF BORATE BUFFERS ON THE ELECTROPHORETIC BEHAVIOR OF HUMIC SUBSTANCES IN CAPILLARY ZONE ELECTROPHORESIS

    EPA Science Inventory

    The influence of tetrahydroxyborate ions on the electrophoretic mobility of humic acids was evaluated by capillary electrophoresis (CE). Depending on the molarity of borate ions in the separation buffer, the humic acids exhibit electropherograms with sharp peaks consistently exte...

  7. A meta-analysis of plant-growth response to humic substance applications

    NASA Astrophysics Data System (ADS)

    Patti, Antonio; Rose, Michael; Little, Karen; Jackson, Roy; Cavagnaro, Tim

    2013-04-01

    Humic substances (HS) are a category of naturally occurring organic compounds that arise from the decomposition and transformation of plant, animal and microbial residues (Maccarthy 2001). The loss of humic material, together with overall reductions in soil organic matter, is of concern because they play important roles in maintaining key soil functions and plant productivity (Lal 2004). Consequently, there is interest in the application of HS-based amendments, often derived from agricultural wastes (e.g composts) to remediate and/or maintain soil health (Quilty and Cattle 2011). In light of the potential benefits of HS, together with their inconsistent performance under field conditions, we sought to quantitatively review the effects of HS on plant growth, by undertaking a meta-analysis of the literature. A total of 390 papers were originally selected from the current literature. A number of criteria were applied to reduce this number to 81, from which the meta-analysis was undertaken. The 81 papers comprised 57 studies presenting data on shoot (or total) dry weight and 39 studies reporting root dry weight. As part of the meta-analysis we attempted: (i) to quantify the magnitude and likelihood of plant growth promotion, in terms of shoot and root biomass, resulting from HS application, (ii) to determine the influence of environmental conditions, plant type, humic substance properties, and the manner of application on plant growth response to HS, (iii) to identify gaps in our understanding of the interaction of HS with plants, and (iv) to provide some general recommendations for the practical use of HS in agronomic systems and suggestions for future work. Some of the key findings from this meta-analysis included: Many papers lack details on HS chemical characteristics The application of HS needs to be tailored to the environmental conditions in which they will be used. The effect of HS on shoot biomass was not only dependent on the source and rate of application

  8. Characterization of humic substances by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Mugo, Samuel M; Bottaro, Christina S

    2004-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and laser desorption/ionization (LDI-)TOFMS have been used to characterize Suwannee River humic substances, obtained from the International Humic Substances Society (IHSS), and Armadale soil fulvic acid (ASFA). An array of MALDI matrices were tested for use with humic substances, including alpha-cyano-4-hydroxycinammic acid (CHCA), 2-(4-hydroxyphenylazo)benzoic acid (HABA), 2,5-dihydroxybenzoic acid (DHBA), sinapinic acid, dithranol and norharmane. DHBA yielded the best results, exhibiting superior ionization efficiency, low noise, broad applicability to the analytes of interest, and most importantly producing an abundance of high mass ions, the highest observed being m/z 1848. A number of sample preparation modes were investigated; the overlayer method improved sample/matrix homogeneity and hence shot-to-shot reproducibility. The choice of the matrix, mass ratio of analyte to matrix, and the sample preparation protocol, were found to be the most critical factors governing the quality of the mass spectra. Matrix suppression was greatly enhanced by ensuring good mixing of matrix and analyte in the solid phase, proper optimization of the matrix/analyte ratio, and optimizing delayed extraction to ensure complete matrix-analyte reaction in the plume before ions are moved to the flight tube. A number of common features, in particular specific ions which could not be attributed to the matrices or to contaminants, were present in the spectra of all the humic substances, regardless of origin or operational definition. Additionally, a prominent repeating pattern of peaks separated by 55, 114 and 169 Da was clearly observed in both LDI and MALDI, suggesting that the humic compounds studied here may have quasi-polymeric or oligomeric features. PMID:15386633

  9. Impact of humic substances on the aqueous solubility, uptake and bioaccumulation of platinum, palladium and rhodium in exposure studies with Dreissena polymorpha.

    PubMed

    Sures, Bernd; Zimmermann, Sonja

    2007-03-01

    Zebra mussels (Dreissena polymorpha) were exposed to different types of water containing PGE salts (PtCl4, PdSO4, RhCl3) to investigate the influence of humic substances on the aqueous solubility, uptake and bioaccumulation of noble metals. The results showed a time dependent decrease of the aqueous PGE concentrations in tank water for all groups. This could mainly be related to non-biological processes. The aqueous solubility of Pd and Rh was higher in humic water compared with non-chlorinated tap water, whereas Pt showed opposing results. Highest metal uptake rates and highest bioaccumulation plateaus were found for Pd, followed by Pt and Rh. Pd uptake and bioaccumulation was significantly hampered by humic substances, whose presence appear to increase Pt uptake and bioaccumulation. No clear trend emerged for Rh. Differences in effects of humic matter among the PGE may be explained by formation of metal complexes with different fractions of humic substances. PMID:17018243

  10. Hydrogeochemical and mineralogical investigations of arsenic- and humic substance-enriched aquifers

    NASA Astrophysics Data System (ADS)

    Liu, Chen-Wuing; Lai, Chih-Chieh; Chen, Yen-Yu; Lu, Kuang-Liang

    2013-08-01

    This study investigated the hydrogeochemical and mineralogical characteristics of arsenic-contaminated and humic-substance-enriched aquifers in the Chianan Plain, Taiwan, which is an endemic area for blackfoot disease (BFD). Factorial analysis (FA) was used to evaluate the hydrochemical characteristics of 83 groundwater samples in the Chianan Plain, and 462 geological core samples obtained from 9 drilling wells were collected to analyze their arsenic and iron contents. The major mineral phases and chemical components were determined using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy and energy dispersive spectrometry (SEM-EDS). Partition of arsenic among various hosting solids in sediments was determined by sequential extraction. The results of FA showed that the hydrochemical characteristics of the groundwater samples could be grouped by 4 factors: salinization, arsenic, sulfide, and iron. Arsenic was positively correlated with alkalinity, dissolved organic/inorganic carbon, and fluorescence intensity [humic acids, (HAs)]. As(V) has a higher chelating affinity with HAs than does As(III), resulting in higher As(V) concentrations distributed throughout the reducing environment. High levels and correlations of As and HAs may cause BFD in the Chianan Plain. No correlation was found between the measured and calculated redox potentials of the various redox couples. The As(III)/As(V) was under a chemical non-equilibrium condition. The vertical distribution of the sedimentary As (solid phase) typically increased with depth, but the aqueous As concentrations were higher in the second aquifer (depth of 80-120 m). Arsenic content (solid phase) was higher in the clay/silt sediments and marine formations. The major minerals identified by XPS and SEM-EDS were goethite, hematite, magnetite, pyrite, and siderite, agreeing with the SI values calculated by PHREEQC. Arsenic content was strongly correlated with sulfur (weight%; R2

  11. Comprehensive characterization of oil refinery effluent-derived humic substances using various spectroscopic approaches.

    PubMed

    Lingbo, Li; Song, Yan; Congbi, Han; Guangbo, Shan

    2005-07-01

    Refinery effluent-derived humic substances (HS) are important for developing refinery effluent reclamation techniques and studying the environmental chemistry of wastewater effluents. In this study, dissolved organic matter (DOM) from refinery effluent was concentrated using a portable reverse osmosis (RO) system. HS were isolated from RO retentates with XAD-8 resin. A variety of approaches such as specific UV absorbance at 254nm (SUV(254)), elemental analysis, size exclusion chromatography (SEC), solid-state cross polarization magic angle spinning (13)C nuclear magnetic resonance spectrometry ((13)C CPMAS NMR), Fourier transform infrared spectrometry (FTIR), and electrospray ionization/ion trap/mass spectrometry (ESI/ion trap/MS) were employed for characterization of HS. The portable RO system exhibited high yield and recovery of DOM for concentrating refinery effluent. The concentration of dissolved organic carbon (DOC) in the refinery effluent was 9.9mg/l, in which humic acids (HA) and fulvic acids (FA) accounted for 2.3% and 34.6%, respectively. Elemental and SUV(254) analyses indicated relative high amounts of aliphatic structures and low amounts of aromatic structures in refinery effluent-derived HS. Refinery effluent-derived HS displayed lower molecular weight than natural HS. The number-average molecular weight (M(n)) and the weight-average molecular weight (M(w)) of HA were 1069 and 2934, and those of FA were 679 and 1212 by SEC, respectively. By ESI/ion trap/MS, the M(n) and the M(w) of FA were 330 and 383. Four kinds of carbon structures (aliphatic, aromatic, heteroaliphatic, and carboxylic carbons) were found in refinery effluent-derived HS by (13)C NMR analysis. The quantitative results support the interpretation that these HS are rich in aliphatic carbons and poor in aromatic carbons. Proteinaceous materials were identified by FTIR analysis in refinery effluent-derived HS. PMID:15950039

  12. DRIFT and HR MAS NMR characterization of humic substances from a soil treated with different organic and mineral fertilizers

    NASA Astrophysics Data System (ADS)

    Ferrari, Erika; Francioso, Ornella; Nardi, Serenella; Saladini, Monica; Ferro, Nicola Dal; Morari, Francesco

    2011-07-01

    In this study, using DRIFT and HR MAS NMR, we analyzed the humic substances isolated from a soil treated, over 40 years, with different organic, mineral and organic plus mineral treatments and cultivated with maize as the main crop. As expected, the structure of humic substances was very complex but by combining both techniques (DRIFT and HR MAS NMR) additional information was obtained on aromatic and aliphatic components, the most recalcitrant parts of these macromolecules. In so doing we wanted to investigate the relationship between HS structure and long-term management practices. An elevated content of lignin, aminoacids, peptides and proteins was observed mainly for farmyard manure treatments with respect to mineral or liquid manure amendments; this supports how the different management practices have greatly influenced the humification process of cultivated soils.

  13. Effects of pH and natural humic substances on the accumulation of organic pollutants in two freshwater invertebrates

    NASA Astrophysics Data System (ADS)

    Kukkonen, Jussi

    The present study focused on the accumulation of benzo(a)pyrene (BaP), hexachlorocyclohexane (lindane), pentachlorophenol (PCP) and dehydroabietic acid (DHAA), from a natural humic water (DOC 18 mg/l) and a humus-free reference water, in Daphnia magna (Cladocera) and nymphs of the mayfly Heptagenia fuscogrisea (Ephemeroptera). Effects of water pH ranging from 3.5 to 8.5 was examined. The partition coefficients (Kp) of BaP and PCP to organic material were measured by equilibrium dialysis, and in both cases increases in Kp values were noticed with decreasing pH. For neutral compounds (BaP and lindane), the bioconcentration factor (BCF) was the highest at pH 6.5 in the control water. Humic substances significantly lowered the accumulation of BaP, but had no effect on the accumulation of lindane. The lowest test pH gave the highest BCF value, and increasing pH decreased the BCF values of weak organic acids (PCP and DHAA) in the control experiments. This was because the unionized forms of these compounds accumulate better than the more hydrophilic ionized forms. The presence of dissolved organic substances lowered the accumulation of PCP in H. fuscogrisea between pH 4.5 and 7.5 and had no effect at pHs 3.5 and 8.5. Humic substances lowered the accumulation of DHAA in D. magna between pH 5.5 and 6.5 and had no effect when pH was over 7. In experiments with H. fuscogrisea humic substances had no effect on the accumulation of DHAA.

  14. Investigating nitrate-dependent humic substance oxidation and in-service K-12 teachers' understanding of microbiology

    NASA Astrophysics Data System (ADS)

    Jones, Nastassia N.

    2011-12-01

    Humic substances (HS) are the humified portions of totally decomposed soil organic matter that are ubiquitous in nature. Although these substances have been studied for more than 200 years, neither their metabolic capabilities nor a specific chemical structure has yet to be determined. HS have been studied as a carbon source in many environments where they are degraded; however, previous studies have shown that some microorganisms are capable of utilizing humic substances as electron acceptors and electron donors in anaerobic respiration. Even though there have been humic-reducing and humic-oxidizing microorganisms isolated and studied in recent years, the mechanism of humics metabolism and its interaction in the natural environment are not well understood. However, it is known that the continuous change in the redox state of HS is important to the cycling of iron, stability of nitrogen and carbon, and the mobility and bioavailability of inorganic and organic environmental pollutants. In this study, microbial communities were examined to evaluate the community dynamics of nitrate-dependent HS-oxidizing populations and to provide a snapshot of the phylogenetic diversity of these microorganisms. Column studies were performed using nitrate as the sole electron acceptor and the following as the electron donors in different columns: reduced humic acids, oxidized humic acids, and acetate as the control. Liquid buffered media was added to a separate column to serve as an additional control. Polymerase chain reactions of the 16S rRNA genes using DNA from the column studies were performed and analyzed by constructing 16S rDNA clone libraries and by performing denaturing gradient gel electrophoresis (DGGE). Clones from the library have been sequenced and analyzed to paint a phylogenetic picture of the microbial community under the various conditions. Results indicate that the majority of the clones were assigned to four well-characterized divisions, the Acidobacteria, the

  15. Photocatalytic degradation of humic substances in aqueous solution using Cu-doped ZnO nanoparticles under natural sunlight irradiation.

    PubMed

    Maleki, Afshin; Safari, Mahdi; Shahmoradi, Behzad; Zandsalimi, Yahya; Daraei, Hiua; Gharibi, Fardin

    2015-11-01

    In this study, Cu-doped ZnO nanoparticles were investigated as an efficient synthesized catalyst for photodegradation of humic substances in aqueous solution under natural sunlight irradiation. Cu-doped ZnO nanocatalyst was prepared through mild hydrothermal method and was characterized using FT-IR, powder XRD and SEM techniques. The effect of operating parameters such as doping ratio, initial pH, catalyst dosage, initial concentrations of humic substances and sunlight illuminance were studied on humic substances degradation efficiency. The results of characterization analyses of samples confirmed the proper synthesis of Cu-doped ZnO nanocatalyst. The experimental results indicated the highest degradation efficiency of HS (99.2%) observed using 1.5% Cu-doped ZnO nanoparticles at reaction time of 120 min. Photocatalytic degradation efficiency of HS in a neutral and acidic pH was much higher than that at alkaline pH. Photocatalytic degradation of HS was enhanced with increasing the catalyst dosage and sunlight illuminance, while increasing the initial HS concentration led to decrease in the degradation efficiency of HS. Conclusively, Cu-doped ZnO nanoparticles can be used as a promising and efficient catalyst for degradation of HS under natural sunlight irradiation. PMID:26104905

  16. Sulfur and nitrogen speciation in humic substances by x-ray absorption near-edge structure spectroscopy

    SciTech Connect

    Vairavamurthy, M.A.; Wang, Shenghe; Maletic, D.

    1996-12-31

    Understanding the chemical composition and structure of complex macromolecules in the geosphere, such as humic substances and kerogen, poses a challenging analytical problem. Widely used chromatographic techniques, such as the pyrolysis GC-MS, cause severe changes in structure during preparation and analysis of the sample, and thus, may not give accurate information. An important non-destructive technique that is becoming popular in speciation studies of environmental and geochemical samples is x-ray absorption fine structure spectroscopy. We used the x-ray absorption near-edge structure (XANFS) spectroscopy for examining the speciation of sulfur and nitrogen in humic substances of different origins, including soil and marine sediments. XANES provides information on the characteristics of the functional groups containing these atoms because of its sensitivity to the electronic structure, oxidation state, and the geometry of the neighboring atoms. Organic sulfides, di- and poly-sulfides, sulfonates and organic sulfates are the major forms of sulfur detected in all the humics we examined. The oxidized sulfonate-sulfur dominates the composition of sulfur species in soil humics accounting for more than 60% of the total sulfur. In marine humics, although sulfonates are abundant in near-surface sediments, reduced sulfur species, particularly di-and poly-sulfides, also constitute an important fraction. The nitrogen XANES indicates the dominance of amino and amide groups among nitrogen functionalities, although porphyrinic and pyridinic groups also are present. The significance of these results for the transformations of nitrogen and sulfur in soil and sedimentary systems will be presented.

  17. Pollutant toxicity and detoxification by humic substances: mechanisms and quantitative assessment via luminescent biomonitoring.

    PubMed

    Kudryasheva, N S; Tarasova, A S

    2015-01-01

    The paper considers mechanisms of detoxification of pollutant solutions by water-soluble humic substances (HSs), natural detoxifying agents. The problems and perspectives of bioassay application for toxicity monitoring of complex solutions are discussed from ecological point of view. Bioluminescence assays based on marine bacteria and their enzymes are of special attention here; they were shown to be convenient tools to study the detoxifying effects on cellular and biochemical levels. The advantages of bioluminescent enzymatic assay for monitoring both integral and oxidative toxicities in complex solutions of model pollutants and HS were demonstrated. The efficiencies of detoxification of the solutions of organic oxidizers and salts of metals (including radioactive ones) by HS were analyzed. The dependencies of detoxification efficiency on time of exposure to HS and HS concentrations were demonstrated. Antioxidant properties of HS were considered in detail. The detoxifying effects of HS were shown to be complex and regarded as 'external' (binding and redox processes in solutions outside the organisms) and/or 'internal' organismal processes. The paper demonstrates that the HS can stimulate a protective response of bacterial cells as a result of (1) changes of rates of biochemical reactions and (2) stabilization of mucous layers outside the cell walls. Acceleration of auto-oxidation of NADH, endogenous reducer, by HS was suggested as a reason for toxicity increase in the presence of HS due to abatement of reduction ability of intracellular media. PMID:25146119

  18. Comparison of isolation and quantification methods to measure humic-like substances (HULIS) in atmospheric particles

    NASA Astrophysics Data System (ADS)

    Fan, Xingjun; Song, Jianzhong; Peng, Ping'an

    2012-12-01

    Humic-like Substances (HULIS) comprise a significant fraction of the water-soluble organic aerosol mass and influence the cloud microphysical properties and climate effects of aerosols in the atmosphere. In this work, the most frequently used HULIS isolation and quantification methods including ENVI-18, HLB, XAD-8 and DEAE were comparatively characterized with two model standards, ten interfering compounds, and five ambient aerosol samples. Quantification of HULIS is performed with a TOC analyzer, complemented by an investigation of the chemical structure of the extracted fractions by UV-Vis spectroscopy. The results show that the four isolation methods were all characterized by high reliability, high reproducibility, and low limit of detection (LOD), indicating that each method can be used to efficiently recover Suwannee River Fulvic Acid (SRFA) and be applied to the quantification of the lower amount of HULIS in atmospheric particles. The analytical results of the UV-Vis spectra of HULIS fractions isolated also indicate that they are all favorable for extraction of compounds of high UV absorbance, high MW, and high aromaticity and that the DEAE protocol is the most significant one. Compared with the DEAE method that favors extraction of highly UV-absorbing and more aromatic compounds, SRFA isolated by the ENVI-18, HLB, and XAD-8 protocols were more representative of the global matrix. Each method has its own advantages and disadvantages and is suitable for a particular application. No single method is ideal for both isolation and quantification of HULIS in atmospheric samples.

  19. Determination of humic substances in natural waters by cathodic stripping voltammetry of their complexes with iron.

    PubMed

    Laglera, Luis M; Battaglia, Gianluca; van den Berg, Constant M G

    2007-09-01

    A new voltammetric method is presented for the measurement of humic substances (HS) in natural waters. The method is based on catalytic cathodic stripping voltammetry (CSV) and makes use of adsorptive properties of iron-HS complexes on the mercury drop electrode at natural pH. A fulvic acid standard (IHSS) was used to confirm the voltammetric response (peak potential and sensitivity) for the HS for natural water samples. Optimized conditions included the linear-sweep mode, deposition at -0.1 V, pH buffered at 8 and a scan rate of 50 mV s(-1). At a deposition time of 240 s in the presence of 10 nM iron and 30 mM bromate, the detection limit was 5 microg L(-1) HS in seawater, which could be lowered further by an increase in the bromate concentration, or in the adsorption time. The method was used to determine HS in the Irish Sea which were found to occur at levels between 60 and 600 microg L(-1). The new method is sufficiently sensitive to detect the low HS content in oceanic samples and has implications to the study of iron speciation. PMID:17765064

  20. Maillard Chemistry in Clouds and Aqueous Aerosol As a Source of Atmospheric Humic-Like Substances.

    PubMed

    Hawkins, Lelia N; Lemire, Amanda N; Galloway, Melissa M; Corrigan, Ashley L; Turley, Jacob J; Espelien, Brenna M; De Haan, David O

    2016-07-19

    The reported optical, physical, and chemical properties of aqueous Maillard reaction mixtures of small aldehydes (glyoxal, methylglyoxal, and glycolaldehyde) with ammonium sulfate and amines are compared with those of aqueous extracts of ambient aerosol (water-soluble organic carbon, WSOC) and the humic-like substances (HULIS) fraction of WSOC. Using a combination of new and previously published measurements, we examine fluorescence, X-ray absorbance, UV/vis, and IR spectra, complex refractive indices, (1)H and (13)C NMR spectra, thermograms, aerosol and electrospray ionization mass spectra, surface activity, and hygroscopicity. Atmospheric WSOC and HULIS encompass a range of properties, but in almost every case aqueous aldehyde-amine reaction mixtures are squarely within this range. Notable exceptions are the higher UV/visible absorbance wavelength dependence (Angström coefficients) observed for methylglyoxal reaction mixtures, the lack of surface activity of glyoxal reaction mixtures, and the higher N/C ratios of aldehyde-amine reaction products relative to atmospheric WSOC and HULIS extracts. The overall optical, physical, and chemical similarities are consistent with, but not demonstrative of, Maillard chemistry being a significant secondary source of atmospheric HULIS. However, the higher N/C ratios of aldehyde-amine reaction products limits the source strength to ≤50% of atmospheric HULIS, assuming that other sources of HULIS incorporate only negligible quantities of nitrogen. PMID:27227348

  1. Structural characterization of humic-like substances with conventional and surface-enhanced spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Carletti, Paolo; Roldán, Maria Lorena; Francioso, Ornella; Nardi, Serenella; Sanchez-Cortes, Santiago

    2010-10-01

    Emission-excitation, synchronous fluorescence spectroscopy and surface-enhanced Raman scattering (SERS) combined with surface-enhanced fluorescence (SEF) were applied to aqueous solutions of a humic-like substance (HLS) extracted from earthworm faeces. All measurements were acquired in a wide range of pH (4-12) and analysed by the linear regression analysis. Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectra were also acquired to assist in the structural characterization of this HLS. The emission and excitation spectra allowed the identification of two main fluorophores in the analysed sample. Moreover, a close correlation between fluorescence intensities of each fluorophore with pH variation was observed. SERS and SEF, in agreement with the fluorescence spectroscopy, showed that the HLS at low pH values exists in an aggregated and coiled molecular structure while it is dispersed and uncoiled at alkaline conditions. The obtained spectra also evidenced that different conditions modify the functional groups exposed to the surrounding aqueous environment.

  2. Terrestrial humic substances in Daliao River and its estuary: optical signatures and photoreactivity to UVA light.

    PubMed

    Chen, Hao; Lei, Kun; Wang, Xuechun

    2016-04-01

    Fluorescent dissolved organic matter (FDOM) components were identified by Parallel Factor Analysis (PARAFAC) in surface water of Daliao River and its estuary with a focus on terrestrial humic substance-(HS)-like FDOM identified under two contrasting hydrological conditions. The hydrological conditions did not have noticeable effect on the spectral features of the terrestrial HS-like FDOM, but did affect the components' intensities and photoreactivity: (1) the intensities of terrestrial HS-like components were higher in the normal flow period than in the high flow period, and (2) a spectrally similar terrestrial HS-like FDOM identified under the two contrasting hydrological conditions showed distinct photoreactivity to the same dose of UVA illumination. The findings indicated that terrestrial HS was generated at lower intensities at the terrestrial sources during the high flow period than during the normal flow period and that the transport of terrestrial HS material through the river-estuary system was affected dominantly by seawater dilution along the salinity gradient while fine-tuned by solar UVA illumination. This study exemplifies the effect of hydrological conditions on optical signatures of terrestrial HS-like FDOM and their photoreactivity towards UVA illumination, improving our understanding of the dynamics of terrestrial HS material in river-estuary systems in the framework of the currently proposed new conceptual model for terrestrial organic matter. PMID:26627698

  3. Enhanced photoproduction of hydrogen peroxide by humic substances in the presence of phenol electron donors.

    PubMed

    Zhang, Yi; Simon, Kelli A; Andrew, Andrea A; Del Vecchio, Rossana; Blough, Neil V

    2014-11-01

    Addition of a series of phenol electron donors to solutions of humic substances (HS) enhanced substantially the initial rates of hydrogen peroxide (H2O2) photoproduction (RH2O2), with enhancement factors (EF) ranging from a low of ∼3 for 2,4,6-trimethylphenol (TMP) to a high of ∼15 for 3,4-dimethoxyphenol (DMOP). The substantial inhibition of the enhanced RH2O2 following borohydride reduction of the HS, as well as the dependence of RH2O2 on phenol and dioxygen concentrations are consistent with a mechanism in which the phenols react with the triplet excited states of (aromatic) ketones within the HS to form initially a phenoxy and ketyl radical. The ketyl radical then reacts rapidly with dioxygen to regenerate the ketone and form superoxide (O2-), which subsequently dismutates to H2O2. However, as was previously noted for the photosensitized loss of TMP, the incomplete inhibition of the enhanced RH2O2 following borohydride reduction suggests that there may remain another pool of oxidizing triplets. The results demonstrate that H2O2 can be generated through an additional pathway in the presence of sufficiently high concentrations of appropriate electron donors through reaction with the excited triplet states of aromatic ketones and possibly of other species such as quinones. However, in some cases, the much lower ratio of H2O2 produced to phenol consumed suggests that secondary reactions could alter this ratio significantly. PMID:25288017

  4. Contribution of capillary electrophoresis to an integrated vision of humic substances size and charge characterizations

    SciTech Connect

    D'Orlye, Fanny; Reiller, Pascal E.

    2014-02-15

    The physicochemical properties of three different humic substances (HS) are probed using capillary zone electrophoresis in alkaline carbonate buffers, pH 10. Special attention is drawn to the impact of the electrolyte ionic strength and counter-ion nature, chosen within the alkali-metal series, on HS electrophoretic mobility. Taylor-Aris dispersion analysis provides insights into the hydrodynamic radius (R-H) distributions of HS. The smallest characterized entities are of nano-metric dimensions, showing neither ionic strength- nor alkali-metal-induced aggregation. These results are compared with the entities evidenced in dynamic light scattering measurements, the size of which is two order of magnitude higher, ca. 100 nm. The extended Onsager model provides a reasonable description of measured electrophoretic mobilities in the ionic strength range 1-50 mM, thus allowing the estimation of limiting mobilities and ionic charge numbers for the different HS samples. An unexpected HS electrophoretic mobility increase (in absolute value) is observed in the order Li{sup +} ≤ Na{sup +} ≤ K{sup +} ≤ Cs{sup +} and discussed either in terms of retarding forces or in terms of ion-ion interactions. (authors)

  5. A simple method for quantifying the humic content of commercial products.

    PubMed

    Quentel, François; Filella, Montserrat

    2011-12-01

    A method based on an analytical technique, initially developed for quantifying aquatic refractory organic matter (often called humics), has been applied to commercial samples claiming to contain humic-type substances. At present, no method exists for quantifying the humic content on this type of sample. The analytical method is based on measuring the peak current obtained by adsorptive stripping voltammetry of the complex formed by refractory organic matter in the presence of trace amounts of Mo(VI). The quantification procedure requires the response obtained for the unknown sample to be compared with the response obtained with International Humic Substance Society (IHSS) reference humic substances. A very simple procedure that enables the humic content of any sample to be expressed as IHSS standard equivalents is described in detail. The method is highly selective, reproducible and suitable for routine analysis. PMID:21935595

  6. Estimation of Uptake of Humic Substances from Different Sources by Escherichia coli Cells under Optimum and Salt Stress Conditions by Use of Tritium-Labeled Humic Materials▿

    PubMed Central

    Kulikova, Natalia A.; Perminova, Irina V.; Badun, Gennady A.; Chernysheva, Maria G.; Koroleva, Olga V.; Tsvetkova, Eugenia A.

    2010-01-01

    The primary goal of this paper is to demonstrate potential strengths of the use of tritium-labeled humic substances (HS) to quantify their interaction with living cells under various conditions. A novel approach was taken to study the interaction between a model microorganism and the labeled humic material. The bacterium Escherichia coli was used as a model microorganism. Salt stress was used to study interactions of HS with living cells under nonoptimum conditions. Six tritium-labeled samples of HS originating from coal, peat, and soil were examined. To quantify their interaction with E. coli cells, bioconcentration factors (BCF) were calculated and the amount of HS that penetrated into the cell interior was determined, and the liquid scintillation counting technique was used as well. The BCF values under optimum conditions varied from 0.9 to 13.1 liters kg−1 of cell biomass, whereas under salt stress conditions the range of corresponding values increased substantially and accounted for 0.2 to 130 liters kg−1. The measured amounts of HS that penetrated into the cells were 23 to 167 mg and 25 to 465 mg HS per kg of cell biomass under optimum and salt stress conditions, respectively. This finding indicated increased penetration of HS into E. coli cells under salt stress. PMID:20639375

  7. Buthionine sulfoximine prevents the reduction of the genotoxic activity of maleic hydrazide by soil humic substances in Vicia faba seedlings.

    PubMed

    De Marco, A; De Simone, C; D'Ambrosio, C; Owczarek, M

    1999-01-13

    A significant reduction of the genotoxic effects caused by herbicide maleic hydrazide (MH) in Vicia faba seedlings was observed to be induced by a growth step in an organic soil as well as by a pretreatment with highly purified humic substances. In addition, such protective activity was resulted quite similar to that observed when the conditioning pretreatment was carried out with metal salts, so suggesting the involvement of the GSH biosynthesis in determining the protective activity observed. In agreement with this hypothesis, a previous exposure to buthionine sulfoximine (BSO), an inhibitor of the phytochelatins production, through the inhibition of GSH synthesis, prevented the reduction of the genotoxic activity of MH. The findings provide evidence for the involvement of the GSH biosynthesis pathway in determining the antigenotoxic activity revealed and suggest a possible involvement of the phytochelatins in this process. However, yet to be clarified is whether the stimulation of GSH production results as a consequence of a nonspecific influence on the protein synthesis by humic substances or of its direct activation due to the presence, as contaminants, of some heavy metals in both organic soil and humic acids extracts. PMID:10036330

  8. Electropulse treatment of water solution of humic substances in a layer iron granules in process of water treatment

    NASA Astrophysics Data System (ADS)

    Lobanova, G. L.; Yurmazova, T. A.; Shiyan, L. N.; Machekhina, K. I.

    2016-02-01

    The present work is a part of a continuations study of the physical and chemical processes complex in natural waters containing humic-type organic substances at the influence of pulsed electrical discharges in a layer of iron pellets. The study of humic substances processing in the iron granules layer by means of pulsed electric discharge for the purpose of water purification from organic compounds humic origin from natural water of the northern regions of Russia is relevant for the water treatment technologies. In case of molar humate sodium - iron ions (II) at the ratio 2:3, reduction of solution colour and chemical oxygen demand occur due to the humate sodium ions and iron (II) participation in oxidation-reduction reactions followed by coagulation insoluble compounds formation at a pH of 6.5. In order to achieve this molar ratio and the time of pulsed electric discharge, equal to 10 seconds is experimentally identified. The role of secondary processes that occur after disconnection of the discharge is shown. The time of contact in active erosion products with sodium humate, equal to 1 hour is established. During this time, the value of permanganate oxidation and iron concentration in solution achieves the value of maximum permissible concentrations and further contact time increase does not lead to the controlled parameters change.

  9. Influence of mineral colloids and humic substances on uranium(VI) transport in water-saturated geologic porous media.

    PubMed

    Wang, Qing; Cheng, Tao; Wu, Yang

    2014-12-01

    Mineral colloids and humic substances often co-exist in subsurface environment and substantially influence uranium (U) transport. However, the combined effects of mineral colloids and humic substances on U transport are not clear. This study is aimed at quantifying U transport and elucidating geochemical processes that control U transport when both mineral colloids and humic acid (HA) are present. U-spiked solutions/suspensions were injected into water-saturated sand columns, and U and colloid concentrations in column effluent were monitored. We found that HA promoted U transport via (i) formation of aqueous U-HA complexes, and (ii) competition against aqueous U for surface sites on transport media. Illite colloids had no influence on U transport at pH5 in the absence of HA due to low mobility of the colloids. At pH9, U desorbed from mobile illite and the presence of illite decreased U transport. At pH5, high U transport occurred when both illite colloids and HA were present, which was attributed to enhanced U adsorption to illite colloids via formation of ternary illite-HA-U surface complexes, and enhanced illite transport due to HA attachment to illite and transport media. This study demonstrates that the combined effects of mineral colloids and HA on contaminant transport is different from simple addition of the individual effect. PMID:25444118

  10. Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow

    NASA Astrophysics Data System (ADS)

    Voisin, Didier; Jaffrezo, Jean-Luc; Houdier, StéPhan; Barret, Manuel; Cozic, Julie; King, Martin D.; France, James L.; Reay, Holly J.; Grannas, Amanda; Kos, Gregor; Ariya, Parisa A.; Beine, Harry J.; Domine, Florent

    2012-07-01

    Snowpacks contain many carbonaceous species that can potentially impact on snow albedo and arctic atmospheric chemistry. During the OASIS field campaign, in March and April 2009, Elemental Carbon (EC), Water insoluble Organic Carbon (WinOC) and Dissolved Organic Carbon (DOC) were investigated in various types of snow: precipitating snows, remobilized snows, wind slabs and depth hoars. EC was found to represent less than 5% of the Total Carbon Content (TCC = EC + WinOC + DOC), whereas WinOC was found to represent an unusual 28 to 42% of TCC. Snow type was used to infer physical processes influencing the evolution of different fractions of DOC. DOC is highest in soil influenced indurated depth hoar layers due to specific wind related formation mechanisms in the early season. Apart from this specific snow type, DOC is found to decrease from precipitating snow to remobilized snow to regular depth hoar. This decrease is interpreted as due to cleaving photochemistry and physical equilibration of the most volatile fraction of DOC. Depending on the relative proportions of diamond dust and fresh snow in the deposition of the seasonal snowpack, we estimate that 31 to 76% of DOC deposited to the snowpack is reemitted back to the boundary layer. Under the assumption that this reemission is purely photochemical, we estimate an average flux of VOC out of the snowpack of 20 to 170 μgC m-2 h-1. Humic like substances (HULIS), short chain diacids and aldehydes are quantified, and showed to represent altogether a modest (<20%) proportion of DOC, and less than 10% of DOC + WinOC. HULIS optical properties are measured and could be consistent with aged biomass burning or a possible marine source.

  11. Factors influencing inapplicability of cosolvency-induced model on organic acid sorption onto humic substance from methanol mixture.

    PubMed

    Kim, Minhee; Kim, Juhee; Kim, Jeong-Gyu; Hyun, Seunghun

    2015-10-01

    Applicability of cosolvency model for describing the sorption of organic acids to humic substance was investigated by analyzing dataset of sorption (K m) and solubility (S m) of selected solutes (benzoic acid, 1-naphthoic acid, 2,4-dichlorophenoxyacetic acid, and 2,4,6-trichlorophenol (2,4,6-TCP)) as a function of pH(appCME) (apparent pH of liquid phase) and f c (methanol volume fractions). For all solutes, the K m decreased with f c with the K m reduction being less than the S m-based prediction. The slope of log K m-f c plot in the three organic carboxylic acids was well correlated with their cosolvency power, whereas the data of organic phenolic acid (2,4,6-TCP) was placed above the trend, indicating the different actions of functional groups. The occurrence of Ca(2+) bridge between carboxylate and negatively charged humic surface may explain this phenomenon. Normalizing the K m to the corresponding S m (α' = K m/S m) was not in unity over the pH(app)-f c range but decreased with f c, indicating a possible structural modification of sorption domain favoring extra sorption. For a given solute, the α' of neutral species was always greater than that of anionic species, showing that extra interaction will be likely at pH(app) humic substance in methanol/water mixtures. Modification of humic structure and hydrophilic interaction (such as Ca(2+) bridge and same-charge repulsion) is considered a relevant process that possibly restricts the applicability of the cosolvency model. PMID:26028349

  12. Perspectives of humic substances application in remediation of highly heavy metals contaminated soils in Kola Subarctic

    NASA Astrophysics Data System (ADS)

    Tregubova, Polina; Turbaevskaya, Valeria; Zakharenko, Andrey; Kadulin, Maksim; Smirnova, Irina; Stepanov, Andrey; Koptsik, Galina

    2016-04-01

    Northwestern part of Russia, the Kola Peninsula, is one of the most heavy metals (HM) contaminated areas in the northern hemisphere. The main polluters, mining-and-metallurgical integrated works "Pechenganikel" and "Severonikel", are surrounded by heavily damaged barren lands that require remediation. The main contaminating metals are Ni and Cu. Using of exogenous humic substances could be possible effective and cost-efficient solution of HM contamination problem. Rational application of humates (Na-K salts of humic acids) can result in improvement of soil properties, localization of contamination and decreasing bioavailability through binding HM in relatively immobile organic complexes. Our research aim was to evaluate the influence of increasing doses of different origin humates on i) basic properties of contaminated soils; ii) mobility and bioavailability of HMs; iii) vegetation state and chemistry. In summer 2013 a model field experiment was provided in natural conditions of the Kola Peninsula. We investigated the Al-Fe-humus abrazem, soil type that dominates in technogenic barren lands around the "Severonikel" work. These soils are strongly acid: pHH2O was 3.7-4.1; pHKCl was 3.4-4.0. The exchangeable acidity is low (0.8-1.6 cmol(+)/kg) due to the depletion of fine particles and organic matter, being the carriers of exchange positions. The abrazems of barrens had lost organic horizon. 12 sites were created in 1 km from the work. In those sites, except 2 controls, various amendments were added: i) two different by it's origin types of humates: peat-humates and coal-humates, the last were in concentrations 0.5% and 1%; ii) lime; iii) NPK-fertilizer; iv) biomates (organic degradable cover for saving warm and erosion protection). As a test-culture a grass mixture with predominance of Festuca rubra and Festuca ovina was sowed. As a result we concluded that humates of different origin have unequal influence on soil properties and cause decreasing as well as

  13. Humic substance charge determination by titration with a flexible cationic polyelectrolyte

    NASA Astrophysics Data System (ADS)

    Tan, Wen-Feng; Norde, Willem; Koopal, Luuk K.

    2011-10-01

    The anionic charge of humic substances (HS) plays a major role in the interaction of HS with other components. Therefore, the potential of the polyelectrolyte titration technique to obtain the charge density of HS in simple 1-1 electrolyte solutions has been investigated. Titrations are carried out with an automatic titrator combined with the "Mütek particle charge detector" which allows determination of the Mütek potential and the pH as a function of the added amount of titrant which is a solution of poly-diallyldimethylammonium chloride (polyDADMAC), a cationic strong polyelectrolyte. When the Mütek potential reverses its sign the iso-electric point (IEP) of the polyDADMAC-HS complex is reached. The polyDADMAC/HS mass ratio at the IEP gives information on the HS charge density and from the pH changes in solution an estimate of the charge regulation in the HS-polyDADMAC complex can be obtained. In general, for polyDADMAC-HS complexes an increase in the dissociation of the acid groups of HS is found (charge regulation). The charge regulation decreases with increasing concentration of 1-1 background electrolyte. Cation incorporation can be neglected at 1-1 electrolyte concentrations ⩽ 1 mmol L -1 and a 1-1 stoichiometry exists between the polyDADMAC and HS charge. However, at these low salt concentrations the charge regulation is substantial. A detailed analysis of purified Aldrich humic acid (PAHA) at pH 5 and a range of KCl concentrations reveals that the anionic charge of PAHA in the complex increases at 5 mmol L -1 KCl by 30% and at 150 mmol L -1 KCl by 12%. On the other hand, increasing amounts of K + become incorporated in the complex: at 5 mmol L -1 KCl 5% and at 150 mmol L -1 KCl 24% of the PAHA charge is balanced by K +. By comparing at pH 5 the mass ratios polyDADMAC/PAHA in the complex at the IEP with the theoretical mass ratios of polyDADMAC/PAHA required to neutralize PAHA in the absence of charge regulation and K + incorporation, it is found that

  14. Influence of dissolved humic substances on the mass transfer of organic compounds across the air-water interface.

    PubMed

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-01-01

    The effect of dissolved humic substances (DHS) on the rate of water-gas exchange of two volatile organic compounds was studied under various conditions of agitation intensity, solution pH and ionic strength. Mass-transfer coefficients were determined from the rate of depletion of model compounds from an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution (dynamic system). Under these conditions, the overall transfer rate is controlled by the mass-transfer resistance on the water side of the water-gas interface. The experimental results show that the presence of DHS hinders the transport of the organic molecules from the water into the gas phase under all investigated conditions. Mass-transfer coefficients were significantly reduced even by low, environmentally relevant concentrations of DHS. The retardation effect increased with increasing DHS concentration. The magnitude of the retardation effect on water-gas exchange was compared for Suwannee River fulvic and humic acids, a commercially available leonardite humic acid and two synthetic surfactants. The observed results are in accordance with the concept of hydrodynamic effects. Surface pressure forces due to surface film formation change the hydrodynamic characteristics of water motion at the water-air interface and thus impede surface renewal. PMID:22051345

  15. Influence of low molecular weight fractions of humic substances on reducing capacities and distribution of redox functional groups

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Jiang, Jie

    2016-04-01

    Humic substances (HS) are redox-active organic compounds and their reducing capacities depend on their molecule structure and distribution of redox functional groups (RFG). During dialysis experiments, bulk humic acids (HA) were separated into low molecular weight fractions (LMWF) and retentate. LMWF account for only 2% of the total organic carbon content of HA molecules, however, their reducing capacities are up to 33 times greater than either those of the bulk HA or retentate. Furthermore, the total reducing capacity of the bulk HA accounts for less than 15% of the total reducing capacity of bulk HA, retentate and LMWF combined, suggesting that releasing of LMWF cannot reduce the number of RFG. RFG are neither in fixed amounts nor in uniformly distributed in bulk HA. LWMF have great fluorescence intensities for humic-like fluorophores (quinone-like functional groups), where quinonoid π-π* transition is responsible for the great reducing capacities of LMWF, and protein-like fluorophores. The 3,500 Da molecules (1.25 nm diameter) of HS could stimulate transformation of redox-active metals or potential pollutants trapped in soil micropores (< 2 nm diameter). A development of relationship between reducing capacity and Ex/Em position provides a possibility to predicate relative reducing capacities of HS in environmental samples.

  16. Source indicators of humic substances and proto-kerogen - Stable isotope ratios, elemental compositions and electron spin resonance spectra

    NASA Technical Reports Server (NTRS)

    Stuermer, D. H.; Peters, K. E.; Kaplan, I. R.

    1978-01-01

    Stable isotope ratios of C, N and H, elemental compositions, and electron spin resonance (ESR) data of humic acids and proto-kerogens from twelve widely varying sampling locations are presented. Humic acids and proto-kerogens from algal sources are more aliphatic and higher in N than those from higher plant sources. Oxygen content appears to represent a measure of maturation, even in Recent sediments, and S content may reflect redox conditions in the environment of deposition. The ESR data indicate that the transformation of humic substances to proto-kerogens in Recent sediments is accompanied by an increase in aromatic character. A combination of stable carbon isotope ratio and H/C ratio may be a simple but reliable source indicator which allows differentiation of marine-derived from terrestrially-derived organic matter. The stable nitrogen isotope ratios are useful indicators of nitrogen nutrient source. Deuterium/hydrogen isotope ratios appear to reflect variations in meteoric waters and are not reliable source indicators.

