Science.gov

Sample records for aquatic microbial samples

  1. Autonomous Microbial Sampler (AMS), a device for the uncontaminated collection of multiple microbial samples from submarine hydrothermal vents and other aquatic environments

    NASA Astrophysics Data System (ADS)

    Taylor, Craig D.; Doherty, Kenneth W.; Molyneaux, Stephen J.; Morrison, Archie T.; Billings, John D.; Engstrom, Ivory B.; Pfitsch, Don W.; Honjo, Susumu

    2006-05-01

    An Autonomous Microbial Sampler (AMS) is described that will obtain uncontaminated and exogenous DNA-free microbial samples from most marine, freshwater and hydrothermal ecosystems. Sampling with the AMS may be conducted using manned submersibles, remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), or when tethered to a hydrowire during hydrocast operations on research vessels. The modular device consists of a titanium nozzle for sampling in potentially hot environments (>350 °C) and fluid-handling components for the collection of six independent filtered or unfiltered samples. An onboard microcomputer permits sampling to be controlled by the investigator, by external devices (e.g., AUV computer), or by internal programming. Temperature, volume pumped and other parameters are recorded during sampling. Complete protection of samples from microbial contamination was observed in tests simulating deployment of the AMS in coastal seawater, where the sampling nozzle was exposed to seawater containing 1×10 6 cells ml -1 of a red pigmented tracer organism, Serratia marinorubra. Field testing of the AMS at a hydrothermal vent field was successfully undertaken in 2000. Results of DNA destruction studies have revealed that exposure of samples of the Eukaryote Euglena and the bacterium S. marinorubra to 0.5 N sulfuric acid at 23 °C for 1 h was sufficient to remove polymerase chain reaction (PCR) amplifiable DNA. Studies assessing the suitability of hydrogen peroxide as a sterilizing and DNA-destroying agent showed that 20% or 30% hydrogen peroxide sterilized samples of Serratia in 1 h and destroyed the DNA of Serratia in 3 h, but not 1 or 2 h. DNA AWAY™ killed Serratia and destroyed the DNA of both Serratia and the vent microbe (GB-D) of the genus Pyrococcus in 1 h.

  2. Rapid detection of microbial cell abundance in aquatic systems.

    PubMed

    Rocha, Andrea M; Yuan, Quan; Close, Dan M; O'Dell, Kaela B; Fortney, Julian L; Wu, Jayne; Hazen, Terry C

    2016-11-15

    The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamic systems - the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10(3)-10(6) cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. This work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments. PMID:27315516

  3. Microbial ecology of Antarctic aquatic systems.

    PubMed

    Cavicchioli, Ricardo

    2015-11-01

    The Earth's biosphere is dominated by cold environments, and the cold biosphere is dominated by microorganisms. Microorganisms in cold Southern Ocean waters are recognized for having crucial roles in global biogeochemical cycles, including carbon sequestration, whereas microorganisms in other Antarctic aquatic biomes are not as well understood. In this Review, I consider what has been learned about Antarctic aquatic microbial ecology from 'omic' studies. I assess the factors that shape the biogeography of Antarctic microorganisms, reflect on some of the unusual biogeochemical cycles that they are associated with and discuss the important roles that viruses have in controlling ecosystem function. PMID:26456925

  4. Recent applications of flow cytometry in aquatic microbial ecology.

    PubMed

    Troussellier, M; Courties, C; Vaquer, A

    1993-01-01

    Microorganisms (unicellular algae, bacteria) constitute fundamental compartments of aquatic ecosystems because of their high concentrations and activities. The evaluation and understanding of their behavior and role raise different problems for which traditional methodologies are often inadequate, whether they refer to global or classical microscopic analyses. Flow cytometry (FCM) has been recently used to study microorganisms in aquatic environments. Although this technology is still applied on a limited scale in our field, a large number of works has been done showing that FCM seems to be a promising tool for aquatic microbial ecology. This paper summarizes, from the literature produced during the last decade and with original data obtained in our laboratory, the main questions related to the cell identification, the evaluation of cell viability, biomasses and productions and the measurements of bacterial and phytoplanktonic activities. The representatives of sampling and observation scales is also discussed within the framework of the FCM measurements. PMID:8220221

  5. MICROBIAL DEGRADATION OF PROPANIL IN AQUATIC SYSTEMS

    EPA Science Inventory

    Second-order microbial degradation rate constants were developed for the herbicide propanil in lake and water samples from the Union of Soviet Socialist Republics. Variations in calculated second-order rate constants were attributed to differences in bacterial counting methods us...

  6. Estimating Aquatic Insect Populations. Introduction to Sampling.

    ERIC Educational Resources Information Center

    Chihuahuan Desert Research Inst., Alpine, TX.

    This booklet introduces high school and junior high school students to the major groups of aquatic insects and to population sampling techniques. Chapter 1 consists of a short field guide which can be used to identify five separate orders of aquatic insects: odonata (dragonflies and damselflies); ephemeroptera (mayflies); diptera (true flies);…

  7. Application of Microbial Genomics to Improve Aquatic Animal Health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome sequencing and comparative genome analysis have greatly increased our understanding of microorganism gene content, pathogenesis, taxonomy, and evolution. Currently, there are over three hundred completed, publicly-available microbial genomes. To date, no genome of an aquatic animal pathogen...

  8. Aquatic fungi: targeting the forgotten in microbial ecology.

    PubMed

    Grossart, Hans-Peter; Rojas-Jimenez, Keilor

    2016-06-01

    Fungi constitute important and conspicuous components of aquatic microbial communities, but their diversity and functional roles remain poorly characterized. New methods and conceptual frameworks are required to accurately describe their ecological roles, involvement in global cycling processes, and utility for human activities, considering both cultivation-independent techniques as well as experiments in laboratory and in natural ecosystems. Here we highlight recent developments and extant knowledge gaps in aquatic mycology, and provide a conceptual model to expose the importance of fungi in aquatic food webs and related biogeochemical processes. PMID:27078576

  9. ADAPTATION OF AQUATIC MICROBIAL COMMUNITIES TO HG(2+) STRESS

    EPA Science Inventory

    The mechanism of adaptation to Hg(2+) in four aquatic habitats was studied by correlating microbially mediated Hg(2+) volatilization with the adaptive state of the exposed communities. Structural and functional parameters indicated that adaptation of all four communities was stim...

  10. Understanding aquatic microbial processes using EEM's and in-situ fluorescence sensors

    NASA Astrophysics Data System (ADS)

    Fox, Bethany; Attridge, John; Rushworth, Cathy; Cox, Tim; Anesio, Alexandre; Reynolds, Darren

    2015-04-01

    The diverse origin of dissolved organic matter (DOM) in aquatic systems is well documented within the literature. Previous literature indicates that coloured dissolved organic matter (CDOM) is, in part, transformed by aquatic microbial processes, and that dissolved organic material derived from a microbial origin exhibits tryptophan-like fluorescence. However, this phenomenon is not fully understood and very little data is available within the current literature. The overall aim of our work is to reveal the microbial-CDOM interactions that give rise to the observed tryptophan-like fluorescence. The work reported here investigates the microbial processes that occur within freshwater aquatic samples, as defined by the biochemical oxygen demand (BOD) test, as a function of the T1 peak (λex/em 280/330-370 nm). A series of standard water samples were prepared using glucose, glutamic acid, BOD dilution water and a bacterial seed (Cole-Parmer BOD microbe capsules). Samples were spiked with CDOM (derived from an environmental water body) and subjected to time resolved BOD analysis and as excitation-emission fluorescence spectroscopy. All EEM spectral data was interrogated using parallel factor analysis (PARAFAC) in an attempt to determine the presence and dominance (relative intensities) of the CDOM-related and T1-related fluorophores within the samples. In-situ fluorescence sensors (Chelsea Technologies Group Ltd.) were also used to monitor the T1 fluorescence peak (UviLux Tryptophan) and the CDOM fluorescence peak (UviLux CDOM) during experiments. Tryptophan-like fluorescence was observed (albeit transient) in both spiked and un-spiked standard water samples. By furthering our understanding of aquatic organic matter fluorescence, its origin, transformation, fate and interaction with aquatic microbiological processes, we aim to inform the design of a new generation in-situ fluorescence sensor for the monitoring of aquatic ecosystem health.

  11. METABOLISM OF FENTHION BY AQUATIC MICROBIAL COMMUNITIES

    EPA Science Inventory

    The microbial metabolism of the mosquito control agent, fenthion, has been studied in shake flask systems containing water and sediment from a salt marsh. The usefulness of this information in describing the fate of fenthion in microcosms and in a field dosing experiment was dete...

  12. Sampling microbial communities in the National Ecological Observatory Network

    NASA Astrophysics Data System (ADS)

    Adams, H. E.; Parnell, J.; Powell, H.

    2012-12-01

    The National Ecological Observatory Network (NEON) is a national-scale research platform to enable the community to assess impacts of climate change, land-use change, and invasive species on ecosystem structure and function at regional and continental scales. The NEON Observatory will collect data on aquatic organisms over 30 years in 36 sites across the United States, including Alaska and Puerto Rico as well as terrestrial organisms at 60 sites including Hawaii. Included in the biological measurements are microbial measurements in terrestrial and aquatic environments, including small, wadeable streams and shallow lakes. Microbial sampling in both aquatic and terrestrial habitats is being planned to coincide with biogeochemical sampling due to similarity of time scale and influence of external drivers. Aquatic sampling is geared toward species diversity and function. Terrestrial sampling aims to collect data on diversity, function, and spatial distribution dynamics. We are in the process of prioritizing data products, so that the most dynamic processes such as enzymatic activity will be measured more frequently and more intensive measures such as metagenome sequence data will be measured on a periodic basis. Here we present our initial microbial sampling strategy and invite the community to provide comment on the design and learn about microbial data products from the Observatory.

  13. Effects of Alkaline Phosphatase Activity on Nucleotide Measurements in Aquatic Microbial Communities †

    PubMed Central

    Karl, D. M.; Craven, D. B.

    1980-01-01

    Alkaline phosphatase (APase) activity was detected in aquatic microbial assemblages from the subtropics to Antarctica. The occurrence of APase in environmental nucleotide extracts was shown to significantly affect the measured concentrations of cellular nucleotides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, guanosine triphosphate, uridine triphosphate, and cytidine triphosphate), adenylate energy charge, and guanosine triphosphate/adenosine triphosphate ratios, when conventional methods of nucleotide extraction were employed. Under the reaction conditions specified in this report, the initial rate of hydrolysis of adenosine triphosphate was directly proportional to the activity of APase in the sample extracts and consequently can be used as a sensitive measure of APase activity. A method was devised for obtaining reliable nucleotide measurements in naturally occurring microbial populations containing elevated levels of APase activity. The metabolic significance of APase activity in microbial cells is discussed, and it is concluded that the occurrence and regulation of APase in nature is dependent upon microscale inorganic phosphate limitation of the autochthonous microbial communities. PMID:16345634

  14. FATE AND SURVIVAL OF MICROBIAL PEST CONTROL AGENTS IN NONTARGET AQUATIC ORGANISMS

    EPA Science Inventory

    A fully enclosed test system was developed to both potential adverse effects of microbial pest control agents on nontarget aquatic invertebrates and monitor their fate and survival Eastern oysters, Crassostrea virginica, were exposed to various microbial pest control agents inclu...

  15. Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments.

    PubMed

    Hammes, Frederik; Goldschmidt, Felix; Vital, Marius; Wang, Yingying; Egli, Thomas

    2010-07-01

    There is a widespread need for cultivation-free methods to quantify viability of natural microbial communities in aquatic environments. Adenosine tri-phosphate (ATP) is the energy currency of all living cells, and therefore a useful indicator of viability. A luminescence-based ATP kit/protocol was optimised in order to detect ATP concentrations as low as 0.0001 nM with a standard deviation of <5%. Using this method, more than 100 water samples from a variety of aquatic environments (drinking water, groundwater, bottled water, river water, lake water and wastewater effluent) were analysed for extracellular ATP and microbial ATP in comparison with flow-cytometric (FCM) parameters. Microbial ATP concentrations ranged between 3% and 97% of total ATP concentrations, and correlated well (R(2)=0.8) with the concentrations of intact microbial cells (after staining with propidium iodide). From this correlation, we calculated an average ATP-per-cell value of 1.75x10(-10)nmol/cell. An even better correlation (R(2)=0.88) was observed between intact biovolume (derived from FCM scatter data) and microbial ATP concentrations, and an average ATP-per-biovolume value of 2.95x10(-9)nmol/microm(3) was calculated. These results support the use of ATP analysis for both routine monitoring and research purposes, and contribute towards a better interpretation of ATP data. PMID:20605621

  16. An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert.

    PubMed

    Souza, Valeria; Espinosa-Asuar, Laura; Escalante, Ana E; Eguiarte, Luis E; Farmer, Jack; Forney, Larry; Lloret, Lourdes; Rodríguez-Martínez, Juan M; Soberón, Xavier; Dirzo, Rodolfo; Elser, James J

    2006-04-25

    The Cuatro Cienegas basin in the Chihuahuan desert is a system of springs, streams, and pools. These ecosystems support >70 endemic species and abundant living stromatolites and other microbial communities, representing a desert oasis of high biodiversity. Here, we combine data from molecular microbiology and geology to document the microbial biodiversity of this unique environment. Ten water samples from locations within the Cuatro Cienegas basin and two neighboring valleys as well as three samples of wet sediments were analyzed. The phylogeny of prokaryotic populations in the samples was determined by characterizing cultured organisms and by PCR amplification and sequencing of 16S rRNA genes from total community DNA. The composition of microbial communities was also assessed by determining profiles of terminal restriction site polymorphisms of 16S rRNA genes in total community DNA. There were 250 different phylotypes among the 350 cultivated strains. Ninety-eight partial 16S rRNA gene sequences were obtained and classified. The clones represented 38 unique phylotypes from ten major lineages of Bacteria and one of Archaea. Unexpectedly, 50% of the phylotypes were most closely related to marine taxa, even though these environments have not been in contact with the ocean for tens of millions of years. Furthermore, terminal restriction site polymorphism profiles and geological data suggest that the aquatic ecosystems of Cuatro Cienegas are hydrologically interconnected with adjacent valleys recently targeted for agricultural intensification. The findings underscore the conservation value of desert aquatic ecosystems and the urgent need for study and preservation of freshwater microbial communities. PMID:16618921

  17. An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert

    PubMed Central

    Souza, Valeria; Espinosa-Asuar, Laura; Escalante, Ana E.; Eguiarte, Luis E.; Farmer, Jack; Forney, Larry; Lloret, Lourdes; Rodríguez-Martínez, Juan M.; Soberón, Xavier; Dirzo, Rodolfo; Elser, James J.

    2006-01-01

    The Cuatro Cienegas basin in the Chihuahuan desert is a system of springs, streams, and pools. These ecosystems support >70 endemic species and abundant living stromatolites and other microbial communities, representing a desert oasis of high biodiversity. Here, we combine data from molecular microbiology and geology to document the microbial biodiversity of this unique environment. Ten water samples from locations within the Cuatro Cienegas basin and two neighboring valleys as well as three samples of wet sediments were analyzed. The phylogeny of prokaryotic populations in the samples was determined by characterizing cultured organisms and by PCR amplification and sequencing of 16S rRNA genes from total community DNA. The composition of microbial communities was also assessed by determining profiles of terminal restriction site polymorphisms of 16S rRNA genes in total community DNA. There were 250 different phylotypes among the 350 cultivated strains. Ninety-eight partial 16S rRNA gene sequences were obtained and classified. The clones represented 38 unique phylotypes from ten major lineages of Bacteria and one of Archaea. Unexpectedly, 50% of the phylotypes were most closely related to marine taxa, even though these environments have not been in contact with the ocean for tens of millions of years. Furthermore, terminal restriction site polymorphism profiles and geological data suggest that the aquatic ecosystems of Cuatro Cienegas are hydrologically interconnected with adjacent valleys recently targeted for agricultural intensification. The findings underscore the conservation value of desert aquatic ecosystems and the urgent need for study and preservation of freshwater microbial communities. PMID:16618921

  18. MICROBIAL INDICATORS OF AQUATIC ECOSYSTEM CHANGE: CURRENT APPLICATIONS TO EUTROPHICATION STUDIES. (R828677C001)

    EPA Science Inventory

    Human encroachment on aquatic ecosystems is increasing at an unprecedented rate. The impacts of human pollution and habitat alteration are most evident and of greatest concern at the microbial level, where a bulk of production and nutrient cycling takes place. Aquatic ecosyste...

  19. Identifying the origins of microbially derived aquatic DOM using fluorescence spectroscopy.

    NASA Astrophysics Data System (ADS)

    Fox, Bethany; Thorn, Robin; Anesio, Alexandre; Reynolds, Darren

    2016-04-01

    Dissolved organic matter (DOM) in aquatic systems is an essential support of the microbial population and, therefore, of the entire aquatic ecosystem. Aquatic DOM is also key for global biogeochemical cycling of nutrients and connects land processes to the marine environment via hydrological transportation. There have been multiple advances in technological assessments of the characteristics of aquatic DOM, with spectroscopy becoming widely used. The extensive use of benchtop spectroscopic instruments has led to the development of in situ sensors, improving the spatiotemporal scale of data acquisition. Whilst this has greatly improved understanding of DOM characteristics and patterns, there are still unknown variables, parameters and interactions of DOM within the aquatic environment. In particular, the interactions of aquatic DOM with the microbial population is still mostly unidentified. It is generally accepted that certain DOM fluorescence regions are autochthonous and microbially derived, such as "peak T" fluorescence. However, the origins and metabolic pathways involved in the production and release of these fluorescent molecules is, as yet, not definitively known. Our work focuses on the identification of these metabolic pathways from whence this microbially derived DOM originates. The most recent stage of the research has utilised traditional microbiological techniques, such as growth curves and chemostat experiments, alongside DOM fluorescence spectroscopic analysis and flow cytometry. The information gained regarding the microbial production and processing of DOM is central for the development of novel in situ fluorescence technology, the ultimate aim of this project.

  20. Cu and Cr enhanced the effect of various carbon nanotubes on microbial communities in an aquatic environment.

    PubMed

    Wang, Fei; Yao, Jun; Liu, Haijun; Liu, Ruiping; Chen, Huilun; Yi, Zhengji; Yu, Qian; Ma, Lan; Xing, Baoshan

    2015-07-15

    Environmental impacts of carbon nanotubes (CNTs) arise both from the characteristics of CNTs as well as from their sorbed contaminants from aquatic environments. In this work, we employed pristine, carboxyl-, hydroxyl- and amino-functionalized multi-walled CNTs and pristine single-walled CNTs to quantify and compare their impacts on aquatic microbial communities in the absence and presence of Cu or Cr. Aliquots of samples were set up to 10 and 40 days for culture-dependent analyses, namely, quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis. Results revealed that the presence of CNTs or the mixture of CNTs and metals transiently affected microbial communities, and toxicity of CNTs was enhanced with the addition of metals. Meanwhile, functionalized CNTs exhibited stronger toxicity. The major impacts were observed after 10 days of exposure, but the microbial community could recover at 40 days to some extent. Though microbial communities recovered, total microbial numbers continued to decrease with contact time. Analysis of sequence cloned 16S rDNA indicated that Bacillus sp. and Acidithiobacillus sp. were the dominant taxa. Overall, CNTs would have more serious risk to an ecosystem in the presence of metals. PMID:25802063

  1. Evaluation of seven aquatic sampling methods for amphibians and other aquatic fauna

    USGS Publications Warehouse

    Gunzburger, M.S.

    2007-01-01

    To design effective and efficient research and monitoring programs researchers must have a thorough understanding of the capabilities and limitations of their sampling methods. Few direct comparative studies exist for aquatic sampling methods for amphibians. The objective of this study was to simultaneously employ seven aquatic sampling methods in 10 wetlands to compare amphibian species richness and number of individuals detected with each method. Four sampling methods allowed counts of individuals (metal dipnet, D-frame dipnet, box trap, crayfish trap), whereas the other three methods allowed detection of species (visual encounter, aural, and froglogger). Amphibian species richness was greatest with froglogger, box trap, and aural samples. For anuran species, the sampling methods by which each life stage was detected was related to relative length of larval and breeding periods and tadpole size. Detection probability of amphibians varied across sampling methods. Box trap sampling resulted in the most precise amphibian count, but the precision of all four count-based methods was low (coefficient of variation > 145 for all methods). The efficacy of the four count sampling methods at sampling fish and aquatic invertebrates was also analyzed because these predatory taxa are known to be important predictors of amphibian habitat distribution. Species richness and counts were similar for fish with the four methods, whereas invertebrate species richness and counts were greatest in box traps. An effective wetland amphibian monitoring program in the southeastern United States should include multiple sampling methods to obtain the most accurate assessment of species community composition at each site. The combined use of frogloggers, crayfish traps, and dipnets may be the most efficient and effective amphibian monitoring protocol. ?? 2007 Brill Academic Publishers.

  2. MICROBIAL TRANSFORMATION OF SELECTED ORGANIC CHEMICALS IN NATURAL AQUATIC SYSTEMS

    EPA Science Inventory

    A method for describing the microbial degradation of xenobiotics through the use of a second-order reaction equation was tested in several water bodies in the United States and Russia. he experiment was aimed at studying the microbial transformation of a herbicide widely used in ...

  3. ANALYSIS OF AQUATIC MICROBIAL COMMUNITIES IMPACTED BY LARGE POULTRY FORMS

    EPA Science Inventory

    Microbial communities often respond more rapidly and extensively to environmental change than communities of higher organisms. Thus, characterizing shifts in the structure of native bacterial communities as a response to changes in nutrients, antimicrobials, and invading pathogen...

  4. Aquatic hazard assessment of a commercial sample of naphthenic acids.

    PubMed

    Swigert, James P; Lee, Carol; Wong, Diana C L; White, Russell; Scarlett, Alan G; West, Charles E; Rowland, Steven J

    2015-04-01

    This paper presents chemical composition and aquatic toxicity characteristics of a commercial sample of naphthenic acids (NAs). Naphthenic acids are derived from the refining of petroleum middle distillates and can contribute to refinery effluent toxicity. NAs are also present in oil sands process-affected water (OSPW), but differences in the NAs compositions from these sources precludes using a common aquatic toxicity dataset to represent the aquatic hazards of NAs from both origins. Our chemical characterization of a commercial sample of NAs showed it to contain in order of abundance, 1-ring>2-ring>acyclic>3-ring acids (∼84%). Also present were monoaromatic acids (7%) and non-acids (9%, polyaromatic hydrocarbons and sulfur heterocyclic compounds). While the acyclic acids were only the third most abundant group, the five most abundant individual compounds were identified as C(10-14) n-acids (n-decanoic acid to n-tetradecanoic acid). Aquatic toxicity testing of fish (Pimephales promelas), invertebrate (Daphnia magna), algae (Pseudokirchneriella subcapitata), and bacteria (Vibrio fischeri) showed P. promelas to be the most sensitive species with 96-h LL50=9.0 mg L(-1) (LC50=5.6 mg L(-1)). Acute EL50 values for the other species ranged 24-46 mg L(-1) (EC50 values ranged 20-30 mg L(-1)). Biomimetic extraction via solid-phase-microextraction (BE-SPME) suggested a nonpolar narcosis mode of toxic action for D. magna, P. subcapitata, and V. fischeri. The BE analysis under-predicted fish toxicity, which indicates that a specific mode of action, besides narcosis, may be a factor for fishes. PMID:25434270

  5. Rapid assay for microbially reducible ferric iron in aquatic sediments.

    PubMed

    Lovley, D R; Phillips, E J

    1987-07-01

    The availability of ferric iron for microbial reduction as directly determined by the activity of iron-reducing organisms was compared with its availability as determined by a newly developed chemical assay for microbially reducible iron. The chemical assay was based on the reduction of poorly crystalline ferric iron by hydroxylamine under acidic conditions. There was a strong correlation between the extent to which hydroxylamine could reduce various synthetic ferric iron forms and the susceptibility of the iron to microbial reduction in an enrichment culture of iron-reducing organisms. When sediments that contained hydroxylamine-reducible ferric iron were incubated under anaerobic conditions, ferrous iron accumulated as the concentration of hydroxylamine-reducible ferric iron declined over time. Ferrous iron production stopped as soon as the hydroxylamine-reducible ferric iron was depleted. In anaerobic incubations of reduced sediments that did not contain hydroxylamine-reducible ferric iron, there was no microbial iron reduction, even though the sediments contained high concentrations of oxalate-extractable ferric iron. A correspondence between the presence of hydroxylamine-reducible ferric iron and the extent of ferric iron reduction in anaerobic incubations was observed in sediments from an aquifer and in fresh- and brackish-water sediments from the Potomac River estuary. The assay is a significant improvement over previously described procedures for the determination of hydroxylamine-reducible ferric iron because it provides a correction for the high concentrations of solid ferrous iron which may also be extracted from sediments with acid. This is a rapid, simple technique to determine whether ferric iron is available for microbial reduction. PMID:16347384

  6. Aquatic Plant/microbial Filters for Treating Septic Tank Effluent

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1988-01-01

    The use of natural biological processes for treating many types of wastewater have been developed by NASA at the John C. Stennis Space Center, NSTL, Mississippi, during the past 15 years. The simplest form of this technology involves the use of aquatic plant/marsh filters for treatment of septic tank effluent. Septic tank effluent from single home units can be treated to advanced secondary levels and beyond by using a 37.2 sq m (400 sq ft) surface area washed gravel filter. This filter is generally 0.3 m (1 ft) deep with a surface cover of approximately 0.15 m (6 in.) of gravel. The plants in this filter are usually aesthetic or ornamental such as calla lily (Zantedeschia aethiopica), canna lily (Canna flaccida), elephant ear (Colocasia esculenta), and water iris (Iris pseudacorus).

  7. Adaptation of Aquatic Microbial Communities to Quaternary Ammonium Compounds

    PubMed Central

    Ventullo, Roy M.; Larson, Robert J.

    1986-01-01

    The effects of long-chain (C12 to C18) quaternary ammonium compounds (QACs) on the density, heterotrophic activity, and biodegradation capabilities of heterotrophic bacteria were examined in situ in a lake ecosystem. Monoalkyl and dialkyl substituted QACs were tested over a range of concentrations (0.001 to 10 mg/liter) in both acute (3 h) and chronic (21 day) exposures. In general, none of the QACs tested had significant adverse effects on bacterial densities in either acute or chronic studies. However, significant decreases in bacterial heterotrophic activity were noted in acute studies at QAC concentrations from 0.1 to 10 mg/liter. Chronic exposure of lake microbial communities to a specific monoalkyl QAC resulted in an adaptive response and recovery of heterotrophic activity. No-observable-effect level in the adapted populations was >10 mg/liter. Chronic exposure also resulted in significant increases in the number and activity of bacteria capable of biodegrading the material. The increase in biodegradation capability was observed at low (microgram per liter) concentrations which are approximately the same as realistic environmental levels. In general, our studies indicated that exposure of lake microbial communities to QACs results in the development of adapted communities which are less sensitive to potential toxic effects and more active in the biodegradation of these materials. PMID:16346991

  8. [Seasonal variation of functional diversity of aquatic microbial community in Apostichopus japonicus cultural pond].

    PubMed

    Yan, Fa-Jun; Tian, Xiang-Li; Dong, Shuang-Lin; Yang, Gang

    2014-05-01

    The functional diversity of aquatic microbial communities in sea cucumber (Apostichopus japonicus) cultural ponds was examined in this paper. The Biolog plate technique and redundancy analysis (RDA) method were used to evaluate seasonal changes and their relationships with environmental factors. The results showed that both total amount and types of carbon sources utilized by microbes in the sea cucumber cultural ponds varied seasonally, and were the highest in summer and lowest in winter, with polymers being the main type of carbon sources. Principal component analysis revealed that the carbon utilization diversity of the microbial communities varied significantly over the seasonal courses. A total of 10 categories of carbon sources were significantly related to the principal component 1, among which were polymers, carbohydrates, carboxylic acids, amino acids, and amines. Significant seasonal changes were detected for all carbon utilization diversity indices of the microbial communities, including Shannon, McIntosh, Simpson, and S-E. However, seasonal variations were different among the microbial diversity indices. RDA analysis revealed that TP, NO(3-)-N, TN, and PO4(3-)-P were the critical environmental factors influencing the seasonal changes in functional diversity of aquatic microbial community in sea cucumber cultural ponds. PMID:25129954

  9. Microbial ecology of the salmon necrobiome: evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes.

    PubMed

    Pechal, Jennifer L; Benbow, M Eric

    2016-05-01

    Carrion decomposition is driven by complex relationships that affect necrobiome community (i.e. all organisms and their genes associated with a dead animal) interactions, such as insect species arrival time to carrion and microbial succession. Little is understood about how microbial communities interact with invertebrates at the aquatic-terrestrial habitat interface. The first objective of the study was to characterize internal microbial communities using high-throughput sequencing of 16S rRNA gene amplicons for aquatic insects (three mayfly species) in streams with salmon carcasses compared with those in streams without salmon carcasses. The second objective was to assess the epinecrotic microbial communities of decomposing salmon carcasses (Oncorhynchus keta) compared with those of terrestrial necrophagous insects (Calliphora terraenovae larvae and adults) associated with the carcasses. There was a significant difference in the internal microbiomes of mayflies collected in salmon carcass-bearing streams and in non-carcass streams, while the developmental stage of blow flies was the governing factor in structuring necrophagous insect internal microbiota. Furthermore, the necrophagous internal microbiome was influenced by the resource on which the larvae developed, and changes in the adult microbiome varied temporally. Overall, these carrion subsidy-driven networks respond to resource pulses with bottom-up effects on consumer microbial structure, as revealed by shifting communities over space and time. PMID:26690563

  10. Probing the pH dependent optical properties of aquatic, terrestrial and microbial humic substances by sodium borohydride reduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemically reducing humic (HA) and fulvic acids (FA) provides insight into spectroscopically identifiable structural moieties generating the optical properties of HA/FA from aquatic, microbial and terrestrial sources. Sodium borohydride reduction provides targeted reduction of carbonyl groups. The...

  11. New Abundant Microbial Groups in Aquatic Hypersaline Environments

    PubMed Central

    Ghai, Rohit; Pašić, Lejla; Fernández, Ana Beatriz; Martin-Cuadrado, Ana-Belen; Mizuno, Carolina Megumi; McMahon, Katherine D.; Papke, R. Thane; Stepanauskas, Ramunas; Rodriguez-Brito, Beltran; Rohwer, Forest; Sánchez-Porro, Cristina; Ventosa, Antonio; Rodríguez-Valera, Francisco

    2011-01-01

    We describe the microbiota of two hypersaline saltern ponds, one of intermediate salinity (19%) and a NaCl saturated crystallizer pond (37%) using pyrosequencing. The analyses of these metagenomes (nearly 784 Mb) reaffirmed the vast dominance of Haloquadratum walsbyi but also revealed novel, abundant and previously unsuspected microbial groups. We describe for the first time, a group of low GC Actinobacteria, related to freshwater Actinobacteria, abundant in low and intermediate salinities. Metagenomic assembly revealed three new abundant microbes: a low-GC euryarchaeon with the lowest GC content described for any euryarchaeon, a high-GC euryarchaeon and a gammaproteobacterium related to Alkalilimnicola and Nitrococcus. Multiple displacement amplification and sequencing of the genome from a single archaeal cell of the new low GC euryarchaeon suggest a photoheterotrophic and polysaccharide-degrading lifestyle and its relatedness to the recently described lineage of Nanohaloarchaea. These discoveries reveal the combined power of an unbiased metagenomic and single cell genomic approach. PMID:22355652

  12. Comparison of aquatic macroinvertebrate samples collected using different field methods

    USGS Publications Warehouse

    Lenz, Bernard N.; Miller, Michael A.

    1996-01-01

    Government agencies, academic institutions, and volunteer monitoring groups in the State of Wisconsin collect aquatic macroinvertebrate data to assess water quality. Sampling methods differ among agencies, reflecting the differences in the sampling objectives of each agency. Lack of infor- mation about data comparability impedes data shar- ing among agencies, which can result in duplicated sampling efforts or the underutilization of avail- able information. To address these concerns, com- parisons were made of macroinvertebrate samples collected from wadeable streams in Wisconsin by personnel from the U.S. Geological Survey- National Water Quality Assessment Program (USGS-NAWQA), the Wisconsin Department of Natural Resources (WDNR), the U.S. Department of Agriculture-Forest Service (USDA-FS), and volunteers from the Water Action Volunteer-Water Quality Monitoring Program (WAV). This project was part of the Intergovernmental Task Force on Monitoring Water Quality (ITFM) Wisconsin Water Resources Coordination Project. The numbers, types, and environmental tolerances of the organ- isms collected were analyzed to determine if the four different field methods that were used by the different agencies and volunteer groups provide comparable results. Additionally, this study com- pared the results of samples taken from different locations and habitats within the same streams.

  13. Investigations of Sample Stability in Water Chemistry Samples: Implications for the National Aquatic Resource Surveys

    EPA Science Inventory

    Water samples collected for the EPA's National Aquatic Resource Surveys (NARS) typically arrive at an analytical laboratory 2 or 3 days after collection (longer if collected from a remote location), at which point they are stabilized (filtration and/or acid preservation) until an...

  14. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    NASA Astrophysics Data System (ADS)

    Stief, P.

    2013-12-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies reveal that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and

  15. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    NASA Astrophysics Data System (ADS)

    Stief, P.

    2013-07-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments often is enhanced even more than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies revealed that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover

  16. The feasibility of automated online flow cytometry for in-situ monitoring of microbial dynamics in aquatic ecosystems

    PubMed Central

    Besmer, Michael D.; Weissbrodt, David G.; Kratochvil, Bradley E.; Sigrist, Jürg A.; Weyland, Mathias S.; Hammes, Frederik

    2014-01-01

    Fluorescent staining coupled with flow cytometry (FCM) is often used for the monitoring, quantification and characterization of bacteria in engineered and environmental aquatic ecosystems including seawater, freshwater, drinking water, wastewater, and industrial bioreactors. However, infrequent grab sampling hampers accurate characterization and subsequent understanding of microbial dynamics in all of these ecosystems. A logic technological progression is high throughput and full automation of the sampling, staining, measurement, and data analysis steps. Here we assess the feasibility and applicability of automated FCM by means of actual data sets produced with prototype instrumentation. As proof-of-concept we demonstrate examples of microbial dynamics in (i) flowing tap water from a municipal drinking water supply network and (ii) river water from a small creek subject to two rainfall events. In both cases, automated measurements were done at 15-min intervals during 12–14 consecutive days, yielding more than 1000 individual data points for each ecosystem. The extensive data sets derived from the automated measurements allowed for the establishment of baseline data for each ecosystem, as well as for the recognition of daily variations and specific events that would most likely be missed (or miss-characterized) by infrequent sampling. In addition, the online FCM data from the river water was combined and correlated with online measurements of abiotic parameters, showing considerable potential for a better understanding of cause-and-effect relationships in aquatic ecosystems. Although several challenges remain, the successful operation of an automated online FCM system and the basic interpretation of the resulting data sets represent a breakthrough toward the eventual establishment of fully automated online microbiological monitoring technologies. PMID:24917858

  17. The feasibility of automated online flow cytometry for in-situ monitoring of microbial dynamics in aquatic ecosystems.

    PubMed

    Besmer, Michael D; Weissbrodt, David G; Kratochvil, Bradley E; Sigrist, Jürg A; Weyland, Mathias S; Hammes, Frederik

    2014-01-01

    Fluorescent staining coupled with flow cytometry (FCM) is often used for the monitoring, quantification and characterization of bacteria in engineered and environmental aquatic ecosystems including seawater, freshwater, drinking water, wastewater, and industrial bioreactors. However, infrequent grab sampling hampers accurate characterization and subsequent understanding of microbial dynamics in all of these ecosystems. A logic technological progression is high throughput and full automation of the sampling, staining, measurement, and data analysis steps. Here we assess the feasibility and applicability of automated FCM by means of actual data sets produced with prototype instrumentation. As proof-of-concept we demonstrate examples of microbial dynamics in (i) flowing tap water from a municipal drinking water supply network and (ii) river water from a small creek subject to two rainfall events. In both cases, automated measurements were done at 15-min intervals during 12-14 consecutive days, yielding more than 1000 individual data points for each ecosystem. The extensive data sets derived from the automated measurements allowed for the establishment of baseline data for each ecosystem, as well as for the recognition of daily variations and specific events that would most likely be missed (or miss-characterized) by infrequent sampling. In addition, the online FCM data from the river water was combined and correlated with online measurements of abiotic parameters, showing considerable potential for a better understanding of cause-and-effect relationships in aquatic ecosystems. Although several challenges remain, the successful operation of an automated online FCM system and the basic interpretation of the resulting data sets represent a breakthrough toward the eventual establishment of fully automated online microbiological monitoring technologies. PMID:24917858

  18. BioDry: An Inexpensive, Low-Power Method to Preserve Aquatic Microbial Biomass at Room Temperature

    PubMed Central

    Tuorto, Steven J.; Brown, Chris M.; Bidle, Kay D.; McGuinness, Lora R.; Kerkhof, Lee J.

    2015-01-01

    This report describes BioDry (patent pending), a method for reliably preserving the biomolecules associated with aquatic microbial biomass samples, without the need of hazardous materials (e.g. liquid nitrogen, preservatives, etc.), freezing, or bulky storage/sampling equipment. Gel electrophoresis analysis of nucleic acid extracts from samples treated in the lab with the BioDry method indicated that molecular integrity was protected in samples stored at room temperature for up to 30 days. Analysis of 16S/18S rRNA genes for presence/absence and relative abundance of microorganisms using both 454-pyrosequencing and TRFLP profiling revealed statistically indistinguishable communities from control samples that were frozen in liquid nitrogen immediately after collection. Seawater and river water biomass samples collected with a portable BioDry “field unit", constructed from off-the-shelf materials and a battery-operated pumping system, also displayed high levels of community rRNA preservation, despite a slight decrease in nucleic acid recovery over the course of storage for 30 days. Functional mRNA and protein pools from the field samples were also effectively conserved with BioDry, as assessed by respective RT-PCR amplification and western blot of ribulose-1-5-bisphosphate carboxylase/oxygenase. Collectively, these results demonstrate that BioDry can adequately preserve a suite of biomolecules from aquatic biomass at ambient temperatures for up to a month, giving it great potential for high resolution sampling in remote locations or on autonomous platforms where space and power are limited. PMID:26710122

  19. A generic, process-based model of microbial pollution in aquatic systems

    NASA Astrophysics Data System (ADS)

    Hipsey, Matthew R.; Antenucci, Jason P.; Brookes, Justin D.