  17. Complexation humic substances of soils with metal ions as the main way migration of matals from soil to water

    NASA Astrophysics Data System (ADS)

    Dinu, Marina

    2013-04-01

    Organic matter (OM) of natural waters can bind with the ions metals (IM) entering the system, thus reducing their toxic properties. OM in water consists predominantly (up to 80%) of humic acids (HA), represented by highmolecular, dyed, polyfunctional compounds. The natural-climatic zones feature various ratios of fulvic (FA) and humic acids. An important specific feature of metals as contamination elements is the fact that when they occur in the environment, their potential toxicity and bioavailability depend significantly on their speciation. In recent years, lakes have been continuously enriched in hazardous elements such as Pb, Cd, Al, and Cr on a global (regional) basis. The most important organic ligands are humic matter (HM) washed out from soils in water and metals occur in natural waters as free ions, simple complexes with inorganic and organic ligands, and mineral and organic particles of molecules and ions sorbed on the surface. The occurrence of soluble metal forms in natural waters depends on the presence of organic and inorganic anions. However, direct determinations are rather difficult. The goal was the calculation and analysis of the forms of metals in the system catchment basin, based on the chemical composition of the water body and the structural features of soil humic substances (HS).We used the following analytical techniques - leaching of humic substances from soil and sample preparation (Orlov DS, 1985), the functional characteristics of humic substances - spectral analysis methods, the definition of conditional stability constants of complexes - electrochemical methods of analysis. Our results show thet HAs of selected soil types are different in functions, and these differences effect substantially the complexing process. When analyzing the results obtained in the course of spectrometric investigation of HMs in selected soil types, we determined the following main HA characteristics: (1) predominance of oxygen bearing groups in HM of the

  18. Pb(II) binding to humic substances: an equilibrium and spectroscopic study.

    PubMed

    Orsetti, Silvia; Marco-Brown, Jose L; Andrade, Estela M; Molina, Fernando V

    2013-08-01

    The binding of Pb(II) to humic acids is studied through an approach combining equilibrium and spectroscopic measurements. The methods employed are potentiometric and fluorometric titrations, fluorescence excitation-emission matrices (EEM) and IR spectroscopy. Potentiometric titration curves are analyzed using the NICA equations and an electrostatic model treating the humic particles as an elastic polyelectrolyte network. EEMs are analyzed using parallel factor analysis, decomposing the signal in its independent components and finding their dependence on Pb(II) activity. Potentiometric results are consistent with bimodal affinity distributions for Pb(II) binding, whereas fluorometric titrations are explained by monomodal distributions. EEM analysis is consistent with three independent components in the humic fluorescence response, which are assigned to moieties with different degree of aromaticity. All three components show a similar quenching behavior upon Pb(II) binding, saturating at relatively low Pb(II) concentrations. This is attributed to metal ion induced aggregation of humic molecules, resulting in the interaction between the aromatic groups responsible for fluorescence; this is also consistent with IR spectroscopy results. The observed behavior is interpreted considering that initial metal binding (observed as strongly binding sites), correspond to bi- or multidentate complexation to carboxylate groups, including binding between groups of different humic molecules, promoting aggregation; further metal ions (observed as weakly binding sites) bind to single ligand groups. PMID:23805795

  19. Linking fluorescence spectroscopy to diffuse soil source for dissolved humic substances in the Daning River, China.

    PubMed

    Chen, Hao; Zheng, Bing-Hui; Zhang, Lei

    2013-02-01

    Dissolved organic matter collected in Daning River (China) in July 2009 was investigated with parallel factor analysis (PARAFAC) and fluorescence spectroscopy with the aim of identifying the origin of dissolved humic substance (HS) components. Two HS-like fluorescence components (peak M and C) with excitation/emission (ex/em) maxima at 305/406 nm and 360/464 nm showed relatively uniform distribution in the vertical direction for each sampling site but a trend of accumulation down the river, independent of the highly heterogeneous water environment as implicated by water quality parameters (i.e., water temperature, algae density, chlorophyll a, dissolved oxygen, dissolved organic carbon, pH, conductivity and turbidity), while an amino acid/protein-like component (peak T; ex/em = 280/334 nm) was quite variable in its spatial distribution, implying strong influence from point sources (e.g. sewage discharge) and local microbial activities. The fluorescence intensity (F max in Raman units) at these ex/em wavelength pairs fell in the range of 0.031-0.358, 0.051-0.224 and 0.026-0.115 for peak T, M and C, respectively. In addition, the F max values of peak C covaried with M (i.e. C = 0.503 ×M, p < 0.01, R (2) = 0.973). Taken together, these results indicate that peak M and C originated primarily and directly from the same soil sources that were diffusive in the catchment, but peak T was more influenced by local point sources (e.g. wastewater discharge) and in situ microbial activities. This study presents new insights into the currently controversial origin of some HS components (e.g."peak M", as commonly referred to in the literature). This study highlights that natural water samples should be collected at various depths in addition to along a river/stream flow path so as to better evaluate the origin of HS fluorescence components. PMID:25208714

  20. Conductometric measurement of the changes in humic substances caused by ozone oxidation.

    PubMed

    Martín-Domínguez, Alejandra; Lara-Sánchez, Abigail; Hansen-Hansen, Anne M; Alarcón-Herrera, M Teresa

    2016-06-01

    Humic substances (HS), a broad category of organic compounds and a major constituent of soil, are responsible for serious problems during water purification processes. In particular, HS react with chlorine during disinfection processes to produce a variety of organochlorine compounds such as trihalomethanes (THMs), which are potentially carcinogenic to humans. The use of ozone as a disinfection method represents a potential solution to this problem; however, HS that are not completely oxidized may form by-products more reactive than the original molecules. The structural changes of HS during oxidation with ozone were evaluated through a replicated 2(2) design, where concentrations of 5 and 30 mg/L of two commercial HS (Aldrich and Fluka) were ozonized over different time intervals (0, 10, and 20 min). The ozone-treated HS were titrated with acid and base solutions, and the shifts of the slopes were then analyzed and finally related to the ionic alterations of the HS. The Aldrich HS (AHS) showed only protonated functional groups; the Fluka HS (FHS) showed only ionized groups; and in both cases, the amount of functional groups increased with increasing ozonation. For AHS and FHA, respectively, the maximum ozone exposure time (20 min) and the highest concentration of HS (30 mg/L) produced the greatest reductions in total organic carbon (TOC) (39 and 34 %), UV254 (50 and 60.8 %), and color (16.4 and 19.6 %). As for aromaticity, AHS showed removals of 39.6 % (from a starting concentration of 5 mg/L) and 17.2 % (from a starting concentration of 30 mg/L). FHS showed the opposite effect, with removals of 33.3 % (starting at 5 mg/L) and 40.1 % (starting at 30 mg/L). In this study, the structural changes of HS submitted to ozonation were inferred in a relatively quick and easy way by using a conductometric titration, thus demonstrating the applicability of the technique. PMID:26965279

  1. Contrasting cellular stress responses of Baikalian and Palearctic amphipods upon exposure to humic substances: environmental implications.

    PubMed

    Protopopova, Marina V; Pavlichenko, Vasiliy V; Menzel, Ralph; Putschew, Anke; Luckenbach, Till; Steinberg, Christian E W

    2014-12-01

    The species-rich, endemic amphipod fauna of Lake Baikal does not overlap with the common Palearctic fauna; however, the underlying mechanisms for this are poorly understood. Considering that Palearctic lakes have a higher relative input of natural organic compounds with a dominance of humic substances (HSs) than Lake Baikal, we addressed the question whether HSs are candidate factors that affect the different species compositions in these water bodies. We hypothesized that interspecies differences in stress defense might reveal that Baikalian amphipods are inferior to Palearctic amphipods in dealing with HS-mediated stress. In this study, two key mechanisms of general stress response were examined: heat-shock protein 70 (HSP70) and multixenobiotic resistance-associated transporters (ABCB1). The results of quantitative polymerase chain reaction (qPCR) showed that the basal levels (in 3-day acclimated animals) of hsp70 and abcb1 transcripts were lower in Baikalian species (Eulimnogammarus cyaneus, Eulimnogammarus verrucosus, Eulimnogammarus vittatus-the most typical littoral species) than in the Palearctic amphipod (Gammarus lacustris-the only Palearctic species distributed in the Baikalian region). In the amphipods, the stress response was induced using HSs at 10 mg L(-1) dissolved organic carbon, which was higher than in sampling sites of the studied species, but well within the range (3-10 mg L(-1)) in the surrounding water bodies populated by G. lacustris. The results of qPCR and western blotting (n = 5) showed that HS exposure led to increased hsp70/abcb1 transcripts and HSP70 protein levels in G. lacustris, whereas these transcript levels remained constant or decreased in the Baikalian species. The decreased level of stress transcripts is probably not able to confer an effective tolerance to Baikalian species against further environmental stressors in conditions with elevated HS levels. Thus, our results suggest a greater robustness of Palearctic amphipods and

  2. Fluorescence of sediment humic substance and its effect on the sorption of selected endocrine disruptors.

    PubMed

    Sun, W L; Ni, J R; Xu, N; Sun, L Y

    2007-01-01

    Humic substances (HS) have a critical influence on the sorption of organic contaminants by soils and sediments. This paper describes investigations into the sorption behavior of three representative endocrine disruptors, bisphenol A (BPA), 17beta-estradiol (E2), and 17alpha-ethynylestradiol (EE2), onto sediments and HS extracted sediments using a batch technique. The organic carbon-normalized partition coefficients (K(oc)) for the extracted HS (K(oc)(hs)) were calculated, and the fluorescence spectra of the HS extraced from different sediment samples were gained using excitation/emission matrix (EEM). Particular attention was paid to the correlations between the fluorescence characteristics of HS and the log K(oc)(hs) of selected endocrine disruptors. The results show that the log K(oc)(hs) values range from 3.14 to 4.09 for BPA, from 3.47 to 4.33 for E2, and from 3.65 to 4.32 for EE2. Two characteristic excitation-emission peaks were observed for HS samples extracted from sediments. They are located at Ex/Em=250-260 nm/400-450 nm (peak alpha') and Ex/Em=310-330 nm/390-400 nm (peak alpha) respectively. The alpha' and alpha peak relative intensities I(alpha')/I(alpha) vary from 0.46 to 1.64 for different extracted HS samples. The similarity between fulvic acids (FA) Ex/Em pairs and those observed for HS indicates that FA is the predominant fraction of HS extracted from sediments. Moreover, the log K(oc)(hs) values of BPA, E2, and EE2 have a negative linear correlation to I(alpha')/I(alpha) values. Peak alpha is often attributed to relatively stable and high molecular weight aromatic fulvic-like matter. Therefore, the result presented here reveals that the abundance of aromatic rings in HS molecular structure plays a critical role in the sorption of selected endocrine disruptors. PMID:16979213

  3. Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations

    NASA Astrophysics Data System (ADS)

    Piepenbrock, Annette; Dippon, Urs; Porsch, Katharina; Appel, Erwin; Kappler, Andreas

    2011-11-01

    Iron mineral (trans)formation during microbial Fe(III) reduction is of environmental relevance as it can influence the fate of pollutants such as toxic metal ions or hydrocarbons. Magnetite is an important biomineralization product of microbial iron reduction and influences soil magnetic properties that are used for paleoclimate reconstruction and were suggested to assist in the localization of organic and inorganic pollutants. However, it is not well understood how different concentrations of Fe(III) minerals and humic substances (HS) affect magnetite formation during microbial Fe(III) reduction. We therefore used wet-chemical extractions, magnetic susceptibility measurements and X-ray diffraction analyses to determine systematically how (i) different initial ferrihydrite (FH) concentrations and (ii) different concentrations of HS (i.e. the presence of either only adsorbed HS or adsorbed and dissolved HS) affect magnetite formation during FH reduction by Shewanella oneidensis MR-1. In our experiments magnetite formation did not occur at FH concentrations lower than 5 mM, even though rapid iron reduction took place. At higher FH concentrations a minimum fraction of Fe(II) of 25-30% of the total iron present was necessary to initiate magnetite formation. The Fe(II) fraction at which magnetite formation started decreased with increasing FH concentration, which might be due to aggregation of the FH particles reducing the FH surface area at higher FH concentrations. HS concentrations of 215-393 mg HS/g FH slowed down (at partial FH surface coverage with sorbed HS) or even completely inhibited (at complete FH surface coverage with sorbed HS) magnetite formation due to blocking of surface sites by adsorbed HS. These results indicate the requirement of Fe(II) adsorption to, and subsequent interaction with, the FH surface for the transformation of FH into magnetite. Additionally, we found that the microbially formed magnetite was further reduced by strain MR-1 leading to

  4. Surfactant-Wrapped Multiwalled Carbon Nanotubes in Aquatic Systems: Surfactant Displacement in the Presence of Humic Acid.

    PubMed

    Chang, Xiaojun; Bouchard, Dermont C

    2016-09-01

    Sodium dodecyl sulfate (SDS) facilitates multiwalled carbon nanotube (MWCNT) debundling and enhances nanotube stability in the aqueous environment by adsorbing on the nanotube surfaces, thereby increasing repulsive electrostatic forces and steric effects. The resulting SDS-wrapped MWCNTs are utilized in industrial applications and have been widely employed in environmental studies. In the present study, MWCNTs adsorbed SDS during ultrasonication to form stable MWCNTs suspensions. Desorption of SDS from MWCNTs surfaces was then investigated as a function of Suwannee River Humic Acid (SRHA) and background electrolyte concentrations. Due to hydrophobic effects and π-π interactions, MWCNTs exhibit higher affinity for SRHA than SDS. In the presence of SRHA, SDS adsorbed on MWCNTs was displaced. Cations (Na(+), Ca(2+)) decreased SDS desorption from MWCNTs due to charge screening effects. Interestingly, the presence of the divalent calcium cation facilitated multilayered SRHA adsorption on MWCNTs through bridging effects, while monovalent sodium reduced SRHA adsorption. Results of the present study suggest that properties of MWCNTs wrapped with commercial surfactants will be altered when these materials are released to surface waters and the surfactant coating will be displaced by natural organic matter (NOM). Changes on their surfaces will significantly affect MWCNTs fate in aquatic environments. PMID:27500910

  5. Separation of photosensitive substances in humic acids using molecular imprinting method based on electrostatic interactions and hydrogen bond

    NASA Astrophysics Data System (ADS)

    Ou, Xiaoxia; Yu, Chunyan; Wang, Chong; Zhang, Fengjie

    2013-03-01

    The goal of this research was to provide an improved understanding of the existence of photosensitive structure in humic acids (HAs) that are extracted from Changbai Mountain soils. Molecular imprinting technique was used to separate phthalocyanine-like substances from HAs with the mechanisms of electrostatic interactions and intermolecular hydrogen bond. Copper phthalocyanine (CuPc) was used as template molecule and the fraction bound by CuPc-imprinted polymers (MIP) named F (bind) presented higher spectroscopic activity than that of effluent fraction named F (eff). The fluorescence intensity of F(bind) at emission wavelength of 462 nm was 5.5 times as high as that of F(eff) at 458 nm, and the UV-vis absorbance at 254 nm of F(bind) had been increased to 2.5 times as compared with F(eff). The results of this work show the key role of humic substances with special structures in the light or photo involved process.

  6. Influence of humic substances on the formation of chlorinated polycyclic aromatic hydrocarbons during chlorination of polycyclic aromatic hydrocarbon polluted water

    SciTech Connect

    Johnsen, S.; Gribbestad, I.S.

    1988-08-01

    Chlorinated polycyclic aromatic hydrocarbons (PAH) are present at nanogram per liter levels in lake water. Some of these compounds are known to be mutagenic in the Ames Salmonella test. The PAH compounds fluorene, anthracene, fluoranthene, and benzo(a)pyrene were dissolved in lake water with low humus content and in humus water with 9.17 mg of total organic carbon/L, followed by sodium hypochlorite chlorination at different concentrations. Reaction of PAH and formation of chlorinated PAH were measured by cyclohexane extraction of the samples 3 days after chlorination and gas chromatography/mass spectrometry analyses of the extracts. The PAH-chlorine reaction was found to be dependent upon the concentration of free active chlorine in the water, and the presence of humic substances was found to affect the formation of chlorinated PAH. Chlorinated PAH were formed in the lake water samples of fluoranthene and benzo(a)pyrene, but no chlorinated PAH were detected in the presence of humic substances.

  7. Solid state NMR spectroscopy in the evaluation of the conformational changes of humic substances as affected by thermal variations

    NASA Astrophysics Data System (ADS)

    de Pasquale, C.; Berns, A. E.; Kucerik, J.; Conte, P.; Alonzo, G.

    2009-04-01

    Soil organic matter (SOM) is an ubiquitous, complex material which is produced by the degradation of plant tissues and animal bodies. It is the major indicator of soil quality since it is directly involved in the maintenance of soil fertility, prevention of erosion and desert encroachment and provision of suitable environment for biological activity. Organic matter is an important driving force in environmental global change as it acts as both a source and sink of atmospheric carbon. However, SOM is subjected to rapid changes due to environmental transformations such as massive deforestations, fires, intensive land uses, temperature increases and so on. In the present work, a characterization of humic substances was done in order to obtain information about the transformation occurring to SOM as affected by temperature increases. For the first time variable temperature cross polarization magic angle spinning (CPMAS) 13C NMR spectroscopy was applied in combination with thermal analyses (TG and DSC) on environmentally relevant soil organic matter. The results show that the conformational changes occurring in humic substances as temperature is raised can be associated to melting of alkyl components connected with sublimation of some organic compounds. The simultaneous application of solid phase micro extraction GC-MS also allowed the identification of the components which were released by sublimation processes.

  8. REMOVAL OF TASTE- AND ODOR-CAUSING COMPOUNDS BY BIOFILMS GROWN ON HUMIC SUBSTANCES

    EPA Science Inventory

    Laboratory experiments showed that biodegradation of taste- and odor-causing compounds by biofilms grown on natural humic materials is feasible. Although the mineralization of peat fulvic acid (PFA) was relatively low (about 10 percent), long-term application of the PFA resulted ...

  9. Measurement of associations of pharmaceuticals with dissolved humic substances using solid phase extraction.

    PubMed

    Ding, Yunjie; Teppen, Brian J; Boyd, Stephen A; Li, Hui

    2013-04-01

    An innovative method was developed to determine association of carbadox, lincomycin and tetracycline with dissolved humic acids using solid phase extraction (SPE). Dissolved organic matter (DOM) and DOM-bound pharmaceuticals passed through the SPE cartridge while the cartridge retained freely dissolved pharmaceuticals from water. This method was validated by comparison with the results measured using the common equilibrium dialysis technique. For the SPE method pharmaceutical interaction with DOM required ∼30h to approach the equilibration, whereas 50-120h was needed for the equilibrium dialysis technique. The uneven distributions of freely membrane-penetrating pharmaceuticals and protons inside vs. outside of the dialysis cell due to the Donnan effect resulted in overestimates of pharmaceutical affinity with DOM for the equilibrium dialysis method. The SPE technique eliminates the Donnan effect, and demonstrates itself as a more efficient, less laborious and more accurate method. The measured binding coefficients with DOM followed the order of carbadoxhumic acid were greater than those with Aldrich humic acid due to more interaction sites, i.e. carboxylic and phenolic functional moieties, present in the Leonardite humic acid. The results obtained suggest that many pharmaceuticals could be significantly bound to DOM, which alters their fate and mobility in the environment. PMID:23260244

  10. Characterization of humic substances isolated from clay- and silt-sized fractions of a corn residue-amended agricultural soil

    SciTech Connect

    Clapp, C.E.; Hayes, M.H.B.

    1999-12-01

    In a small-plot field study on a Waukegan silt loam soil, annual applications of 20 g N m{sup {minus}2} were made each May for 8 years before planting corn (Zea mays L.). Subplots were fertilized with 0.8 g {sup 15}N m{sup {minus}2}. Soil treatment in the fall either incorporated the chopped corn stover after grain harvest, using a rototiller, or the stover was removed from the plots. Soil samples taken in the fall were ultrasonicated, separated into clay- and silt-sized fractions, and extracted exhaustively with 0.1 mol L{sup {minus}1} sodium pyrophosphate (Na{sub 4}P{sub 2}O{sub 7}) + 0.1 mol L{sup {minus}1} NaOH (pH 12.6). Humic (HA) and fulvic (FA) acids were isolated using the International Humic Substances Society (IHSS) procedures. A variety of analytical methods were employed. The most useful information was obtained from amino acid (AA) and neutral sugar (NS) analyses, and from cross polarization magic angle spinning (CPMAS) {sup 13}C-NMR and {delta}{sup 13}C data. Overall, the corn residue amendments did not have a large effect on the composition of the humic substances (HS) from the different sized separates, but there were differences in the relative abundance of some AA and NS in the HAs and FAs. The NMR and {delta}{sup 13}C data provided evidence of some compositional differences and extent of humification between the HS from the clay- and silt-sized separates. The conclusion reached is, therefore, that the silt-sized particles were microaggregates of clay-sized particles, and the HS in these microaggregates were partially protected from bioalteration. These HS bore greater resemblance to the plants of origin than did those associated with the clays. The composition of the HAs and that of the FAs were similar to that of the Mollisol soil standard of the IHSS, but they were different from humic samples from other non-Mollisol soil types.

  11. Rapid changes in dissolved humic substances in Spirit Lake and South Fork Castle Lake, Washington

    USGS Publications Warehouse

    McKnight, Diane M.; Thorn, K.A.; Wershaw, R. L.; Bracewell, J.M.; Robertson, G.W.

    1988-01-01

    One major effect of the eruption of Mount St. Helens, Washington, was a large increase of dissolved organic material in the lakes of the area devastated near the volcano. Much of this material was aquatic fulvic acid derived from plants and soils from the surrounding watershed. During the 3 yr after the eruption, substantial chemical changes occurred in the aquatic fulvic acid. -from Authors

  12. Spectroscopic study (DRIFT, SERS and 1H NMR) of peat, leonardite and lignite humic substances

    NASA Astrophysics Data System (ADS)

    Francioso, O.; Sànchez-Cortés, S.; Tugnoli, V.; Marzadori, C.; Ciavatta, C.

    2001-05-01

    Diffuse reflectance infrared Fourier transform, surface-enhanced Raman and proton nuclear magnetic resonance spectroscopies were applied to investigate the structure of humic acids (HA) extracted from peat (P-HA), leonardite (Le-HA) and lignite (Li-HA) samples. The combined use of these techniques has shown a specific pattern of functional groups for each sample. P-HA was characterised by a greater content of oxygenate (COOH, C-OH in carbohydrates and phenols) and aliphatic groups. Le-HA and Li-HA showed a lower content of sugar-like components and polyethers. On the other hand, the aromatic structures were ubiquitous in all samples, although the different composition in Le-HA and Li-HA could be employed to identify and distinguish the HA in these two kinds of humic materials.

  13. Influence of humic substances on Co[sup 2+] sorption by a subsurface mineral separate and its mineralogic components

    SciTech Connect

    Zachara, J.M.; Resch, C.T.; Smith, S.C. )

    1994-01-01

    The sorption of Co[sup 2+] (10[sup [minus]6] mol/L) was measured on subsurface mineral materials in the absence and presence of a sorbed leonardite humic acid (LHA) to (1) evaluate the sorptive role of mineral-bound humic substances, and (2) establish approaches to model metal ion binding in composite materials. The subsurface materials were a <2.0 [mu]m size fraction of an ultisol saprolite (CP) and this same material treated with dithonite-citrate-bicarbonate (DCB) to remove Fe-oxides (DCP). Comparable experiments (with and without LHA) were also performed with mineral sorbents representing dominant phases in the CP separate (gibbsite, Al-geothite, and kalonite) to evaluate their potential contributions to Co sorption. The mineral-bound LHA ranged in concentration between 0.1-0.4 mg-C/m[sup 2], representing approximately 0.7% of the subsurface isolate by mass. In solid-free suspensions, the affinity of LHA for Co increased with pH and decreasing I (K[sub d] ranging 20-450 L/g). Mineral-bound LHA increased Co sorption on all the sorbents by factors of 10-60%, with the greatest augmentation noted at pH values (4.5-6.5) where (1) maximum LHA sorption occurred, and (2) Co sorption to the mineral phase was weak and dominated by ion exchange. The LHA appeared simply to augment, rather than to change the intrinsic adsorption behavior of the mineral sorbents. Accordingly, predictions of the K[sub d] for Co on the LHA-coated subsurface materials (DCP, CP) based on a linear additivity model agreed well with the experimental data, suggesting that the complex humic-mineral association acted as a noninterative sorbent mixture at low aqueous Co concentrations.

  14. Stability and mobility of cerium oxide nanoparticles in soils: effects of humic substances, pH and ionic strength

    NASA Astrophysics Data System (ADS)

    Chen, Yirui; Mu, Linlin; Li, Chunyan; Bai, Lingyun; Jacobson, Astrid; Darnault, Christophe

    2015-04-01

    Among the large number of types of nanomaterials used in the field of nanotechnology, cerium oxide nanoparticles (CeO2 NPs) are among the top five most commonly utilized by industry, agriculture and nanomedicine for their unique physico-chemical properties. They are used, for example, in the production of catalysts, as fuel additives, and as polishing agents. Therefore, the release and encounter of CeO2 NPs in the environment following their application, waste disposal, life-cycle and accidents is inevitable. It is critical to examine the behavior of CeO2 NPs released in the environment to assess the risk they pose to the environmental and public health. In particular, little is known about the fate and transport of CeO2 NPs in soils and groundwater. To assess the behavior of CeO2 NPs, it is important to investigate the factors that affect their stability and mobility. Humic substances are a major component of soils and have been shown to have the potential to impact the transport and retention of nanoparticles in soils. Consequently, our study characterizes the impacts of humic and fulvic acids on the stability and mobility of cerium oxides in model porous media under various pH and ionic strength conditions. Batch experiments conducted at various concentrations of humic and fulvic acids coupled with a wide range of pHs and ionic strengths were investigated. Selected parameters from these batch studies were then used as experimental conditions representative of environmental systems to perform column transport experiments to assess of the mobility of CeO2 NPs in saturated porous media, which is the first step in simulating their behavior in soil and groundwater systems.

  15. Addition of a Worm Leachate as Source of Humic Substances in the Drinking Water of Broiler Chickens

    PubMed Central

    Gomez-Rosales, S.; de L. Angeles, M.

    2015-01-01

    The objective of this research was to evaluate the growth performance, the apparent ileal digestibility of nitrogen and energy, the retention of nutrients and the apparent metabolizable energy corrected to zero nitrogen retention (AMEn) in broiler chickens supplemented with increasing doses of a worm leachate (WL) as a source of humic substances (HS) in the drinking water. In Exp. 1, 140 male broilers were penned individually and assigned to four WL levels (0%, 10%, 20%, and 30%) mixed in the drinking water from 21 to 49 days of age. Water was offered in plastic bottles tied to the cage. In Exp. 2, 600 male broilers from 21 to 49 days of age housed in floor pens were assigned to three levels of WL (0%, 10%, and 20%) mixed in the drinking water. The WL was mixed with tap water in plastic containers connected by plastic tubing to bell drinkers. The results of both experiments were subjected to analysis of variance and polynomial contrasts. In Exp. 1, the daily water consumption was similar among treatments but the consumption of humic, fulvic, and total humic acids increased linearly (p<0.01) as the WL increased in the drinking water. The feed conversion (p<0.01) and the ileal digestibility of energy, the excretion of dry matter and energy, the retention of dry matter, ash and nitrogen and the AMEn showed quadratic responses (p<0.05) relative to the WL levels in drinking water. In Exp. 2, the increasing level of WL in the drinking water had quadratic effects on the final body weight, daily weight gain and feed conversion ratio (p<0.05). The addition of WL as a source of HS in the drinking water had beneficial effects on the growth performance, ileal digestibility of energy, the retention of nutrients as well on the AMEn in broiler chickens; the best results were observed when the WL was mixed at levels of 20% to 30% in the drinking water. PMID:25557817

  16. Competitive effect of iron(III) on metal complexation by humic substances: characterisation of ageing processes.

    PubMed

    Lippold, H; Evans, N D M; Warwick, P; Kupsch, H

    2007-03-01

    Aiming at an assessment of counteractive effects on colloid-borne migration of actinides in the event of release from an underground repository, competition by Fe(III) in respect of metal complexation by dissolved organic matter was investigated for the example of Eu(III) as an analogue of trivalent actinides. Complexation with different humic materials was examined in cation exchange experiments, using (59)Fe and (152)Eu as radioactive tracers for measurements in dilute systems as encountered in nature. Competitive effects proved to be significant when Fe is present at micromolar concentrations. Flocculation as a limiting process was attributed to charge compensation of humic colloids. Fe fractions bound to humic acids (HA) were higher than 90%, exceeding the capacity of binding sites at high Fe concentrations. It is thus concluded that the polynuclear structure of hydrolysed Fe(III) is maintained when bound to HA, which is also inferred from UV-Vis spectrometry. The competitive effect was found to be enhanced if Fe and HA were in contact before Eu was added. Depending on the time of Fe/HA pre-equilibration, Eu complexation decreased asymptotically over a time period of several weeks, the amount of bound Fe being unchanged. Time-dependent observations of UV-Vis spectra and pH values revealed that the ageing effect was due to a decline in Fe hydrolysis rather than structural changes within HA molecules. Fe polycations are slowly degraded in contact with humic colloids, and more binding sites are occupied as a consequence of dispersion. The extent of degradation as derived from pH shifts depended on the Fe/HA ratio. PMID:17140629

  17. Application of a constrained regularization method to extraction of affinity distributions: proton and metal binding to humic substances.

    PubMed

    Orsetti, Silvia; Andrade, Estela María; Molina, Fernando V

    2009-08-15

    The binding of proton and metal cations to humic substances has been analyzed with a regularized fitting procedure (using the CONTIN software package) to extract conditional affinity distributions, valid at a given ionic strength, from binding (titration) curves. The procedure was previously tested with simulated titration curves using a simple bi-Gaussian model, the NICA-Donnan model, and the Stockholm humic model. Application to literature data for proton binding shows that in several cases the affinity distribution found is bimodal (carboxylic and phenolic sites) as usually assumed; however in other cases, specially for fulvic acids, a trimodal distribution is clearly discerned, with a smaller peak between the two noted above attributed to the presence of vicinal carboxylic groups. The analysis of metal binding curves has been performed in a few cases where the available data could be reliably processed, separating the proton affinity distribution and obtaining the conditional affinity spectra. For Cd(II) and Pb(II) a bimodal distribution is found, attributed in principle to mono- and bidentate binding, based on spectroscopic data. In the case of Cu(II), a more complex affinity distribution is found showing 3-4 peaks; this is consistent with spectroscopic studies, where different binding modes, up to tetradentate, have been observed. PMID:19477457

  18. Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize.

    PubMed

    Eyheraguibel, B; Silvestre, J; Morard, P

    2008-07-01

    A physico-chemical process has been developed to transform and enhance lignocellulosic waste in liquid humic extracts: humic-like substances (HLS). The aim of this study was to determine the effects of HLS on plant physiology in order to consider their agricultural use as organic fertilizers. The effects of HLS were evaluated on maize seed germination, and their impact on growth, development and mineral nutrition was studied on maize plants cultivated under hydroponic conditions. The experimental results showed that HLS do not increase the percentage and rate of germination but enhance the root elongation of seeds thus treated. Positive effects were also observed on the whole plant growth as well as on root, shoot and leaf biomass. These effects can be related to the high water and mineral consumption of plants undergoing this treatment. The high water efficiency indicated that such plants produce more biomass than non-treated plants for the same consumption of the nutrient solution. Furthermore, the use of HLS induced a flowering precocity and modified root development suggesting a possible interaction of HLS with developmental processes. Considering the beneficial effect of HLS on different stages of plant growth, their use may present various scientific and economic advantages. The physico-chemical transformation of sawdust is an interesting way of enhancing organic waste materials. PMID:17962015

  19. Complexion between mercury and humic substances from different landfill stabilization processes and its implication for the environment.

    PubMed

    Chai, Xiaoli; Liu, Guixiang; Zhao, Xin; Hao, Yongxia; Zhao, Youcai

    2012-03-30

    Three-dimensional excitation emission matrix (EEM) fluorescence spectroscopy was employed to investigate the structural properties and Hg(II)-binding behavior of humic substances (HS) extracted from different landfill stabilization processes. The EEM fluorescence properties of humic acid (HA) are characterized by intense fluorescence at Ex/Em=440/500 nm and Ex/Em=380/460 nm. Two relatively strong fluorescence peaks appeared in the region of Ex/Em=260-290/350-370 nm with the landfill time extended, which represented a protein-like or soluble microbial byproduct structure. The fluorescence EEM spectrum of fulvic acid (FA) featured a prominent peak of strong relative fluorescence intensity (FI=1598) at Ex/Em=330/440 nm (peak C) accompanied by a weak fluorophore (FI=594) located at Ex/Em=275/445 nm (peak D). There were strong interactions between HA and Hg, and the overall stability constant of Hg(II)-HA was mainly determined by the abundant O-ligands existing in HA. FA had a much higher Hg(II)-complexing capacity compared to HA samples, which may be ascribed to its relatively high content of carboxylic groups. The Hg(II)-complexing capacity of HA tended to decrease with stabilization process extension. The much higher Hg(II)-complexing capacity of FA than that of HA implied that FA played an important role in binding Hg(II) in early landfill stabilization process. PMID:22285919

  20. The Nematode Caenorhabditis elegans, Stress and Aging: Identifying the Complex Interplay of Genetic Pathways Following the Treatment with Humic Substances

    PubMed Central

    Menzel, Ralph; Menzel, Stefanie; Swain, Suresh C.; Pietsch, Kerstin; Tiedt, Sophie; Witczak, Jördis; Stürzenbaum, Stephen R.; Steinberg, Christian E. W.

    2012-01-01

    Low concentrations of the dissolved leonardite humic acid HuminFeed® (HF) prolonged the lifespan and enhanced the thermal stress resistance of the model organism Caenorhabditis elegans. However, growth was impaired and reproduction delayed, effects which have also been identified in response to other polyphenolic monomers, including Tannic acid, Rosmarinic acid, and Caffeic acid. Moreover, a chemical modification of HF, which increases its phenolic/quinonoid moieties, magnified the biological impact on C. elegans. To gain a deep insight into the molecular basis of these effects, we performed global transcriptomics on young adult (3 days) and old adult (11 days) nematodes exposed to two different concentrations of HF. We also studied several C. elegans mutant strains in respect to HF derived longevity and compared all results with data obtained for the chemically modified HF. The gene expression pattern of young HF-treated nematodes displayed a significant overlap to other conditions known to provoke longevity, including various plant polyphenol monomers. Besides the regulation of parts of the metabolism, transforming growth factor-beta signaling, and Insulin-like signaling, lysosomal activities seem to contribute most to HF’s and modified HF’s lifespan prolonging action. These results support the notion that the phenolic/quinonoid moieties of humic substances are major building blocks that drive the physiological effects observed in C. elegans. PMID:22529848

  1. The Nematode Caenorhabditis elegans, Stress and Aging: Identifying the Complex Interplay of Genetic Pathways Following the Treatment with Humic Substances.

    PubMed

    Menzel, Ralph; Menzel, Stefanie; Swain, Suresh C; Pietsch, Kerstin; Tiedt, Sophie; Witczak, Jördis; Stürzenbaum, Stephen R; Steinberg, Christian E W

    2012-01-01

    Low concentrations of the dissolved leonardite humic acid HuminFeed(®) (HF) prolonged the lifespan and enhanced the thermal stress resistance of the model organism Caenorhabditis elegans. However, growth was impaired and reproduction delayed, effects which have also been identified in response to other polyphenolic monomers, including Tannic acid, Rosmarinic acid, and Caffeic acid. Moreover, a chemical modification of HF, which increases its phenolic/quinonoid moieties, magnified the biological impact on C. elegans. To gain a deep insight into the molecular basis of these effects, we performed global transcriptomics on young adult (3 days) and old adult (11 days) nematodes exposed to two different concentrations of HF. We also studied several C. elegans mutant strains in respect to HF derived longevity and compared all results with data obtained for the chemically modified HF. The gene expression pattern of young HF-treated nematodes displayed a significant overlap to other conditions known to provoke longevity, including various plant polyphenol monomers. Besides the regulation of parts of the metabolism, transforming growth factor-beta signaling, and Insulin-like signaling, lysosomal activities seem to contribute most to HF's and modified HF's lifespan prolonging action. These results support the notion that the phenolic/quinonoid moieties of humic substances are major building blocks that drive the physiological effects observed in C. elegans. PMID:22529848

  2. Influence of Low Molecular Weight Fractions of Humic Substances on Their Reducing Capacities and Distribution of Redox Functional Groups.

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Jiang, J.

    2015-12-01

    Humic substances (HS) are redox-active organic compounds and their reducing capacities depend on molecule structure and distribution of redox functional groups (RFG). During dialysis experiments, initial HS were separated into low molecular weight fractions (LMWF, molecular weight <3,500 Da or <14,000 Da) and retentate. LMWF accounts for only 2% in TOC contents of HS molecules, while their reducing capacities are up to 33 times greater than those of initial HA. However, great amount of reducing capacities of LMWF does not cause decreasing reducing capacities of retentate relative to those of initial HA. Total reducing capacities of whole dialysis device were calculated for initial HA, retentate and LMWF in native and reduced state, and result suggests that releasing of LMWF leads to production and explosion of RFG. LWMF have great fluorescence intensities for protein-like fluorophores and humic acids-like fluorophores (quinone-like functional groups), where quinonoid π-π* transition is responsible for the great reducing capacities of LMWF. The 3,500 Da molecules (0.25 nm diameter) of HS are capable of stimulating transformation of redox-active metals or potential pollutants trapped in soil micropores (< 2 nm diameter). A development of relationship between reducing capacity and Ex / Em position provides a possibility to predicate relative reducing capacities of HS in treated raw water sample.

  3. Immobilized humic substances on an anion exchange resin and their role on the redox biotransformation of contaminants.

    PubMed

    Cervantes, Francisco J; Gonzalez-Estrella, Jorge; Márquez, Arturo; Alvarez, Luis H; Arriaga, Sonia

    2011-01-01

    A novel technique to immobilize humic substances (HS) on an anion exchange resin is presented. Immobilized HS were demonstrated as an effective solid-phase redox mediator (RM) during the reductive biotransformation of carbon tetrachloride (CT) and the azo model compound, Reactive Red 2 (RR2). Immobilized HS increased ∼4-fold the extent of CT reduction to chloroform by a humus-reducing consortium in comparison to incubations lacking HS. Immobilized HS also increased 2-fold the second-order rate constant of decolorization of RR2 as compared with sludge incubations lacking HS. To our knowledge, the present study constitutes the first demonstration of immobilized HS serving as an effective solid-phase RM during the reductive biotransformation of priority contaminants. The immobilizing technique developed could be appropriate for enhancing the redox biotransformation of recalcitrant pollutants in anaerobic wastewater treatment systems. PMID:20801024

  4. Effect of humic substances aggregation on the determination of fluoride in water using an ion selective electrode.

    PubMed

    Shen, Junjie; Gagliardi, Simona; McCoustra, Martin R S; Arrighi, Valeria

    2016-09-01

    The control of drinking water quality is critical in preventing fluorosis. In this study humic substances (HS) are considered as representative of natural organic matter (NOM) in water. We show that when HS aggregate the response of fluoride ion selective electrodes (ISE) may be perturbed. Dynamic light scattering (DLS) results of both synthetic solutions and natural water sample suggest that low pH and high ionic strength induce HS aggregation. In the presence of HS aggregates, fluoride concentration measured by ISE has a reduction up to 19%. A new "open cage" concept has been developed to explain this reversible phenomenon. The interference of HS aggregation on fluoride measurement can be effectively removed by centrifugation pretreatment. PMID:27276164

  5. A mineral support and biotic catalyst are essential in the formation of highly polymeric soil humic substances

    NASA Astrophysics Data System (ADS)

    Zavarzina, A. G.

    2006-12-01

    The hypothesis was proposed that highly polymeric humic substances in the mineral horizons of soils in a temperate humid climate originate from polymerization of water-soluble structural precursors directly on mineral surfaces under the catalytic effect of immobilized phenoloxidases (heterophasic biocatalysis). This hypothesis was confirmed by a laboratory experiment using a mixture of monomeric phenols and nitrogenous compounds as structural precursors, fungal laccase as a biotic catalyst, and a hydroxyaluminum-kaolinite complex as a mineral support. Enzymic oxidation of phenolic precursors on the mineral surface was substantially more rapid than abiotic oxidation and led to synthesis of a highly polymeric fraction with a molecular weight over 75 kDa. These products were not produced on the mineral with an absence of laccase (abiotic catalysis) or in solution without the mineral matrix (homogeneous catalysis).

  6. Interfacial reactions between humic-like substances and lateritic clay: application to the preparation of "geomimetic" materials.

    PubMed

    Goure-Doubi, Herve; Martias, Céline; Lecomte-Nana, Gisèle Laure; Nait-Ali, Benoît; Smith, Agnès; Thune, Elsa; Villandier, Nicolas; Gloaguen, Vincent; Soubrand, Marilyne; Konan, Léon koffi

    2014-11-15

    The aim of this study was to understand the mechanisms responsible for the strengthening of "geomimetic" materials, especially the chemical bonding between clay and humic substances. The mineral matter is lateritic clay which mainly consists in kaolinite, goethite, hematite and quartz. The other starting products are fulvic acid (FA) and lime. The preparation of these geomimetic materials is inspired from the natural stabilization of soils by humic substances occurring over thousands of years. The present process involves acidic and alkaline reactions followed by a curing period of 18days at 60°C under a water saturated atmosphere. The acceleration of the strengthening process usually observed in soils makes this an original process for treatment of soils. The consolidation of the "geomimetic" materials could result from two major phenomena: (i) chemical bonding at the interface between the clay particles and iron compounds and the functional groups of the fulvic acid, (ii) a partial dissolution of the clay grains followed by the precipitation of the cementitious phases, namely calcium silicate hydrates, calcium aluminate hydrates and mixed calcium silicum and aluminum hydrates. Indeed, the decrease of the BET specific area of the lateritic clay after 24 h of reaction with FA added to the structural reorganization observed between 900 and 1000°C in the "geomimetic" material, and to the results of adsorption measurements, confirm the formation of organo-ferric complexes. The presence of iron oxides in clay, in the form of goethite, appears to be another parameter in favor of a ligand exchange process and the creation of binding bridges between FA and the mineral matter. Indeed all faces of goethite are likely to be involved in complexation reactions whereas in lateritic clay only lateral faces could be involved. The results of the adsorption experiments realized at a local scale will improve our understandings about the process of adsorption of FA on lateritic

  7. Geochemistry of aquatic humic substances in the Lake Fryxell basin, Antarctica

    USGS Publications Warehouse

    Aiken, G.; McKnight, D.; Harnish, R.; Wershaw, R.

    1996-01-01

    Dissolved organic carbon (DOC) in Lake Fryxell, 10 streams flowing into the lake, and the moat surrounding the lake was studied to determine the influence of sources and biogeochemical processes on its distribution and chemical nature. Lake Fryxell is an amictic, permanently ice-covered lake in the McMurdo Dry Valleys which contains benthic and planktonic microbial populations, but receives essentially no input of organic material from the ahumic soils of the watershed. Biological activity in the water column does not appear to influence the DOC depth profile, which is similar to the profiles for conservative inorganic constituents. DOC values for the streams varied with biomass in the stream channel, and ranged from 0.2 to 9.7 mg C/L. Fulvic acids in the streams were a lower percentage of the total DOC than in the lake. These samples contain recent carbon and appear to be simpler mixtures of compounds than the lake samples, indicating that they have undergone less humification. The fulvic acids from just above the sediments of the lake have a high sulfur content and are highly aliphatic. The main transformations occurring as these fractions diffuse upward in the water column are 1) loss of sulfur groups through the oxycline and 2) decrease in aliphatic carbon and increase in the heterogeneity of aliphatic moieties. The fraction of modem 14C content of the lake fulvic acids range from a minimum of 0.68 (approximately 3000 years old) at 15m depth to 0.997 (recent material) just under the ice. The major processes controlling the DOC in the lake appear to be: 1) The transport of organic matter by the inflow streams resulting in the addition of recent organic material to the moat and upper waters of the lake; 2) The diffusion of organic matter composed of relict organic material and organic carbon resulting from the degradation of algae and bacteria from the bottom waters or sediments of the lake into overlying glacial melt water; 3) The addition of recent organic matter to the bottom waters of the lake from the moat.

  8. Characterization of the humic substances isolated from postfire soils of scotch pine forest in Togljatty city, Samara region by the 13C-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Maksimova, Ekaterina; Abakumov, Evgeny

    2016-04-01

    Postpyrogenic soil dynamics is an informative tool for studying of soil elementary processes in extreme temperature conditions and for predicting of short time environmental changes in conditions of catastrophic landscape changes. Soil organic matter (SOM) system evolution is the most rapid process of postpyrogenic soil development. In this relation the evaluation of humus accumulation rates and humification trend were conducted with use of the classical chemical and modern spectroscopy methods. Soil restoration after spontaneous forest fires near Togljatty city (Samara region, Russia) was abandoned in 2010, and further monitoring over the next four years was organized to evaluate the speed of biogenic processes and humus accumulation dynamics. Three key soil plots were studied for estimating SOM quality changes under the forest fire effect: surface forest fire, crown forest fire and control. Total carbon and nitrogen content as well as Cha/Cfa ratios (content of humic acids/ content of fulvic acids), were estimated to assess the dynamics of soil restoration. Humic acid powders were extracted and analyzed by elemental composition and 13C-NMR spectroscopy to assess changes in humic substance structure and composition. The data obtained indicate that burning of a forest floor and sod (humic) horizon led to humus losses and decreases in total carbon stocks. As a result of the fires, the content of humic acids in the pyrogenic horizon increased, leading alterations of humus type. Greater increases in the degree of organic matter humification were observed for surface fires than crown fires. It was shown that the humus molecular composition was substantially affected by the wildfires. The data show an increase in aromaticity, a loss of oxygen-containing groups and dehydrogenation of humic acids. Humic acids in the soils of the control plots and after wildfires were significantly different, especially in the ratios of hydrogen, oxygen and carbon. The increase in the

  9. Involvement of Hormone- and ROS-Signaling Pathways in the Beneficial Action of Humic Substances on Plants Growing under Normal and Stressing Conditions

    PubMed Central

    García, Andrés Calderín; Olaetxea, Maite; Santos, Leandro Azevedo; Mora, Verónica; Baigorri, Roberto; Fuentes, Marta; Zamarreño, Angel Maria; Berbara, Ricardo Luis Louro; Garcia-Mina, José María

    2016-01-01

    The importance of soil humus in soil fertility has been well established many years ago. However, the knowledge about the whole mechanisms by which humic molecules in the rhizosphere improve plant growth remains partial and rather fragmentary. In this review we discuss the relationships between two main signaling pathway families that are affected by humic substances within the plant: one directly related to hormonal action and the other related to reactive oxygen species (ROS). In this sense, our aims are to try the integration of all these events in a more comprehensive model and underline some points in the model that remain unclear and deserve further research. PMID:27366744

  10. Involvement of Hormone- and ROS-Signaling Pathways in the Beneficial Action of Humic Substances on Plants Growing under Normal and Stressing Conditions.

    PubMed

    García, Andrés Calderín; Olaetxea, Maite; Santos, Leandro Azevedo; Mora, Verónica; Baigorri, Roberto; Fuentes, Marta; Zamarreño, Angel Maria; Berbara, Ricardo Luis Louro; Garcia-Mina, José María

    2016-01-01

    The importance of soil humus in soil fertility has been well established many years ago. However, the knowledge about the whole mechanisms by which humic molecules in the rhizosphere improve plant growth remains partial and rather fragmentary. In this review we discuss the relationships between two main signaling pathway families that are affected by humic substances within the plant: one directly related to hormonal action and the other related to reactive oxygen species (ROS). In this sense, our aims are to try the integration of all these events in a more comprehensive model and underline some points in the model that remain unclear and deserve further research. PMID:27366744

  11. Ammonia fixation by humic substances: A nitrogen-15 and carbon-13 NMR study

    USGS Publications Warehouse

    Thorn, K.A.; Mikita, M.A.

    1992-01-01

    The process of ammonia fixation has been studied in three well characterized and structurally diverse fulvic and humic acid samples. The Suwannee River fulvic acid, and the IHSS peat and leonardite humic acids, were reacted with 15N-labelled ammonium hydroxide, and analyzed by liquid phase 15N NMR spectrometry. Elemental analyses and liquid phase 13C NMR spectra also were recorded on the samples before and after reaction with ammonium hydroxide. The largest increase in percent nitrogen occurred with the Suwannee River fulvic acid, which had a nitrogen content of 0.88% before fixation and 3.17% after fixation. The 15N NMR spectra revealed that ammonia reacted similarly with all three samples, indicating that the functional groups which react with ammonia exist in structural configurations common to all three samples. The majority of nitrogcn incorporated into the samples appears to be in the form of indole and pyrrole nitrogen, followed by pyridine, pyrazine, amide and aminohydroquinone nitrogen. Chemical changes in the individual samples upon fixation could not be discerned from the 13C NMR spectra.

  12. Aquatic toxicity of forty industrial chemicals: Testing in support of hazardous substance spill prevention regulation

    NASA Astrophysics Data System (ADS)

    Curtis, M. W.; Ward, C. H.

    1981-05-01

    The U.S. Environmental Protection Agency is presently developing hazardous substance spill regulations to help prevent water pollution. Aquatic animal toxicity data are used as criteria for the designation and categorization of substances as hazardous, even though this type of data is not available for many industrial chemicals. Static 96-hr. toxicity tests were conducted with 40 such chemicals to provide basic toxicity data for regulatory decision making. Thirty-two of the 40 chemicals tested were hazardous to aquatic life as determined by 96-hr. LC 50's less than or equal to 500 mg/l. All 40 chemicals were tested with the fresh-water fathead minnow, Pimephales promelas, and ten chemicals were also tested with the salt-water grass shrimp, Palaemonetes pugio.

  13. Molecular interaction studies revealed the bifunctional behavior of triheme cytochrome PpcA from Geobacter sulfurreducens toward the redox active analog of humic substances.

    PubMed

    Dantas, Joana M; Kokhan, Oleksandr; Pokkuluri, P Raj; Salgueiro, Carlos A

    2015-10-01

    Humic substances (HS) constitute a significant fraction of natural organic matter in terrestrial and aquatic environments and can act as terminal electron acceptors in anaerobic microbial respiration. Geobacter sulfurreducens has a remarkable respiratory versatility and can utilize the HS analog anthraquinone-2,6-disulfonate (AQDS) as a terminal electron acceptor or its reduced form (AH2QDS) as an electron donor. Previous studies set the triheme cytochrome PpcA as a key component for HS respiration in G. sulfurreducens, but the process is far from fully understood. In this work, NMR chemical shift perturbation measurements were used to map the interaction region between PpcA and AH2QDS, and to measure their binding affinity. The results showed that the AH2QDS binds reversibly to the more solvent exposed edge of PpcA heme IV. The NMR and visible spectroscopies coupled to redox measurements were used to determine the thermodynamic parameters of the PpcA:quinol complex. The higher reduction potential of heme IV (-127mV) compared to that of AH2QDS (-184mV) explains why the electron transfer is more favorable in the case of reduction of the cytochrome by the quinol. The clear evidence obtained for the formation of an electron transfer complex between AH2QDS and PpcA, combined with the fact that the protein also formed a redox complex with AQDS, revealed for the first time the bifunctional behavior of PpcA toward an analog of the HS. Such behavior might confer selective advantage to G. sulfurreducens, which can utilize the HS in any redox state available in the environment for its metabolic needs. PMID:26071085

  14. Number of independent parameters in the potentiometric titration of humic substances.

    PubMed

    Lenoir, Thomas; Manceau, Alain

    2010-03-16

    With the advent of high-precision automatic titrators operating in pH stat mode, measuring the mass balance of protons in solid-solution mixtures against the pH of natural and synthetic polyelectrolytes is now routine. However, titration curves of complex molecules typically lack obvious inflection points, which complicates their analysis despite the high-precision measurements. The calculation of site densities and median proton affinity constants (pK) from such data can lead to considerable covariance between fit parameters. Knowing the number of independent parameters that can be freely varied during the least-squares minimization of a model fit to titration data is necessary to improve the model's applicability. This number was calculated for natural organic matter by applying principal component analysis (PCA) to a reference data set of 47 independent titration curves from fulvic and humic acids measured at I = 0.1 M. The complete data set was reconstructed statistically from pH 3.5 to 9.8 with only six parameters, compared to seven or eight generally adjusted with common semi-empirical speciation models for organic matter, and explains correlations that occur with the higher number of parameters. Existing proton-binding models are not necessarily overparametrized, but instead titration data lack the sensitivity needed to quantify the full set of binding properties of humic materials. Model-independent conditional pK values can be obtained directly from the derivative of titration data, and this approach is the most conservative. The apparent proton-binding constants of the 23 fulvic acids (FA) and 24 humic acids (HA) derived from a high-quality polynomial parametrization of the data set are pK(H,COOH)(FA) = 4.18 +/- 0.21, pK(H,Ph-OH)(FA) = 9.29 +/- 0.33, pK(H,COOH)(HA) = 4.49 +/- 0.18, and pK(H,Ph-OH)(HA) = 9.29 +/- 0.38. Their values at other ionic strengths are more reliably calculated with the empirical Davies equation than any existing model fit. PMID

  15. An experimental and modeling study of humic acid concentration effect on H(+) binding: Application of the NICA-Donnan model.

    PubMed

    Vidali, Roza; Remoundaki, Emmanouela; Tsezos, Marios

    2009-11-15

    Humic substances are the most abundant components of the colloidal and the dissolved fraction of natural organic matter (NOM) and they are characterized by a strong binding capacity for both metals and organic pollutants, affecting their mobility and bioavailability. The understanding of the humic acidic character is the first necessary step for the study of the mechanisms of binding of other positively charged soluble metal species by humic molecules. The present work, which constitutes part of the Ph.D. thesis of Roza Vidali, reports results on the influence of the concentration of humic acids on the binding of protons obtained through both an experimental and a modeling approach. A reference purified peat humic acid (PPHA) isolated by the International Humic Substances Society (IHSS) and a humic acid from a Greek soil (GHA) were experimentally studied at various humic acid concentrations, ranging from 20 to 200mgL(-1). The proton binding isotherms obtained at different humic acid concentrations have shown that proton binding is dependent on the concentration of both humic acids. Proton binding experimental data were fitted to the NICA-Donnan model and the model parameter values were calculated for humic acid concentrations of 20 and >or=100mgL(-1). The results obtained for the NICA-Donnan parameters at humic acid concentrations >or=100mgL(-1) are in excellent agreement with those reported in the literature. However, these model parameter values cannot be used for modeling and predicting cation binding in natural aquatic systems, where humic acid concentrations are much lower. Two sets of the NICA-Donnan parameters are reported: one for humic acid concentrations of >or=100mgL(-1) and one for humic acid concentration of 20mgL(-1). The significance of the parameters values for each concentration level is also discussed. PMID:19744666

  16. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  17. Influence of humic substances on Co 2+ sorption by a subsurface mineral separate and its mineralogic components

    NASA Astrophysics Data System (ADS)

    Zachara, J. M.; Resch, C. T.; Smith, S. C.

    1994-01-01

    The sorption of Co 2+ (10 -6 mol/L) was measured on subsurface mineral materials in the absence and presence of a sorbed leonardite humic acid (LHA) to (1) evaluate the sorptive role of mineral-bound humic substances, and (2) establish approaches to model metal ion binding in composite materials. The subsurface materials were a < 2.0 μm size fraction of an ultisol saprolite (CP) and this same material treated with dithionite-citrate-bicarbonate (DCB) to remove Fe-oxides (DCP). Comparable experiments (with and without LHA) were also performed with mineral sorbents representing dominant phases in the CP separate (gibbsite, Al-goethite, and kaolinite) to evaluate their potential contributions to Co sorption. The mineral-bound LHA ranged in concentration between 0.1-0.4 mg-C/m 2, representing approximately 0.7% of the subsurface isolate by mass. The sorption-desorption of LHA on the mineral surfaces, and its affinity for Co as a aqueous phase complexant were also determined. Batch measurements were employed (sorbents at 20-90 m 2/L; LHA-DOC at ≈11 mg-C/L) over a range in pH and ionic strength ( I) at I = 0.01 and 0.1 in NaClO 4. The LHA strongly sorbed to the subsurface mineral isolates (CP and DCP), and to all the specimen sorbents except kaolinite. Maximum sorption of LHA occurred at lower pH (≈4.5). In solid-free suspensions, the affinity of LHA for Co increased with pH and decreasing I ( Kd ranging 20-450 L/g). Mineral-bound LHA increased Co sorption on all the sorbents by factors of 10-60 %, with the greatest augmentation noted at pH values (4.5-6.5) where (1) maximum LHA sorption occurred, and (2) Co sorption to the mineral phase was weak and dominated by ion exchange. The LHA appeared simply to augment, rather than to change the intrinsic adsorption behavior of the mineral sorbents. Accordingly, predictions of the Kd for Co on the LHA-coated subsurface materials (DCP, CP) based on a linear additivity model agreed well with the experimental data, suggesting

  18. Compost and Crude Humic Substances Produced from Selected Wastes and Their Effects on Zea mays L. Nutrient Uptake and Growth

    PubMed Central

    Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad

    2013-01-01

    Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation. PMID:24319353

  19. Compost and crude humic substances produced from selected wastes and their effects on Zea mays L. nutrient uptake and growth.

    PubMed

    Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad

    2013-01-01

    Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation. PMID:24319353

  20. Natural humic substances effects on the life history traits of Latonopsis australis SARS (1888) (Cladocera--Crustacea).

    PubMed

    de Carvalho-Pereira, Ticiana Soares de Andrade; Santos, Thirza de Santana; Pestana, Edilene M S; Souza, Fábio Neves; Lage, Vivian Marina Gomes Barbosa; Nunesmaia, Bárbara Janaína Bezerra; Sena, Palloma Thaís Souza; Mariano-Neto, Eduardo; da Silva, Eduardo Mendes

    2015-02-01

    Cultivation medium is one of the first aspects to be considered in zooplankton laboratory cultivation. The use of artificial media does not concern to reproduce natural conditions to the cultivations, which may be achieved by using natural organic compounds like humic substances (HS). This study aimed to evaluate the effects of a concentrate of dissolved organic carbon (DOC) from the Negro River (NR(1)) and an extraction of humic acids (HA) from humus produced by Eisenia andrei on the life history traits of laboratory-based Latonopsis australis SARS (1888). A cohort life table approach was used to provide information about the effectiveness of NR and HA as supplements for the artificial cultivation of L. australis. Additionally, we seek to observe a maximization of L. australis artificial cultivation fitness by expanding the range of HS concentrations. The first experiment demonstrated that the females of L. australis reared under NR10 (mgDOCL(-1)) may have experienced an acceleration of the population life cycle, as the females have proportionally reproduced more and lived shorter than controls. By contrast, the use of the HA did not improve life history traits considered. The expansion of the concentration range (5, 10, 20 and 50 mgDOCL(-1)) corroborated the patterns observed on the first assay. Results for the fitness estimates combined with shorter lifespans than controls demonstrated trade-offs between reproductive output and female longevity reared under NR conditions, with NR20 been suggested as the best L. australis cultivation medium. This response might be associated with hormone-like effects. PMID:25025739

  1. Versatile peroxidase degradation of humic substances: use of isothermal titration calorimetry to assess kinetics, and applications to industrial wastes.

    PubMed

    Siddiqui, Khawar Sohail; Ertan, Haluk; Charlton, Timothy; Poljak, Anne; Daud Khaled, A K; Yang, Xuexia; Marshall, Gavin; Cavicchioli, Ricardo

    2014-05-20

    The kinetic constants of a hybrid versatile-peroxidase (VP) which oxidizes complex polymeric humic substances (HS) derived from lignin (humic and fulvic acids) and industrial wastes were determined for the first time using isothermal titration calorimetry (iTC). The reaction conditions were manipulated to enable manganese-peroxidase (MnP) and/or lignin-peroxidase (LiP) activities to be evaluated. The peroxidase reactions exhibited varying degrees of product inhibition or activation; properties which have not previously been reported for VP enzymes. In contrast to previous work (Ertan et al., 2012) on small non-polymeric substrates (MnSO4, veratryl alcohol and dyes), all kinetic plots for polymeric HS were sigmoidal, lacked Michaelis-Menten characteristics, and were indicative of positive cooperativity. Under conditions when both LiP and MnP were active, the kinetic data fitted to a novel biphasic Hill Equation, and the rate of enzymatic reaction was significantly greater than the sum of individual LiP plus MnP activities implying synergistic activation. By employing size-exclusion chromatography and electrospray ionization mass spectrometry, the characteristics of the oxidative degradation products of the HS were also monitored. Our study showed that the allosteric behaviour of the VP enzyme promotes a high level of regulation of activity during the breakdown of model and industrial ligninolytic substrates. The work was extended to examine the kinetics of breakdown of industrial wastes (effluent from a pulp and paper plant, and fouled membrane solids extracted from a ground water treatment membrane) revealing unique, VP-mediated, kinetic responses. This work demonstrates that iTC can be successfully employed to study the kinetic properties of VP enzymes in order to devise reaction conditions optimized for oxidative degradation of HS present in materials used in a wide range of industries. PMID:24631722

  2. Influence of sorption to dissolved humic substances on transformation reactions of hydrophobic organic compounds in water. I. Chlorination of PAHs.

    PubMed

    Georgi, Anett; Reichl, Annett; Trommler, Ulf; Kopinke, Frank-Dieter

    2007-10-15

    The effect of sorption to dissolved humic acids (HAs) on the chlorination of PAHs in aqueous solution was studied. The addition of HA accelerated the chlorination of fluoranthene and naphthalene in hypochlorite solutions at pH 5, the stronger effect being observed for fluoranthene that is sorbed to a higher extent than naphthalene. Sorption coefficients (K(DOC)) of the analytes were determined by solid-phase microextraction (SPME). The observed rate constant for fluoranthene chlorination is, for example, larger by a factor of 5 in the presence of 10 mg L(-1) of an aquatic HA as compared to HA-free solution (k' = 0.02 h(-1) at 60 mg L(-1) active chlorine, pH 5, without HA). While Cl2 is the dominant reactive species in pure aqueous solution for both PAHs, the reaction of fluoranthene seems to involve an additional pathway of chlorination by HOCl in the presence of HA. It was found that not only did HA not protect PAHs from the electrophilic attack of the chlorinating species, but the sorption of PAHs on the hydrophobic domains of the HA favored instead the extent of the chlorination reaction. PMID:17993140

  3. Humic substance-mediated Fe(III) reduction by a fermenting Bacillus strain from the alkaline gut of a humus-feeding scarab beetle larva.

    PubMed

    Hobbie, Sven N; Li, Xiangzhen; Basen, Mirko; Stingl, Ulrich; Brune, Andreas

    2012-06-01

    Humus-feeding macroinvertebrates play an important role in the transformation of soil organic matter. Their diet contains significant amounts of redox-active components such as iron minerals and humic substances. In soil-feeding termites, acid-soluble Fe(III) and humic acids are almost completely reduced during gut passage. Here, we show that the reduction of Fe(III) and humic acids takes place also in the alkaline guts of scarab beetle larvae. Sterilized gut homogenates of Pachnoda ephippiata no longer converted Fe(III) to Fe(II), indicating an essential role of the gut microbiota in the process. From Fe(III)-reducing enrichment cultures inoculated with highly diluted gut homogenates, we isolated several facultatively anaerobic, alkali-tolerant bacteria that were closely related to metal-reducing isolates in the Bacillus thioparans group. Strain PeC11 showed a remarkable capacity for dissimilatory Fe(III) reduction, both at pH 7 and 10. Rates were strongly stimulated by the addition of the redox mediator 2,6-antraquinone disulfonate and by redox-active components in the fulvic-acid fraction of humus. Although the contribution of strain PeC11 to intestinal Fe(III) reduction in P. ephippiata remains to be further elucidated, our results corroborate the hypothesis that the lack of oxygen and the solubilization of humic substances in the extremely alkaline guts of humivorous soil fauna provide favorable conditions for the efficient reduction of Fe(III) and humic substances by a primarily fermentative microbiota. PMID:22525666

  4. Short-column anion-exchange chromatography for soil and peat humic substances profiling by step-wise gradient of high pH aqueous sodium ethylenediaminetetraacetate.

    PubMed

    Hutta, Milan; Ráczová, Janka; Góra, Róbert; Pessl, Juraj

    2015-08-21

    Novel anion-exchange liquid chromatographic method with step gradient of aqueous EDTA(4-) based mobile phase elution has been developed to profile available Slovak soil humic substances and alkaline extracts of various soils. The method utilize short glass column (30mm×3mm) filled in with hydrolytically stable particles (60μm diameter) Separon HEMA-BIO 1000 having (diethylamino)ethyl functional groups. Step gradient was programmed by mixing mobile phase composed of aqueous solution of sodium EDTA (pH 12.0; 5mmolL(-1)) and mobile phase constituted of aqueous solution of sodium EDTA (pH 12.0, 500mmolL(-1)). The FLD of HSs was set to excitation wavelength 480nm and emission wavelength 530nm (λem). Separation mechanism was studied by use of selected aromatic acids related to humic acids with the aid of UV spectrophotometric detection at 280nm. The proposed method benefits from high ionic strength (I=5molL(-1)) of the end mobile phase buffer and provides high recovery of humic acids (98%). Accurate and reproducible profiling of studied humic substances, alkaline extracts of various types of soils enables straightforward characterization and differentiation of HSs in arable and forest soils. Selected model aromatic acids were used for separation mechanism elucidation. PMID:26143606

  5. Effect of Humic Substances on the Trapping and Transformations of U(VI) by Ferrihydrite

    NASA Astrophysics Data System (ADS)

    Dublet, G.; Brown, G. E.; Bargar, J.; Fendorf, S. E.; Janot, N.

    2013-12-01

    The Old Rifle DOE site in Colorado was a major site for milling uranium ore. U concentrations up to 1.8 uM persist in the Rifle aquifer, even after 'cleaning' the waste source of contaminations [1]. Understanding the behavior of U(VI) in this anthropogenically perturbed system is crucial for controlling the level of U contamination. Direct investigations of U speciation at this site have shown that U is associated with a wide variety of minerals as well as with natural organic matter (NOM) [2]. NOM has multiple functional groups which can be highly reactive with respect to aqueous metal ions, including actinides. Such interactions result in the formation of organo-mineral-metal (ternary) complexes and catalyze redox transformations; in addition, they can enhance mineral dissolution and metal transport [3,4,5]. In the complex soil/sediment system, aqueous, mineral, and organic phases are intimately mixed and their interactions are difficult to characterize by direct investigation [1]. The nanoparticulate iron hydroxide ferrihydrite (Fh), which is ubiquitous in many natural soils and highly reactive toward metal ions, is expected to significantly influence the fate of U in natural soils and is abundant in the subsurface at the Rifle site. NOM is also abundant at this site; however, little is known about the effect of NOM associated with ferrihydrite on the fate of U in such subsurface environments. To date, simple model systems composed mainly of two components (Fh and NOM) [6], (U and NOM or simple organic molecules) [7], or (Fh and U) [8,9], and more rarely composed of three components [10,11] have been studied in an effort to understand interactions among these components. In order to extend this earlier work to ternary systems, we have carried out batch reactions of U, a humic acid standard - Eliott soil humic acid (ESHA), and Fh under conditions that mimic those in the subsurface at Rifle. We have used U L3- and Fe K-edge XANES and EXAFS spectroscopy coupled

  6. Adsorption of insecticidal Cry1Ab protein to humic substances. 1. Experimental approach and mechanistic aspects.

    PubMed

    Sander, Michael; Tomaszewski, Jeanne E; Madliger, Michael; Schwarzenbach, René P

    2012-09-18

    Adsorption is a key process affecting the fate of insecticidal Cry proteins (Bt toxins), produced by genetically modified Bt crops, in soils. However, the mechanisms of adsorption to soil organic matter (SOM) remain poorly understood. This work assesses the forces driving the adsorption of Cry1Ab to Leonardite humic acid (LHA), used as a model for SOM. We studied the effects of solution pH and ionic strength (I) on adsorption using a quartz crystal microbalance with dissipation monitoring and optical waveguide lightmode spectroscopy. Initial Cry1Ab adsorption rates were close to diffusion-limited and resulted in extensive adsorption, even at pH >6, at which LHA and Cry1Ab carry negative net charges. Adsorption increased with decreasing I at pH >6, indicating Cry1Ab-LHA patch-controlled electrostatic attraction via positively charged domains of Cry1Ab. Upon rinsing, only a fraction of Cry1Ab desorbed, suggesting a range of interaction energies of Cry1Ab with LHA. Different interaction energies likely resulted from nonuniformity in the LHA surface polarity, with higher Cry1Ab affinities to more apolar LHA regions due to the hydrophobic effect. Contributions from the hydrophobic effect were substantiated by comparison of the adsorption of Cry1Ab and the reference proteins albumin and lysozyme to LHA and to apolar and polar model surfaces. PMID:22862304

  7. Humic substance-mediated reduction of iron(III) oxides and degradation of 2,4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5.

    PubMed

    Wu, Chun-yuan; Zhuang, Li; Zhou, Shun-gui; Yuan, Yong; Yuan, Tian; Li, Fang-bai

    2013-03-01

    With the use of an alkaliphilic bacterium, Corynebacterium humireducens MFC-5, this study investigated the reduction of goethite (α-FeOOH) and degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) mediated by different humic substances (humics) and quinones in alkaline conditions (pH of 9.0). The results indicated that (i) using sucrose as the electron donor, the strain MFC-5 was capable of reducing anthraquinone-2,6-disulfonic acid (AQDS), anthraquinone-2-disulfonic acid (AQS), anthraquinone-2-carboxylic acid (AQC), humic acid (HA) and fulvic acid (FA), and its reducing capability ranked as AQC > AQS > AQDS > FA > HA; (ii) the anaerobic reduction of α-FeOOH and 2,4-D by the strain was insignificant, while the reductions were greatly enhanced by the addition of quinones/humics serving as redox mediators; (iii) the Fe(III) reduction rate was positively related to the content of quinone functional groups and the electron-accepting capacities (EAC) of quinones/humics based on fourier-transform infrared spectroscopy (FT-IR) and electrochemical analyses; however, such a relationship was not found in 2,4-D degradation probably because quinone reduction was not the rate-limiting step of quinone-mediated reduction of 2,4-D. Using the example of α-FeOOH and 2,4-D, this study well demonstrated the important role of humics reduction on the Fe(III)/Fe(II) biogeochemical cycle and chlorinated organic compounds degradation in alkaline reducing environments. PMID:23217085

  8. Humic substance-mediated reduction of iron(III) oxides and degradation of 2,4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5

    PubMed Central

    Wu, Chun-yuan; Zhuang, Li; Zhou, Shun-gui; Yuan, Yong; Yuan, Tian; Li, Fang-bai

    2013-01-01

    With the use of an alkaliphilic bacterium, Corynebacterium humireducens MFC-5, this study investigated the reduction of goethite (α-FeOOH) and degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) mediated by different humic substances (humics) and quinones in alkaline conditions (pH of 9.0). The results indicated that (i) using sucrose as the electron donor, the strain MFC-5 was capable of reducing anthraquinone-2,6-disulfonic acid (AQDS), anthraquinone-2-disulfonic acid (AQS), anthraquinone-2-carboxylic acid (AQC), humic acid (HA) and fulvic acid (FA), and its reducing capability ranked as AQC > AQS > AQDS > FA > HA; (ii) the anaerobic reduction of α-FeOOH and 2,4-D by the strain was insignificant, while the reductions were greatly enhanced by the addition of quinones/humics serving as redox mediators; (iii) the Fe(III) reduction rate was positively related to the content of quinone functional groups and the electron-accepting capacities (EAC) of quinones/humics based on fourier-transform infrared spectroscopy (FT-IR) and electrochemical analyses; however, such a relationship was not found in 2,4-D degradation probably because quinone reduction was not the rate-limiting step of quinone-mediated reduction of 2,4-D. Using the example of α-FeOOH and 2,4-D, this study well demonstrated the important role of humics reduction on the Fe(III)/Fe(II) biogeochemical cycle and chlorinated organic compounds degradation in alkaline reducing environments. Funding Information This study was supported by the National Natural Science Foundation of China (Nos 41101211, 31070460, 41101477), and The Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. PMID:23217085

  9. Carbon-13 nuclear magnetic resonance analysis, lignin content and carbohydrate composition of humic substances from salt marsh estuaries

    NASA Astrophysics Data System (ADS)

    Alberts, James J.; Hatcher, Patrick G.; Price, Mary T.; Filip, Zdenek

    13C nuclear magnetic resonance spectroscopy, CuO oxidation products of lignin and hydrolyzable carbohydrates were measured for fulvic and humic acids extracted from living and dead Spartina alterniflora and salt marsh sediments. With these methods, there was little evidence for early diagenetic alteration of the humic materials. No trends consistent for fulvic and humic acids were observed for either hydrolyzable carbohydrates or lignin derived phenols, and chemical measurements of these fractions did not agree with spectral estimates. Humic acids appear to contain secondary amide linkages typical of proteins and peptides.

  10. Colloidal diatomite, radionickel, and humic substance interaction: a combined batch, XPS, and EXAFS investigation.

    PubMed

    Sheng, Guodong; Shen, Runpu; Dong, Huaping; Li, Yimin

    2013-06-01

    This work determined the influence of humic acid (HA) and fulvic acid (FA) on the interaction mechanism and microstructure of Ni(II) onto diatomite by using batch experiments, X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS) methods. Macroscopic and spectroscopic experiments have been combined to see the evolution of the interaction mechanism and microstructure of Ni(II) in the presence of HA/FA as compared with that in the absence of HA/FA. The results indicated that the interaction of Ni(II) with diatomite presents the expected solution pH edge at 7.0, which is modified by addition of HA/FA. In the presence of HA/FA, the interaction of Ni(II) with diatomite increased below solution pH 7.0, while Ni(II) interaction decreased above solution pH 7.0. XPS analysis suggested that the enrichment of Ni(II) onto diatomite may be due to the formation of (≡SO)2Ni. EXAFS results showed that binary surface complexes and ternary surface complexes of Ni(II) can be simultaneously formed in the presence of HA/FA, whereas only binary surface complexes of Ni(II) are formed in the absence of HA/FA, which contribute to the enhanced Ni(II) uptake at low pH values. The results observed in this work are important for the evaluation of Ni(II) and related radionuclide physicochemical behavior in the natural soil and water environment. PMID:23143822

  11. Heterogeneous ice nucleation on particles composed of humic-like substances impacted by O3

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Knopf, Daniel A.

    2011-02-01

    Heterogeneous ice nucleation plays important roles in cirrus and mixed-phase cloud formation, but the efficiency of organic particles to act as ice nuclei (IN) is still not well understood. Furthermore, the effect of particle oxidation by O3 on corresponding IN efficiencies has not yet been sufficiently assessed. We present heterogeneous ice nucleation on kaolinite, Suwannee River standard fulvic acid (SRFA), and leonardite standard humic acid particles as a function of particle temperature (Tp), relative humidity with respect to ice (RHice), nucleation mode, and O3 exposure. Ice nucleation and water uptake were studied for Tp >203 K and RHice up to water saturation using a novel ice nucleation apparatus. This study shows that SRFA, leonardite, and corresponding O3-exposed particles can nucleate ice via different modes at relevant atmospheric conditions. These particles nucleated ice via deposition mode at Tp ≤ 231 K, and for higher Tp water was taken up or ice was nucleated via deposition or immersion mode. Oxidation of leonardite and SRFA particles by O3 led to a decrease in deposition nucleation efficiency and to water uptake at lower temperatures for the former and to an increase in the lowest temperature at which deposition nucleation was observed for the latter. Activated IN fractions and heterogeneous ice nucleation rate coefficients (Jhet) were derived, and corresponding contact angles (θ) were calculated. A parameterization of θ as a function of RHice is presented which allows derivation of Jhet for various deposition IN and corresponding ice crystal production rates for application in cloud-resolving models.

  12. Humic substances and trace metals associated with Fe and Al oxides deposited in an acidic mountain stream

    USGS Publications Warehouse

    McKnight, Diane M.; Wershaw, R. L.; Bencala, K.E.; Zellweger, G.W.; Feder, G.L.

    1992-01-01

    Hydrous iron and aluminum oxides are deposited on the streambed in the confluence of the Snake River and Deer Creek, two streams in the Colorado Rocky Mountains. The Snake River is acidic and has high concentrations of dissolved Fe and Al. These metals precipitate at the confluence with the pristine, neutral pH, Deer Creek because of the greater pH (4.5-6.0) in the confluence. The composition of the deposited oxides changes consistently with distance downstream, with the most upstream oxide samples having the greatest Fe and organic carbon content. Fulvic acid accounts for most of the organic content of the oxides. Results indicate that streambed oxides in the confluence are not saturated with respect to their capacity to sorb dissolved humic substances from streamwater. The contents of several trace metals (Mn, Zn, Cu, Pb, Ni and Co) also decrease with distance downstream and are correlated with both the Fe and organic carbon contents. Strong metal-binding sites associated with the sorbed fulvic acid are more than sufficient to account for the trace metal content of the oxides. Complexation of trace metals by sorbed fulvic acid may explain the observed downstream decrease in trace metal content.

  13. Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone.

    PubMed

    Jiang, Jie; Bauer, Iris; Paul, Andrea; Kappler, Andreas

    2009-05-15

    Arsenic is a redox-active metalloid whose toxicity and mobility strongly depends on its oxidation state, with arsenite (As(III)) being more toxic and mobile than arsenate (As(V)). Humic substances (HS) are also redox-active and can potentially react with arsenic and change its redox state. In this study we show that semiquinone radicals produced during microbial or chemical reduction of a HS model quinone (AQDS, 9,10-anthraquinone-2,6-disulfonic acid) are strong oxidants. They oxidize arsenite to arsenate, thus decreasing As toxicity and mobility. This reaction depends strongly on pH with more arsenite (up to 67.3%) being oxidized at pH 11 compared to pH 7 (12.6% oxidation) and pH 3 (0.5% oxidation). In addition to As(III) oxidation by semiquinone radicals, hydroquinones that were also produced during quinone reduction reduced As(V) to As(III) at neutral and acidic pH values (less than 12%) but not at alkaline pH. In order to understand redox reactions between arsenite/arsenate and reduced/oxidized HS, we quantified the radical content in reduced quinone solutions and constructed Eh-pH diagrams that explain the observed redox reactions. The results from this study can be used to better predict the fate of arsenic in the environment and potentially explain the occurrence of oxidized As(V) in anoxic environments. PMID:19544866

  14. Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH.

    PubMed

    Lipczynska-Kochany, Ewa; Kochany, Jan

    2008-10-01

    This paper describes results of treatability studies of the effect of humic substances (humate, HS, at the concentration 500-5000 mg l-1) on the Fenton (Fe2+/H2O2) treatment of industrial wastewater at pH 3.5 and 7.0. Without humate, the removal of all contaminants was significantly higher at pH 3.5 than at pH 7. At pH 7.0, the removal of all compounds in the presence of HS (3000 mg l-1) was comparable to that at pH 3.5 without HS. At pH 3.5, humate had no effect on the removal of arsenic, thiocyanate and cyanide, but the removal of all organic compounds (phenol, 2,4-dimethylphenol, benzene, toluene, o-xylene, m- & p-xylene and dichloromethane) was significantly inhibited. Mechanisms of the processes are discussed. It is suggested that, in the presence of HS, acidification of the treated wastewater may not only be unnecessary but it can even hinder the degradation of organic pollutants. PMID:18657846

  15. Polyphenolic compounds progress during olive mill wastewater sludge and poultry manure co-composting, and humic substances building (Southeastern Tunisia).

    PubMed

    Rigane, Hafedh; Chtourou, Mohamed; Ben Mahmoud, Imen; Medhioub, Khaled; Ammar, Emna

    2015-01-01

    In Mediterranean areas, olive mill wastes pose a major environmental problem owing to their important production and their high polyphenolic compounds and organic acids concentrations. In this work, the evolution of polyphenolic compounds was studied during co-composting of olive mill wastewater sludge and poultry manure, based on qualitative (G-50 sephadex) and quantitative (Folin-Ciocalteu), as well as high pressure liquid chromatography analyses. Results showed a significant polyphenolic content decrease of 99% and a noticeable transformation of low to high molecular weight fraction during the compost maturation period. During this step, polyphenols disappearance suggested their assimilation by thermophilic bacteria as a carbon and energy source, and contributed to humic substances synthesis. Polyphenolic compounds, identified initially by high pressure liquid chromatography, disappeared by composting and only traces of caffeic, coumaric and ferulic acids were detected in the compost. In the soil, the produced compost application improved the chemical and physico-chemical soil properties, mainly fertilising elements such as calcium, magnesium, nitrogen, potassium and phosphorus. Consequently, a higher potato production was harvested in comparison with manure amendment. PMID:25502693

  16. Interaction of metal ions with acid sites of biosorbents peat moss and Vaucheria and model substances alginic and humic acids

    SciTech Connect

    Crist, R.H.; Martin, J.R.; Crist, D.R.

    1999-07-01

    The interaction between added metal ions and acid sites of two biosorbents, peat moss and the alga Vaucheria, was studied. Results were interpreted in terms of two model substances, alginic acid, a copolymer of guluronic and mannuronic acids present in marine algae, and humic acid in peat moss. For peat moss and Vaucheria at pH 4--6, two protons were displaced per Cd sorbed, after correction for sorbed metals also displaced by the heavy metal. The frequent neglect of exchange of heavy metals for metals either sorbed on the native material or added for pH adjustment leads to erroneous conclusions about proton displacement stoichiometry. Proton displacement constants K{sub ex}{sup H} decreased logarithmically with pH and had similar slopes for alginic acid and biosorbents. This pH effect was interpreted as an electrostatic effect of increasing anionic charge making proton removal less favorable. The maximum number of exchangeable acid sites (capacity C{sub H}) decreased with pH for alginic acid but increased with pH for biosorbents. Consistent with titration behavior, this difference was explained in terms of more weak acid sites in the biosorbents.

  17. Colloid facilitated transport of humic substances in soil: laboratory experiment and modeling calculation.

    NASA Astrophysics Data System (ADS)

    Dinu, Marina; Moiseenko, Tatyana

    2016-04-01

    An understanding of ability to predict the fate and transport of colloids in soil systems are of great importance in many environmental and industrial applications. Especially, in the case study sizes and zeta potentials of lignin and humus components (as a parameter reflecting the mobility and tread of organic substances). The objects of investigation were water extracts of gleepodzolic soil of European territory of Russia and Western Siberia, as well as humus substances extracted from this soil. In this study, evaluation of size, molecular weight distribution and zeta potential were used to predict the mobility of the organic component fractions of the soil. Fractionation was performed using multistage filtration plant (100 Da) and measuring physic-chemical parameters measured with the Malvern Zetasizer Nano ZSP. Significant differences in the distribution of organic matter on the molecular weight, charge (sign) of the zeta potential and the size of the sample of European Russia in comparison with samples of Western Siberia have been found. Also, laboratory studies have demonstrated of any differences in physicochemical parameters as infrared spectra, ultraviolet spectra, complexing ability of samples of the same soil type but different areas of Russia. The results can be used in the prediction of the migration ability of fractions humus substances and their stability at change physic-chemical conditions (the coefficient of mobility of the organic components by calculated in MathCad). This work was supported by the grant № 14-17-00460 RSF from 07.11.2014

  18. Does quinone or phenol enrichment of humic substances alter the primary compound from a non-algicidal to an algicidal preparation?

    PubMed

    Bährs, Hanno; Menzel, Ralph; Kubsch, Georg; Stösser, Reinhardt; Putschew, Anke; Heinze, Tobias; Steinberg, Christian E W

    2012-06-01

    Dissolved organic matter (DOM) has been shown to affect phytoplankton species directly. These interactions largely depend on the origin and molecular size of DOM and are different in prokaryotes and eukaryotes. In a preceding study, however, two humic substance preparations did not adversely affect coccal green algae or cyanobacterial growth even at high concentrations of dissolved organic carbon (DOC). These results contradicted previous findings, showing a clear, negative response of different phototrophs to much lower DOC concentrations. To test whether or not at least defined building blocks of humic substances (HSs) are effective algicidal structures, we enriched two humic preparations with hydroquinone and p-benzoquinone, respectively, and exposed two different green algae, Pseudokirchneriella subcapitata and Monoraphidium braunii, and two cyanobacterial species, Synechocystis sp. and Microcystis aeruginosa, to the unmodified and enriched HSs. As response variables, growth rates in terms of biomass increase, chlorophyll-a content, and photosynthetic yield were measured. The highest concentration (4.17 mM DOC) of the modified HSs clearly inhibited growth; the cyanobacterial species were much more sensitive than the green algal species. However, realistic ecological concentrations did not adversely affect growth. Aerating the exposure solution for 24 h strongly reduced the inhibitory effect of the modified HSs. The algicidal effect was obviously caused by monomers and not by polymerised high molecular weight HSs themselves. Furthermore, the maximum quantum yield (Φ PSII max) was stimulated in the green algal species by low and medium DOC concentrations, but reduced in the cyanobacterial species upon exposure to higher HS concentrations. The quinone- and phenol-enriched HSs only showed algicidal activity at high concentrations of 4.17 mM DOC and lost their effects over time, presumably by oxidation and subsequent polymerisation. This study confirms that the

  19. Removal of humic substances from reverse osmosis (RO) and nanofiltration (NF) concentrated leachate using continuously ozone generation-reaction treatment equipment.

    PubMed

    Wang, Huawei; Wang, Ya-Nan; Li, Xiaoyue; Sun, Yingjie; Wu, Hao; Chen, Dali

    2016-10-01

    Concentrated leachate from membrane treatment process, which contains large amount of difficult-to-degrade humic substances, can induce potential hazards to ecological environment. In this study, the concentrated leachates from reverse osmosis (RO) and nanofiltration (NF) were treated by continuous ozone generating-reaction integrated equipment, and the removal characteristics of humic substances were analyzed using gel filtration chromatography (GFC), excitation-emission matrix fluorescence spectroscopy (EEM), XAD-8 resin fractionation, and Fourier transform infrared spectroscopy (FTIR). The results of XRD-8 fractionation and SUVA254 showed that the humic substances including humic acid (HA) and fulvic acid (FA), were effectively removed along with the breakdown of aromatic hydrocarbons and decrease in the degree of humification during the ozonation process. After 110min of reaction, HA in both concentrated leachates was completely removed. GFC analysis indicated that both concentrated leachates had much broader distribution after the degradation. The high molecular weight (MW) organic matter was transformed into low molecular weight of <10kDa. The majority of high MW organics in NF concentrate were converted to low MW molecules of 10kDa-1kDa, while those in RO concentrate were decomposed to small MW molecules of <1kDa. The results of EEM analysis implied that the degradation of HA and FA led to a significant decrease in the fluorescence intensity. Though the effluent of two concentrated leachate did not meet the maximum allowable criterion for leachate direct or indirect discharge standard in China, the composition and properties of organic matters in concentrated leachate were changed significantly after entire ozonation reaction, which would be conducive to the further biological treatment or other advanced treatment. PMID:27478023

  20. Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons: Relevance of molecular descriptors

    SciTech Connect

    Perminova, I.V.; Grechishcheva, N.Y.; Petrosyan, V.S.