    2008-07-01

    Based on a comprehensive synthesis of data available within the literature, a new process-based model of microbial pollution is presented, which is applicable for surface and coastal waters. The model is based on a generic set of parameterisations that describe the dynamics of most protozoan, bacterial and viral organisms of interest, including pathogens and microbial indicator organisms. The parameterisations dynamically account for the effects of temperature, salinity, pH, dissolved oxygen, sunlight, nutrients and turbidity on the growth and mortality of enteric organisms. Parameters for a range of organisms are also presented which are based on collation of literature data. The model has been implemented within an aquatic ecology model, Computational Aquatic Ecosystem Dynamics Model (CAEDYM), which can couple to multidimensional hydrodynamic models. Without adjustment of the literature derived parameter values, a 3-D implementation is validated against observed data from three freshwater systems that differ in their climatic zone, trophic status and operation. The simulations highlight the spatial and temporal variability that may be encountered by operators. Additionally, large differences in the fate and distribution of different species originate from variable rates of growth, mortality and sedimentation and it is emphasized that the use of surrogates for quantifying risk is problematic. The model can be used to help design targeted monitoring programs, explore differences between species, and to support real-time decision-making. Areas where insufficient understanding and data exist are discussed.

  20. Off-site impacts of agricultural composting: role of terrestrially derived organic matter in structuring aquatic microbial communities and their metabolic potential.

    PubMed

    Pommier, Thomas; Merroune, Asmaa; Bettarel, Yvan; Got, Patrice; Janeau, Jean-Louis; Jouquet, Pascal; Thu, Thuy D; Toan, Tran D; Rochelle-Newall, Emma

    2014-12-01

    While considered as sustainable and low-cost agricultural amendments, the impacts of organic fertilizers on downstream aquatic microbial communities remain poorly documented. We investigated the quantity and quality of the dissolved organic matter leaching from agricultural soil amended with compost, vermicompost or biochar and assessed their effects on lake microbial communities, in terms of viral and bacterial abundances, community structure and metabolic potential. The addition of compost and vermicompost significantly increased the amount of dissolved organic carbon in the leachate compared with soil alone. Leachates from these additions, either with or without biochar, were highly bioavailable to aquatic microbial communities, although reducing the metabolic potential of the community and harbouring more specific communities. Although not affecting bacterial richness or taxonomic distributions, the specific addition of biochar affected the original lake bacterial communities, resulting in a strongly different community. This could be partly explained by viral burst and converging bacterial abundances throughout the samples. These results underline the necessity to include off-site impacts of agricultural amendments when considering their cascading effect on downstream aquatic ecosystems. PMID:25195703

  1. Metaproteomics of aquatic microbial communities in a deep and stratified estuary.

    PubMed

    Colatriano, David; Ramachandran, Arthi; Yergeau, Etienne; Maranger, Roxane; Gélinas, Yves; Walsh, David A

    2015-10-01

    Here we harnessed the power of metaproteomics to assess the metabolic diversity and function of stratified aquatic microbial communities in the deep and expansive Lower St. Lawrence Estuary, located in eastern Canada. Vertical profiling of the microbial communities through the stratified water column revealed differences in metabolic lifestyles and in carbon and nitrogen processing pathways. In productive surface waters, we identified heterotrophic populations involved in the processing of high and low molecular weight organic matter from both terrestrial (e.g. cellulose and xylose) and marine (e.g. organic compatible osmolytes) sources. In the less productive deep waters, chemosynthetic production coupled to nitrification by MG-I Thaumarchaeota and Nitrospina appeared to be a dominant metabolic strategy. Similar to other studies of the coastal ocean, we identified methanol oxidation proteins originating from the common OM43 marine clade. However, we also identified a novel lineage of methanol-oxidizers specifically in the particle-rich bottom (i.e. nepheloid) layer. Membrane transport proteins assigned to the uncultivated MG-II Euryarchaeota were also specifically detected in the nepheloid layer. In total, these results revealed strong vertical structure of microbial taxa and metabolic activities, as well as the presence of specific "nepheloid" taxa that may contribute significantly to coastal ocean nutrient cycling. PMID:26223443

  2. A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems.

    PubMed

    Staley, Zachery R; Harwood, Valerie J; Rohr, Jason R

    2015-01-01

    Pesticides have a pervasive presence in aquatic ecosystems throughout the world. While pesticides are intended to control fungi, insects, and other pests, their mechanisms of action are often not specific enough to prevent unintended effects, such as on non-target microbial populations. Microorganisms, including algae and cyanobacteria, protozoa, aquatic fungi, and bacteria, form the basis of many food webs and are responsible for crucial aspects of biogeochemical cycling; therefore, the potential for pesticides to alter microbial community structures must be understood to preserve ecosystem services. This review examines studies that focused on direct population-level effects and indirect community-level effects of pesticides on microorganisms. Generally, insecticides, herbicides, and fungicides were found to have adverse direct effects on algal and fungal species. Insecticides and fungicides also had deleterious direct effects in the majority of studies examining protozoa species, although herbicides were found to have inconsistent direct effects on protozoans. Our synthesis revealed mixed or no direct effects on bacterial species among all pesticide categories, with results highly dependent on the target species, chemical, and concentration used in the study. Examination of community-level, indirect effects revealed that all pesticide categories had a tendency to reduce higher trophic levels, thereby diminishing top-down pressures and favoring lower trophic levels. Often, indirect effects exerted greater influence than direct effects. However, few studies have been conducted to specifically address community-level effects of pesticides on microorganisms, and further research is necessary to better understand and predict the net effects of pesticides on ecosystem health. PMID:26565685

  3. Microbial Condition of Water Samples from Foreign Fuel Storage Facilities

    SciTech Connect

    Berry, C.J.; Fliermans, C.B.; Santo Domingo, J.

    1997-10-30

    In order to assess the microbial condition of foreign nuclear fuel storage facilities, fourteen different water samples were received from facilities outside the United States that have sent spent nuclear fuel to SRS for wet storage. Each water sample was analyzed for microbial content and activity as determined by total bacteria, viable aerobic bacteria, viable anaerobic bacteria, viable sulfate- reducing bacteria, viable acid-producing bacteria and enzyme diversity. The results for each water sample were then compared to other foreign samples and to data from the receiving basin for off- site fuel (RBOF) at SRS.

  4. BUNKER HILL SITE, IDAHO. AQUATIC BIOLOGY SAMPLING, AQUATIC ECOLOGY AND TOXICOLOGY, SEPTEMBER 1987

    EPA Science Inventory

    This report summarizes the results of the low flow sampling conducted September 18 through 27, 1987. The low flow studies included an assessment of the composition and abundance of benthic invertebrate and fish populations, an evaluation of the toxicity of the South Fork of the ...

  5. Defining Established and Emerging Microbial Risks in the Aquatic Environment: Current Knowledge, Implications, and Outlooks

    PubMed Central

    Rowan, Neil J.

    2011-01-01

    This timely review primarily addresses important but presently undefined microbial risks to public health and to the natural environment. It specifically focuses on current knowledge, future outlooks and offers some potential alleviation strategies that may reduce or eliminate the risk of problematic microbes in their viable but nonculturable (VBNC) state and Cryptosporidium oocysts in the aquatic environment. As emphasis is placed on water quality, particularly surrounding efficacy of decontamination at the wastewater treatment plant level, this review also touches upon other related emerging issues, namely, the fate and potential ecotoxicological impact of untreated antibiotics and other pharmaceutically active compounds in water. Deciphering best published data has elucidated gaps between science and policy that will help stakeholders work towards the European Union's Water Framework Directive (2000/60/EC), which provides an ambitious legislative framework for water quality improvements within its region and seeks to restore all water bodies to “good ecological status” by 2015. Future effective risk-based assessment and management, post definition of the plethora of dynamic inter-related factors governing the occurrence, persistence and/or control of these presently undefined hazards in water will also demand exploiting and harnessing tangential advances in allied disciplines such as mathematical and computer modeling that will permit efficient data generation and transparent reporting to be undertaken by well-balanced consortia of stakeholders. PMID:20976256

  6. Long-term environmental trends: Selection of sampling locations in a reactor-aquatic cooling system

    SciTech Connect

    Revsin, B.K.; Watson, J.E. Jr. )

    1993-02-01

    The study objective was to determine whether environmental radionuclide accumulations were occurring in an aquatic system with a 13-y history of supplying a power plant with reactor-cooling water as well as receiving plant discharge. The aquatic system consisted of the following: (1) a reactor-cooling lake; (2) a secondary lake approximately 8 km downstream; and (3) a small stream that interfaced with the two lakes. Gamma-emitting radionuclides were identified and quantified in samples of benthic sediments obtained from representative areas of the aquatic system. This study demonstrated that in a reactor-aquatic cooling system, the component of the aquatic system most likely to experience radionuclide accumulation will not necessarily be the reactor-cooling lake, but will be that component of the aquatic system whose benthic sediments contain the highest concentrations of organic matter. Further, it was shown that the quantity of oxidizable organic matter present in a sediment is a good predictor or marker for potential sites of radionuclide accumulation (i.e., 60Co and 137Cs).

  7. When is the best time to sample aquatic macroinvertebrates in ponds for biodiversity assessment?

    PubMed

    Hill, M J; Sayer, C D; Wood, P J

    2016-03-01

    Ponds are sites of high biodiversity and conservation value, yet there is little or no statutory monitoring of them across most of Europe. There are clear and standardised protocols for sampling aquatic macroinvertebrate communities in ponds, but the most suitable time(s) to undertake the survey(s) remains poorly specified. This paper examined the aquatic macroinvertebrate communities from 95 ponds within different land use types over three seasons (spring, summer and autumn) to determine the most appropriate time to undertake sampling to characterise biodiversity. The combined samples from all three seasons provided the most comprehensive record of the aquatic macroinvertebrate taxa recorded within ponds (alpha and gamma diversity). Samples collected during the autumn survey yielded significantly greater macroinvertebrate richness (76% of the total diversity) than either spring or summer surveys. Macroinvertebrate diversity was greatest during autumn in meadow and agricultural ponds, but taxon richness among forest and urban ponds did not differ significantly temporally. The autumn survey provided the highest measures of richness for Coleoptera, Hemiptera and Odonata. However, richness of the aquatic insect order Trichoptera was highest in spring and lowest in autumn. The results illustrate that multiple surveys, covering more than one season, provide the most comprehensive representation of macroinvertebrate biodiversity. When sampling can only be undertaken on one occasion, the most appropriate time to undertake surveys to characterise the macroinvertebrate community biodiversity is during autumn, although this may need to be modified if other floral and faunal groups need to be incorporated into the sampling programme. PMID:26920128

  8. Biological sampling methods and effects of exposure to municipal and chemical landfill leachate on aquatic organisms

    SciTech Connect

    Janisz, A.J.; Butterfield, W.S.

    1983-03-01

    Extensive biological sampling on five abandoned hazardous waste sites in New York, New Jersey, and Puerto Rico was undertaken during 1981 and 1982 to determine the impact of priority pollutants on aquatic fauna and, potentially, on human health. The selection criteria for sites, sampling equipment, problems in personnel protection, and sample handling procedures are presented. The effects of the hazardous waste sites were assessed using a wide range of fish and invertebrate species. Tissue specimens from eleven vertebrate and eight invertebrate species were analyzed. Forty samples of these tissue specimens were analyzed for all inorganic priority pollutant parameters; an additional 35 samples were analyzed for organic priority pollutants or an appropriate subset of them. High concentrations of polychlorinated biphenyls (PCBs) were found in aquatic organisms exposed to chemical landfill leachate; the results of the tissue analyses at other sites were negative.

  9. Expression of tfdA genes in aquatic microbial communities during acclimation to 2,4-dichlorophenoxyacetic acid.

    PubMed

    Lipthay, Julia R; Aamand, Jens; Barkay, Tamar

    2002-06-01

    The role of gene expression during acclimation of aquatic microbial communities was examined by relating transcription of tfdA to the degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The tfdA gene encodes for a 2,4-D/2-oxoglutarate dioxygenase that transforms 2,4-D to 2,4-dichlorophenol. Transcription of tfdA, the abundance of tfdA genes and 2,4-D degrading populations, and the rate of 2,4-D disappearance were followed in laboratory incubations of two pond water samples that were exposed to 0.11 mM 2,4-D. Both communities responded to 2,4-D exposure by induction of tfdA transcription but the dynamics of transcript abundance and the homology to the tfdA riboprobe suggested different populations of 2,4-D degraders in the two ponds. In one community, where tfdA transcripts were highly homologous to the tfdA gene of Ralstonia eutropha JMP134, transcription of tfdA was transient and dropped while 2,4-D degradation continued. In the other freshwater community, where tfdA genes with a lower similarity to the tfdA gene of strain JMP134 were transcribed, transcript levels remained high although 2,4-D degradation had ceased. Restriction fragment length polymorphism analysis of tfdA amplicons similarly demonstrated the presence of different tfdA loci in the two freshwater communities, and this difference in populations of tfdA genes probably explains the observed difference in dynamics of catabolic gene transcription. PMID:19709228

  10. Aquatic Environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic microbiology can be defined as the study of microorganisms and microbial communities in water environments. Aquatic environments occupy more than 70% of the earth’s surface including oceans, estuaries, rivers, lakes, wetlands, streams, springs, and aquifers. Water is essential for life and m...

  11. Bacterial diversity assessment in Antarctic terrestrial and aquatic microbial mats: a comparison between bidirectional pyrosequencing and cultivation.

    PubMed

    Tytgat, Bjorn; Verleyen, Elie; Obbels, Dagmar; Peeters, Karolien; De Wever, Aaike; D'hondt, Sofie; De Meyer, Tim; Van Criekinge, Wim; Vyverman, Wim; Willems, Anne

    2014-01-01

    The application of high-throughput sequencing of the 16S rRNA gene has increased the size of microbial diversity datasets by several orders of magnitude, providing improved access to the rare biosphere compared with cultivation-based approaches and more established cultivation-independent techniques. By contrast, cultivation-based approaches allow the retrieval of both common and uncommon bacteria that can grow in the conditions used and provide access to strains for biotechnological applications. We performed bidirectional pyrosequencing of the bacterial 16S rRNA gene diversity in two terrestrial and seven aquatic Antarctic microbial mat samples previously studied by heterotrophic cultivation. While, not unexpectedly, 77.5% of genera recovered by pyrosequencing were not among the isolates, 25.6% of the genera picked up by cultivation were not detected by pyrosequencing. To allow comparison between both techniques, we focused on the five phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Deinococcus-Thermus) recovered by heterotrophic cultivation. Four of these phyla were among the most abundantly recovered by pyrosequencing. Strikingly, there was relatively little overlap between cultivation and the forward and reverse pyrosequencing-based datasets at the genus (17.1-22.2%) and OTU (3.5-3.6%) level (defined on a 97% similarity cut-off level). Comparison of the V1-V2 and V3-V2 datasets of the 16S rRNA gene revealed remarkable differences in number of OTUs and genera recovered. The forward dataset missed 33% of the genera from the reverse dataset despite comprising 50% more OTUs, while the reverse dataset did not contain 40% of the genera of the forward dataset. Similar observations were evident when comparing the forward and reverse cultivation datasets. Our results indicate that the region under consideration can have a large impact on perceived diversity, and should be considered when comparing different datasets. Finally, a high number of OTUs

  12. Bacterial Diversity Assessment in Antarctic Terrestrial and Aquatic Microbial Mats: A Comparison between Bidirectional Pyrosequencing and Cultivation

    PubMed Central

    Tytgat, Bjorn; Verleyen, Elie; Obbels, Dagmar; Peeters, Karolien; De Wever, Aaike; D’hondt, Sofie; De Meyer, Tim; Van Criekinge, Wim; Vyverman, Wim; Willems, Anne

    2014-01-01

    The application of high-throughput sequencing of the 16S rRNA gene has increased the size of microbial diversity datasets by several orders of magnitude, providing improved access to the rare biosphere compared with cultivation-based approaches and more established cultivation-independent techniques. By contrast, cultivation-based approaches allow the retrieval of both common and uncommon bacteria that can grow in the conditions used and provide access to strains for biotechnological applications. We performed bidirectional pyrosequencing of the bacterial 16S rRNA gene diversity in two terrestrial and seven aquatic Antarctic microbial mat samples previously studied by heterotrophic cultivation. While, not unexpectedly, 77.5% of genera recovered by pyrosequencing were not among the isolates, 25.6% of the genera picked up by cultivation were not detected by pyrosequencing. To allow comparison between both techniques, we focused on the five phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Deinococcus-Thermus) recovered by heterotrophic cultivation. Four of these phyla were among the most abundantly recovered by pyrosequencing. Strikingly, there was relatively little overlap between cultivation and the forward and reverse pyrosequencing-based datasets at the genus (17.1–22.2%) and OTU (3.5–3.6%) level (defined on a 97% similarity cut-off level). Comparison of the V1–V2 and V3–V2 datasets of the 16S rRNA gene revealed remarkable differences in number of OTUs and genera recovered. The forward dataset missed 33% of the genera from the reverse dataset despite comprising 50% more OTUs, while the reverse dataset did not contain 40% of the genera of the forward dataset. Similar observations were evident when comparing the forward and reverse cultivation datasets. Our results indicate that the region under consideration can have a large impact on perceived diversity, and should be considered when comparing different datasets. Finally, a high number

  13. A method for sampling microbial aerosols using high altitude balloons.

    PubMed

    Bryan, N C; Stewart, M; Granger, D; Guzik, T G; Christner, B C

    2014-12-01

    Owing to the challenges posed to microbial aerosol sampling at high altitudes, very little is known about the abundance, diversity, and extent of microbial taxa in the Earth-atmosphere system. To directly address this knowledge gap, we designed, constructed, and tested a system that passively samples aerosols during ascent through the atmosphere while tethered to a helium-filled latex sounding balloon. The sampling payload is ~ 2.7 kg and comprised of an electronics box and three sampling chambers (one serving as a procedural control). Each chamber is sealed with retractable doors that can be commanded to open and close at designated altitudes. The payload is deployed together with radio beacons that transmit GPS coordinates (latitude, longitude and altitude) in real time for tracking and recovery. A cut mechanism separates the payload string from the balloon at any desired altitude, returning all equipment safely to the ground on a parachute. When the chambers are opened, aerosol sampling is performed using the Rotorod® collection method (40 rods per chamber), with each rod passing through 0.035 m3 per km of altitude sampled. Based on quality control measurements, the collection of ~ 100 cells rod(-1) provided a 3-sigma confidence level of detection. The payload system described can be mated with any type of balloon platform and provides a tool for characterizing the vertical distribution of microorganisms in the troposphere and stratosphere. PMID:25455021

  14. COMPARISON OF MICROBIAL TROPHIC INTERACTIONS IN AQUATIC MICROCOSMS DESIGNED FOR THE TESTING OF INTRODUCED MICROORGANISMS

    EPA Science Inventory

    Two aquatic microcosms of different complexity were calibrated with a eutrophic lake. he simple microcosm consisted of an intact sediment core with overlying water. he complex microcosm was compartmentalized (phytoplankton tank, grazer tank, and sediment cores) to allow manipulat...

  15. Catabolism of tritiated thymidine by aquatic microbial communities and incorporation of tritium into RNA and protein

    SciTech Connect

    Brittain, A.M.; Karl, D.M. )

    1990-05-01

    The incorporation of tritiated thymidine by five microbial ecosystems and the distribution of tritium into DNA, RNA, and protein were determined. Nonspecific labeling was greatest in sediment samples, for which {>=}95% of the tritium was recovered with the RNA and protein fractions. The percentage of tritium recovered in the DNA fraction ranged from 15 to 38% of the total labeled macromolecules recovered. Nonspecific labeling was independent of both incubation time and thymidine concentration over very wide ranges. We also evaluated the specificity of (2-{sup 3}H) adenine incorporation into adenylate residues in both RNA and DNA in parallel with the ({sup 3}H) thymidine experiments and compared the degree of nonspecific labeling by ({sup 3}H) adenine with that derived from ({sup 3}H)thymidine. Rapid catabolism of tritiated thymidine was evaluated by determining the disappearance of tritiated thymidine from the incubation medium and the appearance of degradation products. Degradation product formation, including that of both volatile and nonvolatile compounds, was much greater than the rate of incorporation of tritium into stable macromolecules. The standard degradation pathway for thymidine coupled with utilization of Krebs cycle intermediates for the biosynthesis of amino acids, purines, and pyrimidines readily accounts for the observed nonspecific labeling in environmental samples.

  16. Application of a sea urchin micronucleus assay to monitoring aquatic pollution: influence of sample osmolality.

    PubMed

    Saotome, Kyoko; Hayashi, Makoto

    2003-01-01

    We have improved our sea urchin micronucleus assay for aquatic samples and used it to evaluate marine pollution. We found that the water samples we had collected for 2 years from the Tokyo bay coast near Tokyo, an industrial megalopolis, were positive due to the water samples being hypo-osmotic rather than to chemical pollutants. The evidence was as follows: (i) the osmolality and salinity of the samples were about half that of sea water; (ii) the micronucleus frequency induced in the water sample decreased to the control level when the osmolality was increased to that of sea water; (iii) artificial sea water diluted with distilled water induced micronuclei dilution-dependently. Since micronucleus induction in the sea urchin assay is influenced by sample osmolality, the osmolality must be adjusted to that of sea water for the assay and osmotic pressure must be considered when evaluating water pollution. PMID:12473738

  17. Elucidating Microbial Adaptation Dynamics via Autonomous Exposure and Sampling

    NASA Astrophysics Data System (ADS)

    Grace, J. M.; Verseux, C.; Gentry, D.; Moffet, A.; Thayabaran, R.; Wong, N.; Rothschild, L.

    2013-12-01

    The adaptation of micro-organisms to their environments is a complex process of interaction between the pressures of the environment and of competition. Reducing this multifactorial process to environmental exposure in the laboratory is a common tool for elucidating individual mechanisms of evolution, such as mutation rates[Wielgoss et al., 2013]. Although such studies inform fundamental questions about the way adaptation and even speciation occur, they are often limited by labor-intensive manual techniques[Wassmann et al., 2010]. Current methods for controlled study of microbial adaptation limit the length of time, the depth of collected data, and the breadth of applied environmental conditions. Small idiosyncrasies in manual techniques can have large effects on outcomes; for example, there are significant variations in induced radiation resistances following similar repeated exposure protocols[Alcántara-Díaz et al., 2004; Goldman and Travisano, 2011]. We describe here a project under development to allow rapid cycling of multiple types of microbial environmental exposure. The system allows continuous autonomous monitoring and data collection of both single species and sampled communities, independently and concurrently providing multiple types of controlled environmental pressure (temperature, radiation, chemical presence or absence, and so on) to a microbial community in dynamic response to the ecosystem's current status. When combined with DNA sequencing and extraction, such a controlled environment can cast light on microbial functional development, population dynamics, inter- and intra-species competition, and microbe-environment interaction. The project's goal is to allow rapid, repeatable iteration of studies of both natural and artificial microbial adaptation. As an example, the same system can be used both to increase the pH of a wet soil aliquot over time while periodically sampling it for genetic activity analysis, or to repeatedly expose a culture of

  18. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    SciTech Connect

    Thorn, Kevin A.; Cox, Larry G.

    2009-02-28

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS ¹⁵N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by ¹⁵N NMR. Liquid state ¹⁵N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (¹H–¹⁵N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  19. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    USGS Publications Warehouse

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  20. A test of aquatic macroinvertebrate sub-sampling using a gridded screen

    SciTech Connect

    Cross, S.P.

    1994-12-31

    The Biological Resource Evaluations Team of Los Alamos National Laboratories assessed the reliability of a gridded screen sub-sampling technique to estimate aquatic macroinvertebrates in total samples. Benthic macroinvertebrates were collected by kick sampling three riffles areas in Guaje Canyon, Los Alamos County, New Mexico during July and August, 1994. The study included 4,144 macroinvertebrates from samples consisting of 442 to 1005 individuals. The entire samples were spread onto a gridded screen, and 100 macroinvertebrates were randomly selected for identification. To simplify the results, identified macroinvertebrates were assigned to one of six categories: plecoptera, ephemeroptera, trichoptera, coleoptera, diptera, and non-insects. Three sub-samples were taken from each of six full samples. These counts were used as predicted values, while the total sample counts were used as actual values. Single-factor ANOVA tests showed no significant differences between predicted to actual (PTA) values. However, PTA differences indicated that lab-sorting was a more reliable method than live-sorting without a narcotizing agent. Large samples and large numbers in macroinvertebrate categories were tentatively linked with greater PTA differences. PTA differences were less than 5% in 80% of our trials and less than 10% in 95% of our trials. Despite the relatively small size of sub-samples, sub-samples included 60% of taxa found in the total samples. This sub-sampling technique provides accurate estimates of total sample composition in stream reaches rich enough to easily yield the required 100 individuals.

  1. Periphytic photosynthetic stimulation of extracellular enzyme activity in aquatic microbial communities associated with decaying typha litter.

    PubMed

    Francoeur, Steven N; Schaecher, Mark; Neely, Robert K; Kuehn, Kevin A

    2006-11-01

    We examined the effect of light on extracellular enzyme activities of periphytic/endogenous microbial assemblages associated with decomposing litter of an emergent macrophyte Typha angustifolia within a small inland wetland in southeastern Michigan. Standing-dead Typha leaf litter was collected, placed into floating wire mesh litter baskets, and submerged in a wetland pool. Enzyme saturation assays were conducted on three occasions following litter submergence (days 9, 28, and 44) to generate saturation curves for the individual enzymes tested and to examine potential differences in enzyme saturation kinetics during microbial colonization and development. Experimental light manipulations were conducted on two occasions during microbial development (days 10 and 29). Short-term (30 min) light exposure significantly increased extracellular beta-glucosidase activity of litter-associated microbial communities. Activities of beta-xylosidase and leucine-aminopeptidase were not stimulated, and stimulation of phosphatase activity was variable. The exact mechanism for increased enzyme activity remains unknown, but it may have been increased pH arising from periphytic algal photosynthesis. These results suggest that extracellular enzyme activity in microbial communities colonizing natural organic substrata may be influenced by light/photosynthesis, as has previously been demonstrated for periphyton communities grown on artificial, inert substrata. Thus, light/photosynthetic mediated stimulation of extracellular enzyme activities may be a common occurrence in microbial communities associated with natural decaying plant litter in wetlands and might engender diurnal patterns in other microbial decay processes (e.g., production, organic matter decomposition, and mineralization). PMID:17082997

  2. Aquatic microbial habitats within a neotropical rainforest: bromeliads and pH-associated trends in bacterial diversity and composition.

    PubMed

    Goffredi, Shana K; Kantor, Adam H; Woodside, Walter T

    2011-04-01

    Tank-forming bromeliads, suspended in the rainforest canopy, possess foliage arranged in compact rosettes capable of long-term retention of rainwater. This large and unique aquatic habitat is inhabited by microorganisms involved in the important decomposition of impounded material. Moreover, these communities are likely influenced by environmental factors such as pH, oxygen, and light. Bacterial community composition and diversity was determined for the tanks of several bromeliad species (Aechmea and Werauhia) from northern Costa Rica, which span a range of parameters, including tank morphology and pH. These were compared with a nearby forest soil sample, an artificial tank (amber bottle), and a commercially available species (Aechmea). Bacterial community diversity, as measured by 16S rRNA analysis and tRFLP, showed a significant positive correlation with tank pH. A majority of 16S rRNA bacterial phylotypes found in association with acidic bromeliad tanks of pH < 5.1 were affiliated with the Alphaproteobacteria, Acidobacteria, Planctomycetes, and Bacteroidetes, and were similar to those found in acidic peat bogs, yet distinct from the underlying soil community. In contrast, bromeliads with tank pH > 5.3, including the commercial bromeliad with the highest pH (6.7), were dominated by Betaproteobacteria, Firmicutes, and Bacteroidetes. To empirically determine the effect of pH on bacterial community, the tank pH of a specimen of Aechmea was depressed, in the field, from 6.5 to 4.5, for 62 days. The resulting community changed predictably with decreased abundance of Betaproteobacteria and Firmicutes and a concomitant increase in Alphaproteobacteria and Acidobacteria. Collectively, these results suggest that bromeliad tanks provide important habitats for a diverse microbial community, distinct from the surrounding environment, which are influenced greatly by acid-base conditions. Additionally, total organic carbon (∼46%) and nitrogen (∼2%) of bromeliad

  3. CONJUGAL GENE TRANSFER IN AQUATIC MICROBIAL COMMUNITIES DETECTED BY THE EVOLUTION OF A NEW PHENOTYPE

    EPA Science Inventory

    An experienced approach based on the assembly of genes of a catabolic pathway was used to detect transconjugants in aquatic communities. esistance to phenylmercury acetate was established in transconjugants when wide host range conjugal plasmids containing merB, the gene encoding...

  4. SORPTION AND TOXICITY OF AZO AND TRIPHENYLMETHANE DYES TO AQUATIC MICROBIAL POPULATIONS

    EPA Science Inventory

    Toxicity and sorption of five azo and triphenylmethane dyes to freshwater microbiota were determined to assessment, in part, the risks that these dyes may pose to the aquatic environment. The toxicities of Basic Violet 1, Basic Violet 2, Basic Violet 3, Basic Green 4 and Tropaeol...

  5. THE SAFETY OF BACTERIAL MICROBIAL AGENTS USED FOR BLACK FLY AND MOSQUITO CONTROL IN AQUATIC ENVIRONMENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bacterium, Bacillus thuringiensis, has been used extensively in crops, forests, and aquatic habitats for control of pest insects. Its safety and that of other insect specific bacteria for vertebrates and nontarget invertebrates have been reported in hundreds of studies. Short term effects on n...

  6. A supplement to "Methods for collection and analysis of aquatic biological and microbiological samples"

    USGS Publications Warehouse

    1979-01-01

    The report contains methods used by the U.S. Geological Survey to collect, preserve, and analyze waters to determine their biological and microbiological properties. It supplements, "Methods for Collection and Analysis of Aquatic Biological and Microbiological Samples" (TWRI, Book 5, Chapter A4, 1977, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack). Included in the supplement are 5 new methods, a new section of selected taxonomic references for Ostracoda, and 6 revised methods.

  7. Methods for collection and analysis of aquatic biological and microbiological samples

    USGS Publications Warehouse

    Britton, L.J.; Greeson, P.E.

    1988-01-01

    Chapter A4, methods for collection and analyses of aquatic biological and microbiological samples, contains methods used by the U.S. Geological Survey to collect, preserve, and analyze waters to determine their biological and microbiological properties. Part 1 consists of detailed descriptions of more than 45 individual methods, including those for bacteria, phytoplankton, zooplankton, seston, periphyton, macrophytes, benthic invertebrates, fish and other vertebrates, cellular contents, productivity and bioassay. Each method is summarized, and the applications, interferences, apparatus, reagents, analyses, calculations, reporting of results, precisions, and references are given. Part 2 consists of a glossary. Part 3 is a list of taxonomic references. (USGS)

  8. Microbial Community Analysis in the Roots of Aquatic Plants and Isolation of Novel Microbes Including an Organism of the Candidate Phylum OP10

    PubMed Central

    Tanaka, Yasuhiro; Tamaki, Hideyuki; Matsuzawa, Hiroaki; Nigaya, Masahiro; Mori, Kazuhiro; Kamagata, Yoichi

    2012-01-01

    A number of molecular ecological studies have revealed complex and unique microbial communities in various terrestrial plant roots; however, little is known about the microbial communities of aquatic plant roots in spite of their potential use for water quality improvement in aquatic environments (e.g. floating treatment wetland system). Here, we report the microbial communities inhabiting the roots of emerged plants, reed (Phragmites australis) and Japanese loosestrife (Lythrum anceps), collected from a floating treatment wetland in a pond by both culture-independent and culture-dependent approaches. Culture-independent analysis based on 16S rRNA gene sequences revealed that the microbial compositions between the two aquatic plant roots were clearly different (e.g. the predominant microbe was Betaproteobacteria for reed and Alphaproteobacteria for Japanese loosestrife). In comparisons of microbial communities between the plant roots and pond water taken from near the plants, the microbial diversity in the plant roots (e.g. 4.40–4.26 Shannon-Weiner index) were higher than that of pond water (e.g. 3.15 Shannon-Weiner index). Furthermore, the plant roots harbored 2.5–3.5 times more phylogenetically novel clone phylotypes than pond water. The culture-dependent approach also revealed differences in the microbial composition and diversity among the two plant roots and pond water. More importantly, compared to pond water, we succeeded in isolating approximately two times more novel isolate phylotypes, including a bacterium of candidate phylum OP10 (recently named Armatimonadetes) from the plant roots. These findings suggest that aquatic plants roots are significant sources for a variety of novel organisms. PMID:22791047

  9. Characterization of Microbial Population Shifts during Sample Storage

    PubMed Central

    Mills, Heath J.; Reese, Brandi Kiel; Peter, Cruz St.

    2011-01-01

    The objective of this study was to determine shifts in the microbial community structure and potential function based on standard Integrated Ocean Drilling Program (IODP) storage procedures for sediment cores. Standard long-term storage protocols maintain sediment temperature at 4°C for mineralogy, geochemical, and/or geotechnical analysis whereas standard microbiological sampling immediately preserves sediments at −80°C. Storage at 4°C does not take into account populations may remain active over geologic time scales at temperatures similar to storage conditions. Identification of active populations within the stored core would suggest geochemical and geophysical conditions within the core change over time. To test this potential, the metabolically active fraction of the total microbial community was characterized from IODP Expedition 325 Great Barrier Reef sediment cores prior to and following a 3-month storage period. Total RNA was extracted from complementary 2, 20, and 40 m below sea floor sediment samples, reverse transcribed to complementary DNA and then sequenced using 454 FLX sequencing technology, yielding over 14,800 sequences from the six samples. Interestingly, 97.3% of the sequences detected were associated with lineages that changed in detection frequency during the storage period including key biogeochemically relevant lineages associated with nitrogen, iron, and sulfur cycling. These lineages have the potential to permanently alter the physical and chemical characteristics of the sediment promoting misleading conclusions about the in situ biogeochemical environment. In addition, the detection of new lineages after storage increases the potential for a wider range of viable lineages within the subsurface that may be underestimated during standard community characterizations. PMID:22363327

  10. Microbial Groundwater Sampling Protocol for Fecal-Rich Environments

    PubMed Central

    Harter, Thomas; Watanabe, Naoko; Li, Xunde; Atwill, Edward R; Samuels, William

    2014-01-01

    Inherently, confined animal farming operations (CAFOs) and other intense fecal-rich environments are potential sources of groundwater contamination by enteric pathogens. The ubiquity of microbial matter poses unique technical challenges in addition to economic constraints when sampling wells in such environments. In this paper, we evaluate a groundwater sampling protocol that relies on extended purging with a portable submersible stainless steel pump and Teflon® tubing as an alternative to equipment sterilization. The protocol allows for collecting a large number of samples quickly, relatively inexpensively, and under field conditions with limited access to capacity for sterilizing equipment. The protocol is tested on CAFO monitoring wells and considers three cross-contamination sources: equipment, wellbore, and ambient air. For the assessment, we use Enterococcus, a ubiquitous fecal indicator bacterium (FIB), in laboratory and field tests with spiked and blank samples, and in an extensive, multi-year field sampling campaign on 17 wells within 2 CAFOs. The assessment shows that extended purging can successfully control for equipment cross-contamination, but also controls for significant contamination of the well-head, within the well casing and within the immediate aquifer vicinity of the well-screen. Importantly, our tests further indicate that Enterococcus is frequently entrained in water samples when exposed to ambient air at a CAFO during sample collection. Wellbore and air contamination pose separate challenges in the design of groundwater monitoring strategies on CAFOs that are not addressed by equipment sterilization, but require adequate QA/QC procedures and can be addressed by the proposed sampling strategy. PMID:24903186

  11. Microbial groundwater sampling protocol for fecal-rich environments.

    PubMed

    Harter, Thomas; Watanabe, Naoko; Li, Xunde; Atwill, Edward R; Samuels, William

    2014-09-01

    Inherently, confined animal farming operations (CAFOs) and other intense fecal-rich environments are potential sources of groundwater contamination by enteric pathogens. The ubiquity of microbial matter poses unique technical challenges in addition to economic constraints when sampling wells in such environments. In this paper, we evaluate a groundwater sampling protocol that relies on extended purging with a portable submersible stainless steel pump and Teflon(®) tubing as an alternative to equipment sterilization. The protocol allows for collecting a large number of samples quickly, relatively inexpensively, and under field conditions with limited access to capacity for sterilizing equipment. The protocol is tested on CAFO monitoring wells and considers three cross-contamination sources: equipment, wellbore, and ambient air. For the assessment, we use Enterococcus, a ubiquitous fecal indicator bacterium (FIB), in laboratory and field tests with spiked and blank samples, and in an extensive, multi-year field sampling campaign on 17 wells within 2 CAFOs. The assessment shows that extended purging can successfully control for equipment cross-contamination, but also controls for significant contamination of the well-head, within the well casing and within the immediate aquifer vicinity of the well-screen. Importantly, our tests further indicate that Enterococcus is frequently entrained in water samples when exposed to ambient air at a CAFO during sample collection. Wellbore and air contamination pose separate challenges in the design of groundwater monitoring strategies on CAFOs that are not addressed by equipment sterilization, but require adequate QA/QC procedures and can be addressed by the proposed sampling strategy. PMID:24903186

  12. Effects of chronic γ-irradiation on the aquatic microbial microcosm: equi-dosimetric comparison with effects of heavy metals.

    PubMed

    Fuma, Shoichi; Kawaguchi, Isao; Kubota, Yoshihisa; Yoshida, Satoshi; Kawabata, Zen'ichiro; Polikarpov, Gennady G

    2012-02-01

    Effects of chronic γ-irradiation were investigated in the aquatic microcosm consisting of flagellate algae Euglena gracilis as producers, ciliate protozoa Tetrahymena thermophila as consumers and bacteria Escherichia coli as decomposers. At 1.1 Gy day(-1), no effects were observed. At 5.1 Gy day(-1), cell densities of E. coli showed a tendency to be lower than those of controls. At 9.7 and 24.7 Gy day(-1), population decrease was observed in E. coli. E. gracilis and T. thermophila died out after temporal population decrease and subsequent population increase in T. thermophila. It is likely that this temporal population increase was an indirect effect due to interspecies interactions. Effect dose rates of γ-rays were compared with effect concentrations of some metals using the radiochemoecological conceptual model and the effect index for microcosm. Comparison of these community-level effects data with environmental exposure data suggests that ionising radiation, gadolinium and dysprosium have low risks to affect aquatic microbial communities while manganese, nickel and copper have considerable risks. Effects of chronic irradiation were smaller than those of acute irradiation, and an acute to chronic ratio was calculated to be 28 by dividing an acute dose by chronic daily dose rate at which the effect index was 10%. This ratio would be useful for community-level extrapolation from acute to chronic radiation effects. PMID:21962482

  13. Environmental DNA sampling protocol - filtering water to capture DNA from aquatic organisms

    USGS Publications Warehouse

    Laramie, Matthew B.; Pilliod, David S.; Goldberg, Caren S.; Strickler, Katherine M.

    2015-01-01

    Environmental DNA (eDNA) analysis is an effective method of determining the presence of aquatic organisms such as fish, amphibians, and other taxa. This publication is meant to guide researchers and managers in the collection, concentration, and preservation of eDNA samples from lentic and lotic systems. A sampling workflow diagram and three sampling protocols are included as well as a list of suggested supplies. Protocols include filter and pump assembly using: (1) a hand-driven vacuum pump, ideal for sample collection in remote sampling locations where no electricity is available and when equipment weight is a primary concern; (2) a peristaltic pump powered by a rechargeable battery-operated driver/drill, suitable for remote sampling locations when weight consideration is less of a concern; (3) a 120-volt alternating current (AC) powered peristaltic pump suitable for any location where 120-volt AC power is accessible, or for roadside sampling locations. Images and detailed descriptions are provided for each step in the sampling and preservation process.