    1999-11-01

    Partition coefficients for the binding affinities of pyrene, fluoranthene, and anthracene to 26 different humic materials were determined by fluorescence quenching. Sources included isolated humic acids, fulvic acids, and combined humic and fulvic fractions from soil, peat, and freshwater as well as Aldrich humic acid. Each of the humic materials was characterized by elemental composition, ultraviolet absorbance at 280 nm, molecular weight, and for 19 samples, composition of main structural fragments determined by {sup 13}C solution-state NMR. The magnitude of the K{sub oc} values correlated strongly with the independent descriptors of aromaticity of humic materials, including atomic H/C ratio, absorptivity at 280 nm, and three interdependent {sup 13}C NMR descriptors (C{sub Ar{minus}H,R}, {summation}C{sub Ar}, {summation}C{sub Ar}/{summation}C{sub Alk}). Statistical comparison of humic sources grouped by the origin revealed that binding affinities were best predicted by the {sup 13}C NMR descriptors. with a slight prevalence of {summation}C{sub Ar}/{summation}C{sub Alk} ration, while molecular weight was the poorest predictor. The latter produced either direct or inverse significant correlation with the K{sub oc} values depending upon the origin and/or fractional composition of the grouped humic materials.

  1. Bioavailability of HOC depending on the colloidal state of humic substances: a case study with PCB-77 and Daphnia magna.

    PubMed

    Gallé, T; Grégoire, Ch; Wagner, M; Bierl, R

    2005-10-01

    Condensed organic matter with higher affinity for hydrophobic organic compounds (HOC) is currently held responsible for slow desorption and concomitant lower bioavailabilities of HOC in sediments and soils. In an experiment with Daphnia magna and IHSS Peat Humic Acid (PHA), we showed that the bioconcentration factor (BCF) of 3,3',4,4'-tetrachlorobiphenyl (PCB-77) was directly related to the charge of the humic colloid, as predicted by the metal-humic binding model WHAM. Consistent with the type of binding to the humic acid (counter-ion accumulation vs. specific binding), increasing the concentration of Na+ and Ca2+ ions generated opposite effects on colloid charge and HOC binding by the humic acid. Condensation as a colloidal phenomenon in solution as well as on surfaces needs to be addressed as a contributor to lower bioavailabilities and, possibly, to slower desorption kinetics. PMID:15967482

  2. Silica gel as a particulate carrier of poorly water-soluble substances in aquatic toxicity testing.

    PubMed

    Breitholtz, Magnus; Ricklund, Niklas; Bengtsson, Bengt-Erik; Persson, N Johan

    2007-05-31

    Aquatic toxicity tests were originally developed for water-soluble substances. However, many substances are hydrophobic and thus poorly water-soluble, resulting in at least two major implications. Firstly, toxicity may not be reached within the range of water solubility of the tested compound(s), which may result in the formation of solids or droplets of the tested substance and consequently an uneven exposure. Secondly, because of multi-phase distribution of the tested substance it may be complicated to keep exposure concentrations constant. To overcome such problems, we have introduced silica gel as a particulate carrier in a toxicity test with the benthic copepod Nitocra spinipes. The main objective of the current study was to evaluate whether a controlled exposure could be achieved with the help of silica gel for testing single poorly water-soluble substances. A secondary objective was to evaluate whether an equilibrium mass balance model could predict internal concentrations that were consistent with the toxicity data and measured internal concentrations of two model hydrophobic substances, i.e., the polybrominated diphenyl ethers BDE-47 and BDE-99. Larval N. spinipes were exposed for 6 days to BDE-47 and BDE-99, respectively, in the silica gel test system and, for comparative reasons, in a similar and more traditional semi-static water test system. Via single initial amounts of the model substances administered on the silica gel, effects on both larval development and mortality resulted in higher and more concentration-related toxicity than in the water test system. We conclude that the silica gel test system enables a more controlled exposure of poorly water-soluble substances than the traditional water test system since the concentration-response relationship becomes distinct and there is no carrier solvent present during testing. Also, the single amount of added substance given in the silica gel test system limits the artefacts (e.g., increased chemical

  3. Effects of americium-241 and humic substances on Photobacterium phosphoreum: Bioluminescence and diffuse reflectance FTIR spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Kamnev, Alexander A.; Tugarova, Anna V.; Selivanova, Maria A.; Tarantilis, Petros A.; Polissiou, Moschos G.; Kudryasheva, Nadezhda S.

    The integral bioluminescence (BL) intensity of live Photobacterium phosphoreum cells (strain 1883 IBSO), sampled at the stationary growth stage (20 h), was monitored for further 300 h in the absence (control) and presence of 241Am (an α-emitting radionuclide of a high specific activity) in the growth medium. The activity concentration of 241Am was 2 kBq l-1; [241Am] = 6.5 × 10-11 M. Parallel experiments were also performed with water-soluble humic substances (HS, 2.5 mg l-1; containing over 70% potassium humate) added to the culture medium as a possible detoxifying agent. The BL spectra of all the bacterial samples were very similar (λmax = 481 ± 3 nm; FWHM = 83 ± 3 nm) showing that 241Am (also with HS) influenced the bacterial BL system at stages prior to the formation of electronically excited states. The HS added per se virtually did not influence the integral BL intensity. In the presence of 241Am, BL was initially activated but inhibited after 180 h, while the system 241Am + HS showed an effective activation of BL up to 300 h which slowly decreased with time. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, applied to dry cell biomass sampled at the stationary growth phase, was used to control possible metabolic responses of the bacteria to the α-radioactivity stress (observed earlier for other bacteria under other stresses). The DRIFT spectra were all very similar showing a low content of intracellular poly-3-hydroxybutyrate (at the level of a few percent of dry biomass) and no or negligible spectroscopic changes in the presence of 241Am and/or HS. This assumes the α-radioactivity effect to be transmitted by live cells mainly to the bacterial BL enzyme system, with negligible structural or compositional changes in cellular macrocomponents at the stationary growth phase.

  4. A multi-proxy study of sedimentary humic substances in the salt marsh of the Changjiang Estuary, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoling; Du, Jinzhou; Zhao, Xin; Wu, Wangsuo; Peng, Bo; Zhang, Jing

    2014-12-01

    To better understand the origin, composition, and reactivity of sedimentary humic substances (HSs) in salt marshes in the Changjiang Estuary, HS samples were isolated from a sediment core that was collected from the Eastern Chongming salt marsh. Chemical and spectroscopic methods were used to analyze the features of these HSs. The results indicate that the studied HSs in the salt marsh sediments are mainly terrestrial-derived and that the sedimentary organic matter (SOM) in the top layer may contain more organic matter from marine sources and/or autochthonous materials due to the dramatic decreasing of the sediment supply as a result of damming. The degradation of labile carbohydrates and proteins and the preservation of refractory lignin components dominate the early diagenetic reactions of SOM in the salt marsh area. The average contents of the carboxylic groups in FAs and HAs are 11.64 ± 1.08 and 7.13 ± 0.16 meq/gC, and those of phenolic groups are 1.95 ± 0.13 and 2.40 ± 0.44 meq/gC, respectively. The content of carboxylic groups increased with increasing depth, while there were no obvious changes in the content of phenolic groups. The average concentration of total proton-binding sites is approximately 12.5 μmol/g sediment for the studied HSs. These values may provide insight into the migration and fate of HS-bound contaminants in sediments and the overlying sea water in the salt marsh areas of the Changjiang Estuary.

  5. Application of Spectroscopic Techniques (FT-IR, 13C NMR) to the analysis of humic substances in volcanic soils along an environmental gradient (Tenerife, Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Rodriguez Rodriguez, Antonio; María Armas Herrera, Cecilia; González Pérez, José Antonio; González-Vila, Francisco Javier; Arbelo Rodríguez, Carmen Dolores; Mora Hernández, Juan Luis; Polvillo Polo, Oliva

    2010-05-01

    Andosols and andic soils are considered as efficient C-sinks in terms of C sequestration. These soils are usually developed from volcanic materials, and are characterized by a predominance of short-range ordered minerals like allophanes, imogolite and other Fe and Al oxyhydroxides. Such materials occur commonly associated with organic compounds, thus generating highly stable organo-mineral complexes and leading to the accumulation of a high amount of organic carbon. Spectroscopic methods like FT-IR and 13C NMR are suitable for the analysis of the chemical structure of soil humic substances, and allow identifying distinct functional groups and protein, lipids, lignin, carbohydrate-derived fragments. In this work we study the structural features of four soils developed on Pleistocene basaltic lavae in Tenerife (Canary Island, Spain), distributed along an altitudinal climatic gradient. The soil sequence comprises soils with different degree of geochemical evolution and andic character, including a mineral ‘Hypersalic Solonchak' (Tabaibal de Rasca), a slightly vitric ‘Luvic Phaeozem' (Los Frailes), a degraded and shallow ‘Endoleptic, fulvic, silandic Andosol' (Siete Lomas), and a well-developed and deep ‘Fulvic, silandic, Andosol' (Ravelo). Samples of the raw soil and humic and fulvic acids isolated from the surface horizons were analyzed. The results show a low content of organic carbon in the mineral soil, the inherited humin predominating, and a very high content of humic and fulvic acids in Andosols. The FT-IR and 13C NMR spectra of the raw soil samples show a low resolution, related to interferences from mineral complexes signals, particularly in soils with lower organic carbon content. 13C NMR shows a predominance of O-alkyl carbon (derived of carbohydrates) in andic soils, whereas O-alkyl and aromatic fractions are most evident in the mineral soil. The humic acids spectra are characterized by a dominance of alkyl and aromatic fractions with a high degree

  6. Investigating the chemical nature of humic-like substances (HULIS) in North American atmospheric aerosols by liquid chromatography tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth A.; Hedman, Curtis J.; Sheesley, Rebecca J.; Shafer, Martin M.; Schauer, James J.

    The high-molecular weight water-soluble organic compounds present in atmospheric aerosols underwent functional-group characterization using liquid chromatography tandem mass spectrometry (LC-MS/MS), with a focus on understanding the chemical structure and origins of humic-like substances (HULIS) in the atmosphere. Aerosol samples were obtained from several locations in North America at times when primary sources contributing to organic aerosol were well-characterized: Riverside, CA, Fresno, CA, urban and peripheral Mexico City, Atlanta, GA, and Bondville, IL. Chemical analysis targeted identification and quantification of functional groups, such as aliphatic, aromatic, and bulk carboxylic acids, organosulfates, and carbohydrate-like substances that comprise species with molecular weights (MW) 200-600 amu. Measured high-MW functional groups were compared to modeled primary sources with the purpose of identifying associations between aerosol sources, high-MW aerosol species, and HULIS. Mobile source emissions were linked to high-molecular weight carboxylic acids, especially aromatic acids, biomass burning was associated with carboxylic acids and carbohydrate-like substances, and secondary organic aerosol (SOA) correlated well with the total amount of HULIS measured, whereas organosulfates showed no correlation with aerosol sources and exhibited unique spatial trends. These results suggested the importance of motor vehicles, biomass burning, and SOA as important sources of precursors to HULIS. Structural characteristics of atmospheric HULIS were compared to terrestrial humic and fulvic acids and revealed striking similarities in chemical structure, with the exception of organosulfates which were unique to atmospheric HULIS.

  7. Nutritional Value of Rice Bran Fermented by Bacillus amyloliquefaciens and Humic Substances and Its Utilization as a Feed Ingredient for Broiler Chickens.

    PubMed

    Supriyati; Haryati, T; Susanti, T; Susana, I W R

    2015-02-01

    An experiment was conducted to increase the quality of rice bran by fermentation using Bacillus amyloliquefaciens and humic substances and its utilization as a feed ingredient for broiler chickens. The experiment was carried out in two steps. First, the fermentation process was done using a completely randomized design in factorial with 16 treatments: i) Dosage of B. amyloliquefaciens (2.10(8) cfu/g), 10 and 20 g/kg; ii) Graded levels of humic substances, 0, 100, 200, and 400 ppm; iii) Length of fermentation, three and five days. The results showed that the fermentation significantly (p<0.05) reduced crude fiber content. The recommended conditions for fermentation of rice bran: 20 g/kg dosage of inoculums B. amyloliquefaciens, 100 ppm level of humic substances and three days fermentation period. The second step was a feeding trial to evaluate the fermented rice bran (FRB) as a feed ingredient for broiler chickens. Three hundred and seventy-five one-day-old broiler chicks were randomly assigned into five treatment diets. Arrangement of the diets as follows: 0%, 5%, 10%, 15%, and 20% level of FRB and the diets formulation based on equal amounts of energy and protein. The results showed that 15% inclusion of FRB in the diet provided the best bodyweight gain and feed conversion ratio (FCR) values. In conclusion, the nutrient content of rice bran improved after fermentation and the utilization of FRB as a feed ingredient for broiler chickens could be included up to 15% of the broiler diet. PMID:25557819

  8. Selected pioneering works on humus in soils and sediments during the 20th century: A retrospective look from the International Humic Substances Society view

    NASA Astrophysics Data System (ADS)

    Feller, Christian; Brossard, Michel; Chen, Yona; Landa, Edward R.; Trichet, Jean

    Organic matter in general, and humic substances (HS) in particular, are involved in many processes in soils, sediments, rocks and natural waters. These include rock weathering, plant nutrition, pH buffering, trace metal mobility and toxicity, bioavailability, degradation and transport of hydrophobic organic chemicals, formation of disinfection by-products during water treatment, heterotrophic production in blackwater ecosystems and, more generally, the global carbon cycle. Before the 1970s, natural organic matter of different ecosystem pools ( i.e., soils, sediments, and natural waters) was often studied in isolation, although many similarities exist between them. This is particularly so for HS. In this historical context, a need appeared at the international level for bringing together environmental chemists, soil scientists, hydrologists, and geologists who were interested in HS to provide a forum for the exchange of ideas, to standardize analytical procedures and agree on definitions of HS. The International Humic Substances Society (IHSS) was founded in Denver, Colorado (USA) in 1981 with several objectives among them “to bring together scientists in the coal, soil, and water sciences with interests in humic substances” (home page of the IHSS web site: http://ihss.gatech.edu/ihss2/index.html). This paper presents selected pioneering works on humus in soils and sediments during the 20th century with a special focus on the links between the studies of soil HS and the formation, during early diagenesis, of the precursors of kerogens. Temporal coverage includes key contributions preceding the founding of the IHSS, and a brief history of the organization is presented.

  9. XAFS Studies of Cobalt(II) Binding by Solid Peat and Soil-derived Humic Acids and Plant-derived Humic Acid-like Substances

    SciTech Connect

    Ghabbour,E.; Scheinost, A.; Davies, G.

    2007-01-01

    This work has examined cobalt(II) binding by a variety of solid humic acids (HAs) isolated from peat, plant and soil sources at temperatures down to 60 K. The results confirm that X-ray absorption near-edge spectroscopy (XANES) measurements cannot distinguish between aquo and carboxylato ligands in the inner coordination sphere of Co(II). However, between 1 and 2 inner-sphere carboxylato ligands can be detected in all the peat, plant and soil-derived HA samples by extended X-ray absorption fine structure (EXAFS) measurements, indicating inner-sphere coordination of HA-bound Co(II). The precision of C(carboxylate) detection is limited by the extent and quality of the data and the contribution from inner-sphere O to the Fourier transformed peaks used to detect carbon. Putative chelate ring formation is consistent with a relatively negative entropy change in step A, the stronger Co(II) binding step by HA functional groups, and could relate to 'non-exchangeable' metal binding by HSs.

  10. Influence of pH, Oxygen, and Humic Substances on Ability of Sunlight To Damage Fecal Coliforms in Waste Stabilization Pond Water

    PubMed Central

    Curtis, Thomas P.; Mara, D. Duncan; Silva, Salomao A.

    1992-01-01

    Simple beaker experiments established that light damages fecal coliforms in waste stabilization ponds by an oxygen-mediated exogenous photosensitization. Wavelengths of up to 700 nm were able to damage bacteria. The ability of wavelengths of >425 nm to damage fecal coliforms was dependent on the presence of dissolved sensitizers. The sensitizers were ubiquitous in raw sewage, unaffected by sewage treatment, not derivatives of bacteriochlorophyll or chlorophyll, absorbed well in UV light, and had a slight yellowish color; they are therefore believed to be humic substances. The ability of light to damage fecal coliforms was highly sensitive to, and completely dependent on, oxygen. Scavengers of H2O2 and singlet oxygen could protect the bacteria from the effects of sunlight, but scavengers of hydroxyl radicals and superoxides could not. Light-mediated damage of fecal coliforms was highly sensitive to elevated pH values, which also enabled light with wavelengths of >425 nm (in the presence of the sensitizer) to damage the bacteria. We conclude that humic substances, pH, and dissolved oxygen are important variables in the process by which light damages microorganisms in this and other environments and that these variables should be considered in future research on, and models of, the effects of light. PMID:16348698

  11. Effect of UV irradiation on the aggregation of TiO2 in an aquatic environment: Influence of humic acid and pH.

    PubMed

    Wang, Peifang; Qi, Ning; Ao, Yanhui; Hou, Jun; Wang, Chao; Qian, Jin

    2016-05-01

    The behavior of photoactive TiO2 nanoparticles in an aquatic environment under UV irradiation was investigated. When there was no UV light irradiation, the attachment of humic acid (HA) onto the TiO2 nanoparticles improved their stability due to an increase in the electrostatic and steric repulsions between the particles. However, our study demonstrated that UV light clearly influenced the aggregation of TiO2 nanoparticles. Half an hour of UV irradiation caused the particles to aggregate from 331.0 nm to 1505.0 nm at a pH of 3.0. Similarly, the particles aggregated from 533.2 nm to 1037.0 nm at a pH of 6.5 and from 319.0 nm to 930.0 nm at a pH of 9.0. The aggregation continued with increased irradiation time, except for the condition at pH 3.0, which demonstrated disaggregation. Furthermore, we determined that the photocatalytic degradation of the HA dominated the behavior of TiO2 in our study. From the results of HA removal and 3DEEM fluorescence spectra data for the solution, a change in the HA was in accordance with the size change of the TiO2. The results illustrated that the UV irradiation affected the behavior of light-active nanomaterial (such as TiO2) in an aquatic system, thus influencing their bioavailability and reactivity. PMID:26845365

  12. Structural characterization of aquatic humic material. 2. Phenolic content and its relationship to chlorination mechanism in an isolated aquatic fulvi acid

    USGS Publications Warehouse

    Norwood, D.L.; Christman, R.F.; Hatcher, P.G.

    1987-01-01

    The complementary techniques of solid-state 13G nuclear magnetic resonance spectroscopy and chemical degradation were utilized to examine the lignin/phenolic substructure of an isolated aquatic fulvic acid capable of producing upon aqueous chlorination a number of organohalides typically found in municipal drinking water. Results indicate that while phenolic moieties are present in the fulvic acid, they account for only a minor fraction of the total carbon. A sequential chemical degradation experiment utilizing aqueous chlorine and CuO demonstrated that the lignin/phenolic substructure was attacked by the chlorine. It is concluded that while phenolic ring rupture mechanisms appear to be important in organohalide generation, other aqueous chlorination mechanisms involving aliphatic and other types of aromatic structures should also be considered. ?? 1987 American Chemical Society.

  13. Surfactant properties and tetrachloroethene (PCE) solubilisation ability of humic acid-like substances extracted from maize plant and from organic wastes: a comparative study.

    PubMed

    Adani, Fabrizio; Tambone, Fulvia; Davoli, Enrico; Scaglia, Barbara

    2010-02-01

    Humic acid-like substance (HA-like substance) extracted from maize plant residue at an yield of 81.1+/-4.9gkg(-1) of dry matter (dm) was tested for surfactant properties and ability to solubilise tetrachloroethene (PCE). Critical micelle concentration (CMC) of HA-like substance was detected to be 1986mgL(-1). Both, HA-like substance composition and average molecular weight [MW] affected CMC and a multiple linear regression model was proposed: CMC=12246-56.19 alkyl-C - 0.532MW (R(2)=0.90; P<0.01, n=7) where CMC was given in mgL(-1), alkyl-C was the percentage of total C, and MW was given in Da. Maize-HA-like substance solubilised PCE at the rate of 0.05g of PCE for each gram of maize-HA-like substance, which was 3.6-9.6 times lower than the data obtained in our earlier work using HA extracted from organic wastes, but was higher than that obtained with commercial HA from leonardite. Taking into consideration the two-site model of solubilisation of PCE in surfactant (i.e., solute partitioning into the micellar hydrophobic core and dissolution and/or binding into the hydrophilic non-ionic shell) and macromolecular composition of HA-like substance, the non-ionic hydrophile-alkyl lipophile balance was expected to control PCE solubilisation as the good multiple linear regression indicated: logK(dom)=-1.37+0.062 alkyl-C +0.055 O-alkyl-C (R(2)=0.93, P<0.05, n=6), where logK(dom) represents the micelle-water partitioning of PCE (mLg(-1)) and alkyl-C and O-alkyl-C represent the content of these two kinds of C detected by CP MAS (13)C NMR (as % of the total C). PMID:20044126

  14. Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments

    NASA Astrophysics Data System (ADS)

    Park, Seung Shik; Yu, Jaemyeong

    2016-07-01

    PM2.5 samples from biomass burning (BB) emissions of three types - rice straw (RS), pine needles (PN), and sesame stems (SS) - were collected through laboratory-controlled combustion experiments and analyzed for the mass, organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and water soluble inorganic species (Na+, NH4+, K+, Ca2+, Mg2+, Cl-, NO3-, SO42-, and oxalate). The combustion experiments were carried out at smoldering conditions. Water-soluble HULIS in BB samples was isolated using a one-step solid phase extraction method, followed by quantification with a total organic carbon analyzer. This study aims to explore chemical and light absorption characteristics of HULIS from BB emissions. The contributions of HULIS (=1.94 × HULIS-C) to PM2.5 emissions were observed to be 29.5 ± 2.0, 15.3 ± 3.1, and 25.8 ± 4.0%, respectively, for RS, PN, and SS smoke samples. Contributions of HULIS-C to OC and WSOC for the RS, PN, and SS burning emissions were 0.26 ± 0.03 and 0.63 ± 0.05, 0.15 ± 0.04 and 0.36 ± 0.08, and 0.29 ± 0.08 and 0.51 ± 0.08, respectively. Light absorption by the water extracts from BB aerosols exhibited strong wavelength dependence, which is characteristic of brown carbon spectra with a sharply increasing absorption as wavelength decreases. The average absorption Ångström exponents (AAE) of the water extracts (WSOC) fitted between wavelengths of 300-400 nm were 8.3 (7.4-9.0), 7.4 (6.2-8.5), and 8.0 (7.1-9.3) for the RS, PN, and SS burning samples, which are comparable to the AAE values of BB samples reported in previous publications (e.g., field and laboratory chamber studies). The average mass absorption efficiencies of WSOC measured at 365 nm (MAE365) were 1.37 ± 0.23, 0.86 ± 0.09, and 1.38 ± 0.21 m2/gṡC for RS, PN, and SS burning aerosols, respectively. Correlations of total WSOC, hydrophilic WSOC (= total WSOC-HULIS-C), and HULIS-C concentrations in solution with the light

  15. Size distribution and sources of humic-like substances in particulate matter at an urban site during winter.

    PubMed

    Park, Seungshik; Son, Se-Chang

    2016-01-01

    This study investigates the size distribution and possible sources of humic-like substances (HULIS) in ambient aerosol particles collected at an urban site in Gwangju, Korea during the winter of 2015. A total of 10 sets of size-segregated aerosol samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI), and the samples were analyzed to determine the mass as well as the presence of ionic species (Na(+), NH4(+), K(+), Ca(2+), Mg(2+), Cl(-), NO3(-), and SO4(2-)), water-soluble organic carbon (WSOC) and HULIS. The separation and quantification of the size-resolved HULIS components from the MOUDI samples was accomplished using a Hydrophilic-Lipophilic Balanced (HLB) solid phase extraction method and a total organic carbon analyzer, respectively. The entire sampling period was divided into two periods: non-Asian dust (NAD) and Asian dust (AD) periods. The contributions of water-soluble organic mass (WSOM = 1.9 × WSOC) and HULIS (=1.9 × HULIS-C) to fine particles (PM1.8) were approximately two times higher in the NAD samples (23.2 and 8.0%) than in the AD samples (12.8 and 4.2%). However, the HULIS-C/WSOC ratio in PM1.8 showed little difference between the NAD (0.35 ± 0.07) and AD (0.35 ± 0.05) samples. The HULIS exhibited a uni-modal size distribution (@0.55 μm) during NAD and a bimodal distribution (@0.32 and 1.8 μm) during AD, which was quite similar to the mass size distributions of particulate matter, WSOC, NO3(-), SO4(2-), and NH4(+) in both the NAD and AD samples. The size distribution characteristics and the results of the correlation analyses indicate that the sources of HULIS varied according to the particle size. In the fine mode (≤1.8 μm), the HULIS composition during the NAD period was strongly associated with secondary organic aerosol (SOA) formation processes similar to those of secondary ionic species (cloud processing and/or heterogeneous reactions) and primary emissions during the biomass burning period, and during

  16. Assessment of the ecotoxicological risk of combined sewer overflows for an aquatic system using a coupled "substance and bioassay" approach.

    PubMed

    Gooré Bi, Eustache; Monette, Frederic; Gasperi, Johnny; Perrodin, Yves

    2015-03-01

    Very few tools are available for assessing the impact of combined sewer overflows (CSOs) on receiving aquatic environments. The main goal of the study was to assess the ecotoxicological risk of CSOs for a surface aquatic ecosystem using a coupled "substance and bioassay" approach. Wastewater samples from the city of Longueuil, Canada CSO were collected for various rainfall events during one summer season and analyzed for a large panel of substances (n = 116). Four bioassays were also conducted on representative organisms of surface aquatic systems (Pimephales promelas, Ceriodaphnia dubia, Daphnia magna, and Oncorhynchus mykiss). The analytical data did not reveal any ecotoxicological risk for St. Lawrence River organisms, mainly due to strong effluent dilution. However, the substance approach showed that, because of their contribution to the ecotoxicological hazard posed by the effluent, total phosphorus (Ptot), aluminum (Al), total residual chlorine, chromium (Cr), copper (Cu), pyrene, ammonia (N-NH4 (+)), lead (Pb), and zinc (Zn) require more targeted monitoring. While chronic ecotoxicity tests revealed a potential impact of CSO discharges on P. promelas and C. dubia, acute toxicity tests did not show any effect on D. magna or O. mykiss, thus underscoring the importance of chronic toxicity tests as part of efforts aimed at characterizing effluent toxicity. Ultimately, the study leads to the conclusion that the coupled "substance and bioassay" approach is a reliable and robust method for assessing the ecotoxicological risk associated with complex discharges such as CSOs. PMID:25315929

  17. Humic Substances-dependent Aggregation and Transport of Cerium Oxide Nanoparticles in Porous Media at Different pHs and Ionic Strengths

    NASA Astrophysics Data System (ADS)

    Mu, L.; Jacobson, A. R.; Darnault, C. J. G.

    2015-12-01

    Cerium oxide nanoparticles (CeO2 NPs) are commonly used in several fields and industries, such as chemical and pharmaceutical, due to both their physical and chemical properties. For example, they are employed in the manufacturing of catalysts, as fuel additives, and as polishing agents. The release and exposure to CeO2 NPs can occur during their fabrication, application, and waste disposal, as well as through their life-cycle and accidents. Therefore, the assessment of the dynamic nature of CeO2 NPs stability and mobilty in the environment is of paramount importance to establish the environmental and public health risks associated with their inevitable release in the environment. Humic substances are a key element of soils and have been revealed to possibly affect the fate and transport of nanoparticles in soils. Consequently, our present research aims at investigating the influence that different pHs, monovalent and divalent cations, Suwannee River humic acid, and Suwanee River fulvic acid have on the aggregation, transport, and deposition of CeO2 NPs. Batch studies performed with different concentrations of humic and fulvic acids associated with a wide spectrum of pHs and ionic strengths were examined. Key variables from these batch studies were then examined to simulate experimental conditions commonly encountered in the soil-water system to conduct column transport experiments in order to establish the fate and transport of CeO2 NPs in saturated porous media, which is a critical phase in characterizing the behavior of CeO2 NPs in subsurface environmental systems.

  18. Thresholds of toxicological concern for endocrine active substances in the aquatic environment.

    PubMed

    Gross, Melanie; Daginnus, Klaus; Deviller, Genevieve; de Wolf, Watze; Dungey, Stephen; Galli, Corrado; Gourmelon, Anne; Jacobs, Miriam; Matthiessen, Peter; Micheletti, Christian; Nestmann, Earle; Pavan, Manuela; Paya-Perez, Ana; Ratte, Hans-Toni; Safford, Bob; Sokull-Klüttgen, Birgit; Stock, Frauke; Stolzenberg, Hans-Christian; Wheeler, James; Willuhn, Marc; Worth, Andrew; Comenges, Jose Manuel Zaldivar; Crane, Mark

    2010-01-01

    The threshold of toxicological concern (TTC) concept proposes that an exposure threshold value can be derived for chemicals, below which no significant risk to human health or the environment is expected. This concept goes further than setting acceptable exposure levels for individual chemicals, because it attempts to set a de minimis value for chemicals, including those of unknown toxicity, by taking the chemical's structure or mode of action (MOA) into consideration. This study examines the use of the TTC concern concept for endocrine active substances (EAS) with an estrogenic MOA. A case study formed the basis for a workshop of regulatory, industry and academic scientists held to discuss the use of the TTC in aquatic environmental risk assessment. The feasibility and acceptability, general advantages and disadvantages, and the specific issues that need to be considered when applying the TTC concept for EAS in risk assessment were addressed. Issues surrounding the statistical approaches used to derive TTCs were also discussed. This study presents discussion points and consensus findings of the workshop. PMID:19558199

  19. Perfluoroalkyl substances in aquatic environment-comparison of fish and passive sampling approaches.

    PubMed

    Cerveny, Daniel; Grabic, Roman; Fedorova, Ganna; Grabicova, Katerina; Turek, Jan; Kodes, Vit; Golovko, Oksana; Zlabek, Vladimir; Randak, Tomas

    2016-01-01

    The concentrations of seven perfluoroalkyl substances (PFASs) were investigated in 36 European chub (Squalius cephalus) individuals from six localities in the Czech Republic. Chub muscle and liver tissue were analysed at all sampling sites. In addition, analyses of 16 target PFASs were performed in Polar Organic Chemical Integrative Samplers (POCISs) deployed in the water at the same sampling sites. We evaluated the possibility of using passive samplers as a standardized method for monitoring PFAS contamination in aquatic environments and the mutual relationships between determined concentrations. Only perfluorooctane sulphonate was above the LOQ in fish muscle samples and 52% of the analysed fish individuals exceeded the Environmental Quality Standard for water biota. Fish muscle concentration is also particularly important for risk assessment of fish consumers. The comparison of fish tissue results with published data showed the similarity of the Czech results with those found in Germany and France. However, fish liver analysis and the passive sampling approach resulted in different fish exposure scenarios. The total concentration of PFASs in fish liver tissue was strongly correlated with POCIS data, but pollutant patterns differed between these two matrices. The differences could be attributed to the metabolic activity of the living organism. In addition to providing a different view regarding the real PFAS cocktail to which the fish are exposed, POCISs fulfil the Three Rs strategy (replacement, reduction, and refinement) in animal testing. PMID:26599587

  20. Effects of ionic strength on the binding of phenanthrene and pyrene to humic substances: three-stage variation model.

    PubMed

    Lee, Chon-Lin; Kuo, Li-Jung; Wang, Huei-Ling; Hsieh, Ping-Chieh

    2003-10-01

    This study compared the effects of ionic strength on the binding constants (K(doc)) of selected polycyclic aromatic hydrocarbons (PAHs) (phenanthrene and pyrene) and a terrestrial humic acid (Leonardite Humic Acid) in different electrolyte solutions (KCl, KBr, MgCl(2) and MgSO(4)). Distinct trends were found in K(doc) variation depending upon the range of ionic strength resulting from added electrolytes. These trends demonstrated similar shapes for all the systems studied, while degree of variation increased with hydrophobicity of the PAHs. Furthermore, different types of electrolytes had different effects on the interactions between humic acid (HA) and the PAHs. These differences were primarily caused by types of cation, not anion. To describe the complicated effects of ionic strength on K(doc), we developed a three-stage variation model that encompasses increasing and decreasing trends and plateaus in K(doc) associated with ionic strength, as well as the mechanisms behind these trends, including the variation of HA structure configuration, HA aggregation and the salting-out effect. This model illustrated the importance of sufficient experimental data when interpreting the influence of ionic strength on the trends in K(doc) variation. PMID:12946908

  1. Re-evaluation and reconstruction of water purification system using soil. I. Assessment of soil as a sorbent of humic substances and phosphate ion.

    PubMed

    Fujikawa, Y; Hamasaki, T; Sugahara, M; Ozaki, H; Prasai, G; Yano, T; Imada, R; Tainaka, Y; Nakamura, W; Haruki, F

    2004-01-01

    The purpose of our study is to develop a treatment procedure for humic substances (HS hereafter) and phosphate ion in wastewater and environmental water by percolation of the water through a constructed soil layer at the hydraulic loading of a few metres per day. In the present work, batch sorption tests were conducted for more than 80 samples of soil, sludge, mineral and organic materials in order to find good sorbents for fulvic acid (FA hereafter) and phosphate ion. The results showed that the sorption of FA was high for some charcoal, and apatite and goethite minerals. Comparatively high sorption of FA was found for some Andosols and volcanic ash soil. Significant sorption of phosphate ion, on the other hand, was found for various types of soil, sludge from water treatment plants and some waste materials. The linear isotherm was obtained for the sorption of FA to a charcoal, apatite and goethite minerals, and Andosols. PMID:15497870

  2. Complexation-flocculation combined with microwave-assisted headspace solid-phase microextraction in determining the binding constants of hydrophobic organic pollutants to dissolved humic substances.

    PubMed

    Hsieh, Ping-Chieh; Lee, Chon-Lin; Jen, Jen-Fon; Chang, Kuei-Chen

    2015-02-21

    The binding constants, KDOC, of selected polycyclic aromatic hydrocarbons (PAHs)-phenanthrene, anthracene, fluoranthene, and pyrene-to dissolved humic substances (DHS) were determined by complexation-flocculation combined with microwave-assisted headspace solid-phase microextraction (CF-MA-HS-SPME). The results obtained are comparable with KDOC data reported in the literature. No disruption of the PAH to DHS binding equilibrium was observed during the complexation-flocculation process. The present study, which is the first to determine KDOC by CF-MA-HS-SPME, provides an alternative approach to determine the KDOC of PAHs. CF-MA-HS-SPME provides some advantages over other methods, such as no limitation of fluorescent compounds, greater determination speed, and the capability of measuring various compounds simultaneously. PMID:25568896

  3. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter

    NASA Astrophysics Data System (ADS)

    Ritchie, Jason D.; Perdue, E. Michael

    2003-01-01

    The acid-base properties of 14 standard and reference materials from the International Humic Substances Society (IHSS) were investigated by potentiometric titration. Titrations were conducted in 0.1 M NaCl under a nitrogen atmosphere, averaging 30 min from start to finish. Concentrations of carboxyl groups and phenolic groups were estimated directly from titration curves. Titration data were also fit to a modified Henderson-Hasselbalch model for two classes of proton-binding sites to obtain "best fit" parameters that describe proton-binding curves for the samples. The model was chosen for its simplicity, its ease of implementation in computer spreadsheets, and its excellent ability to describe the shapes of the titration curves. The carboxyl contents of the IHSS samples are in the general order: terrestrial fulvic acids > aquatic fulvic acids > Suwannee River natural organic matter (NOM) > aquatic humic acids > terrestrial humic acids. Overall, fulvic acids and humic acids have similar phenolic contents; however, all of the aquatically derived samples have higher phenolic contents than the terrestrially derived samples. The acid-base properties of reference Suwannee River NOM are surprisingly similar to those of standard Suwannee River humic acid. Results from titrations in this study were compared with other published results from both direct and indirect titrations. Typically, carboxyl contents for the IHSS samples were in agreement with the results from both methods of titration. Phenolic contents for the IHSS samples were comparable to those determined by direct titrations, but were significantly less than estimates of phenolic content that were based on indirect titrations with Ba(OH) 2 and Ca(OAc) 2. The average phenolic-to-carboxylic ratio of the IHSS samples is approximately 1:4. Models that assume a 1:2 ratio of phenolic-to-carboxylic groups may overestimate the relative contribution of phenolic groups to the acid-base chemistry of humic substances.

  4. Variation in sensitivity of aquatic species to toxicants: Practical consequences for effect assessment of chemical substances

    SciTech Connect

    Vaal, M.A.; Van Leeuwen, C.J.; Hoekstra, J.A.; Hermens, J.L.M.

    2000-04-01

    This study addresses the relation between the sensitivity of aquatic species and mode of action of different classes or organic chemicals. The authors analyzed large data sets of ecotoxicological information to reveal the interspecies variation in sensitivity, to relate this variation to the compounds' mode of action, and to explain the observed patterns using general biological information. Here the authors present a general framework and recommendations for risk assessment procedures. The authors recommend the use of toxicologically based classification schemes at an early stage of the risk assessment procedure. Screening programs are most efficiently run when only one species per compound is tested to prioritize substances. The toxicity of compounds belonging to the class of nonpolar narcotics is highly predictable and shows little interspecies variation. For these compounds quantitative structure-activity relationships (WSARs) can be used to estimate effect levels. Most effort should be put into testing reactive compounds and compounds with a specific mode of action as toxicity to some species can be 10{sup 5}--10{sup 6} times higher compared with less sensitive species. The use of assessment factors in effect assessment procedures may lead to an underestimation of effects on the more sensitive species. For many priority pollutants there is little information on their ecotoxicity. Predictive techniques are needed to compensate for this lack of data. Knowledge of the relation between modes of action of compounds and interspecies variation in sensitivity should be integrated in risk assessment procedures in order to make more efficient use of the limited financial resources available.

  5. Binding of polychlorinated biphenyls to aquatic humic substances: The role of substrate and sorbate properties on partitioning

    SciTech Connect

    Uhle, M.E.; Chin, Y.P.; Aiken, G.R.; McKnight, D.M.

    1999-08-15

    Two ortho- (2,2{prime},5 and 2,2{prime}5,6{prime}) and a non-ortho- (3,3{prime},4,4{prime}) substituted polychlorinated biphenyl (PCB) congeners were used to study the effects of sorbate structure in binding processes to two lacustrine fulvic acids. Binding constants were determined by solubility enhancement of the solutes by the fulvic acids. The binding of the ortho-trichlorobiphenyl was significantly less than the non-ortho-substituted tetrachlorobiphenyl to both fulvic acids. Surprisingly, the measured ortho-trichlorobiphenyl binding constant to both fulvic acids was approximately the same as the ortho-substituted tetrachlorobiphenyl. The effect of the chlorines in the ortho position inhibits free rotation around the 1,1{prime} carbon bond, thereby making the molecule less able to interact effectively with the fulvic acid substrate relative to its non-ortho-substituted congeners. Finally, binding of all three PCBs to the Great Dismal Swamp fulvic acid was significantly higher than for the Pony Lake sample. This observation is attributable to the former substrate`s higher degree of aromaticity and polarizability, which can potentially interact more favorably with the PCBs through an increase in van der Waals type interactions.

  6. Binding of polychlorinated biphenyls to aquatic humic substances: The role of substrate and sorbate properties on partitioning

    USGS Publications Warehouse

    Uhle, M.E.; Chin, Y.-P.; Aiken, G.R.; McKnight, Diane M.

    1999-01-01

    Two ortho- (2,2',5 and 2,2',5,6') and a non-ortho- (3,3',4,4') substituted polychlorinated biphenyl (PCB) congeners were used to study the effects of sorbate structure in binding processes to two lacustrine fulvic acids. Binding constants were determined by solubility enhancement of the solutes by the fulvic acids. The binding of the ortho-trichlorobiphenyl was significantly less than the non-ortho-substituted tetrachlorobiphenyl to both fulvic acids. Surprisingly, the measured ortho-trichlorobiphenyl binding constant to both fulvic acids was approximately the same as the ortho- substituted tetrachlorobiphenyl. The effect of the chlorines in the ortho position inhibits free rotation around the 1,1' carbon bond, thereby making the molecule less able to interact effectively with the fulvic acid substrate relative to its non-ortho-substituted congeners. Finally, binding of all three PCBs to the Great Dismal Swamp fulvic acid was significantly higher than for the Pony Lake sample. This observation is attributable to the former substrate's higher degree of aromaticity and polarizability, which can potentially interact more favorably with the PCBs through an increase in van der Waals type interactions.Two ortho- (2,2???,5 and 2,2???,5,6???) and a non-ortho- (3,3???,4,4???) substituted polychlorinated biphenyl (PCB) congeners were used to study the effects of sorbate structure in binding processes to two lacustrine fulvic acids. Binding constants were determined by solubility enhancement of the solutes by the fulvic acids. The binding of the ortho-trichlorobiphenyl was significantly less than the non-ortho-substituted tetrachlorobiphenyl to both fulvic acids. Surprisingly, the measured ortho-trichlorobiphenyl binding constant to both fulvic acids was approximately the same as the ortho-substituted tetrachlorobiphenyl. The effect of the chlorines in the ortho position inhibits free rotation around the 1,1??? carbon bond, thereby making the molecule less able to interact effectively with the fulvic acid substrate relative to its non-ortho-substituted congeners. Finally, binding of all three PCBs to the Great Dismal Swamp fulvic acid was significantly higher than for the Pony Lake sample. This observation is attributable to the former substrate's higher degree of aromaticity and polarizability, which can potentially interact more favorably with the PCBs through an increase in van der Waals type interactions.

  7. Detection of endocrine active substances in the aquatic environment in southern Taiwan using bioassays and LC-MS/MS.

    PubMed

    Chen, Kuang-Yu; Chou, Pei-Hsin

    2016-06-01

    Endocrine active substances, including naturally occurring hormones and various synthetic chemicals have received much concern owing to their endocrine disrupting potencies. It is essential to monitor their environmental occurrence since these compounds may pose potential threats to biota and human health. In this study, yeast-based reporter assays were carried out to investigate the presence of (anti-)androgenic, (anti-)estrogenic, and (anti-)thyroid compounds in the aquatic environment in southern Taiwan. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was also used to measure the environmental concentrations of selected endocrine active substances for assessing potential ecological risks and characterizing contributions to the endocrine disrupting activities. Bioassay results showed that anti-androgenic (ND-7489 μg L(-1) flutamide equivalent), estrogenic (ND-347 ng L(-1) 17β-estradiol equivalent), and anti-thyroid activities were detected in the dissolved and particulate phases of river water samples, while anti-estrogenic activities (ND-10 μg L(-1) 4-hydroxytamoxifen equivalent) were less often found. LC-MS/MS analysis revealed that anti-androgenic and estrogenic contaminants, such as bisphenol A, triclosan, and estrone were frequently detected in Taiwanese rivers. In addition, their risk quotient values were often higher than 1, suggesting that they may pose an ecological risk to the aquatic biota. Further identification of unknown anti-androgenic and estrogenic contaminants in Taiwanese rivers may be necessary to protect Taiwan's aquatic environment. PMID:26971174

  8. Characterisation of humic substances formed during co-composting of grass and wood wastes with animal grease.

    PubMed

    Bikovens, Oskars; Dizhbite, Tatiana; Telysheva, Galina

    2012-06-01

    Meat processing grease wastes were composted with lignocellulosic material. Judging by the reduction in the yield of compost lipophilic extract, grease was degraded during the first 20 days of composting. Compost humic acids (HA) and fulvic acids (FA) were characterized by elemental analysis, Fourier transform infrared (FT-IR) spectroscopy and analytical pyrolysis. The compost HA and FA fractions contained a ligno-protein complex. The presence of grease (6.7% dry weight) during composting had a slight influence on the chemical composition of HA and FA. Analytical pyrolysis indicated that, during composting, major changes were observed in the FA fraction, namely, the proportion of nitrogen-bearing compounds increased and carbohydrate-derived products decreased drastically in the final compost. In addition, the shortening of the aliphatic chains of lignin-derived compounds was observed with an increase in the C6C(0-2)/C6C3 ratio in pyrolysates. PMID:22856318

  9. Reappraisal of soil C storage processes. The controversy on structural diversity of humic substances as biogeochemical driver for soil C fluxes

    NASA Astrophysics Data System (ADS)

    Almendros, Gonzalo; Gonzalez-Vila, Francisco J.; Gonzalez-Perez, Jose Antonio; Knicker, Heike

    2016-04-01

    The functional relationships between the macromolecular structure of the humic substances (HS) and a series of biogeochemical processes related with the C sequestration performance in soils have been recently questioned. In this communication we collect recent data from a wide array of different ecosystems where the C storage in soils has been studied and explained as a possible cause-to-effect relationship or has been found significantly correlated (multivariate statistical models) with a series of structural characteristics of humic materials. The study of humic materials has methodological analytical limitations that are derived from its complex, chaotic and not completely understood structure, that reflects its manifold precursors as well as the local impact of environmental/depositional factors. In this work we attempt to design an exploratory, multiomic approach based on the information provided by the molecular characterization of the soil organic matter (SOM). Massive data harvesting was carried out of statistical variables, to infer biogeochemical proxies (spectroscopic, chromatographic, mass spectrometric quantitative descriptors). The experimental data were acquired from advanced instrumental methodologies, viz, analytical pyrolysis, compound-specific stable isotope analysis (CSIA), derivative infrared (FTIR) spectroscopy, solid-state C-13 and N-15 nuclear magnetic resonance (NMR) and mass spectrometry (MS) data after direct injection (thermoevaporation), previous pyrolysis, or ion averaging of specific m/z ranges from classical GC/MS chromatograms. In the transversal exploratory analysis of the multianalytical information, the data were coded for on-line processing in a stage in which there is no need for interpretation, in molecular or structural terms, of the quantitative data consisting of e.g., peak intensities, signal areas, chromatographic (GC) total abundances, etc. A series of forecasting chemometric approaches (aiming to express SOM

  10. Stabilization process within a sewage sludge landfill determined through both particle size distribution and content of humic substances as well as by FT-IR analysis.

    PubMed

    Zhu, Ying; Zhao, Youcai

    2011-04-01

    Landfill is largely considered as a reliable option for sewage sludge disposal in most metropolitan areas worldwide due to the huge quantities of this waste to be disposed of and the relatively low costs of such a kind of sludge management. It has been found that the sludge in the landfill degrades rapidly and becomes stabilized within a few years. In the present study, the sludge from different landfill stages was characterized by particle size distribution, humic substances contents and elemental composition, and Fourier transform infrared spectroscopy (FT-IR), as the landfill time increased. In general, the mean particle size of the sludge increased from 37 μm at day 0 to 143 μm at 300 days and the corresponding median particle size increased from 13 to 70 μm. The stability of particle size distribution can be assessed by the mean or median particle size. The humic acid (HA) and fulvic acid (FA) contents extracted from dry sludge after different landfill periods increased from 4.2 and 2.7% of day 0 to 5.6 and 3.1%, respectively, at 400 days, thereby indicating that the stabilization process of sludge in a landfill is also a humification process. The HA samples contained more carbon and nitrogen, and less hydrogen and oxygen than the FA samples, indicating a high degree of maturity and humification of these HA samples. The FT-IR spectra indicated that easily degradable organic matter components, such as aliphatic chains and protein, were distinctly decomposed during landfill. Based on the changes in the band relative intensity, it was concluded that after 300 days in a landfill the sludge is still in the process of degradation and maturity. PMID:21030423

  11. Off-line TMAH-GC/MS and NMR characterization of humic substances extracted from river sediments of northwestern São Paulo under different soil uses.

    PubMed

    Tadini, Amanda Maria; Pantano, Glaucia; de Toffoli, Ana Lúcia; Fontaine, Barbara; Spaccini, Riccardo; Piccolo, Alessandro; Moreira, Altair Benedito; Bisinoti, Márcia Cristina

    2015-02-15

    Humic substances (HS) vary according to the physical and chemical factors present in the environment. Thus, the characterization of HS is very important because it improves the understanding of the groups that comprise the chemical structure. Sediment HS were extracted from four locations representative of sugar cane cultivation, pasture, urban area and the impoundment of the Água Vermelha Hydroelectric Power Plant. Characterization using nuclear magnetic resonance (NMR) allowed us to infer that the HS from an area predominantly characterized by sugar cane cultivation (41.9%) and a typical rural area (35.0%) showed the highest aromaticity percentage. Using the off-line TMAH-thermochemolysis-GC-MS, we inferred that the HS of a typical rural area had a structure rich in plant waxes, plant biopolyester and a large amount of fatty acid methyl ester, which are related to the large amount of humic acid in the structure. The HS samples from the sugar cane cultivation area and the impoundment receiving all of the pollution load from the Turvo/Grande Hydrographic Basin (Bacia Hidrográfica do Turvo/Grande-BHTG) contained contributions from compounds rich in lipids and fatty acid methyl esters, highlighting the presence of the breakdown of petroleum-derived hydrocarbons in the area receiving the entire pollution load. We conclude that the HS extracted from the sediments of the Preto, Turvo and Grande rivers showed well-defined characteristics that varied depending on soil use and occupation, especially the HS extracted from sediments sampled in areas typically planted with sugar cane and rural areas, whose structures contained more aromatic groups. PMID:25460956

  12. Speciation of Eu3+ bound to humic substances by time-resolved laser fluorescence spectroscopy (TRLFS) and parallel factor analysis (PARAFAC)

    NASA Astrophysics Data System (ADS)

    Lukman, Steven; Saito, Takumi; Aoyagi, Noboru; Kimura, Takaumi; Nagasaki, Shinya

    2012-07-01

    The bioavailability and toxicity of metal ions including radionuclides in the biosphere are greatly influenced by their speciation. Humic substances (HSs) are important constituents of various soil and water systems and have significant impact on the speciation and mobility of metal ions because of their high affinity to metal ions. In this study, the speciation of europium (Eu3+), a chemical homologue of trivalent actinides, with HSs collected from various origins was investigated by time-resolved laser fluorescence spectroscopy (TRLFS). The difficulties associated with the separation of the contribution of different Eu3+ species due to overlapping spectra or similar fluorescence lifetimes were addressed and mitigated by applying a multi-mode factor analysis, parallel factor analysis (PARAFAC), which resulted in the number, spectra, decay curves and relative fluorescence intensity profiles of different Eu3+ species. Subsequently, the interpretation of the Eu3+ species, was tackled by principal component analysis (PCA) and partial linear square (PLS) regression to deduce the nature of the Eu3+ species by taking into account the physicochemical properties of the HSs. Three factors corresponding to different Eu3+ species were obtained at 70 μM Eu3+ for all HSs investigated except for one humic acid. One of the factors corresponded to free Eu3+ ion interacting with HSs via diffusion. The remaining two factors were thought to be Eu3+ bound to HSs: one bound to acidic functional groups of HSs and the other to the sites of HSs influenced by the carbon backbone structures. It was also found that the latter factor exhibited strong energy transfer from the excited Eu3+ center to HSs. At lower Eu3+ concentration (10 μM), two factors having similar fluorescent characteristics to those of the second and third factors were obtained.

  13. The interaction of humic substances with the human prion protein fragment 90-231 affects its protease K resistance and cell internalization.

    PubMed

    Corsaro, A; Anselmi, C; Polano, M; Aceto, A; Florio, T; De Nobili, M

    2010-01-01

    In this paper we analyzed the determinants and the structural effects of the interaction of human prion protein fragment 90-231 (HuPrP) with humic substances, (HS) including humic (HA) and fulvic (FA) acids, natural refractory organic polyanions widely diffused in soils and waters. We show that this interaction is mainly driven by non-specific electrostatic attraction involving regions situated within alpha-helix A and beta-sheet S1 of human PrP. FA binding to HuPrP altered its ability to acquire some PrPSc-like characteristics induced by the mild thermal denaturation of the peptide (1 h at 53 degrees C). In particular, in the presence of FA, HuPrP shows a reduced amount of beta-sheet content (as demonstrated by the reduced binding of thioflavin T), an increased sensitivity to protease K and an inhibition of the entering in the fibrillogenic pathway. FA/HuPrP interaction caused the aggregation of the peptide in unstructured macrocomplexes, as demonstrated by the altered electrophoretic migration in semi-denaturing detergent-agarose gel assay. Importantly, in the presence of FA the rate of internalization of HuPrP in human neuroblastoma cells was significantly reduced as compared to that of the beta-structured peptide. Therefore, HS inhibited the acquisition of PrP(Sc)-like structural properties that, in turn, are responsible for HuPrP intracellular accumulation and lead to neuronal death. Important implications of these data are that HuPrP-HS complexes, being unable to be internalized in living cells may represent a molecular mechanism for the reduced transmission of prion transmission from HS-rich soil also in the presence of contamination from infected animals. PMID:20385069

  14. Stimulation of Tetrabromobisphenol A Binding to Soil Humic Substances by Birnessite and the Chemical Structure of the Bound Residues.

    PubMed

    Tong, Fei; Gu, Xueyuan; Gu, Cheng; Xie, Jinyu; Xie, Xianchuan; Jiang, Bingqi; Wang, Yongfeng; Ertunc, Tanya; Schäffer, Andreas; Ji, Rong

    2016-06-21

    Studies have shown the main fate of the flame retardant tetrabromobisphenol A (TBBPA) in soils is the formation of bound residues, and mechanisms on it are less-understood. This study investigated the effect of birnessite (δ-MnO2), a naturally occurring oxidant in soils, on the formation of bound residues. (14)C-labeled TBBPA was used to investigate the pH dependency of TBBPA bound-residue formation to two soil humic acids (HAs), Elliott soil HA and Steinkreuz soil HA, in the presence of δ-MnO2. The binding of TBBPA and its transformation products to both HAs was markedly increased (3- to 17-fold) at all pH values in the presence of δ-MnO2. More bound residues were formed with the more aromatic Elliott soil HA than with Steinkreuz soil HA. Gel-permeation chromatography revealed a uniform distribution of the bound residues within Steinkreuz soil HA and a nonuniform distribution within Elliott soil HA. (13)C NMR spectroscopy of (13)C-TBBPA residues bound to (13)C-depleted HA suggested that in the presence of δ-MnO2, binding occurred via ester and ether and other types of covalent bonds besides HA sequestration. The insights gained in this study contribute to an understanding of the formation of TBBPA bound residues facilitated by δ-MnO2. PMID:27223831

  15. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues.

    PubMed

    Zhou, Ying; Selvam, Ammaiyappan; Wong, Jonathan W C

    2014-09-01

    Humification during co-composting of food waste, sawdust and Chinese medicinal herbal residues (CMHRs) was investigated to reveal its correlation with compost maturity. Food waste, sawdust and CMHRs were mixed at 5:5:1 and 1:1:1 (dry weight basis) while food waste:sawdust at 1:1 (dry wt. basis) served as control. Lime at 2.25% was added to all the treatments to alleviate low pH, and composted for 56 days. Humic acid/fulvic acid (HA/FA) ratio increased to 0.5, 2.0 and 3.6 in the control and treatment at 5:5:1, and 1:1:1 mixing ratio, respectively at the end of composting. The decrease in aliphatic organics in HA demonstrated the degradation of the readily available organics, while an increase in aromatic functional groups indicated the maturity of compost. Disappearance of hemicellulose and weak intensity of lignin in the CMHRs treatments indicated that the lignin provided the nucleus for HA formation; and the CMHRs accelerated the compost maturity. PMID:24951275

  16. Effect of organic amendments on the mobility of trace elements in phytoremediated techno-soils: role of the humic substances.

    PubMed

    Hattab, N; Soubrand, M; Guégan, R; Motelica-Heino, M; Bourrat, X; Faure, O; Bouchardon, J L

    2014-09-01

    The efficiency of aided phytostabilization using organic amendments such as ramial chipped wood (RCW) and composted sewage sludge (CSS) was studied on contaminated techno-soils, on nine experimental plots. The objective was to characterize the role of fulvic (FA) and humic acids (HA) on the mobilization of trace elements, specifically As, Cu, Mo, Pb and Zn. Results showed that the addition of CSS increased the total organic carbon and nitrogen content more than with RCW and as a result, the C/N ratio in the CSS soil was higher than in the RCW and non-amended (NE) soil, reflecting the high decomposition of soil organic matter in the CSS soil compared with the other soils. The RCW and CSS amendments increased the hydrogen index (HI) values and the oxygen index (OI) values compared with the NE soil, especially for the soil treated with CSS which contained more aliphatic than aromatic compounds. The addition of CSS to the techno-soil significantly increased the percentage of C org associated with the HA fractions compared with the RCW and NE soils. The soil amended with CSS showed the highest E 4/E 6 ratio and the lowest E 2/E 3 ratio of FA. Zn and As were more abundant in the FA fraction than in the HA fraction, whereas Pb, Cu and Mo were more associated to HA than to FA in the treated and untreated soils, which may explain the difference in their mobility and availability. PMID:24854499

  17. A simple simulation of adsorption equilibrium of Pb(II) on Andosols in the presence of dissolved humic substances for monitoring soil contamination.

    PubMed

    Liu, Yuyu; Kobayashi, Takeshi; Takahashi, Yukari; Kameya, Takashi; Urano, Kohei

    2013-01-01

    The adsorption equilibrium of Pb(II) on Andosols was investigated and described quantitatively in order to develop a simple method for the rapid monitoring of heavy metals in soils. The effect of solution pH on adsorption isotherms was investigated experimentally and in simulations. At pH 7, the considerable desorption of Pb(II) due to the extensive dissolution of humic substances (HS) from soils into aqueous phases is known to be an obstacle to carrying out simulations. In batch experiments, the total organic carbon (TOC) of the aqueous phases was shown to be enhanced by the addition of pre-extracted HS to soil suspensions. By combining the ion-exchange and Freundlich models, the adsorption equilibriums of free Pb(2+) ions and Pb(2+)-HS were simulated and were shown to be in good agreement with the experimental results. By estimating the concentrations and adsorption amounts of Pb(2+) and Pb(2+)-HS from measured CPb and TOC, it is possible to accurately simulate the soil contamination status even in in the presence of dissolved HS in the water in the solid-liquid extraction samples. PMID:23947708

  18. Major 20th century changes of water-soluble humic-like substances (HULISWS) aerosol over Europe inferred from Alpine ice cores

    NASA Astrophysics Data System (ADS)

    Guilhermet, J.; Preunkert, S.; Voisin, D.; Baduel, C.; Legrand, M.

    2013-05-01

    Using a newly developed method dedicated to measurements of water-soluble humic-like substances (HULISWS) in atmospheric aerosol samples, the carbon mass quantification of HULISWS in an Alpine ice core is achieved for the first time. The method is based on the extraction of HULISWS with a weak anion-exchanger resin and the subsequent quantification of the extracted carbon fraction with a total organic carbon (TOC) analyzer. Measurements were performed along a Col du Dôme (4250 m above sea level, French Alps) ice core covering the 1920-2004 time period. The HULISWS concentrations exhibit a well-marked seasonal cycle with winter minima close to 7 ppbC and summer maxima ranging between 10 and 50 ppbC. Whereas the winter HULISWS concentrations remained unchanged over the twentieth century, the summer concentrations increased from 20 ppbC prior to the Second World War to 35 ppbC in the 1970-1990s. These different trends reflect the different types of HULISWS sources in winter and summer. HULISWS are mainly primarily emitted by domestic wood burning in winter and secondary in summer being produced from biogenic precursors. For unknown reason, the HULISWS signal is found to be unusual in ice samples corresponding to World War II.

  19. The influence of flue gas desulphurization gypsum additive on characteristics and evolution of humic substance during co-composting of dairy manure and sugarcane pressmud.

    PubMed

    Guo, Xiaobo; Huang, Junhao; Lu, Yanyu; Shan, Guangchun; Li, Qunliang

    2016-11-01

    For the purpose of evaluating the effect of flue gas desulphurization gypsum (FGDG) additive on characteristics and evolution of humic substance (HS) during composting, HS from composts with FGDG (CPG) and without FGDG (CP) were extracted and assessed with respect to their particle size, elemental analysis, FTIR and UV-vis spectroscopy, and the molecular composition of HS was characterized via pyrolysis-GC/MS as well. The particle size of HS ranged between 300 and 600nm, representing a bimodal distribution. As composting proceeded, the C/H of HS increased, and C/N decreased. The FTIR and UV-vis spectroscopy indicated that the aromatization of HS was promoted over the composting process. Adding FGDG increased the unsaturated degree and aromatization of HS. Pyrolysis-GC/MS showed the level of alkane decreased, and the level of benzene and nitrogen compounds increased upon the addition of FGDG. The nitrogen compounds of HS in CPG was significantly higher than that in CP. PMID:27490442

  20. Influence of humic substances on the removal of pentachlorophenol by a biomimetic catalytic system with a water-soluble iron(III)-porphyrin complex.

    PubMed

    Fukushima, Masami; Sawada, Akira; Kawasaki, Mikio; Ichikawa, Hiroyasu; Morimoto, Kengo; Tatsumi, Kenji; Aoyama, Masakazu

    2003-03-01

    To investigate some basic aspects of soil remediation using biomimetic catalysts, the effects of humic substances (HSs) on the removal of xenobiotics, such as pentachlorophenol (PCP), were investigated. The use of a biomimetic catalytic system using tetra(p-sulfophenyl)porphine-iron(III) (Fe(III)-TPPS) and potassium monopersulfate (KHSO5) resulted in the disappearance of PCP, accompanied by dechlorination. In addition, this process was enhanced by the presence of several types of HSs. The degrees of enhancement (% delta(PCP)60) achieved by the presence of HSs from peat and compost soils were larger than those in the presence of other types of HSs (tropical peat, brown forest, and ando soils). In control experiments, no PCP disappearance and dechlorination were observed in the presence of only KHSO5, only Fe(III)-TPPS, or combinations of HSs and either KHSO5 or Fe(III)-TPPS. To better understand the role of added HS in enhancing or inhibiting PCP disappearance, correlations between the chemical parameters of the HSs and % delta(PCP)60 were investigated. The most effective HSs had lower carboxylic acid contents and lower degrees of unsaturation. The carboxylic acid content and degree of unsaturation increase with the extent of humification. Therefore, HSs of a lower degree of humification would be predicted to be more useful in enhancing the disappearance of PCP in an Fe(III)-TPPS/KHSO5 system. PMID:12666937

  1. Dynamics and sources of reduced sulfur, humic substances and dissolved organic carbon in a temperate river system affected by agricultural practices.

    PubMed

    Marie, Lauriane; Pernet-Coudrier, Benoît; Waeles, Matthieu; Gabon, Marine; Riso, Ricardo

    2015-12-15

    Although reduced organic sulfur substances (RSS) as well as humic substances (HS) are widely suspected to play a role in, for example, metal speciation or used as a model of dissolved organic carbon (DOC) in laboratory studies, reports of their quantification in natural waters are scarce. We have examined the dynamics and sources of reduced sulfur, HS and DOC over an annual cycle in a river system affected by agricultural practices. The new differential pulse cathodic stripping voltammetry was successfully applied to measure glutathione-like compounds (GSHs), thioacetamide-like compounds (TAs) and the liquid chromatography coupled to organic detector to analyze HS and DOC at high frequency in the Penzé River (NW France). The streamflow-concentration patterns, principal components analysis and flux analysis allowed discrimination of the source of each organic compound type. Surprisingly, the two RSS and HS detected in all samples, displayed different behavior. As previously shown, manuring practice is the main source of DOC and HS in this watershed where agricultural activity is predominant. The HS were then transferred to the river systems via runoff, particularly during the spring and autumn floods, which are responsible of >60% of the annual flux. TAs had a clear groundwater source and may be formed underground, whereas GSHs displayed two sources: one aquagenic in spring and summer probably linked to the primary productivity and a second, which may be related to bacterial degradation. High sampling frequency allowed a more accurate assessment of the flux values which were 280 tC y(-1) for DOC representing 20 kg C ha(-1) y(-1). HS, TAs and GSHs fluxes represented 60, 13, and 4% of the total annual DOC export, respectively. PMID:26278374

  2. EFFECTS OF CHLORENDIC ACID, A PRIORITY TOXIC SUBSTANCES, ON LABORATORY AQUATIC ECOSYSTEMS

    EPA Science Inventory

    Experiments were conducted to estimate the effects of chlorendic acid and its neutralized form on laboratory aquatic ecosystems. In short-term flask studies, chlorendic acid concentrations of 500 mg/L (pH 3.5) completely inhibited algal growth and microfaunal activity, 250 mg/L (...

  3. Using UV-vis absorbance spectral parameters to characterize the fouling propensity of humic substances during ultrafiltration.

    PubMed

    Zhou, Minghao; Meng, Fangang

    2015-12-15

    Ultrafiltration (UF) can achieve excellent removal of natural organic matter (NOM), but the main challenge for this process is the limited understanding of membrane fouling. The objective of this study is to explore the potential of UV-vis spectroscopic analysis for the detection of membrane fouling caused by humic acids (HA) at different solution chemistries (i.e., calcium ions (Ca(2+)) and pH). In the presence of Ca(2+), several spectral parameters, including the DSlope(325-375) (the slope of the log-transformed absorbance spectra over 325-375 nm), S(275-295) (the slope of the absorption coefficient over 257-295 nm) and S(R) (the ratio of S(275-295) to S(350-400)) of various HA solutions, were correlated with the molecule aggregation and the membrane fouling potential. Interestingly, increased DSlope(325-375) and decreased S(275-295) and S(R) were observed for the HA-Ca(2+) interaction under alkaline conditions (i.e., pH = 9) relative to those in lower pH environments (i.e., pH = 7 or 6), suggesting that spectral parameters were able to predict HA-Ca(2+) interactions under varying pH conditions. The strong correlations between the spectral parameters and the unified membrane fouling index (UMFI) obtained from UF experiments further corroborated that the spectral parameters were able to predict the membrane fouling potential. Moreover, the spectral parameters were also found to well reveal the fouling extent of the mixture of HA and Suwannee River NOM (SRNOM) or the pure SRNOM added with varying calcium concentrations, implying that the spectroscopic analysis was also available for the indication of practical NOM fouling. In addition, the measurement of S(275-295) and S(R) of the permeate solution suggests an increasing proportion of small-molecule HA in the permeate during the UF process. This study not only expands our knowledge of NOM-Ca(2+) aggregates as well as their role in membrane fouling behavior but also provides an approach for the in situ

  4. Soluble Iron as an In Situ Indicator of the Redox State of Humic Substances in Arctic Soil: Implications for Seasonal Regeneration of Oxidized Terminal Electron Acceptors

    NASA Astrophysics Data System (ADS)

    Lipson, D.; Zlamal, J. E.; Srinivas, A. J.; Raab, T. K.

    2014-12-01

    Ferric iron (Fe(III)) and humic substances (HS) are important terminal electron acceptors for anaerobic respiration in wet tundra soils of the Arctic Coastal Plain near Barrow, Alaska. These soils are rich in both solid phase Fe minerals (including oxides such as ferrihydrite and goethite and other minerals with reduced or mixed valence such as siderite and magnetite) and soluble Fe, chelated by siderophores and other small organic molecules. This latter pool may also include nanocolloidal Fe: extremely fine-grained minerals that pass through a 0.2 micron filter. Both the solid phase and aqueous Fe pools undergo seasonal changes in redox state as a result of biological reduction by Fe-reducing microorganisms and oxidation by a variety of potential mechanisms, both abiotic and biotic. These redox cycles of solid and aqueous pools are not in phase: solid phase Fe became progressively more reduced from mid- to late summer, while aqueous phase Fe became reduced over the first half of the summer. It is well-known that HS interact with Fe, and that HS can act as electron shuttles in the reduction of Fe oxides. In other ecosystems chelated Fe(III) has been incubated with soil samples and the resulting Fe(II) produced is used as an indicator of the reducing power of HS. In these Fe-rich Arctic soils, HS are continuously in contact with chelated Fe, and therefore we interpret the redox state of this pool as an indicator of HS redox status. To verify this we conducted redox titrations of extracted HS with both reduced and oxidized Fe chelates and showed that chelated Fe could interact with HS both as electron acceptor and donator. In a field experiment, the addition of oxidized humic acids to soils resulted in an immediate oxidation of the aqueous Fe pool within 24 hours, which we attribute to abiotic oxidation of Fe by HS, followed by a slow reduction of this pool over the next week, presumably due to biological Fe reduction of the HS/aqueous Fe pool. At the end of summer

  5. The influence of humic substances on the speciation and bioavailability of dissolved mercury and methylmercury, measured as uptake by Chaoborus larvae and loss by volatilization.

    PubMed

    Sjöblom, A; Meili, M; Sundbom, M

    2000-10-16

    The influence of dissolved humic substances (HS) on the bioavailability of dissolved inorganic and methyl mercury (Hg) was quantified by measuring the direct uptake of 203Hg in Chaoborus larvae using laboratory microcosms containing artificial freshwater. The animals were exposed individually in triplicate aquaria at 10 different concentrations of HS covering the whole range found in natural freshwaters (0-110 mg C l(-1)). Mercury-203 concentrations were monitored repeatedly in the same individuals and in their ambient water during up to 10 days. Near-steady state Hg concentrations in Chaoborus were usually reached within 5 days. The bioconcentration factor (BCF, direct uptake only) for the larvae in the absence of HS was 0.55+/-0.09 (S.E.) ml individual(-1) for inorganic Hg and 5.3+/-0.7 ml individual(-1) for methyl Hg, thus showing a 10-fold difference. Normalizing to the organic carbon content of the larvae yields a BCF(OC) in the absence of HS of 2.8+/-0.4 x 10(3) ml (gC)(-1) for inorganic Hg and 2.7+/-0.3 x 10(4) ml (gC)(-1) for methyl Hg. The uptake of both inorganic and methyl Hg decreased markedly with increasing concentration of HS. For inorganic Hg, the decrease in uptake was most pronounced at HS concentrations below 0.2 mg C l(-1). For methyl Hg, the relationship between uptake and log([HS]) was sigmoid, showing a reduction by > 90% when increasing HS concentrations from 1 to 50 mg C l(-1). Similar patterns were observed for losses of Hg from the water phase, mainly through volatilization. These results have implications for both the biouptake and the abiotic cycling of Hg in natural ecosystems and suggest that most dissolved inorganic Hg is bound to dissolved organic matter in most natural freshwaters, whereas dissolved methyl Hg is bound only in humic waters. Assuming that only free aqueous Hg is taken up by the organisms, the rather simple methodology employed here can be used for estimating distribution coefficients (K(OC)) for Hg between HS and

  6. 13C-NMR spectra and contact time experiment for Skjervatjern fulvic and humic acids

    USGS Publications Warehouse

    Malcolm, R.L.

    1992-01-01

    The T(CP) and T(1p) time constants for Skjervatjern fulvic and humic acids were determined to be short with T(CP) values ranging from 0.14 ms to 0.53 ms and T(1p) values ranging from 3.3 ms to 5.9 ms. T(CP) or T(1p) time constants at a contact time of 1 ms are favorable for quantification of 13C-NMR spectra. Because of the short T(CP) values, correction factors for signal intensity for various regions of the 13C-NMR spectra would be necessary at contact times greater than 1.1 ms or less than 0.9 ms. T(CP) and T(1p) values have a limited non-homogeneity within Skjervatjern fulvic and humic acids. A pulse delay or repeat time of 700 ms is more than adequate for quantification of these 13C-NMR spectra. Paramagnetic effects in these humic substances are precluded due to low inorganic ash contents, low contents of Fe, Mn, and Co, and low organic free-radical contents. The observed T(CP) values suggest that all the carbon types in Skjervatjern fulvic and humic acids are fully cross-polarized before significant proton relaxation occurs. The 13C-NMR spectra for Skjervatjern fulvic acid is similar to most aquatic fulvic acids as it is predominantly aliphatic, low in aromaticity (fa1 = 24), low in phenolic content, high in carboxyl content, and has no resolution of a methoxyl peak. The 13C-NMR spectra for Skjervatjern humic acid is also similar to most other aquatic humic acids in that it is also predominantly aliphatic, high in aromaticity (fa1 = 38), moderate in phenolic content, moderate in carboxyl content, and has a clear resolution of a methoxyl carbon region. After the consideration of the necessary 13C-NMR experimental conditions, these spectra are considered to be quantitative. With careful consideration of the previously determined 13C-NMR experimental conditions, quantitative spectra can be obtained for humic substances in the future from the HUMEX site. Possible changes in humic substances due to acidification should be determined from 13C-NMR data.

  7. Conformational behaviour of humic substances at different depths along a profile of a Lithosol under loblolly (Pinus taeda) plantation

    NASA Astrophysics Data System (ADS)

    Conte, P.; Maia, C. M. B. F.; de Pasquale, C.; Alonzo, G.

    2009-04-01

    The conformation of natural organic matter (NOM) plays a key role in many physical and chemical processes including interactions with organic and inorganic pollutants and soil aggregates stability thus directly influencing soil quality. NOM conformation can be studied by solid state NMR spectroscopy with cross polarization and magic angle spinning (CPMAS NMR). In the present study we applied CPMAS 13C NMR spectroscopy on three humic acid fractions (HA) each extracted from a different horizon in a Lithosol profile under Pinus taeda. Results showed that the most superficial HA was also the most aliphatic in character. Amount of aromatic moieties and hydrophilic HA constituents increased along the profile. Cross polarization (TCH) and longitudinal relaxation protons times in the rotating frame (T1rho(H)) were measured and compared only for the NMR signals generated by carboxyls and alkyls. This because the signal intensity for the aromatic, C-O and C-N systems was very low, thereby preventing suitable evaluation of TCH and T1rho(H) values for such systems. The cross polarization times of carboxyls decreased, whereas those of the alkyl moieties increased with depth. Conversely, T1rho(H) values increased for both COOH and alkyl groups along the profile. Polarization transfer from protons to carbons is affected by the dipolar interactions among the nuclei. The stronger the H-C dipolar interaction, the faster is the rate of the energy exchange. All the factors affecting the dipolar interaction strength also influence the rate of magnetization transfer. Among the others, fast molecular tumbling and poor proton density around the carbons are responsible for long TCH values. Molecular tumbling and proton density also affect T1rho(H) values. Namely, the larger the molecular tumbling and the proton density, the faster is the proton longitudinal relaxation rate in the rotating frame (shorter T1rho(H) values). The decrease of TCH values of COOH groups along the profile was

  8. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances.

    PubMed

    Tahiri, Abdelghani; Delporte, Fabienne; Muhovski, Yordan; Ongena, Marc; Thonart, Philippe; Druart, Philippe

    2016-01-01

    Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization. PMID:26595095

  9. Temporal variations of the abundance and optical properties of water soluble Humic-Like Substances (HULIS) in PM2.5 at Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Fan, Xingjun; Song, Jianzhong; Peng, Ping'an

    2016-05-01

    Humic-Like Substances (HULIS) are important macromolecular compounds that are present in PM2.5 and play significant roles in the atmospheric environment. In this study, 48 PM2.5 samples were collected from February 2010 to January 2011 at an urban site in Guangzhou, southern China. The water soluble HULIS fractions in PM2.5 were analyzed to explore the temporal variation of abundance and optical properties and to identify their possible sources. The HULIS concentrations were in the range of 0.4 to 8.2 μg C m- 3, with a mean of 2.4 μg C m- 3. HULIS are important components in organic aerosols, accounting for 17 ± 5% of the organic carbon (OC), and 49 ± 6 and 68 ± 5% of water soluble organic carbon (WSOC) as determined with a total organic carbon (TOC) analyzer and UV absorbance at 250 nm, respectively. The special UV absorbance (SUVA) at 254 nm and 280 nm and the E250/E365 ratio of HULIS were 3.2 ± 0.5 L (m mg C)- 1, 2.2 ± 0.4 L (m mg C)- 1, and 5.9 ± 0.9, respectively. The HULIS fractions had higher concentrations, slightly higher SUVA values, and lower E250/E365 ratios from November to January, indicating the important contribution of aromatic compounds to HULIS in the dry season. The concentrations of HULIS were positively correlated with water soluble K+, secondary organic carbon (SOC), and secondary inorganic ions (NH4+, NO3-, and SO42 -). These results suggest that biomass burning and secondary photochemical formation are both sources of HULIS in our study area. In addition, the SUVA280 of HULIS was strongly correlated with K+ and SOC, suggesting that HULIS properties were also influenced by their primary source of biomass burning and secondary atmospheric formation.

  10. Identification of humic-like substances (HULIS) in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques

    NASA Astrophysics Data System (ADS)

    Paglione, M.; Kiendler-Scharr, A.; Mensah, A. A.; Finessi, E.; Giulianelli, L.; Sandrini, S.; Facchini, M. C.; Fuzzi, S.; Schlag, P.; Piazzalunga, A.; Tagliavini, E.; Henzing, J. S.; Decesari, S.

    2013-06-01

    The atmospheric organic aerosol composition is characterized by a great diversity of functional groups and chemical species challenging simple classification schemes. Traditional off-line chemical methods identified chemical classes based on the retention behavior on chromatographic columns and absorbing beds. Such approach led to the isolation of complex mixtures of compounds such as the humic-like substances (HULIS). More recently, on-line aerosol mass spectrometry (AMS) was employed to identify chemical classes by extracting fragmentation patterns from experimental data series using statistical methods (factor analysis), providing simplified schemes for oxygenated organic aerosols (OOAs) classification on the basis of the distribution of oxygen-containing functionalities. The analysis of numerous AMS datasets suggested the occurrence of very oxidized OOAs which were postulated to correspond to the HULIS. However, only a few efforts were made to test the correspondence of the AMS classes of OOAs with the traditional classification from the off-line methods. In this paper, we consider a case study representative for polluted continental regional background environments. We examine the AMS factors for OOAs identified by positive matrix factorization (PMF) and compare to chemical classes of water-soluble organic carbon (WSOC) analysed off-line on a set of filters collected in parallel. WSOC fractionation was performed by means of factor analysis applied to H-NMR spectroscopic data, and by applying an ion-exchange chromatographic method for direct quantification of HULIS. Results show that the very oxidized low-volatility OOAs from AMS correlate with the NMR factor showing HULIS features and also with true "chromatographic" HULIS. On the other hand, UV/VIS-absorbing polyacids (or HULIS sensu stricto) isolated on ion-exchange beds were only a fraction of the AMS and NMR organic carbon fractions showing functional groups attributable to highly substituted carboxylic

  11. Identification of humic-like substances (HULIS) in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques

    NASA Astrophysics Data System (ADS)

    Paglione, M.; Kiendler-Scharr, A.; Mensah, A. A.; Finessi, E.; Giulianelli, L.; Sandrini, S.; Facchini, M. C.; Fuzzi, S.; Schlag, P.; Piazzalunga, A.; Tagliavini, E.; Henzing, J. S.; Decesari, S.

    2014-01-01

    The atmospheric organic aerosol composition is characterized by a great diversity of functional groups and chemical species, challenging simple classification schemes. Traditional offline chemical methods identify chemical classes based on the retention behaviour on chromatographic columns and absorbing beds. Such an approach led to the isolation of complex mixtures of compounds such as the humic-like substances (HULIS). More recently, online aerosol mass spectrometry (AMS) was employed to identify chemical classes by extracting fragmentation patterns from experimental data series using statistical methods (factor analysis), providing simplified schemes for the classification of oxygenated organic aerosols (OOAs) on the basis of the distribution of oxygen-containing functionalities. The analysis of numerous AMS data sets suggested the occurrence of very oxidized OOAs which were postulated to correspond to HULIS. However, only a few efforts were made to test the correspondence of the AMS classes of OOAs with the traditional classifications from the offline methods. In this paper, we consider a case study representative of polluted continental regional background environments. We examine the AMS factors for OOAs identified by positive matrix factorization (PMF) and compare them to chemical classes of water-soluble organic carbon (WSOC) analysed offline on a set of filters collected in parallel. WSOC fractionation was performed by means of factor analysis applied to proton nuclear magnetic resonance (NMR) spectroscopic data, and by applying an ion-exchange chromatographic method for direct quantification of HULIS. Results show that the very oxidized low-volatility OOAs from AMS correlate with the NMR factor showing HULIS features and also with true "chromatographic" HULIS. On the other hand, UV/VIS-absorbing polyacids (or HULIS {sensu stricto}) isolated on ion-exchange beds were only a fraction of the AMS and NMR organic carbon fractions showing functional groups

  12. Fluorescence of aqueous solutions of commercial humic products

    NASA Astrophysics Data System (ADS)

    Gosteva, O. Yu.; Izosimov, A. A.; Patsaeva, S. V.; Yuzhakov, V. I.; Yakimenko, O. S.

    2012-01-01

    We have studied the spectral luminescence characteristics of aqueous solutions of humic products obtained from different raw material sources, and their behavior as the excitation wavelength increases from 270 nm to 355 nm. We have identified differences in the spectral properties of industrial humic products from coalified materials, lignin-containing organic waste, and humic products from plant raw material (peat, sapropel, vermicompost). We have shown that humic products from plant raw material have spectral properties closer to those for humic substances in natural water or soil than humic products from coalified materials.

  13. Determination of humic and fulvic acids in commercial solid and liquid humic products by alkaline extraction and gravimetric determination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased use of humic substances in agriculture has generated intense interest among producers, consumers, and regulators for an accurate and reliable method for quantification of humic (HA) and fulvic acids (FA) in raw ores and products. Here we present a thoroughly validated method, the Humic Pro...

  14. Toxic Effect of a Marine Bacterium on Aquatic Organisms and Its Algicidal Substances against Phaeocystis globosa

    PubMed Central

    Yang, Qiuchan; Chen, Lina; Hu, Xiaoli; Zhao, Ling; Yin, Pinghe; Li, Qiang

    2015-01-01

    Harmful algal blooms have caused enormous damage to the marine ecosystem and the coastal economy in China. In this paper, a bacterial strain B1, which had strong algicidal activity against Phaeocystis globosa, was isolated from the coastal waters of Zhuhai in China. The strain B1 was identified as Bacillus sp. on the basis of 16S rDNA gene sequence and morphological characteristics. To evaluate the ecological safety of the algicidal substances produced by strain B1, their toxic effects on marine organisms were tested. Results showed that there were no adverse effects observed in the growth of Chlorella vulgaris, Chaetoceros muelleri, and Isochrystis galbana after exposure to the algicidal substances at a concentration of 1.0% (v/v) for 96 h. The 48h LC50 values for Brachionus plicatilis, Moina mongolica Daday and Paralichthys olivaceus were 5.7, 9.0 and 12.1% (v/v), respectively. Subsequently, the algicidal substances from strain B1 culture were isolated and purified by silica gel column, Sephadex G-15 column and high-performance liquid chromatography. Based on quadrupole time-of-flight mass spectrometry and PeakView Software, the purified substances were identified as prolyl-methionine and hypoxanthine. Algicidal mechanism indicated that prolyl-methionine and hypoxanthine inhibited the growth of P. globosa by disrupting the antioxidant systems. In the acute toxicity assessment using M. mongolica, 24h LC50 values of prolyl-methionine and hypoxanthine were 7.0 and 13.8 g/L, respectively. The active substances produced by strain B1 can be considered as ecologically and environmentally biological agents for controlling harmful algal blooms. PMID:25646807

  15. Carbon isotope composition of dissolved humic and fulvic acids in the Tokachi River system.

    PubMed

    Nagao, Seiya; Kodama, Hiroki; Aramaki, Takafumi; Fujitake, Nobuhide; Uchida, Masao; Shibata, Yasuyuki

    2011-07-01

    This study reports carbon isotopic ratios (Δ(14)C and δ(13)C) of dissolved humic and fulvic acids in the Tokachi River system, northern Japan. These acids have a refractory feature and they represent the largest fraction of dissolved organic matter in aquatic environments. The acids were isolated using the XAD extraction method from river water samples collected at three sites (on the upper and lower Tokachi River, and from one of its tributaries) in June 2004 and 2005. δ(13)C values were -27.8 to -26.9 ‰ for humic and fulvic acids. On the other hand, the Δ(14)C values ranged from -247 to +26 ‰ and the average values were -170 ± 79 ‰ for humic acid and -44 ± 73 ‰ for fulvic acid. The difference was attributed to the residence time of fulvic acid in the watershed being shorter than that of humic acid. The large variation suggested that humic substances have a different pathway in each watershed environment. PMID:21515623

  16. Isolation of humic acids from leonardite

    SciTech Connect

    Shah, S.B.; Tartamella, T.L.; Lee, S.; Kulik, C.J.

    1996-12-31

    The primary interest in humic acid is its use as an effective fertilizer. Humic substances, found commonly in low-rank coals, enhance plant growth directly through positive physiological effects and indirectly by affecting the properties of the soil. Humic acids have traditionally been defined as the dark-colored organic matter that can be extracted from soil by dilute alkali and other reagents and which is insoluble in dilute acid. This paper discusses the isolation of humic acid from leonardite using the alkaline extraction method and the subsequent characterization using elemental analysis and infrared spectroscopy techniques. In this study, yields of more than 60% were obtained.

  17. LC-MS analysis in the aquatic environment and in water treatment technology--a critical review. Part II: Applications for emerging contaminants and related pollutants, microorganisms and humic acids.

    PubMed

    Zwiener, Christian; Frimmel, Fritz H

    2004-02-01

    Environmental contaminants of recent concern are pharmaceuticals, estrogens and other endocrine disrupting chemicals (EDC) such as degradation products of surfactants, algal and cyanobacterial toxins, disinfection by-products (DBPs) and metalloids. In addition, pesticides (especially their transformation products), microorganisms, and humic substances (HS), in their function as vehicles for contaminants and as precursors for by-products in water treatment, traditionally play an important role. The present status of the application of LC-MS techniques for these water constituents are discussed and examples of application are given. Solid-phase extraction with various non-selective materials in combination with liquid chromatography (LC) on reversed-phase columns have been the most widely used methods for sample preconcentration and separation for different compound classes like pesticides, pharmaceuticals or estrogens. Electrospray ionization (ESI) and atmospheric pressure ionization (APCI) are the most frequently used ionization techniques for polar and ionic compounds, as well as for less polar non-ionic ones. The facilities of LC-MS have been successfully demonstrated for different compound classes. Polar compounds from pharmaceuticals used as betablockers, iodinated X-ray contrast media, or estrogens have been determined without derivatization down to ultratrace concentrations. LC-MS can be viewed as a prerequisite for the determination of algal and cyanobacterial toxins and the homologues and oligomers of alkylphenol ethoxylates and their metabolites. Tandem mass spectrometric techniques and the use of diagnostic ions reveal their usefulness for compound-class specific screening and unknown identification, and are also valid for the analysis of pesticides and especially for their transformation products. Structural information has been gained by the application of LC-MS methods to organometallic species. New insights into the structural variety of humic

  18. Sources of humic-like substances in the Pearl River Delta, China: positive matrix factorization analysis of PM2.5 major components and source markers

    NASA Astrophysics Data System (ADS)

    Kuang, B. Y.; Lin, P.; Huang, X. H. H.; Yu, J. Z.