  14. Reconnaissance samplings and characterization of aquatic humic substances at the Yuma Desalting Test Facility, Arizona

    USGS Publications Warehouse

    Malcolm, R.L.; Wershaw, R. L.; Thurman, E.M.; Aiken, G.R.; Pinckney, D.J.; Kaakinen, J.

    1981-01-01

    Smectite clay minerals were found to be the principal compound on the surface of the cellulose-acetate, reverse-osmosis membranes at the Yuma Desalting Test Facility. These clay minerals were not present in the pumped ground water, but were blown into the conveyance canal from adjacent soils. Humic substances from the water and suspended sediments were associated with the clay films on the membrane, but no definitive results concerning their role in fouling were achieved. Microbial fouling is believed to be only a minor aspect of membrane fouling. Chemical and physical changes in humic substances were extensively studied at four points in the water-treatment process. Humic substances accounted for the largest component (over 25 percent) of organic constituents. Humic substances in the canal source water were similar to other aquatic humic substances present in natural waters. During the treatment process, these substances are brominated and decolorized. The effect of these halogenated humic substances on membrane fouling is unclear, but their presence in the reverse-osmosis product water and reverse-osmosis reject brine, along with volatile trihalomethanes, has led to environmental concerns. (USGS)

  15. Novel use of cavity ring-down spectroscopy to investigate aquatic carbon cycling from microbial to ecosystem scales.

    PubMed

    Maher, Damien T; Santos, Isaac R; Leuven, Jasper R F W; Oakes, Joanne M; Erler, Dirk V; Carvalho, Matheus C; Eyre, Bradley D

    2013-11-19

    Development of cavity ring-down spectroscopy (CRDS) has enabled real-time monitoring of carbon stable isotope ratios of carbon dioxide and methane in air. Here we demonstrate that CRDS can be adapted to assess aquatic carbon cycling processes from microbial to ecosystem scales. We first measured in situ isotopologue concentrations of dissolved CO2 ((12)CO2 and (13)CO2) and CH4 ((12)CH4 and (13)CH4) with CRDS via a closed loop gas equilibration device during a survey along an estuary and during a 40 h time series in a mangrove creek (ecosystem scale). A similar system was also connected to an in situ benthic chamber in a seagrass bed (community scale). Finally, a pulse-chase isotope enrichment experiment was conducted by measuring real-time release of (13)CO2 after addition of (13)C enriched phytoplankton to exposed intertidal sediments (microbial scale). Miller-Tans plots revealed complex transformation pathways and distinct isotopic source values of CO2 and CH4. Calculations of δ(13)C-DIC based on CRDS measured δ(13)C-CO2 and published fractionation factors were in excellent agreement with measured δ(13)C-DIC using isotope ratio mass spectroscopy (IRMS). The portable CRDS instrumentation used here can obtain real-time, high precision, continuous greenhouse gas data in lakes, rivers, estuaries and marine waters with less effort than conventional laboratory-based techniques. PMID:24131451

  16. Unexpected toxicity to aquatic organisms of some aqueous bisphenol A samples treated by advanced oxidation processes.

    PubMed

    Tišler, Tatjana; Erjavec, Boštjan; Kaplan, Renata; Şenilă, Marin; Pintar, Albin

    2015-01-01

    In this study, photocatalytic and catalytic wet-air oxidation (CWAO) processes were used to examine removal efficiency of bisphenol A from aqueous samples over several titanate nanotube-based catalysts. Unexpected toxicity of bisphenol A (BPA) samples treated by means of the CWAO process to some tested species was determined. In addition, the CWAO effluent was recycled five- or 10-fold in order to increase the number of interactions between the liquid phase and catalyst. Consequently, the inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated higher concentrations of some toxic metals like chromium, nickel, molybdenum, silver, and zinc in the recycled samples in comparison to both the single-pass sample and the photocatalytically treated solution. The highest toxicity of five- and 10-fold recycled solutions in the CWAO process was observed in water fleas, which could be correlated to high concentrations of chromium, nickel, and silver detected in tested samples. The obtained results clearly demonstrated that aqueous samples treated by means of advanced oxidation processes should always be analyzed using (i) chemical analyses to assess removal of BPA and total organic carbon from treated aqueous samples, as well as (ii) a battery of aquatic organisms from different taxonomic groups to determine possible toxicity. PMID:26114268

  17. Quantifying the contribution of single microbial cells to nitrogen assimilation in aquatic environments

    NASA Astrophysics Data System (ADS)

    Musat, N.; Kuypers, M. M. M.

    2009-04-01

    Nitrogen is a primary productivity-limiting nutrient in the ocean. The nitrogen limitation of productivity may be overcome by organisms capable of converting dissolved N2 into fixed nitrogen available to the ecosystem. In many oceanic regions, growth of phytoplankton is nitrogen limited because fixation of N2 cannot make up for the removal of fixed inorganic nitrogen (NH4+, NO2-, NO3-) by anaerobic microbial processes. The amount of available fixed nitrogen in the ocean can be changed by the biological processes of heterotrophic denitrification, anaerobic ammonium oxidation and nitrogen fixation. For a complete understanding of nitrogen cycling in the ocean a link between the microbial and biogeochemical processes at the single cell level and their role in global biogeochemical cycles is essential. Here we report a recently developed method, Halogen In Situ Hybridization-Secondary Ion Mass Spectroscopy (HISH-SIMS) and its potential application to study the nitrogen-cycle processes in the ocean. The method allows simultaneous phylogenetic identification and quantitation of metabolic activities of single microbial cells in the environment. It uses horseradish-peroxidase-labeled oligonucleotide probes and fluorine-containing tyramides for the identification of microorganisms in combination with stable-isotope-labeling experiments for analyzing the metabolic function of single microbial cells. HISH-SIMS was successfully used to study nitrogen assimilation and nitrogen fixation by anaerobic phototrophs in a meromictic alpine lake. The HISH-SIMS method enables studies of the ecophysiology of individual, phylogenetically identified microorganisms involved in the N-cycle and allows us to track the flow of nitrogen within microbial communities.

  18. Carbon Nanotube Integrative Sampler (CNIS) for passive sampling of nanosilver in the aquatic environment.

    PubMed

    Shen, Li; Fischer, Jillian; Martin, Jonathan; Hoque, Md Ehsanul; Telgmann, Lena; Hintelmann, Holger; Metcalfe, Chris D; Yargeau, Viviane

    2016-11-01

    Nanomaterials such as nanosilver (AgNP) can be released into the aquatic environment through production, usage, and disposal. Sensitive and cost-effective methods are needed to monitor AgNPs in the environment. This work is hampered by a lack of sensitive methods to detect nanomaterials in environmental matrixes. The present study focused on the development, calibration and application of a passive sampling technique for detecting AgNPs in aquatic matrixes. A Carbon Nanotube Integrative Sampler (CNIS) was developed using multi-walled carbon nanotubes (CNTs) as the sorbent for accumulating AgNPs and other Ag species from water. Sampling rates were determined in the laboratory for different sampler configurations and in different aquatic matrixes. The sampler was field tested at the Experimental Lakes Area, Canada, in lake water dosed with AgNPs. For a configuration of the CNIS consisting of CNTs bound to carbon fiber (i.e. CNT veil) placed in Chemcatcher® housing, the time weighted average (TWA) concentrations of silver estimated from deployments of the sampler in lake mesocosms dosed with AgNPs were similar to the measured concentrations of "colloidal silver" (i.e. <0.22μm in size) in the water column. For a configuration of CNIS consisting of CNTs in loose powder form placed in a custom made housing that were deployed in a whole lake dosed with AgNPs, the estimated TWA concentrations of "CNIS-labile Ag" were similar to the concentrations of total silver measured in the epilimnion of the lake. However, sampling rates for the CNIS in various matrixes are relatively low (i.e. 1-20mL/day), so deployment periods of several weeks are required to detect AgNPs at environmentally relevant concentrations, which can allow biofilms to develop on the sampler and could affect the sampling rates. With further development, this novel sampler may provide a simple and sensitive method for screening for the presence of AgNPs in surface waters. PMID:27343941

  19. A strategy to sample nutrient dynamics across the terrestrial-aquatic interface at NEON sites

    NASA Astrophysics Data System (ADS)

    Hinckley, E. S.; Goodman, K. J.; Roehm, C. L.; Meier, C. L.; Luo, H.; Ayres, E.; Parnell, J.; Krause, K.; Fox, A. M.; SanClements, M.; Fitzgerald, M.; Barnett, D.; Loescher, H. W.; Schimel, D.

    2012-12-01

    The construction of the National Ecological Observatory Network (NEON) across the U.S. creates the opportunity for researchers to investigate biogeochemical transformations and transfers across ecosystems at local-to-continental scales. Here, we examine a subset of NEON sites where atmospheric, terrestrial, and aquatic observations will be collected for 30 years. These sites are located across a range of hydrological regimes, including flashy rain-driven, shallow sub-surface (perched, pipe-flow, etc), and deep groundwater, which likely affect the chemical forms and quantities of reactive elements that are retained and/or mobilized across landscapes. We present a novel spatial and temporal sampling design that enables researchers to evaluate long-term trends in carbon, nitrogen, and phosphorus biogeochemical cycles under these different hydrological regimes. This design focuses on inputs to the terrestrial system (atmospheric deposition, bulk precipitation), transfers (soil-water and groundwater sources/chemistry), and outputs (surface water, and evapotranspiration). We discuss both data that will be collected as part of the current NEON design, as well as how the research community can supplement the NEON design through collaborative efforts, such as providing additional datasets, including soil biogeochemical processes and trace gas emissions, and developing collaborative research networks. Current engagement with the research community working at the terrestrial-aquatic interface is critical to NEON's success as we begin construction, to ensure that high-quality, standardized and useful data are not only made available, but inspire further, cutting-edge research.

  20. Microbial inactivation for safe and rapid diagnostics of infectious samples.

    PubMed

    Sagripanti, Jose-Luis; Hülseweh, Birgit; Grote, Gudrun; Voss, Luzie; Böhling, Katrin; Marschall, Hans-Jürgen

    2011-10-01

    The high risk associated with biological threat agents dictates that any suspicious sample be handled under strict surety and safety controls and processed under high-level containment in specialized laboratories. This study attempted to find a rapid, reliable, and simple method for the complete inactivation of a wide range of pathogens, including spores, vegetative bacteria, and viruses, while preserving microbial nucleic acid fragments suitable for PCRs and proteinaceous epitopes for detection by immunoassays. Formaldehyde, hydrogen peroxide, and guanidium thiocyanate did not completely inactivate high titers of bacterial spores or viruses after 30 min at 21°C. Glutaraldehyde and sodium hypochlorite showed high microbicidal activity but obliterated the PCR or enzyme-linked immunosorbent assay (ELISA) detection of bacterial spores or viruses. High-level inactivation (more than 6 log(10)) of bacterial spores (Bacillus atrophaeus), vegetative bacteria (Pseudomonas aeruginosa), an RNA virus (the alphavirus Pixuna virus), or a DNA virus (the orthopoxvirus vaccinia virus) was attained within 30 min at 21°C by treatment with either peracetic acid or cupric ascorbate with minimal hindrance of subsequent PCR tests and immunoassays. The data described here should provide the basis for quickly rendering field samples noninfectious for further analysis under lower-level containment and considerably lower cost. PMID:21856830

  1. Exploring the use of Citizen Science Phenology Data to Inform the Development of NEON Aquatic Sampling

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Parker, S.; Roehm, C. L.

    2012-12-01

    The proliferation of citizen science programs and activities in recent years has resulted in data sets at varying geographic scales representing many aspects of environmental science that are having an impact on scientific research. Citizen science programs are uniquely situated at the interface of science and education and therefore, can help advance the needs and goals of both communities. The National Ecological Observatory Network (NEON) has incorporated citizen science as a cornerstone of its Education and Public Engagement Program. Data from its flagship citizen science program, Project BudBurst (budburst.org) is being used to help inform the NEON Aquatic team as it develops sampling strategies. Project BudBurst is a national citizen science initiative designed to engage the public in observations of plant phenology events with the intent of raising awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. Using scientifically vetted protocols, Project BudBurst participants have submitted thousands of observations from all 50 states. The Aquatic team at NEON is using the "First Leaf" and "Leaf Fall" data from Project BudBurst to help inform temporal sampling strategies for aquatic biological measurements. The spatial coverage of the Project BudBurst dataset has allowed us to predict a range of spring and fall dates in each of the NEON domains with which we can coordinate plant, algae, and invertebrate sampling efforts in streams and lakes. Using phenological characteristics combined with the identification of leaf on and leaf off dates, multiple regression and cluster analyses are being performed against

  2. Modeling Microbial Biogeochemistry from Terrestrial to Aquatic Ecosystems Using Trait-Based Approaches

    NASA Astrophysics Data System (ADS)

    King, E.; Molins, S.; Karaoz, U.; Johnson, J. N.; Bouskill, N.; Hug, L. A.; Thomas, B. C.; Castelle, C. J.; Beller, H. R.; Banfield, J. F.; Steefel, C. I.; Brodie, E.

    2014-12-01

    Currently, there is uncertainty in how climate or land-use-induced changes in hydrology and vegetation will affect subsurface carbon flux, the spatial and temporal distribution of flow and transport, biogeochemical cycling, and microbial metabolic activity. Here we focus on the initial development of a Genome-Enabled Watershed Simulation Capability (GEWaSC), which provides a predictive framework for understanding how genomic information stored in a subsurface microbiome affects biogeochemical watershed functioning, how watershed-scale processes affect microbial function, and how these interactions co-evolve. This multiscale framework builds on a hierarchical approach to multiscale modeling, which considers coupling between defined microscale and macroscale components of a system (e.g., a catchment being defined as macroscale and biogeofacies as microscale). Here, we report our progress in the development of a trait-based modeling approach within a reactive transport framework that simulates coupled guilds of microbes. Guild selection is driven by traits extracted from, and physiological properties inferred from, large-scale assembly of metagenome data. Meta-genomic, -transcriptomic and -proteomic information are also used to complement our existing biogeochemical reaction networks and contributes key reactions where biogeochemical analyses are unequivocal. Our approach models the rate of nutrient uptake and the thermodynamics of coupled electron donors and acceptors for a range of microbial metabolisms including heterotrophs and chemolitho(auto)trophs. Metabolism of exogenous substrates fuels catabolic and anabolic processes, with the proportion of energy used for each based upon dynamic intracellular and environmental conditions. In addition to biomass development, anabolism includes the production of key enzymes, such as nitrogenase for nitrogen fixation or exo-enzymes for the hydrolysis of extracellular polymers. This internal resource partitioning represents a

  3. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Boyd, E.S.; King, S.; Tomberlin, J.K.; Nordstrom, D.K.; Krabbenhoft, D.P.; Barkay, T.; Geesey, G.G.

    2009-01-01

    Summary Microbial mats are a visible and abundant life form inhabiting the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated with a phototrophic green/purple Zygogonium microbial mat community that inhabits low-temperature regions of acidic (pH ??? 3.0) thermal springs were found to serve as a food source for stratiomyid (Diptera: Stratiomyidae) larvae. Mercury in spring source water was taken up and concentrated by the mat biomass. Monomethylmercury compounds (MeHg +), while undetectable or near the detection limit (0.025 ng l -1) in the source water of the springs, was present at concentrations of 4-7 ng g-1 dry weight of mat biomass. Detection of MeHg + in tracheal tissue of larvae grazing the mat suggests that MeHg+ enters this geothermal food web through the phototrophic microbial mat community. The concentration of MeHg+ was two to five times higher in larval tissue than mat biomass indicating MeHg+ biomagnification occurred between primary producer and primary consumer trophic levels. The Zygogonium mat community and stratiomyid larvae may also play a role in the transfer of MeHg+ to species in the food web whose range extends beyond a particular geothermal feature of YNP. ?? 2008 The Authors. Journal compilation ?? 2008 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming.

    PubMed

    Boyd, Eric S; King, Susan; Tomberlin, Jeffery K; Nordstrom, D Kirk; Krabbenhoft, David P; Barkay, Tamar; Geesey, Gill G

    2009-04-01

    Microbial mats are a visible and abundant life form inhabiting the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated with a phototrophic green/purple Zygogonium microbial mat community that inhabits low-temperature regions of acidic (pH approximately 3.0) thermal springs were found to serve as a food source for stratiomyid (Diptera: Stratiomyidae) larvae. Mercury in spring source water was taken up and concentrated by the mat biomass. Monomethylmercury compounds (MeHg(+)), while undetectable or near the detection limit (0.025 ng l(-1)) in the source water of the springs, was present at concentrations of 4-7 ng g(-1) dry weight of mat biomass. Detection of MeHg(+) in tracheal tissue of larvae grazing the mat suggests that MeHg(+) enters this geothermal food web through the phototrophic microbial mat community. The concentration of MeHg(+) was two to five times higher in larval tissue than mat biomass indicating MeHg(+) biomagnification occurred between primary producer and primary consumer trophic levels. The Zygogonium mat community and stratiomyid larvae may also play a role in the transfer of MeHg(+) to species in the food web whose range extends beyond a particular geothermal feature of YNP. PMID:19170726

  5. Efficiency of Different Sampling Tools for Aquatic Macroinvertebrate Collections in Malaysian Streams

    PubMed Central

    Ghani, Wan Mohd Hafezul Wan Abdul; Rawi, Che Salmah Md; Hamid, Suhaila Abd; Al-Shami, Salman Abdo

    2016-01-01

    This study analyses the sampling performance of three benthic sampling tools commonly used to collect freshwater macroinvertebrates. Efficiency of qualitative D-frame and square aquatic nets were compared to a quantitative Surber sampler in tropical Malaysian streams. The abundance and diversity of macroinvertebrates collected using each tool evaluated along with their relative variations (RVs). Each tool was used to sample macroinvertebrates from three streams draining different areas: a vegetable farm, a tea plantation and a forest reserve. High macroinvertebrate diversities were recorded using the square net and Surber sampler at the forested stream site; however, very low species abundance was recorded by the Surber sampler. Relatively large variations in the Surber sampler collections (RVs of 36% and 28%) were observed for the vegetable farm and tea plantation streams, respectively. Of the three sampling methods, the square net was the most efficient, collecting a greater diversity of macroinvertebrate taxa and a greater number of specimens (i.e., abundance) overall, particularly from the vegetable farm and the tea plantation streams (RV<25%). Fewer square net sample passes (<8 samples) were sufficient to perform a biological assessment of water quality, but each sample required a slightly longer processing time (±20 min) compared with those gathered via the other samplers. In conclusion, all three apparatuses were suitable for macroinvertebrate collection in Malaysian streams and gathered assemblages that resulted in the determination of similar biological water quality classes using the Family Biotic Index (FBI) and the Biological Monitoring Working Party (BMWP). However, despite a slightly longer processing time, the square net was more efficient (lowest RV) at collecting samples and more suitable for the collection of macroinvertebrates from deep, fast flowing, wadeable streams with coarse substrates. PMID:27019685

  6. Efficiency of Different Sampling Tools for Aquatic Macroinvertebrate Collections in Malaysian Streams.

    PubMed

    Ghani, Wan Mohd Hafezul Wan Abdul; Rawi, Che Salmah Md; Hamid, Suhaila Abd; Al-Shami, Salman Abdo

    2016-02-01

    This study analyses the sampling performance of three benthic sampling tools commonly used to collect freshwater macroinvertebrates. Efficiency of qualitative D-frame and square aquatic nets were compared to a quantitative Surber sampler in tropical Malaysian streams. The abundance and diversity of macroinvertebrates collected using each tool evaluated along with their relative variations (RVs). Each tool was used to sample macroinvertebrates from three streams draining different areas: a vegetable farm, a tea plantation and a forest reserve. High macroinvertebrate diversities were recorded using the square net and Surber sampler at the forested stream site; however, very low species abundance was recorded by the Surber sampler. Relatively large variations in the Surber sampler collections (RVs of 36% and 28%) were observed for the vegetable farm and tea plantation streams, respectively. Of the three sampling methods, the square net was the most efficient, collecting a greater diversity of macroinvertebrate taxa and a greater number of specimens (i.e., abundance) overall, particularly from the vegetable farm and the tea plantation streams (RV<25%). Fewer square net sample passes (<8 samples) were sufficient to perform a biological assessment of water quality, but each sample required a slightly longer processing time (±20 min) compared with those gathered via the other samplers. In conclusion, all three apparatuses were suitable for macroinvertebrate collection in Malaysian streams and gathered assemblages that resulted in the determination of similar biological water quality classes using the Family Biotic Index (FBI) and the Biological Monitoring Working Party (BMWP). However, despite a slightly longer processing time, the square net was more efficient (lowest RV) at collecting samples and more suitable for the collection of macroinvertebrates from deep, fast flowing, wadeable streams with coarse substrates. PMID:27019685

  7. Perfluoroalkyl substances in aquatic environment-comparison of fish and passive sampling approaches.

    PubMed

    Cerveny, Daniel; Grabic, Roman; Fedorova, Ganna; Grabicova, Katerina; Turek, Jan; Kodes, Vit; Golovko, Oksana; Zlabek, Vladimir; Randak, Tomas

    2016-01-01

    The concentrations of seven perfluoroalkyl substances (PFASs) were investigated in 36 European chub (Squalius cephalus) individuals from six localities in the Czech Republic. Chub muscle and liver tissue were analysed at all sampling sites. In addition, analyses of 16 target PFASs were performed in Polar Organic Chemical Integrative Samplers (POCISs) deployed in the water at the same sampling sites. We evaluated the possibility of using passive samplers as a standardized method for monitoring PFAS contamination in aquatic environments and the mutual relationships between determined concentrations. Only perfluorooctane sulphonate was above the LOQ in fish muscle samples and 52% of the analysed fish individuals exceeded the Environmental Quality Standard for water biota. Fish muscle concentration is also particularly important for risk assessment of fish consumers. The comparison of fish tissue results with published data showed the similarity of the Czech results with those found in Germany and France. However, fish liver analysis and the passive sampling approach resulted in different fish exposure scenarios. The total concentration of PFASs in fish liver tissue was strongly correlated with POCIS data, but pollutant patterns differed between these two matrices. The differences could be attributed to the metabolic activity of the living organism. In addition to providing a different view regarding the real PFAS cocktail to which the fish are exposed, POCISs fulfil the Three Rs strategy (replacement, reduction, and refinement) in animal testing. PMID:26599587

  8. Portable system for microbial sample preparation and oligonucleotide microarray analysis.

    PubMed

    Bavykin, S G; Akowski, J P; Zakhariev, V M; Barsky, V E; Perov, A N; Mirzabekov, A D

    2001-02-01

    We have developed a three-component system for microbial identification that consists of (i) a universal syringe-operated silica minicolumn for successive DNA and RNA isolation, fractionation, fragmentation, fluorescent labeling, and removal of excess free label and short oligonucleotides; (ii) microarrays of immobilized oligonucleotide probes for 16S rRNA identification; and (iii) a portable battery-powered device for imaging the hybridization of fluorescently labeled RNA fragments with the arrays. The minicolumn combines a guanidine thiocyanate method of nucleic acid isolation with a newly developed hydroxyl radical-based technique for DNA and RNA labeling and fragmentation. DNA and RNA can also be fractionated through differential binding of double- and single-stranded forms of nucleic acids to the silica. The procedure involves sequential washing of the column with different solutions. No vacuum filtration steps, phenol extraction, or centrifugation is required. After hybridization, the overall fluorescence pattern is captured as a digital image or as a Polaroid photo. This three-component system was used to discriminate Escherichia coli, Bacillus subtilis, Bacillus thuringiensis, and human HL60 cells. The procedure is rapid: beginning with whole cells, it takes approximately 25 min to obtain labeled DNA and RNA samples and an additional 25 min to hybridize and acquire the microarray image using a stationary image analysis system or the portable imager. PMID:11157263

  9. Portable system for microbial sample preparation and oligonucleotide microarray analysis.

    SciTech Connect

    Bavykin, S. G.; Akowski, J. P.; Zakhariev, V. M.; Barsky, V. E.; Mirzabekov, A. D.; Perov, A. N.; Biochip Technology Center; Engelhardt Inst. of Molecular Biology

    2001-02-01

    We have developed a three-component system for microbial identification that consists of (i) a universal syringe-operated silica minicolumn for successive DNA and RNA isolation, fractionation, fragmentation, fluorescent labeling, and removal of excess free label and short oligonucleotides; (ii) microarrays of immobilized oligonucleotide probes for 16S rRNA identification; and (iii) a portable battery-powered device for imaging the hybridization of fluorescently labeled RNA fragments with the arrays. The minicolumn combines a guanidine thiocyanate method of nucleic acid isolation with a newly developed hydroxyl radical-based technique for DNA and RNA labeling and fragmentation. DNA and RNA can also be fractionated through differential binding of double- and single-stranded forms of nucleic acids to the silica. The procedure involves sequential washing of the column with different solutions. No vacuum filtration steps, phenol extraction, or centrifugation is required. After hybridization, the overall fluorescence pattern is captured as a digital image or as a Polaroid photo. This three-component system was used to discriminate Escherichia coli, Bacillus subtilis, Bacillus thuringiensis, and human HL60 cells. The procedure is rapid: beginning with whole cells, it takes approximately 25 min to obtain labeled DNA and RNA samples and an additional 25 min to hybridize and acquire the microarray image using a stationary image analysis system or the portable imager.

  10. Organochlorine and metal pollution in aquatic organisms sampled in the Donana National Park during the period 1983-1986

    SciTech Connect

    Rico, M.C.; Hernandez, L.M.; Gonzalez, M.J.; Fernandez, M.A.; Montero, M.C.

    1987-12-01

    The study area, Donana National Park, is located in the South South-West of Spain, and this is one of the most important reservation of Europe. Samples of aquatic organism were obtained from the principal waterway of Donana National Park to determine the degree of organochlorine and metal contamination of this environment. The sampling was carried out during the period 1983-1986 in order to collect six aquatic species in four sites along the Brazo de la Torre. An agricultural area in the North-West side of the Park and a working mine at about 40 km from its northern boundary were considered as the likely main polluting sources of organochlorine pesticides, PCBs, and heavy metals respectively. The aquatic organism species chosen for analysis were: American crayfish (Procambarus clarckii), carp (Cyprinus carpio), barbel (Barbus barbus), grey mullet (Mugil capito), eel (Anguilla anguilla), and frog (Rana perezi).

  11. In Situ Treatment of PCBs by Anaerobic Microbial Dechlorination in Aquatic Sediment: Are We There Yet?

    PubMed Central

    Sowers, Kevin R.; May, Harold D.

    2012-01-01

    The remediation of PCBs in soils and sediments remains a particularly difficult problem to solve. The possibility of in situ degradation by microorganisms has been pursued for many years since this approach has the potential to provide a cost-effective and environmentally sustainable alternative to dredging for treatment of PCB impacted sites. Because PCBs are hydrophobic and partition into organic material they accumulate in anoxic environments well poised to support anaerobic dechlorination of highly chlorinated commercial PCBs to congeners that are susceptible to complete aerobic degradation. Laboratory research over the past 25 years is now leading to new microbial technologies that could soon be tested for treatment of PCB impacted soils and sediments in the field. PMID:23102490

  12. Aquatic fulvic acids in microbially based ecosystems: results from two desert lakes in Antarctica

    USGS Publications Warehouse

    McKnight, Diane M.; Aiken, G.R.; Smith, R.L.

    1991-01-01

    These lakes receive very limited input of organic material from the surrounding barren desert, but they sustain algal and bacterial populations under permanent ice cover. One lake has an extensive anoxic zone and high salinities; the other is oxic and has low salinities. Despite these differences, fulvic acids from both lakes had similar elemental compositions, carbon distributions, and amino acid contents, indicating that the chemistry of microbially derived fulvic acvids is not strongly influenced by chemical conditions in the water column. Compared to fulvic acids from other natural waters, these fulvic acids have low C:N atomic ratios (19-25) and low contents of aromatic carbons (5-7% of total carbon atoms); they are most similar to marine fulvic acids. -from Authors

  13. Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures

    PubMed Central

    Glass, Jennifer B.; Axler, Richard P.; Chandra, Sudeep; Goldman, Charles R.

    2012-01-01

    Molybdenum (Mo) is an essential micronutrient for biological assimilation of nitrogen gas and nitrate because it is present in the cofactors of nitrogenase and nitrate reductase enzymes. Although Mo is the most abundant transition metal in seawater (107 nM), it is present in low concentrations in most freshwaters, typically <20 nM. In 1960, it was discovered that primary productivity was limited by Mo scarcity (2–4 nM) in Castle Lake, a small, meso-oligotrophic lake in northern California. Follow up studies demonstrated that Mo also limited primary productivity in lakes in New Zealand, Alaska, and the Sierra Nevada. Research in the 1970s and 1980s showed that Mo limited primary productivity and nitrate uptake in Castle Lake only during periods of the growing season when nitrate concentrations were relatively high because ammonium assimilation does not require Mo. In the years since, research has shifted to investigate whether Mo limitation also occurs in marine and soil environments. Here we review studies of Mo limitation of nitrogen assimilation in natural microbial communities and pure cultures. We also summarize new data showing that the simultaneous addition of Mo and nitrate causes increased activity of proteins involved in nitrogen assimilation in the hypolimnion of Castle Lake when ammonium is scarce. Furthermore, we suggest that meter-scale Mo and oxygen depth profiles from Castle Lake are consistent with the hypothesis that nitrogen-fixing cyanobacteria in freshwater periphyton communities have higher Mo requirements than other microbial communities. Finally, we present topics for future research related to Mo bioavailability through time and with changing oxidation state. PMID:22993512

  14. Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures.

    PubMed

    Glass, Jennifer B; Axler, Richard P; Chandra, Sudeep; Goldman, Charles R

    2012-01-01

    Molybdenum (Mo) is an essential micronutrient for biological assimilation of nitrogen gas and nitrate because it is present in the cofactors of nitrogenase and nitrate reductase enzymes. Although Mo is the most abundant transition metal in seawater (107 nM), it is present in low concentrations in most freshwaters, typically <20 nM. In 1960, it was discovered that primary productivity was limited by Mo scarcity (2-4 nM) in Castle Lake, a small, meso-oligotrophic lake in northern California. Follow up studies demonstrated that Mo also limited primary productivity in lakes in New Zealand, Alaska, and the Sierra Nevada. Research in the 1970s and 1980s showed that Mo limited primary productivity and nitrate uptake in Castle Lake only during periods of the growing season when nitrate concentrations were relatively high because ammonium assimilation does not require Mo. In the years since, research has shifted to investigate whether Mo limitation also occurs in marine and soil environments. Here we review studies of Mo limitation of nitrogen assimilation in natural microbial communities and pure cultures. We also summarize new data showing that the simultaneous addition of Mo and nitrate causes increased activity of proteins involved in nitrogen assimilation in the hypolimnion of Castle Lake when ammonium is scarce. Furthermore, we suggest that meter-scale Mo and oxygen depth profiles from Castle Lake are consistent with the hypothesis that nitrogen-fixing cyanobacteria in freshwater periphyton communities have higher Mo requirements than other microbial communities. Finally, we present topics for future research related to Mo bioavailability through time and with changing oxidation state. PMID:22993512

  15. Genomic Sequencing of Single Microbial Cells from Environmental Samples

    SciTech Connect

    Ishoey, Thomas; Woyke, Tanja; Stepanauskas, Ramunas; Novotny, Mark; Lasken, Roger S.

    2008-02-01

    Recently developed techniques allow genomic DNA sequencing from single microbial cells [Lasken RS: Single-cell genomic sequencing using multiple displacement amplification, Curr Opin Microbiol 2007, 10:510-516]. Here, we focus on research strategies for putting these methods into practice in the laboratory setting. An immediate consequence of single-cell sequencing is that it provides an alternative to culturing organisms as a prerequisite for genomic sequencing. The microgram amounts of DNA required as template are amplified from a single bacterium by a method called multiple displacement amplification (MDA) avoiding the need to grow cells. The ability to sequence DNA from individual cells will likely have an immense impact on microbiology considering the vast numbers of novel organisms, which have been inaccessible unless culture-independent methods could be used. However, special approaches have been necessary to work with amplified DNA. MDA may not recover the entire genome from the single copy present in most bacteria. Also, some sequence rearrangements can occur during the DNA amplification reaction. Over the past two years many research groups have begun to use MDA, and some practical approaches to single-cell sequencing have been developed. We review the consensus that is emerging on optimum methods, reliability of amplified template, and the proper interpretation of 'composite' genomes which result from the necessity of combining data from several single-cell MDA reactions in order to complete the assembly. Preferred laboratory methods are considered on the basis of experience at several large sequencing centers where >70% of genomes are now often recovered from single cells. Methods are reviewed for preparation of bacterial fractions from environmental samples, single-cell isolation, DNA amplification by MDA, and DNA sequencing.

  16. Aquatic invertebrate sampling at selected outfalls in Operable Unit 1082; Technical areas 9, 11, 16 and 22

    SciTech Connect

    Cross, S.

    1995-09-01

    The Ecological Studies Team (EST) of ESH-20 at Los Alamos National Laboratory conducted preliminary aquatic sampling at outfalls within Operable Unit 1082 and nearby natural waterways. Eleven outfalls were sampled a total of eighteen times. Three natural waterways (upper Pajarito Canyon, Starmer`s Gulch, and Bulldog Spring) in the vicinity were sampled a total of six times. At most sites, EST recorded hydrological condition, physico-chemical parameters, wildlife uses, and vegetation. At each outfall with water and each natural waterway, EST collected an aquatic invertebrate sample which was analyzed by taxa composition, Wilhm`s biodiversity index, the community tolerance quotient (CTQ), and density. The physico-chemical parameters at most outfalls and natural waterways fell within the normal range of natural waters in the area. However, the outfalls are characterized by low biodiversity and severely stressed communities composed of a restricted number of taxa. The habitat at the other outfalls could probably support well-developed aquatic communities if sufficient water was available. At present, the hydrology at these outfalls is too slight and/or sporadic to support such a community in the foreseeable future. In contrast to the outfalls, the natural waterways of the area had greater densities of aquatic invertebrates, higher biodiversities, and lower CTQs.

  17. Draft Genome Sequences of Geomicrobium sp. Strains JCM 19037, JCM 19038, JCM 19039, and JCM 19055, Isolated from Aquatic Samples

    PubMed Central

    Nakahara, Tomomi; Zhang, Xiaochi; Taniyama, Shigeto; Arakawa, Osamu; Murase, Shinji; Nakata, Hideaki; Oshima, Kenshiro; Suda, Wataru; Kitamura, Keiko; Iida, Toshiya; Oshida, Yumi; Inoue, Tetsushi; Hongoh, Yuichi; Hattori, Masahira

    2014-01-01

    Haloalkaliphilic strains JCM 19037, JCM 19038, JCM 19039, and JCM 19055, closely related to Geomicrobium sediminis, were isolated from aquatic samples, and their draft genome sequences were determined. The genome information of these four strains will be useful for studies of their physiology and ecology. PMID:24948772

  18. Molecular ecology of aquatic microbes

    SciTech Connect

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  19. Characterisation of intact proteins in aquatic samples from the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Jones, V.; Ruddell, C. J.; Wainwright, G.; Rees, H. H.; Jaffe, R.; Penkman, K. E. H.; Collins, C. J.; Wolff, G. A.

    2003-04-01

    Dissolved organic nitrogen (DON) is the largest reservoir of reduced nitrogen in the oceans. Limited knowledge of the molecular composition of DON hinders our understanding of its cycling. The need to comprehend the DON cycle is nowadays more imperative than ever, as there is evidence that concentrations of nitrate are decreasing, while concentrations of DON are increasing in the surface ocean, as an indirect effect of global warming and hence stratification of the water column (Karl et al., 2001). Proteins typically account for 5-10% of DON. Recently, it has been suggested that certain, bacterially-derived, proteins found in the ocean are not as labile as was originally thought (e.g. Tanoue et al., 1995) and may therefore form a crucial part of the long term DON cycle. Here, we have applied gel electrophoresis in combination with mass spectrometry and amino acid enantiomer (D/L) analysis, to characterise proteins from aquatic samples and consider their origin. Samples were collected in the Florida Everglades at locations selected to represent an array of ecosystems, ranging from marsh water to marine coastal environments. Application of gel electrophoresis in combination with mass spectrometry revealed that each sample had a complex and characteristic protein distribution. Some proteins were common to more than one site. The bacterial protein of 48 kDa, previously reported as ubiquitous in the open ocean (e.g. Tanoue et al., 1995), was only present at one sampling location strongly affected by offshore currents. Amino acid enantiomer (D/L) analysis revealed that the bacterial input to amino acid nitrogen was an order of magnitude smaller than that reported for open ocean samples (McCarthy et al., 1998), although a trend towards higher bacterial input was observed from freshwater to marine sampling locations. We suggest that this is due to the presence of additional sources of protein to the DON pool, such as the higher plant vegetation, in freshwater and coastal

  20. Chemical Composition of Aquatic Dissolved Organic Matter in Five Boreal Forest Catchments Sampled in Spring and Fall Seasons

    SciTech Connect

    Schumacher,M.; Christl, I.; Vogt, R.; Barmettler, K.; Jacobsen, C.; Kretzschmar, R.

    2006-01-01

    The chemical composition and carbon isotope signature of aquatic dissolved organic matter (DOM) in five boreal forest catchments in Scandinavia were investigated. The DOM was isolated during spring and fall seasons using a reverse osmosis technique. The DOM samples were analyzed by elemental analysis, FT-IR, solid-state CP-MAS {sup 13}C-NMR, and C-1s NEXAFS spectroscopy. In addition, the relative abundance of carbon isotopes ({sup 12}C, {sup 13}C, {sup 14}C) in the samples was measured. There were no significant differences in the chemical composition or carbon isotope signature of the DOM sampled in spring and fall seasons. Also, differences in DOM composition between the five catchments were minor. Compared to reference peat fulvic and humic acids, all DOM samples were richer in O-alkyl carbon and contained less aromatic and phenolic carbon, as shown by FT-IR, {sup 13}C-NMR, and C-1s NEXAFS spectroscopy. The DOM was clearly enriched in {sup 14}C relative to the NBS oxalic acid standard of 1950, indicating that the aquatic DOM contained considerable amounts of organic carbon younger than about 50 years. The weight-based C:N ratios of 31 {+-} 6 and the {delta}{sup 13}Cvalues of -29 {+-} 2{per_thousand}indicate that the isolated DOM is of terrestrial rather than aquatic origin. We conclude that young, hydrophilic carbon compounds of terrestrial origin are predominant in the samples investigated, and that the composition of the aquatic DOM in the studied boreal forest catchments is rather stable during low to intermediate flow conditions.

  1. Estimating site occupancy rates for aquatic plants using spatial sub-sampling designs when detection probabilities are less than one

    USGS Publications Warehouse

    Nielson, Ryan M.; Gray, Brian R.; McDonald, Lyman L.; Heglund, Patricia J.

    2011-01-01

    Estimation of site occupancy rates when detection probabilities are <1 is well established in wildlife science. Data from multiple visits to a sample of sites are used to estimate detection probabilities and the proportion of sites occupied by focal species. In this article we describe how site occupancy methods can be applied to estimate occupancy rates of plants and other sessile organisms. We illustrate this approach and the pitfalls of ignoring incomplete detection using spatial data for 2 aquatic vascular plants collected under the Upper Mississippi River's Long Term Resource Monitoring Program (LTRMP). Site occupancy models considered include: a naïve model that ignores incomplete detection, a simple site occupancy model assuming a constant occupancy rate and a constant probability of detection across sites, several models that allow site occupancy rates and probabilities of detection to vary with habitat characteristics, and mixture models that allow for unexplained variation in detection probabilities. We used information theoretic methods to rank competing models and bootstrapping to evaluate the goodness-of-fit of the final models. Results of our analysis confirm that ignoring incomplete detection can result in biased estimates of occupancy rates. Estimates of site occupancy rates for 2 aquatic plant species were 19–36% higher compared to naive estimates that ignored probabilities of detection <1. Simulations indicate that final models have little bias when 50 or more sites are sampled, and little gains in precision could be expected for sample sizes >300. We recommend applying site occupancy methods for monitoring presence of aquatic species.

  2. INNOVATIVE TECHNOLOGY EVALUATION REPORT, SEDIMENT SAMPLING TECHNOLOGY, AQUATIC RESEARCH INSTRUMENTS, RUSSIAN PEAT BORER

    EPA Science Inventory

    The Russian Peat Borer designed and fabricated by Aquatic Research Instruments was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in April and May 1999 at sites in EPA Regions 1 and 5, respectively. In additio...

  3. Determination of the Biologically Relevant Sampling Depth for Terrestrial and Aquatic Ecological Risk Assessments (Final Report)

    EPA Science Inventory

    This technical paper provides defensible approximations for what the depth of the biologically active zone, or “biotic zone” is within certain environments. The methods used in this study differ somewhat between Part 1 (Terrestrial Biotic Zone) and Part 2 (Aquatic Biotic Zone). ...

  4. Sampling design for early detection of aquatic invasive species in Great Lakes ports

    EPA Science Inventory

    We evaluated a pilot adaptive monitoring program for aquatic invasive species (AIS) early detection in Lake Superior. The monitoring program is designed to detect newly-introduced fishes, and encompasses the lake’s three major ports (Duluth-Superior, Sault Ste. Marie, Thund...

  5. Catabolism of Tritiated Thymidine by Aquatic Microbial Communities and Incorporation of Tritium into RNA and Protein †

    PubMed Central

    Brittain, Andrew M.; Karl, David M.

    1990-01-01

    The incorporation of tritiated thymidine by five microbial ecosystems and the distribution of tritium into DNA, RNA, and protein were determined. All microbial assemblages tested exhibited significant labeling of RNA and protein (i.e., nonspecific labeling), as determined by differential acid-base hydrolysis. Nonspecific labeling was greatest in sediment samples, for which ≥95% of the tritium was recovered with the RNA and protein fractions. The percentage of tritium recovered in the DNA fraction ranged from 15 to 38% of the total labeled macromolecules recovered. Nonspecific labeling was independent of both incubation time and thymidine concentration over very wide ranges. Four different RNA hydrolysis reagents (KOH, NaOH, piperidine, and enzymes) solubilized tritium from cold trichloroacetic acid precipitates. High-pressure liquid chromatography separation of piperidine hydrolysates followed by measurement of isolated monophosphates confirmed the labeling of RNA and indicated that tritium was recovered primarily in CMP and AMP residues. We also evaluated the specificity of [2-3H]adenine incorporation into adenylate residues in both RNA and DNA in parallel with the [3H]thymidine experiments and compared the degree of nonspecific labeling by [3H]adenine with that derived from [3H]thymidine. Rapid catabolism of tritiated thymidine was evaluated by determining the disappearance of tritiated thymidine from the incubation medium and the appearance of degradation products by high-pressure liquid chromatography separation of the cell-free medium. Degradation product formation, including that of both volatile and nonvolatile compounds, was much greater than the rate of incorporation of tritium into stable macromolecules. The standard degradation pathway for thymidine coupled with utilization of Krebs cycle intermediates for the biosynthesis of amino acids, purines, and pyrimidines readily accounts for the observed nonspecific labeling in environmental samples. PMID

  6. Characterization of Chironomidae (Diptera) surface-floating pupal exuviae sample sort time from coastal tropical aquatic systems.

    PubMed

    Kranzfelder, Petra; Ferrington, Leonard C

    2015-03-01

    Many studies either ignore chironomids or only identify specimens to subfamily or tribe due to the associated difficulty and high cost with processing and identifying larvae. An efficient form of sampling chironomids involves collections of surface-floating pupal exuviae (SFPE). SFPE sample sorting has been shown to be more time efficient than traditional dip-net methods in temperate urban and peri-urban streams. However, no published studies have tested the time efficiency of SFPE sample sorting from coastal tropical aquatic systems. We calculated sort times for SFPE samples collected from a coastal tropical stream and an estuary and used multiple linear regression analysis to quantify the relationship between sample sort time and number of specimens, average body length of specimens, and dry weight of sample residue. The average amount of time required to sort very small samples was 69.3 min, while moderate samples averaged 85.6 min and large samples averaged 153.5 min. However, on average, small samples were nine times more time consuming per specimen than large samples. Additionally, dry weight of small-sized residue and the number of specimens contributed significantly to sort time. Therefore, we recommend collecting larger samples, which can be achieved by sampling for 20 min over 200-m reaches for stream sites and 500- to 1,000-m reaches for riverine and estuarine sites. Also, we suggest collecting during periods of low wave action and disturbance by boat wake to reduce the amount of sample residue. This research will enhance project planning and budgeting of future studies using the SFPE method to monitor coastal tropical aquatic systems. PMID:25647801

  7. Non-destructive sampling of rock-dwelling microbial communities using sterile adhesive tape.

    PubMed

    Cutler, Nick A; Oliver, Anna E; Viles, Heather A; Whiteley, Andrew S

    2012-12-01

    Building stone provides a habitat for an array of microorganisms, many of which have been demonstrated to have a deleterious effect on the appearance and/or structural integrity of stone masonry. It is essential to understand the composition and structure of stone-dwelling (lithobiontic) microbial communities if successful stone conservation strategies are to be applied, particularly in the face of global environmental change. Ideally, the techniques used to sample such assemblages should be non-destructive due to the sensitive conservation status of many stone buildings. This paper quantitatively assesses the performance of sterile adhesive tape as a non-destructive sampling technique and compares the results of tape sampling with an alternative, destructive, sampling method. We used DNA fingerprinting (TRFLP) to characterise the algal, fungal and bacterial communities living on a stone slab. Our results demonstrate that tape sampling may be used to collect viable quantities of microbial DNA from environmental samples. This technique is ideally suited to the sampling of microbial biofilms, particularly when these communities are dominated by green algae. It provides a good approximation of total community diversity (i.e. the aggregate diversity of epilithic and endolithic communities). Tape sampling is straightforward, rapid and cost effective. When combined with molecular analytical techniques, this sampling method has the potential to make a major contribution to efforts to understand the structure of lithobiontic microbial communities and our ability to predict the response of such communities to future environmental change. PMID:23022426

  8. PhyloChip™ microarray comparison of sampling methods used for coral microbial ecology.

    PubMed

    Kellogg, Christina A; Piceno, Yvette M; Tom, Lauren M; DeSantis, Todd Z; Zawada, David G; Andersen, Gary L

    2012-01-01

    Interest in coral microbial ecology has been increasing steadily over the last decade, yet standardized methods of sample collection still have not been defined. Two methods were compared for their ability to sample coral-associated microbial communities: tissue punches and foam swabs, the latter being less invasive and preferred by reef managers. Four colonies of star coral, Montastraea annularis, were sampled in the Dry Tortugas National Park (two healthy and two with white plague disease). The PhyloChip™ G3 microarray was used to assess microbial community structure of amplified 16S rRNA gene sequences. Samples clustered based on methodology rather than coral colony. Punch samples from healthy and diseased corals were distinct. All swab samples clustered closely together with the seawater control and did not group according to the health state of the corals. Although more microbial taxa were detected by the swab method, there is a much larger overlap between the water control and swab samples than punch samples, suggesting some of the additional diversity is due to contamination from water absorbed by the swab. While swabs are useful for noninvasive studies of the coral surface mucus layer, these results show that they are not optimal for studies of coral disease. PMID:22085912

  9. PhyloChip™ microarray comparison of sampling methods used for coral microbial ecology

    USGS Publications Warehouse

    Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.; DeSantis, Todd Z.; Zawada, David G.; Andersen, Gary L.

    2012-01-01

    Interest in coral microbial ecology has been increasing steadily over the last decade, yet standardized methods of sample collection still have not been defined. Two methods were compared for their ability to sample coral-associated microbial communities: tissue punches and foam swabs, the latter being less invasive and preferred by reef managers. Four colonies of star coral, Montastraea annularis, were sampled in the Dry Tortugas National Park (two healthy and two with white plague disease). The PhyloChip™ G3 microarray was used to assess microbial community structure of amplified 16S rRNA gene sequences. Samples clustered based on methodology rather than coral colony. Punch samples from healthy and diseased corals were distinct. All swab samples clustered closely together with the seawater control and did not group according to the health state of the corals. Although more microbial taxa were detected by the swab method, there is a much larger overlap between the water control and swab samples than punch samples, suggesting some of the additional diversity is due to contamination from water absorbed by the swab. While swabs are useful for noninvasive studies of the coral surface mucus layer, these results show that they are not optimal for studies of coral disease.

  10. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community.

    PubMed

    Xue, Zheng; Lu, Huijie; Liu, Wen-Tso

    2014-01-01

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community. PMID:25115516

  11. Microbial sampling variables and recreational water quality standards.

    PubMed Central

    Brenniman, G R; Rosenberg, S H; Northrop, R L

    1981-01-01

    A study was conducted at two beaches on Lake Erie to evaluate the water sampling design for the collection of several microbiological indicator organisms in relation to day, time, and location of collection. The concentrations of these organisms were generally found to vary significantly (P less than 0.05) by the specific time of day and day of weekend that collection took place. However, the concentrations of these organisms did not vary significantly (P greater than 0.05) at various locations in the bathing area. Future studies investigating the health effects of recreational water as related to microbiological variables should be designed to collect water samples at the specific time of day and day of weekend that an individual was exposed. In addition, sampling at various locations in the bathing area should probably be considered for those beaches having poor dispersion of fecal waste sources. PMID:6781366

  12. MICROBIAL SAMPLING VARIABLES AND RECREATIONAL WATER QUALITY STANDARDS

    EPA Science Inventory

    A study was conducted at two beaches on Lake Erie to evaluate the water sampling design for the collection of several microbiological indicator organisms in relation to day, time, and location of collection. The concentrations of these organisms were generally found to vary signi...

  13. DNA-based determination of microbial biomass suitable for frozen and alkaline soil samples

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail; Blagodatskaya, Evgeniya; Kogut, Boris; Kuzyakov, Yakov

    2015-04-01

    Microbial biomass is a sensitive indicator of changes due to soil management, long before other basic soil measures such as Corg or Ntot. Improvement of methods for determination of microbial biomass still remains relevant, and these methods should be correctly applicable for the soil samples being in various state. This study was designed to demonstrate the applicability of DNA-based determination of microbial biomass under conditions when the common basic approaches, namely chloroform fumigation-extraction (CFE) and substrate-induced respiration (SIR), are restricted by certain soil properties, experimental designs or research needs, e.g. in frozen, alkaline or carbonaceous soils. We compared microbial biomass determined by CFE, SIR and by DNA approaches in the range of neutral and slightly alkaline Chernozem and alkaline Calcisol of semi-arid climate. The samples of natural and agricultural ecosystems were taken throughout the soil profile from long-term static field experiments in the European part of Russia. Extraction and subsequent quantification of dsDNA revealed a strong agreement with SIR and CFE when analyzing the microbial biomass content in soils with pH below 8. The conversion factors (FDNA) from dsDNA to SIR-Cmic (5.10) and CFE-Cmic (4.41) were obtained by testing a range of the soil samples down to 1.5 m depth and indicated a good reproducibility of DNA-based estimations. In alkaline soils (pH > 8), CO2 retention due to alkaline pH and exchange with carbonates resulted in a strong underestimation of soil microbial biomass by SIR or even in the absence of any CO2 emission, especially at low absolute values of microbial biomass in subsoil. Correction of CO2 efflux by theoretical retention pH-dependent factors caused overestimation of SIR-biomass. In alkaline conditions, DNA extraction proved to be a reliable alternative for microbial biomass determination. Moreover, the DNA-based approach can serve as an excellent alternative enabling correct

  14. Variability of soil microbial properties: effects of sampling, handling and storage.

    PubMed

    Cernohlávková, Jitka; Jarkovský, Jirí; Nesporová, Michala; Hofman, Jakub

    2009-11-01

    We investigated the effect of soil spatial variability within the sampling site scale, the effects of sample sieving (1, 2 and 4mm), and storage conditions up to 32 weeks (wet at 4 degrees C, -20 degrees C and air dried) on microbial biomass C, respiration, ammonification and nitrification activities in arable, grassland and forest soil. In general, all results were dependent on soil type. Arable soil showed the highest spatial variability, followed by grassland and forest soil. Sieving did not cause large differences; however, higher biomass C and respiration activity were observed in the 1mm than in the 4mm fraction. Storage at 4 degrees C seemed to be the most appropriate up to 8 weeks showing only minor changes of microbial parameters. Freezing of soils resulted in large increase of respiration. Dried storage indicated disruption of microbial communities even after 2 weeks. PMID:19477519

  15. Adaptive autonomous sampling toward the study of microbial carbon and energy fluxes in a dynamic estuary

    NASA Astrophysics Data System (ADS)

    Herfort, L.; Seaton, C. M.; Wilkin, M.; Baptista, A. M.; Roman, B.; Preston, C. M.; Scholin, C. A.; Melançon, C.; Simon, H. M.

    2013-12-01

    An autonomous microbial sampling device was integrated with a long-term (endurance) environmental sensor system to investigate variation in microbial composition and activities related to complex estuarine dynamics. This integration was a part of ongoing efforts in the Center for Coastal Margin Observation and Prediction (CMOP) to study estuarine carbon and nitrogen cycling using an observation and prediction system (SATURN, http://www.stccmop.org/saturn) as foundational infrastructure. The two endurance stations fitted with physical and biogeochemical sensors that were used in this study are located in the SATURN observation network. The microbial sampler is the Environmental Sample Processor (ESP), a commercially available electromechanical/fluidic system designed for automated collection, preservation and in situ analyses of marine water samples. The primary goal of the integration was to demonstrate that the ESP, developed for sampling of pelagic oceanic environments, could be successfully deployed for autonomous sample acquisition in the highly dynamic and turbid Columbia River estuary. The ability of the ESP to collect material at both pre-determined times and automatically in response to local conditions was tested. Pre-designated samples were acquired at specific times to capture variability in the tidal cycle. Autonomous, adaptive sampling was triggered when conditions associated with specific water masses were detected in real-time by the SATURN station's sensors and then communicated to the ESP via the station computer to initiate sample collection. Triggering criteria were based on our understanding of estuary dynamics, as provided by the analysis of extensive archives of high-resolution, long-term SATURN observations and simulations. In this manner, we used the ESP to selectively sample various microbial consortia in the estuary to facilitate the study of ephemeral microbial-driven processes. For example, during the summer of 2013 the adaptive sampling

  16. Study to determine the aquatic biological effects on the Solid Rocket Booster (SRB). [technique for monitoring marine microbial fouling

    NASA Technical Reports Server (NTRS)

    Colwell, R. R.; Zachary, A.

    1979-01-01

    The surface of the reusable solid rocket boosters (SRB), which are jettisoned from the Shuttle Orbiter to parachute in the sea, are studied for colonization by marine life. Techniques for monitoring the marine microbial fouling of SRB materials are presented. An assessment of the nature and degree of the biofouling expected on the SRB materials in the recovery zone is reported. A determination of the degree and the effects of seasonal variation occurring on microbial fouling in the retrieval zone waters is made. The susceptibility of the SRB parachute recovery system to microbial fouling and biodeterioration is investigated. The development of scanning electron microscopy and epifluorescence microscopic observation techniques for rapid assessment of microbial fouling is discussed.

  17. Microbial diversity within Juan de Fuca ridge basement fluids sampled from oceanic borehole observatories

    NASA Astrophysics Data System (ADS)

    Jungbluth, S.; Bowers, R.; Lin, H.; Hsieh, C.; Cowen, J. P.; Rappé, M.

    2012-12-01

    Three generations of sampling and instrumentation platforms known as Circulation Obviation Retrofit Kit (CORK) observatories affixed to Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) boreholes are providing unrivaled access to fluids originating from 1.2-3.5 million-years (Myr) old basaltic crust of the eastern flank of the Juan de Fuca ridge. Borehole fluid samples obtained via a custom seafloor fluid pumping and sampling system coupled to CORK continuous fluid delivery lines are yielding critical insights into the biogeochemistry and nature of microbial life inhabiting the sediment-covered basement environment. Direct microscopic enumeration revealed microbial cell abundances that are 2-41% of overlying bottom seawater. Snapshots of basement fluid microbial diversity and community structure have been obtained through small subunit ribosomal RNA (SSU rRNA) gene cloning and sequencing from five boreholes that access a range of basement ages and temperatures at the sediment-basement interface. SSU rRNA gene clones were derived from four different CORK installations (1026B, 1301A, 1362A, and 1362B) accessing relatively warmer (65°C) and older (3.5 Myr) ridge flank, and one location (1025C) accessing relatively cooler (39°C) and younger (1.2 Myr) ridge flank, revealing that warmer basement fluids had higher microbial diversity. A sampling time-series collected from borehole 1301A has revealed a microbial community that is temporally variable, with the dominant lineages changing between years. Each of the five boreholes sampled contained a unique microbial assemblage, however, common members are found from both cultivated and uncultivated lineages within the archaeal and bacterial domains, including meso- and thermophilic microbial lineages involved with sulfur cycling (e.g Thiomicrospira, Sulfurimonas, Desulfocapsa, Desulfobulbus). In addition, borehole fluid environmental gene clones were also closely related to uncultivated lineages

  18. I Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader.

    PubMed

    Smart, Adam S; Tingley, Reid; Weeks, Andrew R; van Rooyen, Anthony R; McCarthy, Michael A

    2015-10-01

    Effective management of alien species requires detecting populations in the early stages of invasion. Environmental DNA (eDNA) sampling can detect aquatic species at relatively low densities, but few studies have directly compared detection probabilities of eDNA sampling with those of traditional sampling methods. We compare the ability of a traditional sampling technique (bottle trapping) and eDNA to detect a recently established invader, the smooth newt Lissotriton vulgaris vulgaris, at seven field sites in Melbourne, Australia. Over a four-month period, per-trap detection probabilities ranged from 0.01 to 0.26 among sites where L. v. vulgaris was detected, whereas per-sample eDNA estimates were much higher (0.29-1.0). Detection probabilities of both methods varied temporally (across days and months), but temporal variation appeared to be uncorrelated between methods. Only estimates of spatial variation were strongly correlated across the two sampling techniques. Environmental variables (water depth, rainfall, ambient temperature) were not clearly correlated with detection probabilities estimated via trapping, whereas eDNA detection probabilities were negatively correlated with water depth, possibly reflecting higher eDNA concentrations at lower water levels. Our findings demonstrate that eDNA sampling can be an order of magnitude more sensitive than traditional methods, and illustrate that traditional- and eDNA-based surveys can provide independent information on species distributions when occupancy surveys are conducted over short timescales. PMID:26591459

  19. Trends in monitoring pharmaceuticals and personal-care products in the aquatic environment by use of passive sampling devices

    USGS Publications Warehouse

    Mills, G.A.; Vrana, B.; Allan, I.; Alvarez, D.A.; Huckins, J.N.; Greenwood, R.

    2007-01-01

    The use of passive sampling in monitoring pharmaceuticals and personal-care products (PPCPs) in the aquatic environment is discussed. The utility of passive sampling methods for monitoring the fraction of heavy metals and the biologically available fraction of non-polar organic priority pollutants is recognized and these technologies are being used in surveys of water quality. These devices are used to measure the dissolved fraction and they can yield information that can be used in the development of risk assessments models. These devices can also be used to locate illegal damping and to monitor specific sources of input of PPCPs into the environment, or to monitor the effectiveness of water treatment processes in the removal of these compounds from wastewater. These devices can provide representative information at low cost which necessitate a combination of laboratory calibration and field studies for emerging pollutants.

  20. Activity and growth of microbial populations in pressurized deep-sea sediment and animal gut samples.

    PubMed

    Tabor, P S; Deming, J W; Ohwada, K; Colwell, R R

    1982-08-01

    Benthic animals and sediment samples were collected at deep-sea stations in the northwest (3,600-m depth) and southeast (4,300- and 5200-m depths) Atlantic Ocean. Utilization rates of [14C]glutamate (0.67 to 0.74 nmol) in sediment suspensions incubated at in situ temperatures and pressures (3 to 5 degrees C and 360, 430, or 520 atmospheres) were relatively slow, ranging from 0.09 to 0.39 nmol g-1 day-1, whereas rates for pressurized samples of gut suspensions varied widely, ranging from no detectable activity to a rapid rate of 986 nmol g-1 day-1. Gut flora from a holothurian specimen and a fish demonstrated rapid, barophilic substrate utilization, based on relative rates calculated for pressurized samples and samples held at 1 atm (101.325 kPa). Substrate utilization by microbial populations in several sediment samples was not inhibited by in situ pressure. Deep-sea pressures did not restrict growth, measured as doubling time, of culturable bacteria present in a northwest Atlantic sediment sample and in a gut suspension prepared from an abyssal scavenging amphipod. From the results of this study, it was concluded that microbial populations in benthic environments can demonstrate significant metabolic activity under deep-ocean conditions of temperature and pressure. Furthermore, rates of microbial activity in the guts of benthic macrofauna are potentially more rapid than in surrounding deep-sea sediments. PMID:6127054

  1. Activity and growth of microbial populations in pressurized deep-sea sediment and animal gut samples.

    PubMed Central

    Tabor, P S; Deming, J W; Ohwada, K; Colwell, R R

    1982-01-01

    Benthic animals and sediment samples were collected at deep-sea stations in the northwest (3,600-m depth) and southeast (4,300- and 5200-m depths) Atlantic Ocean. Utilization rates of [14C]glutamate (0.67 to 0.74 nmol) in sediment suspensions incubated at in situ temperatures and pressures (3 to 5 degrees C and 360, 430, or 520 atmospheres) were relatively slow, ranging from 0.09 to 0.39 nmol g-1 day-1, whereas rates for pressurized samples of gut suspensions varied widely, ranging from no detectable activity to a rapid rate of 986 nmol g-1 day-1. Gut flora from a holothurian specimen and a fish demonstrated rapid, barophilic substrate utilization, based on relative rates calculated for pressurized samples and samples held at 1 atm (101.325 kPa). Substrate utilization by microbial populations in several sediment samples was not inhibited by in situ pressure. Deep-sea pressures did not restrict growth, measured as doubling time, of culturable bacteria present in a northwest Atlantic sediment sample and in a gut suspension prepared from an abyssal scavenging amphipod. From the results of this study, it was concluded that microbial populations in benthic environments can demonstrate significant metabolic activity under deep-ocean conditions of temperature and pressure. Furthermore, rates of microbial activity in the guts of benthic macrofauna are potentially more rapid than in surrounding deep-sea sediments. PMID:6127054

  2. Community-Level Physiological Profiling of Microbial Communities in Constructed Wetlands: Effects of Sample Preparation.

    PubMed

    Button, Mark; Weber, Kela; Nivala, Jaime; Aubron, Thomas; Müller, Roland Arno

    2016-03-01

    Community-level physiological profiling (CLPP) using BIOLOG® EcoPlates™ has become a popular method for characterizing and comparing the functional diversity, functional potential, and metabolic activity of heterotrophic microbial communities. The method was originally developed for profiling soil communities; however, its usage has expanded into the fields of ecotoxicology, agronomy, and the monitoring and profiling of microbial communities in various wastewater treatment systems, including constructed wetlands for water pollution control. When performing CLPP on aqueous samples from constructed wetlands, a wide variety of sample characteristics can be encountered and challenges may arise due to excessive solids, color, or turbidity. The aim of this study was to investigate the impacts of different sample preparation methods on CLPP performed on a variety of aqueous samples covering a broad range of physical and chemical characteristics. The results show that using filter paper, centrifugation, or settling helped clarify samples for subsequent CLPP analysis, however did not do so as effectively as dilution for the darkest samples. Dilution was able to provide suitable clarity for the darkest samples; however, 100-fold dilution significantly affected the carbon source utilization patterns (CSUPs), particularly with samples that were already partially or fully clear. Ten-fold dilution also had some effect on the CSUPs of samples which were originally clear; however, the effect was minimal. Based on these findings, for this specific set of samples, a 10-fold dilution provided a good balance between ease of use, sufficient clarity (for dark samples), and limited effect on CSUPs. The process and findings outlined here can hopefully serve future studies looking to utilize CLPP for functional analysis of microbial communities and also assist in comparing data from studies where different sample preparation methods were utilized. PMID:26563413

  3. Microbial processes and communities in sediment samples along a transect across the Lusi mud volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Krueger, Martin; Straaten, Nontje; Mazzini, Adriano

    2015-04-01

    The Lusi eruption represents one of the largest ongoing sedimentary hosted geothermal systems. This eruption started in 2006 following to a 6.3 M earthquake that stroke Java Island. Since then it has been spewing boiling mud from a central crater with peaks reaching 180.000 m3 per day. Today an area of about 8 km2 is covered by locally dried mud breccia where a network of hundreds of satellite seeping pools is active. Numerous investigations focused on the study of offshore microbial colonies that commonly thrive at offshore methane seeps and mud volcanoes, however very little has been done for onshore seeping structures. Lusi represents a unique opportunity to complete a comprehensive study of onshore microbial communities fed by the seepage of CH4 and CO2 as well as of heavier liquid hydrocarbons originating from several km below the surface. We conducted a sampling campaign at the Lusi site collecting samples of fresh mud close to the erupting crater using a remote controlled drone. In addition we completed a transect towards outer parts of the crater to collect older, weathered samples for comparison. In all samples active microorganisms were present. The highest activities for CO2 and CH4 production as well as for CH4 oxidation and hydrocarbon degradation were observed in medium-age mud samples collected roughly in the middle of the transect. Rates for aerobic methane oxidation were high, as was the potential of the microbial communities to degrade hydrocarbons (oils, alkanes, BTEX tested). The data suggests a transition of microbial populations from an anaerobic, hydrocarbon-driven metabolism in fresher samples from center or from small seeps to more generalistic, aerobic microbial communities in older, more consolidated sediments. Currently, the microbial communities in the different sediment samples are analyzed using quantitative PCR and T-RFLP combined with MiSeq sequencing. This study represents an initial step to better understand onshore seepage

  4. Molecular analysis of microbial diversity in corrosion samples from energy transmission towers.

    PubMed

    Oliveira, Valéria M; Lopes-Oliveira, Patrícia F; Passarini, Michel R Z; Menezes, Claudia B A; Oliveira, Walter R C; Rocha, Adriano J; Sette, Lara D

    2011-04-01

    Microbial diversity in corrosion samples from energy transmission towers was investigated using molecular methods. Ribosomal DNA fragments were used to assemble gene libraries. Sequence analysis indicated 10 bacterial genera within the phyla Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. In the two libraries generated from corroded screw-derived samples, the genus Acinetobacter was the most abundant. Acinetobacter and Clostridium spp. dominated, with similar percentages, in the libraries derived from corrosion scrapings. Fungal clones were affiliated with 14 genera belonging to the phyla Ascomycota and Basidiomycota; of these, Capnobotryella and Fellomyces were the most abundant fungi observed. Several of the microorganisms had not previously been associated with biofilms and corrosion, reinforcing the need to use molecular techniques to achieve a more comprehensive assessment of microbial diversity in environmental samples. PMID:21563009

  5. Oral Samples as Non-Invasive Proxies for Assessing the Composition of the Rumen Microbial Community.

    PubMed

    Tapio, Ilma; Shingfield, Kevin J; McKain, Nest; Bonin, Aurélie; Fischer, Daniel; Bayat, Ali R; Vilkki, Johanna; Taberlet, Pierre; Snelling, Timothy J; Wallace, R John

    2016-01-01

    Microbial community analysis was carried out on ruminal digesta obtained directly via rumen fistula and buccal fluid, regurgitated digesta (bolus) and faeces of dairy cattle to assess if non-invasive samples could be used as proxies for ruminal digesta. Samples were collected from five cows receiving grass silage based diets containing no additional lipid or four different lipid supplements in a 5 x 5 Latin square design. Extracted DNA was analysed by qPCR and by sequencing 16S and 18S rRNA genes or the fungal ITS1 amplicons. Faeces contained few protozoa, and bacterial, fungal and archaeal communities were substantially different to ruminal digesta. Buccal and bolus samples gave much more similar profiles to ruminal digesta, although fewer archaea were detected in buccal and bolus samples. Bolus samples overall were most similar to ruminal samples. The differences between both buccal and bolus samples and ruminal digesta were consistent across all treatments. It can be concluded that either proxy sample type could be used as a predictor of the rumen microbial community, thereby enabling more convenient large-scale animal sampling for phenotyping and possible use in future animal breeding programs aimed at selecting cattle with a lower environmental footprint. PMID:26986467

  6. Oral Samples as Non-Invasive Proxies for Assessing the Composition of the Rumen Microbial Community

    PubMed Central

    Tapio, Ilma; Shingfield, Kevin J.; McKain, Nest; Bonin, Aurélie; Fischer, Daniel; Bayat, Ali R.; Vilkki, Johanna; Taberlet, Pierre; Snelling, Timothy J.; Wallace, R. John

    2016-01-01

    Microbial community analysis was carried out on ruminal digesta obtained directly via rumen fistula and buccal fluid, regurgitated digesta (bolus) and faeces of dairy cattle to assess if non-invasive samples could be used as proxies for ruminal digesta. Samples were collected from five cows receiving grass silage based diets containing no additional lipid or four different lipid supplements in a 5 x 5 Latin square design. Extracted DNA was analysed by qPCR and by sequencing 16S and 18S rRNA genes or the fungal ITS1 amplicons. Faeces contained few protozoa, and bacterial, fungal and archaeal communities were substantially different to ruminal digesta. Buccal and bolus samples gave much more similar profiles to ruminal digesta, although fewer archaea were detected in buccal and bolus samples. Bolus samples overall were most similar to ruminal samples. The differences between both buccal and bolus samples and ruminal digesta were consistent across all treatments. It can be concluded that either proxy sample type could be used as a predictor of the rumen microbial community, thereby enabling more convenient large-scale animal sampling for phenotyping and possible use in future animal breeding programs aimed at selecting cattle with a lower environmental footprint. PMID:26986467

  7. A Novel Analysis Method for Paired-Sample Microbial Ecology Experiments

    PubMed Central

    Vora, Suhani; Techtmann, Stephen M.; Fortney, Julian L.; Bastidas-Oyanedel, Juan R.; Rodríguez, Jorge; Hazen, Terry C.; Alm, Eric J.

    2016-01-01

    Many microbial ecology experiments use sequencing data to measure a community’s response to an experimental treatment. In a common experimental design, two units, one control and one experimental, are sampled before and after the treatment is applied to the experimental unit. The four resulting samples contain information about the dynamics of organisms that respond to the treatment, but there are no analytical methods designed to extract exactly this type of information from this configuration of samples. Here we present an analytical method specifically designed to visualize and generate hypotheses about microbial community dynamics in experiments that have paired samples and few or no replicates. The method is based on the Poisson lognormal distribution, long studied in macroecology, which we found accurately models the abundance distribution of taxa counts from 16S rRNA surveys. To demonstrate the method’s validity and potential, we analyzed an experiment that measured the effect of crude oil on ocean microbial communities in microcosm. Our method identified known oil degraders as well as two clades, Maricurvus and Rhodobacteraceae, that responded to amendment with oil but do not include known oil degraders. Our approach is sensitive to organisms that increased in abundance only in the experimental unit but less sensitive to organisms that increased in both control and experimental units, thus mitigating the role of “bottle effects”. PMID:27152415

  8. A Novel Analysis Method for Paired-Sample Microbial Ecology Experiments.

    PubMed

    Olesen, Scott W; Vora, Suhani; Techtmann, Stephen M; Fortney, Julian L; Bastidas-Oyanedel, Juan R; Rodríguez, Jorge; Hazen, Terry C; Alm, Eric J

    2016-01-01

    Many microbial ecology experiments use sequencing data to measure a community's response to an experimental treatment. In a common experimental design, two units, one control and one experimental, are sampled before and after the treatment is applied to the experimental unit. The four resulting samples contain information about the dynamics of organisms that respond to the treatment, but there are no analytical methods designed to extract exactly this type of information from this configuration of samples. Here we present an analytical method specifically designed to visualize and generate hypotheses about microbial community dynamics in experiments that have paired samples and few or no replicates. The method is based on the Poisson lognormal distribution, long studied in macroecology, which we found accurately models the abundance distribution of taxa counts from 16S rRNA surveys. To demonstrate the method's validity and potential, we analyzed an experiment that measured the effect of crude oil on ocean microbial communities in microcosm. Our method identified known oil degraders as well as two clades, Maricurvus and Rhodobacteraceae, that responded to amendment with oil but do not include known oil degraders. Our approach is sensitive to organisms that increased in abundance only in the experimental unit but less sensitive to organisms that increased in both control and experimental units, thus mitigating the role of "bottle effects". PMID:27152415

  9. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment.

    PubMed

    Booij, Kees; Robinson, Craig D; Burgess, Robert M; Mayer, Philipp; Roberts, Cindy A; Ahrens, Lutz; Allan, Ian J; Brant, Jan; Jones, Lisa; Kraus, Uta R; Larsen, Martin M; Lepom, Peter; Petersen, Jördis; Pröfrock, Daniel; Roose, Patrick; Schäfer, Sabine; Smedes, Foppe; Tixier, Céline; Vorkamp, Katrin; Whitehouse, Paul

    2016-01-01

    We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths and shortcomings of passive sampling are assessed for water, sediments, and biota. Passive water sampling is a suitable technique for measuring concentrations of freely dissolved compounds. This method yields results that are incompatible with the EU's quality standard definition in terms of total concentrations in water, but this definition has little scientific basis. Insufficient quality control is a present weakness of passive sampling in water. Laboratory performance studies and the development of standardized methods are needed to improve data quality and to encourage the use of passive sampling by commercial laboratories and monitoring agencies. Successful prediction of bioaccumulation based on passive sampling is well documented for organisms at the lower trophic levels, but requires more research for higher levels. Despite the existence of several knowledge gaps, passive sampling presently is the best available technology for chemical monitoring of nonpolar organic compounds. Key issues to be addressed by scientists and environmental managers are outlined. PMID:26619247

  10. Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters

    SciTech Connect

    Voordouw, G.; Shen, Y.; Harrington, C.S.; Teland, A.J. ); Jack, T.R. ); Westlake, W.S. )

    1993-12-01

    This paper presents a protocol for quantitative analysis of microbial communities by reverse sample genome probing is presented in which (i) whole community DNA is isolated and labeled in the presence of a known amount of an added internal standard and (ii) the resulting spiked reverse genome probe is hybridized with a master filter on which denatured genomic DNAs from bacterial standards isolated from the target environment were spotted in large amounts (up to 1,500 ng) in order to improve detection sensitivity. This protocol allowed reproducible fingerprinting of the microbial community in oil field production waters at 19 sites from which water and biofilm samples were collected. It appeared that selected sulfate-reducing bacteria were significantly enhanced in biofilms covering the metal surfaces in contact with the production waters.

  11. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs).

    PubMed

    Ren, Lijiao; Siegert, Michael; Ivanov, Ivan; Pisciotta, John M; Logan, Bruce E

    2013-05-01

    High-throughput microbial electrolysis cells (MECs) were used to perform treatability studies on many different refinery wastewater samples all having appreciably different characteristics, which resulted in large differences in current generation. A de-oiled refinery wastewater sample from one site (DOW1) produced the best results, with 2.1±0.2 A/m(2) (maximum current density), 79% chemical oxygen demand removal, and 82% headspace biological oxygen demand removal. These results were similar to those obtained using domestic wastewater. Two other de-oiled refinery wastewater samples also showed good performance, with a de-oiled oily sewer sample producing less current. A stabilization lagoon sample and a stripped sour wastewater sample failed to produce appreciable current. Electricity production, organics removal, and startup time were improved when the anode was first acclimated to domestic wastewater. These results show mini-MECs are an effective method for evaluating treatability of different wastewaters. PMID:23567698

  12. Understanding microbial/DOM interactions using fluorescence and flow cytometry

    NASA Astrophysics Data System (ADS)

    Fox, Bethany; Rushworth, Cathy; Attridge, John; Anesio, Alexandre; Cox, Tim; Reynolds, Darren

    2015-04-01

    The transformation and movement of dissolved organic carbon (DOC) within freshwater aquatic systems is an important factor in the global cycling of carbon. DOC within aquatic systems is known to underpin the microbial food web and therefore plays an essential role in supporting and maintaining the aquatic ecosystem. Despite this the interactions between bacteria and dissolved organic matter (DOM) are not well understood, although the literature indicates that the microbial processing of bioavailable DOM is essential during the production of autochthonous, labile, DOM. DOM can be broadly characterised by its fluorescing properties and Coble et al. (2014) define terrestrially derived DOM as exhibiting "peak C" fluorescence, whilst labile microbially derived DOM is defined as showing "peak T" fluorescence. Our work explores the microbial/DOM interactions by analysing aquatic samples using fluorescence excitation and emission matrices (EEMs) in conjunction with microbial consumption of dissolved oxygen. Environmental and synthetic water samples were subjected to fluorescence characterisation using both fluorescence spectroscopy and in situ fluorescence sensors (Chelsea Technologies Group Ltd.). PARAFAC analysis and peak picking were performed on EEMs and compared with flow cytometry data, used to quantify bacterial numbers present within samples. Synthetic samples were created using glucose, glutamic acid, nutrient-rich water and a standard bacterial seed. Synthetic samples were provided with terrestrially derived DOM via the addition of an aliquot of environmental water. Using a closed system approach, samples were incubated over time (up to a maximum of 20 days) and analysed at pre-defined intervals. The main focus of our work is to improve our understanding of microbial/DOM interactions and how these interactions affect both the DOM characteristics and microbial food web in freshwater aquatic systems. The information gained, in relation to the origin, microbial

  13. Methods for collection and analysis of aquatic biological and microbiological samples

    USGS Publications Warehouse

    Greeson, Phillip E., (Edited By); Ehlke, T.A.; Irwin, G.A.; Lium, B.W.; Slack, K.V.