    2015-02-01

    Humic-like substances (HULIS), the hydrophobic part of water-soluble organic carbon (WSOC), account for a significant fraction of PM2.5 mass. Their source studies are so far largely qualitative. In this study, HULIS and WSOC were determined in 100 PM2.5 samples collected in 2009 at an urban site (Guangzhou) and a suburban site (Nansha) in the Pearl River Delta in South China. The annual average concentration of HULIS was 4.83 and 4.71 μg m-3, constituting 8.5 and 10.2% of the PM2.5 mass, while HULIS-C (the carbon component of HULIS) contributed 48 and 57% of WSOC at the two sites, respectively. HULIS were found to correlate with biomass burning (BB) tracers (i.e., levoglucosan and K) and secondary species (e.g., SO42- and NH4+), suggesting its association with BB emissions and secondary formation processes. Sources of HULIS were investigated using positive matrix factorization analysis of PM2.5 chemical composition data, including major components and source markers. In addition to secondary formation process and BB emissions, residual oil combustion related to shipping was identified for the first time as a significant source of HULIS. Secondary formation process contributed the most, accounting for 49-82% of ambient HULIS at the two sites in different seasons. BB emissions contributed a seasonal average of 8-28%, with more contributions observed in the winter months (November-February) due to crop residue burning during harvest season. Residual oil combustion was revealed to be an important source at the suburban site in summer (44% of HULIS-C) due to its proximity to one of the ports and the shipping lane in the region. Vehicle emissions were found to contribute little to HULIS, but had contributions to the hydrophilic WSOC fraction. The contrast in contributions from different combustion sources to HULIS and hydrophilic WSOC suggests that primary sources of HULIS are linked to inefficient combustion. This source analysis suggests further study of HULIS be

  19. Reactive Oxygen Species Production Mediated by Humic-like Substances in Atmospheric Aerosols: Enhancement Effects by Pyridine, Imidazole, and Their Derivatives.

    PubMed

    Dou, Jing; Lin, Peng; Kuang, Bin-Yu; Yu, Jian Zhen

    2015-06-01

    Ambient particulate matter (PM) can cause adverse health effects via their ability to produce reactive oxygen species (ROS). Humic-like substances (HULIS), a complex mixture of amphiphilic organic compounds, have been demonstrated to contain the majority of redox activity in the water-extractable organic fraction of PM. Reduced organic nitrogen compounds, such as alkaloids resulting from biomass burning emissions, are among HULIS constituents. In this study, we examined the redox activities of pyridine, imidazole and their alkyl derivatives using a cell-free dithiothreitol (DTT) assay under simulated physiological conditions (37 °C, pH = 7.40). These compounds were found to have little redox activity on their own as measured by the DTT assay, but they enhanced ROS generation catalyzed by 1,4-naphthoquinone (as a model quinone compound) and HULIS isolated from multiple aerosol samples. The enhancement effect by the individual nitrogen-containing bases was determined to be proportional to their amount in the assay solutions. It is postulated that the underlying mechanism involves the unprotonated N atom acting as a H-bonding acceptor to facilitate hydrogen-atom transfer in the ROS generation cycle. The enhancement capability was found to increase with their basicity (i.e., pKa of their conjugated acids, BH(+)), consistent with the proposed mechanism for enhancement. Among the imidazole homologues, a linear relationship was observed between the enhancement factors (in log scale) of the unprotonated form of the imidazole compounds (B) and the pKa of their conjugated acids (BH(+)). This relationship predicts that the range of alkylimidazole homologues (C6-C13) observed in atmospheric HULIS would be 1.5-4.4 times more effective than imidazole in facilitating HULIS-mediated ROS generation. Our work reveals that the ability of atmospheric PM organics to catalyze generation of ROS in cells could be affected by coexisting redox inactive organic constituents and suggests

  20. Fractionating ambient humic-like substances (HULIS) for their reactive oxygen species activity - Assessing the importance of quinones and atmospheric aging

    NASA Astrophysics Data System (ADS)

    Verma, Vishal; Wang, Ying; El-Afifi, Rawan; Fang, Ting; Rowland, Janessa; Russell, Armistead G.; Weber, Rodney J.

    2015-11-01

    In this paper, we present a technique to identify the redox-active components of fine organic aerosols by fractionating humic-like substances (HULIS). We applied this technique to a dithiothreitol (DTT) assay - a measure of the capability of PM to generate reactive oxygen species (ROS), and assessed the contribution of quinones to the DTT activity of ambient water-soluble PM. Filter samples from the Southeastern Center for Air Pollution & Epidemiology (SCAPE) were extracted in water and then passed-through a C-18 column to isolate the HULIS fraction by retention on the column. The HULIS was then eluted with a sequence of solvents of increasing polarity, i.e., hexane, dichloromethane (DCM) and then methanol. Each of these eluted fractions was analyzed for DTT activity. The methanol fraction was found to possess most of the DTT activity (>70%), while the hexane fraction had the least activity (<5%), suggesting that the ROS-active compounds of ambient water-soluble PM2.5 HULIS are mostly polar in nature. A number of quinones thought to contribute to ambient PM DTT activity were also tested. 1,4 Naphthoquinone (1,4 NQ), 1,2 Naphthoquinone (1,2 NQ), 9,10 Phenanthrenequinone (PQ), and 5-hydroxy-1,4 NQ were analyzed by the same protocol. The hexane fraction of two quinones (PQ, and 1,4 NQ) was the most-DTT active, while methanol was the least, confirming that PQ, 1,4 NQ, and 1,2 NQ (which could not be recovered from the column) do not contribute significantly to the water-soluble DTT activity of ambient PM2.5. However, an oxygenated derivative of 1,4 NQ, (5-hydroxy-1,4 NQ), which is also intrinsically more DTT-active than 1,4 NQ, was mostly (>60%) eluted in methanol. The results demonstrate the importance of atmospheric aging (oxidation) of organic aerosols in enhancing the ROS activity of ambient PM.

  1. Substance flow analysis as a tool for mitigating the impact of pharmaceuticals on the aquatic system.

    PubMed

    Chèvre, Nathalie; Coutu, Sylvain; Margot, Jonas; Wynn, Htet Kyi; Bader, Hans-Peter; Scheidegger, Ruth; Rossi, Luca

    2013-06-01

    Pharmaceuticals constitute an important environmental issue for receiving waters. A holistic approach, taking into consideration the sources of these compounds (hospitals, domestic use), discharges (wastewater effluent, combined sewer overflows) and related risks to the environment, is therefore needed to develop the best protection strategy. The substance flow analysis (SFA) approach, applied, for example, to the city of Lausanne, Switzerland, is an ideal tool to tackle these issues. Four substances were considered: one antibiotic (ciprofloxacin), an analgesic (diclofenac), and two anti-epileptics (carbamazepine and gabapentin). Consumption data for the main hospital of the city (916 beds) and for the population were available. Micropollutant concentrations were measured at different points of the system: wastewater inlet and outlet (WWTP), combined sewer overflows (CSO) and in the receiving waters (Vidy Bay, Lake Geneva). Measured and predicted concentrations were in agreement, except for diclofenac, for which analytical uncertainties were expected. Seven different scenarios were considered (supplementary treatment at the WWTP, at the hospital or at both places, etc.). Based on the results obtained, the supplementary treatment at the WWTP decreases the load of pharmaceuticals reaching surface water by a factor between 2 and 27, depending on the compound and on the technique. The treatment at the hospitals only influences the amount of ciprofloxacin reaching the environment and decreases the release by one third. The contribution of CSO to surface water pollution is low compared to that of the WWTP for the selected compounds. Regarding the risk for the receiving waters, ciprofloxacin was found to be the most problematic compound, with a risk quotient far above 1. In this particular case, a treatment at the WWTP is not sufficient to reduce the risk, and additional measures at the CSO or at the hospital should be considered. SFA is an ideal tool for developing the

  2. Yields of potato and alternative crops impacted by humic product application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humic substance (HA—humic acid, fulvic acid, and humin) are a family of organic molecules made up of long carbon chains and numerous active functional groups such as phenols and other aromatics. Humic substances play dynamic roles in soil physical, chemical biological functions essential to soil he...

  3. Capillary Electrophoresis Profiles and Fluorophore Components of Humic Acids in Nebraska Corn and Philippine Rice Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As humic substances represent relatively high molecular mass polyelectrolytes containing aromatic, aliphatic and heterocyclic subunits, capillary electrophoresis (CE) has become an attractive method for “finger-print” characterization of humic acids. In addition, fluorescence excitation-emission ma...

  4. Revealing Aquatic Dissolved Organic Matter Composition using Direct 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Burns, D. C.; Gueguen, C.

    2009-05-01

    Dissolved organic matter (DOM) is ubiquitous in all aquatic ecosystems, and comprises a variety of chemically heterogeneous molecular structures and functional groups. DOM is often considered to be a major ligand for metals in most natural waters. However DOM reactivity is thought to be strongly dependent on its chemical structure. The purpose of this study is to evaluate the variability in molecular composition of aquatic DOM from different sources. Quantitative proton NMR spectra were obtained without any preconcentration using water suppression techniques. The reproducibility on the determination of aromatic and aliphatic proton was better than 3%. The structural information of DOM from northern rivers was compared to IHSS humic substances.

  5. Role of Humic-Bound Iron as an Electron Transfer Agent in Dissimilatory Fe(III) Reduction

    PubMed Central

    Lovley, Derek R.; Blunt-Harris, Elizabeth L.

    1999-01-01

    The dissimilatory Fe(III) reducer Geobacter metallireducens reduced Fe(III) bound in humic substances, but the concentrations of Fe(III) in a wide range of highly purified humic substances were too low to account for a significant portion of the electron-accepting capacities of the humic substances. Furthermore, once reduced, the iron in humic substances could not transfer electrons to Fe(III) oxide. These results suggest that other electron-accepting moieties in humic substances, such as quinones, are the important electron-accepting and shuttling agents under Fe(III)-reducing conditions. PMID:10473447

  6. Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: A comparison of dissolved and clay bound humic

    SciTech Connect

    Jones, K.D.; Tiller, C.L.

    1999-02-15

    The effect of pH, ionic strength, and cation in solution on the binding of phenanthrene by a soil humic acid in the aqueous phase was determined using fluorescence quenching. The phenanthrene binding coefficient with the dissolved soil humic, K{sub oc}, decreased with increasing ionic strength and solution cation valence. At low values of ionic strength, K{sub oc} values for this soil humic acid increased with increasing pH. For this humic sample, the experimental results were consistent with a conformational model of the humic substance in aqueous solution where, depending on solution conditions, some parts of the humic structure may be more open to allow increased PAH access to attachment sites. After sorption onto clays, supernatant solutions of the unadsorbed humic fraction yielded lower K{sub oc} values than the original bulk humic acid, suggesting that the humic substance was fractionating during its sorption onto the clays. Additionally, the extent of phenanthrene binding with the adsorbed humic fraction was lower than the results determined for the bulk humic acid prior to adsorption. The conformation of the humic substance when sorbed onto the inorganic surface appears to be affecting the level of phenanthrene binding by the humic acid.

  7. Characterization of humic-bound phosphorus in soil by wet chemistry and solution P-31 NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) has long been known to be present in humic substances from various sources. Only limited information is available on the form and lability of humic-bound, although such information is critical for understanding the role of humic substances in P cycling and nutrition. We extracted the ...

  8. Humic substances can modulate the allelopathic potential of caffeic, ferulic, and salicylic acids for seedlings of lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.).

    PubMed

    Loffredo, Elisabetta; Monaci, Linda; Senesi, Nicola

    2005-11-30

    The capacity of a leonardite humic acid (LHA), a soil humic acid (SHA), and a soil fulvic acid (SFA) in modulating the allelopathic potential of caffeic acid (CA), ferulic acid (FA), and salicylic acid (SA) on seedlings of lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.) was investigated. Lettuce showed a sensitivity greater than that of tomato to CA, FA, and SA phytotoxicity, which was significantly reduced or even suppressed in the presence of SHA or SFA, especially at the highest dose, but not LHA. In general, SFA was slightly more active than SHA, and the efficiency of the action depended on their concentration, the plant species and the organ examined, and the allelochemical. The daily measured residual concentration of CA and FA decreased drastically and that of SA slightly in the presence of germinating seeds of lettuce, which were thus able to absorb and/or enhance the degradation of CA and FA. The adsorption capacity of SHA for the three allelochemicals was small and decreased in the order FA > CA > SA, thus suggesting that adsorption could be a relevant mechanism, but not the only one, involved in the "antiallelopathic" action. PMID:16302757

  9. Investigating humic substances interactions with Th4+, UO22+, and NpO2+ at high pH: Relevance to cementitious disposal of radioactive wastes

    NASA Astrophysics Data System (ADS)

    Stockdale, Anthony; Bryan, Nick D.; Lofts, Stephen; Tipping, Edward

    2013-11-01

    A number of geodisposal concepts for intermediate level radioactive waste involve geological emplacement within cementitious repositories. Such facilities, once rehydrated with groundwater, will create high pH environments due to aqueous phase reaction of the cements. This work focuses on the interactions of several important long-lived radionuclide cations with dissolved organic matter (DOM) constituents (humic and fulvic acids) under high pH conditions. We also sought to test the comprehensive speciation model WHAM/Humic Ion Binding Model VII for these specific conditions. Results for Th demonstrate high fractions present as organic complexes at all pH values. Binding of neptunyl to DOM shows a maximum over the pH range expected within an evolving repository. Uranyl exhibits decreasing binding with pH, however, the majority of metal in solution is present as organic complexes under the lower pH conditions investigated (10-10.5). We have updated the WHAM/Model VII binding values for UO22+, and have for the first time added NpO2+ values to the database. These updates now allow application of the model for more complex mixtures across the entire repository pH range. Calculations for three simulated cement interstitial waters (representing different degradation phases) suggest U(VI) and Np(V) are not likely to be significantly bound to DOM under these conditions.

  10. Np(V) reduction by humic acid: contribution of reduced sulfur functionalities to the redox behavior of humic acid.

    PubMed

    Schmeide, K; Sachs, S; Bernhard, G

    2012-03-01

    The role of sulfur-containing functional groups in humic acids for the Np(V) reduction in aqueous solution has been studied with the objective to specify individual processes contributing to the overall redox activity of humic substances. For this, humic acid model substances type M1-S containing different amounts of sulfur (1.9, 3.9, 6.9 wt.%) were applied. The sulfur functionalities in these humic acids are dominated by reduced-sulfur species, such as thiols, dialkylsulfides and/or disulfides. The Np(V) reduction behavior of these humic acids has been studied in comparison to that of the sulfur-free humic acid type M1 at pH 5.0, 7.0 and 9.0 under anaerobic conditions by means of batch experiments. For Np redox speciation in solution, solvent extraction and ultrafiltration were applied. In addition, redox potentials of the sample solutions were monitored. At pH 5.0, both rate and extent of Np(V) to Np(IV) reduction were found to increase with increasing sulfur content of the humic acids. At pH 7.0 and 9.0, sulfur functional groups had only a slight influence on the reduction behavior of humic acid toward Np(V). Thus, in addition to quinoid moieties and non-quinoid phenolic OH groups, generally acknowledged as main redox-active sites in humic substances, sulfur functional groups have been identified as further redox-active moieties of humic substances being active especially in the slightly acidic pH range as shown for Np(V). Due to the low sulfur content of up to 2 wt.% in natural humic substances, their contribution to the total reducing capacity is smaller than that of the other redox-active functional groups. PMID:22285088

  11. Properties and structure of raised bog peat humic acids

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Purmalis, Oskars

    2013-10-01

    Humic substances form most of the organic components of soil, peat and natural waters, and their structure and properties differ very much depending on their source. The aims of this study are to characterize humic acids (HAs) from raised bog peat, to evaluate the homogeneity of peat HAs within peat profiles, and to study peat humification impact on properties of HAs. A major impact on the structure of peat HAs have lignin-free raised bog biota (dominantly represented by bryophytes of different origin). On diagenesis scale, peat HAs have an intermediate position between the living organic matter and coal organic matter, and their structure is formed in a process in which more labile structures (carbohydrates, amino acids, etc.) are destroyed, while thermodynamically more stable aromatic and polyaromatic structures emerge as a result of abiotic synthesis. However, in comparison with soil, aquatic and other HAs, aromaticity of peat HAs is much lower. Comparatively, the raised bog peat HAs are at the beginning of the transformation process of living organic matter. Concentrations of carboxyl and phenolic hydroxyl groups change depending on the peat age and decomposition degree from where HAs have been isolated, and carboxylic acidity of peat HAs increases with peat depth and humification degree.

  12. The sorption of humic acids to mineral surfaces and their roles in contaminant binding

    SciTech Connect

    Murphy, E.M.; Zachara, J.M.; Smith, S.C.; Phillips, J.L.

    1990-11-01

    Humic substances dissolved in groundwater may adsorb to certain mineral surfaces, rendering hydrophilic surfaces hydrophobic and making them sorbents for hydrophobic organic compounds (HOC). The sorption of humic and fulvic acids (International Humic Substance Society, IHSS, reference samples) on hematite and kaolinite was investigated to determine how natural organic coatings influence HOC sorption. The sorption behavior of the humic substances was consistent with a ligand-exchange mechanism, and the amount of sorption depended on the concentration of hydroxylated surface sites on the mineral and the properties of the humic substance. The sorption of the humic substances to two solids was proportional to their aromatic carbon content and inversely proportional to the O/C ratio. Increasing quantities of sorbed humic substances (f{sub oc}0.01 to 0. 5%) increased the sorption of carbazole, dibenzothiophene, and anthracene. Peat humic acid, the most aromatic coating, showed the greatest sorption enhancement of HOC when sorbed to hematite. In addition, HOC sorption was greater on organic coating formed at low ionic strength (I = 0.005) as compared to higher ionic strength (I = 0.1). We suggest that both the mineral surface and the ionic strength of the electrolyte affect the interfacial configuration of the sorbed humic substance, altering the size or accessibly of hydrophobic domains on the humic molecule to HOC. 30 refs., 5 figs.

  13. Comparison of Antibiotic Resistance Removal Efficiencies Using Ozone Disinfection under Different pH and Suspended Solids and Humic Substance Concentrations.

    PubMed

    Pak, Gijung; Salcedo, Dennis Espineli; Lee, Hansaem; Oh, Junsik; Maeng, Sung Kyu; Song, Kyung Guen; Hong, Seok Won; Kim, Hyun-Chul; Chandran, Kartik; Kim, Sungpyo

    2016-07-19

    This study mainly evaluated the effectiveness of ozonation toward the enhancement of the removal efficiencies of antibiotic-resistant bacteria (ARB), pB10 plasmid transfer, and pB10 plasmids under different pH and suspended solids (SS) and humic acid concentrations. First, chlorination was tested as a reference disinfection process. Chlorination at a very high dose concentration of Cl2 (75 mg L(-1)) and a long contact time (10 min) were required to achieve approximately 90% ARB and pB10 plasmid transfer removal efficiencies. However, even these stringent conditions only resulted in a 78.8% reduction of pB10 plasmid concentrations. In case of ozonation, the estimated CT (concentration × contact time) value (at C0 = 7 mg L(-1)) for achieving 4-log pB10 plasmid removal efficiency was 127.15 mg·min L(-1), which was 1.04- and 1.25-fold higher than those required for ARB (122.73 mg·min L(-1)) and a model nonantibiotic resistant bacterial strain, E. coli K-12, (101.4 mg·min L(-1)), respectively. In preventing pB10 plasmid transfer, ozonation achieved better performance under conditions of higher concentrations of humic acid and lower pH. Our study results demonstrated that the applicability of CT concept in practice, conventionally used for disinfection, might not be appropriate for antibiotic resistance control in the wastewater treatment process. Further studies should be conducted in wastewater engineering on how to implement multiple barriers including disinfection to prevent ARB and ARG discharge into the environment. PMID:27389869

  14. Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid.

    PubMed

    Mohd Omar, Fatehah; Abdul Aziz, Hamidi; Stoll, Serge

    2014-01-15

    The surface charge and average size of manufactured ZnO nanoparticles (NPs) were studied as a function of pH to understand the aggregation behavior and importance of the electrostatic interactions in solution. The interactions between ZnO and Suwannee River humic acid (SRHA) were then investigated under a range of environmentally relevant conditions with the ZnO nanoparticles pHPZC as the point of reference. The anionic charges carried by aquatic humic substances were found to play a major role in the aggregation and disaggregation of ZnO nanoparticles. At low concentrations of SRHA (<0.05 mg/L) and below the pHPZC, anionic SRHA was rapidly adsorbed onto the positively charged ZnO NPs hence promoting aggregation. With similar SHRA concentrations, at pHPZC, SRHA was able to control the suspension behavior of the ZnO and promote partial disaggregation in small volumes. This was more distinguishable when the pH was greater than pHPZC as SRHA formed a surface coating on the ZnO nanoparticles and enhanced stability via electrostatic and steric interactions. In most cases, the NP coating by SRHA induced disaggregation behavior in the ZnO nanoparticles and decreased the aggregate size in parallel to increasing SRHA concentrations. Results also suggest that environmental aquatic concentration ranges of humic acids largely modify the stability of aggregated or dispersed ZnO nanoparticles. PMID:24029691

  15. EFFECTS OF AQUATIC HUMIC SUBSTANCES ON ANALYSIS FOR HYDROGEN PEROXIDE USING PEROXIDASE-CATALYZED OXIDATIONS OF TRIARYLMETHANES OR P-HYDROXYPENYLACETIC ACID (JOURNAL VERSION)

    EPA Science Inventory

    A sensitive procedure is described for trace analysis of hydrogen peroxide in water. The process involves the peroxide-catalyzed oxidation of the leuco forms of two dyes, crystal violet and malachite green. The sensitivity of this procedure, as well as of another procedure based ...

  16. Photodegradation behaviour of estriol: An insight on natural aquatic organic matter influence.

    PubMed

    Oliveira, Cindy; Lima, Diana L D; Silva, Carla Patrícia; Otero, Marta; Esteves, Valdemar I

    2016-09-01

    Estriol (E3) is one of the steroidal estrogens ubiquitously found in the aquatic environment, photodegradation being an important pathway for the elimination of such endocrine disrupting compounds. However, it is important to understand how environmentally important components present in aquatic matrices, such as organic matter, may affect their photodegradation. The main objective of this work was to investigate the photodegradation of E3 in water, under simulated solar radiation, as well as the effect of humic substances (HS - humic acids (HA), fulvic acids (FA) and XAD-4 fraction) in E3 photodegradation. Moreover, the photodegradation behaviour of E3 when present in different environmental aquatic matrices (fresh, estuarine and waste water samples) was also assessed. Results showed a completely different E3 degradation rate depending on the aquatic matrix. In ultrapure water the half-life obtained was about 50 h, while in presence of HS it varied between 5 and 10 h. Then, half-life times between 1.6 and 9.5 h were determined in environmental samples, in which it was observed that the matrix composition contributed up to 97% for the overall E3 photodegradation. Therefore, E3 photodegradation in the considered aquatic matrices was mostly caused by photosensitizing reactions (indirect photodegradation). PMID:27341158

  17. Composition of Humic Acids of the Lake Baikal Sediments

    NASA Astrophysics Data System (ADS)

    Vishnyakova, O.; Chimitdorzhieva, G.; Andreeva, D.

    2012-04-01

    Humic substances are the final stage of the biogeochemical transformation of organic matter in the biosphere. Its natural compounds are found not only in soil, peat, coal, and sediments of basins. Chemical composition and properties of humic substances are determined by the functioning of the ecosystem as a whole. Therefore the study of the unique Lake Baikal sediments can provide information about their genesis, as well as the processes of organic matter transformation. For this purpose, preparations of humic acids (HA) were isolated by alkaline extraction method. The composition of HA was investigated by the elemental analyzer CHNS/O PerkinElmer Series II. Various located sediments of the Lake Baikal were the objects of the study: 1 - Chivyrkuisky Bay, 2 - Kotovo Bay, 3 - Selenga river delta near Dubinino village, 4 - Selenga river delta near Murzino village. Data on the elemental composition of HA in terms of ash-free portion show that the carbon content (CC) is of 50-53% with a maximum value in a sample 3, and minimum - in a sample 2. Such values are characteristic also for the soils with low biochemical activity. The hydrogen content is of 4,2-5,3%, a maximum value is in a sample 1. Data recalculation to the atomic percentages identified following regularities. The CC of HA is of 35-39 at. %. Hydrogen content is of 37-43 at. %. According to the content of these elements investigated substances are clearly divided into two groups: HA of the sediments of the Lake Baikal and river Selenga delta. The magnitude of the atomic ratio H/C can be seen varying degrees of condensation of the molecules of humic acids. The high atomic ratio H/C in HA of the former group indicates the predominance of aliphatic structures in the molecules. Humic acids of the later group are characterized by a low value H/C (<1), suggesting a large proportion of aromatic components in HA composition. In sediments of the Selenga river delta there is an addition of organic matter of terrigenous

  18. Radio-labelled humic materials in migration studies

    SciTech Connect

    Carlsen, L.; Lassen, P.; Warwick, P.; Randall, A.

    1993-12-31

    Humic- and fulvic acids are able to complex polyvalent metal ions, e.g. radionuclides, leading to soluble complexes of significant strength, thereby decreasing the sorption of these compounds to soils and sediments. The interaction of humic materials with radionuclides may significantly influence the availability and transport of the latter in the environment. Typically, studies along these lines have focussed almost exclusively on the radionuclides, whereas the actual role of the humic material has been elucidated only indirectly. In order directly to study the behavior of the naturally occurring organic macro-molecules in relation to the environmental fate of radionuclides, radio-labelled humic- and fulvic acids can advantageously be applied. Radio-labels such as {sup 14}C and {sup 125}I have successfully been covalently incorporated in humic- and fulvic-acids. Labelling of humic substances as well as preliminary migration studies are discussed.

  19. A source of terrestrial organic carbon to investigate the browning of aquatic ecosystems.

    PubMed

    Lennon, Jay T; Hamilton, Stephen K; Muscarella, Mario E; Grandy, A Stuart; Wickings, Kyle; Jones, Stuart E

    2013-01-01

    There is growing evidence that terrestrial ecosystems are exporting more dissolved organic carbon (DOC) to aquatic ecosystems than they did just a few decades ago. This "browning" phenomenon will alter the chemistry, physics, and biology of inland water bodies in complex and difficult-to-predict ways. Experiments provide an opportunity to elucidate how browning will affect the stability and functioning of aquatic ecosystems. However, it is challenging to obtain sources of DOC that can be used for manipulations at ecologically relevant scales. In this study, we evaluated a commercially available source of humic substances ("Super Hume") as an analog for natural sources of terrestrial DOC. Based on chemical characterizations, comparative surveys, and whole-ecosystem manipulations, we found that the physical and chemical properties of Super Hume are similar to those of natural DOC in aquatic and terrestrial ecosystems. For example, Super Hume attenuated solar radiation in ways that will not only influence the physiology of aquatic taxa but also the metabolism of entire ecosystems. Based on its chemical properties (high lignin content, high quinone content, and low C:N and C:P ratios), Super Hume is a fairly recalcitrant, low-quality resource for aquatic consumers. Nevertheless, we demonstrate that Super Hume can subsidize aquatic food webs through 1) the uptake of dissolved organic constituents by microorganisms, and 2) the consumption of particulate fractions by larger organisms (i.e., Daphnia). After discussing some of the caveats of Super Hume, we conclude that commercial sources of humic substances can be used to help address pressing ecological questions concerning the increased export of terrestrial DOC to aquatic ecosystems. PMID:24124511

  20. A Source of Terrestrial Organic Carbon to Investigate the Browning of Aquatic Ecosystems

    PubMed Central

    Lennon, Jay T.; Hamilton, Stephen K.; Muscarella, Mario E.; Grandy, A. Stuart; Wickings, Kyle; Jones, Stuart E.

    2013-01-01

    There is growing evidence that terrestrial ecosystems are exporting more dissolved organic carbon (DOC) to aquatic ecosystems than they did just a few decades ago. This “browning” phenomenon will alter the chemistry, physics, and biology of inland water bodies in complex and difficult-to-predict ways. Experiments provide an opportunity to elucidate how browning will affect the stability and functioning of aquatic ecosystems. However, it is challenging to obtain sources of DOC that can be used for manipulations at ecologically relevant scales. In this study, we evaluated a commercially available source of humic substances (“Super Hume”) as an analog for natural sources of terrestrial DOC. Based on chemical characterizations, comparative surveys, and whole-ecosystem manipulations, we found that the physical and chemical properties of Super Hume are similar to those of natural DOC in aquatic and terrestrial ecosystems. For example, Super Hume attenuated solar radiation in ways that will not only influence the physiology of aquatic taxa but also the metabolism of entire ecosystems. Based on its chemical properties (high lignin content, high quinone content, and low C:N and C:P ratios), Super Hume is a fairly recalcitrant, low-quality resource for aquatic consumers. Nevertheless, we demonstrate that Super Hume can subsidize aquatic food webs through 1) the uptake of dissolved organic constituents by microorganisms, and 2) the consumption of particulate fractions by larger organisms (i.e., Daphnia). After discussing some of the caveats of Super Hume, we conclude that commercial sources of humic substances can be used to help address pressing ecological questions concerning the increased export of terrestrial DOC to aquatic ecosystems. PMID:24124511

  1. - and Cross-Polarization 13C NMR Evidence of Alterations in Molecular Composition of Humic Substances Following Afforestation with Eucalypt in Distinct Brazilian Biomes

    NASA Astrophysics Data System (ADS)

    Silva, I. R.; Soares, E. M.; Schmidt-Rohr, K.; Novais, R.; Barros, N.; Fernandes, S.

    2010-12-01

    The effect of planting fast growing tree species on SOM quality in tropical regions has been overlooked. In the present study 13C-NMR approaches were used to evaluate the impact of eucalypt cultivation on humic and fulvic acids molecular composition. The results indicate that the replacement of native vegetation by eucalypt plantations increased the relative contribution of aliphatic groups in HA from soils previously under Atlantic Forest, Grassland, and the Cerrado (Curvelo site only). The same trend was observed for FA, except in the Curvelo site. A trend for degradation and smaller contribution of O-alkyl C (carbohydrates) in HA was observed in soils under eucalyptus in Atlantic Forest and Cerrado. For FA such decreases were seen in Cerrado and Grassland biomes after eucalypt planting. In the area cultivated with pasture in the Atlantic Forest biome and in the Grassland soil, the largest contributions of lignin-derived compounds were detected in HA. The HA from the Cerrado at the Curvelo site, where the woody vegetation is virtually devoid of grassy species, showed the lowest intensity of lignin signal then those from the Cerrado sensu stricto in Itacambira, where grass species are more abundant. At our study sites, charred material are most likely derived from burning of the native vegetation, as naturally occurs in the Cerrado region, or anthropogenic fires in the Grassland biome. Burning of harvest residues in eucalypt fields was also a common practice in the early rotations. The replacement of native vegetation by eucalypt plantations increases the relative contribution of nonpolar alkyl groups in HA from soils previously under Atlantic Forest, Grassland, and the Cerrado (Curvelo site only) biomes. There is evidence of substantial contribution of lignin-derived C to HA and FA, especially in sites planted with Brachiaria sp pastures. Eucalypt introduction decreases the relative contribution of carbohydrates in HA and FA. 13C DP/MAS NMR functional groups in

  2. Stability and biodegradability of humic substances from Arctic soils of Western Siberia: insights from 13C-NMR spectroscopy and elemental analysis

    NASA Astrophysics Data System (ADS)

    Ejarque, E.; Abakumov, E.

    2015-11-01

    Arctic soils contain large amounts of organic matter which, globally, exceed the amount of carbon stored in vegetation biomass and in the atmosphere. Recent studies emphasize the potential sensitivity for this soil organic matter (SOM) to be mineralised when faced with increasing ambient temperatures. In order to better refine the predictions about the response of SOM to climate warming, there is a need to increase the spatial coverage of empirical data on SOM quantity and quality in the Arctic area. This study provides, for the first time, a characterisation of SOM from the Gydan Peninsula in the Yamal Region, Western Siberia, Russia. On the one hand, soil humic acids and their humification state were characterised by measuring the elemental composition and diversity of functional groups using solid-state 13C-NMR spectroscopy. Also, the total mineralisable carbon was measured. Our results show that there is a uniformity of SOM characteristics throughout the studied region, as well as within soil profiles. Such in-depth homogeneity, together with a predominance of aliphatic carbon structures, suggests the accumulation in soil of raw and slightly decomposed organic matter. Moreover, results on total mineralisable carbon suggest a high lability of these compounds. The mineralisation rate was found to be independent of SOM quality, and to be mainly explained solely by the total carbon content. Overall, our results provide further evidence on the fundamental role that the soils of Western Siberia may have on regulating the global carbon balance when faced with increasing ambient temperatures.

  3. Aliphatic structure of humic acids; a clue to their origin

    USGS Publications Warehouse

    Hatcher, P.G.; Maciel, G.E.; Dennis, L.W.

    1981-01-01

    Nuclear magnetic resonance spectra (both 1H and 13C) of humic acids from diverse depositional environments indicate the presence of aromatic chemical structures, most likely derived from lignin of vascular plants, and complex, paraffinic structures, most likely derived from algal or microbial sources. The latter components account for a major fraction of humic acid structures in both terrestrial and aquatic environments, suggesting that algae or microbes play a large role in humification of organic remains from both systems. ?? 1981.

  4. Bi-exponential decay of Eu(III) complexed by Suwannee River humic substances: spectroscopic evidence of two different excited species.

    PubMed

    Reiller, Pascal E; Brevet, Julien

    2010-02-01

    The bi-exponential luminescence decay of europium (III) complexed by Suwannee River fulvic acid (SRFA) and humic acid (SRHA), is studied in time-resolved luminescence spectroscopy using two different gratings at varying delay after the laser pulse, increasing accumulation time in order to obtain comparable signals. The two hypotheses found in the literature to interpret this bi-exponential decay are (i) a back transfer from the metal to the triplet state of the organic ligand and (ii) the radiative decay of two different excited species. It is shown that evolutions of the (5)D(0)-->(7)F(0) and (5)D(0)-->(7)F(2) luminescent transitions are occurring between 10 and 300 micros delay. First, the (5)D(0)-->(7)F(0) transition is decreasing relative to the (5)D(0)-->(7)F(1) showing a slightly greater symmetry of the 'slow' component, and is also slightly red shifted. Second, a slight modification of the (5)D(0)-->(7)F(2) transition is also evidencing a slightly different ligand field splitting. No significant modification of the (5)D(0)-->(7)F(1) magnetic dipole, which is less susceptible to symmetry changes, is noted in line with expectations. The (5)D(0)-->(7)F(0) transitions are adjusted with either one or two components. The use of a simple component fit seems to be well adapted for representing an average comportment of these heterogeneous compounds, and a two-component fit constrained by the bi-exponential decay parameters and accumulation times yields in the proposition of the spectra for the fast and slow components. PMID:20022291

  5. Natural humics impact uranium bioreduction and oxidation

    SciTech Connect

    Gu, Baohua; Yan, Hui; Zhou, Ping; Watson, David B; Park, Melora; IstokD., Jonathan

    2005-06-01

    Although humic substances occur ubiquitously in soil and groundwater, their effect on the biological reduction of uranium(VI) and subsequent reoxidation of U(IV) is poorly understood. This study investigated the role of humics in enhancing the bioreduction of U(VI) in laboratory kinetic studies, in field push-pull tests, and in the presence or absence of metal ions such as Ca{sup 2+} and Ni{sup 2+}, which are known to inhibit the biological reduction of U(VI). Results from laboratory experiments indicate that, under strict anaerobic conditions, the presence of humic materials enhanced the U(VI) reduction rates (up to 10-fold) and alleviated the toxicity effect of Ni{sup 2+} on microorganisms. Humic acid was found to be more effective than fulvic acid in enhancing the reduction of U(VI). Such an enhancement effect is attributed to the ability of these humics in facilitating electron-transfer reactions and/or in complexing Ca{sup 2+} and Ni{sup 2+} ions. Similarly, field push-pull tests demonstrated a substantially increased rate of U(VI) reduction when humic acid was introduced into the site groundwater. However, humics were also found to form complexes with reduced U(IV) and increased the oxidation of U(IV) (when exposed to oxygen) with an oxidation half-life on the order of a few minutes. Both of these processes render uranium soluble and potentially mobile in groundwater, depending on site-specific and dynamic geochemical conditions. Future studies must address the stability and retention of reduced U(IV) under realistic field conditions (e.g., in the presence of dissolved oxygen and low concentrations of complexing organics).

  6. Comparative study for separation of atmospheric humic-like substance (HULIS) by ENVI-18, HLB, XAD-8 and DEAE sorbents: elemental composition, FT-IR, 1H NMR and off-line thermochemolysis with tetramethylammonium hydroxide (TMAH).

    PubMed

    Fan, Xingjun; Song, Jianzhong; Peng, Ping'an

    2013-11-01

    Humic-like substances (HULIS) are significant constituents of aerosols, and the isolation and characterization of HULIS by solid-phase extraction methods are dependent on the sorbents used. In this study, we used the following five methods: ENVI-18, HLB-M, HLB-N, XAD-8 and DEAE, to isolate atmospheric HULIS at an urban site. Then we conducted a comparative investigation of the HULIS chemical characteristics by means of elemental analysis, Fourier transform infrared spectroscopy, (1)H nuclear magnetic resonance spectroscopy and off-line thermochemolysis with tetramethylammonium hydroxide. The results indicate that HULIS isolated using different methods show many similarities in chemical composition and structure. Some differences were however also observed between the five isolated HULIS: HULISHLB-M contains a relatively high content of OCH group, compared to HULISENVI-18 and HULISXAD-8; HULISXAD-8 contains a relatively high content of hydrophobic and aromatic components, compared to HULISENVI-18 and HULISHLB-M; HULISDEAE contains the highest content of aromatic functional groups, as inferred by (1)H NMR spectra, but a great amount of salts generally present in the HULISDEAE and thereby limited the choices for characterizing the materials (i.e., elemental analysis and TMAH thermochemolysis); HULISHLB-N has relatively high levels of H and N, a high N/C atomic ratio, and includes N-containing functional groups, which suggests that it has been altered by 2% ammonia introduced in the eluents. In summary, we found that ENVI-18, HLB-M, and XAD-8 are preferable methods for isolation and characterization of HULIS in atmospheric aerosols. These results also suggest that caution is required when applying DEAE and HLB-N isolating methods for characterizing atmospheric HULIS. PMID:23773442

  7. Phenol transformation and dimerisation, photosensitised by the triplet state of 1-nitronaphthalene: A possible pathway to humic-like substances (HULIS) in atmospheric waters

    NASA Astrophysics Data System (ADS)

    De Laurentiis, Elisa; Sur, Babita; Pazzi, Marco; Maurino, Valter; Minero, Claudio; Mailhot, Gilles; Brigante, Marcello; Vione, Davide

    2013-05-01

    The nitroderivatives of polycyclic aromatic hydrocarbons are potentially important photosensitisers in the atmospheric condensed phase. Here we show that the triplet state of 1-nitronaphthalene (31NN*) is able to directly react with phenol, causing its transformation upon irradiation of 1NN in aqueous solution. Additional but less important processes of phenol degradation are reactions with rad OH and 1O2, both photogenerated by irradiated 1NN. Dihydroxybiphenyls and phenoxyphenols were detected as main phenol transformation intermediates, likely formed by dimerisation of phenoxy radicals that would be produced upon phenol oxidation by 31NN*. Very interestingly, irradiation with 1NN shifted the fluorescence peaks of phenol (Ex/Em = 220-230/280-320 nm and 250-275/280-320 nm, with Ex/Em = excitation and emission wavelengths) to a region that overlaps with “M-like” fulvic substances (Ex/Em = 250-300/330-400 nm). Moreover, at longer irradiation times a further peak appeared (Ex/Em = 300-450/400-450 nm), which is in the region of HULIS fluorescence. Irradiated material was also able to photoproduce 1O2, thus showing photosensitisation properties. Therefore, compounds with fluorescence properties that closely resemble those of HULIS (they would be identified as HULIS by fluorescence if present in environmental samples) can be formed upon triplet-sensitised transformation of phenol by 1NN.

  8. Root-Shoot Signaling crosstalk involved in the shoot growth promoting action of rhizospheric humic acids

    PubMed Central

    Olaetxea, Maite; Mora, Verónica; García, Andrés Calderin; Santos, Leandro Azevedo; Baigorri, Roberto; Fuentes, Marta; Garnica, María; Berbara, Ricardo Luis Louro; Zamarreño, Angel Maria; Garcia-Mina, Jose M.

    2016-01-01

    ABSTRACT Numerous studies have shown the ability of humic substances to improve plant development. This action is normally reflected in an enhancement of crop yields and quality. However, the mechanisms responsible for this action of humic substances remain rather unknown. Our studies have shown that the shoot promoting action of sedimentary humic acids is dependent of its ability to increase root hydraulic conductivity through signaling pathways related to ABA, which in turn is affected in roots by humic acids in an IAA-NO dependent way. Furthermore, these studies also indicate that the primary action of humic acids in roots might also be physical, resulting from a transient mild stress caused by humic acids associated with a fouling-cleaning cycle of wall cell pores. Finally the role of alternative signal molecules, such as ROS, and corresponding signaling pathways are also discussed and modeled in the context of the above-mentioned framework. PMID:26966789

  9. Molecular characteristics of humic acids isolated from vermicomposts and their relationship to bioactivity.

    PubMed

    Martinez-Balmori, Dariellys; Spaccini, Riccardo; Aguiar, Natália Oliveira; Novotny, Etelvino Henrique; Olivares, Fábio Lopes; Canellas, Luciano Pasqualoto

    2014-11-26

    Vermitechnology is an effective composting method, which transforms biomass into nutrient-rich organic fertilizer. Mature vermicompost is a renewable organic product containing humic substances with high biological activity. The aim of this study was to assess the chemical characteristics and the bioactivity of humic acids isolated from different vermicomposts produced with either cattle manure, sugar cane bagasse, sunflower cake from seed oil extraction, or filter cake from a sugar cane factory. More than 200 different molecules were found, and it was possible to identify chemical markers on humic acids according to the nature of the organic source. The large hydrophobic character of humic extracts and the preservation of altered lignin derivatives confer to humic acids the ability to induce lateral root emergence in maize seedlings. Humic acid-like substances extracted from plant biomass residues represent an additional valuable product of vermicomposting that can be used as a plant growth promoter. PMID:25379603

  10. Influence of different kind of peats on some physic-chemical properties, biochemical activity, the content of different forms of nitrogen and fractions of humic substances of The Great Vasyugan Mire

    NASA Astrophysics Data System (ADS)

    Inisheva, L. I.; Szajdak, L.