    1977-01-01

    Chapter A4 contains methods used by the U.S. Geological Survey to collect, preserve, and analyze waters to determine their biological and microbiological properties. Part 1 discusses biological sampling and sampling statistics. The statistical procedures are accompanied by examples. Part 2 consists of detailed descriptions of more than 45 individual methods, including those for bacteria, phytoplankton, zooplankton, seston, periphyton, macrophytes, benthic invertebrates, fish and other vertebrates, cellular contents, productivity, and bioassays. Each method is summarized, and the application, interferences, apparatus, reagents, collection, analysis, calculations, reporting of results, precision and references are given. Part 3 consists of a glossary. Part 4 is a list of taxonomic references.

  14. Calibration of a passive sampling device for time-integrated sampling of hydrophilic herbicides in aquatic environments.

    PubMed

    Tran, Anh T K; Hyne, Ross V; Doble, P

    2007-03-01

    Two types of solid-phase materials, a styrenedivinylbenzene copolymer sorbent (embedded in a SDB-XC Empore disk) and a styrenedivinylbenzene copolymer sorbent modified with sulfonic acid functional groups (embedded in a SDB-RPS Empore disk), were compared as a receiving phase in a passive sampling device for monitoring polar pesticides. The SDB-XC Empore disk was selected for further evaluation, overlayed with either a polysulfone or a polyethersulfone diffusion membrane. The target herbicides included five nonionized herbicides (simazine, atrazine, diuron, clomazone, and metolachlor) and four phenoxy acid herbicides (dicamba, (2,4-dichlorophenoxy)acetic acid [2,4-D], (4-chloro-2-methylphenoxy)acetic acid [MCPA], and triclopyr) with log octanol/water partition coefficient (log K(OW)) values of less than three in water. Uptake of these herbicides generally was higher into a device constructed of a SDB-XC Empore disk as a receiving phase covered with a polyethersulfone membrane compared to a similar device covered with a polysulfone membrane. Using the device with a SDB-XC Empore disk covered with a polyethersulfone membrane, linear uptake of simazine, atrazine, diuron, clomazone, and metolachlor was observed for up to 21 d, and daily sampling rates of the herbicides from water in a laboratory flow-through system were determined. The uptake rate of each nonionized herbicide by the Empore disk-based passive sampler was linearly proportional to its concentration in the water, and the sampling rate was independent of the water concentrations over the 21-d period. Uptake of the phenoxy acid herbicides (2,4-D, MCPA, and triclopyr) obeyed first-order kinetics and rapidly reached equilibrium in the passive sampler after approximately 12 d of exposure. The Empore disk-based passive sampler displayed isotropic kinetics, with a release half-life for triclopyr of approximately 6 d. PMID:17373506

  15. Experimental Approach for Deep Proteome Measurements from Small-Scale Microbial Biomass Samples.

    SciTech Connect

    Thompson, Melissa R; Chourey, Karuna; Froelich, Jennifer M.; Erickson, Brian K; Verberkmoes, Nathan C; Hettich, Robert {Bob} L

    2008-01-01

    Many methods of microbial proteome characterizations require large quantities of cellular biomass (> 1-2 g) for sample preparation and protein identification. Our experimental approach differs from traditional techniques by providing the ability to identify the proteomic state of a microbe from a few milligrams of starting cellular material. The small-scale, guanidine-lysis method minimizes sample loss by achieving cellular lysis and protein digestion in a single tube experiment. For this experimental approach, the freshwater microbe Shewanella oneidensis MR-1 and the purple non-sulfur bacterium Rhodopseudomonas palustris CGA0010 were used as model organisms for technology development and evaluation. A 2-D LC-MS/MS comparison between a standard sonication lysis method and the small-scale guanidine-lysis techniques demonstrates that the guanidine-lysis method is more efficient with smaller sample amounts of cell pellet (i.e. down to 1 mg). The described methodology would enable deep proteome measurements from a few milliliters of confluent bacterial cultures. We also report a new protocol for efficient lysis from small amounts of natural biofilm samples for deep proteome measurements, which should greatly enhance the emerging field of microbial community proteomics. This straightforward sample boiling protocol is complementary to the small-scale guanidine-lysis technique, is amenable for small sample quantities, and requires no special reagents that might complicate the MS measurements.

  16. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment

    EPA Science Inventory

    We reviewed compliance monitoring requirements in the European Union (EU), the United States(USA), and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic (OSPAR), and evaluated if these are met by passive sampling methods for nonpola...

  17. Aquatic passive sampling of perfluorinated chemicals with polar organic chemical integrative sampler and environmental factors affecting sampling rate.

    PubMed

    Li, Ying; Yang, Cunman; Bao, Yijun; Ma, Xueru; Lu, Guanghua; Li, Yi

    2016-08-01

    A modified polar organic chemical integrative sampler (POCIS) could provide a convenient way of monitoring perfluorinated chemicals (PFCs) in water. In the present study, the modified POCIS was calibrated to monitor PFCs. The effects of water temperature, pH, and dissolved organic matter (DOM) on the sampling rate (R s) of PFCs were evaluated with a static renewal system. During laboratory validation over a 14-day period, the uptake kinetics of PFCs was linear with the POCIS. DOM and water temperature slightly influenced POCIS uptake rates, which is in consistent with the theory for uptake into POCIS. Therefore, within a narrow span of DOM and water temperatures, it was unnecessary to adjust the R s value for POCIS. Laboratory experiments were conducted with water over pH ranges of 3, 7, and 9. The R s values declined significantly with pH increase for PFCs. Although pH affected the uptake of PFCs, the effect was less than twofold. Application of the R s value to analyze PFCs with POCIS deployed in the field provided similar concentrations obtained from grab samples. PMID:27146548

  18. Contending with the Sampling Compromise of Time VS. Space: a Case Study in Aquatic Monitoring

    NASA Astrophysics Data System (ADS)

    Currie, W. J.

    2013-12-01

    In every field study, there is always a trade-off between the number of samples that can be analyzed and the temporal or spatial coverage. Project Quinte, is a 40 year collaborative study investigating the biological and physico-chemical changes to the Bay of Quinte (BOQ), Lake Ontario, which was prompted primarily by eutrophication concerns in the late 1960s. Sampling of water chemistry, plankton composition and primary productivity occurs biweekly, but at a small number of stations and only for the period of May-Oct. Spatially limited sites are chosen with the intent of being representative of a larger region, but the validity of this is often left untested. In order to discern the resulting ecological effects on the plankton community, the field data have been used with some success to show changes in nutrients, plankton composition and growth, but are complicated by other factors such as changes in phosphorous controls and the arrival of a series of invasive species (Dreissenid mussels, predatory cladocerans, round goby). The dataset is extensive but has large consistent gaps (late fall - early spring) and spatially limited sampling stations can mask trends. In this study we explore a combination of spatial and temporal analysis techniques that can overcome these limitations. Recently we have begun to use a towed sensor body containing a CTD and Laser Optical Plankton Counter (LOPC) to give both increased spatial resolution and sampling extent in an effort to determine the probability distribution and intermittency of both physical-chemical (e.g. temperature, turbidity) and biological (e.g. zooplankton and phytoplankton biomass) measures. These transects are used to compare the variability in phys-chem and plankton distributions with those collected at long-term stations to determine scales appropriate to the field monitoring program.

  19. Composition and stability of the microbial community inside the digestive tract of the aquatic crustacean Daphnia magna.

    PubMed

    Freese, Heike M; Schink, Bernhard

    2011-11-01

    Small filter-feeding zooplankton organisms like the cladoceran Daphnia spp. are key members of freshwater food webs. Although several interactions between Daphnia and bacteria have been investigated, the importance of the microbial communities inside Daphnia guts has been studied only poorly so far. In the present study, we characterised the bacterial community composition inside the digestive tract of a laboratory-reared clonal culture of Daphnia magna using 16S rRNA gene libraries and terminal-restriction length polymorphism fingerprint analyses. In addition, the diversity and stability of the intestinal microbial community were investigated over time, with different food sources as well as under starvation stress and death, and were compared to the community in the cultivation water. The diversity of the Daphnia gut microbiota was low. The bacterial community consisted mainly of Betaproteobacteria (e.g. Limnohabitans sp.), few Gammaproteobacteria (e.g. Pseudomonas sp.) and Bacteroidetes that were related to facultatively anaerobic bacteria, but did not contain typical fermentative or obligately anaerobic gut bacteria. Rather, the microbiota was constantly dominated by Limnohabitans sp. which belongs to the Lhab-A1 tribe (previously called R-BT065 cluster) that is abundant in various freshwaters. Other bacterial groups varied distinctly even under constant cultivation conditions. Overall, the intestinal microbial community did not reflect the community in the surrounding cultivation water and clustered separately when analysed via the Additive Main Effects and Multiplicative Interaction model. In addition, the microbiota proved to be stable also when Daphnia were exposed to bacteria associated with a different food alga. After starvation, the community in the digestive tract was reduced to stable members. After death of the host animals, the community composition in the gut changed distinctly, and formerly undetected bacteria were activated. Our results suggest

  20. Microbial quality of frozen Nile crocodile (Crocodylus niloticus) meat samples from three selected farms in Zimbabwe.

    PubMed

    Makanyanga, Tsitsi B; Mutema, Gideon; Mukarati, Norman L; Chikerema, Sylvester M; Makaya, Pious V; Musari, Shuvai; Matope, Gift

    2014-01-17

    Microbial quality of frozen Nile crocodile (Crocodylus niloticus) meat from three farms in Zimbabwe was assessed based on 2051 samples collected for pre-export testing during 2006 to 2011. Data were perused by season and year in terms of aerobic plate (APC), coliform (CC), Escherichia coli (ECC) and Listeria monocytogenes (LMC) counts and the presence of Salmonella spp. The log10-transformed data were compared among the farms and seasons using the Kruskal-Wallis test. Microbial quality of the samples was graded based on the EC No. 2073.2005 criteria for beef. The mean APC and CC for the crocodile meat differed significantly (P=0.000) among the farms with the highest APC (3.2±0.05 log10 cfu/g) and the lowest (2.7±0.05 log10 cfu/g) recorded from farms A and C, respectively. There were no significant differences (P>0.05) in ECC and LMC among the farms, while Salmonella spp. were only isolated from one farm. Although the microbial quality of frozen crocodile meat from these farms was generally within acceptable limits, the isolation of E. coli and Salmonella spp. is of public health concern. Thus, implementing of measures to control the pasteurizing process and to minimize bacterial contamination of crocodile meat after pasteurization need to be carefully considered. PMID:24291179

  1. Random Sampling Process Leads to Overestimation of β-Diversity of Microbial Communities

    PubMed Central

    Zhou, Jizhong; Jiang, Yi-Huei; Deng, Ye; Shi, Zhou; Zhou, Benjamin Yamin; Xue, Kai; Wu, Liyou; He, Zhili; Yang, Yunfeng

    2013-01-01

    ABSTRACT The site-to-site variability in species composition, known as β-diversity, is crucial to understanding spatiotemporal patterns of species diversity and the mechanisms controlling community composition and structure. However, quantifying β-diversity in microbial ecology using sequencing-based technologies is a great challenge because of a high number of sequencing errors, bias, and poor reproducibility and quantification. Herein, based on general sampling theory, a mathematical framework is first developed for simulating the effects of random sampling processes on quantifying β-diversity when the community size is known or unknown. Also, using an analogous ball example under Poisson sampling with limited sampling efforts, the developed mathematical framework can exactly predict the low reproducibility among technically replicate samples from the same community of a certain species abundance distribution, which provides explicit evidences of random sampling processes as the main factor causing high percentages of technical variations. In addition, the predicted values under Poisson random sampling were highly consistent with the observed low percentages of operational taxonomic unit (OTU) overlap (<30% and <20% for two and three tags, respectively, based on both Jaccard and Bray-Curtis dissimilarity indexes), further supporting the hypothesis that the poor reproducibility among technical replicates is due to the artifacts associated with random sampling processes. Finally, a mathematical framework was developed for predicting sampling efforts to achieve a desired overlap among replicate samples. Our modeling simulations predict that several orders of magnitude more sequencing efforts are needed to achieve desired high technical reproducibility. These results suggest that great caution needs to be taken in quantifying and interpreting β-diversity for microbial community analysis using next-generation sequencing technologies. PMID:23760464

  2. Sampling microbial aerosols. Summary report, 1 October 1985-30 September 1986

    SciTech Connect

    Chatigny, M.A.

    1986-09-01

    Collecting microbial aerosols is not substantially different from collecting any other airborne particulates. After collection, however, the processing of the sample is all important. These particles have life and the capacity to grow, multiply, and as parasites - cause undesirable effects in the multiplicity of hosts. No chemical or physical measurement(s) available today can assess all these characteristics. Even detection of their presence often requires the bio-amplification provided by the growth characteristics. Both indoor and outdoor air are seas of microbial particles. Depending on local conditions, concentrations of viable particles will range from a few per ft. to many thousands or even millions. Particles are nearly indistinguishable so that detecting a specific viable and infective type is a little like selecting a specific raindrop in a rainstorm. Only by careful choice of growth and assay procedures, can the microbes of interest be selected out of the collectate.

  3. Sample processing and cDNA preparation for microbial metatranscriptomics in complex soil communities.

    PubMed

    Carvalhais, Lilia C; Schenk, Peer M

    2013-01-01

    Soil presents one of the most complex environments for microbial communities as it provides many microhabitats that allow coexistence of thousands of species with important ecosystem functions. These include biomass and nutrient cycling, mineralization, and detoxification. Culture-independent DNA-based methods, such as metagenomics, have revealed operational taxonomic units that suggest a high diversity of microbial species and associated functions in soil. An emerging but technically challenging area to profile the functions of microorganisms and their activities is mRNA-based metatranscriptomics. Here, we describe issues and important considerations of soil sample processing and cDNA preparation for metatranscriptomics from bacteria and archaea and provide a set of methods that can be used in the required experimental steps. PMID:24060125

  4. Separation and analysis of trace volatile formaldehyde in aquatic products by a MoO₃/polypyrrole intercalative sampling adsorbent with thermal desorption gas chromatography and mass spectrometry.

    PubMed

    Ma, Yunjian; Zhao, Cheng; Zhan, Yisen; Li, Jianbin; Zhang, Zhuomin; Li, Gongke

    2015-05-01

    An in situ embedded synthesis strategy was developed for the preparation of a MoO3 /polypyrrole intercalative sampling adsorbent for the separation and analysis of trace volatile formaldehyde in aquatic products. Structural and morphological characteristics of the MoO3 /polypyrrole intercalative adsorbent were investigated by a series of characterization methods. The MoO3 /polypyrrole sampling adsorbent possessed a higher sampling capacity and selectivity for polar formaldehyde than commonly used commercial adsorbent Tenax TA. Finally, the MoO3 /polypyrrole adsorbent was packed in the thermal desorption tube that was directly coupled to gas chromatography with mass spectrometry for the analysis of trace volatile formaldehyde in aquatic products. Trace volatile formaldehyde from real aquatic products could be selectively sampled and quantified to be 0.43-6.6 mg/kg. The detection limit was achieved as 0.004 μg/L by this method. Good recoveries for spiked aquatic products were achieved in range of 75.0-108% with relative standard deviations of 1.2-9.0%. PMID:25677048

  5. Biomarker Analysis of Samples Visually Identified as Microbial in the Eocene Green River Formation: An Analogue for Mars.

    PubMed

    Olcott Marshall, Alison; Cestari, Nicholas A

    2015-09-01

    One of the major exploration targets for current and future Mars missions are lithofacies suggestive of biotic activity. Although such lithofacies are not confirmation of biotic activity, they provide a way to identify samples for further analyses. To test the efficacy of this approach, we identified carbonate samples from the Eocene Green River Formation as "microbial" or "non-microbial" based on the macroscale morphology of their laminations. These samples were then crushed and analyzed by gas chromatography/mass spectroscopy (GC/MS) to determine their lipid biomarker composition. GC/MS analysis revealed that carbonates visually identified as "microbial" contained a higher concentration of more diverse biomarkers than those identified as "non-microbial," suggesting that this could be a viable detection strategy for selecting samples for further analysis or caching on Mars. PMID:26317563

  6. Effect of short-term room temperature storage on the microbial community in infant fecal samples

    PubMed Central

    Guo, Yong; Li, Sheng-Hui; Kuang, Ya-Shu; He, Jian-Rong; Lu, Jin-Hua; Luo, Bei-Jun; Jiang, Feng-Ju; Liu, Yao-Zhong; Papasian, Christopher J.; Xia, Hui-Min; Deng, Hong-Wen; Qiu, Xiu

    2016-01-01

    Sample storage conditions are important for unbiased analysis of microbial communities in metagenomic studies. Specifically, for infant gut microbiota studies, stool specimens are often exposed to room temperature (RT) conditions prior to analysis. This could lead to variations in structural and quantitative assessment of bacterial communities. To estimate such effects of RT storage, we collected feces from 29 healthy infants (0–3 months) and partitioned each sample into 5 portions to be stored for different lengths of time at RT before freezing at −80 °C. Alpha diversity did not differ between samples with storage time from 0 to 2 hours. The UniFrac distances and microbial composition analysis showed significant differences by testing among individuals, but not by testing between different time points at RT. Changes in the relative abundance of some specific (less common, minor) taxa were still found during storage at room temperature. Our results support previous studies in children and adults, and provided useful information for accurate characterization of infant gut microbiomes. In particular, our study furnished a solid foundation and justification for using fecal samples exposed to RT for less than 2 hours for comparative analyses between various medical conditions. PMID:27226242

  7. Effect of short-term room temperature storage on the microbial community in infant fecal samples.

    PubMed

    Guo, Yong; Li, Sheng-Hui; Kuang, Ya-Shu; He, Jian-Rong; Lu, Jin-Hua; Luo, Bei-Jun; Jiang, Feng-Ju; Liu, Yao-Zhong; Papasian, Christopher J; Xia, Hui-Min; Deng, Hong-Wen; Qiu, Xiu

    2016-01-01

    Sample storage conditions are important for unbiased analysis of microbial communities in metagenomic studies. Specifically, for infant gut microbiota studies, stool specimens are often exposed to room temperature (RT) conditions prior to analysis. This could lead to variations in structural and quantitative assessment of bacterial communities. To estimate such effects of RT storage, we collected feces from 29 healthy infants (0-3 months) and partitioned each sample into 5 portions to be stored for different lengths of time at RT before freezing at -80 °C. Alpha diversity did not differ between samples with storage time from 0 to 2 hours. The UniFrac distances and microbial composition analysis showed significant differences by testing among individuals, but not by testing between different time points at RT. Changes in the relative abundance of some specific (less common, minor) taxa were still found during storage at room temperature. Our results support previous studies in children and adults, and provided useful information for accurate characterization of infant gut microbiomes. In particular, our study furnished a solid foundation and justification for using fecal samples exposed to RT for less than 2 hours for comparative analyses between various medical conditions. PMID:27226242

  8. Investigating the significance of dissolved organic contaminants in aquatic environments: coupling passive sampling with in vitro bioassays.

    PubMed

    Emelogu, Emmanuel S; Pollard, Pat; Robinson, Craig D; Smedes, Foppe; Webster, Lynda; Oliver, Ian W; McKenzie, Craig; Seiler, T B; Hollert, Henner; Moffat, Colin F

    2013-01-01

    We investigated the feasibility of coupling passive sampling and in vitro bioassay techniques for both chemical and ecotoxicological assessment of complex mixtures of organic contaminants in water. Silicone rubber passive sampling devices (SR-PSDs) were deployed for 8-9 weeks in four streams and an estuary of an agricultural catchment in North East (NE) Scotland. Extracts from the SR-PSDs were analysed for freely dissolved hydrophobic organic contaminants (HOCs) and screened for wide range of pesticides. The total concentrations of dissolved PAHs (∑PAH(40), parent and branched) in the water column of the catchment varied from 38 to 69 ng L(-1), whilst PCBs (∑PCB(32)) ranged 0.02-0.06 ng L(-1). A number and level of pesticides and acid/urea herbicides of varying hydrophobicity (logK(OW)s ~2.25 to ~5.31) were also detected in the SR extracts, indicating their occurrence in the catchment. The acute toxicity and EROD induction potentials of SR extracts from the study sites were evaluated with rainbow trout liver (Oncorhynchus mykiss; RTL-W1) cell line. Acute cytotoxicity was not observed in cells following 48 h exposure to the SR extracts using neutral red uptake assay as endpoint. But, on a sublethal level, for every site, statistically significant EROD activity was observed to some degree following 72 h exposure to extracts, indicating the presence of compounds with dioxin-like effect that are bioavailable to aquatic organisms in the water bodies of the catchment. Importantly, only a small fraction of the EROD induction could be attributed to the PAHs and PCBs that were determined. This preliminary study demonstrates that the coupling of silicone rubber passive sampling techniques with in vitro bioassays is feasible and offers a cost effective early warning signal on water quality deterioration. PMID:22850278

  9. Microbial Air and Surface Monitoring Results from International Space Station Samples

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark; Bruce, Rebekah J.; Castro, Victoria A.; Novikova, Natalia D.; Pierson, D. L.

    2005-01-01

    Over the course of long-duration spaceflight, spacecraft develop a microbial ecology that directly interacts with the crew of the vehicle. While most microorganisms are harmless or beneficial to the inhabitants of the vehicle, the presence of medically significant organisms appearing in this semi-closed environment could adversely affect crew health and performance. The risk of exposure of the crew to medically significant organisms during a mission is estimated using information gathered during nominal and contingency environmental monitoring. Analysis of the air and surface microbiota in the habitable compartments of the International Space Station (ISS) over the last four years indicate a high presence of Staphylococcus species reflecting the human inhabitants of the vehicle. Generally, air and surface microbial concentrations are below system design specifications, suggesting a lower risk of contact infection or biodegradation. An evaluation of sample frequency indicates a decrease in the identification of new species, suggesting a lower potential for unknown microorganisms to be identified. However, the opportunistic pathogen, Staphylococcus aureus, has been identified in 3 of the last 5 air samples and 5 of the last 9 surface samples. In addition, 47% of the coagulase negative Staphylococcus species that were isolated from the crew, ISS, and its hardware were found to be methicillin resistance. In combination, these observations suggest the potential of methicillin resistant infectious agents over time.

  10. Rapid Microbial Sample Preparation from Blood Using a Novel Concentration Device

    PubMed Central

    Boardman, Anna K.; Campbell, Jennifer; Wirz, Holger; Sharon, Andre; Sauer-Budge, Alexis F.

    2015-01-01

    Appropriate care for bacteremic patients is dictated by the amount of time needed for an accurate diagnosis. However, the concentration of microbes in the blood is extremely low in these patients (1–100 CFU/mL), traditionally requiring growth (blood culture) or amplification (e.g., PCR) for detection. Current culture-based methods can take a minimum of two days, while faster methods like PCR require a sample free of inhibitors (i.e., blood components). Though commercial kits exist for the removal of blood from these samples, they typically capture only DNA, thereby necessitating the use of blood culture for antimicrobial testing. Here, we report a novel, scaled-up sample preparation protocol carried out in a new microbial concentration device. The process can efficiently lyse 10 mL of bacteremic blood while maintaining the microorganisms’ viability, giving a 30‑μL final output volume. A suite of six microorganisms (Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli, Haemophilus influenzae, Pseudomonas aeruginosa, and Candida albicans) at a range of clinically relevant concentrations was tested. All of the microorganisms had recoveries greater than 55% at the highest tested concentration of 100 CFU/mL, with three of them having over 70% recovery. At the lowest tested concentration of 3 CFU/mL, two microorganisms had recoveries of ca. 40–50% while the other four gave recoveries greater than 70%. Using a Taqman assay for methicillin-sensitive S. aureus (MSSA)to prove the feasibility of downstream analysis, we show that our microbial pellets are clean enough for PCR amplification. PCR testing of 56 spiked-positive and negative samples gave a specificity of 0.97 and a sensitivity of 0.96, showing that our sample preparation protocol holds great promise for the rapid diagnosis of bacteremia directly from a primary sample. PMID:25675242

  11. Microbial profiling of South African acid mine water samples using next generation sequencing platform.

    PubMed

    Kamika, I; Azizi, S; Tekere, M

    2016-07-01

    This study monitored changes in bacterial and fungal structure in a mine water in a monthly basis over 4 months. Over the 4-month study period, mine water samples contained more bacteria (91.06 %) compared to fungi (8.94 %). For bacteria, mine water samples were dominated by Proteobacteria (39.14 to 65.06 %) followed by Firmicutes (26.34 to 28.9 %) in summer, and Cyanobacteria (27.05 %) in winter. In the collected samples, 18 % of bacteria could not be assigned to a phylum and remained unclassified suggesting hitherto vast untapped microbial diversity especially during winter. The fungal domain was the sole eukaryotic microorganism found in the mine water samples with unclassified fungi (68.2 to 91 %) as the predominant group, followed by Basidiomycota (6.9 to 27.8 %). The time of collection, which was linked to the weather, had higher impact on bacterial community than fungal community. The bacterial operational taxonomic units (OTUs) ranged from 865 to 4052 over the 4-month sampling period, while fungal OTUs varied from 73 to 249. The diversity indices suggested that the bacterial community inhabiting the mine water samples were more diverse than the fungal community. The canonical correspondence analysis (CCA) results highlighted that the bacterial community variance had the strongest relationship with water temperature, conductivity, pH, and dissolved oxygen (DO) content, as compared to fungi and water characteristics, had the greatest contribution to both bacterial and fungal community variance. The results provided the relationships between microbial community and environmental variables in the studied mining sites. PMID:26980100

  12. Diffusive sampling and measurement of microbial volatile organic compounds in indoor air.

    PubMed

    Araki, A; Eitaki, Y; Kawai, T; Kanazawa, A; Takeda, M; Kishi, R

    2009-10-01

    Microbial volatile organic compounds (MVOC), chemicals emitted from various microorganisms, in indoor air have been of concern in recent years. For large field studies, diffusive samplers are widely used to measure indoor environments. Since the sampling rate of a sampler is a fundamental parameter to calculate concentration, the sampling rates of eight MVOC with diffusive samplers were determined experimentally using a newly developed water-bubbling method: air was supplied to the MVOC-solutions and the vapor collected in an exposure bag, where diffusive and active samplers were placed in parallel for comparison. Correlations between the diffusive and active samplings gave good linear regressions. The sampling rates were 30-35 ml/min and the detection limits were 0.044-0.178 microg/m(3), as determined by GC/MS analysis. Application of the sampling rates in indoor air was validated by parallel sampling of the diffusive and active sampling method. 5% Propan-2-ol/CS(2) was the best solvent to desorb the compounds from absorbents. The procedure was applied to a field study in 41 dwellings. The most frequently detected compounds were hexan-2-one and heptan-2-one, with 97.5% detection rates and geometric mean values of 0.470 and 0.302 microg/m(3), respectively. This study shows that diffusive samplers are applicable to measure indoor MVOC levels. Practical Implications At present, there are still limited reports on indoor Microbial Volatile Organic Compounds (MVOC) levels in general dwellings and occupants' health. Compared with active sampling methods, air sampling using a diffusive sampler is particularly advantageous for use in large field studies due to its smallness, light-size, easy-handling, and cost-effectiveness. In this study, sampling rates of selected MVOC of the diffusive sampler were determined using the water-bubbling method: generating gases by water-bubbling and exposing the diffusive and active samplers at the same time. The obtained sampling rates

  13. Ancient pathogen DNA in archaeological samples detected with a Microbial Detection Array.

    PubMed

    Devault, Alison M; McLoughlin, Kevin; Jaing, Crystal; Gardner, Shea; Porter, Teresita M; Enk, Jacob M; Thissen, James; Allen, Jonathan; Borucki, Monica; DeWitte, Sharon N; Dhody, Anna N; Poinar, Hendrik N

    2014-01-01

    Ancient human remains of paleopathological interest typically contain highly degraded DNA in which pathogenic taxa are often minority components, making sequence-based metagenomic characterization costly. Microarrays may hold a potential solution to these challenges, offering a rapid, affordable, and highly informative snapshot of microbial diversity in complex samples without the lengthy analysis and/or high cost associated with high-throughput sequencing. Their versatility is well established for modern clinical specimens, but they have yet to be applied to ancient remains. Here we report bacterial profiles of archaeological and historical human remains using the Lawrence Livermore Microbial Detection Array (LLMDA). The array successfully identified previously-verified bacterial human pathogens, including Vibrio cholerae (cholera) in a 19th century intestinal specimen and Yersinia pestis ("Black Death" plague) in a medieval tooth, which represented only minute fractions (0.03% and 0.08% alignable high-throughput shotgun sequencing reads) of their respective DNA content. This demonstrates that the LLMDA can identify primary and/or co-infecting bacterial pathogens in ancient samples, thereby serving as a rapid and inexpensive paleopathological screening tool to study health across both space and time. PMID:24603850

  14. Microbial evaluation of Spanish potato omelette and cooked meat samples in University restaurants.

    PubMed

    Soriano, J M; Rico, H; Moltó, J C; Mañes, J

    2000-09-01

    The focus of this study was to evaluate the microbial quality of Spanish potato omelette and cooked meat samples including pork loin, chicken croquettes, long pork sausage, chicken breast, and meatballs from University restaurants. Microbiological analyses of Spanish potato omelette and cooked meat samples resulted in aerobic plate counts from <1.00 to 2.90 and from <1.00 to 6.04 log10 CFU g(-1), respectively. Total coliforms ranged from <3 to 43 most probable number (MPN) g(-1) and from <3 to >2,400 MPN g(-1) for Spanish potato omelette and meat products, respectively. Escherichia coli, coagulase-positive staphylococci, and Lancefield group-D streptococci were detected in 1.7%, 3.5%, and 12.9% of Spanish potato omelette samples, respectively. For cooked meat samples, 8.8%, 7.6%, and 24.6% contained E. coli, coagulase-positive staphylococci, and Lancefield group-D streptococci, respectively. E. coli O157:H7, Salmonella spp., and Shigella spp. were not detected. Klebsiella pneumoniae, Klebsiella oxytoca, Citrobacter freundii, Enterobacter cloacae, and Serratia spp. were isolated from Spanish potato omelette samples. For cooked meat samples, C. freundii, E. cloacae, and Aeromonas hydrophila were detected. The results suggest that some handling practices should require more attention, and as a consequence, a hazard analysis and critical control point program should be developed and implemented. PMID:10983805

  15. Microbial counts and particulate matter levels in roadside air samples under skytrain stations, Bangkok, Thailand.

    PubMed

    Luksamijarulkul, Pipat; Kongtip, Pornpimol

    2010-05-01

    In conditions with heavy traffic and crowds of people on roadside areas under skytrain stations in Bangkok, the natural air ventilation may be insufficient and air quality may be poor. A study of 350 air samples collected from the roadside, under skytrain stations in Bangkok, was carried out to assess microbial counts (210 air samples) and particulate matter (PM10) levels (140 samples). The results reveal the mean +/- standard deviation bacterial counts and fungal counts were 406.8 +/- 302.7 cfu/m3 and 128.9 +/- 89.7 cfu/m3, respectively. The PM10 level was 186.1 +/- 188.1 microg/m3. When compared to recommended levels, 4.8% of air samples (10/210 samples) had bacterial counts more than recommended levels (> 1,000 cfu/ m3) and 27.1% (38/140 samples) had PM10 levels more than recommended levels (> 120 microg/m3). These may affect human health, especially of street venders who spend most of their working time in these areas. PMID:20578558

  16. Sampling of intestinal microbiota and targeted amplification of bacterial 16S rRNA genes for microbial ecologic analysis

    PubMed Central

    Tong, Maomeng; Jacobs, Jonathan P.; McHardy, Ian H.; Braun, Jonathan

    2015-01-01

    Dysbiosis of host-associated commensal microbiota is emerging as an important factor in risk and phenotype of immunologic, metabolic, and behavioral diseases. Appropriate collection and pre-processing of biospecimens from humans or mice is necessary for accurate analysis of microbial composition and functional state. Methods to sample intestinal luminal and mucosal microbiota from humans and mice, and to profile microbial phylogenetic composition using 16S rRNA sequencing are presented here. Data generated using this protocol can be used for downstream quantitative analysis of microbial ecology. PMID:25367129

  17. A heteroskedastic error covariance matrix estimator using a first-order conditional autoregressive Markov simulation for deriving asympotical efficient estimates from ecological sampled Anopheles arabiensis aquatic habitat covariates

    PubMed Central

    Jacob, Benjamin G; Griffith, Daniel A; Muturi, Ephantus J; Caamano, Erick X; Githure, John I; Novak, Robert J

    2009-01-01

    Background Autoregressive regression coefficients for Anopheles arabiensis aquatic habitat models are usually assessed using global error techniques and are reported as error covariance matrices. A global statistic, however, will summarize error estimates from multiple habitat locations. This makes it difficult to identify where there are clusters of An. arabiensis aquatic habitats of acceptable prediction. It is therefore useful to conduct some form of spatial error analysis to detect clusters of An. arabiensis aquatic habitats based on uncertainty residuals from individual sampled habitats. In this research, a method of error estimation for spatial simulation models was demonstrated using autocorrelation indices and eigenfunction spatial filters to distinguish among the effects of parameter uncertainty on a stochastic simulation of ecological sampled Anopheles aquatic habitat covariates. A test for diagnostic checking error residuals in an An. arabiensis aquatic habitat model may enable intervention efforts targeting productive habitats clusters, based on larval/pupal productivity, by using the asymptotic distribution of parameter estimates from a residual autocovariance matrix. The models considered in this research extends a normal regression analysis previously considered in the literature. Methods Field and remote-sampled data were collected during July 2006 to December 2007 in Karima rice-village complex in Mwea, Kenya. SAS 9.1.4® was used to explore univariate statistics, correlations, distributions, and to generate global autocorrelation statistics from the ecological sampled datasets. A local autocorrelation index was also generated using spatial covariance parameters (i.e., Moran's Indices) in a SAS/GIS® database. The Moran's statistic was decomposed into orthogonal and uncorrelated synthetic map pattern components using a Poisson model with a gamma-distributed mean (i.e. negative binomial regression). The eigenfunction values from the spatial

  18. Determination of ATP-activity as a useful tool for monitoring microbial load in aqueous humidifier samples.

    PubMed

    Liebers, Verena; Bachmann, Dieter; Franke, Gabriele; Freundt, Susanne; Stubel, Heike; Düser, Maria; Kendzia, Benjamin; Böckler, Margret; Brüning, Thomas; Raulf, Monika

    2015-03-01

    Air humidifier water tanks are potential sources of microbial contaminants. Aerosolization of these contaminants is associated with the development of airway and lung diseases; therefore, implementation of preventive strategies including monitoring of the microbial contamination is recommended. So far, culture-based methods that include measuring colony forming units (CFU) are widely used to monitor microbial load. However, these methods are time consuming and have considerable drawbacks. As a result, alternative methods are needed which provide not only clear and accurate results concerning microbial load in water samples, but are also rapid and easy to use in the field. This paper reports on a rapid test for ATP quantification as an alternative method for microbial monitoring, including its implementation, validation and application in the field. For this purpose, 186 water samples were characterized with different methods, which included ATP analysis, culture-based methods, endotoxin activity (common and rapid test), pyrogenic activity and number of particles. Half of the samples was measured directly in the field and the other half one day later in the laboratory. The results of both tests are highly correlated. Furthermore, to check how representative the result from one sample of a water source is, a second sample of the same water tank were collected and measured. Bioluminescence results of the undiluted samples covered a range between 20 and 25,000 relative light units (RLU) and correlated with the results obtained using the other methods. The highest correlation was found between bioluminescence and endotoxin activity (rs=0.79) as well as pyrogenic activity (rs=0.75). Overall, the results of this study indicate that ATP measurement using bioluminescence is a suitable tool to obtain rapid, reproducible and sensitive information on the microbial load of water samples, and is suitable to use in the field. However, to use ATP measurement as an indicator of

  19. METHODS FOR AQUATIC TOXICITY IDENTIFICATION EVALUATIONS: PHASE III TOXICITY CONFIRMATION PROCEDURES FOR SAMPLES EXHIBITING ACUTE AND CHRONIC TOXICITY

    EPA Science Inventory

    In 1989, the guidance document for acutely toxic effluents titled Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures was published (EPA, 1989D)This manual and its companion documents (EPA, 1991A; EPA, 1992; EPA, 1993A) are intended...

  20. Microbial and Antibiotic Susceptibility Profile among Clinical Samples of Patients with Acute Leukemia

    PubMed Central

    Abdollahi, Alireza; Hakimi, Faezeh; Doomanlou, Mahsa; Azadegan, Azadeh

    2016-01-01

    Introduction: Preventing and starting early treatment of infections in patients whose immunity system is weak due to malignancies like leukemia can reduce mortality. This study aimed to determine microbial and antibiotic resistance patterns in clinical samples of patients with acute leukemia to start early treatment before the results of clinical tests are known. Subjects and Methods: In this cross-sectional study, the clinical samples of all patients hospitalized with the diagnosis of acute leukemia were cultured and their antibiogram was evaluated. Then, the data were analyzed by SPSS 18 based on the objectives of the study. Results: Of a total of 2,366 samples, 18.95% were reported to be positive blood samples, 22.96% were reported to be urine samples and 36% wound samples. E. coli was the most common bacteria isolated from the blood and urine cultures (34% in blood, 32% in urine culture) while Staphylococcus Aureus was the most common in the wound culture (35%). The highest level of sensitivity in the organisms with positive blood culture was to Ciprofloxacin, while in positive urine and wound culture was to Imipenem. The highest resistance in blood, urine and wound culture was to Cotrimoxazole. Conclusion: According to results obtained from this study, it is necessary to conduct appropriate studies on this issue in specific conditions in our country. The findings of this study can be used in clinics for more accurate diagnosis, more effective treatment before the results of clinical tests are known and also for prevention of infection in cancer patients. PMID:27252805

  1. Microbial Inactivation for Safe and Rapid Diagnostics of Infectious Samples ▿ †

    PubMed Central

    Sagripanti, Jose-Luis; Hülseweh, Birgit; Grote, Gudrun; Voß, Luzie; Böhling, Katrin; Marschall, Hans-Jürgen

    2011-01-01

    The high risk associated with biological threat agents dictates that any suspicious sample be handled under strict surety and safety controls and processed under high-level containment in specialized laboratories. This study attempted to find a rapid, reliable, and simple method for the complete inactivation of a wide range of pathogens, including spores, vegetative bacteria, and viruses, while preserving microbial nucleic acid fragments suitable for PCRs and proteinaceous epitopes for detection by immunoassays. Formaldehyde, hydrogen peroxide, and guanidium thiocyanate did not completely inactivate high titers of bacterial spores or viruses after 30 min at 21°C. Glutaraldehyde and sodium hypochlorite showed high microbicidal activity but obliterated the PCR or enzyme-linked immunosorbent assay (ELISA) detection of bacterial spores or viruses. High-level inactivation (more than 6 log10) of bacterial spores (Bacillus atrophaeus), vegetative bacteria (Pseudomonas aeruginosa), an RNA virus (the alphavirus Pixuna virus), or a DNA virus (the orthopoxvirus vaccinia virus) was attained within 30 min at 21°C by treatment with either peracetic acid or cupric ascorbate with minimal hindrance of subsequent PCR tests and immunoassays. The data described here should provide the basis for quickly rendering field samples noninfectious for further analysis under lower-level containment and considerably lower cost. PMID:21856830

  2. Supercritical fluid extraction and ultra performance liquid chromatography of respiratory quinones for microbial community analysis in environmental and biological samples.

    PubMed

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-01-01

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA) detector was successfully applied to the simultaneous determination of ubiquinones (UQ) and menaquinones (MK) without tedious pretreatment. Supercritical carbon dioxide (scCO(2)) extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost) and biological samples (swine and Japanese quail feces). PMID:22391598

  3. Negative Effects of Sample Pooling on PCR-based Estimates of Soil Microbial Richness and Community Structure.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we examined the effect of various pooling strategies on the characterization of soil microbial community composition and phylotype richness estimates. Automated ribosomal intergenic spacer analysis (ARISA) profiles were determined from soil samples that were (i) unpooled (extracted an...

  4. Understanding carbon regulation in aquatic systems - Bacteriophages as a model.

    PubMed

    Sanmukh, Swapnil; Khairnar, Krishna; Paunikar, Waman; Lokhande, Satish

    2015-01-01

    The bacteria and their phages are the most abundant constituents of the aquatic environment, and so represent an ideal model for studying carbon regulation in an aquatic system. The microbe-mediated interconversion of bioavailable organic carbon (OC) into dissolved organic carbon (DOC) by the microbial carbon pump (MCP) has been suggested to have the potential to revolutionize our view of carbon sequestration. It is estimated that DOC is the largest pool of organic matter in the ocean and, though a major component of the global carbon cycle, its source is not yet well understood. A key element of the carbon cycle is the microbial conversion of DOC into inedible forms. The primary aim of this study is to understand the phage conversion from organic to inorganic carbon during phage-host interactions. Time studies of phage-host interactions under controlled conditions reveal their impact on the total carbon content of the samples and their interconversion of organic and inorganic carbon compared to control samples. A total organic carbon (TOC) analysis showed an increase in inorganic carbon content by 15-25 percent in samples with bacteria and phage compared to samples with bacteria alone. Compared to control samples, the increase in inorganic carbon content was 60-70-fold in samples with bacteria and phage, and 50-55-fold for samples with bacteria alone. This study indicates the potential impact of phages in regulating the carbon cycle of aquatic systems. PMID:26213615

  5. Understanding carbon regulation in aquatic systems - Bacteriophages as a model

    PubMed Central

    Sanmukh, Swapnil; Khairnar, Krishna; Paunikar, Waman; Lokhande, Satish

    2015-01-01

    The bacteria and their phages are the most abundant constituents of the aquatic environment, and so represent an ideal model for studying carbon regulation in an aquatic system. The microbe-mediated interconversion of bioavailable organic carbon (OC) into dissolved organic carbon (DOC) by the microbial carbon pump (MCP) has been suggested to have the potential to revolutionize our view of carbon sequestration. It is estimated that DOC is the largest pool of organic matter in the ocean and, though a major component of the global carbon cycle, its source is not yet well understood. A key element of the carbon cycle is the microbial conversion of DOC into inedible forms. The primary aim of this study is to understand the phage conversion from organic to inorganic carbon during phage-host interactions. Time studies of phage-host interactions under controlled conditions reveal their impact on the total carbon content of the samples and their interconversion of organic and inorganic carbon compared to control samples. A total organic carbon (TOC) analysis showed an increase in inorganic carbon content by 15-25 percent in samples with bacteria and phage compared to samples with bacteria alone. Compared to control samples, the increase in inorganic carbon content was 60-70-fold in samples with bacteria and phage, and 50-55-fold for samples with bacteria alone. This study indicates the potential impact of phages in regulating the carbon cycle of aquatic systems. PMID:26213615

  6. Trace fossils of microbial colonization on Mars: Criteria for search and for sample return

    NASA Technical Reports Server (NTRS)

    Friedmann, E. I.

    1988-01-01

    The recent discovery of microbial trace-fossil formation in the frigid Ross Desert of Antarctica suggests that early primitive life on Mars may have left behind similar signatures. These trace fossils are apparent as chemical or physical changes in rock (or sediment) structure (or chemistry) caused by the activity of organisms. Life on Mars, if it ever existed, almost certainly did not evolve above the level of microorganisms, and this should be considered in search for fossil life. For the reasons detailed here, microbial trace fossils seem to be a better and more realistic target for search than would be true microbial fossils (remnants of cellular structures).

  7. Trace fossils of microbial colonization on Mars: Criteria for search and for sample return

    NASA Astrophysics Data System (ADS)

    Friedmann, E. I.

    The recent discovery of microbial trace-fossil formation in the frigid Ross Desert of Antarctica suggests that early primitive life on Mars may have left behind similar signatures. These trace fossils are apparent as chemical or physical changes in rock (or sediment) structure (or chemistry) caused by the activity of organisms. Life on Mars, if it ever existed, almost certainly did not evolve above the level of microorganisms, and this should be considered in search for fossil life. For the reasons detailed here, microbial trace fossils seem to be a better and more realistic target for search than would be true microbial fossils (remnants of cellular structures).

  8. Quality Sample Collection, Handling, and Preservation for an Effective Microbial Forensics Program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The collection and preservation of microbial forensic evidence are paramount to effeceint and successful investigation and attribution. If evidence, when available, is not collected, degrades, or is contaminated during collection, handling, transport, or storage, the downstream characterization and...

  9. Toxicity test using medaka (Oryzias latipes) early fry and concentrated sample water as an index of aquatic habitat condition.

    PubMed

    Yamashita, H; Haribowo, R; Sekine, M; Oda, N; Kanno, A; Shimono, Y; Shitao, W; Higuchi, T; Imai, T; Yamamoto, K

    2011-08-01

    The aim of the present study was to show a relationship between toxicity of 100-fold concentrated water and aquatic habitat conditions. Environmental waters are 100-fold concentrated with solid-phase extraction. Medaka early fry was exposed in these waters for 48 h. The number of death and disorder was counted at 1, 2, 3, 6, 12, 24, and 48 h; toxicity was expressed using inverse median effect time and median lethal time (ET (50)(-1), LT (50)(-1)). Average score per taxon (ASPT) for benthic animals and Index of Biotic Integrity (IBI) for fish were applied as indices of aquatic habitat conditions. The results of toxicity test were compared using ASPT and IBI. The different levels of toxicity were detected in the seawater of Japan. At the Husino River area, toxicity cannot be detected. In rivers, high toxicity appeared at urban districts without sewerage. By Spearman coefficient, the relationship between toxicity and high biochemical oxygen demand (BOD) were obtained. BOD household wastewater contains hydrophobic toxic matters; otherwise, seawater in industrial area does not show clear relationship between toxicity and chemical oxygen demand. Gas chromatography to mass spectrometry simultaneous analysis database may give an answer for the source of toxicity, but further test is required. Ratio of clear stream benthic animal sharply decreased over 0.25 of LT (50)(-1) or 0.5 of ET (50)(-1). Tolerant fish becomes dominant over 0.3 of LT (50)(-1) or 0.5-1.0 of ET (50)(-1). By Pearson product-moment correlation coefficient, correlation coefficient between toxicity and ASPT was obtained at -0.773 (ET (50)(-1)) and -0.742 (LT (50)(-1)) at 1 % level of significance with a high negative correlation. Toxicity (LT (50)(-1) ) has strong correlation with the ratio of tolerant species. By Pearson product-moment correlation coefficient, correlation coefficient between toxicity and IBI obtained were -0.155 (ET (50)(-1)) and -0.190 (LT (50)(-1)) at 1 % level of significance and has a

  10. Microbial Indicator Profiling of Fresh Produce and Environmental Samples from Farms and Packing Facilities in Northern Mexico.

    PubMed

    Heredia, Norma; Caballero, Cindy; Cárdenas, Carmen; Molina, Karina; García, Rafael; Solís, Luisa; Burrowes, Vanessa; Bartz, Faith E; de Aceituno, Anna Fabiszewski; Jaykus, Lee-Ann; García, Santos; Leon, Juan

    2016-07-01

    To compare microbiological indicator and pathogen contamination among different types of fresh produce and environmental samples along the production chain, 636 samples of produce (rinsates from cantaloupe melons, jalapeño peppers, and tomatoes) and environmental samples (rinsates from hands of workers, soil, and water) were collected at four successive steps in the production process (from the field before harvest through the packing facility) on 11 farms in northern Mexico during 2011 and 2012. Samples were assayed for enteric pathogens (Escherichia coli O157:H7, other Shiga toxigenic E. coli, Salmonella, and Listeria monocytogenes) and microbial indicators (coliforms, other E. coli strains, and Enterococcus spp.). Salmonella was the only pathogen detected; it was found in one preharvest jalapeño sample (detection limits: 0.0033 CFU/ml in produce and hand samples, 0.0013 CFU/ml in water, and 0.04 CFU/g in soil). Microbial indicator profiles for produce, worker hands, and soil from jalapeño and tomato farms were similar, but cantaloupe farm samples had higher indicator levels (P < 0.05 for all comparisons) on fruit (6.5, 2.8, and 7.2 log CFU per fruit) and hands (6.6, 3.1, and 7.1 log CFU per hand) for coliforms, E. coli, and Enterococcus, respectively, and lower E. coli levels in soil (<1 CFU/g). In water from tomato farms, E. coli indicators were significantly more prevalent (70 to 89% of samples were positive; P = 0.01 to 0.02), and geometric mean levels were higher (0.3 to 0.6 log CFU/100 ml) than those in cantaloupe farm water (32 to 38% of samples were positive, geometric mean <1 CFU/100 ml). Microbial indicators were present during all production steps, but prevalence and levels were generally highest at the final on-farm production step (the packing facility) (P < 0.03 for significant comparisons). The finding that microbial contamination on produce farms is influenced by produce type and production step can inform the design of effective approaches to

  11. Habitability Conditions Constrained by Martian Meteorites: Implications for Microbial Colonization and Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Shivak, J. N.; Banerjee, N.; Flemming, R. L.

    2013-12-01

    similarities to that of Nakhla. Fractures within Los Angeles and Zagami are fresh and unweathered, and no secondarily deposited phases were found. The environmental conditions suggested by the mineral phases in the Nakhla, Los Angeles, and Zagami meteorites can be used to assess their potential to act as microbial substrates for possible Martian life. Future Mars sample return missions have been proposed to involve the selection and caching of rock samples for return to the Earth. This will require intensive prioritization of samples on the surface and a need to vector towards areas with higher potential for astrobiologically interesting samples. The comparative methodologies developed here with Martian meteorites can be applied to unknown samples recovered from the surface of Mars to aid in mission operations and logistics. [1] J.C. Bridges et al., 2006. Journal of the Geological Society, London 163:229-251. [2] G. Southam et al., 2007. Treatise on Geophysics: Planets and Moons 10:421-438. [3] J.C. Bridges et al., 2001 Space Science Reviews 96: 365-392. [4] I.H. Thorseth et al., 1992. Geochimica et Cosmochimica Acta 56:845-850. [5] H.G. Changela et al., 2011 Meteoritics & Planetary Science 45(12):1847-1867.

  12. AQUATIC ECOSYSTEMS,

    EPA Science Inventory

    Aquatic ecosystems are a vital part of the urban water cycle (and of urban areas more broadly), and, if healthy, provide a range of goods and services valued by humans (Meyer 1997). For example, aquatic ecosystems (e.g., rivers, lakes, wetlands) provide potable water, food resou...

  13. Comparative analysis of chemical and microbial profiles in estuarine sediments sampled from Kanto and Tohoku regions in Japan.

    PubMed

    Asakura, Taiga; Date, Yasuhiro; Kikuchi, Jun

    2014-06-01

    Estuarine environments accumulate large quantities of organic matter from land masses adjoining the sea, and this is consumed as part of the detritus cycle. These environments are rich in biodiversity, and their ecosystem services greatly benefit humans. However, the estuarine environments have complicated aqueous ecosystems, thus the comprehensive evaluation of biotic interactions and stability is difficult using conventional hypothesis-driven approaches. In this study, we describe the advancement of an evaluation strategy for characterizing and visualizing the interactions and relationships among the microorganisms and chemicals in sediment ecosystems of estuarine environments by a combination of organic matter and elemental profiling as well as microbial profiling. We also report our findings from a comparative analysis of estuarine and coastal environmental samples collected from the Kanto and Tsunami-affected Tohoku regions in Japan. The microbial-gated correlation deployed from the coefficient of microbiota from the correlation matrix and network analysis was able to visualize and summarize the different relationships among the microbial communities, sediment organic matter, and element profiles based on geographical differences in Kanto and Tohoku regions. We demonstrated remarkable estuarine eutrophication in the Kanto region based on abundant sediment polypeptide signals and water nitrogen ions catabolized by microbiota. Therefore, we propose that this data-driven approach is a powerful method for analyzing, visualizing, and evaluating complex metabolic dynamics and networks in sediment microbial ecosystems and can be applied to other environmental ecosystems, such as deep sea sediments and agronomic and forest soils. PMID:24889864

  14. MICROBIAL ACTIVITY IN SUBSURFACE SAMPLES BEFORE AND DURING NITRATE-ENHANCED BIOREMEDIATION

    EPA Science Inventory

    A study was conducted to determine the microbial activity of a site contaminated with JP-4 jet fuel, before and during nitrate-enhanced bioremediation. amples at three depths from six different locations were collected aseptically under anaerobic conditions before and during trea...

  15. Epigenetic Segregation of Microbial Genomes from Complex Samples Using Restriction Endonucleases HpaII and McrB.

    PubMed

    Liu, Guohong; Weston, Christopher Q; Pham, Long K; Waltz, Shannon; Barnes, Helen; King, Paula; Sphar, Dan; Yamamoto, Robert T; Forsyth, R Allyn

    2016-01-01

    We describe continuing work to develop restriction endonucleases as tools to enrich targeted genomes of interest from diverse populations. Two approaches were developed in parallel to segregate genomic DNA based on cytosine methylation. First, the methyl-sensitive endonuclease HpaII was used to bind non-CG methylated DNA. Second, a truncated fragment of McrB was used to bind CpG methylated DNA. Enrichment levels of microbial genomes can exceed 100-fold with HpaII allowing improved genomic detection and coverage of otherwise trace microbial genomes from sputum. Additionally, we observe interesting enrichment results that correlate with the methylation states not only of bacteria, but of fungi, viruses, a protist and plants. The methods presented here offer promise for testing biological samples for pathogens and global analysis of population methylomes. PMID:26727463

  16. Epigenetic Segregation of Microbial Genomes from Complex Samples Using Restriction Endonucleases HpaII and McrB

    PubMed Central

    Liu, Guohong; Weston, Christopher Q.; Pham, Long K.; Waltz, Shannon; Barnes, Helen; King, Paula; Sphar, Dan; Yamamoto, Robert T.; Forsyth, R. Allyn

    2016-01-01

    We describe continuing work to develop restriction endonucleases as tools to enrich targeted genomes of interest from diverse populations. Two approaches were developed in parallel to segregate genomic DNA based on cytosine methylation. First, the methyl-sensitive endonuclease HpaII was used to bind non-CG methylated DNA. Second, a truncated fragment of McrB was used to bind CpG methylated DNA. Enrichment levels of microbial genomes can exceed 100-fold with HpaII allowing improved genomic detection and coverage of otherwise trace microbial genomes from sputum. Additionally, we observe interesting enrichment results that correlate with the methylation states not only of bacteria, but of fungi, viruses, a protist and plants. The methods presented here offer promise for testing biological samples for pathogens and global analysis of population methylomes. PMID:26727463

  17. Microbial diversity in bioaerosol samples causing ODTS compared to reference bioaerosol samples as measured using Illumina sequencing and MALDI-TOF.

    PubMed

    Madsen, Anne Mette; Zervas, Athanasios; Tendal, Kira; Nielsen, Jeppe Lund

    2015-07-01

    The importance of the microbial diversity of bioaerosols in relation to occupational exposure and work related health symptoms is not known. The aim of this paper is to gain knowledge on the bacterial and fungal communities in dust causing organic dust toxic syndrome (ODTS) and in reference dust not causing ODTS. Bacterial and fungal communities were described in personal exposure samples from grass seed workers developing ODTS, in dust generated from grass seeds causing ODTS and in dust generated from reference seeds not causing ODTS. Amplicon sequencing of the bacterial 16S rRNA gene and the fungal ITS region, as well as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) were used for identification of fungi and bacteria in personal exposure samples and in dust samples from grass seeds causing ODTS and in dust from reference grass seeds. Furthermore, activities of enzymes were measured in the same samples. The sequencing data revealed more than 150 bacterial and 25 fungal genera present in each sample. Streptomyces spp., Aspergillus fumigatus and Rhizopus microsporus were dominating in the dust causing ODTS but not in the reference dust. The dustiness in terms of Mucor sp. and R. microsporus were 100-1000 times higher for problematic seeds compared to reference seeds. The bacterial species in the dust causing ODTS included pathogenic species such as Klebsiella pneumonia and Streptomyces pneumonia, and it contained increased concentrations of total protein, serine protease, chitinase, and β-glucosidase. Twenty-three bacterial genera covered more than 50% of the total reads in the personal and problematic seed dust. These 23 genera accounted for less than 7% of the total reads in the reference seed dust. The microbial community of the dust from the problematic seeds showed great similarities to that from the personal air samples from the workers. In conclusion, we have shown for the first time a shift in the microbial community in aerosol

  18. Application of Multi-Species Microbial Bioassay to Assess the Effects of Engineered Nanoparticles in the Aquatic Environment: Potential of a Luminous Microbial Array for Toxicity Risk Assessment (LumiMARA) on Testing for Surface-Coated Silver Nanoparticles.

    PubMed

    Jung, YounJung; Park, Chang-Beom; Kim, Youngjun; Kim, Sanghun; Pflugmacher, Stephan; Baik, Seungyun

    2015-07-01

    Four different manufactured surface-coated silver nanoparticles (AgNPs) with coating of citrate, tannic acid, polyethylene glycol, and branched polyethylenimine were used in this study. The toxicity of surface-coated AgNPs was evaluated by a luminous microbial array for toxicity risk assessment (LumiMARA) using multi-species of luminescent bacteria. The salt stability of four different AgNPs was measured by UV absorbance at 400 nm wavelength, and different surface-charged AgNPs in combination with bacteria were observed using scanning electron microscopy (SEM). Both branched polyethylenimine (BPEI)-AgNPs and polyethylene glycol (PEG)-AgNPs were shown to be stable with 2% NaCl (non-aggregation), whereas both citrate (Cit)-AgNPs and tannic acid (Tan)-AgNPs rapidly aggregated in 2% NaCl solution. The values of the 50% effective concentration (EC50) for BPEI-AgNPs in marine bacteria strains (1.57 to 5.19 mg/L) were lower than those for the other surface-coated AgNPs (i.e., Cit-AgNPs, Tan-AgNPs, and PEG-AgNPs). It appears that the toxicity of AgNPs could be activated by the interaction of positively charged AgNPs with the negatively charged bacterial cell wall from the results of LumiMARA. LumiMARA for toxicity screening has advantageous compared to a single-species bioassay and is applicable for environmental samples as displaying ranges of assessment results. PMID:26184279

  19. Application of Multi-Species Microbial Bioassay to Assess the Effects of Engineered Nanoparticles in the Aquatic Environment: Potential of a Luminous Microbial Array for Toxicity Risk Assessment (LumiMARA) on Testing for Surface-Coated Silver Nanoparticles

    PubMed Central

    Jung, YounJung; Park, Chang-Beom; Kim, Youngjun; Kim, Sanghun; Pflugmacher, Stephan; Baik, Seungyun

    2015-01-01

    Four different manufactured surface-coated silver nanoparticles (AgNPs) with coating of citrate, tannic acid, polyethylene glycol, and branched polyethylenimine were used in this study. The toxicity of surface-coated AgNPs was evaluated by a luminous microbial array for toxicity risk assessment (LumiMARA) using multi-species of luminescent bacteria. The salt stability of four different AgNPs was measured by UV absorbance at 400 nm wavelength, and different surface-charged AgNPs in combination with bacteria were observed using scanning electron microscopy (SEM). Both branched polyethylenimine (BPEI)-AgNPs and polyethylene glycol (PEG)-AgNPs were shown to be stable with 2% NaCl (non-aggregation), whereas both citrate (Cit)-AgNPs and tannic acid (Tan)-AgNPs rapidly aggregated in 2% NaCl solution. The values of the 50% effective concentration (EC50) for BPEI-AgNPs in marine bacteria strains (1.57 to 5.19 mg/L) were lower than those for the other surface-coated AgNPs (i.e., Cit-AgNPs, Tan-AgNPs, and PEG-AgNPs). It appears that the toxicity of AgNPs could be activated by the interaction of positively charged AgNPs with the negatively charged bacterial cell wall from the results of LumiMARA. LumiMARA for toxicity screening has advantageous compared to a single-species bioassay and is applicable for environmental samples as displaying ranges of assessment results. PMID:26184279

  20. Microbial community analysis and identification of alternative host-specific fecal indicators in fecal and river water samples using pyrosequencing.

    PubMed

    Jeong, Ju-Yong; Park, Hee-Deung; Lee, Kyong-Hee; Weon, Hang-Yeon; Ka, Jong-Ok

    2011-08-01

    It is important to know the comprehensive microbial communities of fecal pollution sources and receiving water bodies for microbial source tracking. Pyrosequencing targeting the V1-V3 hypervariable regions of the 16S rRNA gene was used to investigate the characteristics of bacterial and Bacteroidales communities in major fecal sources and river waters. Diversity analysis indicated that cow feces had the highest diversities in the bacterial and Bacteroidales group followed by the pig sample, with human feces having the lowest value. The Bacteroidales, one of the potential fecal indicators, totally dominated in the fecal samples accounting for 31%-52% of bacterial sequences, but much less (0.6%) in the river water. Clustering and Venn diagram analyses showed that the human sample had a greater similarity to the pig sample in the bacterial and Bacteroidales communities than to samples from other hosts. Traditional fecal indicators, i.e., Escherichia coli, were detected in the human and river water samples at very low rates and Clostridium perfringens and enterococci were not detected in any samples. Besides the Bacteroidales group, some microorganisms detected in the specific hosts, i.e., Parasutterella excrementihominis, Veillonella sp., Dialister invisus, Megamonas funiformis, and Ruminococcus lactaris for the human and Lactobacillus amylovorus and Atopostipes sp. for the pig, could be used as potential host-specific fecal indicators. These microorganisms could be used as multiple fecal indicators that are not dependent on the absence or presence of a single indicator. Monitoring for multiple indicators that are highly abundant and host-specific would greatly enhance the effectiveness of fecal pollution source tracking. PMID:21887641

  1. The impact of different methods of DNA extraction on microbial community measures of BALF samples based on metagenomic data

    PubMed Central

    Wen, Yan; Xiao, Fei; Wang, Chen; Wang, Zhen

    2016-01-01

    Purpose: It is a challenge to find a better microorganisms DNA extraction method for samples taken from the lower airways for metagenomic sequencing, as the concentrations of bacteria in the alveoli and small airways are likely considerably less than that of the mouth or lower digestive tract. Background DNA from the host, and extraction biases can significantly interfere with microbiota assessment and increase the cost of sequencing. This study aimed to develop an optimized DNA extraction method, which would enable a higher concentration of microbial DNA to be extracted from the samples. Methods: We compared the microbiota profiles of the lower airway communities in twelve individuals with IIP. DNA was extracted using three different extraction methods: QIAamp UCP PurePathogen Blood Kit named kit3 in this study, QIAamp UCP Pathogen Mini Kit named kit2, and QIAamp DNA Microbiome Kit named kit1. DNA libraries were constructed according to the manufacturer’s instructions (Illumina). The same workflows from Illumina were used to perform cluster generation, template hybridization, isothermal amplification, linearization, blocking, denaturing, and hybridization of the sequencing primers. Raw data was uploaded to MG-RAST v3 and analyzed. Results: A great number of bacterium inhabits the lower airways of patients with IIP, though there is no airway infection. More bacterium was found in mouth or upper airway. DNA concentrations of DNA samples isolated with kit1 with Benzonase were significantly lower than those isolated with the other two kits for BALF and mouthwash samples. Moreover, the ratio of human genome in clean reads of samples isolated with kit1 with Benzonase was remarkably smaller than those isolated with kit2 and kit3. The relative abundance of total bacteria, the total number of taxa, and the relative abundance of taxa in BALF samples as opposed to mouthwash samples with kit1 were significantly higher than for those extracted the other kits. Conclusion: A

  2. Virioplankton: Viruses in Aquatic Ecosystems†

    PubMed Central

    Wommack, K. Eric; Colwell, Rita R.

    2000-01-01

    The discovery that viruses may be the most abundant organisms in natural waters, surpassing the number of bacteria by an order of magnitude, has inspired a resurgence of interest in viruses in the aquatic environment. Surprisingly little was known of the interaction of viruses and their hosts in nature. In the decade since the reports of extraordinarily large virus populations were published, enumeration of viruses in aquatic environments has demonstrated that the virioplankton are dynamic components of the plankton, changing dramatically in number with geographical location and season. The evidence to date suggests that virioplankton communities are composed principally of bacteriophages and, to a lesser extent, eukaryotic algal viruses. The influence of viral infection and lysis on bacterial and phytoplankton host communities was measurable after new methods were developed and prior knowledge of bacteriophage biology was incorporated into concepts of parasite and host community interactions. The new methods have yielded data showing that viral infection can have a significant impact on bacteria and unicellular algae populations and supporting the hypothesis that viruses play a significant role in microbial food webs. Besides predation limiting bacteria and phytoplankton populations, the specific nature of virus-host interaction raises the intriguing possibility that viral infection influences the structure and diversity of aquatic microbial communities. Novel applications of molecular genetic techniques have provided good evidence that viral infection can significantly influence the composition and diversity of aquatic microbial communities. PMID:10704475

  3. Metal measurement in aquatic environments by passive sampling methods: Lessons learning from an in situ intercomparison exercise.

    PubMed

    Dabrin, A; Ghestem, J-P; Uher, E; Gonzalez, J-L; Allan, I J; Schintu, M; Montero, N; Balaam, J; Peinerud, E; Miège, C; Coquery, M

    2016-01-01

    Passive sampling devices (PS) are widely used for pollutant monitoring in water, but estimation of measurement uncertainties by PS has seldom been undertaken. The aim of this work was to identify key parameters governing PS measurements of metals and their dispersion. We report the results of an in situ intercomparison exercise on diffusive gradient in thin films (DGT) in surface waters. Interlaboratory uncertainties of time-weighted average (TWA) concentrations were satisfactory (from 28% to 112%) given the number of participating laboratories (10) and ultra-trace metal concentrations involved. Data dispersion of TWA concentrations was mainly explained by uncertainties generated during DGT handling and analytical procedure steps. We highlight that DGT handling is critical for metals such as Cd, Cr and Zn, implying that DGT assembly/dismantling should be performed in very clean conditions. Using a unique dataset, we demonstrated that DGT markedly lowered the LOQ in comparison to spot sampling and stressed the need for accurate data calculation. PMID:26589099

  4. A passive sampling method for detecting analgesics, psycholeptics, antidepressants and illicit drugs in aquatic environments in the Czech Republic.

    PubMed

    Fedorova, G; Randak, T; Golovko, O; Kodes, V; Grabicova, K; Grabic, R

    2014-07-15

    The goal of this study was to assess the bioavailable concentrations of analgesics, psycholeptics, antidepressants and illicit drugs in the surface waters of the Czech Republic. All of the sampling sites are located within the most important water quality monitoring profiles at the Czech Hydrometeorological Institute. The total concentrations of the compounds ranged from 463 to 6,447 ng POCIS(-1) (Polar Organic Chemical Integrative Sampler). Carbamazepine (196-2,690 ng POCIS(-1)) and tramadol (160-2,250 ng POCIS(-1)) were the most abundant compounds at every site. The most polluted sites were those that received communal wastewater effluent and had a low dilution factor (ratio of wastewater effluent and river flow). The aqueous concentrations of the target compounds were estimated using sampling rate values obtained during a field calibration experiment. Patterns in the aqueous concentrations of the compounds (after back calculation from POCIS extracts) and the POCIS concentrations are different, possibly leading to discrepancies between the toxicity assessments conducted using POCIS extracts and those conducted using grab samples of water from the same location. PMID:24485281

  5. Quality Sample Collection, Handling, and Preservation for an Effective Microbial Forensics Program.

    SciTech Connect

    Budowle, Bruce; Schutzer, Steven E.; Burans, James P.; Beecher, Douglas J.; Cebulla, Thomas; Chakraborty, Ranjit; Cobb, William T.; Fletcher, Jacqueline; Hale, Martha L.; Harris, Robert B.; Heitkamp, Michael; Keller, Frederick P.; Kuske, Cheryl; LeClerc, Joseph E.; Marrone, Babetta L.; McKenna, Thomas S.; Morse, Stephen A.; Rodriguez, Luis L.; Valentine, Nancy B.; Yadev, Jagjit

    2006-10-01

    Science can be part of an effective investigative response to a bioterrorism event or a biocrime by providing capabilities to analyze biological and associated signatures in collected evidence. Microbial forensics, a discipline comprised of several scientific fields, is dedicated to the analysis of evidence from such criminal acts to help determine the responsible party and to exonerate the innocent. A partnership has been formed amount a number of government agencies, academia, and the private sector to better respond and deter potential perpetrators of bioterrorism or biocrimes. This partnership leverages our national scientific and analytical capabilities to support activities of law enforcement agencies. The Department of Homeland Security (DHS), whose mission is, in part, to respond to and to prevent acts of terrorism against the United States, has established the national Bioforensics Analysis Center (NBFAC). The NBFAC, in partnership with the FBI, (1) provides a state-of-the-art central laboratory for the analysis of microbial forensic evidence; and (2) serves as a nexus for integrating the national resources to increase the effectiveness of law enforcement in obtaining the highest level of attribution possible in criminal cases where the weapon is a biological agent.

  6. Status Report on the Microbial Characterization of Halite and Groundwater Samples from the WIPP

    SciTech Connect

    Swanson, Juliet S.; Reed, Donald T.; Ams, David A.; Norden, Diana; Simmons, Karen A.

    2012-07-10

    This report summarizes the progress made in the ongoing task of characterizing the microbial community structures within the WIPP repository and in surrounding groundwaters. Through cultivation and DNA-based identification, the potential activity of these organisms is being inferred, thus leading to a better understanding of their impact on WIPP performance. Members of the three biological domains - Bacteria, Archaea, and Eukarya (in this case, Fungi) - that are associated with WIPP halite have been identified. Thus far, their activity has been limited to aerobic respiration; anaerobic incubations are underway. WIPP halite constitutes the near-field microbial environment. We expect that microbial activity in this setting will proceed from aerobic respiration, through nitrate reduction to focus on sulfate reduction. This is also the current WIPP performance assessment (PA) position. Sulfate reduction can occur at extremely high ionic strengths, and sulfate is available in WIPP brines and in the anhydrite interbeds. The role of methanogenesis in the WIPP remains unclear, due to both energetic constraints imposed by a high-salt environment and substrate selectivity, and it is no longer considered in PA. Archaea identified in WIPP halite thus far fall exclusively within the family Halobacteriaceae. These include Halobacterium noricense, cultivated from both low- and high-salt media, and a Halorubrum-like species. The former has also been detected in other salt mines worldwide; the latter likely constitutes a new species. Little is known of its function, but it was prevalent in experiments investigating the biodegradation of organic complexing agents in WIPP brines. Bacterial signatures associated with WIPP halite include members of the phylum Proteobacteria - Halomonas, Pelomonas, Limnobacter, and Chromohalobacter - but only the latter has been isolated. Also detected and cultivated were Salinicoccus and Nesterenkonia spp. Fungi were also isolated from halite. Although

  7. Polypyrrole/polyamide electrospun-based sorbent for microextraction in packed syringe of organophosphorous pesticides from aquatic samples.

    PubMed

    Bagheri, Habib; Ayazi, Zahra; Aghakhani, Ali; Alipour, Noshin

    2012-01-01

    A novel method based on microextraction in packed syringe (MEPS) as sample preparation technique coupled off-line with gas chromatography-mass spectrometry was developed using electrospun nanofibers as sorbent. For electrospinning of polypyrrole/polyamide-based nanofiber, a homogeneous solution containing nylon 6, ferric chloride and pyrrole monomer was prepared and then was drawn into a 2.5-mL syringe. By applying a voltage of 13 kV between the needle of the syringe and an aluminum-foil collector, the nanofibers could be formed on the surface of the collector. The prepared sheet was used as the sorbent for MEPS to analyze some selected organophosphorous pesticides. Important parameters influencing the extraction and desorption processes were optimized. Limits of detection were in the range of 0.04-0.1 ng/mL using time scheduled selected ion monitoring mode, and the relative standard deviation (RSD %) values with four replicates were in the range of 3.7-11.8% at a concentration level of 5 ng/mL. The linearity of the method was in the range of 0.5-500 ng/mL for diazinon and fenithrothion and 0.5-200 ng/mL for the rest of the analytes. The developed method was successfully applied to Zayandeh-roud river water samples, whereas the matrix factors were in the range of 0.87-0.98. PMID:22144091

  8. Effect of Nitrate Injection on the Microbial Community in an Oil Field as Monitored by Reverse Sample Genome Probing

    PubMed Central

    Telang, A. J.; Ebert, S.; Foght, J. M.; Westlake, D.; Jenneman, G. E.; Gevertz, D.; Voordouw, G.

    1997-01-01

    The reverse sample genome probe (RSGP) method, developed for monitoring the microbial community in oil fields with a moderate subsurface temperature, has been improved by (i) isolation of a variety of heterotrophic bacteria and inclusion of their genomes on the oil field master filter and (ii) use of phosphorimaging technology for the rapid quantitation of hybridization signals. The new master filter contains the genomes of 30 sulfate-reducing, 1 sulfide-oxidizing, and 16 heterotrophic bacteria. Most have been identified by partial 16S rRNA sequencing. Use of improved RSGP in monitoring the effect of nitrate injection in an oil field indicated that the sulfide-oxidizing, nitrate-reducing isolate CVO (a Campylobacter sp.) becomes the dominant community component immediately after injection. No significant enhancement of other community members, including the sulfate-reducing bacteria, was observed. The elevated level of CVO decayed at most sampling sites within 30 days after nitrate injection was terminated. Chemical analyses indicated a corresponding decrease and subsequent increase in sulfide concentrations. Thus, transient injection of a higher potential electron acceptor into an anaerobic subsurface system can have desirable effects (i.e., reduction of sulfide levels) without a permanent adverse influence on the resident microbial community. PMID:16535595

  9. Aquatic Sediments.

    ERIC Educational Resources Information Center

    Sanville, W. D.; And Others

    1978-01-01

    Presents a literature review of aquatic sediments and its effect upon water quality, covering publications of 1976-77. This review includes: (1) sediment water interchange; (2) chemical and physical characterization; and (3) heavy water in sediments. A list of 129 references is also presented. (HM)

  10. Composition of microbial communities in aerosol, snow and ice samples from remote glaciated areas (Antarctica, Alps, Andes)

    NASA Astrophysics Data System (ADS)

    Elster, J.; Delmas, R. J.; Petit, J.-R.; Řeháková, K.

    2007-06-01

    Taxonomical and ecological analyses were performed on micro-autotrophs (cyanobacteria and algae together with remnants of diatom valves), micro-fungi (hyphae and spores), bacteria (rod, cocci and red clusters), yeast, and plant pollen extracted from various samples: Alps snow (Mt. Blank area), Andean snow (Illimani, Bolivia), Antarctic aerosol filters (Dumont d'Urville, Terre Adélie), and Antarctic inland ice (Terre Adélie). Three methods for ice and snow sample's pre-concentration were tested (filtration, centrifugation and lyophilisation). Afterwards, cultivation methods for terrestrial, freshwater and marine microorganisms (micro-autotrophs and micro-fungi) were used in combination with liquid and solid media. The main goal of the study was to find out if micro-autotrophs are commonly transported by air masses, and later stored in snow and icecaps around the world. The most striking result of this study was the absence of culturable micro-autotrophs in all studied samples. However, an unusual culturable pigmented prokaryote was found in both alpine snow and aerosol samples. Analyses of many samples and proper statistical analyses (PCA, RDA- Monte Carlo permutation tests) showed that studied treatments highly significantly differ in both microbial community and biotic remnants composition F=9.33, p=0.001. In addition, GLM showed that studied treatments highly significantly differ in numbers of categories of microorganisms and remnants of biological material F=11.45, p=0.00005. The Antarctic aerosol samples were characterised by having red clusters of bacteria, the unusual prokaryote and yeasts. The high mountain snow from the Alps and Andes contained much more culturable heterotrophs. The unusual prokaryote was very abundant, as were coccoid bacteria, red clusters of bacteria, as well as yeasts. The Antarctic ice samples were quite different. These samples had higher numbers of rod bacteria and fungal hyphae. The microbial communities and biological remnants of

  11. Spatially resolved sampling reveals dynamic microbial communities in rising hydrothermal plumes across a back-arc basin.

    PubMed

    Sheik, Cody S; Anantharaman, Karthik; Breier, John A; Sylvan, Jason B; Edwards, Katrina J; Dick, Gregory J

    2015-06-01

    Within hydrothermal plumes, chemosynthetic processes and microbe-mineral interactions drive primary productivity in deep-ocean food webs and may influence transport of elements such as iron. However, the source of microorganisms in plumes and the factors governing how these communities assemble are poorly understood, in part due to lack of data from early stages of plume formation. In this study, we examined microbial community composition of rising hydrothermal plumes from five vent fields along the Eastern Lau Spreading Center. Seafloor and plume microbial communities were significantly dissimilar and shared few phylotypes. Plume communities were highly similar to each other with significant differences in community membership only between Kilo Moana and Mariner, two vents that are separated by extremes in depth, latitude and geochemistry. Systematic sampling of waters surrounding the vents revealed that species richness and phylogenetic diversity was typically highest near the vent orifice, implying mixing of microbial communities from the surrounding habitats. Above-plume background communities were primarily dominated by SAR11, SAR324 and MG-I Archaea, while SUP05, Sulfurovum, Sulfurimonas, SAR324 and Alteromonas were abundant in plume and near-bottom background communities. These results show that the ubiquitous water-column microorganisms populate plume communities, and that the composition of background seawater exerts primary influence on plume community composition, with secondary influence from geochemical and/or physical properties of vents. Many of these pervasive deep-ocean organisms are capable of lithotrophy, suggesting that they are poised to use inorganic electron donors encountered in hydrothermal plumes. PMID:25489728

  12. Spatially resolved sampling reveals dynamic microbial communities in rising hydrothermal plumes across a back-arc basin

    PubMed Central

    Sheik, Cody S; Anantharaman, Karthik; Breier, John A; Sylvan, Jason B; Edwards, Katrina J; Dick, Gregory J

    2015-01-01

    Within hydrothermal plumes, chemosynthetic processes and microbe–mineral interactions drive primary productivity in deep-ocean food webs and may influence transport of elements such as iron. However, the source of microorganisms in plumes and the factors governing how these communities assemble are poorly understood, in part due to lack of data from early stages of plume formation. In this study, we examined microbial community composition of rising hydrothermal plumes from five vent fields along the Eastern Lau Spreading Center. Seafloor and plume microbial communities were significantly dissimilar and shared few phylotypes. Plume communities were highly similar to each other with significant differences in community membership only between Kilo Moana and Mariner, two vents that are separated by extremes in depth, latitude and geochemistry. Systematic sampling of waters surrounding the vents revealed that species richness and phylogenetic diversity was typically highest near the vent orifice, implying mixing of microbial communities from the surrounding habitats. Above-plume background communities were primarily dominated by SAR11, SAR324 and MG-I Archaea, while SUP05, Sulfurovum, Sulfurimonas, SAR324 and Alteromonas were abundant in plume and near-bottom background communities. These results show that the ubiquitous water-column microorganisms populate plume communities, and that the composition of background seawater exerts primary influence on plume community composition, with secondary influence from geochemical and/or physical properties of vents. Many of these pervasive deep-ocean organisms are capable of lithotrophy, suggesting that they are poised to use inorganic electron donors encountered in hydrothermal plumes. PMID:25489728

  13. Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants.