    2009-04-01

    Mires, or peatlands belong to the wetlands ecosystems where carbon is bounded in primary production and deposited as peat in water saturated, anoxic conditions. In those conditions, the rate of the supply of new organic matter has exceeded that the decomposition, resulting in carbon accumulation. Place of sampling belongs to an oligotrophic landscapes of the river Klyuch basin in spurs of Vasyugan mire. The catchment represents reference system for Bokchar swampy area (political district of Tomsk region). Landscape profile crosses main kinds of swampy biogeocoenosis (BGC) toward the mire center: paludal tall mixed forest, pine undershrub Sphagnum (high riam, trans-accumulative part of a profile, P2), pine-undershrub Sphagnum (low riam, transit part, P3), sedge-moss swamp (eluvial part, P5). The latter represents an eluvial part of a slope of watershed massif where it is accomplished discharge of excess, surface, soil-mire waters. The depth of peat deposit of sedge-moss swamp reaches 2,5m. To the depth of 0,6m there is a layer of Sphagnum raised bog peat, then it is a mesotrophic Scheuchzeria Sphagnum layer and at the bottom there is a thick layer of low-mire horsetail peat. The samples of peats were taken from two places (P2 and P3), both from the depth 0-75 cm of the great Vasyugan Mire. These materials represent (P2) Sphagnum fuscum peat (ash content ranged from 10.8 to 15.1%), but samples P3 belong to low-moor sedge peat (ash content ranged from 4.5-4.8%). The differences in water level, redox potential, pH, degree of degradation, bulk density, number of microorganisms, activity of enzymes, different kinds of nitrogen and humic substances were studied in two different peat soils characterized by different type of peat. In general in P2 the redox potential changed from 858 to /-140/ mV, higher activity of xanthine oxidase and peroxidase, different kinds of microorganisms (ammonifing bacteria and cellulose decomposing microorganisms) and different kinds of

  11. Determination of polycyclic aromatic hydrocarbons by four-way parallel factor analysis in presence of humic acid

    NASA Astrophysics Data System (ADS)

    Yang, Ruifang; Zhao, Nanjing; Xiao, Xue; Yu, Shaohui; Liu, Jianguo; Liu, Wenqing

    2016-01-01

    There is not effective method to solve the quenching effect of quencher in fluorescence spectra measurement and recognition of polycyclic aromatic hydrocarbons in aquatic environment. In this work, a four-way dataset combined with four-way parallel factor analysis is used to identify and quantify polycyclic aromatic hydrocarbons in the presence of humic acid, a fluorescent quencher and an ubiquitous substance in aquatic system, through modeling the quenching effect of humic acid by decomposing the four-way dataset into four loading matrices corresponding to relative concentration, excitation spectra, emission spectra and fluorescence quantum yield, respectively. It is found that Phenanthrene, pyrene, anthracene and fluorene can be recognized simultaneously with the similarities all above 0.980 between resolved spectra and reference spectra. Moreover, the concentrations of them ranging from 0 to 8 μg L-1 in the test samples prepared with river water could also be predicted successfully with recovery rate of each polycyclic aromatic hydrocarbon between 100% and 120%, which were higher than those of three-way PARAFAC. These results demonstrate that the combination of four-way dataset with four-way parallel factor analysis could be a promising method to recognize the fluorescence spectra of polycyclic aromatic hydrocarbons in the presence of fluorescent quencher from both qualitative and quantitative perspective.

  12. Determination of polycyclic aromatic hydrocarbons by four-way parallel factor analysis in presence of humic acid.

    PubMed

    Yang, Ruifang; Zhao, Nanjing; Xiao, Xue; Yu, Shaohui; Liu, Jianguo; Liu, Wenqing

    2016-01-01

    There is not effective method to solve the quenching effect of quencher in fluorescence spectra measurement and recognition of polycyclic aromatic hydrocarbons in aquatic environment. In this work, a four-way dataset combined with four-way parallel factor analysis is used to identify and quantify polycyclic aromatic hydrocarbons in the presence of humic acid, a fluorescent quencher and an ubiquitous substance in aquatic system, through modeling the quenching effect of humic acid by decomposing the four-way dataset into four loading matrices corresponding to relative concentration, excitation spectra, emission spectra and fluorescence quantum yield, respectively. It is found that Phenanthrene, pyrene, anthracene and fluorene can be recognized simultaneously with the similarities all above 0.980 between resolved spectra and reference spectra. Moreover, the concentrations of them ranging from 0 to 8μgL(-1) in the test samples prepared with river water could also be predicted successfully with recovery rate of each polycyclic aromatic hydrocarbon between 100% and 120%, which were higher than those of three-way PARAFAC. These results demonstrate that the combination of four-way dataset with four-way parallel factor analysis could be a promising method to recognize the fluorescence spectra of polycyclic aromatic hydrocarbons in the presence of fluorescent quencher from both qualitative and quantitative perspective. PMID:26233788

  13. Influence of humic acid on the toxicity of copper, cadmium and lead to the unicellular alga, Synechosystis aquatilis

    SciTech Connect

    Shanmukhappa, H.; Neelakantan, K. )

    1990-06-01

    Humic acids are known to play a significant role in phytoplankton productivity by regulating the trace metals required for plant growth. Although few attempts have been made to evaluate the influence of humic acids on heavy metal toxicity to aquatic organisms, their interaction in natural waters is well documented. The present study was undertaken to evaluate the influence of humic acids (HA) extracted from mangrove sediments on Cu, Cd and Pb toxicity to the unicellular alga, Synechosystis aquatilis.

  14. Clay-humic Complexes in Soil Microaggregates of a Prairie Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microaggregates (5 to 50 um) in Midwestern prairie soils are composed primarily of intimate associations of diffuse filamentous humic substances and smectite. The humic material coats surfaces of the smectites and bridges from one smectite quasicrystal to another and between different locations on t...

  15. Evidence for strong but dynamic iron-humic colloidal associations in humic-rich coastal waters.

    PubMed

    Batchelli, Silvia; Muller, François L L; Chang, Kuei-Chen; Lee, Chon-Lin

    2010-11-15

    This study investigated the physicochemical forms of dissolved iron in the coastal plume (salinity = 28-35) of a small river draining a peat-rich catchment. Speciation information was obtained through a combination of fractionation by crossflow filtration (CFF) along with voltammetric detection of either naturally occurring iron-humic complexes (July survey) or known, synthetic complexes (September survey) formed by titrating the samples with the competing ligand 2-(2-thiazolylazo)-p-cresol (TAC). The majority of colloidal iron (>5000 Da) was present as iron-humic complexes supplied by the river and showing uniform conditional stability constants throughout the plume (log K′(Fe′HS) = 11.3 ± 0.1, i.e. log K(Fe₃+HS) = 21.3 ± 0.1). Noncolloidal or soluble iron was strongly complexed to ligands of marine origin with log K′(Fe′HS) = 11.9 ± 0.1. Equilibrium of the total iron pool with the added TAC ligand was achieved in all but the highest salinity sample, albeit more slowly for colloidal than for soluble iron. In addition, measurements of humic like fluorescence suggested that the conformation of colloids could change over time as a result of dissociation of the iron-humic associations. These results are consistent with the concept that iron in coastal waters is strongly but reversibly bound to humic substances and therefore may be available for complexation by siderophore-type ligands released by microorganisms. PMID:20964358

  16. Low molecular weight species in humic and fulvic fractions

    USGS Publications Warehouse

    Wilson, M.A.; Collin, P.J.; Malcolm, R.L.; Perdue, E.M.; Cresswell, P.

    1988-01-01

    Fourier transform solution 1H nuclear magnetic resonance (NMR) spectrometry with homogated water peak irradiation is a useful method for detecting low molecular weight substances in humic extracts. Succinate, acetate, methanol, formate, lactate and some aryl methoxyl compounds have been detected in extracts from a wide range of sources. In view of the controversy over whether low molecular weight substances are contaminants in humic extracts introduced by the concentration procedure, we report that some of these materials are not contaminants since 1H-NMR can be used to follow their formation from higher molecular weight species. ?? 1988.

  17. A log-normal distribution model for the molecular weight of aquatic fulvic acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Zhou, Q.; Maurice, P.A.; Chin, Y.-P.; Aiken, G.R.

    2000-01-01

    The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a lognormal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured M(n) and M(w) and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several types of molecular weight data, including the shapes of high- pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a log-normal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured Mn and Mw and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several type's of molecular weight data, including the shapes of high-pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.

  18. Enrichment of humic material with hydroxybenzene moieties intensifies its physiological effects on the nematode Caenorhabditis elegans.

    PubMed

    Menzel, Ralph; Menzel, Stefanie; Tiedt, Sophie; Kubsch, Georg; Stösser, Reinhardt; Bährs, Hanno; Putschew, Anke; Saul, Nadine; Steinberg, Christian E W

    2011-10-15

    Dissolved humic substances are taken up by organisms and interact on various molecular and biochemical levels. In the nematode Caenorhabditis elegans, such material can promote longevity and increase its reproductive capacity; moreover, the worms tend to stay for longer in humic-enriched environments. Here, we tested the hypothesis that the chemical enrichment of humic substances with hydroxybenzene moieties intensifies these physiological effects. Based on the leonardite humic acid HuminFeed (HF), we followed a polycondensation reaction in which this natural humic substance and a dihydroxybenzene (hydroquinone or benzoquinone) served as reaction partners. Several analytical methods showed the formation of the corresponding copolymers. The chemical modification boosted the antioxidant properties of HF both in vitro and in vivo. Humic substances enriched with hydroxybenzene moieties caused a significantly increased tolerance to thermal stress in C. elegans and extended its lifespan. Exposed nematodes showed delayed linear growth and onset of reproduction and a stronger pumping activity of the pharynx. Thus, treated nematodes act younger than they really are. In this feature the modified HF replicated the biological impact of hydroquinone-homopolymers and various plant polyphenol monomers, thereby supporting the hydroxybenzene moieties of humic substances as major effective structures for the physiological effects observed in C. elegans. PMID:21902274

  19. NOVEL APPROACH TO METAL-HUMIC COMPLEXATION STUDIES BY LANTHANID ION PROBE SPECTROSCOPY

    EPA Science Inventory

    Naturally occurring humic substances are known to be potentially strong binders of metals in the environment. ensitive spectroscopic technique, based on the unique luminescence properties of the tripositive lanthanide metal ions, has been developed to selectively probe metal bind...

  20. Comparison of some spectroscopic and physico-chemical properties of humic acids extracted from sewage sludge and bottom sediments

    NASA Astrophysics Data System (ADS)

    Polak, J.; Bartoszek, M.; Sułkowski, W. W.

    2009-04-01

    Comparison of the physico-chemical properties was carried out for humic acids extracted from sewage sludge and bottom sediments. The isolated humic acids were investigated by means of EPR, IR, UV/vis spectroscopic methods and elementary analysis AE. On the basis of earlier studies it was stated that humic acids extracted from sewage sludge can be divided into humic acids extracted from raw sewage sludge and from sewage sludge after the digestion process. The digestion process was found to have the most significant effect on the physico-chemical properties of humic acids extracted from sludge during sewage treatment. Humic acids extracted from sewage sludge had higher free radical concentration than humic acid extracted from bottom sediments. Values of the g-factor were similar for all studied samples. However, it is noteworthy that g-factor values for humic acid extracted from raw sewage sludge and from bottom sediments were lower in comparison to the humic acid extracted from sewage sludge after the fermentation processes. The IR spectra of all studied humic acids confirmed the presence of functional groups characteristic for humic substances. It was also observed that humic acids extracted from bottom sediments had a more aromatic character and contained less carbon, nitrogen and hydrogen than those extracted from the sewage sludge.

  1. Characterization of the interaction of uranyl ions with humic acids by x-ray absorption spectroscopy

    SciTech Connect

    Reich, T.; Denecke, M.A.; Pompe, S.

    1995-11-01

    Humic substances are present throughout the environment in soil and natural water. They are organic macromolecules with a variable structural formula, molecular weight, and a wide variety of functional groups depending on their origin. In natural waters, humic substances represent the main component of the {open_quotes}dissolved organic carbon{close_quotes} (DOC). The DOC may vary considerably from 1 mg/L at sea water surfaces to 50 mg/L at the surface in dark water swamps. There is strong evidence that all actinides form complexes with humic substances in natural waters. Therefore, humic substances can play an important role in the environmental migration of radionuclides by enhancing their transport. Retardation through humic substance interaction may be also possible due to formation of precipitating agglomerates. For remediation and restoration of contaminated environmental sites and risk assessment of future nuclear waste repositories, it is important to improve the predictive capabilities for radionuclide migration through a better understanding of the interaction of radionuclides with humic substances.

  2. Ozonization of humic acids in brown coal oxidized in situ

    SciTech Connect

    S.A. Semenova; Yu.F. Patrakov; M.V. Batina

    2008-10-15

    The effect of the ozonization of humic acids in chloroform and glacial acetic acid media on the yield and component composition of the resulting products was studied. The high efficiency of ozonization in acetic acid was found. Water-soluble low-molecular-weight substances were predominant among the ozonization products.

  3. DEVELOPMENT OF A STATISTICAL MODEL FOR METAL-HUMIC INTERACTIONS

    EPA Science Inventory

    A statistical model for describing the distribution of binding sites in humic substances was developed. he model was applied to study the spectral titration plot generated by the lanthanide ion probe spectroscopy (LIPS) technique. his titration plot is used as a basis for studyin...

  4. Chlorination of humic materials: Byproduct formation and chemical interpretations

    USGS Publications Warehouse

    Reckhow, D.A.; Singer, P.C.; Malcolm, R.L.

    1990-01-01

    Ten aquatic humic and fulvic acids were isolated and studied with respect to their reaction with chlorine. Yields of TOX, chloroform, trichloroacetic acid, dichloroacetic acid, dichloroacetonitrile, and 1,1,1-trichloropropanone were measured at pH 7 and 12. Humic acids produced higher concentrations than their corresponding fulvic acids of all byproducts except 1,1,1-trichloropropanone. Chlorine consumption and byproduct formation were related to fundamental chemical characteristics of the humic materials. A statistical model was proposed for activated aromatic content based on 13C NMR and base titration data. The values estimated from this model were found to be well correlated with chlorine consumption. Specific byproduct formation was related to UV absorbance, nitrogen content, or the activated aromatic content. ?? 1990 American Chemical Society.

  5. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Lovley, D.R.

    1998-01-01

    Anaerobic oxidation of [1,2-14C]vinyl chloride and [1,2- 14C]dichloroethene to 14CO2 under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought.

  6. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethane

    SciTech Connect

    Bradley, P.M.; Chapelle, F.H.; Lovley, D.R.

    1998-08-01

    Anaerobic oxidation of [1,2-{sup 14}C]vinyl chloride and [1,2-{sup 14}C]dichloroethene to {sup 14}CO{sub 2} under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought.

  7. Capillary zone electrophoresis of humic acids from the American continent.

    PubMed

    Pacheco, Maria de Lourdes; Havel, Josef

    2002-01-01

    A multicomponent background electrolyte (BGE) was developed and its composition optimized using artificial neural networks (ANN). The optimal BGE composition was found to be 90 mM boric acid, 115 mM Tris, and 0.75 mM EDTA (pH 8.4). A separation voltage of 20 kV, 20 degrees C and detection at 210 nm were used. The method was applied to characterize several humic acids originating from various countries of the American continent: soil (Argentina), peat (Brazil), leonardite (Guatemala and Mexico) and coal (United States). Comparison with humic acids of International Humic Substances Society (IHSS) standard samples was also done. Well reproducible electropherograms showing a relatively high number of peaks were obtained. Characterization of the samples by elemental analysis and UV spectrophotometry was also done. In spite of the very different origins, the similarities between humic acids are high and by matrix assisted desorption/ionization-time of flight (MALDI-TOF)-mass spectrometry it was shown that most of the m/z patterns are the same in all humic acids. This means that humic acids of different origin have the same structural units or that they contain the same components. PMID:11840535

  8. Pyrolysis-mass spectrometry/pattern recognition on a well-characterized suite of humic samples

    USGS Publications Warehouse

    MacCarthy, P.; DeLuca, S.J.; Voorhees, K.J.; Malcolm, R.L.; Thurman, E.M.

    1985-01-01

    A suite of well-characterized humic and fulvic acids of freshwater, soil and plant origin was subjected to pyrolysis-mass spectrometry and the resulting data were analyzed by pattern recognition and factor analysis. A factor analysis plot of the data shows that the humic acids and fulvic acids can be segregated into two distinct classes. Carbohydrate and phenolic components are more pronounced in the pyrolysis products of the fulvic acids, and saturated and unsaturated hydrocarbons contribute more to the humic acid pyrolysis products. A second factor analysis plot shows a separation which appears to be based primarily on whether the samples are of aquatic or soil origin. ?? 1985.

  9. Humic acids: Characterization and interactions in natural and wastewater systems. (Latest citations from Pollution Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning the absorptive and complexation properties of humic and fulvic acids. Characterization and the occurrence of these acids in wastewater systems and natural systems are studied. The interaction of humic substances with metallic pollutants and chlorinated hydrocarbons, and removal of humic acids by precipitation are among the topics discussed. Wastewater treatment processes are discussed in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  10. Humic acids: Characterization and interactions in natural and wastewater systems. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    1995-11-01

    The bibliography contains citations concerning the absorptive and complexation properties of humic and fulvic acids. Characterization and the occurrence of these acids in wastewater systems and natural systems are studied. The interaction of humic substances with metallic pollutants and chlorinated hydrocarbons, and removal of humic acids by precipitation are among the topics discussed. Wastewater treatment processes are discussed in separate bibliographies. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Humic acids: Characterization and interactions in natural and wastewater systems. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning the absorptive and complexation properties of humic and fulvic acids. Characterization and the occurrence of these acids in wastewater systems and natural systems are studied. The interaction of humic substances with metallic pollutants and chlorinated hydrocarbons, and removal of humic acids by precipitation are among the topics discussed. Wastewater treatment processes are discussed in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  12. Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate

    NASA Astrophysics Data System (ADS)

    Badger, C. L.; George, I.; Griffiths, P. T.; Braban, C. F.; Cox, R. A.; Abbatt, J. P. D.

    2006-03-01

    The phase transitions and hygroscopic growth of two humic acid aerosols (Aldrich sodium salt and Leonardite Standard (IHSS)) and their mixtures with ammonium sulphate have been investigated using a combination of two techniques, Fourier transform infra-red (FTIR) spectroscopy and tandem differential mobility analysis (TDMA). A growth factor of 1.16 at 85% relative humidity (RH) was found for the Aldrich humic acid which can be regarded as an upper limit for growth factors of humic-like substances (HULIS) found in atmospheric aerosol and is significantly smaller than that of typical atmospheric inorganics. We find that the humic acid aerosols exhibit water uptake over all relative humidities with no apparent phase changes, suggesting that these aerosols readily form supersaturated droplets. In the mixed particles, the humic acid component decreases the deliquescence relative humidity (DRH) and increases the efflorescence relative humidity (ERH) of the ammonium sulphate component, and there is some degree of water uptake prior to ammonium sulphate deliquescence. In addition, at low RH, the FTIR spectra show that the ammonium is present in a different chemical environment in the mixed aerosols than in crystalline ammonium sulphate, perhaps existing as a complex with the humic materials. The growth factors of the mixed aerosols are intermediate between those of the single-component aerosols and can be predicted assuming that the inorganic and organic fractions take up water independently.

  13. Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate

    NASA Astrophysics Data System (ADS)

    Badger, C. L.; George, I.; Griffiths, P. T.; Braban, C. F.; Cox, R. A.; Abbatt, J. P. D.

    2005-10-01

    The phase transitions and hygroscopic growth of two humic acid aerosols (Aldrich sodium salt and Leonardite Standard (IHSS)) and their mixtures with ammonium sulphate have been investigated using a combination of two techniques, Fourier transform infra-red (FTIR) spectroscopy and tandem differential mobility analysis (TDMA). A growth factor of 1.16 at 85% relative humdity (RH) was found for the Aldrich humic acid which can be regarded as an upper limit for growth factors of humic-like substances (HULIS) found in atmospheric aerosol and is significantly smaller than that of typical atmospheric inorganics. We find that the humic acid aerosols exhibit water uptake over all relative humidites with no apparent phase changes, suggesting that these aerosols readily form supersaturated droplets. In the mixed particles, the humic acid component decreases the deliquescence relative humidity (DRH) and increases the efflorescence relative humidity (ERH) of the ammonium sulphate component, and there is some degree of water uptake prior to ammonium sulphate deliquescence. In addition, at low RH, the FTIR spectra show that the ammonium is present in a different chemical environment in the mixed aerosols than in crystalline ammonium sulphate, perhaps existing as a complex with the humic materials. The growth factors of the mixed aerosols are intermediate between those of the single component aerosols and can be predicted assuming that the inorganic and organic fractions take up water independently.

  14. Effects of peat fires on the characteristics of humic acid extracted from peat soil in Central Kalimantan, Indonesia.

    PubMed

    Yustiawati; Kihara, Yusuke; Sazawa, Kazuto; Kuramitz, Hideki; Kurasaki, Masaaki; Saito, Takeshi; Hosokawa, Toshiyuki; Syawal, M Suhaemi; Wulandari, Linda; Hendri I; Tanaka, Shunitz

    2015-02-01

    When peat forest fires happen, it leads to burn soil and also humic acids as a dominant organic matter contained in peat soil as well as the forest. The structure and properties of humic acids vary depending on their origin and environment, therefore the transformation of humic acid is also diverse. The impacts of the peat fires on peat soil from Central Kalimantan, Indonesia were investigated through the characterization of humic acids, extracted from soil in burnt and unburnt sites. The characterization of humic acids was performed by elemental composition, functional groups, molecular weight by HPSEC, pyrolysate compounds by pyrolysis-GC/MS, fluorescence spectrum by 3DEEM spectrofluorometer, and thermogravimetry. The elemental composition of each humic substance indicated that the value of H/C and O/C of humic acids from burnt sites were lower than that from unburnt sites. The molecular weight of humic acids from burnt sites was also lower than that from unburnt sites. Pyrolysate compounds of humic acids from unburnt sites differed from those of humic acids from burnt soil. The heating experiment showed that burning process caused the significant change in the properties of humic acids such as increasing the aromaticity and decreasing the molecular weight. PMID:24781330

  15. Humic first, A new theory on the origin of life

    NASA Astrophysics Data System (ADS)

    Daei, Mohammad Ali; Daei, Manijeh

    2016-04-01

    In 1953, Miller &Urey through a brilliant experiment demonstrated that the building blocks of life could evolve in primitive earth conditions1. In recent years scientists revealed that organic matters are not very rare compounds in comets, asteroids, and meteorites2. These facts show simple organic molecules on early earth could be quite enough to start development of life. But, how? Many theorists have tried to explain how life emerged from non life, but failed2. There is a huge gap between the simple building blocks, like amino acid, sugar, and lipid molecules, to a living cell with a very sophisticated structure and organization. Obviously, creation of a cell needed a qualified production line which had to be durable and active, can gather all biochemical ingredients, protect them from degradation, have catalyzing ability, provide numerous opportunities for interaction between basic molecules, and above all, have capability to react to different sources of energy. We are sure this perfect factory was available on primitive earth and is nothing except humic substance! At the moment, HS, are doing nearly all of these duties, among the others, under your feet in agricultural soils4. What are humic substances? According to IHSS definition "Humic substances (HS) are major components of the natural organic matter (NOM) in soil and water as well as in geological organic deposits such as lake sediments, peats, brown coals, and shales5." They come from polymerization of organic molecules, but looking at them like a simple aggregation of different organic molecules, is a huge mistake6! It seems they do not come together except for making a capable structure! HS are the first organic machinery which appeared in proplanetary disk, more than four billion years ago. Derived from simple inorganic molecules, humic substances construct a firm intermediate structure which connects none life to life. In other word, life road pass over the humic bridge. This does not mean that

  16. Possible mechanism of flubendiamide sorption onto humic acids: a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Cavoski, I.; D'Orazio, V.; Caboni, P.; Miano, T.

    2009-04-01

    Flubendiamide,N'-[1,1-dimethyl-2-(methylsulfonyl)ethyl]-3-iodo-N-{4-[2,2,2 tetrafluoro-1-(trifluoromethyl)ethyl]-0-tolyl} phthalimide is a potent insecticide widely used against lepidopteran pests on a large variety of annual and perennial crops, and belonging to a new chemical class, the phthalic acid diamides. Residues of flubendiamide and its metabolite, the desiodo flubendiamide, were determined in a number of crops. It is stable both under aerobic-anaerobic soil conditions and aerobic-aquatic laboratory conditions whereas it degrades in field condition very slowly. Flubendiamide is almost insoluble in water. Because soils exhibit a marked affinity for hydrophobic organic compounds, they exert an essential role in controlling the environmental fate of these chemicals. There are numerous physical, physico-chemical and chemical binding mechanisms between organic pollutants and soil organic matter. However, the nature and the extent of these binding mechanisms for highly hydrophobic contaminants are not yet fully understood. Humic substances play a major role in the sorption of hydrophobic organic compounds in soils. Adsorption of hydrophobic, non-polar organic compounds can be considered as a non-specific, partitioning process between soil water and soil organic phase, such as the mechanism for retention of nonionic, non-polar organic pollutant that weakly interact with water. The sensitive and nondestructive nature of fluorescence spectroscopy renders this technique well suitable in analysing the physico-chemical properties of organic matter of various origin, as well as a powerful approach both to carry out studies on the structural and functional properties of HA and to investigate their interaction with metals and/or organic contaminants. Fourier-transform infrared (FT-IR) and fluorescence spectroscopies were used to obtain specific information about the mechanisms involved in flubendiamide sorption onto HAs. The HA-flubendiamide interaction products were

  17. A spectroscopic study of possible mechanism of flubendiamide sorption onto humic acids

    NASA Astrophysics Data System (ADS)

    Cavoski, I.; D'Orazio, V.; Caboni, P.; Miano, T.

    2009-04-01

    Flubendiamide,N'-[1,1-dimethyl-2-(methylsulfonyl)ethyl]-3-iodo-N-{4-[2,2,2 tetrafluoro-1-(trifluoromethyl)ethyl]-0-tolyl} phthalimide is a potent insecticide widely used against lepidopteran pests on a large variety of annual and perennial crops, and belonging to a new chemical class, the phthalic acid diamides. Residues of flubendiamide and its metabolite, the desiodo flubendiamide, were determined in a number of crops. It is stable both under aerobic-anaerobic soil conditions and aerobic-aquatic laboratory conditions whereas it degrades in field condition very slowly. Flubendiamide is almost insoluble in water. Because soils exhibit a marked affinity for hydrophobic organic compounds, they exert an essential role in controlling the environmental fate of these chemicals. There are numerous physical, physico-chemical and chemical binding mechanisms between organic pollutants and soil organic matter. However, the nature and the extent of these binding mechanisms for highly hydrophobic contaminants are not yet fully understood. Humic substances play a major role in the sorption of hydrophobic organic compounds in soils. Adsorption of hydrophobic, non-polar organic compounds can be considered as a non-specific, partitioning process between soil water and soil organic phase, such as the mechanism for retention of nonionic, non-polar organic pollutant that weakly interact with water. The sensitive and nondestructive nature of fluorescence spectroscopy renders this technique well suitable in analysing the physico-chemical properties of organic matter of various origin, as well as a powerful approach both to carry out studies on the structural and functional properties of HA and to investigate their interaction with metals and/or organic contaminants. Fourier-transform infrared (FT-IR) and fluorescence spectroscopies were used to obtain specific information about the mechanisms involved in flubendiamide sorption onto HAs. The HA-flubendiamide interaction products were

  18. Humic first, A new theory on the origin of life

    NASA Astrophysics Data System (ADS)

    Daei, Mohammad Ali; Daei, Manijeh

    2016-04-01

    In 1953, Miller &Urey through a brilliant experiment demonstrated that the building blocks of life could evolve in primitive earth conditions1. In recent years scientists revealed that organic matters are not very rare compounds in comets, asteroids, and meteorites2. These facts show simple organic molecules on early earth could be quite enough to start development of life. But, how? Many theorists have tried to explain how life emerged from non life, but failed2. There is a huge gap between the simple building blocks, like amino acid, sugar, and lipid molecules, to a living cell with a very sophisticated structure and organization. Obviously, creation of a cell needed a qualified production line which had to be durable and active, can gather all biochemical ingredients, protect them from degradation, have catalyzing ability, provide numerous opportunities for interaction between basic molecules, and above all, have capability to react to different sources of energy. We are sure this perfect factory was available on primitive earth and is nothing except humic substance! At the moment, HS, are doing nearly all of these duties, among the others, under your feet in agricultural soils4. What are humic substances? According to IHSS definition "Humic substances (HS) are major components of the natural organic matter (NOM) in soil and water as well as in geological organic deposits such as lake sediments, peats, brown coals, and shales5." They come from polymerization of organic molecules, but looking at them like a simple aggregation of different organic molecules, is a huge mistake6! It seems they do not come together except for making a capable structure! HS are the first organic machinery which appeared in proplanetary disk, more than four billion years ago. Derived from simple inorganic molecules, humic substances construct a firm intermediate structure which connects none life to life. In other word, life road pass over the humic bridge. This does not mean that

  19. Potentiometric titration and equivalent weight of humic acid

    USGS Publications Warehouse

    Pommer, A.M.; Breger, I.A.

    1960-01-01

    The "acid nature" of humic acid has been controversial for many years. Some investigators claim that humic acid is a true weak acid, while others feel that its behaviour during potentiometric titration can be accounted for by colloidal adsorption of hydrogen ions. The acid character of humic acid has been reinvestigated using newly-derived relationships for the titration of weak acids with strong base. Re-interpreting the potentiometric titration data published by Thiele and Kettner in 1953, it was found that Merck humic acid behaves as a weak polyelectrolytic acid having an equivalent weight of 150, a pKa of 6.8 to 7.0, and a titration exponent of about 4.8. Interdretation of similar data pertaining to the titration of phenol-formaldehyde and pyrogallol-formaldehyde resins, considered to be analogs for humic acid by Thiele and Kettner, leads to the conclusion that it is not possible to differentiate between adsorption and acid-base reaction for these substances. ?? 1960.

  20. Limitations in the use of commercial humic acids in water and soil research

    USGS Publications Warehouse

    Malcolm, R.L.; MacCarthy, P.

    1986-01-01

    Seven samples of commercial "humic acids", purchased from five different suppliers, were studied, and their characteristics were compared with humic and fulvic acids isolated from streams, soils, peat, leonardite, and a dopplerite sample. Cross-polarization and magic-angle spinning 13C NMR spectroscopy clearly shows pronounced differences between the commercial materials and all other samples. Elemental and infrared spectroscopic data do not show such clear-cut differences but can be used as supportive evidence, with the 13C NMR data, to substantiate the above distinctions. As a result of these differences and due to the general lack of information relating to the source, method of isolation, or other pretreatment of the commercial materials, these commercial products are not considered to be appropriate for use as analogues of true soil and water humic substances, in experiments designed to evaluate the nature and reactivity of humic substances in natural waters and soils.

  1. Evaluation of humic fractions potential to produce bio-oil through catalytic hydroliquefaction.

    PubMed

    Lemée, L; Pinard, L; Beauchet, R; Kpogbemabou, D

    2013-12-01

    Humic substances were extracted from biodegraded lignocellulosic biomass (LCBb) and submitted to catalytic hydroliquefaction. The resulting bio-oils were compared with those of the initial biomass. Compared to fulvic and humic acids, humin presented a high conversion rate (74 wt.%) and the highest amount of liquid fraction (66 wt.%). Moreover it represented 78% of LCBb. Humin produced 43 wt.% of crude oil and 33 wt.% of hexane soluble fraction containing hydrocarbons which is a higher yield than those from other humic substances as well as from the initial biomass. Hydrocarbons were mainly aromatics, but humin produces the highest amount of aliphatics. Considering the quantity, the quality and the molecular composition of the humic fractions, a classification of the potential of the latter to produce fuel using hydroliquefaction process can be assess: Hu>AF>AH. The higher heating value (HHV) and oxygen content of HSF from humin were fully compatible with biofuel characteristics. PMID:24140851

  2. Limitations in the use of commercial humic acids in water and soil research

    SciTech Connect

    Malcolm, R.L.; MacCarthy, P.

    1986-09-01

    Seven samples of commercial humic acids, purchased from five different suppliers, were studied, and their characteristics were compared with humic and fulvic acids isolated from streams, soils, peat, leonardite, and a dopplerite sample. Cross-polarization and magic-angle spinning /sup 13/C NMR spectroscopy clearly shows pronounced differences between the commercial materials and all other samples. Elemental and infrared spectroscopic data do not show such clear-cut differences but can be used as supportive evidence, with the /sup 13/C NMR data, to substantiate the above distinctions. As a result of these differences and due to the general lack of information relating to the source, method of isolation, or other pretreatment of the commercial materials, these commercial products are not considered to be appropriate for use as analogues of true soil and water humic substances, in experiments designed to evaluate the nature and reactivity of humic substances in natural waters and soils.

  3. Peat humic acids and their complex forming properties as influenced by peat humification

    NASA Astrophysics Data System (ADS)

    Dudare, D.; Klavins, M.

    2012-04-01

    To study paleoenvironmental changes of importance is understanding of processes of organic matter diagenesis, especially changes of refractory part of natural organic substances - humic substances. Studies of the living organic matter humification process are also essential for understanding of the carbon biogeochemical cycle. The aim of this study was to analyze peat organic matter diagenesis: changes of properties of humic acids, relations between the humification process, properties of peat, peat humic acids, their ability to interact with metal ions, as well ability to accumulate metals. The analysis were carried out on samples of humic substances preparatively extracted from three ombrotrophic bog peat profiles to identify the links between peat age, decomposition and humification degree, botanical composition and properties of peat humic acids elemental (C, H, N, O), functional (-COOH, -OH) composition, structural characteristics - UV, fluorescence, FTIR. The found variability of peat properties is less significant than differences in the properties of peat-forming living matter, thus revealing the dominant impact of humification process on the properties of peat. Correspondingly, composition of peat humic acids is little affected by differences in the properties of precursor living organic material, and such indicators as decomposition degree, humification degree, humic acid elemental ratio and concentrations of acidic functional groups are the best descriptors of changes in organic matter during the process of organic matter diagenesis and humification. Peat ability to accumulate major and trace elements depends on the character of element supply, potency of metal ions to bind functionalities in the peat, with an emphasis on the structure of peat humic acid, pH reaction, oxygen presence, presence of complexing compounds, inorganic ions and many other factors. Major and trace element presence in peat is of importance as an indicator of peat genesis and

  4. Secondary Ultraweak Luminescence from Humic Acids Induced by γ-Radiation

    PubMed Central

    Gorączko, Wieslaw; Slawiński, Janusz

    2004-01-01

    Humic substances (HSs) are products of biochemical transformations of plant and animal residues that make up a major fraction of the organic carbon of soil and aquatic systems in the environment. Because radioisotopes occur in the Earth’s crust and because the entire biosphere is continuously exposed to cosmic radiation, ionizing radiation continually interacts with HSs. This chronic irradiation could have a significant ecological impact. However, very few publications are available that address possible consequences of chronic exposure of HSs to ionizing radiation from terrestrial and cosmic sources. This study was conducted to investigate possible impacts of exposure of HSs to ionizing radiation. Dried humic acid (HA) or its associated aqueous solution (in 0.1 M Na2CO3) were exposed to absorbed γ-radiation in high doses of 1–90 kGy using a 60Co source. Following the γ-ray exposures, a secondary, ultraweak radiation emanation with wavelengths in the spectral range λ= 340–650 nm was recorded as a long-lived chemiluminescence (CL) from the aqueous solutions; however, the CL was not observed after irradiating dry HA. Absorption spectra (for λ=240–800 nm) of irradiated solutions indicated that polymerization/degradation processes were operating on the HA macromolecules. The effect of specific CL enhancers (luminol and lucigenin) on the intensity and kinetics of the CL implicated the participation of reactive oxygen species and free radicals in the CL and polymerization/degradation processes. For the range of absorbed doses used (1–10 kGy), the intensity of the induced CL was nonlinearly related to dose, suggesting that complex radical formation mechanisms were involved. PMID:19330147

  5. Humic and fluvic acids and organic colloidal materials in the environment

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.; Clark, S.B.

    1996-04-01

    Humic substances are ubiquitous in the environment, occurring in all soils, waters, and sediments of the ecosphere. Humic substances arise from the decomposition of plant and animal tissues yet are more stable than their precursors. Their size, molecular weight, elemental composition, structure, and the number and position of functional groups vary, depending on the origin and age of the material. Humic and fulvic substances have been studied extensively for more than 200 years; however, much remains unknown regarding their structure and properties. Humic substances are those organic compounds found in the environment that cannot be classified as any other chemical class of compounds. They are traditionally defined according to their solubilities. Fulvic acids are those organic materials that are soluble in water at all pH values. Humic acids are those materials that are insoluble at acidic pH values (pH < 2) but are soluble at higher pH values. Humin is the fraction of natural organic materials that is insoluble in water at all pH values. These definitions reflect the traditional methods for separating the different fractions from the original mixture. The humic content of soils varies from 0 to almost 10%. In surface waters, the humic content, expressed as dissolved organic carbon (DOC), varies from 0.1 to 50 ppm in dark-water swamps. In ocean waters, the DOC varies from 0.5 to 1.2 ppm at the surface, and the DOC in samples from deep groundwaters varies from 0.1 to 10 ppm. In addition, about 10% of the DOC in surface waters is found in suspended matter, either as organic or organically coated inorganic particulates. Humic materials function as surfactants, with the ability to bind both hydrophobic and hydrophyllic materials, making numic and fluvic materials effective agents in transporting both organic and inorganic contaminants in the environment.

  6. Reduction and Reoxidation of Humic Acid: Influence on Spectroscopic Properties and Proton Binding

    SciTech Connect

    Maurer, F.; Christl, I; Kretzschmar, R

    2010-01-01

    Previous studies on proton and metal binding to humic substances have not considered a potential influence of reduction and oxidation of functional groups. Therefore, we investigated how proton binding of a purified soil humic acid was affected by reduction. Reduction of the humic acid was carried out using an electrochemical cell that allowed us to measure the amounts of electrons and protons involved in reduction reactions. We further applied spectroscopic methods (UV-vis, fluorescence, FT-IR, C-1s NEXAFS) to detect possible chemical changes in the humic acid induced by reduction and reoxidation. The effect of reduction on proton binding was determined with acid-base titrations in the pH range 4-10 under controlled redox conditions. During reduction, 0.54 mol kg{sup -1} protons and 0.55 mol kg{sup -1} electrons were transferred to humic acid. NICA-Donnan modeling revealed an equivalent increase in proton-reactive sites (0.52 mol kg{sup -1}) in the alkaline pH-range. Our results indicate that reduction of humic acid increased the amount of proton-reactive sites by 15% compared to the untreated state. Spectroscopic differences between the untreated and reduced humic acid were minor, apart from a lower UV-vis absorption of the reduced humic acid between 400 and 700 nm.

  7. Different Resistance to UV-B Radiation of Extracellular Polymeric Substances of Two Cyanobacteria from Contrasting Habitats

    PubMed Central

    Song, Wenjuan; Zhao, Chenxi; Zhang, Daoyong; Mu, Shuyong; Pan, Xiangliang

    2016-01-01

    The effects of UV-B radiation (UVBR) on photosynthetic activity (Fv/Fm) of aquatic Synechocystis sp. and desert Chroococcus minutus and effects on composition and fluorescence property of extracellular polymeric substances (EPSs) from Synechocystis sp. and C. minutus were comparatively investigated. The desert cyanobacterium species C. minutus showed higher tolerance of PSII activity (Fv/Fm) to UVBR than the aquatic Synechocystis sp., and the inhibited PSII activity of C. minutus could be fully recovered while that of Synechocystis sp. could be partly recovered. UVBR had significant effect on the yield and biochemical composition of EPS of both species. Protein-like and humic acid-like substances were detected in EPS from Synechocystis sp., and protein-like and phenol-like fluorescent compounds were detected in EPS from C. minutus. Proteins in EPS of desert and aquatic species were significantly decomposed under UVBR, and the latter was more easily decomposed. The polysaccharides were much more resistant to UVBR than the proteins for both species. Polysaccharides of Synechocystis sp. was degraded slightly but those of C. minutus was little decomposed. The higher tolerance to UVBR of the desert cyanobacterium can be attributed to the higher resistance of its EPS to photodegradation induced by UVBR in comparison with the aquatic species. PMID:27597841

  8. Different Resistance to UV-B Radiation of Extracellular Polymeric Substances of Two Cyanobacteria from Contrasting Habitats.

    PubMed

    Song, Wenjuan; Zhao, Chenxi; Zhang, Daoyong; Mu, Shuyong; Pan, Xiangliang

    2016-01-01

    The effects of UV-B radiation (UVBR) on photosynthetic activity (Fv/Fm) of aquatic Synechocystis sp. and desert Chroococcus minutus and effects on composition and fluorescence property of extracellular polymeric substances (EPSs) from Synechocystis sp. and C. minutus were comparatively investigated. The desert cyanobacterium species C. minutus showed higher tolerance of PSII activity (Fv/Fm) to UVBR than the aquatic Synechocystis sp., and the inhibited PSII activity of C. minutus could be fully recovered while that of Synechocystis sp. could be partly recovered. UVBR had significant effect on the yield and biochemical composition of EPS of both species. Protein-like and humic acid-like substances were detected in EPS from Synechocystis sp., and protein-like and phenol-like fluorescent compounds were detected in EPS from C. minutus. Proteins in EPS of desert and aquatic species were significantly decomposed under UVBR, and the latter was more easily decomposed. The polysaccharides were much more resistant to UVBR than the proteins for both species. Polysaccharides of Synechocystis sp. was degraded slightly but those of C. minutus was little decomposed. The higher tolerance to UVBR of the desert cyanobacterium can be attributed to the higher resistance of its EPS to photodegradation induced by UVBR in comparison with the aquatic species. PMID:27597841

  9. Isolation of humic and non-humic NOM fractions: structural characterization.

    PubMed

    Croué, Jean-Philippe

    2004-03-01

    The combination of RO concentration and XAD-8/XAD-4 resin adsorption techniques was used to isolate the different constituents of the Natural Organic Matter (NOM) from inorganic salts. NOM fractions i.e. colloids, hydrophobic NOM (HPO humic substances), transphilic NOM (TPI) and hydrophilic NOM (HPI) fractions isolated from different surface waters were characterized using 13C NMR and FT-IR spectroscopy and HPLC/Size Exclusion Chromatography coupled with UV and DOC detection. Results showed that the isolation procedure was suitable to quantitatively isolate the different fractions of NOM. PMID:15038544

  10. Humic fractions of forest, pasture and maize crop soils resulting from microbial activity.

    PubMed

    Tavares, Rose Luiza Moraes; Nahas, Ely

    2014-01-01

    Humic substances result from the degradation of biopolymers of organic residues in the soil due to microbial activity. The objective of this study was to evaluate the influence of three different ecosystems: forest, pasture and maize crop on the formation of soil humic substances relating to their biological and chemical attributes. Microbial biomass carbon (MBC), microbial respiratory activity, nitrification potential, total organic carbon, soluble carbon, humic and fulvic acid fractions and the rate and degree of humification were determined. Organic carbon and soluble carbon contents decreased in the order: forest > pasture > maize; humic and fulvic acids decreased in the order forest > pasture = maize. The MBC and respiratory activity were not influenced by the ecosystems; however, the nitrification potential was higher in the forest than in other soils. The rate and degree of humification were higher in maize soil indicating greater humification of organic matter in this system. All attributes studied decreased significantly with increasing soil depth, with the exception of the rate and degree of humification. Significant and positive correlations were found between humic and fulvic acids contents with MBC, microbial respiration and nitrification potential, suggesting the microbial influence on the differential formation of humic substances of the different ecosystems. PMID:25477932

  11. Humic fractions of forest, pasture and maize crop soils resulting from microbial activity

    PubMed Central

    Tavares, Rose Luiza Moraes; Nahas, Ely

    2014-01-01

    Humic substances result from the degradation of biopolymers of organic residues in the soil due to microbial activity. The objective of this study was to evaluate the influence of three different ecosystems: forest, pasture and maize crop on the formation of soil humic substances relating to their biological and chemical attributes. Microbial biomass carbon (MBC), microbial respiratory activity, nitrification potential, total organic carbon, soluble carbon, humic and fulvic acid fractions and the rate and degree of humification were determined. Organic carbon and soluble carbon contents decreased in the order: forest > pasture > maize; humic and fulvic acids decreased in the order forest > pasture=maize. The MBC and respiratory activity were not influenced by the ecosystems; however, the nitrification potential was higher in the forest than in other soils. The rate and degree of humification were higher in maize soil indicating greater humification of organic matter in this system. All attributes studied decreased significantly with increasing soil depth, with the exception of the rate and degree of humification. Significant and positive correlations were found between humic and fulvic acids contents with MBC, microbial respiration and nitrification potential, suggesting the microbial influence on the differential formation of humic substances of the different ecosystems. PMID:25477932

  12. Substrate utilization profiles of bacterial strains in plankton from the River Warnow, a humic and eutrophic river in north Germany.