    PubMed

    Kohrs, F; Heyer, R; Magnussen, A; Benndorf, D; Muth, T; Behne, A; Rapp, E; Kausmann, R; Heiermann, M; Klocke, M; Reichl, U

    2014-10-01

    Biogas production from energy crops and biodegradable waste is one of the major sources for renewable energies in Germany. Within a biogas plant (BGP) a complex microbial community converts biomass to biogas. Unfortunately, disturbances of the biogas process occur occasionally and cause economic losses of varying extent. Besides technical failures the microbial community itself is commonly assumed as a reason for process instability. To improve the performance and efficiency of BGP, a deeper knowledge of the composition and the metabolic state of the microbial community is required and biomarkers for monitoring of process deviations or even the prediction of process failures have to be identified. Previous work based on 2D-electrophoresis demonstrated that the analysis of the metaproteome is well suited to provide insights into the apparent metabolism of the microbial communities. Using SDS-PAGE with subsequent mass spectrometry, stable protein patterns were evaluated for a number of anaerobic digesters. Furthermore, it was shown that severe changes in process parameters such as acidification resulted in significant modifications of the metaproteome. Monitoring of changing protein patterns derived from anaerobic digesters, however, is still a challenge due to the high complexity of the metaproteome. In this study, different combinations of separation techniques to reduce the complexity of proteomic BGP samples were compared with respect to the subsequent identification of proteins by tandem mass spectrometry (MS/MS): (i) 1D: proteins were tryptically digested and the resulting peptides were separated by reversed phase chromatography prior to MS/MS. (ii) 2D: proteins were separated by GeLC-MS/MS according to proteins molecular weights before tryptic digestion, (iii) 3D: proteins were separated by gel-free fractionation using isoelectric focusing (IEF) conducted before GeLC-MS/MS. For this study, a comparison of two anaerobic digesters operated at mesophilic and at

  14. Fluorometric determination of DNA in aquatic microorganisms by use of hoechst 33258.

    PubMed

    Paul, J H; Myers, B

    1982-06-01

    A method for the determination of microbial DNA in aquatic environments by the use of Hoechst 33258 has been developed. With unsophisticated instrumentation and simple extraction procedures, it is possible to detect from 0.05 to 10 mug of DNA in bacterial cultures or natural water samples. The method is specific for DNA; DNase I treatment of extracts of natural microbial populations removed 95 to 100% of the observed fluorescence. DNA content ranged from 165 ng ml for relatively eutrophic Potomac River water to 27 ng ml for coastal Atlantic Ocean water and was correlated to an acridine orange direct count (r = 0.90). PMID:16346035

  15. Use of Geographical Information Systems to influence the selection of sampling site locations for the evaluation of microbial diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil microbial population densities can easily reach one billion cells per gram of soil; and soil microbial diversity has been estimated to reach ten thousand individual species per gram of soil. Soil type and underlying soil structure are considered primary determinants of microbial community struc...

  16. USE OF GEOGRAPHICAL INFORMATION SYSTEMS TO INFLUENCE SELECTION OF SAMPLING SITE LOCATIONS FOR THE EVALUATION OF MICROBIAL DIVERSITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial soil population densities can easily reach one billion cells per gram of soil; and microbial soil diversity has been estimated to reach ten thousand individual species per gram of soil. Soil type and underlying soil structure are considered primary determinants of microbial community stru...

  17. [Microbial diversity and ammonia-oxidizing microorganism of a soil sample near an acid mine drainage lake].

    PubMed

    Liu, Ying; Wang, Li-Hua; Hao, Chun-Bo; Li, Lu; Li, Si-Yuan; Feng, Chuan-Ping

    2014-06-01

    The main physicochemical parameters of the soil sample which was collected near an acid mine drainage reservoir in Anhui province was analyzed. The microbial diversity and community structure was studied through the construction of bacteria and archaea 16S rRNA gene clone libraries and ammonia monooxygenase gene clone library of archaea. The functional groups which were responsible for the process of ammonia oxidation were also discussed. The results indicated that the soil sample had extreme low pH value (pH < 3) and high ions concentration, which was influenced by the acid mine drainage (AMD). All the 16S rRNA gene sequences of bacteria clone library fell into 11 phyla, and Acidobacteria played the most significant role in the ecosystem followed by Verrucomicrobia. A great number of acidophilic bacteria existed in the soil sample, such as Candidatus Koribacter versatilis and Holophaga sp.. The archaea clone library consisted of 2 phyla (Thaumarchaeota and Euryarchaeota). The abundance of Thaumarchaeota was remarkably higher than Euryarchaeota. The ammonia oxidation in the soil environment was probably driven by ammonia-oxidizing archaea, and new species of ammonia-oxidizing archaea existed in the soil sample. PMID:25158511

  18. The microbial detection array for detection of emerging viruses in clinical samples--a useful panmicrobial diagnostic tool.

    PubMed

    Rosenstierne, Maiken W; McLoughlin, Kevin S; Olesen, Majken Lindholm; Papa, Anna; Gardner, Shea N; Engler, Olivier; Plumet, Sebastien; Mirazimi, Ali; Weidmann, Manfred; Niedrig, Matthias; Fomsgaard, Anders; Erlandsson, Lena

    2014-01-01

    Emerging viruses are usually endemic to tropical and sub-tropical regions of the world, but increased global travel, climate change and changes in lifestyle are believed to contribute to the spread of these viruses into new regions. Many of these viruses cause similar disease symptoms as other emerging viruses or common infections, making these unexpected pathogens difficult to diagnose. Broad-spectrum pathogen detection microarrays containing probes for all sequenced viruses and bacteria can provide rapid identification of viruses, guiding decisions about treatment and appropriate case management. We report a modified Whole Transcriptome Amplification (WTA) method that increases unbiased amplification, particular of RNA viruses. Using this modified WTA method, we tested the specificity and sensitivity of the Lawrence Livermore Microbial Detection Array (LLMDA) against a wide range of emerging viruses present in both non-clinical and clinical samples using two different microarray data analysis methods. PMID:24963710

  19. The Microbial Detection Array for Detection of Emerging Viruses in Clinical Samples - A Useful Panmicrobial Diagnostic Tool

    PubMed Central

    Rosenstierne, Maiken W.; McLoughlin, Kevin S.; Olesen, Majken Lindholm; Papa, Anna; Gardner, Shea N.; Engler, Olivier; Plumet, Sebastien; Mirazimi, Ali; Weidmann, Manfred; Niedrig, Matthias; Fomsgaard, Anders; Erlandsson, Lena

    2014-01-01

    Emerging viruses are usually endemic to tropical and sub-tropical regions of the world, but increased global travel, climate change and changes in lifestyle are believed to contribute to the spread of these viruses into new regions. Many of these viruses cause similar disease symptoms as other emerging viruses or common infections, making these unexpected pathogens difficult to diagnose. Broad-spectrum pathogen detection microarrays containing probes for all sequenced viruses and bacteria can provide rapid identification of viruses, guiding decisions about treatment and appropriate case management. We report a modified Whole Transcriptome Amplification (WTA) method that increases unbiased amplification, particular of RNA viruses. Using this modified WTA method, we tested the specificity and sensitivity of the Lawrence Livermore Microbial Detection Array (LLMDA) against a wide range of emerging viruses present in both non-clinical and clinical samples using two different microarray data analysis methods. PMID:24963710

  20. Mathematical Estimation of the Level of Microbial Contamination on Spacecraft Surfaces by Volumetric Air Sampling

    PubMed Central

    Oxborrow, G. S.; Roark, A. L.; Fields, N. D.; Puleo, J. R.

    1974-01-01

    Microbiological sampling methods presently used for enumeration of microorganisms on spacecraft surfaces require contact with easily damaged components. Estimation of viable particles on surfaces using air sampling methods in conjunction with a mathematical model would be desirable. Parameters necessary for the mathematical model are the effect of angled surfaces on viable particle collection and the number of viable cells per viable particle. Deposition of viable particles on angled surfaces closely followed a cosine function, and the number of viable cells per viable particle was consistent with a Poisson distribution. Other parameters considered by the mathematical model included deposition rate and fractional removal per unit time. A close nonlinear correlation between volumetric air sampling and airborne fallout on surfaces was established with all fallout data points falling within the 95% confidence limits as determined by the mathematical model. PMID:4151118

  1. Mathematical estimation of the level of microbial contamination on spacecraft surfaces by volumetric air sampling

    NASA Technical Reports Server (NTRS)

    Oxborrow, G. S.; Roark, A. L.; Fields, N. D.; Puleo, J. R.

    1974-01-01

    Microbiological sampling methods presently used for enumeration of microorganisms on spacecraft surfaces require contact with easily damaged components. Estimation of viable particles on surfaces using air sampling methods in conjunction with a mathematical model would be desirable. Parameters necessary for the mathematical model are the effect of angled surfaces on viable particle collection and the number of viable cells per viable particle. Deposition of viable particles on angled surfaces closely followed a cosine function, and the number of viable cells per viable particle was consistent with a Poisson distribution. Other parameters considered by the mathematical model included deposition rate and fractional removal per unit time. A close nonlinear correlation between volumetric air sampling and airborne fallout on surfaces was established with all fallout data points falling within the 95% confidence limits as determined by the mathematical model.

  2. The Impact of Selection, Gene Conversion, and Biased Sampling on the Assessment of Microbial Demography.

    PubMed

    Lapierre, Marguerite; Blin, Camille; Lambert, Amaury; Achaz, Guillaume; Rocha, Eduardo P C

    2016-07-01

    Recent studies have linked demographic changes and epidemiological patterns in bacterial populations using coalescent-based approaches. We identified 26 studies using skyline plots and found that 21 inferred overall population expansion. This surprising result led us to analyze the impact of natural selection, recombination (gene conversion), and sampling biases on demographic inference using skyline plots and site frequency spectra (SFS). Forward simulations based on biologically relevant parameters from Escherichia coli populations showed that theoretical arguments on the detrimental impact of recombination and especially natural selection on the reconstructed genealogies cannot be ignored in practice. In fact, both processes systematically lead to spurious interpretations of population expansion in skyline plots (and in SFS for selection). Weak purifying selection, and especially positive selection, had important effects on skyline plots, showing patterns akin to those of population expansions. State-of-the-art techniques to remove recombination further amplified these biases. We simulated three common sampling biases in microbiological research: uniform, clustered, and mixed sampling. Alone, or together with recombination and selection, they further mislead demographic inferences producing almost any possible skyline shape or SFS. Interestingly, sampling sub-populations also affected skyline plots and SFS, because the coalescent rates of populations and their sub-populations had different distributions. This study suggests that extreme caution is needed to infer demographic changes solely based on reconstructed genealogies. We suggest that the development of novel sampling strategies and the joint analyzes of diverse population genetic methods are strictly necessary to estimate demographic changes in populations where selection, recombination, and biased sampling are present. PMID:26931140

  3. The Impact of Selection, Gene Conversion, and Biased Sampling on the Assessment of Microbial Demography

    PubMed Central

    Lapierre, Marguerite; Blin, Camille; Lambert, Amaury; Achaz, Guillaume; Rocha, Eduardo P. C.

    2016-01-01

    Recent studies have linked demographic changes and epidemiological patterns in bacterial populations using coalescent-based approaches. We identified 26 studies using skyline plots and found that 21 inferred overall population expansion. This surprising result led us to analyze the impact of natural selection, recombination (gene conversion), and sampling biases on demographic inference using skyline plots and site frequency spectra (SFS). Forward simulations based on biologically relevant parameters from Escherichia coli populations showed that theoretical arguments on the detrimental impact of recombination and especially natural selection on the reconstructed genealogies cannot be ignored in practice. In fact, both processes systematically lead to spurious interpretations of population expansion in skyline plots (and in SFS for selection). Weak purifying selection, and especially positive selection, had important effects on skyline plots, showing patterns akin to those of population expansions. State-of-the-art techniques to remove recombination further amplified these biases. We simulated three common sampling biases in microbiological research: uniform, clustered, and mixed sampling. Alone, or together with recombination and selection, they further mislead demographic inferences producing almost any possible skyline shape or SFS. Interestingly, sampling sub-populations also affected skyline plots and SFS, because the coalescent rates of populations and their sub-populations had different distributions. This study suggests that extreme caution is needed to infer demographic changes solely based on reconstructed genealogies. We suggest that the development of novel sampling strategies and the joint analyzes of diverse population genetic methods are strictly necessary to estimate demographic changes in populations where selection, recombination, and biased sampling are present. PMID:26931140

  4. A stepwise procedure for assessment of the microbial respiratory activity of soil samples contaminated with organic compounds.

    PubMed

    Eisentraeger, A; Maxam, G; Rila, J P; Dott, W

    2000-09-01

    Soil respiration measurements are used frequently for the characterization of soil samples. Identical methods are used for the ecotoxicological characterization of contaminated soil samples as well as for quantification of the active microbial biomass in agriculturally used soils. In this study four soil samples contaminated with large amounts of volatile organic compounds, polyaromatic hydrocarbons, or nitroaromatic compounds are characterized after stepwise addition of carbon, nitrogen, and phosphorus. The respiration kinetics are assessed over a period of 5 days. By means of qualitative evaluation of the results, it is demonstrated that this stepwise addition allows one to distinguish between growth-promoting effects of biodegradable organic compounds on the one hand and the toxic influence of these compounds on the other hand. Finally it is stated that a comprehensive ecotoxicological characterization cannot be performed routinely using only one or several parameters of respiration curves. There is need for further research and validation if soil respiration measurements are to be performed quantitatively in the future. PMID:10993705

  5. Comparison of filters for concentrating microbial indicators and pathogens in lake-water samples

    USGS Publications Warehouse

    Francy, Donna S.; Stelzer, Erin A.; Brady, Amie M.G.; Huitger, Carrie; Bushon, Rebecca N.; Ip, Hon S.; Ware, Michael W.; Villegas, Eric N.; Gallardo, Vincent; Lindquist, H.D. Alan

    2013-01-01

    Bacterial indicators are used to indicate increased health risk from pathogens and to make beach closure and advisory decisions; however, beaches are seldom monitored for the pathogens themselves. Studies of sources and types of pathogens at beaches are needed to improve estimates of swimming-associated health risks. It would be advantageous and cost-effective, especially for studies conducted on a regional scale, to use a method that can simultaneously filter and concentrate all classes of pathogens from the large volumes of water needed to detect pathogens. In seven recovery experiments, stock cultures of viruses and protozoa were seeded into 10-liter lake water samples, and concentrations of naturally occurring bacterial indicators were used to determine recoveries. For the five filtration methods tested, the highest median recoveries were as follows: glass wool for adenovirus (4.7%); NanoCeram for enterovirus (14.5%) and MS2 coliphage (84%); continuous-flow centrifugation (CFC) plus Virocap (CFC+ViroCap) for Escherichia coli (68.3%) and Cryptosporidium (54%); automatic ultrafiltration (UF) for norovirus GII (2.4%); and dead-end UF for Enterococcus faecalis (80.5%), avian influenza virus (0.02%), and Giardia (57%). In evaluating filter performance in terms of both recovery and variability, the automatic UF resulted in the highest recovery while maintaining low variability for all nine microorganisms. The automatic UF was used to demonstrate that filtration can be scaled up to field deployment and the collection of 200-liter lake water samples.

  6. Post-Flight Microbial Analysis of Samples from the International Space Station Water Recovery System and Oxygen Generation System

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.

    2011-01-01

    The Regenerative, Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS) includes the the Water Recovery System (WRS) and the Oxygen Generation System (OGS). The WRS consists of a Urine Processor Assembly (UPA) and Water Processor Assembly (WPA). This report describes microbial characterization of wastewater and surface samples collected from the WRS and OGS subsystems, returned to KSC, JSC, and MSFC on consecutive shuttle flights (STS-129 and STS-130) in 2009-10. STS-129 returned two filters that contained fluid samples from the WPA Waste Tank Orbital Recovery Unit (ORU), one from the waste tank and the other from the ISS humidity condensate. Direct count by microscopic enumeration revealed 8.38 x 104 cells per mL in the humidity condensate sample, but none of those cells were recoverable on solid agar media. In contrast, 3.32 x lOs cells per mL were measured from a surface swab of the WRS waste tank, including viable bacteria and fungi recovered after S12 days of incubation on solid agar media. Based on rDNA sequencing and phenotypic characterization, a fungus recovered from the filter was determined to be Lecythophora mutabilis. The bacterial isolate was identified by rDNA sequence data to be Methylobacterium radiotolerans. Additional UPA subsystem samples were returned on STS-130 for analysis. Both liquid and solid samples were collected from the Russian urine container (EDV), Distillation Assembly (DA) and Recycle Filter Tank Assembly (RFTA) for post-flight analysis. The bacterium Pseudomonas aeruginosa and fungus Chaetomium brasiliense were isolated from the EDV samples. No viable bacteria or fungi were recovered from RFTA brine samples (N= 6), but multiple samples (N = 11) from the DA and RFTA were found to contain fungal and bacterial cells. Many recovered cells have been identified to genus by rDNA sequencing and carbon source utilization profiling (BiOLOG Gen III). The presence of viable bacteria and fungi from WRS

  7. A supplement to "Methods for collection and analysis of aquatic biological and microbiological samples" (U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A4)

    USGS Publications Warehouse

    1979-01-01

    The manual contains methods used by the U.S. Geological Survey to collect, preserve, and analyze waters to determine their biological and microbiological properties. It supplements ' Methods for Collection and Analysis of Aquatic Biological and Microbiological Samples ' (TWRI, Book 5, Chapter A4, 1977, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack). Included are 5 new methods, a new section of selected taxonomic references for Ostracoda, and 6 revised methods.

  8. Ecology, Microbial

    SciTech Connect

    Konopka, Allan

    2009-03-19

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, they interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.

  9. Ecology, Microbial

    SciTech Connect

    Konopka, Allan

    2009-05-15

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, they interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.

  10. Aquatic Acoustic Metrics Interface

    Energy Science and Technology Software Center (ESTSC)

    2012-12-18

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. The new Aquatic Acoustic Metrics Interface Utility Software (AAMI) is specificallymore » designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame.« less

  11. Aquatic Acoustic Metrics Interface

    SciTech Connect

    2012-12-18

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. The new Aquatic Acoustic Metrics Interface Utility Software (AAMI) is specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame.

  12. merA gene expression in aquatic environments measured by mRNA production and Hg(II) volatilization.

    PubMed Central

    Nazaret, S; Jeffrey, W H; Saouter, E; Von Haven, R; Barkay, T

    1994-01-01

    The relationship of merA gene expression (specifying the enzyme mercuric reductase) to mercury volatilization in aquatic microbial communities was investigated with samples collected at a mercury-contaminated freshwater pond, Reality Lake, in Oak Ridge, Tenn. Levels of merA mRNA transcripts and the rate of inorganic mercury [Hg(II)] volatilization were related to the concentration of mercury in the water and to heterotrophic activity in field samples and laboratory incubations of pond water in which microbial heterotrophic activity and Hg(II) concentration were manipulated. Levels of merA-specific mRNA and Hg(II) volatilization were influenced more by microbial metabolic activity than by the concentration of mercury. merA-specific transcripts were detected in some samples which did not reduce Hg(II), suggesting that rates of mercury volatilization in environmental samples may not always be proportional to merA expression. PMID:7527625

  13. The development of point-of-use water filters as sampling devices in bioforensics: extent of microbial sorption and elution.

    PubMed

    Sedillo, Jennifer L; Quintana, Ayshea; Souza, Kathryn; Oshima, Kevin H; Smith, Geoffrey B

    2008-06-01

    The foundational idea for this project is that household faucet-mounted water filters may be used as bioforensic sampling devices to detect the extent of a potential bioagent release in domestic water supplies. An optimized eluent solution was determined experimentally by quantifying recoveries of microorganisms from point-of-use (POU) drinking water filters. The optimized extraction protocol was then used in mock bioagent release experiments to determine the feasibility of POU filters as bioforensic sampling devices. Bacillus atrophaeus spores, Escherichia coli and PP7 virus were exposed to filters and the number of attached organisms was determined by enumerating the unattached organisms on selective agar media. Subsequently, the filters were eluted and the percent of extracted organisms was determined based on the number of attached organisms. Two popular brands of carbon block filters retained 92%-99% of representative virus, spore and vegetative bacteria. In back-flush elutions of single filters, the most efficient eluent was identified as a combination of 1% peptone and 1% Tween-80, and extraction recovered 25.4% (+/-17.5%) of attached E. coli, 20.4% (+/-3.6%) of B. atrophaeus spores, and 9.4% (+/-5.2%) of PP7 virions (+/- standard deviations). In bioagent release studies in which filters were challenged with 100 agents mL(-1), greater than 99% of the spores were retained by the filters, and the percent of attached spores that were recovered ranged from 10.4% at day 0 to 4.3% five days after the release event (averaged from five separate experiments). In contrast, E. coli, Salmonella typhimurium and PP7 virus were rapidly inactivated in the chlorinated tap water, indicating their improbable survival in chlorinated water supplies. It is therefore concluded that household water filters can be used as microbial sampling devices for bioforensic applications in the event of a bioagent release in domestic drinking water supplies. PMID:18528538

  14. Use of Spatial Sampling and Microbial Source-Tracking Tools for Understanding Fecal Contamination at Two Lake Erie Beaches

    USGS Publications Warehouse

    Francy, Donna S.; Bertke, Erin E.; Finnegan, Dennis P.; Kephart, Christopher M.; Sheets, Rodney A.; Rhoades, John; Stumpe, Lester

    2006-01-01

    Source-tracking tools were used to identify potential sources of fecal contamination at two Lake Erie bathing beaches: an urban beach (Edgewater in Cleveland, Ohio) and a beach in a small city (Lakeshore in Ashtabula, Ohio). These tools included identifying spatial patterns of Escherichia coli (E. coli) concentrations in each area, determining weather patterns that caused elevated E. coli, and applying microbial source tracking (MST) techniques to specific sites. Three MST methods were used during this study: multiple antibiotic resistance (MAR) indexing of E. coli isolates and the presence of human-specific genetic markers within two types of bacteria, the genus Bacteroides and the species Enterococcus faecium. At Edgewater, sampling for E. coli was done during 2003-05 at bathing-area sites, at nearshore lake sites, and in shallow ground water in foreshore and backshore areas. Spatial sampling at nearshore lake sites showed that fecal contamination was most likely of local origin; E. coli concentrations near the mouths of rivers and outfalls remote to the beach were elevated (greater than 235 colony-forming units per 100 milliliters (CFU/100 mL)) but decreased along transport pathways to the beach. In addition, E. coli concentrations were generally highest in bathing-area samples collected at 1- and 2-foot water depths, midrange at 3-foot depths, and lowest in nearshore lake samples typically collected 150 feet from the shoreline. Elevated E. coli concentrations at bathing-area sites were generally associated with increased wave heights and rainfall, but not always. E. coli concentrations were often elevated in shallow ground-water samples, especially in samples collected less than 10 feet from the edge of water (near foreshore area). The interaction of shallow ground water and waves may be a mechanism of E. coli storage and accumulation in foreshore sands. Infiltration of bird feces through sand with surface water from rainfall and high waves may be concentrating

  15. Advanced instrument system for real-time and time-series microbial geochemical sampling of the deep (basaltic) crustal biosphere

    NASA Astrophysics Data System (ADS)

    Cowen, James P.; Copson, David A.; Jolly, James; Hsieh, Chih-Chiang; Lin, Huei-Ting; Glazer, Brian T.; Wheat, C. Geoffrey

    2012-03-01

    Integrated Ocean Drilling Program borehole CORK (Circulation Obviation Retrofit Kit) observatories provide long-term access to hydrothermal fluids circulating within the basaltic crust (basement), providing invaluable opportunities to study the deep biosphere. We describe the design and application parameters of the GeoMICROBE instrumented sled, an autonomous sensor and fluid sampling system. The GeoMICROBE system couples with CORK fluid delivery lines to draw large volumes of fluids from crustal aquifers to the seafloor. These fluids pass a series of in-line sensors and an in situ filtration and collection system. GeoMICROBE's major components include a primary valve manifold system, a positive displacement primary pump, sensors (e.g., fluid flow rate, temperature, dissolved O2, electrochemistry-voltammetry analyzer), a 48-port in situ filtration and fluid collection system, computerized controller, seven 24 V-40 A batteries and wet-mateable (ODI) communications with submersibles. This constantly evolving system has been successfully connected to IODP Hole 1301A on the eastern flank of the Juan de Fuca Ridge. Also described here is a mobile pumping system (MPS), which possesses many of the same components as the GeoMICROBE (e.g., pump, sensors, controller), but is directly powered and controlled in real time via submersible operations; the MPS has been employed repeatedly to collect pristine basement fluids for a variety of geochemical and microbial studies.

  16. A Pilot Study on Integrating Videography and Environmental Microbial Sampling to Model Fecal Bacterial Exposures in Peri-Urban Tanzania.

    PubMed

    Julian, Timothy R; Pickering, Amy J

    2015-01-01

    Diarrheal diseases are a leading cause of under-five mortality and morbidity in sub-Saharan Africa. Quantitative exposure modeling provides opportunities to investigate the relative importance of fecal-oral transmission routes (e.g. hands, water, food) responsible for diarrheal disease. Modeling, however, requires accurate descriptions of individuals' interactions with the environment (i.e., activity data). Such activity data are largely lacking for people in low-income settings. In the present study, we collected activity data and microbiological sampling data to develop a quantitative microbial exposure model for two female caretakers in peri-urban Tanzania. Activity data were combined with microbiological data of contacted surfaces and fomites (e.g. broom handle, soil, clothing) to develop example exposure profiles describing second-by-second estimates of fecal indicator bacteria (E. coli and enterococci) concentrations on the caretaker's hands. The study demonstrates the application and utility of video activity data to quantify exposure factors for people in low-income countries and apply these factors to understand fecal contamination exposure pathways. This study provides both a methodological approach for the design and implementation of larger studies, and preliminary data suggesting contacts with dirt and sand may be important mechanisms of hand contamination. Increasing the scale of activity data collection and modeling to investigate individual-level exposure profiles within target populations for specific exposure scenarios would provide opportunities to identify the relative importance of fecal-oral disease transmission routes. PMID:26295964

  17. A Pilot Study on Integrating Videography and Environmental Microbial Sampling to Model Fecal Bacterial Exposures in Peri-Urban Tanzania

    PubMed Central

    Julian, Timothy R.; Pickering, Amy J.

    2015-01-01

    Diarrheal diseases are a leading cause of under-five mortality and morbidity in sub-Saharan Africa. Quantitative exposure modeling provides opportunities to investigate the relative importance of fecal-oral transmission routes (e.g. hands, water, food) responsible for diarrheal disease. Modeling, however, requires accurate descriptions of individuals’ interactions with the environment (i.e., activity data). Such activity data are largely lacking for people in low-income settings. In the present study, we collected activity data and microbiological sampling data to develop a quantitative microbial exposure model for two female caretakers in peri-urban Tanzania. Activity data were combined with microbiological data of contacted surfaces and fomites (e.g. broom handle, soil, clothing) to develop example exposure profiles describing second-by-second estimates of fecal indicator bacteria (E. coli and enterococci) concentrations on the caretaker’s hands. The study demonstrates the application and utility of video activity data to quantify exposure factors for people in low-income countries and apply these factors to understand fecal contamination exposure pathways. This study provides both a methodological approach for the design and implementation of larger studies, and preliminary data suggesting contacts with dirt and sand may be important mechanisms of hand contamination. Increasing the scale of activity data collection and modeling to investigate individual-level exposure profiles within target populations for specific exposure scenarios would provide opportunities to identify the relative importance of fecal-oral disease transmission routes. PMID:26295964

  18. AmpliconDuo: A Split-Sample Filtering Protocol for High-Throughput Amplicon Sequencing of Microbial Communities

    PubMed Central

    Lange, Anja; Jost, Steffen; Heider, Dominik; Bock, Christina; Budeus, Bettina; Schilling, Elmar; Strittmatter, Axel; Boenigk, Jens; Hoffmann, Daniel

    2015-01-01

    High throughput sequencing (HTSeq) of small ribosomal subunit amplicons has the potential for a comprehensive characterization of microbial community compositions, down to rare species. However, the error-prone nature of the multi-step experimental process requires that the resulting raw sequences are subjected to quality control procedures. These procedures often involve an abundance cutoff for rare sequences or clustering of sequences, both of which limit genetic resolution. Here we propose a simple experimental protocol that retains the high genetic resolution granted by HTSeq methods while effectively removing many low abundance sequences that are likely due to PCR and sequencing errors. According to this protocol, we split samples and submit both halves to independent PCR and sequencing runs. The resulting sequence data is graphically and quantitatively characterized by the discordance between the two experimental branches, allowing for a quick identification of problematic samples. Further, we discard sequences that are not found in both branches (“AmpliconDuo filter”). We show that the majority of sequences removed in this way, mostly low abundance but also some higher abundance sequences, show features expected from random modifications of true sequences as introduced by PCR and sequencing errors. On the other hand, the filter retains many low abundance sequences observed in both branches and thus provides a more reliable census of the rare biosphere. We find that the AmpliconDuo filter increases biological resolution as it increases apparent community similarity between biologically similar communities, while it does not affect apparent community similarities between biologically dissimilar communities. The filter does not distort overall apparent community compositions. Finally, we quantitatively explain the effect of the AmpliconDuo filter by a simple mathematical model. PMID:26523925

  19. Drastic changes in aquatic bacterial populations from the Cuatro Cienegas Basin (Mexico) in response to long-term environmental stress.

    PubMed

    Pajares, Silvia; Eguiarte, Luis E; Bonilla-Rosso, German; Souza, Valeria

    2013-12-01

    Understanding the changes of aquatic microbial community composition in response to changes in temperature and ultraviolet irradiation is relevant for predicting biogeochemical modifications in the functioning of natural microbial communities under global climate change scenarios. Herein we investigate shifts in the bacterioplankton composition in response to long-term changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with composite aquatic microbial communities from natural pools within the Cuatro Cienegas Basin (Mexican Chihuahuan desert) and were subject to different temperatures and UV conditions. 16S rRNA gene clone libraries were obtained from water samples at the mid-point (4 months) and the end of the experiment (8 months). An increase in bacterial diversity over time was found in the treatment of constant temperature and UV protection, which suggests that stable environments promote the establishment of complex and diverse bacterial community. Drastic changes in the phylogenetic bacterioplankton composition and structure were observed in response to fluctuating temperature and increasing UV radiation and temperature. Fluctuating temperature induced the largest decrease of bacterial richness during the experiment, indicating that frequent temperature changes drive the reduction in abundance of several species, most notably autotrophs. The long-term impact of these environmental stresses reduced diversity and selected for generalist aquatic bacterial populations, such as Porphyrobacter. These changes at the community level occur at an ecological time scale, suggesting that under global warming scenarios cascade effects on the food web are possible if the microbial diversity is modified. PMID:24072549

  20. Mesocosms of aquatic bacterial communities from the Cuatro Cienegas Basin (Mexico): a tool to test bacterial community response to environmental stress.

    PubMed

    Pajares, Silvia; Bonilla-Rosso, German; Travisano, Michael; Eguiarte, Luis E; Souza, Valeria

    2012-08-01

    Microbial communities are responsible for important ecosystem processes, and their activities are regulated by environmental factors such as temperature and solar ultraviolet radiation. Here we investigate changes in aquatic microbial community structure, diversity, and evenness in response to changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with both microbial mat communities and plankton from natural pools within the Cuatro Cienegas Basin (Mexico). Clone libraries (16S rRNA) were obtained from water samples at the beginning and at the end of the experiment (40 days). Phylogenetic analysis indicated substantial changes in aquatic community composition and structure in response to temperature and UV radiation. Extreme treatments with elevation in temperature or UV radiation reduced diversity in relation to the Control treatments, causing a reduction in richness and increase in dominance, with a proliferation of a few resistant operational taxonomic units. Each phylum was affected differentially by the new conditions, which translates in a differential modification of ecosystem functioning. This suggests that the impact of environmental stress, at least at short term, will reshape the aquatic bacterial communities of this unique ecosystem. This work also demonstrates the possibility of designing manageable synthetic microbial community ecosystems where controlled environmental variables can be manipulated. Therefore, microbial model systems offer a complementary approach to field and laboratory studies of global research problems associated with the environment. PMID:22460437

  1. A Direct-Push Sample-Freezing Drive Shoe for Collecting Sediment Cores with Intact Pore Fluid, Microbial, and Sediment Distributions

    NASA Astrophysics Data System (ADS)

    Bekins, B. A.; Trost, J.; Christy, T. M.; Mason, B.

    2015-12-01

    Abiotic and biological reactions in shallow groundwater and bottom sediments are central to understanding groundwater contaminant attenuation and biogeochemical cycles. The laminar flow regime in unconsolidated surficial aquifers creates narrow reaction zones. Studying these reaction zones requires fine-scale sampling of water together with adjacent sediment in a manner that preserves in situ redox conditions. Collecting representative samples of these narrow zones with traditional subsurface sampling equipment is challenging. For example, use of a basket type core catcher for saturated, non-cohesive sediments results in loss of fluid and sediments during retrieval. A sample-freezing drive shoe designed for a wire line piston core sampler allowed collection of cores with intact sediment, microbial, and pore fluid distributions and has been the basis for studies documenting centimeter-scale variations in aquifer microbial populations (Murphy and Herkelrath, 1996). However, this freezing drive shoe design is not compatible with modern-day direct push sampling rigs. A re-designed sample-freezing drive shoe compatible with a direct-push dual-tube coring system was developed and field-tested. The freezing drive shoe retained sediment and fluid distributions in saturated sediment core samples by freezing a 10 centimeter plug below the core sample with liquid CO­2. Core samples collected across the smear zone at a crude oil spill site near Bemidji, Minnesota, were successfully extracted without loss of fluid or sediment. Multiple core sections from different depths in the aquifer were retrieved from a single hole. This new design makes a highly effective sampling technology available on modern-day direct push sampling equipment to inform myriad questions about subsurface biogeochemistry processes. The re-design of the freezing drive shoe was supported by the USGS Innovation Center for Earth Sciences. References: Murphy, Fred, and W. N. Herkelrath. "A sample

  2. Influence of DNA extraction method, 16S rRNA targeted hypervariable regions, and sample origin on microbial diversity detected by 454 pyrosequencing in marine chemosynthetic ecosystems.

    PubMed

    Cruaud, Perrine; Vigneron, Adrien; Lucchetti-Miganeh, Céline; Ciron, Pierre Emmanuel; Godfroy, Anne; Cambon-Bonavita, Marie-Anne

    2014-08-01

    Next-generation sequencing (NGS) opens up exciting possibilities for improving our knowledge of environmental microbial diversity, allowing rapid and cost-effective identification of both cultivated and uncultivated microorganisms. However, library preparation, sequencing, and analysis of the results can provide inaccurate representations of the studied community compositions. Therefore, all these steps need to be taken into account carefully. Here we evaluated the effects of DNA extraction methods, targeted 16S rRNA hypervariable regions, and sample origins on the diverse microbes detected by 454 pyrosequencing in marine cold seep and hydrothermal vent sediments. To assign the reads with enough taxonomic precision, we built a database with about 2,500 sequences from Archaea and Bacteria from deep-sea marine sediments, affiliated according to reference publications in the field. Thanks to statistical and diversity analyses as well as inference of operational taxonomic unit (OTU) networks, we show that (i) while DNA extraction methods do not seem to affect the results for some samples, they can lead to dramatic changes for others; and (ii) the choice of amplification and sequencing primers also considerably affects the microbial community detected in the samples. Thereby, very different proportions of pyrosequencing reads were obtained for some microbial lineages, such as the archaeal ANME-1, ANME-2c, and MBG-D and deltaproteobacterial subgroups. This work clearly indicates that the results from sequencing-based analyses, such as pyrosequencing, should be interpreted very carefully. Therefore, the combination of NGS with complementary approaches, such as fluorescence in situ hybridization (FISH)/catalyzed reporter deposition (CARD)-FISH or quantitative PCR (Q-PCR), would be desirable to gain a more comprehensive picture of environmental microbial communities. PMID:24837380

  3. Influence of DNA Extraction Method, 16S rRNA Targeted Hypervariable Regions, and Sample Origin on Microbial Diversity Detected by 454 Pyrosequencing in Marine Chemosynthetic Ecosystems

    PubMed Central

    Cruaud, Perrine; Vigneron, Adrien; Lucchetti-Miganeh, Céline; Ciron, Pierre Emmanuel; Godfroy, Anne

    2014-01-01

    Next-generation sequencing (NGS) opens up exciting possibilities for improving our knowledge of environmental microbial diversity, allowing rapid and cost-effective identification of both cultivated and uncultivated microorganisms. However, library preparation, sequencing, and analysis of the results can provide inaccurate representations of the studied community compositions. Therefore, all these steps need to be taken into account carefully. Here we evaluated the effects of DNA extraction methods, targeted 16S rRNA hypervariable regions, and sample origins on the diverse microbes detected by 454 pyrosequencing in marine cold seep and hydrothermal vent sediments. To assign the reads with enough taxonomic precision, we built a database with about 2,500 sequences from Archaea and Bacteria from deep-sea marine sediments, affiliated according to reference publications in the field. Thanks to statistical and diversity analyses as well as inference of operational taxonomic unit (OTU) networks, we show that (i) while DNA extraction methods do not seem to affect the results for some samples, they can lead to dramatic changes for others; and (ii) the choice of amplification and sequencing primers also considerably affects the microbial community detected in the samples. Thereby, very different proportions of pyrosequencing reads were obtained for some microbial lineages, such as the archaeal ANME-1, ANME-2c, and MBG-D and deltaproteobacterial subgroups. This work clearly indicates that the results from sequencing-based analyses, such as pyrosequencing, should be interpreted very carefully. Therefore, the combination of NGS with complementary approaches, such as fluorescence in situ hybridization (FISH)/catalyzed reporter deposition (CARD)-FISH or quantitative PCR (Q-PCR), would be desirable to gain a more comprehensive picture of environmental microbial communities. PMID:24837380

  4. Use of Homogeneously-Sized Carbon Steel Ball Bearings to Study Microbially-Influenced Corrosion in Oil Field Samples

    PubMed Central

    Voordouw, Gerrit; Menon, Priyesh; Pinnock, Tijan; Sharma, Mohita; Shen, Yin; Venturelli, Amanda; Voordouw, Johanna; Sexton, Aoife

    2016-01-01

    Microbially-influenced corrosion (MIC) contributes to the general corrosion rate (CR), which is typically measured with carbon steel coupons. Here we explore the use of carbon steel ball bearings, referred to as beads (55.0 ± 0.3 mg; Ø = 0.238 cm), for determining CRs. CRs for samples from an oil field in Oceania incubated with beads were determined by the weight loss method, using acid treatment to remove corrosion products. The release of ferrous and ferric iron was also measured and CRs based on weight loss and iron determination were in good agreement. Average CRs were 0.022 mm/yr for eight produced waters with high numbers (105/ml) of acid-producing bacteria (APB), but no sulfate-reducing bacteria (SRB). Average CRs were 0.009 mm/yr for five central processing facility (CPF) waters, which had no APB or SRB due to weekly biocide treatment and 0.036 mm/yr for 2 CPF tank bottom sludges, which had high numbers of APB (106/ml) and SRB (108/ml). Hence, corrosion monitoring with carbon steel beads indicated that biocide treatment of CPF waters decreased the CR, except where biocide did not penetrate. The CR for incubations with 20 ml of a produced water decreased from 0.061 to 0.007 mm/yr when increasing the number of beads from 1 to 40. CRs determined with beads were higher than those with coupons, possibly also due to a higher weight of iron per unit volume used in incubations with coupons. Use of 1 ml syringe columns, containing carbon steel beads, and injected with 10 ml/day of SRB-containing medium for 256 days gave a CR of 0.11 mm/yr under flow conditions. The standard deviation of the distribution of residual bead weights, a measure for the unevenness of the corrosion, increased with increasing CR. The most heavily corroded beads showed significant pitting. Hence the use of uniformly sized carbon steel beads offers new opportunities for screening and monitoring of corrosion including determination of the distribution of corrosion rates, which allows

  5. Use of Homogeneously-Sized Carbon Steel Ball Bearings to Study Microbially-Influenced Corrosion in Oil Field Samples.

    PubMed

    Voordouw, Gerrit; Menon, Priyesh; Pinnock, Tijan; Sharma, Mohita; Shen, Yin; Venturelli, Amanda; Voordouw, Johanna; Sexton, Aoife

    2016-01-01

    Microbially-influenced corrosion (MIC) contributes to the general corrosion rate (CR), which is typically measured with carbon steel coupons. Here we explore the use of carbon steel ball bearings, referred to as beads (55.0 ± 0.3 mg; Ø = 0.238 cm), for determining CRs. CRs for samples from an oil field in Oceania incubated with beads were determined by the weight loss method, using acid treatment to remove corrosion products. The release of ferrous and ferric iron was also measured and CRs based on weight loss and iron determination were in good agreement. Average CRs were 0.022 mm/yr for eight produced waters with high numbers (10(5)/ml) of acid-producing bacteria (APB), but no sulfate-reducing bacteria (SRB). Average CRs were 0.009 mm/yr for five central processing facility (CPF) waters, which had no APB or SRB due to weekly biocide treatment and 0.036 mm/yr for 2 CPF tank bottom sludges, which had high numbers of APB (10(6)/ml) and SRB (10(8)/ml). Hence, corrosion monitoring with carbon steel beads indicated that biocide treatment of CPF waters decreased the CR, except where biocide did not penetrate. The CR for incubations with 20 ml of a produced water decreased from 0.061 to 0.007 mm/yr when increasing the number of beads from 1 to 40. CRs determined with beads were higher than those with coupons, possibly also due to a higher weight of iron per unit volume used in incubations with coupons. Use of 1 ml syringe columns, containing carbon steel beads, and injected with 10 ml/day of SRB-containing medium for 256 days gave a CR of 0.11 mm/yr under flow conditions. The standard deviation of the distribution of residual bead weights, a measure for the unevenness of the corrosion, increased with increasing CR. The most heavily corroded beads showed significant pitting. Hence the use of uniformly sized carbon steel beads offers new opportunities for screening and monitoring of corrosion including determination of the distribution of corrosion rates, which allows

  6. How mutualisms arise in phytoplankton communities: building eco-evolutionary principles for aquatic microbes.

    PubMed

    Kazamia, Elena; Helliwell, Katherine Emma; Purton, Saul; Smith, Alison Gail

    2016-07-01

    Extensive sampling and metagenomics analyses of plankton communities across all aquatic environments are beginning to provide insights into the ecology of microbial communities. In particular, the importance of metabolic exchanges that provide a foundation for ecological interactions between microorganisms has emerged as a key factor in forging such communities. Here we show how both studies of environmental samples and physiological experimentation in the laboratory with defined microbial co-cultures are being used to decipher the metabolic and molecular underpinnings of such exchanges. In addition, we explain how metabolic modelling may be used to conduct investigations in reverse, deducing novel molecular exchanges from analysis of large-scale data sets, which can identify persistently co-occurring species. Finally, we consider how knowledge of microbial community ecology can be built into evolutionary theories tailored to these species' unique lifestyles. We propose a novel model for the evolution of metabolic auxotrophy in microorganisms that arises as a result of symbiosis, termed the Foraging-to-Farming hypothesis. The model has testable predictions, fits several known examples of mutualism in the aquatic world, and sheds light on how interactions, which cement dependencies within communities of microorganisms, might be initiated. PMID:27282316

  7. Aquatic Therapy for Children

    ERIC Educational Resources Information Center

    Kucher, Greta; Moore, Kelsey; Rodia, Rachel; Moser, Christy Szczech

    2015-01-01

    Aquatic therapy has long been highlighted in the literature as a potentially powerful therapeutic intervention. This review will highlight basic definitions of aquatic therapy, review salient research, and identify specific diagnoses that may benefit from aquatic therapy. Online resources, blogs, and books that occupational therapists may find…

  8. Comparison of Microbial Community Compositions of Injection and Production Well Samples in a Long-Term Water-Flooded Petroleum Reservoir

    PubMed Central

    Ren, Hong-Yan; Zhang, Xiao-Jun; Song, Zhi-yong; Rupert, Wieger; Gao, Guang-Jun; Guo, Sheng-xue; Zhao, Li-Ping

    2011-01-01

    Water flooding plays an important role in recovering oil from depleted petroleum reservoirs. Exactly how the microbial communities of production wells are affected by microorganisms introduced with injected water has previously not been adequately studied. Using denaturing gradient gel electrophoresis (DGGE) approach and 16S rRNA gene clone library analysis, the comparison of microbial communities is carried out between one injection water and two production waters collected from a working block of the water-flooded Gudao petroleum reservoir located in the Yellow River Delta. DGGE fingerprints showed that the similarities of the bacterial communities between the injection water and production waters were lower than between the two production waters. It was also observed that the archaeal composition among these three samples showed no significant difference. Analysis of the 16S rRNA gene clone libraries showed that the dominant groups within the injection water were Betaproteobacteria, Gammaproteobacteria and Methanomicrobia, while the dominant groups in the production waters were Gammaproteobacteria and Methanobacteria. Only 2 out of 54 bacterial operational taxonomic units (OTUs) and 5 out of 17 archaeal OTUs in the injection water were detected in the production waters, indicating that most of the microorganisms introduced by the injection water may not survive to be detected in the production waters. Additionally, there were 55.6% and 82.6% unique OTUs in the two production waters respectively, suggesting that each production well has its specific microbial composition, despite both wells being flooded with the same injection water. PMID:21858049

  9. Aquatic bacterial assemblage structure in Pozas Azules, Cuatro Cienegas Basin, Mexico: Deterministic vs. stochastic processes.

    PubMed

    Espinosa-Asuar, Laura; Escalante, Ana Elena; Gasca-Pineda, Jaime; Blaz, Jazmín; Peña, Lorena; Eguiarte, Luis E; Souza, Valeria

    2015-06-01

    The aim of this study was to determine the contributions of stochastic vs. deterministic processes in the distribution of microbial diversity in four ponds (Pozas Azules) within a temporally stable aquatic system in the Cuatro Cienegas Basin, State of Coahuila, Mexico. A sampling strategy for sites that were geographically delimited and had low environmental variation was applied to avoid obscuring distance effects. Aquatic bacterial diversity was characterized following a culture-independent approach (16S sequencing of clone libraries). The results showed a correlation between bacterial beta diversity (1-Sorensen) and geographic distance (distance decay of similarity), which indicated the influence of stochastic processes related to dispersion in the assembly of the ponds' bacterial communities. Our findings are the first to show the influence of dispersal limitation in the prokaryotic diversity distribution of Cuatro Cienegas Basin. PMID:26496618

  10. Inflammatory potential in relation to the microbial content of settled dust samples collected from moisture-damaged and reference schools: results of HITEA study.

    PubMed

    Huttunen, K; Tirkkonen, J; Täubel, M; Krop, E; Mikkonen, S; Pekkanen, J; Heederik, D; Zock, J-P; Hyvärinen, A; Hirvonen, M-R

    2016-06-01

    Aiming to identify factors causing the adverse health effects associated with moisture-damaged indoor environments, we analyzed immunotoxicological potential of settled dust from moisture-damaged and reference schools in relation to their microbiological composition. Mouse RAW264.7 macrophages were exposed to settled dust samples (n = 25) collected from moisture-damaged and reference schools in Spain, the Netherlands, and Finland. After exposure, we analyzed production of inflammatory markers [nitric oxide (NO), tumor necrosis factor-α (TNF-)α, interleukin (IL)-6, and macrophage inflammatory protein (MIP)2] as well as mitochondrial activity, viability, apoptosis, and cell cycle arrest. Furthermore, particle counts, concentration of selected microbial groups as well as chemical markers such as ergosterol, 3-hydroxy fatty acids, muramic acid, endotoxins, and glucans were measured as markers of exposure. Dust from moisture-damaged schools in Spain and the Netherlands induced stronger immunotoxicological responses compared to samples from reference schools; the responses to Finnish samples were generally lower with no difference between the schools. In multivariate analysis, IL-6 and apoptosis responses were most strongly associated with moisture status of the school. The measured responses correlated with several microbial markers and numbers of particles, but the most important predictor of the immunotoxicological potential of settled dust was muramic acid concentration, a marker of Gram-positive bacteria. PMID:25967114

  11. Mass Spectrometry and Multiplex Antigen Assays to Assess Microbial Quality and Toxin Production of Staphylococcus aureus Strains Isolated from Clinical and Food Samples

    PubMed Central

    Attien, Paul; Sina, Haziz; Moussaoui, Wardi; Zimmermann-Meisse, Gaëlle; Dadié, Thomas; Keller, Daniel; Riegel, Philippe; Edoh, Vincent; Kotchoni, Simeon O.; Djè, Marcellin; Prévost, Gilles

    2014-01-01

    The aim of our study was to investigate the microbial quality of meat products and on some clinical samples in Abidjan focused on Staphylococcus genus and the toxin production profile of Staphylococcus aureus (S. aureus) isolated. Bacteria were collected from 240 samples of three meat products sold in Abidjan and 180 samples issued from clinical infections. The strains were identified by both microbiological and MALDI-TOF-MS methods. The susceptibility to antibiotics was determined by the disc diffusion method. The production of Panton-Valentine Leukocidin, LukE/D, and epidermolysins was screened using radial gel immunodiffusion. The production of staphylococcal enterotoxins and TSST-1 was screened by a Bio-Plex Assay. We observed that 96/240 of meat samples and 32/180 of clinical samples were contaminated by Staphylococcus. Eleven species were isolated from meats and 4 from clinical samples. Forty-two S. aureus strains were isolated from ours samples. Variability of resistance was observed for most of the tested antibiotics but none of the strains displays a resistance to imipenem and quinolones. We observed that 89% of clinical S. aureus were resistant to methicillin against 58% for those issued from meat products. All S. aureus isolates issued from meat products produce epidermolysins whereas none of the clinical strains produced these toxins. The enterotoxins were variably produced by both clinical and meat product samples. PMID:24987686

  12. Metaproteomics to investigate the impact of sampling-site biogeochemistry on structure and functionality of leaf-litter degrading microbial communities

    NASA Astrophysics Data System (ADS)

    Schneider, Thomas; Keiblinger, Katharina; Gerrits, Bertran; Schmid, Emanuel; Eberl, Leo; Zechmeister-Boltenstern, Sophie; Riedel, Kathrin

    2010-05-01

    The composition of organic matter in natural ecosystems is strongly influenced by the microorganisms present. Conversely, bacteria and fungi are limited by the amount and type of organic matter available in a given environment, most of which is ultimately derived from plants. Changes in the stoichiometry and biochemical constituents of plant litter may therefore alter species composition and elicit changes in the activities of microbial communities and their component parts. The identification of the microbial proteins of a given habitat together with the analysis of their phylogenetic origin and their spatial and temporal distribution are expected to provide fundamentally new insights into the role of microbial diversity in biogeochemical processes. To relate structure and functionality of microbial communities involved in leaf-litter decomposition we determined biogeochemistry, community structure by phospholipid fatty acid (PLFA)-analyses, enzymatic activities, and analysed the protein complement of different litter types, which were collected in winter and spring at various Austrian sampling sites, in a semi-quantitative proteomics approach by one dimensional polyacrylamide gel electrophoresis (1-D-SDS-PAGE) combined with liquid chromatography/tandem mass-spectrometry (LC-MS/MS). Protein abundances were determined by counting the number of MS/MS spectra assigned to each protein. In samples with high manganese and phosphor content a significant increase of fungal proteins from February to May was observed, which was in good agreement with the PLFA-analyses showing similar trends towards an increase of the fungal community. In contrast, the PLFA analysis revealed no temporal changes in the community at Achenkirch and even a decrease in the fungal/bacterial ratio at Klausen-Leopoldsdorf, two sampling sites low in P and Mn; similar trends are reflected in our spectral counts. In conclusion, semi-quantitative proteome- and PLFA-analyses suggest that fungal and

  13. Analysis of hexachlorocyclohexanes in aquatic samples by one-step microwave-assisted headspace controlled-temperature liquid-phase microextraction and gas chromatography with electron capture detection.

    PubMed

    Tsai, Ming-Yuen; Kumar, Ponnusamy Vinoth; Li, Hong-Ping; Jen, Jen-Fon

    2010-03-19

    A microwave-assisted headspace controlled-temperature liquid-phase microextraction (HS-CT-LPME) technique was applied for the one-step sample extraction of hexachlorocyclohexanes (HCHs) from aqueous samples with complicate matrices, followed by gas chromatographic (GC) analysis with electron capture detector (ECD). Microwave heating was applied to accelerate the evaporation of HCHs into the headspace and an external-cooling system was used to control the temperature in the sampling zone for HS-LPME. Parameters affecting extraction efficiency, such as LPME solvent, sampling position and temperature, microwave power and irradiation time (the same as sampling time), sample pH, and salt addition were thoroughly investigated. From experimental results, the following conditions were selected for the extraction of HCHs from 10-mL water sample (pH 2.0) by using 1-octanol as the LPME solvent, with sampling done at 38 degrees C for 6 min under 167 W of microwave irradiation. The detections were linear in the concentration of 0.1-10 microg/L for alpha-HCH and gamma-HCH, and 1-100 microg/L for beta-HCH and delta-HCH. Detection limits were 0.05, 0.4, 0.03 and 0.1 microg/L for alpha-, beta-, gamma- and delta-HCH, respectively. Environmental water samples were analyzed with recovery between 86.4% and 102.4% for farm-field water, and between 92.2% and 98.6% for river water. The proposed method proved to serve as a simple, rapid, sensitive, inexpensive, and eco-friendly procedure for the determination of HCHs in aqueous samples. PMID:20149378

  14. Determination of alachlor and its metabolite 2,6-diethylaniline in microbial culture medium using online microdialysis enriched-sampling coupled to high-performance liquid chromatography.

    PubMed

    Chen, Chi-Zen; Yan, Cheing-Tong; Kumar, Ponnusamy Vinoth; Huang, Jenn-Wen; Jen, Jen-Fon

    2011-08-10

    In this study, a simple and novel microdialysis sampling technique incorporating hollow fiber liquid phase microextraction (HF-LPME) coupled online to high-performance liquid chromatography (HPLC) for the one-step sample pretreatment and direct determination of alachlor (2-chloro-2',6'-diethyl-N -(methoxymethyl)acetanilide) and its metabolite 2,6-diethylaniline (2,6-DEA) in microbial culture medium has been developed. A reversed-phase C-18 column was utilized to separate alachlor and 2,6-DEA from other species using an acetonitrile/water mixture (1:1) containing 0.1 M phosphate buffer solution at pH 7.0 as the mobile phase. Detection was carried out with a UV detector operated at 210 nm. Parameters that influenced the enrichment efficiency of online HF-LPME sampling, including the length of the hollow fiber, the perfusion solvent and its flow rate, the pH, and the salt added in sample solution, as well as chromatographic conditions were thoroughly optimized. Under optimal conditions, excellent enrichment efficiency was achieved by the microdialysis of a sample solution (pH 7.0) using hexane as perfusate at the flow rate of 4 μL/min. Detection limits were 72 and 14 ng/mL for alachlor and 2,6-DEA, respectively. The enrichment factors were 403 and 386 (RSD < 5%) for alachlor and 2,6-DEA, respectively, when extraction was performed by using a 40 cm regenerated cellulose hollow fiber and hexane as perfusion solvent at the flow rate of 0.1 μL/min. The proposed method provides a sensitive, flexible, fast, and eco-friendly procedure to enrich and determine alachlor and its metabolite (2,6-DEA) in microbial culture medium. PMID:21707080

  15. Which Microbial Communities Are Present? Using Fluorescence In Situ Hybridisation (FISH): Microscopic Techniques for Enumeration of Troublesome Microorganisms in Oil and Fuel Samples

    NASA Astrophysics Data System (ADS)

    Holmkvist, Lars; Østergaard, Jette Johanne; Skovhus, Torben Lund

    Enumeration of microbes involved in souring of oil fields and microbiologically influenced corrosion (MIC) with culture-based methods, usually yield inadequate and contradictory results. Any cultivation step will almost certainly alter the population structure of the sample and thus the results of cultivation analysis are not a good basis for mitigation decisions. The need for methods that are cultivation independent has over the past 10 years facilitated the development of several analytical methods for determination of bacterial identity, quantity, and to some extent function, applied directly to samples of the native population. In this chapter, we demonstrate the features and benefits of applying microscopic techniques to a situation often encountered in the oil and petroleum industry: Control of microbial growth in fuel storage tanks. The methods described in this chapter will focus on direct counts of specific groups of microorganisms with microscopy and these are based on the detection of genetic material and not on culturing.

  16. Static self-directed sample dispensing into a series of reaction wells on a microfluidic card for parallel genetic detection of microbial pathogens.

    PubMed

    Stedtfeld, Robert D; Liu, Yen-Cheng; Stedtfeld, Tiffany M; Kostic, Tanja; Kronlein, Maggie; Srivannavit, Onnop; Khalife, Walid T; Tiedje, James M; Gulari, Erdogan; Hughes, Mary; Etchebarne, Brett; Hashsham, Syed A

    2015-10-01

    A microfluidic card is described for simultaneous and rapid genetic detection of multiple microbial pathogens. The hydrophobic surface of native acrylic and a novel microfluidic mechanism termed "airlock" were used to dispense sample into a series of 64 reaction wells without the use of valves, external pumping peripherals, multiple layers, or vacuum assistance. This airlock mechanism was tested with dilutions of whole human blood, saliva, and urine, along with mock samples of varying viscosities and surface tensions. Samples spiked with genomic DNA (gDNA) or crude lysates from clinical bacterial isolates were tested with loop mediated isothermal amplification assays (LAMP) designed to target virulence and antibiotic resistance genes. Reactions were monitored in real time using the Gene-Z, which is a portable smartphone-driven system. Samples loaded correctly into the microfluidic card in 99.3% of instances. Amplification results confirmed no carryover of pre-dispensed primer between wells during sample loading, and no observable diffusion between adjacent wells during the 60 to 90 min isothermal reaction. Sensitivity was comparable between LAMP reactions tested within the microfluidic card and in conventional vials. Tests demonstrate that the airlock card works with various sample types, manufacturing techniques, and can potentially be used in many point-of-care diagnostics applications. PMID:26260693

  17. Ubiquitous Detection of Artificial Sweeteners and Iodinated X-ray Contrast Media in Aquatic Environmental and Wastewater Treatment Plant Samples from Vietnam, The Philippines, and Myanmar.

    PubMed

    Watanabe, Yuta; Bach, Leu Tho; Van Dinh, Pham; Prudente, Maricar; Aguja, Socorro; Phay, Nyunt; Nakata, Haruhiko

    2016-05-01

    Water samples from Vietnam, The Philippines, and Myanmar were analyzed for artificial sweeteners (ASs) and iodinated X-ray contrast media (ICMs). High concentrations (low micrograms per liter) of ASs, including aspartame, saccharin, and sucralose, were found in wastewater treatment plant (WWTP) influents from Vietnam. Three ICMs, iohexol, iopamidol, and iopromide were detected in Vietnamese WWTP influents and effluents, suggesting that these ICMs are frequently used in Vietnam. ASs and ICMs were found in river water from downtown Hanoi at concentrations comparable to or lower than the concentrations in WWTP influents. The ASs and ICMs concentrations in WWTP influents and adjacent surface water significantly correlated (r (2) = 0.99, p < 0.001), suggesting that household wastewater is discharged directly into rivers in Vietnam. Acesulfame was frequently detected in northern Vietnamese groundwater, but the concentrations varied spatially by one order of magnitude even though the sampling points were very close together. This implies that poorly performing domestic septic tanks sporadically leak household wastewater into groundwater. High acesulfame, cyclamate, saccharin, and sucralose concentrations were found in surface water from Manila, The Philippines. The sucralose concentrations were one order of magnitude higher in the Manila samples than in the Vietnamese samples, indicating that more sucralose is used in The Philippines than in Vietnam. Acesulfame and cyclamate were found in surface water from Pathein (rural) and Yangon (urban) in Myanmar, but no ICMs were found in the samples. The ASs concentrations were two-three orders of magnitude lower in the samples from Myanmar than in the samples from Vietnam and The Philippines, suggesting that different amounts of ASs are used in these countries. We believe this is the first report of persistent ASs and ICMs having ubiquitous distributions in economically emerging South Asian countries. PMID:26304512

  18. Determination of kinetic and equilibrium regimes in the operation of polar organic chemical integrative samplers. Application to the passive sampling of the polar herbicides in aquatic environments.

    PubMed

    Mazzella, Nicolas; Dubernet, Jean-François; Delmas, François

    2007-06-22

    This work set out the laboratory calibration of the passive samplers such as polar organic chemical integrative samplers (POCISs) which preconcentrate hydrophilic organic contaminants in aqueous medium. We compared the two different configurations available (i.e. pesticide and pharmaceutical POCISs) for sampling different classes of herbicides representative of a wide range of polarity (5.34>of=log Kow>or=-1.70). The results showed that pharmaceutical configuration was probably more convenient for sampling basic, neutral or acidic herbicides. Afterward, we performed a kinetic study with the pharmaceutical POCIS only. This calibration revealed linear and integrative uptakes of several herbicides for 21 days. For some compounds like sulcotrione, mesotrione, deisopropylatrazine (DIA) and deethylatrazine (DEA), the linear uptake model was only valid for 10 days. Lastly, we observed an increase of the sampling rates with the hydrophobicity of the herbicides. PMID:17439817

  19. PRODUCTION OF EXTRACELLULAR NUCLEIC ACIDS BY GENETICALLY ALTERED BACTERIA IN AQUATIC-ENVIRONMENT MICROCOSMS

    EPA Science Inventory

    Factors which affect the production of extracellular DNA by genetically altered strains of Escherichia coli, Pseudomonas aeruginosa, pseudomonas cepacia, and Bradyrhizobium japonicum in aquatic environments were investigated. he presence or absence of the ambient microbial commun...

  20. Characterization of natural organic matter as major constituents in aquatic systems

    NASA Astrophysics Data System (ADS)

    Frimmel, F. H.

    1998-12-01

    Natural organic matter (NOM) is ubiquitous in global aquatic systems, the mass concentrations ranging from 0.5 to 100 mg/l of organic carbon. The polydispersity of molar masses and the chemical structures comprising NOM give it a multifunctional role in natural environment and in water treatment processes. Important functions include serving as an electron donor in metal complexation, sorption of xenobiotics and adsorption onto mineral phases and onto activated carbon. NOM is partially oxidized during microbial utilization and during water treatment in which it may also become substituted with chlorine leading to a suite of products with toxic relevance. Meaningful methods of NOM characterization would be useful for the development of a predictive capacity for NOM behaviour in different water sources. Among analytical characterization methods, those directly applicable to aqueous samples are most useful and in addition to classical spectroscopic methods, more advanced methods have become available within the last decade. High pressure liquid chromatography using gels have proved useful in combination with UV/vis, fluorescence, light scattering and sensitive dissolved organic carbon detection techniques, yielding information on molecular absorbance, size distribution, molar mass and reactivity. Information on biodegradability of NOM can be deduced from experimental measurement of bacterial growth under defined conditions. The nature and amount of biologically assimilable organic carbon (AOC) in combination with the bacterial cell number and growth rate constants can provide a meaningful characterization of microbial stability in aquatic systems. In addition, determination of directly available and acid or enzymatically hydrolysable amino acids and carbohydrates can add to the understanding of NOM biodegradability over different time scales. The paper gives the results obtained by the application of the different methods for the characterization of aquatic NOM and

  1. Aquatic Activities for Youth.

    ERIC Educational Resources Information Center

    Greene, H. David; And Others

    Designed to meet the diverse educational needs of youth groups, this aquatic program consists of eight individual lesson units, each devoted to one aspect of the aquatic world. Unit topics include: fish aquariums; raising earthworms; simulation of coastal planning; entomology and water; rope; calculating stream flow; saltwater aquariums; and fish…

  2. Interlaboratory comparison of three microbial source tracking quantitative polymerase chain reaction (qPCR) assays from fecal-source and environmental samples

    USGS Publications Warehouse

    Stelzer, Erin A.; Strickler, Kriston M.; Schill, William B.

    2012-01-01

    During summer and early fall 2010, 15 river samples and 6 fecal-source samples were collected in West Virginia. These samples were analyzed by three laboratories for three microbial source tracking (MST) markers: AllBac, a general fecal indicator; BacHum, a human-associated fecal indicator; and BoBac, a ruminant-associated fecal indicator. MST markers were analyzed by means of the quantitative polymerase chain reaction (qPCR) method. The aim was to assess interlaboratory precision when the three laboratories used the same MST marker and shared deoxyribonucleic acid (DNA) extracts of the samples, but different equipment, reagents, and analyst experience levels. The term assay refers to both the markers and the procedure differences listed above. Interlaboratory precision was best for all three MST assays when using the geometric mean absolute relative percent difference (ARPD) and Friedman's statistical test as a measure of interlaboratory precision. Adjustment factors (one for each MST assay) were calculated using results from fecal-source samples analyzed by all three laboratories and applied retrospectively to sample concentrations to account for differences in qPCR results among labs using different standards and procedures. Following the application of adjustment factors to qPCR results, ARPDs were lower; however, statistically significant differences between labs were still observed for the BacHum and BoBac assays. This was a small study and two of the MST assays had 52 percent of samples with concentrations at or below the limit of accurate quantification; hence, more testing could be done to determine if the adjustment factors would work better if the majority of sample concentrations were above the quantification limit.

  3. [Determination of total mercury in water samples, sediments and solids in suspension in aquatic systems by cold-vapor atomic absorption spectrophotometry].

    PubMed

    Vieira, J L; Passarelli, M M

    1996-06-01

    The use of metallic mercury in the extraction and concentration of gold causes the discarding of tons of this metal in the environment, leading to a considerable increase in the natural levels of the same and the contamination of the surrounding areas. Thus it is extremely important to monitor the presence of this metal in various sectors of the environment with a view aiming to preventing human exposure to excessive concentrations which can result in serious episodes of mercury poisoning. It is also important to estimate the possibility of river sediments becoming potential sources of contamination of human beings. The determination of total mercury was undertaken by using cold vapor atomic absorption spectrometry. River waters, as well as sediments and suspended solids were used as samples for the standardization of the analytical procedure. Later on, this method was tested on samples originating in gold mining areas for the purpose of assessing its validity. PMID:9110471

  4. Concentrations of cadmium, lead, and zinc in fish from mining-influenced waters of northeastern Oklahoma: Sampling of blood, carcass, and liver for aquatic biomonitoring

    USGS Publications Warehouse

    Brumbaugh, W.G.; Schmitt, C.J.; May, T.W.

    2005-01-01

    The Tri-States Mining District (TSMD) of Missouri (MO), Kansas (KS), and Oklahoma (OK), USA, was mined for lead (Pb) and zinc (Zn) for more than a century. Mining ceased more than 30 years ago, but wastes remain widely distributed in the region, and there is evidence of surface- and groundwater contamination in the Spring River-Neosho River (SR-NR) system of northeastern OK. In October 2001, we collected a total of 74 fish from six locations in the SR-NR system that included common carp (Cyprinus carpio), channel- and flathead catfish (Ictalurus punctatus and Pylodictis olivaris), largemouth- and spotted bass (Micropterus salmoides and Micropterus punctulatus), and white crappie (Pomoxis annularis). We obtained additional fish from locations in MO that included three reference sites and one site that served as a "positive control" (heavily contaminated by Pb). Blood, carcass (headed, eviscerated, and scaled) and liver (carp only) samples were analyzed for cadmium (Cd), Pb, and Zn. Our objectives were to assess the degree to which fish from the OK portion of the SR-NR system are contaminated by these elements and to evaluate fish blood sampling for biomonitoring. Concentrations of Cd and Pb in carp and catfish from OK sites were elevated and Pb concentrations of some approached those of the highly contaminated site in MO, but concentrations in bass and crappie were relatively low. For Zn, correlations were weak among concentrations in the three tissues and none of the samples appeared to reflect site contamination. Variability was high for Cd in all three tissues of carp; differences between sites were statistically significant (p < 0.05) only for blood even though mean liver concentrations were at least 100-fold greater than those in blood. Blood concentrations of Cd and Pb were positively correlated (r 2 = 0.49 to 0.84) with the concentration of the same element in carp and catfish carcasses or in carp livers, and the corresponding multiple regression models were

  5. Concentrations of cadmium, lead, and zinc in fish from mining-influenced waters of northeastern Oklahoma: sampling of blood, carcass, and liver for aquatic biomonitoring.

    PubMed

    Brumbaugh, William G; Schmitt, Christopher J; May, Thomas W

    2005-07-01

    The Tri-States Mining District (TSMD) of Missouri (MO), Kansas (KS), and Oklahoma (OK), USA, was mined for lead (Pb) and zinc (Zn) for more than a century. Mining ceased more than 30 years ago, but wastes remain widely distributed in the region, and there is evidence of surface- and groundwater contamination in the Spring River-Neosho River (SR-NR) system of northeastern OK. In October 2001, we collected a total of 74 fish from six locations in the SR-NR system that included common carp (Cyprinus carpio), channel- and flathead catfish (Ictalurus punctatus and Pylodictis olivaris), largemouth- and spotted bass (Micropterus salmoides and Micropterus punctulatus), and white crappie (Pomoxis annularis). We obtained additional fish from locations in MO that included three reference sites and one site that served as a "positive control" (heavily contaminated by Pb). Blood, carcass (headed, eviscerated, and scaled) and liver (carp only) samples were analyzed for cadmium (Cd), Pb, and Zn. Our objectives were to assess the degree to which fish from the OK portion of the SR-NR system are contaminated by these elements and to evaluate fish blood sampling for biomonitoring. Concentrations of Cd and Pb in carp and catfish from OK sites were elevated and Pb concentrations of some approached those of the highly contaminated site in MO, but concentrations in bass and crappie were relatively low. For Zn, correlations were weak among concentrations in the three tissues and none of the samples appeared to reflect site contamination. Variability was high for Cd in all three tissues of carp; differences between sites were statistically significant (p < 0.05) only for blood even though mean liver concentrations were at least 100-fold greater than those in blood. Blood concentrations of Cd and Pb were positively correlated (r2 = 0.49 to 0.84) with the concentration of the same element in carp and catfish carcasses or in carp livers, and the corresponding multiple regression models were

  6. Occurrence of microbial indicators and Clostridium perfringens in wastewater, water column samples, sediments, drinking water, and Weddell seal feces collected at McMurdo Station, Antarctica

    USGS Publications Warehouse

    Lisle, J.T.; Smith, J.J.; Edwards, D.D.; McFeters, G.A.

    2004-01-01

    McMurdo Station, Antarctica, has discharged untreated sewage into McMurdo Sound for decades. Previous studies delineated the impacted area, which included the drinking water intake, by using total coliform and Clostridium perfringens concentrations. The estimation of risk to humans in contact with the impacted and potable waters may be greater than presumed, as these microbial indicators may not be the most appropriate for this environment. To address these concerns, concentrations of these and additional indicators (fecal coliforms, Escherichia coli, enterococci, coliphage, and enteroviruses) in the untreated wastewater, water column, and sediments of the impacted area and drinking water treatment facility and distribution system at McMurdo Station were determined. Fecal samples from Weddell seals in this area were also collected and analyzed for indicators. All drinking water samples were negative for indicators except for a single total coliform-positive sample. Total coliforms were present in water column samples at higher concentrations than other indicators. Fecal coliform and enterococcus concentrations were similar to each other and greater than those of other indicators in sediment samples closer to the discharge site. C. perfringens concentrations were higher in sediments at greater distances from the discharge site. Seal fecal samples contained concentrations of fecal coliforms, E. coli, enterococci, and C. perfringens similar to those found in untreated sewage. All samples were negative for enteroviruses. A wastewater treatment facility at McMurdo Station has started operation, and these data provide a baseline data set for monitoring the recovery of the impacted area. The contribution of seal feces to indicator concentrations in this area should be considered.

  7. Occurrence of microbial indicators and Clostridium perfringens in wastewater, water column samples, sediments, drinking water, and Weddell seal feces collected at McMurdo Station, Antarctica.

    PubMed

    Lisle, John T; Smith, James J; Edwards, Diane D; McFeters, Gordon A

    2004-12-01

    McMurdo Station, Antarctica, has discharged untreated sewage into McMurdo Sound for decades. Previous studies delineated the impacted area, which included the drinking water intake, by using total coliform and Clostridium perfringens concentrations. The estimation of risk to humans in contact with the impacted and potable waters may be greater than presumed, as these microbial indicators may not be the most appropriate for this environment. To address these concerns, concentrations of these and additional indicators (fecal coliforms, Escherichia coli, enterococci, coliphage, and enteroviruses) in the untreated wastewater, water column, and sediments of the impacted area and drinking water treatment facility and distribution system at McMurdo Station were determined. Fecal samples from Weddell seals in this area were also collected and analyzed for indicators. All drinking water samples were negative for indicators except for a single total coliform-positive sample. Total coliforms were present in water column samples at higher concentrations than other indicators. Fecal coliform and enterococcus concentrations were similar to each other and greater than those of other indicators in sediment samples closer to the discharge site. C. perfringens concentrations were higher in sediments at greater distances from the discharge site. Seal fecal samples contained concentrations of fecal coliforms, E. coli, enterococci, and C. perfringens similar to those found in untreated sewage. All samples were negative for enteroviruses. A wastewater treatment facility at McMurdo Station has started operation, and these data provide a baseline data set for monitoring the recovery of the impacted area. The contribution of seal feces to indicator concentrations in this area should be considered. PMID:15574926

  8. Ultrasound-assisted extraction and solid-phase extraction as a cleanup procedure for organochlorinated pesticides and polychlorinated biphenyls determination in aquatic samples by gas chromatography with electron capture detection.

    PubMed

    Sun, Xiumei; Hu, Hongmei; Zhong, Zhi; Jin, Yanjian; Zhang, Xiaojun; Guo, Yuanming

    2015-02-01

    The feasibility of developing a quick, easy, efficient procedure for the simultaneous determination of organochlorinated pesticides and polychlorinated biphenyls in aquatic samples using gas chromatography with electron capture detection based on solid-phase extraction was investigated. The extraction solvent (n-hexane/acetone, cyclohexane/ethyl acetate, n-hexane/dichloromethane, n-hexane) for ultrasound-assisted solid-liquid extraction and solid-phase extraction columns (florisil, neutral alumina, acidic alumina, aminopropyl trimethoxy silane, propyl ethylenediamine, aminopropyl trimethoxy silane/propyl ethylenediamine, graphitized carbon black and silica) for cleanup procedure were optimized. The gas chromatography with electron capture detection method was validated in terms of linearity, sensitivity, reproducibility, and recovery. Mean recoveries ranged from 75 to 115% with relative standard deviations <13%. Quantification limits were 0.20-0.40 ng/g for organochlorinated pesticides and polychlorinated biphenyls. The satisfactory data demonstrated the good reproducibility of the method with relative standard deviations lower than 13%. In comparison to other related methods, this method requires less time and solvent and allows for rapid isolation of the target analytes with high selectivity. This method therefore allows for the screening of numerous samples and can also be used for routine analyses. PMID:25529797

  9. Overview of the Chemcatcher® for the passive sampling of various pollutants in aquatic environments Part A: Principles, calibration, preparation and analysis of the sampler.

    PubMed

    Charriau, Adeline; Lissalde, Sophie; Poulier, Gaëlle; Mazzella, Nicolas; Buzier, Rémy; Guibaud, Gilles

    2016-02-01

    The passive sampler Chemcatcher(®), which was developed in 2000, can be adapted for various types of water contaminants (e.g., trace metals, polycyclic aromatic hydrocarbons, pesticides and pharmaceutical residues) depending on the materials chosen for the receiving phase and the membrane. The Chemcatcher(®) has been used in numerous research articles in both laboratory experiments and field exposures, and here we review the state-of-the-art in applying this passive sampler. Part A of this review covers (1) the theory upon which the sampler is based (i.e., brief theory, calculation of water concentration, Performance and Reference Compounds), (2) the preparation of the device (i.e., sampler design, choice of the membrane and disk, mounting of the tool), and (3) calibration procedures (i.e., design of the calibration tank, tested parameters, sampling rates). PMID:26653485

  10. Experimental Investigation of Microbially Induced Corrosion of Test Samples and Effect of Self-Assembled Hydrophobic Monolayers. Exposure of Test Samples to Continuous Microbial Cultures, Chemical Analysis, and Biochemical Studies

    SciTech Connect

    Laurinavichius, K.S.

    1998-09-30

    The study of biocorrosion of aluminum and beryllium samples were performed under conditions of continuous fermentation of thermophilic anaerobic microorganisms of different groups. This allowed us to examine the effect of various types of metabolic reactions of reduction-oxidation proceeding at different pH and temperatures under highly reduced conditions on aluminum and beryllium corrosion and effect of self-assembled hydrophobic monolayers.