    PubMed

    Freese, Heike M; Eggert, Anja; Garland, Jay L; Schumann, Rhena

    2010-01-01

    Bacteria are very important degraders of organic substances in aquatic environments. Despite their influential role in the carbon (and many other element) cycle(s), the specific genetic identity of active bacteria is mostly unknown, although contributing phylogenetic groups had been investigated. Moreover, the degree to which phenotypic potential (i. e., utilization of environmentally relevant carbon substrates) is related to the genomic identity of bacteria or bacterial groups is unclear. The present study compared the genomic fingerprints of 27 bacterial isolates from the humic River Warnow with their ability to utilize 14 environmentally relevant substrates. Acetate was the only substrate utilized by all bacterial strains. Only 60% of the strains respired glucose, but this substrate always stimulated the highest bacterial activity (respiration and growth). Two isolates, both closely related to the same Pseudomonas sp., also had very similar substrate utilization patterns. However, similar substrate utilization profiles commonly belonged to genetically different strains (e.g., the substrate profile of Janthinobacterium lividum OW6/RT-3 and Flavobacterium sp. OW3/15-5 differed by only three substrates). Substrate consumption was sometimes totally different for genetically related isolates. Thus, the genomic profiles of bacterial strains were not congruent with their different substrate utilization profiles. Additionally, changes in pre-incubation conditions strongly influenced substrate utilization. Therefore, it is problematic to infer substrate utilization and especially microbial dissolved organic matter transformation in aquatic systems from bacterial molecular taxonomy. PMID:19936822

  13. Lability of copper bound to humic acid.

    PubMed

    Mao, Lingchen; Young, Scott D; Bailey, Elizabeth H

    2015-07-01

    Geochemical speciation models generally include the assumption that all metal bound to humic acid and fulvic acid (HA, FA) is labile. However, in the current study, we determined the presence of a soluble 'non-labile' Cu fraction bound to HA extracted from grassland and peat soils. This was quantified by determining isotopically-exchangeable Cu (E-value) and EDTA-extraction of HA-bound Cu, separated by size-exclusion chromatography (SEC) and assayed by coupled ICP-MS. Evidence of time-dependent Cu fixation by HA was found during the course of an incubation study (160 d); up to 50% of dissolved HA-bound Cu was not isotopically exchangeable. This result was supported by extraction with EDTA where approximately 40% of Cu remained bound to HA despite dissolution in 0.05 M Na2-EDTA. The presence of a substantial non-labile metal fraction held by HA challenges the assumption of wholly reversible equilibrium which is central to current geochemical models of metal binding to humic substances. PMID:25863164

  14. Frequency-domain fluorescence lifetime measurements via frequency segmentation and recombination as applied to pyrene with dissolved humic materials.

    PubMed

    Marwani, Hadi M; Lowry, Mark; Xing, Baoshan; Warner, Isiah M; Cook, Robert L

    2009-01-01

    In this study, the association behavior of pyrene with different dissolved humic materials (DHM) was investigated utilizing the recently developed segmented frequency-domain fluorescence lifetime method. The humic materials involved in this study consisted of three commercially available International Humic Substances Society standards (Suwannee River fulvic acid reference, SRFAR, Leonardite humic acid standard, LHAS, and Florida peat humic acid standard, FPHAS), the peat derived Amherst humic acid (AHA), and a chemically bleached Amherst humic acid (BAHA). It was found that the three commercial humic materials displayed three lifetime components, while both Amherst samples displayed only two lifetime components. In addition, it was found that the chemical bleaching procedure preferentially removed red wavelength emitting fluorophores from AHA. In regards to pyrene association with the DHM, different behavior was found for all commercially available humics, while AHA and BAHA, which displayed strikingly similar behavior in terms of fluorescence lifetimes. It was also found that there was an enhancement of pyrene's measured lifetime (combined with a decrease in pyrene emission) in the presence of FPHAS. The implications of this long lifetime are discussed in terms of (1) quenching mechanism and (2) use of the fluorescence quenching method used to determine the binding of compounds to DHM. PMID:18546063

  15. Interaction of humic acids and humic-acid-like polymers with herpes simplex virus type 1

    NASA Astrophysics Data System (ADS)

    Klöcking, Renate; Helbig, Björn

    The study was performed in order to compare the antiviral activity against herpes simplex virus type 1 (HSV-1) of synthetic humic-acid-like polymers to that of their low-molecular-weight basic compounds and naturally occurring humic acids (HA) in vitro. HA from peat water showed a moderate antiviral activity at a minimum effective concentration (MEC) of 20 µg/ml. HA-like polymers, i.e. the oxidation products of caffeic acid (KOP), hydrocaffeic acid (HYKOP), chlorogenic acid (CHOP), 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), nordihydroguaretic acid (NOROP), gentisinic acid (GENOP), pyrogallol (PYROP) and gallic acid (GALOP), generally inhibit virus multiplication, although with different potency and selectivity. Of the substances tested, GENOP, KOP, 3,4-DHPOP and HYKOP with MEC values in the range of 2 to 10 µg/ml, proved to be the most potent HSV-1 inhibitors. Despite its lower antiviral potency (MEC 40 µg/ml), CHOP has a remarkable selectivity due to the high concentration of this polymer that is tolerated by the host cells (>640 µg/ml). As a rule, the antiviral activity of the synthetic compounds was restricted to the polymers and was not preformed in the low-molecular-weight basic compounds. This finding speaks in favour of the formation of antivirally active structures during the oxidative polymerization of phenolic compounds and, indirectly, of corresponding structural parts in different HA-type substances.

  16. Photo-transformation of pedogenic humic acid and consequences for Cd(II), Cu(II) and Pb(II) speciation and bioavailability to green microalga.

    PubMed

    Worms, Isabelle A M; Adenmatten, David; Miéville, Pascal; Traber, Jacqueline; Slaveykova, Vera I

    2015-11-01

    Humic substances (HS) play key role in toxic metal binding and protecting aquatic microorganisms from metal-induced stress. Any environmental changes that could alter HS concentration and reactivity can be expected to modify metal complexation and thus affect metal speciation and bioavailability to microalgae. The present study explores the influence of increased solar irradiance on the chemical structures and molecular weight of Elliott soil humic acid (EHA) and the associated consequences for Cd(II), Cu(II) and Pb(II) complexation and intracellular metal content in microalga. The results demonstrate that high radiance doses induce an oxidation of EHA with a formation of low molecular weight acids, an increase of -OH and -COOH group abundance, and a drop in EHA hydrodynamic size and molecular weight. The photo-induced structural changes are accompanied with a release of metal from M-EHA complexes and narrowing their size distribution, which in turn results in an increase of the intracellular Cd, Cu and Pb contents in microalga Chlamydomonas reinhardtii in agreement with the measured free metal ions concentrations. PMID:25563161

  17. Evaluating the sorption of organophosphate esters to different sourced humic acids and its effects on the toxicity to Daphnia magna.

    PubMed

    Pang, Long; Liu, Jingfu; Yin, Yongguang; Shen, Mohai

    2013-12-01

    Because of large usage as flame retardants and additives, organophosphate esters (OPEs) are widely detected in the environment and regarded as emerging contaminants. However, the sorption of OPEs to organic matter and its effects have scarcely been studied. In the present study, the sorption of 9 commonly used OPEs to 4 representative humic acids--Elliott Soil humic acid, Suwannee River humic acid, Aldrich humic acid, and Acros humic acid--in the range of 0 mg/L to 50 mg/L dissolved organic carbon (DOC), was evaluated with negligible-depletion solid-phase microextraction and verified by its impacts on the toxicity to the aquatic invertebrate Daphnia magna. Whereas OPEs with a high octanol/water partition coefficient (log K(OW)=4.51-6.64) were associated with humic acids mainly by hydrophobic interaction with DOC partition coefficient (K(DOC)) in the range of 10²·²² to 10⁵·³¹, the sorption of low-K(OW) OPEs (log K(OW)=-0.65 to 2.59) to humic acids was not hydrophobic interaction-dominant, with K(DOC) in the range of 10³·⁴⁷ to 10⁴·²⁹. These results were corroborated by the effects of humic acids on the acute toxicity of 3 high-K(OW) OPEs to D. magna. The sorption of OPEs to Suwannee River humic acid was weak and had negligible effects on the toxicity of high-K(OW) OPEs; the presence of terrestrial Acros humic acid (50 mg/L DOC), however, significantly decreased the toxicity by 53% to 60%. The results indicated that the strong sorption between high-K(OW) OPEs and terrestrial humic acid might affect their transportation and bioavailability. PMID:23966232

  18. AQUATIC ECOSYSTEMS,

    EPA Science Inventory

    Aquatic ecosystems are a vital part of the urban water cycle (and of urban areas more broadly), and, if healthy, provide a range of goods and services valued by humans (Meyer 1997). For example, aquatic ecosystems (e.g., rivers, lakes, wetlands) provide potable water, food resou...

  19. Aquatic Environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic microbiology can be defined as the study of microorganisms and microbial communities in water environments. Aquatic environments occupy more than 70% of the earth’s surface including oceans, estuaries, rivers, lakes, wetlands, streams, springs, and aquifers. Water is essential for life and m...

  20. Pyrolysis GC-MS and NMR studies of humics in contaminated sediments

    SciTech Connect

    Higashi, R.M.; Fan, T.W.M.; Lane, A.N.

    1994-12-31

    Sediment ``humics`` play a major role in sorption and chemical reactions of organic and metal pollutants, as well as of nutrients, detritus, and other naturally-occurring chemicals. Not surprisingly, the chemical structure of humics is very important in this regard. The problem is, humics are among the most complex and least-understood substances in the world. This is because the primary structure is heterologous, unlike most other macromolecules which are polymeric; thus, researchers could not obtain coherent structures to identify with properties. However, recent advances in NMR spectroscopy and pyrolysis GC-MS have enabled researchers to begin relating primary and higher order structural motifs germane to the chemistry of the refractory humics. The authors have explored various means of sediment extraction for humics analysis by these techniques, including direct analysis of unextracted sediments. Marine sediments from near produced water discharges, salt marshes, and dredge material were surveyed. The study has revealed interpretive pitfalls, depending on the method of humic extraction. These difficulties are expected since the approach is at its infancy, but the overall approach is clearly useful in probing the humic structure profile of marine sediments.

  1. Mutagenic activity of some coal-derived humic compounds evaluated by the Ames test.

    PubMed

    Bernacchi, F; Ponzanelli, I; Barale, R; Loprieno, N

    1996-07-10

    Two coal-derived humic substances (Sulcis and South Africa, Eniricerche, Italy) have been evaluated for their mutagenic activity on TA98 and TA100 Salmonella typhimurium strains, either in presence or in absence of metabolic activation (S9). Both compounds showed no effect on the two strains, as observed with natural humic acid (Fluka). After chlorination, coal-derived humic acids induced a strong dose-related increase in the number of revertants on TA100 without S9, whose extent was directly proportional to the chlorination ratios. Such effect was completely suppressed when a sodium thiosulfate solution (10%) was added at the end of the chlorination period (about 90 h). The analogies with natural humic acid mutagenicity are discussed. PMID:8700175

  2. Effects of heating on composition, degree of darkness, and stacking nanostructure of soil humic acids.

    PubMed

    Katsumi, Naoya; Yonebayashi, Koyo; Okazaki, Masanori

    2016-01-15

    Wildfires and prescribed burning can affect both the quality and the quantity of organic matter in soils. In this study, we investigated qualitative and quantitative changes of soil humic substances in two different soils (an Entisol from a paddy field and an Inceptisol from a cedar forest) under several controlled heating conditions. Soil samples were heated in a muffle furnace at 200, 250, or 300 °C for 1, 3, 5, or 12h. The humic acid and fulvic acid contents of the soil samples prior to and after heating were determined. The degree of darkness, elemental composition, carbon and nitrogen stable isotope ratios, (13)C nuclear magnetic resonance spectra, and X-ray diffraction patterns of humic acids extracted from the soils before and after heating were measured. The proportion of humic acids in total carbon decreased with increasing heating time at high temperature (300 °C), but increased with increasing heating time at ≤ 250 °C. The degree of darkness of the humic acids increased with increasing heating time and temperature. During darkening, the H/C atomic ratios, the proportion of aromatic C, and the carbon and nitrogen stable isotope ratios increased, whereas the proportions of alkyl C and O-alkyl C decreased. X-ray diffraction analysis verified that a stacking nanostructure developed by heating. Changes in the chemical structure of the humic acids from the heated soils depended on the type of soil. The major structural components of the humic acids from the heated Entisol were aromatic C and carboxylic C, whereas aliphatic C, aromatic C, and carboxylic C structural components were found in the humic acids from the heated Inceptisol. These results suggest that the heat-induced changes in the chemical structure of the humic acids depended on the source plant. PMID:26398447

  3. Properties and structure of peat humic acids depending on humification and precursor biota in bogs

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Purmalis, Oskars

    2013-04-01

    Humic substances form most of the organic component of soil, peat and natural waters, but their structure and properties very much differs depending on their source. The aim of this study is to characterize humic acids from raised bog peat profiles to evaluate the homogeneity of humic acids isolated from the bog bodies and study peat humification impact on properties of humic acids. A major impact on the structure of peat humic acids have raised bog biota (dominantly represented by bryophytes of different origin) void of lignin. For characterization of peat humic acids their elemental (CHNOS), functional (-COOH, phenolic OH) analysis, spectroscopic characterization (UV, fluorescence, FTIR, 1H NMR, CP/MAS 13C NMR, ESR) and degradation studies (Py-GC/MS) were done. Peat humic acids (HA) have an intermediate position between the living organic matter and coal organic matter and their structure is formed in a process in which more labile structures (carbohydrates, amino acids, etc.) are destroyed, but thermodynamically more stable aromatic and polyaromatic structures emerge. Comparatively, the studied peat HAs are at the start of the transformation process of living organic matter. Concentrations of carboxyl and phenolic hydroxyl groups changes depending on the depth of peat from which HAs have been isolated: and carboxylic acidity is increasing with depth of peat location and the humification degree. The ability to influence the surface tension of peat humic acids isolated from a well-characterized bog profile demonstrates dependence on age and humification degree. With increase of the humification degree and age of humic acids, their molecular complexity and ability to influence surface tension decreases; even so, the impact of the biological precursor (peat-forming bryophytes and plants) can be identified.

  4. A new standardized method for quantification of humic and fulvic acids in humic ores and commercial products.

    PubMed

    Lamar, Richard T; Olk, Daniel C; Mayhew, Lawrence; Bloom, Paul R

    2014-01-01

    Increased use of humic substances in agriculture has generated intense interest among producers, consumers, and regulators for an accurate and reliable method to quantify humic acid (HA) and fulvic acid (FA) in raw ores and products. Here we present a thoroughly validated method, the new standardized method for determination of HA and FA contents in raw humate ores and in solid and liquid products produced from them. The methods used for preparation of HA and FA were adapted according to the guidelines of the International Humic Substances Society involving alkaline extraction followed by acidification to separate HA from the fulvic fraction. This is followed by separation of FA from the fulvic fraction by adsorption on a nonionic macroporous acrylic ester resin at acid pH. It differs from previous methods in that it determines HA and FA concentrations gravimetrically on an ash-free basis. Critical steps in the method, e.g., initial test portion mass, test portion to extract volume ratio, extraction time, and acidification of alkaline extract, were optimized for maximum and consistent recovery of HA and FA. The method detection limits for HA and FA were 4.62 and 4.8 mg/L, respectively. The method quantitation limits for HA and FA were 14.7 and 15.3 mg/L, respectively. PMID:25051616

  5. Speciation of sulfur in humic and fulvic acids using X-ray Absorption Near-Edge Structures (XANES) spectroscopy

    SciTech Connect

    Morra, M.J.; Fendorf, S.E.; Brown, P.D.

    1997-02-01

    Sulfur species in soils and sediments have previously been determined indirectly using destructive techniques. A direct and more accurate method for S speciation would improve our understanding of S biogeochemistry. X-ray absorption near edge structure (XANES) spectroscopy was performed on purified humic and fulvic acids from terrestrial and aquatic environments. This methodology allows direct determination of S species using the relationship that exists with the energy required for core electron transitions and in some cases, correlation with additional spectral features. Soil, peat, and aquatic humic acids were dominated by sulfonates with an oxidation state of +5, but also contained ester-bonded sulfates with an oxidation state of +6. Leonardite humic acid contained ester-bonded sulfate and an unidentified S compound with an oxidation state of +4.0. In contrast, high-valent S in soil, peat, and aquatic fulvic acids was exclusively in the form of sulfonic acids. Reduced S species were also present in both humic and fulvic acids. XANES is a valuable method for the speciation of S in humic materials and of potential use in S speciation of unfractionated soils. 27 refs., 4 figs., 3 tabs.

  6. Speciation of sulfur in humic and fulvic acids using X-ray absorption near-edge structure (XANES) spectroscopy

    NASA Astrophysics Data System (ADS)

    Morra, Matthew J.; Fendorf, Scott E.; Brown, Paul D.

    1997-02-01

    Sulfur species in soils and sediments have previously been determined indirectly using destructive techniques. A direct and more accurate method for S speciation would improve our understanding of S biogeochemistry. X-ray absorption near edge structure (XANES) spectroscopy was performed on purified humic and fulvic acids from terrestrial and aquatic environments. This methodology allows direct determination of S species using the relationship that exists with the energy required for core electron transitions and in some cases, correlation with additional spectral features. Soil, peat, and aquatic humic acids were dominated by sulfonates with an oxidation state of +5, but also contained ester-bonded sulfates with an oxidation state of +6. Leonardite humic acid contained ester-bonded sulfate and an unidentified S compound with an oxidation state of +4.0. In contrast, high-valent S in soil, peat, and aquatic fulvic acids was exclusively in the form of sulfonic acids. Reduced S species were also present in both humic and fulvic acids. XANES is a valuable method for the speciation of S in humic materials and of potential use in S speciation of unfractionated soils.

  7. Triad method for assessing the remediation effect of humic preparations on urbanozems

    NASA Astrophysics Data System (ADS)

    Pukalchik, M. A.; Terekhova, V. A.; Yakimenko, O. S.; Kydralieva, K. A.; Akulova, M. I.

    2015-06-01

    The data on the pollutant content, ecological toxicity, and structural and functional specifics of soil microbial communities in urbanozem sampled in the city of Kirov were used to describe the remediation effect of humic substances (lignohumate and nanomagnetitohumate). The integral index of environmental risk on contaminated and background soil sites was calculated using the triad method. Based on varying Chemical Risk Index, Ecotoxicological Risk Index, and Ecological Risk Index, this method proved that humic substances are able to reduce ecological toxicity and transform the ecophysiological indices of biota in urban soils. The most vivid effect of humic products has been revealed on introduction of 0.0025 and 0.01% mass. The biological activity of nanomagnetitohumate and lignohumate, rather than their ability to bind toxicants, is apparently the principal factor controlling their remediating effect.

  8. Two-dimensional NMR studies of size fractionated Suwannee River fulvic and humic acid reference.

    PubMed

    Haiber, S; Herzog, H; Burba, P; Gosciniak, B; Lambert, J

    2001-11-01

    Two-dimensional phase sensitive 13C,1H correlation spectra were applied to the investigation of substructures in size fractions obtained by tangential flow multistage ultrafiltration (MST-UF) of humic substances (HS) Suwannee River Fulvic Acid Reference (HS SR FA) and Suwannee River Humic Acid Reference (HS SR HA), purchased from the International Humic Substances Society (IHSS). After size fractionation with MST-UF the HS samples give well resolved two-dimensional 13C,1H-correlated NMR spectra which offer a great potential for substructure elucidation and even quantification. It is shown that low molecular size lignin moieties undergo demethylation of the methoxy groups, accompanied by removal of the phenylpropane side chains and subsequent reaggregation of the aromatic rings. These findings provide insight into the processes of lignin degradation. Only the fraction >100 kDa contains macromolecules that have spin-spin relaxation times too short for investigations employing NMR multipulse sequences. PMID:11718344

  9. Characterisation of humic acid by means of SERS

    NASA Astrophysics Data System (ADS)

    Vogel, E.; Geßner, R.; Hayes, M. H. B.; Kiefer, W.

    1999-05-01

    Humic acid from Oak Forest extracted at pH 7, was investigated by means of surface enhanced Raman spectroscopy (SERS). The substance was deposited on two different SERS substrates: ex-situ roughened silver electrodes and silver island films. A comparison of the SERS spectra excited with the 514 nm and the 647 nm lines shows considerable differences in the relative intensities of the bands. These alterations may be a result of resonance enhancement and/or photochemically induced conformation changes of the molecule. Differences in the SERS spectra of the sample adsorbed on different SERS substrates indicate a strong dependence of the adsorption configuration of the humic acid on the metal surface, on the surface potential, and on the coadsorption of anions.

  10. TOXICITY AND BIOACCUMULATION OF CADMIUM AND COPPER AS AFFECTED BY HUMIC ACID

    EPA Science Inventory

    Since humic substances are ubiquitous, but highly variable, components of the chemical matrix of freshwater ecosystems, and are assumed to affect the toxicity and bioavailability of metals, any attempt to derive water quality criteria or standards for metals must take into accoun...

  11. Separation of humic acids from Bayer process liquor by membrane filtration

    SciTech Connect

    Awadalla, F.T.; Kutowy, O.; Tweddle, A. ); Hazlett, J.D. )

    1994-05-01

    Humic acids of high molecular weight were removed from spent Bayer liquor by polymeric ultrafiltration membranes. Among the commercial and laboratory-cast membranes tested, Radel-R polyphenylsulfone on a polypropylene backing material was found to be the most promising candidate for this separation. However, the maximum separation of humic acids obtained at operating conditions of 50[degree]C and 0.34 MPa, as measured by spectrophotometric analysis, was only in the 50 to 55% range. In order to explain this limited membrane separation of humic acids in spent Bayer liquor, a synthetic alkaline solution of humic acids was treated using the same membranes. These tests indicated much higher separation of humic acids (92%). Humic substances in Bayer liquor appear to be hydrolyzed and degraded to low molecular weight fractions (molecular weight < 1000 daltons) by the combined action of the strongly alkaline Bayer liquor and high digestion temperatures. These low molecular weight fractions cannot be retained by standard ultrafiltration membranes. However, some preliminary tests with laboratory-cast Radel-R nanofiltration membranes showed improved color separation (> 70%) when treating spent Bayer liquor. 23 refs., 8 figs., 5 tabs.

  12. Bioactivity of chemically transformed humic matter from vermicompost on plant root growth.

    PubMed

    Dobbss, Leonardo Barros; Pasqualoto Canellas, Luciano; Lopes Olivares, Fábio; Oliveira Aguiar, Natália; Peres, Lázaro Eustáquio Pereira; Azevedo, Mariana; Spaccini, Riccardo; Piccolo, Alessandro; Façanha, Arnoldo R

    2010-03-24

    Chemical reactions (hydrolysis, oxidation, reduction, methylation, alkyl compounds detachment) were applied to modify the structure of humic substances (HS) isolated from vermicompost. Structural and conformational changes of these humic derivatives were assessed by elemental analyses, size exclusion chromatography (HPSEC), solid-state nuclear magnetic resonance ((13)C CPMAS-NMR), and diffusion ordered spectroscopy (DOSY-NMR), whereas their bioactivity was evaluated by changes in root architecture and proton pump activation of tomato and maize. All humic derivatives exhibited a large bioactivity compared to original HS, both KMnO(4)-oxidized and methylated materials being the most effective. Whereas no general relationship was found between bioactivity and humic molecular sizes, the hydrophobicity index was significantly related with proton pump stimulation. It is suggested that the hydrophobic domain can preserve bioactive molecules such as auxins in the humic matter. In contact with root-exuded organic acids the hydrophobic weak forces could be disrupted, releasing bioactive compounds from humic aggregates. These findings were further supported by the fact that HS and all derivatives used in this study activated the auxin synthetic reporter DR5::GUS. PMID:20232906

  13. Environmental conditions that influence the ability of humic acids to induce permeability in model biomembranes.

    PubMed

    Ojwang', Loice M; Cook, Robert L

    2013-08-01

    The interaction of humic acids (HAs) with 1-palmitoyl-2-oleoyl-Sn-glycero-3-phosphocholine (POPC) large unilamellar vesicle (LUV) model biomembrane system was studied by fluorescence spectroscopy. HAs from aquatic and terrestrial (including coal) sources were studied. The effects of HA concentration and temperature over environmentally relevant ranges of 0 to 20 mg C/L and 10 to 30 °C, respectively, were investigated. The dosage studies revealed that the aquatic Suwannee River humic acid (SRHA) causes an increased biomembrane perturbation (percent leakage of the fluorescent dye, Sulforhodamine B) over the entire studied concentration range. The two terrestrial HAs, namely Leonardite humic acid (LAHA) and Florida peat humic acid (FPHA), at concentrations above 5 mg C/L, show a decrease or a plateau effect attributable to the competition within the HA mixture and/or the formation of "partial aggregates". The temperature studies revealed that biomembrane perturbation increases with decreasing temperature for all three HAs. Kinetic studies showed that the membrane perturbation process is complex with both fast and slow absorption (sorption into the bilayer) components and that the slow component could be fitted by first order kinetics. A mechanism based on "lattice errors" within the POPC LUVs is put forward to explain the fast and slow components. A rationale behind the concentration and temperature findings is provided, and the environmental implications are discussed. PMID:23805776

  14. The role of sulfur in the formation of humic polymers in marine sediments

    SciTech Connect

    Vairavamurthy, M.A.

    1996-12-31

    In anoxic marine sediments, hydrogen sulfide formed from bacterial sulfate reduction significantly impacts the diagenesis and preservation of organic matter through incorporating sulfur into the latter; however, the underlying geochemical mechanisms are still unclear. We used XANES spectroscopy to investigate whether di- and poly-sulfide linkages are involved in the formation of humic polymers in anaerobic marine sediments. The approach was to treat the humic acids with tributyl phosphine, that cleaves di- and polysulfide linkages, and to examine the changes in XANES spectra before and after such treatment. With simple di- and polysulfide linkages, and to examine the changes in XANES spectra before and after such treatment. With simple di- and poly-sulfide compounds (benzyl disulfide and trisulfide), the shape of the XANES spectra changed when treated with tributyl phosphine because of the formation of sulfhydryl groups. A similar effect was observed for sedimentary humic acids isolated from a salt marsh in Shelter Island, suggesting that di- and poly-sulfide linkages are indeed involved in forming humic polymers. We determined by liquid chromatography, two major low-molecular-weight thiols, 3-mercatopropionate and methane thiol, among the compounds released from tributyl phosphine treated humics. These thiols can be easily degraded by sedimentary bacteria when they are present in solution. However, both thiols were present as components of the humic substances throughout the sediment column, down to the 22-cm depth sampled, suggesting that incorporation into humic polymers, in fact, provides a mechanism for preventing mineralization of the bound organic matter. In general, humic polymers resist microbial degradation because of their randomly polymerized structure.

  15. Aquatic Sediments.

    ERIC Educational Resources Information Center

    Sanville, W. D.; And Others

    1978-01-01

    Presents a literature review of aquatic sediments and its effect upon water quality, covering publications of 1976-77. This review includes: (1) sediment water interchange; (2) chemical and physical characterization; and (3) heavy water in sediments. A list of 129 references is also presented. (HM)

  16. Use of humic acids derived from peat and lignite as phenanthrene sorbents

    NASA Astrophysics Data System (ADS)

    Sofikitis, Elias; Giannouli, Andriana; Kalaitzidis, Stavros; Christanis, Kimon; Karapanagioti, Hrissi K.; Papanicolaou, Cassiani

    2015-04-01

    A broad range of materials is being applied for environmental remediation of water, among them sorbents such as humic acids. Being natural substances, the extraction and purification of humic acids might be cheaper than the production of synthetic sorbents. Having higher absorbing capacity than most of the sorbents used to date, humic acids have a competitive advantage against commonly used sorbents such as active charcoals and biochar. Humic acids are "complex colloidal super-mixtures" that are characterized by their functional groups. Therefore, composition and molecular formula can vary depending on the properties of the parent material. The aim of this project was (a) to study the sorption capacity of humic acids derived from peat and lignite samples picked up from deposits spread throughout Greece and (b) to compare the results with these of the parent materials. This comparison provides an insight to which matrix samples are suitable for further chemical treatment for the isolation of humic acids to be used as sorbents. The selected model pollutant was phenanthrene, which is a PAH that consists of three fused benzene rings. Humic acids were extracted according to the methodology proposed by the IHSS, slightly modified, in order to fit better to the properties of organic sediments. Sorption experiments were conducted by mixing 0.004 g of the sorbent (peat or lignite or humic acid) with aqueous solutions of phenanthrene at different concentrations of 30, 50, 100, 300, and 500 μg/L. The results show that phenanthrene sorption is higher for the humic acid than for the original lignite and peat samples. The original samples display higher sorption at the lower phenanthere solutions (30 μg/L; Kd ranges from 15,000 to 47,000 L/kg) than at the higher one (500 μg/L; Kd ranges from 4,100 to 13,000 L/Kg) suggesting non-linear sorption. The humic acids display mainly linear isotherms with Kd ranges from 6,600 to 120,000 L/kg. Concerning the suitability of the studied

  17. Comparison of Cd(II), Cu(II), and Pb(II) biouptake by green algae in the presence of humic acid.

    PubMed

    Lamelas, Cristina; Slaveykova, Vera I

    2007-06-01

    The present study examines the role of humic acid, as a representative of dissolved organic matter, in Cd(II), Cu(II), and Pb(II) speciation and biouptake by green microalgae. Cellular and intracellular metal fractions were compared in the presence of citric and humic acids. The results demonstrated that Cd and Cu uptake in the presence of 10 mg L(-1) humic acid was consistent with that predicted from measured free metal concentrations, while Pb biouptake was higher. By comparing Cd, Cu, and Pb cellular concentrations in the absence and presence of humic acid, it was found that the influence of the increased negative algal surface charge, resulting from humic acid adsorption, on cellular metal was negligible. Moreover, the experimental results for all three metals were in good agreement with the ternary complex hypothesis. Given that metal has much higher affinity with algal sites than humic acid adsorbed to algae, the contribution of the ternary complex to metal bioavailability was negligible in the case of Cd (II) and Cu (II). In contrast, the ternary complex contributed to over 90% of total cellular metal for Pb(II), due to the comparable affinity of Pb to algal sites in comparison with humic acid adsorbed to algae. Therefore, the extension of the biotic ligand model by including the formation of the ternary complex between the metal, humic acid, and algal surface would help to avoid underestimation of Pb biouptake in the presence of humic substances by green algae Chlorella kesslerii. PMID:17612207

  18. Investigations of the uptake of transuranic radionuclides by humic and fulvic acids chemically immobilized on silica gel and their competitive release by complexing agents

    SciTech Connect

    Bulman, R.A.; Szabo, G.; Clayton, R.F.; Clayton, C.R.

    1998-07-01

    The chemistry of the interactions of transuranic elements (TUs) with humic substances needs to be understood so that humate-mediated movement of transuranic radionuclides through the environment can be predicted. This paper reports the chemical immobilization on silica gel of humic and fulvic acids and evaluates the potential of these new materials for the retention of Pu and Am. In addition to the preparation of the foregoing immobilized humic substances, other low molecular weight metal-binding ligands have also been immobilized on silica gel to investigate the binding sites for transuranic elements (TUs) in humic substances. The X-ray photoelectron spectra (XPS) of Th(IV) complexed by humic acid and the immobilized humic acid are similar thus it appears that immobilization of humic acid does not generate any configurational changes in the Th(IV)-binding sites of the macromolecule. A variety of chelating agents partly mobilize these TUs sorbed on the solid phases. A batch method was used to determine the distribution coefficients (R{sub d}) of Pu and Am between the silica gels and aqueous solutions of phosphate and citrate. The effects of the immobilized ligands, the anions and pH in the solution on sorption were assessed. Distributed coefficients (R{sub d}) for the uptake of Pu and Am by these prepared solid phases are, in some cases, of a similar order of magnitude as those determined for soil and particles suspended in terrestrial surface waters.

  19. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids

    USGS Publications Warehouse

    Chiou, C.T.; Malcolm, R.L.; Brinton, T.I.; Kile, D.E.

    1986-01-01

    Water solubility enhancements by dissolved humic and fulvic acids from soil and aquatic origins and by synthetic organic polymers have been determined for selected organic pollutants and pesticides (p,p???-DDT, 2,4,5,2???,5???-PCB, 2,4,4???-PCB, 1,2,3-trichlorobenzene, and lindane). Significant solubility enhancements of relatively water-insoluble solutes by dissolved organic matter (DOM) of soil and aquatic origins may be described in terms of a partition-like interaction of the the solutes with the microscopic organic environment of the high-molecular-weight DOM species; the apparent solute solubilities increase linearly with DOM concentration and show no competitive effect between solutes. With a given DOM sample, the solute partition coefficient (Kdom) increases with a decrease of solute solubility (Sw) or with an increase of the solute's octanol-water partition coefficient (Kow). The Kdom values of solutes with soil-derived humic acid are approximately 4 times greater than with soil fulvic acid and 5-7 times greater than with aquatic humic and fulvic acids. The effectiveness of DOM in enhancing solute solubility appears to be largely controlled by the DOM molecular size and polarity. The relative inability of high-molecular-weight poly(acrylic acids) to enhance solute solubility is attributed to their high polarities and extended chain structures that do not permit the formation of a sizable intramolecular nonpolar environment.

  20. The chemical structure of highly aromatic humic acids in three volcanic ash soils as determined by dipolar dephasing NMR studies

    USGS Publications Warehouse

    Hatcher, P.G.; Schnitzer, M.; Vassallo, A.M.; Wilson, M.A.

    1989-01-01

    Dipolar dephasing 13C NMR studies of three highly aromatic humic acids, one from a modern soil and two from paleosols, have permitted the determination of the degree of aromatic substitution. From these data and the normal solid-state 13C NMR data we have been able to develop a model for the average chemical structure of these humic acids that generally correlates well with permanganate oxidation data. The models depict these humic acids as benzene di- and tricarboxylic acids interconnected by biphenyl linkages. An increasing degree of substitution is observed with increasing geologic age. These structures may be characteristic of the resistant aromatic part of the "core" of humic substances that survives degradation. ?? 1989.

  1. Acute aquatic toxicity of biodiesel fuels

    SciTech Connect

    Wright, B.; Haws, R.; Little, D.; Reese, D.; Peterson, C.; Moeller, G.

    1995-12-31

    This study develops data on the acute aquatic toxicity of selected biodiesel fuels which may become subject to environmental effects test regulations under the US Toxic Substances Control Act (TSCA). The test substances are Rape Methyl Ester (RME), Rape Ethyl Ester (REE), Methyl Soyate (MS), a biodiesel mixture of 20% REE and 80% Diesel, a biodiesel mixture of 50% REE and diesel, and a reference substance of Phillips D-2 Reference Diesel. The test procedure follows the Daphnid Acute Toxicity Test outlined in 40 CFR {section} 797.1300 of the TSCA regulations. Daphnia Magna are exposed to the test substance in a flow-through system consisting of a mixing chamber, a proportional diluter, and duplicate test chambers. Novel system modifications are described that accommodate the testing of oil-based test substances with Daphnia. The acute aquatic toxicity is estimated by an EC50, an effective concentration producing immobility in 50% of the test specimen.

  2. Variability of humic acid properties depending on their precursor material: a study of peat profiles

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Purmalis, Oskars

    2015-04-01

    Analysis of variation of peat composition, presence of trace elements in the peat and HSs within peat profiles can give information on the character of transformation of organic matter, important for C biogeochemical cycling, but also about impacts of climate change and human activities. In peat the transformation and decay process of living organic matter (humification) is retarded by the acidic and anaerobic environment, but at the same time the peat can provide information on environmental and paleo-environmental conditions of the past. The aim of the present study is to analyze the elemental and functional composition, spectral characteristics of humic acids isolated from a well characterized raised bog peat profiles to evaluate the impact of the character of humification processes on the peat HA properties. A comparative and complex characterization of humic acids (HAs) isolated from peat profiles of different origin in Latvia was carried out. Elemental and functional analysis of the isolated HAs was done, their acidity and molecular weights estimated. Spectral characterization included UV-Vis, IR, and electron spin resonance and fluorescence spectra. Structural characterization of HAs was by both 1H and 13C nuclear magnetic resonance spectra. Comparison of position of studied humic acids in the Van Krevelen graph was done, thus locating them in the biogeochemical transformation processes of organic matter. Properties of HAs isolated from the Latvian peat were compared with HA from other sources (soil, water, coal and synthetic humic substances). Major properties of peat HAs depended on their origin, indicating the importance of humification processes. HAs isolated from peat of more recent origin were more similar to soil HAs, but from older sources there was a greater degree of humification. Changes of surface tension of solutions of humic acids stress the differences in aggregation character - ability to form supramacromolecular complexes of humic substances

  3. Structural transition in the humic matrix of soil gels and the electrical resistivity of soils

    NASA Astrophysics Data System (ADS)

    Fedotov, G. N.; Shoba, S. A.

    2015-11-01

    The structural organization of the organic matrix of humic substances in soils has been analyzed, and the conclusion has been drawn that the existence of humic matrix is determined by contacts between the hydrophilic sites of humic particles in dry soils and between their hydrophobic sites in wet soils. It follows from the advanced supposition that the wetting-drying process should cause a structural transition (reorganization of the humic matrix), which should affect the properties of soils. To verify this supposition, the effect of soil moisture on the electrical resistivity of soil-water extracts, suspensions, and pastes has been studied. It follows from the studies performed that soil electrolytes are fixed in dry soils during drying and are gradually released into solution. However, beginning from a specific soil water content, the release of electrolytes occurs almost immediately after their contact with water. The obtained data suggest that an energy barrier should be overcome for the release of electrolytes from the soils with water content below the specific limit. There is no energy barrier for the soils with water content higher than this limit. The existence of structural transition in the humic matrix of soil gels well explains these results. The effect of energetic impacts on the structural transition has been studied. It has been shown that the study of structural transition should avoid operations that increase the number and amplitude of energy fluctuations in the systems.

  4. Relevant role of dissolved humic matter in phosphorus bioavailability in natural and agronomical ecosystems through the formation of Humic-(Metal)-Phosphate complexes

    NASA Astrophysics Data System (ADS)

    Baigorri, Roberto; Urrutia, Óscar; Erro, Javier; Pazos-Pérez, Nicolás; María García-Mina, José

    2016-04-01

    Natural Organic Matter (NOM) and the NOM fraction present in soil solution (dissolved organic matter: DOM) are currently considered as fundamental actors in soil fertility and crop mineral nutrition. Indeed, decreases in crop yields as well as soil erosion are closely related to low values of NOM and, in fact, the use of organic amendments as both soil improvers and plant growth enhancers is very usual in countries with soils poor in NOM. This role of NOM (and DOM) seems to be associated with the presence of bio-transformed organic molecules (humic substances) with high cation chelating-complexing ability. In fact, bioavailable micronutrients with metallic character in soil solutions of alkaline and calcareous soils are forming stable complexes with DOM. This beneficial action of DOM also concerns other plant nutrients such as inorganic phosphate (Pi). Among the different mechanisms involved in the beneficial action of DOM on P bioavailability, the possible formation of poly-nuclear complexes including stable chemical bonds between negative binding sites in humic substances and Pi through metal bridges in soil solution might be relevant, especially in acidic soils. In fact, several studies have proven that these complexes can be obtained in the laboratory and are very efficient in prevent Pi soil fixation and improve Pi root uptake. However, clear experimental evidence about their presence in soil solutions of natural and agronomical soil ecosystems has not published yet. We present here experimental results supporting the real presence of stable Pi-metal-Humic (PMH) complexes in the soil solution of several acidic soils. The study is based on the physico-chemical characterization (31P-NMR, FTIR, TEM-EDAX, ICP-OES) of the DOM fraction isolated by ultrafiltration from the soil solution of several representative acidic soils. In average, more than 60 % of Pi was found in the soil solution humic fraction forming stable humic-metal (Fe, Al) complexes.

  5. Pyrolysis of humic and fulvic acids

    USGS Publications Warehouse

    Wershaw, R. L.; Bohner, G.E., Jr.

    1969-01-01

    Pyrolysis of humic and fulvic acids isolated from a North Carolina soil yields a variety of aromatic, heterocyclic and straight chain organ compounds. The pyrolysis products identified by gas chromatography and mass spectrometry indicate that humic and fulvic acids have aromatic and polysaccharide structures in their molecules. ?? 1969.

  6. Equivalent weight of humic acid from peat

    USGS Publications Warehouse

    Pommer, A.M.; Breger, I.A.

    1960-01-01

    By means of discontinuous titration, the equivalent weight of humic acid isolated from a peat was found to increase from 144 to 183 between the third and fifty-second day after the humic acid was dissolved. Infra-red studies showed that the material had probably condensed with loss of carbonyl groups. ?? 1960.

  7. Interaction of some metals between marine-origin humic acids and aqueous solutions

    SciTech Connect

    Huljev, D.J.

    1986-08-01

    The interaction of metal ions (carrier-free form) in aquatic medium with humic acids is a complicated process depending on the properties of humic acids (elementary, chemical, and trace element composition), metals studied (valence, charge, chemical form, concentration), and medium used (pH, ionic strength). The use of radionuclides was found to be very suitable for a rapid and precise determination of the distribution coefficient K/sub d/ (ratio of the concentration of a certain trace metal association with a gram of humic acid over the concentration of the same trace metal per milliliter of solution) of the investigated system. Isolated humic acids from offshore sediments from the North Adriatic (Lim channel, near Rovinj, Yugoslavia) were characterized according to their elementary composition, the amount of products of hydrolysis, and the trace elements bound. All experiments were carried out between pH 3 and 5. It was found that conditions usually present at the site where humic acid interacts with metal ions (anaerobic conditions, H/sub 2/S) in brackish (21% S) and standard seawater (38% S) are determined in the pH range 3 to 5. The results of the pick-up (uptake) and replacement (release) experiments are presented as a distribution coefficient (K/sub d/), as a function of contact time. Processes of pick-up and replacement of a number of metals under various physicochemical conditions were investigated and special attention was paid to the influence of salinity. With the increase in NaCl concentration and pH in the system, the fixation of ruthenium, zinc, cobalt, and mercury by humic acids decreased.

  8. CAPILLARY ISOELECTRIC FOCUSING (CIEF) FOR THE CHARACTERIZATION OF HUMIC SUBSTANCES

    EPA Science Inventory

    Preparative solution isoelectric focusing was used to fractionate 50 mg of a soil fulvic acid (FA); the harvested fractions were characterized with UV-Vis spectroscopy, gel permeation